WO2019191306A1 - Training, testing, and verifying autonomous machines using simulated environments - Google Patents
Training, testing, and verifying autonomous machines using simulated environments Download PDFInfo
- Publication number
- WO2019191306A1 WO2019191306A1 PCT/US2019/024400 US2019024400W WO2019191306A1 WO 2019191306 A1 WO2019191306 A1 WO 2019191306A1 US 2019024400 W US2019024400 W US 2019024400W WO 2019191306 A1 WO2019191306 A1 WO 2019191306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- sensor
- virtual
- vehicle
- simulation
- Prior art date
Links
- 238000012549 training Methods 0.000 title claims description 47
- 238000012360 testing method Methods 0.000 title abstract description 34
- 238000009434 installation Methods 0.000 claims abstract description 9
- 238000004088 simulation Methods 0.000 claims description 186
- 238000000034 method Methods 0.000 claims description 98
- 238000012545 processing Methods 0.000 claims description 49
- 238000010801 machine learning Methods 0.000 claims description 22
- 238000013528 artificial neural network Methods 0.000 abstract description 52
- 238000013473 artificial intelligence Methods 0.000 description 53
- 230000006870 function Effects 0.000 description 41
- 238000001514 detection method Methods 0.000 description 40
- 238000004891 communication Methods 0.000 description 36
- 230000008569 process Effects 0.000 description 26
- 238000013527 convolutional neural network Methods 0.000 description 21
- 230000004438 eyesight Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 18
- 230000008447 perception Effects 0.000 description 18
- 238000007726 management method Methods 0.000 description 17
- 238000003860 storage Methods 0.000 description 16
- 239000013598 vector Substances 0.000 description 15
- 238000002372 labelling Methods 0.000 description 14
- 230000000670 limiting effect Effects 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- 238000013439 planning Methods 0.000 description 9
- 238000010200 validation analysis Methods 0.000 description 9
- 238000013135 deep learning Methods 0.000 description 8
- 238000009877 rendering Methods 0.000 description 8
- 238000012795 verification Methods 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 241000269400 Sirenidae Species 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000013138 pruning Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000013481 data capture Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 230000037406 food intake Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 231100001261 hazardous Toxicity 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 125000000914 phenoxymethylpenicillanyl group Chemical group CC1(S[C@H]2N([C@H]1C(=O)*)C([C@H]2NC(COC2=CC=CC=C2)=O)=O)C 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 206010052128 Glare Diseases 0.000 description 2
- 206010041349 Somnolence Diseases 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- 101100248200 Arabidopsis thaliana RGGB gene Proteins 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 101000595182 Homo sapiens Podocan Proteins 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 102100036036 Podocan Human genes 0.000 description 1
- 208000032140 Sleepiness Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 229940052961 longrange Drugs 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001693 membrane extraction with a sorbent interface Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 201000002266 mite infestation Diseases 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000037321 sleepiness Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013526 transfer learning Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- -1 waterfall Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
Definitions
- DNNs deep neural networks
- autonomous vehicles and semi-autonomous vehicles rely on machine learning, and specifically deep neural networks (DNNs), for performing any number of operations for operating, piloting, and navigating the vehicle.
- DNNs may be used for object detection, lane and road boundary detection, safety analysis, drivable free-space analysis, control generation during vehicle maneuvers, and the like.
- the DNNs need to be trained on a large amount of data, which requires vast amounts of time and effort, and yet still does not always guarantee universally accurate or usable results.
- Embodiments of the present disclosure relate training, testing, and verifying autonomous machines using simulated environments.
- Systems and methods are disclosed for training, testing, and/or verifying one or more features of a real-world system - such as a software stack for use in autonomous vehicles and/or robots.
- the systems of the present disclosure leverage a simulated environment to test one or more autonomous driving software stacks that include a multitude of DNNs.
- physical sensor data, virtual sensor data, or a combination thereof may be used to train the DNNs of the software stack(s).
- the DNNs Once trained, the DNNs may be tested, verified, and validated within a simulation system that generates a simulated environment for controlling a virtual object using the software stack(s). Simulation data from the simulated environment may be input into the DNNs of the software stack(s), and the DNNs may generate outputs.
- the outputs may be used to control the virtual object within the simulated environment, to determine how the virtual object (and thus a physical object that corresponds to the virtual object) may perform in any number of different situations.
- the outputs may be used to test the accuracy of the DNNs, and the results may be used to generate more data for further training (e.g., data that the DNNs are least consistent processing accurately), fine-tune the DNNs, verify the DNNs, and/or validate the DNNs.
