WO2023193266A1 - 下行无线链路质量的评估方法及装置 - Google Patents

下行无线链路质量的评估方法及装置 Download PDF

Info

Publication number
WO2023193266A1
WO2023193266A1 PCT/CN2022/085962 CN2022085962W WO2023193266A1 WO 2023193266 A1 WO2023193266 A1 WO 2023193266A1 CN 2022085962 W CN2022085962 W CN 2022085962W WO 2023193266 A1 WO2023193266 A1 WO 2023193266A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
secondary cell
failure detection
primary
cell group
Prior art date
Application number
PCT/CN2022/085962
Other languages
English (en)
French (fr)
Inventor
贾美艺
李国荣
易粟
Original Assignee
富士通株式会社
贾美艺
李国荣
易粟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 贾美艺, 李国荣, 易粟 filed Critical 富士通株式会社
Priority to PCT/CN2022/085962 priority Critical patent/WO2023193266A1/zh
Publication of WO2023193266A1 publication Critical patent/WO2023193266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • This application relates to the field of communications.
  • the terminal device In the RRC connection (RRC_CONNECTED), based on the reference signal (such as synchronization signal and PBCH block SSB or channel state information reference signal CSI-RS) and the reference signal threshold configured by the network, the terminal device performs wireless operation in the activated BWP (Bandwidth Part).
  • Link monitoring Radio Link Monitoring, RLM.
  • Wireless link monitoring is applicable to the primary cell (PCell) in SA NR, NR-DC and NE-DC operating modes and the primary and secondary cells (PSCell) in NR-DC and EN-DC operating modes.
  • SSB-based RLM is based on the SSB associated with the initial downstream BWP (DL BWP) and can only be configured for the initial DL BWP and DL BWPs that include the SSB associated with the initial DL BWP.
  • DL BWP initial downstream BWP
  • RLM is only performed based on CSI-RS. End devices are not required to perform RLM outside of activating DL BWP.
  • the terminal device continues radio link failure (RLF) detection on the source cell until the random access process is successfully completed on the target cell.
  • RLF radio link failure
  • the terminal device will evaluate the downlink wireless link quality of a serving cell based on the reference signal to detect beam failure. This applies to PCells in SA, NR-DC and NE-DC operating modes, PSCells in NR-DC and EN-DC operating modes, and SCells in SA, NR-DC, NE-DC or EN-DC operating modes. .
  • the terminal device is not required to perform beam failure detection on a deactivated SCell, nor is it required to perform beam failure detection on resources implicitly configured for a deactivated SCell.
  • SSB-based beam failure detection is based on the SSB associated with the initial DL BWP and can only be configured for initial DL BWPs and DL BWPs that include the SSB associated with the initial DL BWP. For other DL BWPs, beam failure detection is performed based on CSI-RS only. End devices are not required to perform beam failure detection outside of activating DL BWP.
  • Beam failures are detected by counting the number of beam failure instance indications from lower layers to the MAC entity.
  • the terminal device For the detection of physical layer problems under RRC_CONNECTED, the terminal device will:
  • the source MCG detects a wireless link failure, that is, the source RLF;
  • allowedServingCells only includes secondary cells:
  • MCG detects wireless link failure, that is, MCG RLF
  • the detection of wireless link failure also includes that the terminal device will:
  • allowedServingCells only includes secondary cells:
  • SCG detects wireless link failure, that is, SCG RLF
  • the beam failure detection process uses the terminal equipment (UE) variable BFI_COUNTER. This variable is a counter indicating beam failure instances. It is initially set to 0 and has one for each serving cell.
  • UE terminal equipment
  • Figure 1 is a flow chart of detection of beam failure in a serving cell or triggering of beam failure recovery. As shown in Figure 1,
  • the MAC entity For each serving cell configured with beam failure detection, the MAC entity will:
  • the serving cell is a secondary cell (SCell), trigger a BFR of this serving cell;
  • the higher layer reconfigures the beamFailureDetectionTimer, beamFailureInstanceMaxCount or any reference signal used for beam failure detection of this serving cell:
  • This process applies to special cells and secondary cells of Rel-15 and Rel-16.
  • the MAC entity may be configured by RRC with a beam failure recovery procedure per serving cell. This procedure is used to indicate a new SSB or CSI to the serving network device when a beam failure is detected on the serving SSB(s) or CSI-RS(s). -RS.
  • the network device configures 2 sets of beam failure detection reference signals for the terminal device, each group is associated with a TRP, and the configured timer expires before , when the number of beam failure embodiment indicators associated with the corresponding group of the beam failure detection reference signal from the physical layer reaches a configured threshold, the terminal device declares the beam failure of this TRP.
  • TRP Transmission Reception Point
  • the terminal device After detecting a TRP beam failure in the serving cell, the terminal device:
  • Beam failure recovery for a TRP is considered complete when a PDCCH is received indicating a newly transmitted uplink grant for the HARQ process used for the transmission of the BFR MAC CE of a TRP.
  • the terminal device After detecting beam failure of the two TRPs of the special cell, the terminal device:
  • RRC For TRP-specific beam failure recovery triggering, RRC configures some parameters, such as:
  • the following UE variables are used in the beam failure detection process:
  • the MAC entity For each serving cell configured with beam failure detection, the MAC entity will:
  • this serving cell is configured with two BFD-RS groups, for each BFD-RS group of this serving cell, the MAC entity will:
  • this serving cell is a special cell and the random access process initiated for beam failure recovery of the two BFD-RS groups of this special cell is successfully completed:
  • 3GPP has enhanced the mobility of NR and LTE to reduce data transmission interruptions during handover and improve handover robustness.
  • 3GPP has introduced some enhancements to improve efficient MR-DC configuration and improve MR-DC performance, such as early measurement reporting and fast MCG failure recovery through SCG.
  • NR UE energy consumption is 3 to 4 times higher than LTE.
  • MN provides basic coverage.
  • an efficient SCG (de)activation mechanism should be defined, which is also applicable to other MR-DC operations, such as NGEN-DC and NR-DC.
  • the terminal device in order to detect wireless link failure and/or beam failure, the terminal device is required to:
  • the reference signal used for beam failure detection may be: for a special cell or an activated SCell An active DL BWP configured; or a TRP configured for a cell.
  • Rel-17 supports the SCG activation and deactivation mechanism, in which the special cell PSCell of the SCG can be deactivated.
  • the SCG is deactivated
  • the PSCell and all SCells of the SCG are deactivated, and if the network is configured, the end device performs RLM and beam failure detection on the PSCell.
  • the terminal equipment stops beam failure detection; when BFD-RS is reconfigured, beam failure detection is resumed.
  • the terminal device will perform a random access procedure to the SCG.
  • PSCell may not be configured with a reference signal for cell beam failure detection, but is configured with a reference signal for TRP-specific beam failure detection. In this case, when SCG is deactivated, even if the network configures the terminal equipment to perform beam failure detection, the terminal equipment cannot perform cell-level beam failure detection, and thus cannot evaluate the beam quality, causing the terminal equipment to communicate using beams with poor wireless link quality, reducing communication quality. ;
  • the terminal device stops beam failure detection and initiates a random access process to the SCG when the SCG is deactivated. If beam failure only occurs in one TRP of PSCell and the other TRP can still be used, then the random access process when deactivating the SCG is unnecessary, resulting in increased energy consumption and reduced user experience.
  • embodiments of the present application provide a method and device for evaluating downlink wireless link quality.
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for terminal equipment.
  • the device includes: a first configuration unit configured with a secondary cell group (SCG); Wherein, when the network indicates that the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell).
  • SCG secondary cell group
  • RLM radio link monitoring
  • PSCell primary and secondary cells
  • the terminal equipment performs beam failure detection of the primary and secondary cells, and/or, in the case where the network instructs the secondary cell group to support beam failure detection, and, when the primary and secondary cells are When the cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, the terminal device performs TRP-specific beam failure detection of the primary and secondary cells.
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for terminal equipment, and the device includes: a second configuration unit configured with a secondary cell group (SCG); Wherein, when the network does not indicate that the secondary cell group supports Radio Link Monitoring (RLM), when the secondary cell group is deactivated, the terminal device stops the wireless link on the primary and secondary cells (PSCell).
  • SCG secondary cell group
  • RLM Radio Link Monitoring
  • the terminal equipment stops beam failure detection on the primary and secondary cells; and/or the secondary cell group is not configured in the network to support beam failure detection, or the primary and secondary cells are not configured with
  • the terminal device stops TRP-specific beam failure detection on the primary and secondary cells.
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for terminal equipment, and the device includes: a third configuration unit configured with a secondary cell group (SCG); Wherein, when the network indicates that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal device Perform radio link monitoring on the secondary cell; and/or, when the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and when the secondary cell is configured
  • a reference signal used for beam failure detection of a cell when the secondary cell group is deactivated, the terminal device performs beam failure detection of the secondary cell, and/or, indicates the secondary cell in the network
  • the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection
  • the secondary cell is configured with a reference signal for TRP-specific beam failure detection
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for terminal equipment, and the device includes: a fourth configuration unit configured with a secondary cell group (SCG); Wherein, in the case where the network does not indicate that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal equipment Stop wireless link monitoring on the secondary cell; and/or, the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or the secondary cell is not configured for In the case of a reference signal for beam failure detection of a cell, when the secondary cell group is deactivated, the terminal equipment stops beam failure detection on the secondary cell; and/or, when the network does not indicate the secondary cell
  • SCG secondary cell group
  • RLM radio link monitoring
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used in a terminal device, wherein for each serving cell configured with beam failure detection, when the first counter is greater than or When equal to the preset threshold, when the serving cell is a primary and secondary cell, the secondary cell group is deactivated, and the beam failure of the primary and secondary cells has not been indicated to higher layers since the secondary cell group was deactivated.
  • the MAC entity indicates to the upper layer that the beam of the primary and secondary cells fails.
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for network equipment.
  • the device includes: a fifth configuration unit that configures a secondary cell group ( SCG); wherein, when the secondary cell group is instructed to support Radio Link Monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs a radio link on the primary and secondary cell (PSCell).
  • SCG secondary cell group
  • RLM Radio Link Monitoring
  • the terminal equipment performs beam failure detection of the primary and secondary cells; and/or, when the secondary cell group is instructed to support beam failure detection, and when the secondary cell group is instructed to support beam failure detection, When the cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, the terminal device performs TRP-specific beam failure detection of the primary and secondary cells.
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for network equipment.
  • the device includes: a sixth configuration unit that configures a secondary cell group ( SCG); wherein, in the case where the secondary cell group is not instructed to support Radio Link Monitoring (RLM), when the secondary cell group is deactivated, the terminal device stops wireless monitoring on the primary and secondary cells (PSCell).
  • SCG secondary cell group
  • RLM Radio Link Monitoring
  • the terminal equipment stops beam failure detection on the primary and secondary cells; and/or, the secondary cell group is not configured to support beam failure detection, or the primary and secondary cells are not configured.
  • the terminal device stops TRP-specific beam failure detection on the primary and secondary cells.
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for network equipment.
  • the device includes: a seventh configuration unit that configures a secondary cell group ( SCG); wherein, in the case where the secondary cell group or the secondary cell (SCell) of the secondary cell group is instructed to support radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal The device performs radio link monitoring on the secondary cell; and/or, in the case where the secondary cell group or the secondary cell of the secondary cell group is instructed to support beam failure detection, and, when configuring the secondary cell
  • a reference signal for beam failure detection of the cell is provided, when the secondary cell group is deactivated, the terminal equipment performs beam failure detection of the secondary cell; and/or, after instructing the secondary cell
  • the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and when the secondary cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is Upon deactivation,
  • a device for evaluating downlink wireless link quality is provided.
  • the device is used for network equipment.
  • the device includes: an eighth configuration unit, which configures a secondary cell group ( SCG); wherein, when the secondary cell group or the secondary cell (SCell) of the secondary cell group is not instructed to support radio link monitoring (RLM), when the secondary cell group is deactivated, the The terminal equipment stops wireless link monitoring on the secondary cell; and/or supports beam failure detection in the secondary cell group or the secondary cell of the secondary cell group that is not indicated, or does not configure the secondary cell for the secondary cell.
  • SCG secondary cell group
  • RLM radio link monitoring
  • the terminal equipment stops beam failure detection on the secondary cell; and/or, when the secondary cell is not instructed
  • the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or when the secondary cell is not configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, The terminal device stops TRP-specific beam failure detection on the secondary cell.
  • a terminal device includes the device according to any one of the first to fifth aspects of the embodiment of the present application.
  • a network device is provided, and the terminal device includes the device according to any one of the sixth to ninth aspects of the embodiment of the present application.
  • a communication system including the terminal device according to the tenth aspect of the embodiment of the present application and/or the terminal device according to the eleventh aspect of the embodiment of the present application. the network equipment described above.
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for terminal equipment.
  • the method includes: configuring a secondary cell group (SCG); In the case where the secondary cell group supports Radio Link Monitoring (RLM), when the secondary cell group is deactivated, radio link monitoring is performed on the primary and secondary cells (PSCell); and/or when the network instructs the secondary cell to
  • SCG secondary cell group
  • RLM Radio Link Monitoring
  • PSCell primary and secondary cells
  • the network instructs the secondary cell to
  • Beam failure detection of the secondary cell and/or, in the case where the network indicates that the secondary cell group supports beam failure detection, and when the reference signal for TRP-specific beam failure detection is configured for the primary and secondary cells.
  • TRP-specific beam failure detection of the primary and secondary cells is performed.
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for terminal equipment.
  • the method includes: configuring a secondary cell group (SCG); In the case where the secondary cell group supports Radio Link Monitoring (RLM), when the secondary cell group is deactivated, stop radio link monitoring on the primary and secondary cells (PSCell); and/or, when the network does not indicate the required
  • SCG secondary cell group
  • RLM Radio Link Monitoring
  • PSCell primary and secondary cells
  • the network does not indicate the required
  • the secondary cell group supports beam failure detection, or when the primary and secondary cells are not configured with a reference signal for beam failure detection of the cell, when the secondary cell group is deactivated, the primary and secondary cells are stopped. Beam failure detection on When the secondary cell group is deactivated, TRP-specific beam failure detection on the primary and secondary cells is stopped.
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for terminal equipment.
  • the method includes: configuring a secondary cell group (SCG); When the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, radio link monitoring is performed on the secondary cell; and/or when the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and when the secondary cell is configured with a reference signal for beam failure detection of the cell
  • RLM radio link monitoring
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for terminal equipment.
  • the method includes: configuring a secondary cell group (SCG); When the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, stop radio link monitoring on the secondary cell. ; and/or, when the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or the reference signal for beam failure detection of the cell is not configured for the secondary cell.
  • SCG secondary cell group
  • RLM radio link monitoring
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for a terminal device.
  • the method includes: for each serving cell configured with beam failure detection, when the first When a counter is greater than or equal to a preset threshold, when the serving cell is a primary and secondary cell, the secondary cell group is deactivated and the beam of the primary and secondary cells has not been indicated to higher layers since the secondary cell group was deactivated.
  • the MAC entity indicates to the upper layer that the beam of the primary and secondary cells fails.
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for network equipment.
  • the method includes: configuring a secondary cell group (SCG) for a terminal equipment; wherein, In the case where the secondary cell group is instructed to support Radio Link Monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell); and/ Or, in the case where the secondary cell group is instructed to support beam failure detection, and in the case where the primary and secondary cells are configured with a reference signal for beam failure detection of the cell, when the secondary cell group is removed When activated, the terminal equipment performs beam failure detection of the primary and secondary cells; and/or, when the secondary cell group is instructed to support beam failure detection, and when the primary and secondary cells are configured for In the case of a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, the terminal device performs TRP-specific beam failure detection of the primary and secondary cells.
  • SCG secondary cell group
  • RLM Radio
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for network equipment.
  • the method includes: configuring a secondary cell group (SCG) for a terminal equipment; wherein, In the case where the secondary cell group is not instructed to support radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal device stops radio link monitoring on the primary and secondary cells (PSCell); and /Or, when the secondary cell group is deactivated when the secondary cell group is not instructed to support beam failure detection, or the reference signal for beam failure detection of the cell is not configured for the primary and secondary cells.
  • SCG secondary cell group
  • RLM radio link monitoring
  • PSCell primary and secondary cells
  • the terminal equipment stops beam failure detection on the primary and secondary cells; and/or, the secondary cell group is not configured to support beam failure detection, or the primary and secondary cells are not configured with TRP-specific beams.
  • the terminal equipment stops TRP-specific beam failure detection on the primary and secondary cells.
  • a method for evaluating downlink wireless link quality is provided.
  • the device is used for network equipment.
  • the method includes: configuring a secondary cell group (SCG) for the terminal equipment; wherein, In the case where the secondary cell group or the secondary cell (SCell) of the secondary cell group is instructed to support Radio Link Monitoring (RLM), when the secondary cell group is deactivated, the terminal equipment Perform radio link monitoring on the cell; and/or, in the case where the secondary cell group or the secondary cell of the secondary cell group is instructed to support beam failure detection, and when the secondary cell is configured with In the case of a reference signal for beam failure detection, when the secondary cell group is deactivated, the terminal equipment performs beam failure detection of the secondary cell; and/or, when indicating the secondary cell group or the secondary cell In the case where the secondary cell of the cell group supports beam failure detection, and in the case where the secondary cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, the The terminal equipment perform
  • a method for evaluating downlink wireless link quality is provided.
  • the method is used for network equipment.
  • the method includes: configuring a secondary cell group (SCG) for a terminal equipment; wherein
  • SCG secondary cell group
  • SCell secondary cell
  • RLM radio link monitoring
  • the terminal equipment stops all Radio link monitoring on the secondary cell; and/or, the secondary cell group or the secondary cell of the secondary cell group is not indicated to support beam failure detection, or the secondary cell is not configured with a beam for the cell
  • the terminal equipment stops beam failure detection on the secondary cell; and/or, when the secondary cell group or the secondary cell group is not indicated,
  • the secondary cell of the secondary cell group supports beam failure detection, or when the secondary cell is not configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, the terminal
  • a computer-readable program is provided, wherein when the program is executed in an evaluation device or terminal equipment for downlink wireless link quality, the program causes the downlink wireless link
  • the path quality evaluation device or terminal equipment performs the downlink wireless link quality evaluation method described in any one of the thirteenth to seventeenth aspects of the embodiments of the present application.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes a downlink wireless link quality evaluation device or terminal equipment to perform the steps of the embodiment of the present application.
  • a computer-readable program is provided, wherein when the program is executed in an evaluation device or network equipment for downlink wireless link quality, the program causes the downlink wireless link
  • the path quality evaluation device or network equipment performs the downlink wireless link quality evaluation method described in any one of the eighteenth to twenty-first aspects of the embodiments of the present application.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes a downlink wireless link quality evaluation device or network equipment to perform the steps of the embodiment of the present application.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality;
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience;
  • the terminal device can perform wireless link monitoring and/or beam failure detection of the secondary cell, thereby evaluating the wireless link and/or beam quality, so that the terminal device can use a better quality wireless link and/or beams for communication to ensure communication quality.
  • Figure 1 is a flow chart of detection of beam failure in a serving cell or triggering of beam failure recovery
  • Figure 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a multi-TRP scenario according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 1 of the present application.
  • Figure 5 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 2 of the present application.
  • Figure 6 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 3 of the present application.
  • Figure 7 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 4 of the present application.
  • Figure 8 is another schematic diagram of the downlink wireless link quality evaluation method in Embodiment 4 of the present application.
  • Figure 9 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 5 of the present application.
  • Figure 10 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 6 of the present application.
  • Figure 11 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 7 of the present application.
  • Figure 12 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 8 of the present application.
  • Figure 13 is another schematic diagram of the downlink wireless link quality evaluation method in Embodiment 8 of the present application.
  • Figure 14 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 9 of the present application.
  • Figure 15 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 10 of the present application.
  • Figure 16 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 11 of the present application.
  • Figure 17 is another schematic diagram of the downlink wireless link quality evaluation device according to Embodiment 11 of the present application.
  • Figure 18 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 13 of the present application.
  • Figure 19 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 14 of the present application.
  • Figure 20 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 15 of the present application.
  • Figure 21 is another schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 15 of the present application.
  • Figure 22 is a schematic block diagram of the system structure of the terminal device in Embodiment 16 of the present invention.
  • FIG. 23 is a schematic block diagram of the system structure of the network device in Embodiment 17 of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to the communication protocol at any stage.
  • it can include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and the future. 5G, New Wireless (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects user equipment to the communication network and provides services to the user equipment.
  • Network equipment may include but is not limited to the following equipment: “node” and/or “donor” under the IAB architecture, base station (BS, Base Station), access point (AP, Access Point), sending and receiving Point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc.
  • it may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay or low-power node (such as femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay or low-power node such as femto, pico, etc.
  • base station can include some or all of their functions.
  • Each base station can provide communication coverage for a specific geographical area.
  • a 5G base station gNB can include one gNB CU and one or more gNB DUs, where CU/DU are A logical node of gNB with partial functions of gNB.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to a device that accesses a communication network through a network device and receives network services, and may also be called a "Terminal Equipment” (TE, Terminal Equipment).
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • MS Mobile Station
  • SS subscriber station
  • AT Access Terminal
  • station Access Terminal
  • the terminal equipment may include but is not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld device, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld device machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG 2 is a schematic diagram of a communication system according to an embodiment of the present application, which schematically illustrates a situation where terminal equipment and network equipment are taken as examples.
  • the communication system 100 may include: a network equipment 101 and a terminal equipment 102.
  • Figure 1 only takes one terminal device as an example for illustration.
  • the network device 101 is, for example, an NR network device gNB.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the network device provides services to the terminal device 102 through TRP-1 and TRP-2.
  • mTRP multi-TRP
  • the TRP is a part of the network device that receives signals from and/or sends signals to the terminal device.
  • a serving cell can schedule terminal equipment from two TRPs, which can belong to the same cell, to provide better PDSCH coverage, reliability and/or data rate.
  • multiple TRPs there are two different operating modes, namely single DCI (Downlink Control Information) and multiple DCI.
  • DCI Downlink Control Information
  • multiple DCI control of uplink and downlink operations is performed by the physical layer and MAC layer within the configuration provided by the RRC layer.
  • single DCI mode end devices are scheduled by both TRPs through the same DCI; in multi-DCI mode, end devices are scheduled by separate DCIs for each TRP.
  • FIG 3 is a schematic diagram of a multi-TRP scenario according to an embodiment of the present application.
  • the network device 101 deploys two TRPs, namely TRP1 and TRP2.
  • the network device 101 works with the terminal device 102 through TRP1 and TRP2.
  • TRP1 and TRP2 belong to PSCell.
  • the terminal device 102 will stop detecting beam failures on TRP1 and TRP2, which makes the terminal device 102 unable to evaluate the beam of PSCell. quality; and when the SCG is activated, the terminal device 102 will initiate a random access process to the network device 101. This results in increased energy consumption in the network and terminals, and degrades user experience.
  • the embodiment of the present application provides a method for evaluating downlink wireless link quality, which method is applied to terminal equipment. For example, this method is applied to the terminal device 102 in Figures 2 and 3.
  • FIG 4 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 1 of the present application. As shown in Figure 4, the method includes:
  • Step 401 Configure the secondary cell group (SCG);
  • Step 402 In the case where the network indicates that the secondary cell group supports Radio Link Monitoring (RLM), when the secondary cell group is deactivated, perform radio link monitoring on the primary and secondary cells (PSCell); and/or,
  • RLM Radio Link Monitoring
  • Step 403 In the case where the network indicates that the secondary cell group supports beam failure detection, and in the case where the primary and secondary cells are configured with reference signals for beam failure detection of the cell, when the secondary cell group is deactivated When, perform beam failure detection of the primary and secondary cells; and/or,
  • Step 404 In the case where the network indicates that the secondary cell group supports beam failure detection, and in the case where the reference signal for TRP-specific beam failure detection is configured for the primary and secondary cells, when the secondary cell group is removed When activated, perform TRP-specific beam failure detection for this primary and secondary cell.
  • the method may include at least one of steps 402-404, and when multiple steps of steps 402-404 are included, the execution order between these steps is not determined. limit.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality;
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • TRP specific may be replaced by "BFD-RS group-specific” or "BFD-RS group-associated”.
  • beam failure may be replaced by “beam failure recovery” or “beam failure recovery triggered.”
  • step 401 configuring the secondary cell group (SCG) means that the terminal device is configured with the secondary cell group.
  • the primary and secondary cells are primary and secondary cells of a secondary cell group configured by the terminal device.
  • the configuration indicating whether or not radio link monitoring (RLM) and/or beam failure detection is supported may be included in the Cell Group Configuration (CellGroupConfig) IE.
  • the network may indicate through a common configuration or a separate configuration whether to support wireless link monitoring when the secondary cell group is deactivated or whether to support wireless link monitoring when the secondary cell group is deactivated, and/or, Indicates whether beam failure detection when the secondary cell group is deactivated is supported or whether beam failure detection when the secondary cell group is deactivated is supported.
  • the common configuration or individual configuration may be included in the Cell Group Configuration (CellGroupConfig) IE.
  • the common configuration is used to configure the terminal device to perform wireless link monitoring and/or beam failure detection when configuring SCG deactivation, or to indicate whether the terminal device performs wireless link monitoring and/or beam failure detection
  • the beam failure detection includes cell beam failure detection or TRP specific beam failure detection.
  • the common configuration may be BOOLEAN data or ENUMERATED data.
  • the terminal device when the common configuration is BOOLEAN data, if the value is "true”, it means that when the SCG is deactivated, the terminal device performs wireless link monitoring and/or beam failure detection. , if the value is "false”, it means that when the SCG is deactivated, the terminal device does not/stop performing wireless link monitoring and/or beam failure detection.
  • the shared configured domain is a mandatory domain.
  • the common configuration is Boolean (BOOLEAN) data
  • the common configuration is used to configure whether the terminal device performs wireless link monitoring and/or beam failure detection when the SCG is deactivated.
  • the beam failure detection Including cell-based beam failure detection or TRP-specific beam failure detection.
  • the shared configuration when the shared configuration is enumerated (ENUMERATED) data, its value is "true”. That is to say, if this field is configured, it means that when the SCG is deactivated, the terminal device performs wireless link monitoring and/or beam failure detection; in this case, the shared configured field is optional. domain is not required.
  • the common configuration when the common configuration is enumerated (ENUMERATED) data, the common configuration is used to configure the SCG to instruct the terminal device to perform wireless link monitoring and/or beam failure detection.
  • the beam failure detection Including cell-based beam failure detection or TRP-specific beam failure detection.
  • the separate configuration includes at least one of the following:
  • Used to configure when the secondary cell group is deactivated instruct the terminal equipment whether to perform wireless link monitoring on the primary and secondary cells, or instruct the terminal equipment to perform wireless link monitoring on the primary and secondary cells;
  • Used to configure when deactivating the secondary cell group instruct the terminal equipment whether to perform TRP-specific beam failure detection on the primary and secondary cells, or instruct the terminal equipment to perform TRP-specific beam failure detection on the primary and secondary cells.
  • the individual configuration may be BOOLEAN data or ENUMERATED data.
  • the terminal device in the case where the separate configuration is BOOLEAN data, if the value is "true”, it means that when the SCG is deactivated, the terminal device performs wireless link monitoring and/or beam failure detection. , if the value is "false”, it means that when the SCG is deactivated, the terminal device does not perform wireless link monitoring and/or beam failure detection.
  • the individually configured domain is the mandatory domain.
  • the separate configuration includes at least one of the following: for configuring the secondary cell group to instruct the terminal device whether to perform wireless link monitoring on the primary and secondary cells and beam failure detection of the cell; for configuring the secondary cell group When deactivated, it indicates whether the terminal equipment performs wireless link monitoring on the primary and secondary cells; used to configure the secondary cell group. When deactivated, it indicates whether the terminal equipment performs cell or TRP-specific beam failure detection on the primary and secondary cells; with When configuring the deactivation of the secondary cell group, instruct the terminal equipment whether to perform beam failure detection on the primary and secondary cells; and when configuring the deactivation of the secondary cell group, instruct the terminal equipment whether to perform TRP-specific beams on the primary and secondary cells. Failure detection.
  • the individual configuration is ENUMERATED data
  • its value is "true”. That is to say, if this field is configured, it means that when the SCG is deactivated, the terminal device performs wireless link monitoring and/or beam failure detection; in this case, this separately configured field is optional. domain is not required.
  • the separate configuration includes at least one of the following: configuring the terminal device to perform wireless link monitoring on the primary and secondary cells and beam failure detection of the cell when the secondary cell group is deactivated; configuring the secondary cell group to deactivate the secondary cell group.
  • activated instructs the terminal equipment to perform wireless link monitoring on the primary and secondary cells; used to configure the secondary cell group.
  • deactivated instructs the terminal equipment to perform cell or TRP-specific beam failure detection on the primary and secondary cells; used to configure the
  • the secondary cell group is deactivated, the terminal equipment is instructed to perform beam failure detection of the cells on the primary and secondary cells; and when the secondary cell group is deactivated, it is configured to instruct the terminal equipment to perform TRP-specific beam failure detection on the primary and secondary cells.
  • the MAC entity when the upper layer indicates the activation of the secondary cell group, the MAC entity will apply at least one of the following secondary cell group activation operations: activate the primary and secondary cells; SRS transmission on the primary and secondary cells; CSI reporting on the primary and secondary cells; PDCCH monitoring on the primary and secondary cells; PUCCH transmission on the primary and secondary cells; if triggered, perform random access on the primary and secondary cells; and initialize each associated primary and secondary cell.
  • the Bj of the logical channel is 0.
  • the MAC entity when the upper layer indicates that the secondary cell group is deactivated, the MAC entity will perform at least one of the following: deactivate all secondary cells (SCells) of the configured secondary cell group. ); deactivate the primary and secondary cells; and reset the MAC.
  • SCells all secondary cells
  • resetting the MAC may include at least one of the following: stopping all running timers except the first timer or stopping all running timers; stopping the ongoing random access process; clearing Msg3 cache (buffer); clear MSGA cache (buffer); cancel triggered beam failure recovery (BFR); and reset the first counter.
  • step 402 if the network indicates that the secondary cell group supports Radio Link Monitoring (RLM), when the secondary cell group is deactivated, radio link monitoring is performed on the primary and secondary cells (PSCell).
  • RLM Radio Link Monitoring
  • performing radio link monitoring on the primary and secondary cells may include: in the case where the network is configured to perform radio link monitoring on the deactivated primary and secondary cells, the terminal device activates the DL BWP Perform wireless link monitoring outside the BWP. That is, the terminal device is not required to perform radio link monitoring on BWPs other than the activated DL BWP, unless the network is configured to perform radio link monitoring on the deactivated primary and secondary cells.
  • the terminal device activates the DL Perform wireless link monitoring on BWP other than BWP.
  • stopping all running timers except the first timer or stopping all running timers may include:
  • the first timer When the network indicates that the secondary cell group supports wireless link monitoring and/or beam failure detection, and the primary and secondary cells of the secondary cell group are configured with reference signals for beam failure detection of the cell, the first timer is stopped.
  • the first timer includes a TA timer (for example, TA timer) and a beam failure detection timer (for example, beamFailureDetectionTimer) associated with the primary and secondary cells.
  • the TRP-specific beam failure detection timer can also be replaced by: the BFD-RS group associated beam failure detection timer.
  • configuring a reference signal for TRP-specific beam failure detection may also be replaced by configuring multiple (for example, 2) BFD-RS groups.
  • canceling the triggered beam failure recovery may include at least one of the following: canceling the beam failure recovery triggered by the primary and secondary cells; canceling the beam failure recovery triggered by a BFD-RS group of the primary and secondary cells.
  • the network indicates that the secondary cell group supports radio link monitoring and/or beam failure detection
  • the primary and secondary cells of the secondary cell group are configured with reference signals for TRP-specific beam failure detection
  • the first counter may be a beam failure indication counter, such as BFI_COUNTER.
  • the first counter when the network indicates, the first counter does not include the BFI_COUNTER of the PSCell, or in other words, the first counter excludes the BFI_COUNTER of the PSCell.
  • the first counter when the network indicates, if the first counter is a beam failure indication counter, the first counter does not include the BFI_COUNTER of the PSCell, or in other words, the first counter excludes the BFI_COUNTER of the PSCell.
  • the network indicates that the secondary cell group supports beam failure detection
  • the reference signal for beam failure detection of the cell is configured for the primary and secondary cells
  • the reference signal for beam failure detection of the cell or the reference signal for TRP-specific beam failure detection may be configured explicitly or implicitly for the primary and secondary cells, for example, the The explicit configuration is indicated through RRC and/or MAC signaling, and the implicit configuration is determined by the terminal device receiving TCI state through PDCCH.
  • the primary and secondary cells are configured with reference signals for beam failure detection of the cell. That is to say: the primary and secondary cells are not configured with reference signals for TRP-specific beam failure detection.
  • the reference signal for TRP-specific beam failure detection is configured for the primary and secondary cells. That is to say: the reference signal for beam failure detection of the cell is not configured for the primary and secondary cells.
  • performing beam failure detection of the primary and secondary cells may include:
  • the serving cell when the first counter is greater than or equal to the preset threshold, the serving cell is the primary and secondary cell, the secondary cell group is deactivated, and the secondary cell group has been deactivated since then. If activation has not indicated to the upper layer that the beam of the primary and secondary cells has failed, the MAC entity indicates to the upper layer that the beam of the primary and secondary cells has failed.
  • the first counter is BFI_COUNTER and the preset threshold is beamFailureInstanceMaxCount.
  • performing beam failure detection of the primary and secondary cells may also include:
  • the terminal device or the RRC layer instructs the lower layer to stop the primary and secondary cells. Beam failure detection.
  • the lower layer is the MAC layer or the physical layer or the RF chain.
  • performing beam failure detection of the primary and secondary cells may also include:
  • the MAC entity indicates beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the MAC entity indicates to the upper layer that the beam failure of the primary and secondary cells has failed, and after receiving the MAC indication, the terminal device instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • This lower layer is, for example, the physical layer or the radio frequency chain.
  • step 404 the process indicated above is also applicable to the situation of step 404.
  • step 404 in the case where the network indicates that the secondary cell group supports beam failure detection, and in the case where the reference signal for TRP-specific beam failure detection is configured for the primary and secondary cells, when the secondary cell group When deactivated, perform TRP-specific beam failure detection for that primary and secondary cell.
  • the reference signal configured for TRP-specific beam failure detection for the primary and secondary cells may be configured explicitly or implicitly.
  • the implicit configuration is determined by receiving TCI state on the PDCCH. of.
  • the reference signal for TRP-specific beam failure detection is configured for the primary and secondary cells. That is to say, the reference signal for beam failure detection of the cell is not configured for the primary and secondary cells.
  • step 404 may include at least one of the following:
  • the terminal equipment stops the beam failure detection of the BFD-RS group, or, when the secondary cell group is deactivated During this period, when a TRP on the primary and secondary cells detects beam failure, the terminal device stops the beam failure detection of the TRP;
  • the terminal device restores the beam failure detection of the BFD-RS group; for example, through RRC signaling and/or MAC Signaling to reconfigure the reference signal of a BFD-RS group of the primary and secondary cells;
  • the MAC layer has not indicated the beam to the upper layer since the deactivation of the secondary cell group. In the event of failure, the MAC layer indicates beam failure to upper layers;
  • the terminal device When receiving the activation command of the secondary cell group from the network and both BFD-RS groups on the primary and secondary cells detect beam failure, the terminal device performs a random access process to the secondary cell group.
  • “during the deactivation of the secondary cell group” may also be described as “if the secondary cell group is deactivated”, “under the condition that the secondary cell group is deactivated” or “when the secondary cell group is deactivated”. When the group is deactivated”.
  • stopping all running timers except the first timer or stopping all running timers may include:
  • the first timer is stopped. Except for all other running timers, the first timer includes the TA timer (such as TA timer) and the beam failure detection timer (such as beamFailureDetectionTimer) associated with the primary and secondary cells; and/or
  • the first timing is stopped. All other running timers except the first timer include the TA timer (such as TA timer) and the beam failure detection timer associated with the primary and secondary cells or the specific beam failure of each TRP of the primary and secondary cells. Detection timer (e.g. beamFailureDetectionTimer).
  • the TRP-specific beam failure detection timer can also be replaced by: a BFD-RS group associated beam failure detection timer.
  • configuring a reference signal for TRP-specific beam failure detection may also be replaced by configuring multiple (for example, 2) BFD-RS groups.
  • canceling the triggered beam failure recovery may include at least one of the following: canceling the beam failure recovery triggered by the primary and secondary cells; canceling the beam failure recovery triggered by a BFD-RS group of the primary and secondary cells; not canceling Recover the beam failure triggered by a BFD-RS group of the primary and secondary cells; stop the beam failure detection of a BFD-RS group of the primary and secondary cells.
  • a BFD-RS group of the primary and secondary cells triggers beam failure recovery and/or stops beam failure detection of a BFD-RS group of the primary and secondary cells.
  • the primary and secondary cells of the secondary cell group are configured with reference signals for TRP-specific beam failure detection, and the primary and secondary cells have And when only one BFD-RS group triggers beam failure recovery, do not cancel the beam failure recovery triggered by the BFD-RS group of the primary and secondary cells and/or stop the beam of the BFD-RS group of the primary and secondary cells. Failure detection.
  • the first counter may be a beam failure indication counter, such as BFI_COUNTER.
  • the first counter when the network indicates, the first counter does not include the BFI_COUNTER of the PSCell, or in other words, the first counter excludes the BFI_COUNTER of the PSCell.
  • the first counter when the network indicates, if the first counter is a beam failure indication counter, the first counter does not include the BFI_COUNTER of the PSCell, or in other words, the first counter excludes the BFI_COUNTER of the PSCell.
  • the first counter when the network indicates, the first counter does not include the BFI_COUNTER of the PSCell, or in other words, the first counter excludes the BFI_COUNTER of the PSCell; and/or, when the network indicates, the first counter The counter does not include the BFI_COUNTER associated with each BFD-RS group of the PSCell, or in other words, excludes the BFI_COUNTER associated with each BFD-RS group of the PSCell.
  • the first counter when the network indicates, if the first counter is a beam failure indication counter, the first counter does not include the BFI_COUNTER of the PSCell, or in other words, the first counter excludes the BFI_COUNTER of the PSCell; and/or, when the network indicates, if The first counter is a beam failure indication counter, and the first counter does not include the BFI_COUNTER associated with each BFD-RS group of the PSCell, or in other words, excludes the BFI_COUNTER associated with each BFD-RS group of the PSCell.
  • performing TRP-specific beam failure detection of the primary and secondary cells may include:
  • the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, when both BFD-RS groups of the special cell trigger beam failure recovery and have not completed successfully,
  • the MAC entity indicates to the upper layer The beam of the primary and secondary cells failed.
  • performing TRP-specific beam failure detection of the primary and secondary cells may also include:
  • the terminal device or the RRC layer instructs the lower layer to stop the primary and secondary cells. Beam failure detection.
  • this lower layer is the MAC layer or the physical layer or the radio frequency chain.
  • performing beam failure detection of the primary and secondary cells may also include:
  • the MAC entity indicates the beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • This lower layer is, for example, the physical layer or the radio frequency chain.
  • performing TRP-specific beam failure detection of the primary and secondary cells may also include:
  • the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, when both BFD-RS groups of the special cell trigger beam failure recovery and have not completed successfully,
  • the MAC entity A random access process is initiated on the primary and secondary cells.
  • the serving cell is configured with 2 BFD-RS groups, and for each BFD-RS group of the serving cell, beam failure recovery is triggered in both BFD-RS groups of the special cell and has not been successfully completed.
  • the serving cell is the primary and secondary cell, and the secondary cell group in which the special cell is located is deactivated and the beam failure of the primary and secondary cells has not been indicated to the upper layer since the secondary cell group was deactivated, then the MAC entity indicates to the upper layer The beam of the primary and secondary cells fails; otherwise, the MAC entity initiates a random access process on the primary and secondary cells.
  • the fact that the serving cell is not the primary and secondary cells can be replaced by: the serving cell is the primary cell.
  • the secondary cell group where the special cell is located may be replaced by: the secondary cell group where the special cell is located is activated.
  • performing TRP-specific beam failure detection of the primary and secondary cells may also include:
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam failure. resumed and not yet cancelled, in addition, for example, its candidate beam evaluation has been completed,
  • the MAC entity When the serving cell is the primary and secondary cell and the secondary cell group is deactivated, the MAC entity indicates to the upper layer that the beam of the BFD-RS group of the primary and secondary cell fails.
  • performing TRP-specific beam failure detection of the primary and secondary cells may also include:
  • the terminal equipment When receiving the indication, the terminal equipment instructs the lower layer to stop beam failure detection of the BFD-RS group on the primary and secondary cells.
  • this lower layer is the MAC layer or the physical layer or the radio frequency chain.
  • performing TRP-specific beam failure detection of the primary and secondary cells may also include:
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam failure. In case of reinstatement and not yet cancelled,
  • the MAC entity When the serving cell is the primary and secondary cell and the secondary cell group is deactivated, the MAC entity indicates to the lower layer that the beam of the BFD-RS group of the primary and secondary cell fails or instructs the primary and secondary cell to stop transmitting data to the primary and secondary cell. Beam failure detection for this BFD-RS group.
  • This lower layer is, for example, the physical layer or the radio frequency chain.
  • performing TRP-specific beam failure detection of the primary and secondary cells may include:
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam failure. In case of reinstatement and not yet cancelled,
  • the MAC entity instructs the multiplexing and assembly process to generate an enhanced BFR MAC CE (Enhanced BFR MAC CE) or a truncated enhanced BFR MAC CE (Truncated Enhanced BFR MAC CE) or trigger SR.
  • an enhanced BFR MAC CE Enhanced BFR MAC CE
  • a truncated enhanced BFR MAC CE Truncated Enhanced BFR MAC CE
  • the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, if it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group has been triggered At least one beam failed to recover and has not been cancelled:
  • the MAC entity indicates to the upper layer that the beam of the BFD-RS group of the primary and secondary cell has failed; otherwise, the MAC entity indicates the multiplexing and assembly process to generate Enhanced BFR MAC CE or truncated enhanced BFR MAC CE or trigger SR.
  • the fact that the serving cell is not the primary and secondary cells can be replaced by: the serving cell is the primary cell.
  • the secondary cell group is not deactivated and may be replaced by: the secondary cell group is activated.
  • stopping beam failure detection may include: the MAC entity or the lower layer stopping beam failure detection, that is, the MAC entity or the lower layer stops performing or starting beam failure detection.
  • the MAC entity does not calculate the beam failure instance indication from the lower layer, that is, the MAC entity does not proceed or start calculating the beam failure instance indication from the lower layer.
  • the lower layer does not measure and/or evaluate the wireless link quality, that is, the lower layer does not perform or start the measurement and/or evaluation of the wireless link quality.
  • the recovery beam failure detection may include: the MAC entity or the lower layer recovery beam failure detection, that is, the MAC entity or the lower layer recovery performs or starts the beam failure detection.
  • the MAC entity resumes calculating the beam failure instance indication from the lower layer, that is, the MAC entity resumes or starts calculating the beam failure instance indication from the lower layer.
  • the low-layer recovery measures and/or evaluates the wireless link quality, that is, the low-layer recovery performs or starts the measurement and/or assessment of the wireless link quality.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • Embodiments of the present application provide a method for evaluating downlink wireless link quality, which is applied to terminal equipment, and corresponds to the method for evaluating downlink wireless link quality applied to terminal equipment described in Embodiment 1, and from Explain from different angles. For example, this method is applied to the terminal device 102 in Figures 2 and 3.
  • Figure 5 is a schematic diagram of a downlink wireless link quality evaluation method in Embodiment 2 of the present application. As shown in Figure 5, the method includes:
  • Step 501 Configure the secondary cell group (SCG);
  • Step 502 In the case where the network does not indicate that the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, stop radio link monitoring on the primary and secondary cells (PSCell); and/or ,
  • Step 503 In the case where the network does not indicate that the secondary cell group supports beam failure detection, or the reference signal for beam failure detection of the cell is not configured for the primary and secondary cells, when the secondary cell group is deactivated, stop Beam failure detection on the primary and secondary cells; and/or,
  • Step 504 In the case that the secondary cell group is not configured by the network to support beam failure detection, or the reference signal for TRP-specific beam failure detection is not configured for the primary and secondary cells, when the secondary cell group is deactivated, Stop TRP-specific beam failure detection on this primary and secondary cell.
  • the method may include at least one of steps 502-504, and when multiple steps of steps 502-504 are included, the execution order between these steps is not limited. .
  • TRP specific may be replaced by "BFD-RS group-specific” or "BFD-RS group-associated”.
  • beam failure may be replaced by “beam failure recovery” or “beam failure recovery triggered.”
  • step 501 configuring the secondary cell group (SCG) means that the terminal device is configured with the secondary cell group.
  • the primary and secondary cells are primary and secondary cells of a secondary cell group configured by the terminal device.
  • the MAC entity when the upper layer indicates the activation of the secondary cell group, the MAC entity will apply at least one of the following secondary cell group activation operations: activate the primary and secondary cells; SRS transmission on the primary and secondary cells; CSI reporting on the primary and secondary cells; PDCCH monitoring on the primary and secondary cells; PUCCH transmission on the primary and secondary cells; if triggered, perform random access on the primary and secondary cells; and initialize each associated primary and secondary cell.
  • the Bj of the logical channel is 0.
  • the MAC entity when the upper layer indicates that the secondary cell group is deactivated, the MAC entity will perform at least one of the following: deactivate all secondary cells (SCells) of the configured secondary cell group. ); deactivate the primary and secondary cells; and reset the MAC.
  • SCells all secondary cells
  • resetting the MAC may include at least one of the following: stopping all running timers except the first timer or stopping all running timers; stopping the ongoing random access process; clearing Msg3 cache (buffer); clear MSGA cache (buffer); cancel triggered beam failure recovery (BFR); and reset the first counter.
  • stopping all running timers except the first timer or stopping all running timers may include:
  • the first timer is stopped. Except for all other running timers, the first timer includes the TA timer (such as TA timer) and the beam failure detection timer (such as beamFailureDetectionTimer) associated with the primary and secondary cells; and/or
  • the first timing is stopped. All other running timers except the first timer include the TA timer (such as TA timer) and the beam failure detection timer associated with the primary and secondary cells or the specific beam failure of each TRP of the primary and secondary cells. Detection timer (e.g. beamFailureDetectionTimer).
  • the TRP-specific beam failure detection timer can also be replaced by: a BFD-RS group associated beam failure detection timer.
  • configuring a reference signal for TRP-specific beam failure detection may also be replaced by configuring multiple (for example, 2) BFD-RS groups.
  • canceling the triggered beam failure recovery may include at least one of the following: canceling the beam failure recovery triggered by the primary and secondary cells; canceling the beam failure recovery triggered by a BFD-RS group of the primary and secondary cells; not canceling Recover the beam failure triggered by a BFD-RS group of the primary and secondary cells; stop the beam failure detection of a BFD-RS group of the primary and secondary cells.
  • a BFD-RS group of the primary and secondary cells triggers beam failure recovery and/or stops beam failure detection of a BFD-RS group of the primary and secondary cells.
  • the primary and secondary cells of the secondary cell group are configured with reference signals for TRP-specific beam failure detection, and the primary and secondary cells have And when only one BFD-RS group triggers beam failure recovery, do not cancel the beam failure recovery triggered by the BFD-RS group of the primary and secondary cells and/or stop the beam of the BFD-RS group of the primary and secondary cells. Failure detection.
  • the first counter may be a beam failure indication counter, such as BFI_COUNTER.
  • resetting the first counter may include:
  • the network does not configure the secondary cell group to support beam failure detection and does not configure a reference signal for TRP-specific beam failure detection, reset the first counter associated with the primary and secondary cells;
  • the network does not configure the secondary cell group to support beam failure detection and configures reference signals for TRP-specific beam failure detection, reset each BFD-RS associated with the primary and secondary cells or the primary and secondary cells.
  • the first counter associated with the group.
  • stopping beam failure detection may include: the MAC entity or the lower layer stopping beam failure detection, that is, the MAC entity or the lower layer stops performing or starting beam failure detection.
  • the MAC entity does not calculate the beam failure instance indication from the lower layer, that is, the MAC entity does not proceed or start calculating the beam failure instance indication from the lower layer.
  • the lower layer does not measure and/or evaluate the wireless link quality, that is, the lower layer does not perform or start the measurement and/or evaluation of the wireless link quality.
  • the recovery beam failure detection may include: the MAC entity or the lower layer recovery beam failure detection, that is, the MAC entity or the lower layer recovery performs or starts the beam failure detection.
  • the MAC entity resumes calculating the beam failure instance indication from the lower layer, that is, the MAC entity resumes or starts calculating the beam failure instance indication from the lower layer.
  • the low-layer recovery measures and/or evaluates the wireless link quality, that is, the low-layer recovery performs or starts the measurement and/or assessment of the wireless link quality.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • Embodiments of the present application provide a method for evaluating downlink wireless link quality, which method is applied to network equipment and terminal equipment, and corresponds to the method for evaluating downlink wireless link quality applied to terminal equipment described in Embodiment 1 and The evaluation method for downlink wireless link quality applied to network equipment described in Embodiment 6 will not be repeated for the same content.