- the simulated environment may be generated to create difficult to navigate, dangerous, unsafe, and/or otherwise unpredictable situations for the virtual object to navigate. As a result, previously untested scenarios (e.g., due to safety concerns, difficulty of reproduction, etc.) may be tested, repeated, and improved upon within the simulated environment.
- vehicle hardware configured for installation within an autonomous vehicle may be used to execute the software stack(s) within the simulated environment.
- the virtual sensor data may be encoded to a format that is familiar to the software stack(s) (e.g., is bit-to-bit the same as the physical sensor data used for training the DNNs).
- the testing, training, verification, and/or validation of the DNNs may be substantially identical to employing the hardware/software components in a physical vehicle in a real-world environment.
- FIG. 1 is an example system for re-simulation, in accordance with some embodiments of the present disclosure
- FIG. 2 includes a data flow diagram for a process of testing, training, verifying, and/or validating neural networks, in accordance with some embodiments of the present disclosure
- FIGs. 3 A-3D include workflows used for training DNNs, in accordance with some embodiments of the present disclosure
- FIGs. 4A-4F are example illustrations of a simulation system, in accordance with some embodiments of the present disclosure.
- FIG. 5 is a flow diagram showing a method for generating a simulated environment using a hardware-in- the-loop object, in accordance with some embodiments of the present disclosure
- FIG. 6A is an example illustration of a simulation system at runtime, in accordance with some embodiments of the present disclosure.
- FIG. 6B includes a cloud-based architecture for a simulation system, in accordance with some embodiment of the present disclosure
- FIG. 7 includes a data flow diagram illustrating a process 700 for re-simulation or simulation using one or more codecs, in accordance with some embodiments of the present disclosure
- FIG. 8 includes a data flow diagram for key performance indicator (KPI) analysis and observation, in accordance with some embodiments of the present disclosure
- FIG. 9 is a flow diagram showing a method for controlling a virtual object in a simulated environment, in accordance with some embodiments of the present disclosure.
- FIG. 10 is a flow diagram showing a method for controlling a virtual object in a simulated environment using machine learning models trained on physical sensor data, in accordance with some embodiments of the present disclosure
- FIG. 11A is an illustration of an example autonomous vehicle, in accordance with some embodiments of the present disclosure.
- FIG. 11B is an example of camera locations and fields of view for the example autonomous vehicle of FIG. 11 A, in accordance with some embodiments of the present disclosure
- FIG. 11C is a block diagram of an example system architecture for the example autonomous vehicle of FIG. 11 A, in accordance with some embodiments of the present disclosure
- FIG. 11D is a system diagram for communication between cloud-based server(s) and the example autonomous vehicle of FIG. 11 A, in accordance with some embodiments of the present disclosure
- FIG. 12 is a block diagram of an example computing device suitable for use in implementing some embodiments of the present disclosure.
- Systems and methods disclosed are related to training, testing, and verifying autonomous machines or objects in simulated environments.
- the present disclosure may be described generally with respect to an example autonomous or semi-autonomous vehicle 102 (alternatively referred to herein as“vehicle 102” or“autonomous vehicle 102”), an example of which is described in more detail herein with respect to FIGs. 11A-11D.
- vehicle 102 alternatively referred to herein as“vehicle 102” or“autonomous vehicle 102”
- autonomous vehicle 102 autonomous or semi-autonomous vehicle 102
- this is not intended to be limiting.
- the systems, methods, and/or processes described herein may be applicable to non-autonomous vehicles, robots, unmanned aerial vehicles, and/or any other type of vehicle or object.
- FIG. 1 is an example system 100 for re-simulation, in accordance with some embodiments of the present disclosure.
- the system 100 may be used for training, testing, verifying, deploying, updating, re- verifying, and/or deploying one or more neural networks for use in an autonomous vehicle, a semi- autonomous vehicle, a robot, and/or another object.
- the system 100 may include some or all of the component, features, and/or functionality of system 1176 of FIG. 11D, and/or may include additional and/or alternative components, features, and functionality of the system 1176. It should be understood that this and other arrangements described herein are set forth only as examples.
- One or more vehicles 102 may collect sensor data from one or more sensors of the vehicle(s) 102 in real-world (e.g., physical) environments.
- the sensors of the vehicle(s) 102 may include, without limitation, global navigation satellite systems sensor(s) 1158 (e.g., Global Positioning System sensor(s)), RADAR sensor(s) 1160, ultrasonic sensor(s) 1162, LIDAR sensor(s) 1164, inertial measurement unit (IMU) sensor(s) 1166 (e.g., accelerometer(s), gyroscope(s), magnetic compass(es), magnetometer(s), etc.), microphone(s) 1196, stereo camera(s) 1168, wide-view camera(s) 1170 (e.g., fisheye cameras), infrared camera(s) 1172, surround camera(s) 1174 (e.g., 360 degree cameras), long-range and/or mid-range camera(s) 1198, speed sensor(s) 1144 (e.g., for measuring
- the vehicle(s) 102 may include vehicle hardware 104.