  • FIG. 6 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 3 of the present application. This method is applied to network equipment and terminal equipment. As shown in Figure 6, the method includes:
  • Step 601 Configure a secondary cell group (SCG) for the terminal device;
  • Step 602 The network device indicates that the secondary cell group supports wireless link monitoring
  • Step 603 When the secondary cell group is deactivated, the terminal device performs wireless link monitoring on the primary and secondary cells (PSCell);
  • Step 604 The network device indicates that the secondary cell group supports beam failure detection
  • Step 605 The network device configures the reference signal for beam failure detection of the cell for the primary and secondary cells;
  • Step 606 When the secondary cell group is deactivated, the terminal device performs beam failure detection of the primary and secondary cells;
  • Step 607 The network device configures the reference signal for TRP-specific beam failure detection for the primary and secondary cells;
  • Step 608 When the secondary cell group is deactivated, the terminal device performs TRP-specific beam failure detection of the primary and secondary cells.
  • the method may include steps 602-603, steps 604-606, and at least one set of steps 604, 607-608, and when the method includes steps 602-603, steps 604-606, and steps When there are multiple groups of steps in 604 and 607-608, there is no restriction on the execution order of these groups.
  • each step can be executed sequentially or combined, that is, without any modification of the steps within the group.
  • the execution order is limited. For example, step 604 and step 605 can be executed first and then step 605, or step 605 can be executed first and then step 604. The two steps can be executed at the same time, or they can be combined into one step.
  • steps 601-608 may refer to the description in Embodiment 1, and the description will not be repeated here.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • the embodiment of the present application provides a method for evaluating downlink wireless link quality, which method is applied to terminal equipment. For example, this method is applied to the terminal device 102 in Figures 2 and 3.
  • Figure 7 is a schematic diagram of a downlink wireless link quality evaluation method according to Embodiment 4 of the present application. As shown in Figure 7, the method includes:
  • Step 701 Configure the secondary cell group (SCG);
  • Step 702 In the case where the network indicates that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, perform wireless monitoring on the secondary cell.
  • RLM radio link monitoring
  • Step 703 When the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and the reference signal for beam failure detection of the cell is configured for the secondary cell, when When the secondary cell group is deactivated, perform beam failure detection of the secondary cell; and/or,
  • Step 704 When the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and when the secondary cell is configured with a reference signal for TRP-specific beam failure detection, When the secondary cell group is deactivated, TRP-specific beam failure detection of the secondary cell is performed.
  • the method may include at least one of steps 702-704, and when multiple steps of steps 702-704 are included, the execution order between these steps is not determined. limit.
  • FIG 8 is another schematic diagram of the downlink wireless link quality evaluation method in Embodiment 4 of the present application. As shown in Figure 8, the method includes:
  • Step 801 Configure the secondary cell group (SCG);
  • Step 802 In the case where the network does not indicate that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, stop the SCell on the secondary cell.
  • RLM radio link monitoring
  • Step 803 In the case where the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or that the secondary cell is not configured with a reference signal for beam failure detection of the cell, when the secondary cell When the group is deactivated, stop beam failure detection on the secondary cell; and/or,
  • Step 804 In the case that the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or that the secondary cell is not configured with a reference signal for TRP-specific beam failure detection, when the secondary cell When a cell group is deactivated, TRP-specific beam failure detection on the secondary cell is stopped.
  • the method may include at least one of steps 802-804, and when multiple steps of steps 802-804 are included, the execution order between these steps is not determined. limit.
  • Embodiment 4 is aimed at wireless link monitoring and/or beam failure detection on the secondary cell.
  • Other contents are similar to Embodiment 1-3.
  • the network instructs the SCG to support wireless link monitoring and/or beam failure detection of the secondary cell
  • the wireless link monitoring and/or beam failure detection of the secondary cell is performed. Failure detection, therefore, when the SCG is deactivated, the terminal equipment can perform wireless link monitoring of the secondary cell and/or beam failure detection, thereby evaluating the wireless link and/or beam quality, so that the terminal equipment can use better quality Use wireless links and/or beams to communicate to ensure communication quality.
  • the embodiment of the present application provides a method for evaluating downlink wireless link quality, which method is applied to terminal equipment. For example, this method is applied to the terminal device 102 in Figures 2 and 3.
  • Figure 9 is a schematic diagram of a downlink wireless link quality evaluation method in Embodiment 5 of the present application. As shown in Figure 9, the method includes:
  • Step 901 For each serving cell configured with beam failure detection, when the first counter is greater than or equal to the preset threshold, the serving cell is a primary and secondary cell, and the secondary cell group is deactivated and the secondary cell group is deactivated. If the MAC entity is deactivated and has not yet indicated to the upper layer that the beam failure of the primary and secondary cells has failed, the MAC entity indicates the beam failure of the primary and secondary cells to the upper layer.
  • the first counter is BFI_COUNTER and the preset threshold is beamFailureInstanceMaxCount.
  • the method may further include:
  • Step 902 When the network does not configure the first parameter, for example, the value of bfd-and-RLM is "true"; or, when receiving an instruction from the MAC layer, the terminal device instructs the lower layer to stop the primary and secondary cells. Beam failure detection.
  • the lower layer is the MAC layer or the physical layer or the RF chain.
  • the method may further include:
  • Step 903 The MAC entity indicates the beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • This lower layer is, for example, the physical layer or the radio frequency chain.
  • the embodiment of the present application provides a method for evaluating downlink wireless link quality. This method is applied to network equipment and corresponds to the method described in Embodiment 1. The same content will not be described again.
  • FIG 10 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 6 of the present application. As shown in Figure 10, the method includes:
  • Step 1001 Configure a secondary cell group (SCG) for the terminal device;
  • the terminal device when the secondary cell group is instructed to support Radio Link Monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell); and/or ,
  • RLM Radio Link Monitoring
  • PSCell primary and secondary cells
  • the terminal performs beam failure detection of the primary and secondary cells; and/or,
  • the secondary cell group is indicated to support beam failure detection, and in the case where the primary and secondary cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, the secondary cell group is deactivated.
  • the terminal equipment performs TRP-specific beam failure detection of the primary and secondary cells.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • the embodiment of the present application provides a method for evaluating downlink wireless link quality. This method is applied to network equipment and corresponds to the method described in Embodiment 2. The same content will not be described again.
  • FIG 11 is a schematic diagram of the downlink wireless link quality evaluation method in Embodiment 7 of the present application. As shown in Figure 11, the method includes:
  • Step 1101 Configure a secondary cell group (SCG) for the terminal device;
  • the terminal device stops radio link monitoring on the primary and secondary cells (PSCell); and/ or,
  • the terminal equipment stops the Beam failure detection on primary and secondary cells; and/or
  • the terminal device stops TRP-specific beam failure detection on this primary and secondary cell.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • the embodiment of the present application provides a method for evaluating downlink wireless link quality. This method is applied to network equipment and corresponds to the method described in Embodiment 4. The same content will not be described again.
  • Figure 12 is a schematic diagram of a downlink wireless link quality evaluation method according to Embodiment 8 of the present application. As shown in Figure 12, the method includes:
  • Step 1201 Configure a secondary cell group (SCG) for the terminal device;
  • the terminal device executes on the secondary cell Wireless link monitoring; and/or,
  • the terminal equipment performs beam failure detection of the secondary cell;
  • the terminal device performs TRP-specific beam failure detection for the secondary cell.
  • FIG 13 is another schematic diagram of the downlink wireless link quality evaluation method in Embodiment 8 of the present application. As shown in Figure 13, the method includes:
  • Step 1301 Configure a secondary cell group (SCG) for the terminal device;
  • the terminal equipment stops transmitting data to the secondary cell. wireless link monitoring; and/or,
  • the secondary cell group or the secondary cell of the secondary cell group is not instructed to support beam failure detection, or the secondary cell is not configured with a reference signal for beam failure detection of the cell, when the secondary cell group is deactivated when, the terminal equipment stops beam failure detection on the secondary cell; and/or,
  • the terminal device stops TRP-specific beam failure detection on the secondary cell.
  • the network instructs the SCG to support wireless link monitoring and/or beam failure detection of the secondary cell
  • the wireless link monitoring and/or beam failure detection of the secondary cell is performed. Failure detection, therefore, when the SCG is deactivated, the terminal equipment can perform wireless link monitoring of the secondary cell and/or beam failure detection, thereby evaluating the wireless link and/or beam quality, so that the terminal equipment can use better quality Use wireless links and/or beams to communicate to ensure communication quality.
  • the embodiment of the present application provides a downlink wireless link quality evaluation device, which is applied to terminal equipment. Since the problem-solving principle of this device is similar to the method of Embodiment 1, its specific implementation can refer to the implementation of the method described in Embodiment 1, and the same or relevant content will not be repeated.
  • FIG 14 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 9 of the present application. As shown in Figure 14, device 1400 includes:
  • the first configuration unit 1401 configures the secondary cell group (SCG);
  • the terminal device when the network indicates that the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell); and/ or,
  • the network indicates that the secondary cell group supports beam failure detection
  • the reference signal for beam failure detection of the cell is configured for the primary and secondary cells
  • the secondary cell group when the secondary cell group is deactivated, the secondary cell group
  • the terminal equipment performs beam failure detection of the primary and secondary cells; and/or,
  • the terminal device performs TRP-specific beam failure detection for the primary and secondary cells.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • the embodiment of the present application provides a downlink wireless link quality evaluation device, which is applied to terminal equipment. Since the problem-solving principle of this device is similar to that of the method in Embodiment 2, its specific implementation can refer to the implementation of the method described in Embodiment 2, and repeated descriptions will not be repeated where the content is the same or relevant.
  • Figure 15 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 10 of the present application. As shown in Figure 15, device 1500 includes:
  • the second configuration unit 1501 configures the secondary cell group (SCG);
  • the terminal device stops radio link monitoring on the primary and secondary cells (PSCell); and /or,
  • the terminal device stops Beam failure detection on the primary and secondary cells.
  • the network does not configure the secondary cell group to support beam failure detection, or does not configure the primary and secondary cells with reference signals for TRP-specific beam failure detection, when the secondary cell group is deactivated, the terminal equipment Stop TRP-specific beam failure detection on this primary and secondary cell.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • the embodiment of the present application provides a downlink wireless link quality evaluation device, which is applied to terminal equipment. Since the problem-solving principle of this device is similar to that of the method in Embodiment 4, its specific implementation can refer to the implementation of the method described in Embodiment 4, and the same or relevant content will not be repeated.
  • Figure 16 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 11 of the present application. As shown in Figure 16, device 1600 includes:
  • the third configuration unit 1601 configures the secondary cell group (SCG);
  • the network indicates that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM)
  • RLM radio link monitoring
  • the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and the secondary cell is configured with a reference signal for beam failure detection of the cell, when the secondary cell When the group is deactivated, the terminal equipment performs beam failure detection of the secondary cell; and/or,
  • the terminal device When the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and the secondary cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell When a cell group is deactivated, the terminal device performs TRP-specific beam failure detection for the secondary cell.
  • Figure 17 is another schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 11 of the present application. As shown in Figure 17, device 1700 includes:
  • the fourth configuration unit 1701 configures the secondary cell group (SCG);
  • the terminal device stops the secondary cell. wireless link monitoring on; and/or,
  • the terminal equipment stops beam failure detection on the secondary cell;
  • the terminal device stops TRP-specific beam failure detection on the secondary cell.
  • the network instructs the SCG to support wireless link monitoring and/or beam failure detection of the secondary cell
  • the wireless link monitoring and/or beam failure detection of the secondary cell is performed. Failure detection, therefore, when the SCG is deactivated, the terminal equipment can perform wireless link monitoring of the secondary cell and/or beam failure detection, thereby evaluating the wireless link and/or beam quality, so that the terminal equipment can use better quality Use wireless links and/or beams to communicate to ensure communication quality.
  • the embodiment of the present application provides a downlink wireless link quality evaluation device, which is applied to terminal equipment. Since the problem-solving principle of this device is similar to the method of Embodiment 5, its specific implementation can refer to the implementation of the method described in Embodiment 5, and the same or relevant content will not be repeated.
  • the serving cell when the first counter is greater than or equal to the preset threshold, the serving cell is a primary and secondary cell, the secondary cell group is deactivated and since the secondary cell group is If deactivation has not indicated to the upper layer that the beam failure of the primary and secondary cells has failed, the MAC entity indicates to the upper layer that the beam failure of the primary and secondary cells has failed.
  • the embodiment of the present application provides a device for evaluating downlink wireless link quality. This method is applied to network equipment and corresponds to the method described in Embodiment 6. The same content will not be described again.
  • Figure 18 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 13 of the present application. As shown in Figure 18, device 1800 includes:
  • Fifth configuration unit 1801 It configures a secondary cell group (SCG) for the terminal device;
  • the terminal device when the secondary cell group is instructed to support Radio Link Monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell); and/or ,
  • RLM Radio Link Monitoring
  • PSCell primary and secondary cells
  • the terminal performs beam failure detection of the primary and secondary cells; and/or,
  • the secondary cell group is indicated to support beam failure detection, and in the case where the primary and secondary cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, the secondary cell group is deactivated.
  • the terminal equipment performs TRP-specific beam failure detection of the primary and secondary cells.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • the embodiment of the present application provides a device for evaluating downlink wireless link quality. This method is applied to network equipment and corresponds to the method described in Embodiment 7. The same content will not be described again.
  • Figure 19 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 14 of the present application. As shown in Figure 19, device 1900 includes:
  • the sixth configuration unit 1901 configures a secondary cell group (SCG) for the terminal device
  • the terminal device stops radio link monitoring on the primary and secondary cells (PSCell); and/ or,
  • the terminal equipment stops the Beam failure detection on primary and secondary cells; and/or
  • the terminal device stops TRP-specific beam failure detection on this primary and secondary cell.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience.
  • the embodiment of the present application provides a device for evaluating downlink wireless link quality.
  • the device is applied to network equipment and corresponds to the method described in Embodiment 8. The same content will not be described again.
  • FIG 20 is a schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 15 of the present application. As shown in Figure 12, device 2000 includes:
  • the seventh configuration unit 2001 configures a secondary cell group (SCG) for the terminal equipment
  • the terminal device executes on the secondary cell Wireless link monitoring; and/or,
  • the terminal equipment performs beam failure detection of the secondary cell;
  • the terminal device performs TRP-specific beam failure detection for the secondary cell.
  • Figure 21 is another schematic diagram of a downlink wireless link quality evaluation device according to Embodiment 15 of the present application. As shown in Figure 21, device 2100 includes:
  • the eighth configuration unit 2101 configures a secondary cell group (SCG) for the terminal equipment
  • the terminal equipment stops transmitting data to the secondary cell. wireless link monitoring; and/or,
  • the secondary cell group or the secondary cell of the secondary cell group is not instructed to support beam failure detection, or the secondary cell is not configured with a reference signal for beam failure detection of the cell, when the secondary cell group is deactivated when, the terminal equipment stops beam failure detection on the secondary cell; and/or,
  • the terminal device stops TRP-specific beam failure detection on the secondary cell.
  • the network instructs the SCG to support wireless link monitoring and/or beam failure detection of the secondary cell
  • the wireless link monitoring and/or beam failure detection of the secondary cell is performed. Failure detection, therefore, when the SCG is deactivated, the terminal equipment can perform wireless link monitoring of the secondary cell and/or beam failure detection, thereby evaluating the wireless link and/or beam quality, so that the terminal equipment can use better quality Use wireless links and/or beams to communicate to ensure communication quality.
  • An embodiment of the present application provides a terminal device, which includes the device for evaluating downlink wireless link quality as described in Embodiment 9 or Embodiment 10 or Embodiment 11 or Embodiment 12.
  • Figure 22 is a schematic block diagram of the system structure of the terminal device in Embodiment 16 of the present invention.
  • the terminal device 2200 may include a processor 2210 and a memory 2220; the memory 2220 is coupled to the processor 2210. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the function of the downlink wireless link quality evaluation device may be integrated into the processor 2210 .
  • the processor 2210 may be configured to: configure a secondary cell group (SCG); when the network indicates that the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated when the network indicates that the secondary cell group supports beam failure detection, and when the primary and secondary cells are configured with beams for the cell
  • SCG secondary cell group
  • RLM radio link monitoring
  • the processor 2210 may be configured to: configure a secondary cell group (SCG); when the network indicates that the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated when the network indicates that the secondary cell group supports beam failure detection, and when the primary and secondary cells are configured with beams for the cell
  • RLM radio link monitoring
  • the processor 2210 may be configured to: configure a secondary cell group (SCG); when the network does not indicate that the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is removed When activated, stop wireless link monitoring on the primary and secondary cells (PSCell); and/or, the network does not indicate that the secondary cell group supports beam failure detection, or the primary and secondary cells are not configured for beam failure detection.
  • SCG secondary cell group
  • RLM radio link monitoring
  • PSCell stop wireless link monitoring
  • the network does not indicate that the secondary cell group supports beam failure detection, or the primary and secondary cells are not configured for beam failure detection.
  • reference signals when the secondary cell group is deactivated, beam failure detection on the primary and secondary cells is stopped; and/or the network is not configured to support beam failure detection in the secondary cell group, or the secondary cell group is not configured for the
  • the primary and secondary cells are configured with reference signals for TRP-specific beam failure detection, when the secondary cell group is deactivated, TRP-specific beam failure detection on the primary and secondary cells is stopped.
  • the processor 2210 may be configured to: configure a secondary cell group (SCG); indicate on the network that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM).
  • SCG secondary cell group
  • RLM radio link monitoring
  • the secondary cell group is deactivated, radio link monitoring is performed on the secondary cell; and/or in the case where the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection,
  • the secondary cell is configured with a reference signal for beam failure detection of the cell
  • the secondary cell group is deactivated, perform beam failure detection of the secondary cell
  • the network instructs the When the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and when the secondary cell is configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is removed When activated, performs TRP-specific beam failure detection for this secondary cell.
  • the processor 2210 may be configured to: configure a secondary cell group (SCG); when the network does not indicate that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM) When the secondary cell group is deactivated, stop wireless link monitoring on the secondary cell; and/or, the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or, When the secondary cell is not configured with a reference signal for beam failure detection of the cell, when the secondary cell group is deactivated, beam failure detection on the secondary cell is stopped; and/or when the network does not instruct the secondary cell to The cell group or the secondary cell of the secondary cell group supports beam failure detection, or when the secondary cell is not configured with a reference signal for TRP-specific beam failure detection, when the secondary cell group is deactivated, stop the TRP specific beam failure detection on the secondary cell.
  • SCG secondary cell group
  • RLM radio link monitoring
  • the processor 2210 may be configured to: for each serving cell configured with beam failure detection, when the first counter is greater than or equal to the preset threshold, the serving cell is a primary and secondary cell, and the secondary cell If the group is deactivated and the beam failure of the primary and secondary cells has not been indicated to higher layers since the secondary cell group was deactivated, the MAC entity indicates the beam failure of the primary and secondary cells to the upper layer.
  • the downlink wireless link quality evaluation device can be configured separately from the processor 2210.
  • the downlink wireless link quality evaluation device can be configured as a chip connected to the processor 2210, and is controlled by the processor 2210. To realize the function of the downlink wireless link quality evaluation device.
  • the terminal device 2200 may also include: a communication module 2230, an input unit 2240, a display 2250, and a power supply 2260. It is worth noting that the terminal device 2200 does not necessarily include all components shown in Figure 22; in addition, the terminal device 2200 may also include components not shown in Figure 22, and reference may be made to related technologies.
  • the processor 2210 may include a microprocessor or other processor device and/or a logic device.
  • the processor 2210 receives input and controls the various components of the terminal device 2200. operate.
  • the memory 2220 may be, for example, one or more of a cache, flash memory, hard drive, removable media, volatile memory, non-volatile memory or other suitable devices. Various data can be stored, and programs that execute related information can also be stored. And the processor 2210 can execute the program stored in the memory 2220 to implement information storage or processing, etc. The functions of other components are similar to the existing ones and will not be described again here. Each component of the terminal device 2200 may be implemented by dedicated hardware, firmware, software, or a combination thereof without departing from the scope of the present invention.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience;
  • the terminal device can perform wireless link monitoring and/or beam failure detection of the secondary cell, thereby evaluating the wireless link and/or beam quality, so that the terminal device can use a better quality wireless link and/or beams for communication to ensure communication quality.
  • An embodiment of the present invention provides a network device, which includes the device for evaluating downlink wireless link quality as described in Embodiment 13, 14, or 15.
  • FIG. 23 is a schematic block diagram of the system structure of the network device in Embodiment 17 of the present invention.
  • network device 2300 may include: a processor 2310 and a memory 2320; the memory 2320 is coupled to the processor 2310.
  • the memory 2320 can store various data; in addition, it also stores an information processing program 2330, and executes the program 2330 under the control of the processor 2310 to receive various information sent by the terminal device and send various information to the terminal device. .
  • the function of the downlink wireless link quality evaluation device may be integrated into the processor 2310 .
  • the processor 2310 may be configured to: configure a secondary cell group (SCG) for the terminal device; wherein, in the case where the secondary cell group is instructed to support radio link monitoring (RLM), when the secondary cell When the group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell); and/or, in the case where the secondary cell group is instructed to support beam failure detection, and when configured for the primary and secondary cells.
  • SCG secondary cell group
  • RLM radio link monitoring
  • PSCell primary and secondary cells
  • the terminal equipment when the secondary cell group is deactivated, the terminal equipment performs beam failure detection of the primary and secondary cells; and/or, after indicating that the secondary cell group supports beam
  • the terminal equipment when the secondary cell group is deactivated, the terminal equipment performs the operation of the primary and secondary cells. TRP specific beam failure detection.
  • the processor 2310 may be configured to: configure a secondary cell group (SCG) for the terminal device; wherein, in the case where the secondary cell group is not instructed to support radio link monitoring (RLM), when the secondary cell group When the cell group is deactivated, the terminal equipment stops wireless link monitoring on the primary and secondary cells (PSCell); and/or, the secondary cell group is not instructed to support beam failure detection, or the primary and secondary cells are not configured.
  • SCG secondary cell group
  • RLM radio link monitoring
  • the terminal equipment stops beam failure detection on the primary and secondary cells; and/or, when the secondary cell group is not configured to support beams Failure detection, or when the primary and secondary cells are not configured with reference signals for TRP-specific beam failure detection, when the secondary cell group is deactivated, the terminal equipment stops TRP-specific beam detection on the primary and secondary cells. Beam failure detection.
  • the processor 2310 may be configured to: configure a secondary cell group (SCG) for the terminal device; wherein, indicating that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports wireless link monitoring (RLM), when the secondary cell group is deactivated, the terminal equipment performs radio link monitoring on the secondary cell; and/or, when indicating that the secondary cell group or the secondary cell of the secondary cell group supports In the case of beam failure detection, and in the case where the secondary cell is configured with a reference signal for beam failure detection of the cell, when the secondary cell group is deactivated, the terminal device performs beam failure of the secondary cell.
  • SCG secondary cell group
  • RLM wireless link monitoring
  • the terminal device performs TRP-specific beam failure detection of the secondary cell.
  • the processor 2310 may be configured to: configure a secondary cell group (SCG) for the terminal device; wherein the secondary cell (SCell) of the secondary cell group or the secondary cell group supports wireless link monitoring ( RLM), when the secondary cell group is deactivated, the terminal equipment stops wireless link monitoring on the secondary cell; and/or, when the secondary cell group or the secondary cell of the secondary cell group does not indicate support Beam failure detection, or when the secondary cell is not configured with a reference signal for beam failure detection of the cell, when the secondary cell group is deactivated, the terminal equipment stops beam failure detection on the secondary cell; and /Or, when the secondary cell group or the secondary cell of the secondary cell group is not instructed to support beam failure detection, or the reference signal for TRP-specific beam failure detection is not configured for the secondary cell, when the secondary cell When the group is deactivated, the terminal device stops TRP-specific beam failure detection on the secondary cell.
  • SCG secondary cell group
  • RLM wireless link monitoring
  • the downlink wireless link quality evaluation device can be configured separately from the processor 2310.
  • the downlink wireless link quality evaluation device can be configured as a chip connected to the processor 2310, and is controlled by the processor 2310. To realize the function of the downlink wireless link quality evaluation device.
  • the network device 2300 may also include: a transceiver 2340, an antenna 2350, etc.; the functions of the above components are similar to those of the existing technology and will not be described again here. It is worth noting that the network device 2300 does not necessarily include all components shown in Figure 23; in addition, the network device 2300 may also include components not shown in Figure 23, and reference can be made to the existing technology.
  • the terminal equipment can perform cell-level beam failure detection to evaluate the beam quality, so that the terminal equipment can communicate using beams with better wireless link quality to ensure communication quality.
  • the terminal device will not stop beam failure detection and initiate random access process, thereby avoiding an increase in energy consumption and improving user experience;
  • the terminal device can perform wireless link monitoring and/or beam failure detection of the secondary cell, thereby evaluating the wireless link and/or beam quality, so that the terminal device can use a better quality wireless link and/or beams for communication to ensure communication quality.
  • An embodiment of the present application provides a communication system, including the terminal device according to Embodiment 16 and/or the network device according to Embodiment 17.
  • a communication system including the terminal device according to Embodiment 16 and/or the network device according to Embodiment 17.
  • the terminal device according to Embodiment 16 and/or the network device according to Embodiment 17.
  • the network device according to Embodiment 17 For specific contents, please refer to the descriptions in Example 16 and Example 17.
  • the structure of the communication system can be referred to Figure 2.
  • the communication system 100 includes a network device 101 and a terminal device 102.
  • the terminal device 102 can be the same as the terminal device described in Embodiment 16, and/or the network
  • the device 101 may be the same as the network device described in Embodiment 17, and the repeated content will not be described again.
  • the above devices and methods of the present invention can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present invention relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above. or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • the present invention also relates to storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in FIG. 14 may correspond to each software module or each hardware module of the computer program flow.
  • These software modules can respectively correspond to the various steps shown in Figure 4.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in Figure 14 can be implemented as a general-purpose processor, a digital signal processor ( DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to FIG. 14 can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors coupled with DSP communications, or any other such configuration.
  • a downlink wireless link quality evaluation device the device is used in terminal equipment, and the device includes:
  • a first configuration unit configured with a secondary cell group (SCG);
  • SCG secondary cell group
  • the terminal device when the network indicates that the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell). ;and / or,
  • the network indicates that the secondary cell group supports beam failure detection
  • the primary and secondary cells are configured with a reference signal for beam failure detection of the cell
  • the terminal equipment performs beam failure detection of the primary and secondary cells
  • the terminal device performs TRP-specific beam failure detection of the primary and secondary cells.
  • the common configuration is used to instruct the terminal device to perform wireless link monitoring and/or beam failure detection when configuring SCG deactivation, or to instruct the terminal device whether to perform wireless link monitoring and/or beam failure detection.
  • the beam failure detection Including cell-based beam failure detection or TRP-specific beam failure detection.
  • the configuration indicating whether or not to support Radio Link Monitoring (RLM) and/or beam failure detection is included in the Cell Group Configuration (CellGroupConfig) IE.
  • RLM Radio Link Monitoring
  • CellGroupConfig Cell Group Configuration
  • the configuration supporting Radio Link Monitoring (RLM) and beam failure detection is BOOLEAN data or ENUMERATED data.
  • the MAC entity when the upper layer indicates the activation of the secondary cell group, the MAC entity will apply at least one of the following secondary cell group activation operations:
  • the MAC entity when the upper layer indicates that the secondary cell group is deactivated, the MAC entity will perform at least one of the following:
  • stopping all running timers except the first timer or stopping all running timers includes:
  • the network indicates that the secondary cell group supports wireless link monitoring and/or beam failure detection, and a reference signal for beam failure detection of the cell is configured for the primary and secondary cells of the secondary cell group, stop All other running timers except the first timer, which includes the TA timer and the beam failure detection timer associated with the primary and secondary cells; and/or
  • cancellation-triggered beam failure recovery includes at least one of the following:
  • the cancellation is not performed Recovery of beam failure triggered by a BFD-RS group of the primary and secondary cells and/or stopping beam failure detection of a BFD-RS group of the primary and secondary cells.
  • reference signals for TRP-specific beam failure detection are configured for the primary and secondary cells of the secondary cell group, and the primary and secondary cells
  • the primary and secondary cells When there is and is only one BFD-RS group that triggers beam failure recovery, do not cancel the beam failure recovery triggered by the BFD-RS group of the primary and secondary cells and/or stop the BFD of the primary and secondary cells.
  • -Beam failure detection for RS group When there is and is only one BFD-RS group that triggers beam failure recovery, do not cancel the beam failure recovery triggered by the BFD-RS group of the primary and secondary cells and/or stop the BFD of the primary and secondary cells.
  • the device according to appendix 1, wherein the performing wireless link monitoring on the primary and secondary cells (PSCell) includes:
  • the terminal device performs radio link monitoring on the BWP other than the activated DL BWP.
  • the terminal device activates the DL Perform wireless link monitoring on BWP other than BWP.
  • the terminal device stops beam failure detection of the BFD-RS group
  • the terminal equipment restores the beam failure detection of the BFD-RS group
  • the MAC layer has not yet moved up since the deactivation of the secondary cell group.
  • the MAC layer indicates beam failure to the upper layer;
  • the terminal device When receiving the activation command of the secondary cell group from the network, in the case where both BFD-RS groups on the primary and secondary cells detect beam failure, the terminal device performs randomization to the secondary cell group. Access process.
  • the serving cell configured with beam failure detection
  • the secondary cell group is deactivated and the secondary cell group is deactivated.
  • the MAC entity indicates the beam failure of the primary and secondary cells to the upper layer.
  • the terminal device When the network does not configure the first parameter, or when an instruction is received from the MAC layer, the terminal device instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain (RF chain).
  • RF chain radio frequency chain
  • the MAC entity indicates beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • the serving cell is configured with 2 BFD-RS groups, for each BFD-RS group of the serving cell, when both BFD-RS groups of the special cell trigger beam failure recovery and have not completed successfully,
  • the MAC entity indicates to the upper layer that the beam of the primary and secondary cells fails.
  • the terminal device When the network does not configure the first parameter, or when an instruction is received from the MAC layer, the terminal device instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain.
  • the MAC entity indicates beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, when both BFD-RS groups of the special cell trigger beam failure recovery and have not completed successfully,
  • the serving cell is not the primary and secondary cells, or the secondary cell group in which the special cell is located is not deactivated, or the beam failure of the primary and secondary cells has been indicated to higher layers since the secondary cell group was deactivated.
  • the MAC entity initiates a random access process on the primary and secondary cells.
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam. In the case of failed recovery and has not yet been cancelled,
  • the MAC entity When the serving cell is the primary and secondary cell and the secondary cell group is deactivated, the MAC entity indicates to the upper layer that the beam of the BFD-RS group of the primary and secondary cell fails.
  • the terminal device When receiving the instruction, the terminal device instructs the lower layer to stop beam failure detection of the BFD-RS group on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain.
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam. In the case of failed recovery and has not yet been cancelled,
  • the MAC entity When the serving cell is the primary and secondary cell and the secondary cell group is deactivated, the MAC entity indicates to the lower layer that the beam of the BFD-RS group of the primary and secondary cell fails or indicates that the primary and secondary cell Stop beam failure detection of the BFD-RS group on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • the device according to appendix 1 or 16, wherein the performing TRP-specific beam failure detection of the primary and secondary cells includes:
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam. In the case of failed recovery and has not yet been cancelled,
  • the MAC entity instructs the multiplexing and assembly process to generate an enhanced BFR MAC CE or trigger an SR.
  • the stop beam failure detection includes: MAC entity or lower layer stop beam failure detection, and/or,
  • the recovery beam failure detection includes: MAC entity or lower layer recovery beam failure detection.
  • a device for evaluating downlink wireless link quality the device is used in terminal equipment, and the device includes:
  • a second configuration unit configured with a secondary cell group (SCG);
  • SCG secondary cell group
  • the terminal device stops the wireless link on the primary and secondary cells (PSCell). monitor; and/or,
  • the The terminal equipment stops beam failure detection on the primary and secondary cells; and/or,
  • the secondary cell group is not configured by the network to support beam failure detection, or the reference signal for TRP-specific beam failure detection is not configured for the primary and secondary cells
  • the terminal device stops TRP-specific beam failure detection on the primary and secondary cells.
  • the MAC entity when the upper layer indicates the activation of the secondary cell group, the MAC entity will apply at least one of the following secondary cell group activation operations:
  • the MAC entity when the upper layer indicates that the secondary cell group is deactivated, the MAC entity will perform at least one of the following:
  • the network does not configure the secondary cell group to support beam failure detection and does not configure a reference signal for TRP-specific beam failure detection, reset the first counter associated with the primary and secondary cells;
  • the network does not configure the secondary cell group to support beam failure detection and configures a reference signal for TRP-specific beam failure detection, reset each of the primary and secondary cells associated with the primary and secondary cells.
  • the stop beam failure detection includes: MAC entity or lower layer stop beam failure detection, and/or,
  • the recovery beam failure detection includes: MAC entity or lower layer recovery beam failure detection.
  • a device for evaluating downlink wireless link quality The device is used in terminal equipment.
  • the device includes:
  • a third configuration unit configured with a secondary cell group (SCG);
  • SCG secondary cell group
  • the terminal device perform wireless link monitoring on the secondary cell; and/or,
  • the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, and the reference signal for beam failure detection of the cell is configured for the secondary cell
  • the terminal equipment performs beam failure detection of the secondary cell
  • the terminal device performs TRP-specific beam failure detection of the secondary cell.
  • a device for evaluating downlink wireless link quality The device is used in terminal equipment.
  • the device includes:
  • a fourth configuration unit configured with a secondary cell group (SCG);
  • the terminal equipment Stop wireless link monitoring on the secondary cell;
  • the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or the reference signal for beam failure detection of the cell is not configured for the secondary cell, when the secondary cell When the cell group is deactivated, the terminal equipment stops beam failure detection on the secondary cell; and/or,
  • the terminal device stops TRP-specific beam failure detection on the secondary cell.
  • a device for evaluating downlink wireless link quality the device is used in terminal equipment,
  • the serving cell when the first counter is greater than or equal to a preset threshold, the serving cell is a primary and secondary cell, the secondary cell group is deactivated and the secondary cell group is deactivated.
  • the MAC entity indicates the beam failure of the primary and secondary cells to the upper layer.
  • the terminal device When the network does not configure the first parameter, or when an instruction is received from the MAC layer, the terminal device instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain (RF chain).
  • RF chain radio frequency chain
  • the MAC entity also indicates beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • a device for evaluating downlink wireless link quality The device is used for network equipment.
  • the device includes:
  • a fifth configuration unit that configures a secondary cell group (SCG) for the terminal device
  • the terminal device when the secondary cell group is instructed to support radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell); and / or,
  • the terminal equipment performs beam failure detection of the primary and secondary cells;
  • the terminal equipment performs TRP-specific beam failure detection of the primary and secondary cells.
  • a device for evaluating downlink wireless link quality The device is used in network equipment.
  • the device includes:
  • a sixth configuration unit which configures a secondary cell group (SCG) for the terminal device;
  • the terminal device stops radio link monitoring on the primary and secondary cells (PSCell). ;and / or,
  • the The terminal equipment stops beam failure detection on the primary and secondary cells; and/or,
  • the The terminal equipment stops TRP-specific beam failure detection on the primary and secondary cells.
  • the common configuration is used to instruct the terminal device to perform wireless link monitoring and/or beam failure detection when configuring SCG deactivation, or to instruct the terminal device whether to perform wireless link monitoring and/or beam failure detection.
  • the beam failure detection Including cell-based beam failure detection or TRP-specific beam failure detection.
  • the configuration indicating whether or not to support Radio Link Monitoring (RLM) and/or beam failure detection is included in the Cell Group Configuration (CellGroupConfig) IE.
  • RLM Radio Link Monitoring
  • CellGroupConfig Cell Group Configuration
  • the configuration supporting Radio Link Monitoring (RLM) and beam failure detection is BOOLEAN data or ENUMERATED data.
  • a device for evaluating downlink wireless link quality The device is used for network equipment.
  • the device includes:
  • a seventh configuration unit which configures a secondary cell group (SCG) for the terminal equipment
  • the terminal equipment perform wireless link monitoring on the secondary cell;
  • the terminal equipment performs beam failure detection of the secondary cell;
  • the terminal device performs TRP-specific beam failure detection of the secondary cell.
  • a device for evaluating downlink wireless link quality The device is used for network equipment.
  • the device includes:
  • An eighth configuration unit configures a secondary cell group (SCG) for the terminal device
  • the terminal device stops Wireless link monitoring on the secondary cell;
  • the terminal equipment stops beam failure detection on the secondary cell;
  • the terminal device stops TRP-specific beam failure detection on the secondary cell.
  • a terminal device comprising the device described in any one of appendices 1-47.
  • a network device comprising the device described in any one of appendices 48-56.
  • a communication system comprising the terminal device described in Supplementary Note 57 and/or the network device described in Supplementary Note 58.
  • a method for evaluating downlink wireless link quality comprising:
  • a secondary cell group (SCG) is configured
  • radio link monitoring when the secondary cell group is deactivated, radio link monitoring is performed on the primary and secondary cells (PSCell); and/or,
  • the network indicates that the secondary cell group supports beam failure detection
  • the primary and secondary cells are configured with a reference signal for beam failure detection of the cell
  • the secondary cell group is deactivated When, perform beam failure detection of the primary and secondary cells;
  • the network indicates that the secondary cell group supports beam failure detection
  • the primary and secondary cells are configured with reference signals for TRP-specific beam failure detection
  • TRP-specific beam failure detection of the primary and secondary cells is performed.
  • the common configuration is used to instruct the terminal device to perform wireless link monitoring and/or beam failure detection when configuring SCG deactivation, or to indicate whether the terminal device performs wireless link monitoring and/or beam failure detection.
  • the beam failure detection Including cell-based beam failure detection or TRP-specific beam failure detection.
  • the configuration indicating whether or not to support Radio Link Monitoring (RLM) and/or beam failure detection is included in the Cell Group Configuration (CellGroupConfig) IE.
  • RLM Radio Link Monitoring
  • CellGroupConfig Cell Group Configuration
  • the configuration supporting Radio Link Monitoring (RLM) and beam failure detection is BOOLEAN data or ENUMERATED data.
  • the MAC entity when the upper layer indicates the activation of the secondary cell group, the MAC entity will apply at least one of the following secondary cell group activation operations:
  • stopping all running timers except the first timer or stopping all running timers includes:
  • the network indicates that the secondary cell group supports wireless link monitoring and/or beam failure detection, and a reference signal for beam failure detection of the cell is configured for the primary and secondary cells of the secondary cell group, stop All other running timers except the first timer, which includes the TA timer and the beam failure detection timer associated with the primary and secondary cells; and/or
  • the cancellation is not performed Recovery of beam failure triggered by a BFD-RS group of the primary and secondary cells and/or stopping beam failure detection of a BFD-RS group of the primary and secondary cells.
  • reference signals for TRP-specific beam failure detection are configured for the primary and secondary cells of the secondary cell group, and the primary and secondary cells
  • the primary and secondary cells When there is and is only one BFD-RS group that triggers beam failure recovery, do not cancel the beam failure recovery triggered by the BFD-RS group of the primary and secondary cells and/or stop the BFD of the primary and secondary cells.
  • -Beam failure detection for RS group When there is and is only one BFD-RS group that triggers beam failure recovery, do not cancel the beam failure recovery triggered by the BFD-RS group of the primary and secondary cells and/or stop the BFD of the primary and secondary cells.
  • the terminal device performs radio link monitoring on the BWP other than the activated DL BWP.
  • the terminal device activates the DL Perform wireless link monitoring on BWP other than BWP.
  • the terminal device stops beam failure detection of the BFD-RS group
  • the terminal equipment restores the beam failure detection of the BFD-RS group
  • the MAC layer has not yet moved up since the deactivation of the secondary cell group.
  • the MAC layer indicates beam failure to the upper layer;
  • the terminal device When receiving the activation command of the secondary cell group from the network, in the case where both BFD-RS groups on the primary and secondary cells detect beam failure, the terminal device performs randomization to the secondary cell group. Access process.
  • the serving cell configured with beam failure detection
  • the secondary cell group is deactivated and the secondary cell group is deactivated.
  • the MAC entity indicates the beam failure of the primary and secondary cells to the upper layer.
  • the terminal device When the network does not configure the first parameter, or when an instruction is received from the MAC layer, the terminal device instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain (RF chain).
  • RF chain radio frequency chain
  • the MAC entity indicates beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • the serving cell is configured with 2 BFD-RS groups, for each BFD-RS group of the serving cell, when both BFD-RS groups of the special cell trigger beam failure recovery and have not completed successfully,
  • the MAC entity indicates to the upper layer that the beam of the primary and secondary cells fails.
  • the terminal device When the network does not configure the first parameter, or when an instruction is received from the MAC layer, the terminal device instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain.
  • the MAC entity indicates beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, when both BFD-RS groups of the special cell trigger beam failure recovery and have not completed successfully,
  • the serving cell is not the primary and secondary cells, or the secondary cell group in which the special cell is located is not deactivated, or the beam failure of the primary and secondary cells has been indicated to higher layers since the secondary cell group was deactivated.
  • the MAC entity initiates a random access process on the primary and secondary cells.
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam. In the case of failed recovery and has not yet been cancelled,
  • the MAC entity When the serving cell is the primary and secondary cell and the secondary cell group is deactivated, the MAC entity indicates to the upper layer that the beam of the BFD-RS group of the primary and secondary cell fails.
  • the terminal device When receiving the instruction, the terminal device instructs the lower layer to stop beam failure detection of the BFD-RS group on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain.
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam. In the case of failed recovery and has not yet been cancelled,
  • the MAC entity When the serving cell is the primary and secondary cell and the secondary cell group is deactivated, the MAC entity indicates to the lower layer that the beam of the BFD-RS group of the primary and secondary cell fails or indicates that the primary and secondary cell Stop beam failure detection of the BFD-RS group on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • the serving cell When the serving cell is configured with two BFD-RS groups, for each BFD-RS group of the serving cell, it is determined during the beam failure recovery process that a primary and secondary cell has and only one BFD-RS group that has triggered at least one beam. In the case of failed recovery and has not yet been cancelled,
  • the MAC entity instructs the multiplexing and assembly process to generate an enhanced BFR MAC CE or trigger an SR.
  • the stop beam failure detection includes: MAC entity or lower layer stop beam failure detection, and/or,
  • the recovery beam failure detection includes: MAC entity or lower layer recovery beam failure detection.
  • a method for evaluating downlink wireless link quality comprising:
  • a secondary cell group (SCG) is configured
  • the network does not indicate that the secondary cell group supports radio link monitoring (RLM)
  • RLM radio link monitoring
  • PSCell stop radio link monitoring on the primary and secondary cells
  • the network does not indicate that the secondary cell group supports beam failure detection, or the reference signal for beam failure detection of the cell is not configured for the primary and secondary cells, when the secondary cell group is deactivated, stop Beam failure detection on the primary and secondary cells; and/or,
  • the secondary cell group is not configured by the network to support beam failure detection, or the reference signal for TRP-specific beam failure detection is not configured for the primary and secondary cells, when the secondary cell group is deactivated, Stop TRP-specific beam failure detection on the primary and secondary cells.
  • the MAC entity when the upper layer indicates the activation of the secondary cell group, the MAC entity will apply at least one of the following secondary cell group activation operations:
  • the MAC entity will perform at least one of the following:
  • the network does not configure the secondary cell group to support beam failure detection and does not configure a reference signal for TRP-specific beam failure detection, reset the first counter associated with the primary and secondary cells;
  • the network does not configure the secondary cell group to support beam failure detection and configures a reference signal for TRP-specific beam failure detection, reset each of the primary and secondary cells associated with the primary and secondary cells.
  • the stop beam failure detection includes: MAC entity or lower layer stop beam failure detection, and/or,
  • the recovery beam failure detection includes: MAC entity or lower layer recovery beam failure detection.
  • a method for evaluating downlink wireless link quality comprising:
  • a secondary cell group (SCG) is configured
  • the network indicates that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports Radio Link Monitoring (RLM), when the secondary cell group is deactivated, perform on the secondary cell Wireless link monitoring; and/or
  • RLM Radio Link Monitoring
  • the reference signal for beam failure detection of the cell is configured for the secondary cell, when When the secondary cell group is deactivated, perform beam failure detection of the secondary cell; and/or,
  • the network indicates that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection
  • the secondary cell is configured with a reference signal for TRP-specific beam failure detection
  • TRP-specific beam failure detection of the secondary cell is performed.
  • a method for evaluating downlink wireless link quality comprising:
  • a secondary cell group (SCG) is configured
  • the network does not indicate that the secondary cell group or the secondary cell (SCell) of the secondary cell group supports radio link monitoring (RLM), when the secondary cell group is deactivated, the SCell on the secondary cell is stopped.
  • RLM radio link monitoring
  • the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or the reference signal for beam failure detection of the cell is not configured for the secondary cell, when the secondary cell When the cell group is deactivated, stop beam failure detection on the secondary cell; and/or,
  • the network does not indicate that the secondary cell group or the secondary cell of the secondary cell group supports beam failure detection, or the reference signal for TRP-specific beam failure detection is not configured for the secondary cell, when the When a secondary cell group is deactivated, TRP-specific beam failure detection on the secondary cell is stopped.
  • a method for evaluating downlink wireless link quality comprising:
  • the serving cell configured with beam failure detection
  • the secondary cell group is deactivated and the secondary cell group is deactivated. If the MAC entity is deactivated and has not yet indicated to the upper layer that the beam failure of the primary and secondary cells has failed, the MAC entity indicates the beam failure of the primary and secondary cells to the upper layer.
  • the terminal device When the network does not configure the first parameter, or when an instruction is received from the MAC layer, the terminal device instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the MAC layer or physical layer or radio frequency chain (RF chain).
  • RF chain radio frequency chain
  • the MAC entity indicates beam failure of the primary and secondary cells to the lower layer or instructs the lower layer to stop beam failure detection on the primary and secondary cells.
  • the lower layer is the physical layer or radio frequency chain.
  • a method for evaluating downlink wireless link quality comprising:
  • a secondary cell group (SCG) is configured for the terminal device
  • the terminal device when the secondary cell group is instructed to support radio link monitoring (RLM), when the secondary cell group is deactivated, the terminal device performs radio link monitoring on the primary and secondary cells (PSCell); and / or,
  • the terminal equipment performs beam failure detection of the primary and secondary cells;
  • the terminal equipment performs TRP-specific beam failure detection of the primary and secondary cells.
  • a method for evaluating downlink wireless link quality comprising:
  • a secondary cell group (SCG) is configured for the terminal device
  • the terminal device stops radio link monitoring on the primary and secondary cells (PSCell). ;and / or,
  • the The terminal equipment stops beam failure detection on the primary and secondary cells; and/or,
  • the The terminal equipment stops TRP-specific beam failure detection on the primary and secondary cells.
  • the common configuration is used to instruct the terminal device to perform wireless link monitoring and/or beam failure detection when configuring SCG deactivation, or to instruct the terminal device whether to perform wireless link monitoring and/or beam failure detection.
  • the beam failure detection Including cell-based beam failure detection or TRP-specific beam failure detection.
  • the configuration indicating whether or not to support Radio Link Monitoring (RLM) and/or beam failure detection is included in the Cell Group Configuration (CellGroupConfig) IE.
  • RLM Radio Link Monitoring
  • CellGroupConfig Cell Group Configuration
  • the configuration supporting Radio Link Monitoring (RLM) and beam failure detection is BOOLEAN data or ENUMERATED data.
  • a method for evaluating downlink wireless link quality the device is used for network equipment, the method includes:
  • a secondary cell group (SCG) is configured for the terminal device
  • the terminal equipment perform wireless link monitoring on the secondary cell;
  • the terminal equipment performs beam failure detection of the secondary cell;
  • the terminal device performs TRP-specific beam failure detection of the secondary cell.
  • a method for evaluating downlink wireless link quality the method is used for network equipment, the method includes:
  • a secondary cell group (SCG) is configured for the terminal device
  • the terminal device stops Wireless link monitoring on the secondary cell;
  • the terminal equipment stops beam failure detection on the secondary cell;
  • the terminal device stops TRP-specific beam failure detection on the secondary cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种下行无线链路质量的评估方法及装置。所述方法用于终端设备,所述方法包括:配置了辅小区组;在网络指示所述辅小区组支持无线链路监听的情况下,当所述辅小区组被去激活时,在主辅小区上执行无线链路监听;和/或,在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的波束失败检测;和/或,在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的TRP特定的波束失败检测。