- the vehicle hardware 104 may be responsible for managing the sensor data generated by the sensors (e.g., using a sensor manager of an autonomous driving software stack being executed by the vehicle hardware 104).
- the autonomous driving software stack being executed using the vehicle hardware 104 may further include a world state manager that manages the world using one or more maps (e.g., 3D maps), localization components), perception component(s), and/or the like.
- the autonomous driving software stack may include planning components (e.g., as part of a planning layer), control component(s) (e.g., as part of a control layer), actuation component s) (e.g., as part of an actuation layer), obstacle avoidance component s) (e.g., as part of an obstacle avoidance layer), and/or other component s).
- the vehicle hardware 104 may include the hardware of the vehicle 102 that is used to control the vehicle 102 through real-world environments based on the sensor data, one or more machine learning models (e.g., neural networks), and/or the like. As such, the vehicle hardware 104 may be configured for installation within the vehicle 102 and for use by the vehicle 102 in executing an autonomous driving software stack for controlling, at least in part, the vehicle 102 through a real-world physical environment(s).
- the sensor data collected by the sensors of the vehicle(s) 102 may be used by a training sub system 106.
- the training sub-system 106 may include a cloud-based deep learning infrastructure that may use artificial intelligence to analyze the sensor data received from the vehicle(s) 102 and/or stored in the data store(s) 110, and incorporate or train up-to-date, real-time neural networks (and/or other machine learning models) for real-time intelligent inferencing.
- the training sub-system 106 may include one or more graphics processing unit (GPU) servers 108.
- GPU graphics processing unit
- the training sub-system 106 may include a datacenter with GPUs, TPUs, CPUs, and/or other processor types.
- GPU with respect to GPU server(s) 108 is not intended to be limiting, and in some examples, the GPU server(s) 108 may not include GPU(s).
- the training sub-system 106 may train and/or test any number of machine learning models, including deep neural networks (DNNs), such as neural networks for performing operations associated with one or more layers of the autonomous driving software stack and/or an in-cabin experience (IX) software stack.
- DNNs deep neural networks
- AV autonomous vehicle
- one or more autonomous vehicle (AV) perception DNNs may be trained and/or tested, where the AV perception DNNs may be used for detecting lanes and boundaries on driving surfaces, for detecting drivable free-space, for detecting traffic poles or signs, for detecting traffic lights, for detecting objects in the environment (e.g., vehicles, pedestrians, animals, inanimate objects, etc.), for detecting wait conditions and intersections, and/or the like.
- one or more in-cabin experience (IX) perception DNNs may be trained and/or tested, where the IX perception DNNs may be used for monitoring passengers and drivers within the vehicle 102.
- IX perception DNNs may be trained to determine a state of the driver - such as, but not limited to, gaze tracking, head pose tracking, drowsiness detection, sleepiness, eye openness, emotion detection, heart rate monitoring, liveliness of the driver, driver impairment, and/or the like.
- the IX perception DNNs, the AV perception DNNs, and/or other DNNs may be validated and/or verified by a validation/verification sub-system 112.
- the validation/verification sub-system 112 may include similar components and/or features as the training sub-system 106.
- the training sub-system 106 and the validation/verification sub-system 112 may include the same hardware components, while in other examples the hardware components may differ.
- the validation/verification sub-system 112 may verify and/or validate performance, accuracy, and/or other criteria associated with the DNNs.
- the validated AV perception DNNs and/or the validated IX perception DNNs may be incorporated into software stack(s) 116 (e.g., the IX software stack and/or the autonomous driving software stack).
- the vehicle(s) 102 may execute the software stack(s) using the vehicle hardware 104 to control the vehicle(s) 102 within real-world environments.
- the vehicle(s) 102 in FIG. 1 are illustrated as collecting data and using the deployed DNNs, this is not intended to be limiting. For example, some vehicles 102 may be used for data capture, while other vehicles 102 may be used for autonomous driving applications using the deployed DNNs. As such, in some examples, first vehicles 102 may collect the data, and second vehicles 102 may use the software stack(s) 116 once the data collected from the first vehicles 102 has been used to train the deployed DNNs.
- the system 100 may include a re-simulation system that uses physical sensor data generated by vehicle(s) 102 in real-world environments to train, test, verify, and/or validate one or more DNNs for use in the software stack(s) 116.