Description

下行无线链路质量的评估方法及装置 技术领域
本申请涉及通信领域。
背景技术
在RRC连接(RRC_CONNECTED)中,基于参考信号(例如同步信号和PBCH块SSB或信道状态信息参考信号CSI-RS)和网络配置的参考信号阈值,终端设备在激活的BWP(Bandwidth Part)里执行无线链路监听(Radio Link Monitoring,RLM)。
无线链路监听适用于SA NR、NR-DC和NE-DC操作模式下的主小区(PCell)和NR-DC和EN-DC操作模式下的主辅小区(PSCell)。
基于SSB的RLM基于初始下行BWP(DL BWP)关联的SSB,且仅能为初始DL BWP和包括初始DL BWP关联的SSB的DL BWPs配置。对于其他DL BWPs,RLM仅基于CSI-RS执行。不要求终端设备在激活DL BWP之外执行RLM。
在双激活协议栈(Dual Active Protocol Stack,DAPS)切换的情况下,终端设备继续源小区上的无线链路失败(RLF)检测,直到在目标小区成功完成随机接入过程。
另外,对于波束失败检测(Beam Failure Detection,BFD)过程,终端设备将会基于参考信号评估一个服务小区的下行无线链路质量,以检测波束失败。这适用于SA、NR-DC和NE-DC操作模式下的PCell,NR-DC和EN-DC操作模式下的PSCell,和SA、NR-DC,NE-DC或EN-DC操作模式下的SCell。不要求终端设备在一个去激活的SCell上执行波束失败检测,也不要求在隐式配置给一个去激活SCell的资源上执行波束失败检测。
基于SSB的波束失败检测基于初始DL BWP关联的SSB,且仅能配置给初始DL BWPs和包括初始DL BWP关联的SSB的DL BWPs。对于其他DL BWPs,波束失败检测仅基于CSI-RS执行。不要求终端设备在激活DL BWP之外执行波束失败检测。
通过计算低层到MAC实体的波束失败实例(instance)指示的数量,检测波束失败。
对于RRC_CONNECTED下的物理层问题的检测,终端设备将会:
1>如果配置了任何DAPS承载,当从低层收到源特殊小区的连续N310个 “out-of-sync”指示且T304正在运行时:
2>启动源特殊小区的定时器T310。
1>当从低层收到特殊小区的连续N310个“out-of-sync”指示同时T300、T301、T304、T311、T316和T319都未运行:
2>启动相应特殊小区的定时器T310。
物理层问题的恢复,即当从低层收到特殊小区的连续N311个“in-sync”指示,同时T310正在运行,终端设备将会:
1>停止相应特殊小区的定时器T310。
1>停止相应特殊小区的定时器T312。
无线链路失败的检测,包括终端设备将会:
1>如果配置了任何DAPS承载且T304正在运行:
2>一旦源特殊小区里T310超时;或
2>一旦源MCG MAC指示随机接入问题;或
2>一旦源MCG RLC指示已经达到最大重传次数;或
2>一旦源MCG MAC指示持续上行LBT失败:
3>认为源MCG检测到无线链路失败,即源RLF;
3>挂起源MCG里所有DRBs的发送和接收;
3>重置源MCG MAC;
3>释放源连接。
1>否则:
2>DAPS切换期间:以下仅适用于目标PCell
2>一旦PCell里T310超时;或
2>一旦PCell里T312超时;或
2>一旦MCG MAC指示随机接入问题同时T300、T301、T304、T311和T319都未运行;或
2>一旦MCG RLC指示已经达到最大重传次数;或
2>如果作为IAB节点连接,一旦从MCG收到BAP实体的BH RLF指示;或
2>一旦MCG MAC指示持续上行LBT失败同时T304未运行:
3>如果这个指示来自MCG RLC且配置了CA duplication且对MCG激活,且对于相应的逻辑信道,allowedServingCells仅包括辅小区:
4>发起失败信息过程以上报RLC失败。
3>否则:
4>认为MCG检测到无线链路失败,即MCG RLF;
4>丢弃存储的分段RRC消息的所有分段;
4>如果AS安全尚未被激活:
5>执行进入RRC_IDLE时的行为,释放原因是“other”;
4>否则,如果AS安全已经被激活但尚未建立SRB2且至少一个DRB,或对于IAB尚未建立SRB2:
5>存储无线链路失败信息;
5>执行进入RRC_IDLE时的行为,释放原因是“RRC连接失败”;
4>否则:
5>存储无线链路失败信息;
5>如果配置了T316;且
5>如果SCG传输未被挂起;且
5>如果未进行PSCell改变或PSCell增加(即NR-DC情况下NR PSCell的定时器T304未运行或NE-DC情况下E-UTRA PSCell的定时器T307未运行):
6>发起MCG失败信息过程以上报MCG无线链路失败
5>否则:
6>发起连接重建过程。
无线链路失败的检测,还包括终端设备将会:
1>一旦PSCell里T310超时;或
1>一旦PSCell里T312超时;或
1>一旦SCG MAC指示随机接入问题;或
1>一旦SCG RLC指示已经达到最大重传次数;或
1>如果作为IAB节点连接,一旦从SCG收到BAP实体的BH RLF指示;或
1>一旦SCG MAC指示持续上行LBT失败:
2>如果这个指示来自SCG RLC且配置了CA duplication且对SCG激活,且对于相应的逻辑信道,allowedServingCells仅包括辅小区:
3>发起失败信息过程以上报RLC失败
2>否则:
3>认为SCG检测到无线链路失败,即SCG RLF;
3>如果MCG未挂起:
4>发起SCG失败信息过程以上报SCG无线链路失败。
3>否则:
4>发起连接重建过程。
波束失败检测过程使用终端设备(UE)变量BFI_COUNTER,这个变量是波束失败实例指示的计数器,初始设置为0,每个服务小区有一个。
图1是服务小区波束失败的检测或波束失败恢复的触发的一流程图。如图1所示,
对于每个配置了波束失败检测的服务小区,MAC实体将会:
如果从低层收到了波束失败实例指示:
启动或重启beamFailureDetectionTimer;
BFI_COUNTER加1;
如果BFI_COUNTER大于或等于beamFailureInstanceMaxCount:
如果服务小区是辅小区(SCell),触发这个服务小区的一个BFR;
否则,在这个特殊小区(SpCell)上发起随机接入过程。
如果beamFailureDetectionTimer超时;或
如果高层重配了这个服务小区的beamFailureDetectionTimer,beamFailureInstanceMaxCount或用于波束失败检测的任何参考信号:
设置BFI_COUNTER为0。
这个过程适用于Rel-15和Rel-16的特殊小区和辅小区。
MAC实体可以被RRC每服务小区配置波束失败恢复过程,这个过程用于当在服务SSB(s)或CSI-RS(s)上检测到波束失败时,向服务网络设备指示一个新的SSB或CSI-RS。
应该注意,上面对技术背景的介绍只是为了方便,对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
第一方面,对于多TRP(发送接收点,Transmission Reception Point)操作下的波束失败检测,网络设备为终端设备配置2组波束失败检测参考信号,每组关联一个TRP,在配置的定时器超时前,当来自物理层的波束失败检测参考信号相应组关联的波束失败实施例指示数达到一个配置的阈值时,终端设备宣布这个TRP的波束失败。
检测到服务小区的一个TRP的波束失败后,终端设备:
- 通过发起这个TRP的BFR MAC CE的传输,触发波束失败恢复;
- 为这个TRP选择一个合适的波束(如果可用)并在这个TRP的这个BFR MAC CE里指示是否找到合适的(新)波束以及波束失败的信息。
当收到指示用于一个TRP的BFR MAC CE的传输的HARQ进程的一个新传的上行授权的PDCCH时,认为这个TRP的波束失败恢复完成。
检测到特殊小区的两个TRPs的波束失败后,终端设备:
- 通过发起特殊小区上的随机接入过程,触发波束失败恢复;
- 为每个失败的TRP选择一个合适的波束(如果可用)并在每个失败的TRP的BFR MAC CE里指示是否找到合适的(新)波束以及波束失败的信息;
- 当完成随机接入过程时,认为特殊小区的两个TRPs波束失败恢复完成。
具体的,
针对TRP特定的波束失败恢复的触发,RRC配置了一些参数,例如:
- 配置了2个BFD-RS组的服务小区的每BFD-RS组的波束失败检测的beamFailureInstanceMaxCount
- 配置了2个BFD-RS组的服务小区的每BFD-RS组的波束失败检测的beamFailureDetectionTimer
以下UE变量用于波束失败检测过程:
- BFI_COUNTER(配置了2个BFD-RS组的服务小区的每BFD-RS组):波束失败实施例指示的计数器,其初始设置为0
对于每个配置了波束失败检测的服务小区,MAC实体将会:
1>如果这个服务小区被配置了两个BFD-RS组,对于这个服务小区的每个BFD-RS组,MAC实体将会:
2>如果从低层收到了一个BFD-RS组的波束失败实例指示:
3>启动或重启beamFailureDetectionTimer;
3>这个BFD-RS组的BFI_COUNTER加1;
3>如果BFI_COUNTER大于或等于beamFailureInstanceMaxCount:
4>触发这个服务小区的这个BFD-RS组的BFR;
2>如果这个特殊小区的两个BFD-RS组都触发了BFR且尚未成功完成:
3>在这个特殊小区上发起随机接入过程;
2>如果这个服务小区是特殊小区且为这个特殊小区的两个BFD-RS组的波束失败恢复发起的随机接入过程成功完成:
3>设置特殊小区的每个BFD-RS组的BFI_COUNTER为0;
3>认为这个波束失败恢复过程成功完成。
2>如果这个BFD-RS组的beamFailureDetectionTimer超时;或
2>如果高层重配了这个服务小区这个BFD-RS组的beamFailureDetectionTimer,beamFailureInstanceMaxCount或用于波束失败检测的任何参考信号:
3>设置这个BFD-RS组的BFI_COUNTER为0。
2>如果收到一个C-RNTI寻址的PDCCH,指示用于传输包括这个服务小区的这个BFD-RS组的波束失败恢复信息的Enhanced BFR MAC CE或Truncated Enhanced BFR MAC CE的HARQ进程的一个新传的上行授权:
3>设置这个BFD-RS组的BFI_COUNTER为0;
3>认为这个波束失败恢复过程成功完成并取消这个服务小区这个BFD-RS组所有触发的BFRs。
2>如果这个服务小区是辅小区,且这个辅小区去激活:
3>设置辅小区的每个BFD-RS组的BFI_COUNTER为0;
3>认为这个波束失败恢复过程成功完成并取消这个服务小区所有BFD-RS组所有触发的BFRs。
第二方面,对于多RAT双连接的进一步增强,在Rel-16里,3GPP已经了NR和LTE的移动性增强,以减少切换期间数据传输中断,并改善切换健壮性。在Rel-16里,3GPP已经引入一些增强以提高高效的MR-DC配置并改善MR-DC性能,例如 通过早期的测量上报、通过SCG的快速MCG失败恢复。
在EN-DC里,由于同时维持2个无线链路,终端设备和网络能耗是一个大问题。在一些情况下,NR UE能耗比LTE高3到4倍。在EN-DC部署里,MN提供基本覆盖。当终端设备数据速率的需求动态变化时,如从高到低,(去)激活SN以节省网络和终端设备能耗,是值得考虑的。因此,在Rel-17里,应该定义一种高效的SCG(去)激活机制,这种机制也适用于其他MR-DC操作,例如NGEN-DC和NR-DC。
发明人发现,基于现有技术和上面的第一点,为了检测无线链路失败和/或波束失败,要求终端设备:
- 对用于无线链路失败检测的参考信号进行无线链路质量的监听,以向高层(RRC)提供“in-sync”指示或“out-of-sync”指示;
- 评估用于波束失败检测的参考信号的无线链路质量,以向高层(MAC)提供波束失败实施例指示,其中用于波束失败检测的参考信号可以是:为一个特殊小区或一个激活的SCell的一个激活DL BWP配置的;或为一个小区的一个TRP配置的。
基于上面的第二点,Rel-17支持SCG激活和去激活机制,其中SCG的特殊小区PSCell可以被去激活。当SCG被去激活时,PSCell和SCG的所有SCell被去激活,如果网络配置,终端设备在PSCell上执行RLM和波束失败检测。SCG去激活期间,对于PSCell波束失败,当PSCell波束失败时,终端设备停止波束失败检测;当重配置BFD-RS时,恢复波束失败检测。当收到网络SCG激活命令时,如果宣布了RLF或波束失败,终端设备将会向SCG执行随机接入过程。
发明人发现,对于现有技术,存在以下问题:
如果仅支持SCG去激活下小区级的波束失败检测:PSCell可能未配置用于小区波束失败检测的参考信号,而是配置了用于TRP特定的波束失败检测的参考信号,在这种情况下,当SCG去激活时,即便网络配置终端设备进行波束失败检测,终端设备无法进行小区级的波束失败检测,从而无法评估波束质量,使得终端设备使用无线链路质量差的波束进行通信,降低通信质量;
如果支持SCG去激活下小区级/TRP特定的波束失败检测:按照现有机制,当波束失败时,终端设备停止波束失败检测,且在SCG去激活时向SCG发起随机接入过程。如果波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用,那么SCG去激活时的随机接入过程是不必要的,导致增加能耗,降低用户体验。
为了解决上述问题中的一个或多个,本申请实施例提供了一种下行无线链路质量的评估方法及装置。
根据本申请实施例的第一方面,提供一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:第一配置单元,其配置了辅小区组(SCG);其中,在网络指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的波束失败检测,和/或,在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的TRP特定的波束失败检测。
根据本申请实施例的第二方面,提供一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:第二配置单元,其配置了辅小区组(SCG);其中,在网络未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,在网络未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的波束失败检测;和/或,在网络未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第三方面,提供一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:第三配置单元,其配置了辅小区组(SCG);其中,在网络指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在所述辅小区上执行无线链路监听;和/或,在网络指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的波束失败检测,和 /或,在网络指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的TRP特定的波束失败检测。
根据本申请实施例的第四方面,提供一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:第四配置单元,其配置了辅小区组(SCG);其中,在网络未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的无线链路监听;和/或,在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的波束失败检测;和/或,在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第五方面,提供一种下行无线链路质量的评估装置,所述装置用于终端设备,其中,对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在所述服务小区是主辅小区,所述辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败的情况下,MAC实体向上层指示所述主辅小区的波束失败。
根据本申请实施例的第六方面,提供一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:第五配置单元,其为终端设备配置了辅小区组(SCG);其中,在指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的波束失败检测;和/或,在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小 区的TRP特定的波束失败检测。
根据本申请实施例的第七方面,提供一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:第六配置单元,其为终端设备配置了辅小区组(SCG);其中,在未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,在未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的波束失败检测;和/或,在未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第八方面,提供一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:第七配置单元,其为终端设备配置了辅小区组(SCG);其中,在指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在所述辅小区上执行无线链路监听;和/或,在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的波束失败检测;和/或,在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的TRP特定的波束失败检测。
根据本申请实施例的第九方面,提供一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:第八配置单元,其为终端设备配置了辅小区组(SCG);其中,在未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的无线链路监听;和/或,在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的波束失败 检测;和/或,在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第十方面,提供一种终端设备,所述终端设备包括根据本申请实施例的第一方面至第五方面的任一方面所述的装置。
根据本申请实施例的第十一方面,提供一种网络设备,所述终端设备包括根据本申请实施例的第六方面至第九方面的任一方面所述的装置。
根据本申请实施例的第十二方面,提供一种通信系统,所述通信系统包括根据本申请实施例的第十方面所述的终端设备和/或根据本申请实施例的第十一方面所述的网络设备。
根据本申请实施例的第十三方面,提供一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:配置了辅小区组(SCG);在网络指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,在主辅小区(PSCell)上执行无线链路监听;和/或,在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的波束失败检测,和/或,在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的TRP特定的波束失败检测。
根据本申请实施例的第十四方面,提供一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:配置了辅小区组(SCG);在网络未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,停止主辅小区(PSCell)上的无线链路监听;和/或,在网络未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停止所述主辅小区上的波束失败检测;和/或,在网络未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停止所述主辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第十五方面,提供一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:配置了辅小区组(SCG);在网络指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,在所述辅小区上执行无线链路监听;和/或在网络指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述辅小区的波束失败检测,和/或,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述辅小区的TRP特定的波束失败检测。
根据本申请实施例的第十六方面,提供一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:配置了辅小区组(SCG);在网络未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,停止所述辅小区上的无线链路监听;和/或,在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停止所述辅小区上的波束失败检测;和/或,在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停止所述辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第十七方面,提供一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在所述服务小区是主辅小区,所述辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败的情况下,MAC实体向上层指示所述主辅小区的波束失败。
根据本申请实施例的第十八方面,提供一种下行无线链路质量的评估方法,所述方法用于网络设备,所述方法包括:为终端设备配置了辅小区组(SCG);其中,在指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束 失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的波束失败检测;和/或,在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的TRP特定的波束失败检测。
根据本申请实施例的第十九方面,提供一种下行无线链路质量的评估方法,所述方法用于网络设备,所述方法包括:为终端设备配置了辅小区组(SCG);其中,在未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,在未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的波束失败检测;和/或,在未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第二十方面,提供一种下行无线链路质量的评估方法,所述装置用于网络设备,所述方法包括:为终端设备配置了辅小区组(SCG);其中,在指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在所述辅小区上执行无线链路监听;和/或,在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的波束失败检测;和/或,在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的TRP特定的波束失败检测。
根据本申请实施例的第二十一方面,提供一种下行无线链路质量的评估方法,所述方法用于网络设备,所述方法包括:为终端设备配置了辅小区组(SCG);其中,在未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的无线链路监听;和/或,在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测, 或者,未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的波束失败检测;和/或,在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的TRP特定的波束失败检测。
根据本申请实施例的第二十二方面,提供一种计算机可读程序,其中当在下行无线链路质量的评估装置或终端设备中执行所述程序时,所述程序使得所述下行无线链路质量的评估装置或终端设备执行本申请实施例的第十三方面至第十七方面中的任一方面所述的下行无线链路质量的评估方法。
根据本申请实施例的第二十三方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得下行无线链路质量的评估装置或终端设备执行本申请实施例的第十三方面至第十七方面中的任一方面所述的下行无线链路质量的评估方法。
根据本申请实施例的第二十四方面,提供一种计算机可读程序,其中当在下行无线链路质量的评估装置或网络设备中执行所述程序时,所述程序使得所述下行无线链路质量的评估装置或网络设备执行本申请实施例的第十八方面至第二十一方面中的任一方面所述的下行无线链路质量的评估方法。
根据本申请实施例的第二十五方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得下行无线链路质量的评估装置或网络设备执行本申请实施例的第十八方面至第二十一方面中的任一方面所述的下行无线链路质量的评估方法。
本申请实施例的有益效果之一在于:
在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行 该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验;
另外,在网络指示该SCG支持辅小区的无线链路监听和/或波束失败检测的情况下,当该SCG被去激活时,执行该辅小区的无线链路监听和/或波束失败检测,因此,当该SCG被去激活时,终端设备能进行辅小区的无线链路监听和/或波束失败检测,从而评估无线链路和/或波束质量,使得终端设备能够使用质量较好的无线链路和/或波束进行通信,保证通信质量。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含/具有”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是服务小区波束失败的检测或波束失败恢复的触发的一流程图;
图2是本申请实施例的通信系统的一示意图;
图3是本申请实施例的多TRP的场景的一示意图;
图4是本申请实施例1的下行无线链路质量的评估方法的一示意图;
图5是本申请实施例2的下行无线链路质量的评估方法的一示意图;
图6是本申请实施例3的下行无线链路质量的评估方法的一示意图;
图7是本申请实施例4的下行无线链路质量的评估方法的一示意图;
图8是本申请实施例4的下行无线链路质量的评估方法的另一示意图;
图9是本申请实施例5的下行无线链路质量的评估方法的一示意图;
图10是本申请实施例6的下行无线链路质量的评估方法的一示意图;
图11是本申请实施例7的下行无线链路质量的评估方法的一示意图;
图12是本申请实施例8的下行无线链路质量的评估方法的一示意图;
图13是本申请实施例8的下行无线链路质量的评估方法的另一示意图;
图14是本申请实施例9的下行无线链路质量的评估装置的一示意图;
图15是本申请实施例10的下行无线链路质量的评估装置的一示意图;
图16是本申请实施例11的下行无线链路质量的评估装置的一示意图;
图17是本申请实施例11的下行无线链路质量的评估装置的另一示意图;
图18是本申请实施例13的下行无线链路质量的评估装置的一示意图;
图19是本申请实施例14的下行无线链路质量的评估装置的一示意图;
图20是本申请实施例15的下行无线链路质量的评估装置的一示意图;
图21是本申请实施例15的下行无线链路质量的评估装置的另一示意图;
图22是本发明实施例16的终端设备的系统构成的一示意框图;
图23是本发明实施例17的网络设备的系统构成的一示意框图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并 不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将用户设备接入通信网络并为该用户设备提供服务的设备。网络设备可以包括但不限于如下设备:IAB架构下的“节点(node)”和/或“宿主(donor)”、基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖,例如5G基站gNB可以包括一个gNB CU和一个或多个gNB DU,其中CU/DU是具有gNB部分功能的gNB的一个逻辑节点。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。一个gNB-DU支持一个或多个小区,一个小区仅由一个gNB-DU支持。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。例如,IAB架构下的由IAB节点或IAB宿主服务的终端设备。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在本申请实施例中,“当……时”、“在……情况下”、“对于……的情况”以及“如果……”都表示基于某个或某些条件或状态等,另外,这些表述方式可以互相替换。
以下通过示例对本申请实施例的场景进行说明,但本发明不限于此。
图2是本申请实施例的通信系统的一示意图,其示意性说明了以终端设备和网络设备为例的情况,如图2所示,通信系统100可以包括:网络设备101和终端设备102。为简单起见,图1仅以一个终端设备为例进行说明。网络设备101例如为NR的网络设备gNB。
在本申请实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
例如,对于多TRP(mTRP)的场景,网络设备通过TRP-1和TRP-2为终端设备102提供服务。
在本申请实施例中,TRP是从终端设备接收信号和/或向终端设备发送信号的网络设备的一部分。在多TRP(mTRP)操作里,一个服务小区可以从两个TRP调度终 端设备,提供更好的PDSCH覆盖、可靠性和/或数据速率,这两个TRP可以属于同一小区。对于多TRP,有两种不同的操作模式,即单DCI(下行链路控制信息,Downlink Control Information)和多DCI。对于这两种模式,在RRC层提供的配置内,上行和下行操作的控制由物理层和MAC层进行。在单DCI模式下,终端设备由两个TRP通过相同的DCI调度;在多DCI模式下,终端设备由每个TRP的单独的DCI调度。
图3是本申请实施例的多TRP的场景的一示意图。如图3所示,网络设备101部署了两个TRP,即TRP1和TRP2。网络设备101通过TRP1和TRP2与终端设备102进行工作,例如,TRP1和TRP2属于PSCell。即便波束失败仅发生在TRP1,而TRP2仍能使用,按照现有机制,在SCG去激活时,终端设备102也会停止对TRP1和TRP2的波束失败检测,这使得终端设备102无法评估PSCell的波束质量;并且在SCG被激活时,终端设备102将向网络设备101发起随机接入过程。这导致网络和终端增加能耗,并且降低了用户体验。
下面结合附图对本申请实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
实施例1
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于终端设备。例如,该方法应用于图2和图3中的终端设备102。
图4是本申请实施例1的下行无线链路质量的评估方法的一示意图。如图4所示,该方法包括:
步骤401:配置了辅小区组(SCG);
步骤402:在网络指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,在主辅小区(PSCell)上执行无线链路监听;和/或,
步骤403:在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该主辅小区的波束失败检测;和/或,
步骤404:在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该主辅小区的TRP特定的波束失败检测。
在本申请实施例中,在步骤401之后,该方法可以包括步骤402-404中的至少一 个步骤,并且,在包括步骤402-404中的多个步骤时,不对这些步骤之间的执行顺序进行限制。
这样,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
在一些实施例中,“TRP特定的”可以替换为“BFD-RS组的”或“BFD-RS组关联的”。
在一些实施例中,“波束失败”可以替换为“波束失败恢复”或“触发了波束失败恢复”。
在步骤401中,配置了辅小区组(SCG)是指终端设备配置了辅小区组。
在一些实施例中,该主辅小区是终端设备配置了的辅小区组的主辅小区。
在一些实施例中,指示支持或是否支持无线链路监听(RLM)和/或波束失败检测的该配置可以包括在小区组配置(CellGroupConfig)IE里。
在一些实施例中,网络可以通过共用的配置或单独的配置指示支持该辅小区组去激活时的无线链路监听或是否支持该辅小区组去激活时的无线链路监听,和/或,指示支持该辅小区组去激活时的波束失败检测或是否支持该辅小区组去激活时的波束失败检测。例如,该共用的配置或单独的配置可以包括在小区组配置(CellGroupConfig)IE里。
在一些实施例中,该共用的配置用于配置SCG去激活时,指示终端设备执行无线链路监听和/或波束失败检测,或指示终端设备是否执行无线链路监听和/或波束失败检测,该波束失败检测包括小区的波束失败检测或TRP特定的波束失败检测。
在一些实施例中,该共用的配置可以是布尔型(BOOLEAN)数据或枚举型 (ENUMERATED)数据。
在一些实施例中,在该共用的配置是布尔型(BOOLEAN)数据的情况下,如果值为“true”,表示当SCG被去激活时,终端设备执行无线链路监听和/或波束失败检测,如果值为“false”,表示当SCG被去激活时,终端设备不/停止执行无线链路监听和/或波束失败检测。在该情况下,该共用的配置的域是强制的(mandatory)域。
例如,在该共用的配置是布尔型(BOOLEAN)数据的情况下,该共用的配置用于配置SCG去激活时,指示终端设备是否执行无线链路监听和/或波束失败检测,该波束失败检测包括小区的波束失败检测或TRP特定的波束失败检测。
在一些实施例中,在该共用的配置是枚举型(ENUMERATED)数据的情况下,其值为“true”。也就是说,如果配置了这个域,表示当SCG被去激活时,终端设备执行无线链路监听和/或波束失败检测;在该情况下,该共用的配置的域是可选的(optional)域,而不是必需的。
例如,在该共用的配置是枚举型(ENUMERATED)数据的情况下,该共用的配置用于配置SCG去激活时,指示终端设备执行无线链路监听和/或波束失败检测,该波束失败检测包括小区的波束失败检测或TRP特定的波束失败检测。
在一些实施例中,该单独的配置包括以下中的至少一个:
用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听和小区的波束失败检测,或指示终端设备执行主辅小区上的无线链路监听和小区的波束失败检测;
用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听,或指示终端设备执行主辅小区上的无线链路监听;
用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上小区的或TRP特定的波束失败检测,或指示终端设备执行主辅小区上小区的或TRP特定的波束失败检测;
用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上小区的波束失败检测,或指示终端设备执行主辅小区上小区的波束失败检测;以及
用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上TRP特定的波束失败检测,或指示终端设备执行主辅小区上TRP特定的波束失败检测。
在一些实施例中,该单独的配置可以是布尔型(BOOLEAN)数据或枚举型 (ENUMERATED)数据。
在一些实施例中,在该单独的配置是布尔型(BOOLEAN)数据的情况下,如果值为“true”,表示当SCG被去激活时,终端设备执行无线链路监听和/或波束失败检测,如果值为“false”,表示当SCG被去激活时,终端设备不执行无线链路监听和/或波束失败检测。在该情况下,该单独的配置的域是强制的(mandatory)域。
例如,在该单独的配置是布尔型(BOOLEAN)数据的情况下,
该单独的配置包括以下中的至少一个:用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听和小区的波束失败检测;用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听;用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上小区的或TRP特定的波束失败检测;用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上小区的波束失败检测;以及用于配置该辅小区组去激活时,指示终端设备是否执行主辅小区上TRP特定的波束失败检测。
在一些实施例中,在该单独的配置是枚举型(ENUMERATED)数据的情况下,其值为“true”。也就是说,如果配置了这个域,表示当SCG被去激活时,终端设备执行无线链路监听和/或波束失败检测;在该情况下,该单独的配置的域是可选的(optional)域,而不是必需的。
例如,在该单独的配置是枚举型(ENUMERATED)数据的情况下,
该单独的配置包括以下中的至少一个:用于配置该辅小区组去激活时,指示终端设备执行主辅小区上的无线链路监听和小区的波束失败检测;用于配置该辅小区组去激活时,指示终端设备执行主辅小区上的无线链路监听;用于配置该辅小区组去激活时,指示终端设备执行主辅小区上小区的或TRP特定的波束失败检测;用于配置该辅小区组去激活时,指示终端设备执行主辅小区上小区的波束失败检测;以及用于配置该辅小区组去激活时,指示终端设备执行主辅小区上TRP特定的波束失败检测。
在一些实施例中,对于配置的该辅小区组,当上层指示该辅小区组的激活时,MAC实体将会应用以下至少之一的辅小区组激活操作:激活主辅小区;主辅小区上的SRS传输;主辅小区上的CSI上报;主辅小区上的PDCCH监听;主辅小区上的PUCCH传输;如果触发,执行主辅小区上的随机接入;以及初始化主辅小区关联的每个逻辑信道的Bj为0。
在一些实施例中,对于配置的该辅小区组,当上层指示该辅小区组被去激活时,MAC实体将会执行以下至少之一:去激活配置的该辅小区组所有的辅小区(SCells);去激活主辅小区;以及重置MAC。
在一些实施例中,该重置MAC可以包括以下至少之一:停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器;停止正在进行的随机接入过程;清空Msg3缓存(buffer);清空MSGA缓存(buffer);取消触发的波束失败恢复(BFR);以及重置第一计数器。
在步骤402中,在网络指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,在主辅小区(PSCell)上执行无线链路监听。
在一些实施例中,在主辅小区(PSCell)上执行无线链路监听,可以包括:在网络配置了在去激活的主辅小区上执行无线链路监听的情况下,终端设备在激活DL BWP之外的BWP上执行无线链路监听。也就是说,不要求终端设备在在激活DL BWP之外的BWP上执行无线链路监听,除非网络配置了在去激活的主辅小区上执行无线链路监听。
例如,在网络配置了在去激活的主辅小区上执行无线链路监听且未检测到该主辅小区或该主辅小区所在辅小区组的无线链路失败的情况下,终端设备在激活DL BWP之外的BWP上执行无线链路监听。
在步骤403中,
在一些实施例中,停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器,可以包括:
在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于小区的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,该第一定时器包括TA定时器(例如TA timer)和该主辅小区关联的波束失败检测定时器(例如beamFailureDetectionTimer)。
在一些实施例中,TRP特定的波束失败检测定时器也可以替换为:BFD-RS组关联的波束失败检测定时器。
在一些实施例中,配置了用于TRP特定的波束失败检测的参考信号也可以替换为:配置了多个(例如2个)BFD-RS组。
在一些实施例中,取消触发的波束失败恢复(BFR)可以包括以下至少之一:取 消主辅小区触发的波束失败恢复;取消主辅小区的一个BFD-RS组触发的波束失败恢复。
例如,在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,停止该主辅小区的一个BFD-RS组的波束失败检测。
在一些实施例中,第一计数器可以是波束失败指示的计数器,例如BFI_COUNTER。
在一些实施例中,网络指示的时候,该第一计数器不包括PSCell的BFI_COUNTER,或者说,该第一计数器排除PSCell的BFI_COUNTER。
例如,网络指示的时候,如果该第一计数器是波束失败指示的计数器,则该第一计数器不包括PSCell的BFI_COUNTER,或者说,该第一计数器排除PSCell的BFI_COUNTER。
在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该主辅小区的波束失败检测。
在一些实施例中,为该主辅小区配置了用于小区的波束失败检测的参考信号或用于TRP特定的波束失败检测的参考信号可以是显式地配置或隐式地配置,例如,该显式地配置是通过RRC和/或MAC信令指示的,该隐式地配置是终端设备通过PDCCH接收TCI state确定的。
在一些实施例中,为该主辅小区配置了用于小区的波束失败检测的参考信号也就是说:未为该主辅小区配置用于TRP特定的波束失败检测的参考信号。
在一些实施例中,为该主辅小区配置了用于TRP特定波束失败检测的参考信号也就是说:未为该主辅小区配置用于小区的波束失败检测的参考信号。
在一些实施例中,该执行该主辅小区的波束失败检测,可以包括:
对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在该服务小区是该主辅小区,该辅小区组是去激活的且自从该辅小区组被去激活尚未向高层指示该主辅小区的波束失败的情况下,MAC实体向上层指示该主辅小区的波束失败。
例如,第一计数器为BFI_COUNTER,预设阈值为beamFailureInstanceMaxCount。
在一些实施例中,该执行该主辅小区的波束失败检测,还可以包括:
当网络未配置第一参数,例如,bfd-and-RLM的值为“true”;或者,当收到来自MAC层的指示的情况下,该终端设备或RRC层指示低层停止该主辅小区上的波束失败检测。
例如,该低层是MAC层或物理层或射频链(RF chain)。
在一些实施例中,该执行该主辅小区的波束失败检测,还可以包括:
该MAC实体向低层指示该主辅小区的波束失败或指示低层停止该主辅小区上的波束失败检测。
例如,MAC实体向上层指示该主辅小区的波束失败,并且收到MAC指示后,终端设备指示低层停止该主辅小区上的波束失败检测。
例如,该低层是物理层或射频链。
另外,上述指示的过程也适用于步骤404的情况。
在步骤404中,在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该主辅小区的TRP特定的波束失败检测。
在一些实施例中,为该主辅小区配置了用于TRP特定的波束失败检测的参考信号可以是显式地配置或隐式地配置,例如,该隐式地配置是通过PDCCH接收TCI state确定的。
在一些实施例中,为该主辅小区配置了用于TRP特定的波束失败检测的参考信号也就是说,未为该主辅小区配置了用于小区的波束失败检测的参考信号。
在一些实施例中,步骤404可以包括以下至少之一:
在该辅小区组去激活期间,当该主辅小区上的一个BFD-RS组检测到波束失败时,该终端设备停止该BFD-RS组的波束失败检测,或者,在该辅小区组去激活期间,当该主辅小区上的一个TRP检测到波束失败时,该终端设备停止该TRP的波束失败检测;
在该辅小区组去激活期间,当重配置该主辅小区的一个BFD-RS组的参考信号,该终端设备恢复该BFD-RS组的波束失败检测;例如,通过RRC信令和/或MAC信令重配置该主辅小区的一个BFD-RS组的参考信号;
在该辅小区组去激活期间,当该主辅小区上的两个BFD-RS组都触发了波束失败 恢复且尚未成功完成时,在自从该辅小区组去激活起MAC层尚未向上层指示波束失败的情况下,该MAC层向上层指示波束失败;以及
当从网络收到该辅小区组的激活命令时,在该主辅小区上的两个BFD-RS组都检测到波束失败的情况下,该终端设备向该辅小区组执行随机接入过程。
在一些实施例中,“在该辅小区组去激活期间”也可以描述为“如果该辅小区组被去激活”,“在该辅小区组被去激活的情况下”或“当该辅小区组被去激活时”。
在一些实施例中,停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器,可以包括:
在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于小区的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,该第一定时器包括TA定时器(例如TA timer)和该主辅小区关联的波束失败检测定时器(例如beamFailureDetectionTimer);和/或
在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,该第一定时器包括TA定时器(例如TA timer)和该主辅小区关联的波束失败检测定时器或该主辅小区的每个TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer)。
在一些实施例中,TRP特定的波束失败检测定时器也可以替换为:BFD-RS组关联的波束失败检测定时器。
在一些实施例中,配置了用于TRP特定的波束失败检测的参考信号也可以替换为:配置了多个(例如2个)BFD-RS组。
在一些实施例中,取消触发的波束失败恢复(BFR)可以包括以下至少之一:取消主辅小区触发的波束失败恢复;取消主辅小区的一个BFD-RS组触发的波束失败恢复;不取消主辅小区的一个BFD-RS组触发的波束失败恢复;停止主辅小区的一个BFD-RS组的波束失败检测。
例如,在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,不取消该主辅小区的一个BFD-RS组触发的波束失败恢复和/或停止该主辅小区的一个BFD-RS组的波束失败检测。
例如,在网络指示该辅小区组支持无线链路监听和/或波束失败检测,为该辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号,且该主辅小区有且仅有一个BFD-RS组触发了波束失败恢复的情况下,不取消该主辅小区的该BFD-RS组触发的波束失败恢复和/或停止该主辅小区的该BFD-RS组的波束失败检测。
在一些实施例中,第一计数器可以是波束失败指示的计数器,例如BFI_COUNTER。
在一些实施例中,对应于步骤403,网络指示的时候,该第一计数器不包括PSCell的BFI_COUNTER,或者说,该第一计数器排除PSCell的BFI_COUNTER。
例如,网络指示的时候,如果该第一计数器是波束失败指示的计数器,则该第一计数器不包括PSCell的BFI_COUNTER,或者说,该第一计数器排除PSCell的BFI_COUNTER。
在一些实施例中,对应于步骤404,网络指示的时候,该第一计数器不包括PSCell的BFI_COUNTER,或者说,该第一计数器排除PSCell的BFI_COUNTER;和/或,网络指示的时候,该第一计数器不包括PSCell的每个BFD-RS组关联的BFI_COUNTER,或者说,排除PSCell的每个BFD-RS组关联的BFI_COUNTER。
例如,网络指示的时候,如果第一计数器是波束失败指示的计数器,该第一计数器不包括PSCell的BFI_COUNTER,或者说,该第一计数器排除PSCell的BFI_COUNTER;和/或,网络指示的时候,如果第一计数器是波束失败指示的计数器,该第一计数器不包括PSCell的每个BFD-RS组关联的BFI_COUNTER,或者说,排除PSCell的每个BFD-RS组关联的BFI_COUNTER。
在一些实施例中,该执行该主辅小区的TRP特定的波束失败检测,可以包括:
当服务小区配置了2个BFD-RS组时,对于该服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
当该服务小区是该主辅小区,且该特殊小区所在的辅小区组是去激活的且自从该辅小区组被去激活尚未向高层指示该主辅小区的波束失败时,MAC实体向上层指示该主辅小区的波束失败。
在一些实施例中,该执行该主辅小区的TRP特定的波束失败检测,还可以包括:
当网络未配置第一参数,例如,bfd-and-RLM的值为“true”;或者,当收到来自 MAC层的指示的情况下,该终端设备或RRC层指示低层停止该主辅小区上的波束失败检测。
例如,该低层是MAC层或物理层或射频链。
在一些实施例中,该执行该主辅小区的波束失败检测,还可以包括:
MAC实体向低层指示该主辅小区的波束失败或指示低层停止该主辅小区上的波束失败检测。
例如,该低层是物理层或射频链。
在一些实施例中,该执行该主辅小区的TRP特定的波束失败检测,还可以包括:
当服务小区配置了2个BFD-RS组,对于该服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
当该服务小区不是该主辅小区,或者,该特殊小区所在的辅小区组不是去激活的,或者自从该辅小区组被去激活已向高层指示该主辅小区的波束失败时,MAC实体在该主辅小区上发起随机接入过程。
也就是说,如果服务小区配置了2个BFD-RS组,且对于该服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成,
如果该服务小区是该主辅小区,且该特殊小区所在的辅小区组是去激活的且自从该辅小区组被去激活尚未向高层指示该主辅小区的波束失败,那么MAC实体向上层指示该主辅小区的波束失败;否则,MAC实体在该主辅小区上发起随机接入过程。
在一些实施例中,该服务小区不是该主辅小区可以替换为:该服务小区是主小区。
在一些实施例中,该特殊小区所在的辅小区组不是去激活的可以替换为:该特殊小区所在的辅小区组是激活的。
在一些实施例中,该执行该主辅小区的TRP特定的波束失败检测,也可以包括:
当服务小区配置了2个BFD-RS组,对于该服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,另外,例如其候选波束评估已经完成,
当该服务小区是该主辅小区,且该辅小区组是去激活的时,MAC实体向上层指示该主辅小区该BFD-RS组的波束失败。
在一些实施例中,该执行该主辅小区的TRP特定的波束失败检测,还可以包括:
当收到该指示时,该终端设备指示低层停止该主辅小区上该BFD-RS组的波束失 败检测。
例如,该低层是MAC层或物理层或射频链。
在一些实施例中,该执行该主辅小区的TRP特定的波束失败检测,还可以包括:
当服务小区配置了2个BFD-RS组,对于该服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当该服务小区是该主辅小区,且该辅小区组是去激活的时,MAC实体向低层指示该主辅小区该BFD-RS组的波束失败或指示该主辅小区停止该主辅小区上该BFD-RS组的波束失败检测。
例如,该低层是物理层或射频链。
在一些实施例中,该执行该主辅小区的TRP特定的波束失败检测,可以包括:
当服务小区配置了2个BFD-RS组,对于该服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当该服务小区不是该主辅小区,或者,该辅小区组不是去激活的时,MAC实体指示复用和组装过程生成增强的BFR MAC CE(Enhanced BFR MAC CE)或截短的增强的BFR MAC CE(Truncated Enhanced BFR MAC CE)或触发SR。
也就是说,如果服务小区配置了2个BFD-RS组,对于该服务小区的每个BFD-RS组,如果在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消:
如果该服务小区是该主辅小区,且该辅小区组是去激活的,那么MAC实体向上层指示该主辅小区该BFD-RS组的波束失败;否则,MAC实体指示复用和组装过程生成增强的BFR MAC CE或截短的增强的BFR MAC CE或触发SR。
在一些实施例中,该服务小区不是该主辅小区可以替换为:该服务小区是主小区。
在一些实施例中,该辅小区组不是去激活的可以替换为:该辅小区组是激活的。
在一些实施例中,该停止波束失败检测可以包括:MAC实体或低层停止波束失败检测,也就是说,MAC实体或低层停止进行或开始波束失败检测。
例如,MAC实体不计算来自低层的波束失败实例指示,也就是说,MAC实体不进行或开始计算来自低层的波束失败实例指示。
例如,低层不对无线链路质量进行测量和/或评估,也就是说,低层不进行或开始对无线链路质量的测量和/或评估。
在一些实施例中,该恢复波束失败检测可以包括:MAC实体或低层恢复波束失败检测,也就是说,MAC实体或低层恢复进行或开始波束失败检测。
例如,MAC实体恢复计算来自低层的波束失败实例指示,也就是说,MAC实体恢复进行或开始计算来自低层的波束失败实例指示。
例如,低层恢复对无线链路质量进行测量和/或评估,也就是说,低层恢复进行或开始对无线链路质量的测量和/或评估。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例2
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于终端设备,其与实施例1所述的应用于终端设备的下行无线链路质量的评估方法相对应,且从不同的角度进行说明。例如,该方法应用于图2和图3中的终端设备102。
图5是本申请实施例2的下行无线链路质量的评估方法的一示意图。如图5所示,该方法包括:
步骤501:配置了辅小区组(SCG);
步骤502:在网络未指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,停止主辅小区(PSCell)上的无线链路监听;和/或,
步骤503:在网络未指示该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止 该主辅小区上的波束失败检测;和/或,
步骤504:在网络未配置该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止该主辅小区上的TRP特定的波束失败检测。
在一些实施例中,在步骤501之后,该方法可以包括步骤502-504中的至少一个步骤,并且,在包括步骤502-504中的多个步骤时,不对这些步骤之间的执行顺序进行限制。
在一些实施例中,“TRP特定的”可以替换为“BFD-RS组的”或“BFD-RS组关联的”。
在一些实施例中,“波束失败”可以替换为“波束失败恢复”或“触发了波束失败恢复”。
在步骤501中,配置了辅小区组(SCG)是指终端设备配置了辅小区组。
在一些实施例中,该主辅小区是终端设备配置了的辅小区组的主辅小区。
在一些实施例中,对于配置的该辅小区组,当上层指示该辅小区组的激活时,MAC实体将会应用以下至少之一的辅小区组激活操作:激活主辅小区;主辅小区上的SRS传输;主辅小区上的CSI上报;主辅小区上的PDCCH监听;主辅小区上的PUCCH传输;如果触发,执行主辅小区上的随机接入;以及初始化主辅小区关联的每个逻辑信道的Bj为0。
在一些实施例中,对于配置的该辅小区组,当上层指示该辅小区组被去激活时,MAC实体将会执行以下至少之一:去激活配置的该辅小区组所有的辅小区(SCells);去激活主辅小区;以及重置MAC。
在一些实施例中,该重置MAC可以包括以下至少之一:停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器;停止正在进行的随机接入过程;清空Msg3缓存(buffer);清空MSGA缓存(buffer);取消触发的波束失败恢复(BFR);以及重置第一计数器。
在一些实施例中,停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器,可以包括:
在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于小区的波束失败检测的参考信号的情况下,停止第一定时器以 外的其他所有正在运行的定时器,该第一定时器包括TA定时器(例如TA timer)和该主辅小区关联的波束失败检测定时器(例如beamFailureDetectionTimer);和/或
在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,该第一定时器包括TA定时器(例如TA timer)和该主辅小区关联的波束失败检测定时器或该主辅小区的每个TRP特定的波束失败检测定时器(例如beamFailureDetectionTimer)。
在一些实施例中,TRP特定的波束失败检测定时器也可以替换为:BFD-RS组关联的波束失败检测定时器。
在一些实施例中,配置了用于TRP特定的波束失败检测的参考信号也可以替换为:配置了多个(例如2个)BFD-RS组。
在一些实施例中,取消触发的波束失败恢复(BFR)可以包括以下至少之一:取消主辅小区触发的波束失败恢复;取消主辅小区的一个BFD-RS组触发的波束失败恢复;不取消主辅小区的一个BFD-RS组触发的波束失败恢复;停止主辅小区的一个BFD-RS组的波束失败检测。
例如,在网络指示该辅小区组支持无线链路监听和/或波束失败检测,且为该辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,不取消该主辅小区的一个BFD-RS组触发的波束失败恢复和/或停止该主辅小区的一个BFD-RS组的波束失败检测。
例如,在网络指示该辅小区组支持无线链路监听和/或波束失败检测,为该辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号,且该主辅小区有且仅有一个BFD-RS组触发了波束失败恢复的情况下,不取消该主辅小区的该BFD-RS组触发的波束失败恢复和/或停止该主辅小区的该BFD-RS组的波束失败检测。
在一些实施例中,第一计数器可以是波束失败指示的计数器,例如BFI_COUNTER。
在一些实施例中,该重置第一计数器可以包括:
在网络未配置该辅小区组支持波束失败检测,且未配置用于TRP特定的波束失败检测的参考信号的情况下,重置该主辅小区关联的该第一计数器;
和/或,
在网络未配置该辅小区组支持波束失败检测,且配置了用于TRP特定的波束失败检测的参考信号的情况下,重置该主辅小区关联的或该主辅小区的每个BFD-RS组关联的该第一计数器。
在一些实施例中,该停止波束失败检测可以包括:MAC实体或低层停止波束失败检测,也就是说,MAC实体或低层停止进行或开始波束失败检测。
例如,MAC实体不计算来自低层的波束失败实例指示,也就是说,MAC实体不进行或开始计算来自低层的波束失败实例指示。
例如,低层不对无线链路质量进行测量和/或评估,也就是说,低层不进行或开始对无线链路质量的测量和/或评估。
在一些实施例中,该恢复波束失败检测可以包括:MAC实体或低层恢复波束失败检测,也就是说,MAC实体或低层恢复进行或开始波束失败检测。
例如,MAC实体恢复计算来自低层的波束失败实例指示,也就是说,MAC实体恢复进行或开始计算来自低层的波束失败实例指示。
例如,低层恢复对无线链路质量进行测量和/或评估,也就是说,低层恢复进行或开始对无线链路质量的测量和/或评估。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例3
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于网络设备和终端设备,其对应于实施例1所述的应用于终端设备的下行无线链路质量的评估方 法和实施例6所述的应用于网络设备的下行无线链路质量的评估方法,相同的内容不再重复说明。
图6是本申请实施例3的下行无线链路质量的评估方法的一示意图,该方法应用于网络设备和终端设备。如图6所示,该方法包括:
步骤601:为终端设备配置了辅小区组(SCG);
步骤602:网络设备指示该辅小区组支持无线链路监听;
步骤603:该辅小区组被去激活时,终端设备在主辅小区(PSCell)上执行无线链路监听;
步骤604:网络设备指示该辅小区组支持波束失败检测;
步骤605:网络设备为该主辅小区配置用于小区的波束失败检测的参考信号;
步骤606:当该辅小区组被去激活时,终端设备执行该主辅小区的波束失败检测;
步骤607:网络设备为该主辅小区配置用于TRP特定的波束失败检测的参考信号;
步骤608:当该辅小区组被去激活时,终端设备执行该主辅小区的TRP特定的波束失败检测。
在一些实施例中,该方法可以包括步骤602-603、步骤604-606以及步骤604、607-608中的至少一组步骤,并且,当该方法包括步骤602-603、步骤604-606以及步骤604、607-608中的多组步骤时,不对这些组的执行顺序进行限制。在各个组中,即,在步骤602-603中,在步骤604-606中以及在步骤604、607-608中,各个步骤可以依次执行,也可以合并执行,即,不对组内的各个步骤的执行顺序进行限制,例如,步骤604和步骤605可以先执行步骤604再执行步骤605,也可以先执行步骤605再执行步骤604,也可以两个步骤同时执行,也可以合并为一个步骤执行。
在本申请实施例中,步骤601-608的具体实施可以参照实施例1中的记载,此处不再重复说明。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例4
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于终端设备。例如,该方法应用于图2和图3中的终端设备102。
图7是本申请实施例4的下行无线链路质量的评估方法的一示意图。如图7所示,该方法包括:
步骤701:配置了辅小区组(SCG);
步骤702:在网络指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,在该辅小区上执行无线链路监听;和/或
步骤703:在网络指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该辅小区的波束失败检测;和/或,
步骤704:在网络指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该辅小区的TRP特定的波束失败检测。
在本申请实施例中,在步骤701之后,该方法可以包括步骤702-704中的至少一个步骤,并且,在包括步骤702-704中的多个步骤时,不对这些步骤之间的执行顺序进行限制。
图8是本申请实施例4的下行无线链路质量的评估方法的另一示意图。如图8所示,该方法包括:
步骤801:配置了辅小区组(SCG);
步骤802:在网络未指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,停止该辅小区上的无线链路监听;和/或
步骤803:在网络未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止该辅小区上的波束失败检测;和/或,
步骤804:在网络未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止该辅小区上的TRP特定的波束失败检测。
在本申请实施例中,在步骤801之后,该方法可以包括步骤802-804中的至少一个步骤,并且,在包括步骤802-804中的多个步骤时,不对这些步骤之间的执行顺序进行限制。
与实施例1-3不同的是,实施例4针对的是对于辅小区上的无线链路监听和/或波束失败检测,其他内容与实施例1-3类似,上述各个步骤的具体内容可以参考实施例1-3中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示该SCG支持辅小区的无线链路监听和/或波束失败检测的情况下,当该SCG被去激活时,执行该辅小区的无线链路监听和/或波束失败检测,因此,当该SCG被去激活时,终端设备能进行辅小区的无线链路监听和/或波束失败检测,从而评估无线链路和/或波束质量,使得终端设备能够使用质量较好的无线链路和/或波束进行通信,保证通信质量。
实施例5
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于终端设备。例如,该方法应用于图2和图3中的终端设备102。
图9是本申请实施例5的下行无线链路质量的评估方法的一示意图。如图9所示,该方法包括:
步骤901:对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在该服务小区是主辅小区,该辅小区组是去激活的且自从该辅小区组被去激活尚未向高层指示该主辅小区的波束失败的情况下,MAC实体向上层指示该主辅小区的波束失败。
例如,第一计数器为BFI_COUNTER,预设阈值为beamFailureInstanceMaxCount。
在一些实施例中,如图9所示,该方法还可以包括:
步骤902:当网络未配置第一参数,例如,bfd-and-RLM的值为“true”;或者, 当收到来自MAC层的指示的情况下,该终端设备指示低层停止该主辅小区上的波束失败检测。
例如,该低层是MAC层或物理层或射频链(RF chain)。
在一些实施例中,如图9所示,该方法还可以包括:
步骤903:该MAC实体向低层指示该主辅小区的波束失败或指示低层停止该主辅小区上的波束失败检测。
例如,该低层是物理层或射频链。
上述各个步骤的具体内容可以参考实施例1中的相关记载,此处不再重复说明。
实施例6
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于网络设备,其对应于实施例1所述的方法,相同的内容不再重复说明。
图10是本申请实施例6的下行无线链路质量的评估方法的一示意图。如图10所示,该方法包括:
步骤1001:为终端设备配置了辅小区组(SCG);
其中,在指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,
在指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的波束失败检测;和/或,
在指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的TRP特定的波束失败检测。
具体内容可以参见实施例1中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置 了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例7
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于网络设备,其对应于实施例2所述的方法,相同的内容不再重复说明。
图11是本申请实施例7的下行无线链路质量的评估方法的一示意图。如图11所示,该方法包括:
步骤1101:为终端设备配置了辅小区组(SCG);
其中,在未指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,
在未指示该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的波束失败检测;和/或,
在未配置该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的TRP特定的波束失败检测。
具体内容可以参见实施例2中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例8
本申请实施例提供了一种下行无线链路质量的评估方法,该方法应用于网络设备,其对应于实施例4所述的方法,相同的内容不再重复说明。
图12是本申请实施例8的下行无线链路质量的评估方法的一示意图。如图12所示,该方法包括:
步骤1201:为终端设备配置了辅小区组(SCG);
其中,在指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在该辅小区上执行无线链路监听;和/或,
在指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的波束失败检测;和/或,
在指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的TRP特定的波束失败检测。
图13是本申请实施例8的下行无线链路质量的评估方法的另一示意图。如图13所示,该方法包括:
步骤1301:为终端设备配置了辅小区组(SCG);
其中,在未指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的无线链路监听;和/或,
在未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的波束失败检测;和/或,
在未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的TRP特定的波束失败检测。
具体内容可以参见实施例4中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示该SCG支持辅小区的无线链路监听和/或波束失 败检测的情况下,当该SCG被去激活时,执行该辅小区的无线链路监听和/或波束失败检测,因此,当该SCG被去激活时,终端设备能进行辅小区的无线链路监听和/或波束失败检测,从而评估无线链路和/或波束质量,使得终端设备能够使用质量较好的无线链路和/或波束进行通信,保证通信质量。
实施例9
本申请实施例提供了一种下行无线链路质量的评估装置,该装置应用于终端设备。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1所述的方法的实施,内容相同或相关之处不再重复说明。
图14是本申请实施例9的下行无线链路质量的评估装置的一示意图。如图14所示,装置1400包括:
第一配置单元1401,其配置了辅小区组(SCG);
其中,在网络指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,
在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的波束失败检测;和/或,
在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的TRP特定的波束失败检测。
具体内容可以参见实施例1中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止 波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例10
本申请实施例提供了一种下行无线链路质量的评估装置,该装置应用于终端设备。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2所述的方法的实施,内容相同或相关之处不再重复说明。
图15是本申请实施例10的下行无线链路质量的评估装置的一示意图。如图15所示,装置1500包括:
第二配置单元1501,其配置了辅小区组(SCG);
其中,在网络未指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,
在网络未指示该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的波束失败检测;和/或,
在网络未配置该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的TRP特定的波束失败检测。
具体内容可以参见实施例2中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例11
本申请实施例提供了一种下行无线链路质量的评估装置,该装置应用于终端设 备。由于该装置解决问题的原理与实施例4的方法类似,因此其具体的实施可以参照实施例4所述的方法的实施,内容相同或相关之处不再重复说明。
图16是本申请实施例11的下行无线链路质量的评估装置的一示意图。如图16所示,装置1600包括:
第三配置单元1601,其配置了辅小区组(SCG);
其中,在网络指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在该辅小区上执行无线链路监听;和/或,
在网络指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的波束失败检测;和/或,
在网络指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的TRP特定的波束失败检测。
图17是本申请实施例11的下行无线链路质量的评估装置的另一示意图。如图17所示,装置1700包括:
第四配置单元1701,其配置了辅小区组(SCG);
其中,在网络未指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的无线链路监听;和/或,
在网络未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的波束失败检测;和/或,
在网络未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的TRP特定的波束失败检测。
具体内容可以参见实施例4中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示该SCG支持辅小区的无线链路监听和/或波束失败检测的情况下,当该SCG被去激活时,执行该辅小区的无线链路监听和/或波束失 败检测,因此,当该SCG被去激活时,终端设备能进行辅小区的无线链路监听和/或波束失败检测,从而评估无线链路和/或波束质量,使得终端设备能够使用质量较好的无线链路和/或波束进行通信,保证通信质量。
实施例12
本申请实施例提供了一种下行无线链路质量的评估装置,该装置应用于终端设备。由于该装置解决问题的原理与实施例5的方法类似,因此其具体的实施可以参照实施例5所述的方法的实施,内容相同或相关之处不再重复说明。
其中,对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在该服务小区是主辅小区,该辅小区组是去激活的且自从该辅小区组被去激活尚未向高层指示该主辅小区的波束失败的情况下,MAC实体向上层指示该主辅小区的波束失败。
实施例13
本申请实施例提供了一种下行无线链路质量的评估装置,该方法应用于网络设备,其对应于实施例6所述的方法,相同的内容不再重复说明。
图18是本申请实施例13的下行无线链路质量的评估装置的一示意图。如图18所示,装置1800包括:
第五配置单元1801:其为终端设备配置了辅小区组(SCG);
其中,在指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,
在指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的波束失败检测;和/或,
在指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的TRP特定的波束失败检测。
具体内容可以参见实施例6中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小 区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例14
本申请实施例提供了一种下行无线链路质量的评估装置,该方法应用于网络设备,其对应于实施例7所述的方法,相同的内容不再重复说明。
图19是本申请实施例14的下行无线链路质量的评估装置的一示意图。如图19所示,装置1900包括:
第六配置单元1901,其为终端设备配置了辅小区组(SCG);
其中,在未指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,
在未指示该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的波束失败检测;和/或,
在未配置该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的TRP特定的波束失败检测。
具体内容可以参见实施例7中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行 该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验。
实施例15
本申请实施例提供了一种下行无线链路质量的评估装置,该装置应用于网络设备,其对应于实施例8所述的方法,相同的内容不再重复说明。
图20是本申请实施例15的下行无线链路质量的评估装置的一示意图。如图12所示,装置2000包括:
第七配置单元2001,其为终端设备配置了辅小区组(SCG);
其中,在指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在该辅小区上执行无线链路监听;和/或,
在指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的波束失败检测;和/或,
在指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的TRP特定的波束失败检测。
图21是本申请实施例15的下行无线链路质量的评估装置的另一示意图。如图21所示,装置2100包括:
第八配置单元2101,其为终端设备配置了辅小区组(SCG);
其中,在未指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的无线链路监听;和/或,
在未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的波束失败检测;和/或,
在未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激 活时,该终端设备停止该辅小区上的TRP特定的波束失败检测。
具体内容可以参见实施例8中的相关记载,此处不再重复说明。
由上述实施例可知,在网络指示该SCG支持辅小区的无线链路监听和/或波束失败检测的情况下,当该SCG被去激活时,执行该辅小区的无线链路监听和/或波束失败检测,因此,当该SCG被去激活时,终端设备能进行辅小区的无线链路监听和/或波束失败检测,从而评估无线链路和/或波束质量,使得终端设备能够使用质量较好的无线链路和/或波束进行通信,保证通信质量。
实施例16
本申请实施例提供了一种终端设备,该终端设备包括如实施例9或实施例10或实施例11或实施例12所述的下行无线链路质量的评估装置。
图22是本发明实施例16的终端设备的系统构成的一示意框图。如图22所示,终端设备2200可以包括处理器2210和存储器2220;存储器2220耦合到处理器2210。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,下行无线链路质量的评估装置的功能可以被集成到处理器2210中。
对应于实施例9,处理器2210可以被配置为:配置了辅小区组(SCG);在网络指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,在主辅小区(PSCell)上执行无线链路监听;和/或,在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该主辅小区的波束失败检测;和/或,在网络指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该主辅小区的TRP特定的波束失败检测。
对应于实施例10,处理器2210可以被配置为:配置了辅小区组(SCG);在网络未指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,停止主辅小区(PSCell)上的无线链路监听;和/或,在网络未指示该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止该主辅小区上的波束失败检测;和/或,在 网络未配置该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止该主辅小区上的TRP特定的波束失败检测
对应于实施例11,处理器2210可以被配置为:配置了辅小区组(SCG);在网络指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,在该辅小区上执行无线链路监听;和/或在网络指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该辅小区的波束失败检测;和/或,在网络指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,执行该辅小区的TRP特定的波束失败检测.
和/或,处理器2210可以被配置为:配置了辅小区组(SCG);在网络未指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,停止该辅小区上的无线链路监听;和/或,在网络未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止该辅小区上的波束失败检测;和/或,在网络未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,停止该辅小区上的TRP特定的波束失败检测。
对应于实施例12,处理器2210可以被配置为:对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在该服务小区是主辅小区,该辅小区组是去激活的且自从该辅小区组被去激活尚未向高层指示该主辅小区的波束失败的情况下,MAC实体向上层指示该主辅小区的波束失败。
在另一个实施方式中,下行无线链路质量的评估装置可以与处理器2210分开配置,例如可以将下行无线链路质量的评估装置配置为与处理器2210连接的芯片,通过处理器2210的控制来实现下行无线链路质量的评估装置的功能。
如图22所示,终端设备2200还可以包括:通信模块2230、输入单元2240、显示器2250、电源2260。值得注意的是,终端设备2200也并不是必须要包括图22中 所示的所有部件;此外,终端设备2200还可以包括图22中没有示出的部件,可以参考相关技术。
如图22所示,处理器2210有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器2210接收输入并控制终端设备2200的各个部件的操作。
其中,存储器2220,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器2210可执行该存储器2220存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。终端设备2200的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验;
另外,在网络指示该SCG支持辅小区的无线链路监听和/或波束失败检测的情况下,当该SCG被去激活时,执行该辅小区的无线链路监听和/或波束失败检测,因此,当该SCG被去激活时,终端设备能进行辅小区的无线链路监听和/或波束失败检测,从而评估无线链路和/或波束质量,使得终端设备能够使用质量较好的无线链路和/或波束进行通信,保证通信质量。
实施例17
本发明实施例提供了一种网络设备,该网络设备包括如实施例13或14或15所述的下行无线链路质量的评估装置。
图23是本发明实施例17的网络设备的系统构成的一示意框图。如图23所示,网络设备2300可以包括:处理器(processor)2310和存储器2320;存储器2320耦合到处理器2310。其中该存储器2320可存储各种数据;此外还存储信息处理的程序2330,并且在处理器2310的控制下执行该程序2330,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施方式中,下行无线链路质量的评估装置的功能可以被集成到处理器2310中。
对应于实施例13,处理器2310可以被配置为:为终端设备配置了辅小区组(SCG);其中,在指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,在指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的波束失败检测;和/或,在指示该辅小区组支持波束失败检测的情况下,并且,在为该主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该主辅小区的TRP特定的波束失败检测。
对应于实施例14,处理器2310可以被配置为:为终端设备配置了辅小区组(SCG);其中,在未指示该辅小区组支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,在未指示该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的波束失败检测;和/或,在未配置该辅小区组支持波束失败检测,或者,未为该主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该主辅小区上的TRP特定的波束失败检测。
对应于实施例15,处理器2310可以被配置为:为终端设备配置了辅小区组(SCG);其中,在指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备在该辅小区上执行无线链路监听;和/或,在指示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的波束失败检测;和/或,在指 示该辅小区组或该辅小区组的辅小区支持波束失败检测的情况下,并且,在为该辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备执行该辅小区的TRP特定的波束失败检测。
和/或,处理器2310可以被配置为:为终端设备配置了辅小区组(SCG);其中,在未指示该辅小区组或该辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的无线链路监听;和/或,在未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于小区的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的波束失败检测;和/或,在未指示该辅小区组或该辅小区组的辅小区支持波束失败检测,或者,未为该辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当该辅小区组被去激活时,该终端设备停止该辅小区上的TRP特定的波束失败检测。
在另一个实施方式中,下行无线链路质量的评估装置可以与处理器2310分开配置,例如可以将下行无线链路质量的评估装置配置为与处理器2310连接的芯片,通过处理器2310的控制来实现下行无线链路质量的评估装置的功能。
此外,如图23所示,网络设备2300还可以包括:收发机2340和天线2350等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备2300也并不是必须要包括图23中所示的所有部件;此外,网络设备2300还可以包括图23中没有示出的部件,可以参考现有技术。
由上述实施例可知,在网络指示SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于小区的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的波束失败检测,因此,当该SCG被去激活时,终端设备能够进行小区级的波束失败检测,从而评估波束质量,使得终端设备能够使用无线链路质量较好的波束进行通信,保证通信质量;
另外,在网络指示该SCG支持波束失败检测的情况下,并且,在为PSCell配置了用于TRP特定的波束失败检测的参考信号的情况下,当该SCG被去激活时,执行该PSCell的TRP特定的波束失败检测,因此,在波束失败仅发生在PSCell的一个TRP,另外一个TRP仍能使用的情况下,当该SCG被去激活时,终端设备不会停止波束失败检测以及发起随机接入过程,从而能够避免能耗的增加,提升用户体验;
另外,在网络指示该SCG支持辅小区的无线链路监听和/或波束失败检测的情况下,当该SCG被去激活时,执行该辅小区的无线链路监听和/或波束失败检测,因此,当该SCG被去激活时,终端设备能进行辅小区的无线链路监听和/或波束失败检测,从而评估无线链路和/或波束质量,使得终端设备能够使用质量较好的无线链路和/或波束进行通信,保证通信质量。
实施例18
本申请实施例提供了一种通信系统,包括根据实施例16所述的终端设备和/或根据实施例17所述的网络设备。具体的内容可以参照实施例16和实施例17中的记载。
例如,该通信系统的结构可以参照图2,如图2所示,通信系统100包括网络设备101和终端设备102,终端设备102可以与实施例16中记载的终端设备相同,和/或,网络设备101可以与实施例17中记载的网络设备相同,重复的内容不再赘述。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图14中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图4中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图14中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图14描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
根据本申请实施例公开的各种实施方式,还公开了如下附记:
附记一
1、一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:
第一配置单元,其配置了辅小区组(SCG);
其中,在网络指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,
在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的波束失败检测;和/或,
在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的TRP特定的波束失败检测。
2、根据附记1所述的装置,其中,
通过共用的配置或单独的配置指示支持所述辅小区组去激活时的无线链路监听或是否支持所述辅小区组去激活时的无线链路监听,和/或,指示支持所述辅小区组去激活时的波束失败检测或是否支持所述辅小区组去激活时的波束失败检测。
3、根据附记2所述的装置,其中,
所述共用的配置用于配置SCG去激活时,指示终端设备执行无线链路监听和/或波束失败检测,或指示终端设备是否执行无线链路监听和/或波束失败检测,所述波束失败检测包括小区的波束失败检测或TRP特定的波束失败检测。
4、根据附记2所述的装置,其中,所述单独的配置包括以下中的至少一个:
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听和小区的波束失败检测,或指示终端设备执行主辅小区上的无线链路监听和小区的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听,或指示终端设备执行主辅小区上的无线链路监听;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的或TRP特定的波束失败检测,或指示终端设备执行主辅小区上小区的或TRP特定的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的波束失败检测,或指示终端设备执行主辅小区上小区的波束失败检测;以及
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上TRP特定的波束失败检测,或指示终端设备执行主辅小区上TRP特定的波束失败检测。
5、根据附记2-4中的任一项所述的装置,其中,
指示支持或是否支持无线链路监听(RLM)和/或波束失败检测的所述配置包括在小区组配置(CellGroupConfig)IE里。
6、根据附记1-5中的任一项所述的装置,其中,
支持无线链路监听(RLM)和波束失败检测的所述配置是布尔型(BOOLEAN)数据或枚举型(ENUMERATED)数据。
7、根据附记1所述的装置,其中,
对于配置的所述辅小区组,当上层指示所述辅小区组的激活时,MAC实体将会应用以下至少之一的辅小区组激活操作:
激活主辅小区;
主辅小区上的SRS传输;
主辅小区上的CSI上报;
主辅小区上的PDCCH监听;
主辅小区上的PUCCH传输;
如果触发,执行主辅小区上的随机接入;以及
初始化主辅小区关联的每个逻辑信道的Bj为0。
8、根据附记1所述的装置,其中,对于配置的所述辅小区组,当上层指示所述辅小区组被去激活时,MAC实体将会执行以下至少之一:
去激活配置的所述辅小区组所有的辅小区(SCells);
去激活主辅小区;以及
重置MAC。
9、根据附记8所述的装置,其中,所述重置MAC包括以下至少之一:
停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器;
停止正在进行的随机接入过程;
清空Msg3缓存(buffer);
清空MSGA缓存;
取消触发的波束失败恢复(BFR);以及
重置第一计数器。
10、根据附记9所述的装置,其中,所述停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器,包括:
在所述网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于小区的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,所述第一定时器包括TA定时器和所述主辅小区关联的波束失败检测定时器;和/或
在所述网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,所述第一定时器包括TA定时器和所述主辅小区关联的波束失败检测定时器或所述主辅小区的每个TRP特定的波束失败检测定时器。
11、根据附记9所述的装置,其中,所述取消触发的波束失败恢复,包括以下至少之一:
取消主辅小区触发的波束失败恢复;
取消主辅小区的一个BFD-RS组触发的波束失败恢复;
不取消主辅小区的一个BFD-RS组触发的波束失败恢复;
停止主辅小区的一个BFD-RS组的波束失败检测。
12、根据附记9或11所述的装置,其中,
在网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,不取消所述主辅小区的一个BFD-RS组触发的波束失败恢复和/或停止所述主辅小区的一个BFD-RS组的波束失败检测。
13、根据附记9或11所述的装置,其中,
在网络指示所述辅小区组支持无线链路监听和/或波束失败检测,为所述辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号,且所述主辅小区有且仅有一个BFD-RS组触发了波束失败恢复的情况下,不取消所述主辅小区的所述BFD-RS组触发的波束失败恢复和/或停止所述主辅小区的所述BFD-RS组的波束失败检测。
14、根据附记1所述的装置,其中,所述在主辅小区(PSCell)上执行无线链路监听,包括:
在网络配置了在去激活的主辅小区上执行无线链路监听的情况下,终端设备在激活DL BWP之外的BWP上执行无线链路监听。
15、根据附记14所述的装置,其中,
在网络配置了在去激活的主辅小区上执行无线链路监听且未检测到所述主辅小区或所述主辅小区所在辅小区组的无线链路失败的情况下,终端设备在激活DL BWP之外的BWP上执行无线链路监听。
16、根据附记1所述的装置,其中,所述在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的TRP特定的波束失败检测,包括以下至少之一:
在所述辅小区组去激活期间,当所述主辅小区上的一个BFD-RS组检测到波束失败时,所述终端设备停止所述BFD-RS组的波束失败检测;
在所述辅小区组去激活期间,当重配置所述主辅小区的一个BFD-RS组的参考信 号,所述终端设备恢复所述BFD-RS组的波束失败检测;
在所述辅小区组去激活期间,当所述主辅小区上的两个BFD-RS组都触发了波束失败恢复且尚未成功完成时,在自从所述辅小区组去激活起MAC层尚未向上层指示波束失败的情况下,所述MAC层向上层指示波束失败;以及
当从网络收到所述辅小区组的激活命令时,在所述主辅小区上的两个BFD-RS组都检测到波束失败的情况下,所述终端设备向所述辅小区组执行随机接入过程。
17、根据附记1所述的装置,其中,所述执行所述主辅小区的波束失败检测,包括:
对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在所述服务小区是所述主辅小区,所述辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败的情况下,MAC实体向上层指示所述主辅小区的波束失败。
18、根据附记17所述的装置,其中,所述执行所述主辅小区的波束失败检测,还包括:
当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端设备指示低层停止所述主辅小区上的波束失败检测。
19、根据附记18所述的装置,其中,
所述低层是MAC层或物理层或射频链(RF chain)。
20、根据附记17所述的装置,其中,所述执行所述主辅小区的波束失败检测,还包括:
所述MAC实体向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
21、根据附记20所述的装置,其中,
所述低层是物理层或射频链。
22、根据附记1或16所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
当服务小区配置了2个BFD-RS组时,对于所述服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
当所述服务小区是所述主辅小区,且所述特殊小区所在的辅小区组是去激活的且 自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败时,MAC实体向上层指示所述主辅小区的波束失败。
23、根据附记22所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端设备指示低层停止所述主辅小区上的波束失败检测。
24、根据附记23所述的装置,其中,
所述低层是MAC层或物理层或射频链。
25、根据附记23所述的装置,其中,所述执行所述主辅小区的波束失败检测,还包括:
所述MAC实体向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
26、根据附记25所述的装置,其中,
所述低层是物理层或射频链。
27、根据附记22所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
当所述服务小区不是所述主辅小区,或者,所述特殊小区所在的辅小区组不是去激活的,或者自从所述辅小区组被去激活已向高层指示所述主辅小区的波束失败时,MAC实体在所述主辅小区上发起随机接入过程。
28、根据附记1或16所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当所述服务小区是所述主辅小区,且所述辅小区组是去激活的时,MAC实体向上层指示所述主辅小区所述BFD-RS组的波束失败。
29、根据附记28所述的装置,其中,所述执行所述主辅小区的TRP特定的波束 失败检测,还包括:
当收到所述指示时,所述终端设备指示低层停止所述主辅小区上所述BFD-RS组的波束失败检测。
30、根据附记29所述的装置,其中,
所述低层是MAC层或物理层或射频链。
31、根据附记28所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当所述服务小区是所述主辅小区,且所述辅小区组是去激活的时,MAC实体向低层指示所述主辅小区所述BFD-RS组的波束失败或指示所述主辅小区停止所述主辅小区上所述BFD-RS组的波束失败检测。
32、根据附记31所述的装置,其中,
所述低层是物理层或射频链。
33、根据附记1或16所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当所述服务小区不是所述主辅小区,或者,所述辅小区组不是去激活的时,MAC实体指示复用和组装过程生成增强的BFR MAC CE或触发SR。
34、根据附记16、18、20、23、25、29、31中的任一项所述的装置,其中,
所述停止波束失败检测包括:MAC实体或低层停止波束失败检测,和/或,
所述恢复波束失败检测包括:MAC实体或低层恢复波束失败检测。
35、一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:
第二配置单元,其配置了辅小区组(SCG);
其中,在网络未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听; 和/或,
在网络未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的波束失败检测;和/或,
在网络未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
36、根据附记35所述的装置,其中,
对于配置的所述辅小区组,当上层指示所述辅小区组的激活时,MAC实体将会应用以下至少之一的辅小区组激活操作:
激活主辅小区;
主辅小区上的SRS传输;
主辅小区上的CSI上报;
主辅小区上的PDCCH监听;
主辅小区上的PUCCH传输;
如果触发,执行主辅小区上的随机接入;以及
初始化主辅小区关联的每个逻辑信道的Bj为0。
37、根据附记35所述的装置,其中,对于配置的所述辅小区组,当上层指示所述辅小区组被去激活时,MAC实体将会执行以下至少之一:
去激活配置的所述辅小区组所有的辅小区(SCells);
去激活主辅小区;以及
重置MAC。
38、根据附记37所述的装置,其中,所述重置MAC包括以下至少之一:
停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器;
停止正在进行的随机接入过程;
清空Msg3缓存(buffer);
清空MSGA缓存;
取消触发的波束失败恢复(BFR);以及
重置第一计数器。
39、根据附记38所述的装置,其中,所述重置第一计数器包括:
在网络未配置所述辅小区组支持波束失败检测,且未配置用于TRP特定的波束失败检测的参考信号的情况下,重置所述主辅小区关联的所述第一计数器;
和/或,
在网络未配置所述辅小区组支持波束失败检测,且配置了用于TRP特定的波束失败检测的参考信号的情况下,重置所述主辅小区关联的或所述主辅小区的每个BFD-RS组关联的所述第一计数器。
40、根据附记35-39中的任一项所述的装置,其中,
所述停止波束失败检测包括:MAC实体或低层停止波束失败检测,和/或,
所述恢复波束失败检测包括:MAC实体或低层恢复波束失败检测。
41、一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:
第三配置单元,其配置了辅小区组(SCG);
其中,在网络指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在所述辅小区上执行无线链路监听;和/或,
在网络指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的波束失败检测;和/或,
在网络指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的TRP特定的波束失败检测。
42、一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:
第四配置单元,其配置了辅小区组(SCG);
其中,在网络未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的无线链路监听;和/或,
在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者, 未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的波束失败检测;和/或,
在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的TRP特定的波束失败检测。
43、一种下行无线链路质量的评估装置,所述装置用于终端设备,
其中,对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在所述服务小区是主辅小区,所述辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败的情况下,MAC实体向上层指示所述主辅小区的波束失败。
44、根据附记43所述的装置,其中,
当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端设备指示低层停止所述主辅小区上的波束失败检测。
45、根据附记44所述的装置,其中,
所述低层是MAC层或物理层或射频链(RF chain)。
46、根据附记43所述的装置,其中,
所述MAC实体还向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
47、根据附记46所述的装置,其中,
所述低层是物理层或射频链。
48、一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:
第五配置单元,其为终端设备配置了辅小区组(SCG);
其中,在指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,
在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的波束失败检测;和/或,
在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时, 所述终端设备执行所述主辅小区的TRP特定的波束失败检测。
49、一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:
第六配置单元,其为终端设备配置了辅小区组(SCG);
其中,在未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,
在未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的波束失败检测;和/或,
在未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
50、根据附记48或49所述的装置,其中,
通过共用的配置或单独的配置指示支持所述辅小区组去激活时的无线链路监听或是否支持所述辅小区组去激活时的无线链路监听,和/或,指示支持所述辅小区组去激活时的波束失败检测或是否支持所述辅小区组去激活时的波束失败检测。
51、根据附记50所述的装置,其中,
所述共用的配置用于配置SCG去激活时,指示终端设备执行无线链路监听和/或波束失败检测,或指示终端设备是否执行无线链路监听和/或波束失败检测,所述波束失败检测包括小区的波束失败检测或TRP特定的波束失败检测。
52、根据附记50所述的装置,其中,所述单独的配置包括以下中的至少一个:
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听和小区的波束失败检测,或指示终端设备执行主辅小区上的无线链路监听和小区的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听,或指示终端设备执行主辅小区上的无线链路监听;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的或TRP特定的波束失败检测,或指示终端设备执行主辅小区上小区的或TRP特定的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的波束失败检测,或指示终端设备执行主辅小区上小区的波束失败检测;以及
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上TRP特定的波束失败检测,或指示终端设备执行主辅小区上TRP特定的波束失败检测。
53、根据附记50-52中的任一项所述的装置,其中,
指示支持或是否支持无线链路监听(RLM)和/或波束失败检测的所述配置包括在小区组配置(CellGroupConfig)IE里。
54、根据附记48-53中的任一项所述的装置,其中,
支持无线链路监听(RLM)和波束失败检测的所述配置是布尔型(BOOLEAN)数据或枚举型(ENUMERATED)数据。
55、一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:
第七配置单元,其为终端设备配置了辅小区组(SCG);
其中,在指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在所述辅小区上执行无线链路监听;和/或,
在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的波束失败检测;和/或,
在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的TRP特定的波束失败检测。
56、一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:
第八配置单元,其为终端设备配置了辅小区组(SCG);
其中,在未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的无线链路监听;和/或,
在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去 激活时,所述终端设备停止所述辅小区上的波束失败检测;和/或,
在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的TRP特定的波束失败检测。
57、一种终端设备,所述终端设备包括附记1-47中的任一项所述的装置。
58、一种网络设备,所述网络设备包括附记48-56中的任一项所述的装置。
59、一种通信系统,所述通信系统包括附记57所述的终端设备和/或附记58所述的网络设备。
附记二
1、一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:
配置了辅小区组(SCG);
在网络指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,在主辅小区(PSCell)上执行无线链路监听;和/或,
在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的波束失败检测;和/或,
在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的TRP特定的波束失败检测。
2、根据附记1所述的方法,其中,
通过共用的配置或单独的配置指示支持所述辅小区组去激活时的无线链路监听或是否支持所述辅小区组去激活时的无线链路监听,和/或,指示支持所述辅小区组去激活时的波束失败检测或是否支持所述辅小区组去激活时的波束失败检测。
3、根据附记2所述的方法,其中,
所述共用的配置用于配置SCG去激活时,指示终端设备执行无线链路监听和/或波束失败检测,或指示终端设备是否执行无线链路监听和/或波束失败检测,所述波束失败检测包括小区的波束失败检测或TRP特定的波束失败检测。
4、根据附记2所述的方法,其中,所述单独的配置包括以下中的至少一个:
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路 监听和小区的波束失败检测,或指示终端设备执行主辅小区上的无线链路监听和小区的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听,或指示终端设备执行主辅小区上的无线链路监听;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的或TRP特定的波束失败检测,或指示终端设备执行主辅小区上小区的或TRP特定的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的波束失败检测,或指示终端设备执行主辅小区上小区的波束失败检测;以及
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上TRP特定的波束失败检测,或指示终端设备执行主辅小区上TRP特定的波束失败检测。
5、根据附记2-4中的任一项所述的方法,其中,
指示支持或是否支持无线链路监听(RLM)和/或波束失败检测的所述配置包括在小区组配置(CellGroupConfig)IE里。
6、根据附记1-5中的任一项所述的方法,其中,
支持无线链路监听(RLM)和波束失败检测的所述配置是布尔型(BOOLEAN)数据或枚举型(ENUMERATED)数据。
7、根据附记1所述的方法,其中,
对于配置的所述辅小区组,当上层指示所述辅小区组的激活时,MAC实体将会应用以下至少之一的辅小区组激活操作:
激活主辅小区;
主辅小区上的SRS传输;
主辅小区上的CSI上报;
主辅小区上的PDCCH监听;
主辅小区上的PUCCH传输;
如果触发,执行主辅小区上的随机接入;以及
初始化主辅小区关联的每个逻辑信道的Bj为0。
8、根据附记1所述的方法,其中,对于配置的所述辅小区组,当上层指示所述辅小区组被去激活时,MAC实体将会执行以下至少之一:
去激活配置的所述辅小区组所有的辅小区(SCells);
去激活主辅小区;以及
重置MAC。
9、根据附记8所述的方法,其中,所述重置MAC包括以下至少之一:
停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器;
停止正在进行的随机接入过程;
清空Msg3缓存(buffer);
清空MSGA缓存;
取消触发的波束失败恢复(BFR);以及
重置第一计数器。
10、根据附记9所述的方法,其中,所述停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器,包括:
在所述网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于小区的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,所述第一定时器包括TA定时器和所述主辅小区关联的波束失败检测定时器;和/或
在所述网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,所述第一定时器包括TA定时器和所述主辅小区关联的波束失败检测定时器或所述主辅小区的每个TRP特定的波束失败检测定时器。
11、根据附记9所述的方法,其中,所述取消触发的波束失败恢复,包括以下至少之一:
取消主辅小区触发的波束失败恢复;
取消主辅小区的一个BFD-RS组触发的波束失败恢复;
不取消主辅小区的一个BFD-RS组触发的波束失败恢复;
停止主辅小区的一个BFD-RS组的波束失败检测。
12、根据附记9或11所述的方法,其中,
在网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,不取消所述主辅小区的一个BFD-RS组触发的波束失败恢复和/或停止所述主辅小区的一个BFD-RS组的波束失败检测。
13、根据附记9或11所述的方法,其中,
在网络指示所述辅小区组支持无线链路监听和/或波束失败检测,为所述辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号,且所述主辅小区有且仅有一个BFD-RS组触发了波束失败恢复的情况下,不取消所述主辅小区的所述BFD-RS组触发的波束失败恢复和/或停止所述主辅小区的所述BFD-RS组的波束失败检测。
14、根据附记1所述的方法,其中,所述在主辅小区(PSCell)上执行无线链路监听,包括:
在网络配置了在去激活的主辅小区上执行无线链路监听的情况下,终端设备在激活DL BWP之外的BWP上执行无线链路监听。
15、根据附记14所述的方法,其中,
在网络配置了在去激活的主辅小区上执行无线链路监听且未检测到所述主辅小区或所述主辅小区所在辅小区组的无线链路失败的情况下,终端设备在激活DL BWP之外的BWP上执行无线链路监听。
16、根据附记1所述的方法,其中,所述在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述主辅小区的TRP特定的波束失败检测,包括以下至少之一:
在所述辅小区组去激活期间,当所述主辅小区上的一个BFD-RS组检测到波束失败时,所述终端设备停止所述BFD-RS组的波束失败检测;
在所述辅小区组去激活期间,当重配置所述主辅小区的一个BFD-RS组的参考信号,所述终端设备恢复所述BFD-RS组的波束失败检测;
在所述辅小区组去激活期间,当所述主辅小区上的两个BFD-RS组都触发了波束失败恢复且尚未成功完成时,在自从所述辅小区组去激活起MAC层尚未向上层指示波束失败的情况下,所述MAC层向上层指示波束失败;以及
当从网络收到所述辅小区组的激活命令时,在所述主辅小区上的两个BFD-RS组 都检测到波束失败的情况下,所述终端设备向所述辅小区组执行随机接入过程。
17、根据附记1所述的方法,其中,所述执行所述主辅小区的波束失败检测,包括:
对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在所述服务小区是所述主辅小区,所述辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败的情况下,MAC实体向上层指示所述主辅小区的波束失败。
18、根据附记17所述的方法,其中,所述执行所述主辅小区的波束失败检测,还包括:
当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端设备指示低层停止所述主辅小区上的波束失败检测。
19、根据附记18所述的方法,其中,
所述低层是MAC层或物理层或射频链(RF chain)。
20、根据附记17所述的方法,其中,所述执行所述主辅小区的波束失败检测,还包括:
所述MAC实体向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
21、根据附记20所述的方法,其中,
所述低层是物理层或射频链。
22、根据附记1或16所述的方法,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
当服务小区配置了2个BFD-RS组时,对于所述服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
当所述服务小区是所述主辅小区,且所述特殊小区所在的辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败时,MAC实体向上层指示所述主辅小区的波束失败。
23、根据附记22所述的方法,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端 设备指示低层停止所述主辅小区上的波束失败检测。
24、根据附记23所述的方法,其中,
所述低层是MAC层或物理层或射频链。
25、根据附记23所述的方法,其中,所述执行所述主辅小区的波束失败检测,还包括:
MAC实体向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
26、根据附记25所述的方法,其中,
所述低层是物理层或射频链。
27、根据附记22所述的方法,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
当所述服务小区不是所述主辅小区,或者,所述特殊小区所在的辅小区组不是去激活的,或者自从所述辅小区组被去激活已向高层指示所述主辅小区的波束失败时,MAC实体在所述主辅小区上发起随机接入过程。
28、根据附记1或16所述的方法,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当所述服务小区是所述主辅小区,且所述辅小区组是去激活的时,MAC实体向上层指示所述主辅小区所述BFD-RS组的波束失败。
29、根据附记28所述的方法,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
当收到所述指示时,所述终端设备指示低层停止所述主辅小区上所述BFD-RS组的波束失败检测。
30、根据附记29所述的方法,其中,
所述低层是MAC层或物理层或射频链。
31、根据附记28所述的方法,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当所述服务小区是所述主辅小区,且所述辅小区组是去激活的时,MAC实体向低层指示所述主辅小区所述BFD-RS组的波束失败或指示所述主辅小区停止所述主辅小区上所述BFD-RS组的波束失败检测。
32、根据附记31所述的方法,其中,
所述低层是物理层或射频链。
33、根据附记1或16所述的方法,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
当所述服务小区不是所述主辅小区,或者,所述辅小区组不是去激活的时,MAC实体指示复用和组装过程生成增强的BFR MAC CE或触发SR。
34、根据附记16、18、20、23、25、29、31中的任一项所述的方法,其中,
所述停止波束失败检测包括:MAC实体或低层停止波束失败检测,和/或,
所述恢复波束失败检测包括:MAC实体或低层恢复波束失败检测。
35、一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:
配置了辅小区组(SCG);
在网络未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,停止主辅小区(PSCell)上的无线链路监听;和/或,
在网络未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停止所述主辅小区上的波束失败检测;和/或,
在网络未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停 止所述主辅小区上的TRP特定的波束失败检测。
36、根据附记35所述的方法,其中,
对于配置的所述辅小区组,当上层指示所述辅小区组的激活时,MAC实体将会应用以下至少之一的辅小区组激活操作:
激活主辅小区;
主辅小区上的SRS传输;
主辅小区上的CSI上报;
主辅小区上的PDCCH监听;
主辅小区上的PUCCH传输;
如果触发,执行主辅小区上的随机接入;以及
初始化主辅小区关联的每个逻辑信道的Bj为0。
37、根据附记35所述的方法,其中,对于配置的所述辅小区组,当上层指示所述辅小区组被去激活时,MAC实体将会执行以下至少之一:
去激活配置的所述辅小区组所有的辅小区(SCells);
去激活主辅小区;以及
重置MAC。
38、根据附记37所述的方法,其中,所述重置MAC包括以下至少之一:
停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器;
停止正在进行的随机接入过程;
清空Msg3缓存(buffer);
清空MSGA缓存;
取消触发的波束失败恢复(BFR);以及
重置第一计数器。
39、根据附记38所述的方法,其中,所述重置第一计数器包括:
在网络未配置所述辅小区组支持波束失败检测,且未配置用于TRP特定的波束失败检测的参考信号的情况下,重置所述主辅小区关联的所述第一计数器;
和/或,
在网络未配置所述辅小区组支持波束失败检测,且配置了用于TRP特定的波束 失败检测的参考信号的情况下,重置所述主辅小区关联的或所述主辅小区的每个BFD-RS组关联的所述第一计数器。
40、根据附记35-39中的任一项所述的方法,其中,
所述停止波束失败检测包括:MAC实体或低层停止波束失败检测,和/或,
所述恢复波束失败检测包括:MAC实体或低层恢复波束失败检测。
41、一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:
配置了辅小区组(SCG);
在网络指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,在所述辅小区上执行无线链路监听;和/或
在网络指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述辅小区的波束失败检测;和/或,
在网络指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,执行所述辅小区的TRP特定的波束失败检测。
42、一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:
配置了辅小区组(SCG);
在网络未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,停止所述辅小区上的无线链路监听;和/或,
在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停止所述辅小区上的波束失败检测;和/或,
在网络未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,停止所述辅小区上的TRP特定的波束失败检测。
43、一种下行无线链路质量的评估方法,所述方法用于终端设备,所述方法包括:
对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值 时,在所述服务小区是主辅小区,所述辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败的情况下,MAC实体向上层指示所述主辅小区的波束失败。
44、根据附记43所述的方法,其中,所述方法还包括:
当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端设备指示低层停止所述主辅小区上的波束失败检测。
45、根据附记44所述的方法,其中,
所述低层是MAC层或物理层或射频链(RF chain)。
46、根据附记43所述的方法,其中,所述方法还包括:
所述MAC实体向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
47、根据附记46所述的方法,其中,
所述低层是物理层或射频链。
48、一种下行无线链路质量的评估方法,所述方法用于网络设备,所述方法包括:
为终端设备配置了辅小区组(SCG);
其中,在指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,
在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的波束失败检测;和/或,
在指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的TRP特定的波束失败检测。
49、一种下行无线链路质量的评估方法,所述方法用于网络设备,所述方法包括:
为终端设备配置了辅小区组(SCG);
其中,在未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,
在未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小 区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的波束失败检测;和/或,
在未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
50、根据附记48或49所述的方法,其中,
通过共用的配置或单独的配置指示支持所述辅小区组去激活时的无线链路监听或是否支持所述辅小区组去激活时的无线链路监听,和/或,指示支持所述辅小区组去激活时的波束失败检测或是否支持所述辅小区组去激活时的波束失败检测。
51、根据附记50所述的方法,其中,
所述共用的配置用于配置SCG去激活时,指示终端设备执行无线链路监听和/或波束失败检测,或指示终端设备是否执行无线链路监听和/或波束失败检测,所述波束失败检测包括小区的波束失败检测或TRP特定的波束失败检测。
52、根据附记50所述的方法,其中,所述单独的配置包括以下中的至少一个:
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听和小区的波束失败检测,或指示终端设备执行主辅小区上的无线链路监听和小区的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上的无线链路监听,或指示终端设备执行主辅小区上的无线链路监听;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的或TRP特定的波束失败检测,或指示终端设备执行主辅小区上小区的或TRP特定的波束失败检测;
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上小区的波束失败检测,或指示终端设备执行主辅小区上小区的波束失败检测;以及
用于配置所述辅小区组去激活时,指示终端设备是否执行主辅小区上TRP特定的波束失败检测,或指示终端设备执行主辅小区上TRP特定的波束失败检测。
53、根据附记50-52中的任一项所述的方法,其中,
指示支持或是否支持无线链路监听(RLM)和/或波束失败检测的所述配置包括在小区组配置(CellGroupConfig)IE里。
54、根据附记48-53中的任一项所述的方法,其中,
支持无线链路监听(RLM)和波束失败检测的所述配置是布尔型(BOOLEAN)数据或枚举型(ENUMERATED)数据。
55、一种下行无线链路质量的评估方法,所述装置用于网络设备,所述方法包括:
为终端设备配置了辅小区组(SCG);
其中,在指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在所述辅小区上执行无线链路监听;和/或,
在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的波束失败检测;和/或,
在指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测的情况下,并且,在为所述辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述辅小区的TRP特定的波束失败检测。
56、一种下行无线链路质量的评估方法,所述方法用于网络设备,所述方法包括:
为终端设备配置了辅小区组(SCG);
其中,在未指示所述辅小区组或所述辅小区组的辅小区(SCell)支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的无线链路监听;和/或,
在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的波束失败检测;和/或,
在未指示所述辅小区组或所述辅小区组的辅小区支持波束失败检测,或者,未为所述辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述辅小区上的TRP特定的波束失败检测。

Claims (20)

  1. 一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:
    第一配置单元,其配置了辅小区组(SCG);
    其中,在网络指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备在主辅小区(PSCell)上执行无线链路监听;和/或,
    在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的波束失败检测;和/或,
    在网络指示所述辅小区组支持波束失败检测的情况下,并且,在为所述主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备执行所述主辅小区的TRP特定的波束失败检测。
  2. 根据权利要求1所述的装置,其中,
    通过共用的配置或单独的配置指示支持所述辅小区组去激活时的无线链路监听或是否支持所述辅小区组去激活时的无线链路监听,和/或,指示支持所述辅小区组去激活时的波束失败检测或是否支持所述辅小区组去激活时的波束失败检测。
  3. 根据权利要求1所述的装置,其中,对于配置的所述辅小区组,当上层指示所述辅小区组被去激活时,MAC实体将会执行以下至少之一:
    去激活配置的所述辅小区组所有的辅小区(SCells);
    去激活主辅小区;以及
    重置MAC。
  4. 根据权利要求3所述的装置,其中,所述重置MAC包括以下至少之一:
    停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器;
    停止正在进行的随机接入过程;
    清空Msg3缓存(buffer);
    清空MSGA缓存;
    取消触发的波束失败恢复(BFR);以及
    重置第一计数器。
  5. 根据权利要求4所述的装置,其中,所述停止第一定时器以外的其他所有正在运行的定时器或停止正在运行的所有定时器,包括:
    在所述网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于小区的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,所述第一定时器包括TA定时器和所述主辅小区关联的波束失败检测定时器;和/或
    在所述网络指示所述辅小区组支持无线链路监听和/或波束失败检测,且为所述辅小区组的主辅小区配置了用于TRP特定的波束失败检测的参考信号的情况下,停止第一定时器以外的其他所有正在运行的定时器,所述第一定时器包括TA定时器和所述主辅小区关联的波束失败检测定时器或所述主辅小区的每个TRP特定的波束失败检测定时器。
  6. 根据权利要求4所述的装置,其中,所述取消触发的波束失败恢复,包括以下至少之一:
    取消主辅小区触发的波束失败恢复;
    取消主辅小区的一个BFD-RS组触发的波束失败恢复;
    不取消主辅小区的一个BFD-RS组触发的波束失败恢复;
    停止主辅小区的一个BFD-RS组的波束失败检测。
  7. 根据权利要求1所述的装置,其中,所述在主辅小区(PSCell)上执行无线链路监听,包括:
    在网络配置了在去激活的主辅小区上执行无线链路监听的情况下,终端设备在激活DL BWP之外的BWP上执行无线链路监听。
  8. 根据权利要求1所述的装置,其中,所述执行所述主辅小区的波束失败检测,包括:
    对于每个配置了波束失败检测的服务小区,当第一计数器大于或等于预设阈值时,在所述服务小区是所述主辅小区,所述辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败的情况下,MAC实体向上层指示所述主辅小区的波束失败。
  9. 根据权利要求8所述的装置,其中,所述执行所述主辅小区的波束失败检测, 还包括:
    当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端设备指示低层停止所述主辅小区上的波束失败检测。
  10. 根据权利要求8所述的装置,其中,所述执行所述主辅小区的波束失败检测,还包括:
    所述MAC实体向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
  11. 根据权利要求1所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
    当服务小区配置了2个BFD-RS组时,对于所述服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
    当所述服务小区是所述主辅小区,且所述特殊小区所在的辅小区组是去激活的且自从所述辅小区组被去激活尚未向高层指示所述主辅小区的波束失败时,MAC实体向上层指示所述主辅小区的波束失败。
  12. 根据权利要求11所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
    当网络未配置第一参数,或者,当收到来自MAC层的指示的情况下,所述终端设备指示低层停止所述主辅小区上的波束失败检测。
  13. 根据权利要求12所述的装置,其中,所述执行所述主辅小区的波束失败检测,还包括:
    所述MAC实体向低层指示所述主辅小区的波束失败或指示低层停止所述主辅小区上的波束失败检测。
  14. 根据权利要求11所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
    当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在特殊小区的两个BFD-RS组都触发了波束失败恢复且尚未成功完成的情况下,
    当所述服务小区不是所述主辅小区,或者,所述特殊小区所在的辅小区组不是去激活的,或者自从所述辅小区组被去激活已向高层指示所述主辅小区的波束失败时,MAC实体在所述主辅小区上发起随机接入过程。
  15. 根据权利要求1所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
    当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
    当所述服务小区是所述主辅小区,且所述辅小区组是去激活的时,MAC实体向上层指示所述主辅小区所述BFD-RS组的波束失败。
  16. 根据权利要求15所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,还包括:
    当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
    当所述服务小区是所述主辅小区,且所述辅小区组是去激活的时,MAC实体向低层指示所述主辅小区所述BFD-RS组的波束失败或指示所述主辅小区停止所述主辅小区上所述BFD-RS组的波束失败检测。
  17. 根据权利要求1所述的装置,其中,所述执行所述主辅小区的TRP特定的波束失败检测,包括:
    当服务小区配置了2个BFD-RS组,对于所述服务小区的每个BFD-RS组,在波束失败恢复过程确定一个主辅小区有且仅有一个BFD-RS组已经触发了至少一个波束失败恢复且尚未取消的情况下,
    当所述服务小区不是所述主辅小区,或者,所述辅小区组不是去激活的时,MAC实体指示复用和组装过程生成增强的BFR MAC CE或触发SR。
  18. 一种下行无线链路质量的评估装置,所述装置用于终端设备,所述装置包括:
    第二配置单元,其配置了辅小区组(SCG);
    其中,在网络未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,
    在网络未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端 设备停止所述主辅小区上的波束失败检测;和/或,
    在网络未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
  19. 一种下行无线链路质量的评估装置,所述装置用于网络设备,所述装置包括:
    第六配置单元,其为终端设备配置了辅小区组(SCG);
    其中,在未指示所述辅小区组支持无线链路监听(RLM)的情况下,当所述辅小区组被去激活时,所述终端设备停止主辅小区(PSCell)上的无线链路监听;和/或,
    在未指示所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于小区的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的波束失败检测;和/或,
    在未配置所述辅小区组支持波束失败检测,或者,未为所述主辅小区配置用于TRP特定的波束失败检测的参考信号的情况下,当所述辅小区组被去激活时,所述终端设备停止所述主辅小区上的TRP特定的波束失败检测。
  20. 根据权利要求19所述的装置,其中,
    通过共用的配置或单独的配置指示支持所述辅小区组去激活时的无线链路监听或是否支持所述辅小区组去激活时的无线链路监听,和/或,指示支持所述辅小区组去激活时的波束失败检测或是否支持所述辅小区组去激活时的波束失败检测。
PCT/CN2022/085962 2022-04-08 2022-04-08 下行无线链路质量的评估方法及装置 WO2023193266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085962 WO2023193266A1 (zh) 2022-04-08 2022-04-08 下行无线链路质量的评估方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085962 WO2023193266A1 (zh) 2022-04-08 2022-04-08 下行无线链路质量的评估方法及装置

Publications (1)

Publication Number Publication Date
WO2023193266A1 true WO2023193266A1 (zh) 2023-10-12

Family

ID=88243928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085962 WO2023193266A1 (zh) 2022-04-08 2022-04-08 下行无线链路质量的评估方法及装置

Country Status (1)

Country Link
WO (1) WO2023193266A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447285A (zh) * 2017-03-23 2019-11-12 株式会社Ntt都科摩 无线通信系统和无线基站
CN113543168A (zh) * 2020-04-21 2021-10-22 夏普株式会社 由用户设备执行的方法及用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110447285A (zh) * 2017-03-23 2019-11-12 株式会社Ntt都科摩 无线通信系统和无线基站
CN113543168A (zh) * 2020-04-21 2021-10-22 夏普株式会社 由用户设备执行的方法及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI (RAPPORTEUR): "[Post111-e][919][eDCCA] Efficient activation deactivation of SCG Discussion on SCG deactivation and activation", 3GPP DRAFT; R2-2010123, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941551 *
NEC: "Discussion on beam management for multi-TRP", 3GPP DRAFT; R1-2100951, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971290 *

Similar Documents

Publication Publication Date Title
US11202241B2 (en) Beam failure recovery method and terminal
US11212863B2 (en) Dual connection communication method in wireless network, apparatus, and system
JP7332750B2 (ja) ビーム障害回復に対するランダムアクセスのための方法およびデバイス
US11134400B2 (en) User equipment, base station, and related methods
US9258747B2 (en) User equipment and methods for fast handover failure recovery in 3GPP LTE network
US11245568B2 (en) Beam failure recovery processing method and terminal
CN114503666A (zh) 用于条件式更改主辅小区组小区(PSCell)的方法和装置
CN110798867B (zh) 用户设备的控制方法以及用户设备
CN105830493B (zh) 用于在允许载波聚合的网络中进行载波信道选择的系统和方法
KR102587763B1 (ko) Lbt 모니터링 장애를 위한 처리 방법, 디바이스 및 시스템
US20140004849A1 (en) Determining connection states of a mobile wireless device
WO2010105567A1 (zh) 切换优化方法、设备及系统
US20220294582A1 (en) Method performed by user equipment, and user equipment
JP2023543514A (ja) Ue-ネットワーク間リレーシナリオにおけるリレー再選択およびデータ送信処理手順のための方法および装置
US20230072832A1 (en) Method and apparatus for consistent lbt failure detection and recovery in cell handover
WO2021203396A1 (zh) 持续lbt失败检测与恢复的方法及装置
WO2023125649A1 (zh) 连接建立失败报告方法和用户设备
WO2023193266A1 (zh) 下行无线链路质量的评估方法及装置
WO2021159402A1 (zh) Lbt失败的处理方法及装置
CN115835318A (zh) 切换信息报告方法以及用户设备
WO2019095211A1 (zh) 部分带宽的切换和配置方法、装置及通信系统
WO2021203395A1 (zh) 指示lbt失败的方法及装置
WO2024031402A1 (zh) 测量放松的方法、装置以及通信系统
WO2023246770A1 (zh) 由用户设备执行的方法以及用户设备
WO2022116938A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936203

Country of ref document: EP

Kind code of ref document: A1