- the re-simulation system 100 may overlap with simulation system(s) 400A, 400B, 400C, and/or 400D in that at least some of the testing, training, verification, and/or validation may be performed within a simulated environment.
- FIG. 2 includes a data flow diagram for a process 118 of testing, training, verifying, and/or validating neural networks, in accordance with some embodiments of the present disclosure.
- the process 118 may include data ingestion of new driving data (e.g., sensor data) captured and/or generated by one or more vehicles 102 in real-world environments and/or simulated or virtual sensor data from one or more simulated environments.
- the process 118 may further include data indexing and curation 124, data labeling services 126, model training 128, model refinement, pruning, and/or fine tuning 130, model validation 132, and/or updating global coverage maps 134.
- the process 118 may include a training loop, whereby new data is generated by the vehicle(s) 102, used to train, test, verify, and/or validate one or more perception DNNs, and the trained or deployed DNNs are then used by the vehicle(s) 102 to navigate real-world environments.
- the data store(s) 120 may store sensor data and/or virtual sensor data generated by one or more real-world sensors of one or more vehicle(s) 102 and/or virtual sensors of one or more virtual vehicles, respectively.
- Data ingestion 122 may include generating and/or recording the data output by the vehicle(s) 102 autonomous vehicle platform (e.g., the vehicle hardware 104 and/or the software stack(s) 116).
- the data may be written out to solid state drives (SSDs) and/or downloaded by wire and/or wirelessly to the data store(s) 120.
- Data indexing and curation 124 may include indexing metadata associated with the data output by the vehicle(s) 102 for further search and/or retrieval. Search indexes may be used to retrieve specific segments of the data, which may then be tagged and/or flagged for further processing.
- raw data may be stored in a lossless format to allow for further pre-processing and/or quantization.
- an on-demand transcoding service may transform the raw data into various target formats (e.g., MPEG, JPEG, FP16, etc.) and may feed or input the transformed data to one or more processing pipelines (e.g., labeling, DNN training, re- simulation, etc.).
- Exported datasets may be stored in a dataset store, which may be a service that handles immutable datasets for further processing. Once the datasets are stored, the datasets may be used and re-used to reproduce training results exactly, or run and re-run simulation jobs.
- Data labeling services 126 may be used to tag and/or label the data, the raw data, the transformed data, and/or any other data used in the process 118.
- the tagging and/or labeling may be performed by a human, by a machine, or by a combination thereof.
- Model training 128 may use a deep-learning platform to define training applications and to run the training application on a compute cluster (e.g., using the training sub-system 106 of FIG. 1).
- the compute cluster may include one or more GPU-powered servers that may each include a plurality of GPUs, PCIe switches, and/or CPUs, interconnected with high-speed interconnects such as NVLink and PCIe connections.
- a local cache high-bandwidth scaled out file system
- the system may handle the caching and may provide a local dataset to the compute job.
- the training apps may produce trained models and experimental metadata that may be stored in a model data store for further consumption.
- Model refinement, pruning, and/or fine tuning 130 may include updating the DNNs to further refine and improve the accuracy and efficacy of the DNNs.
- hyper parameter discovery may be enabled by an experiment service that may track information on the hyper-parameter space to explore hyper-parameter configurations, metrics, and model versions generated by each experiment.
- a workflow manager may be used to schedule and dispatch experiments to multiple nodes in parallel. Maximum compute efficiency may be enabled by early-termination heuristics which make it possible to terminate experiments that perform poorly relative to other experiments.
- the workflow manager may be responsible for building binaries out of Source Configuration Management (SCM) repositories, to ensure that no untracked information leaks from users to the generated models.
- SCM Source Configuration Management
- the platform may enable systematic tracking of all information pertaining to experiments, thereby enabling reproducible experiments. Pruning may be executed, as an example and without limitation, similarly to the pruning methods, processes, and systems disclosed in U.S. Provisional Patent Application No. 62/630,445, and U.S. Patent Application No. 16/246,414, each hereby incorporated by reference in its entirety.
- Model validation 132 may include verifying and/or validating the DNNs, such as by using the validation/verification sub-system 112 of FIG. 1.
- a global coverage map may be updated (at 134). For example, once the necessary portions of the software stack(s) 116 are trained for a new region, and/or the software stack(s) 116 for an already covered region are updated, the global coverage map may be updated. As the global coverage map increases, the vehicle(s) 102 using the software stack(s) 116 may be able to navigate through additional regions.
- the models Once the models are trained, the models may be reloaded into a larger application and run other test datasets. In such examples, a similar model as used for training may be used for this re-training, testing, or fine tuning process.
- active learning may be used.
- existing trained models e.g. DNNs
- the system may use existing models to score (or inference) newly collected data and/or raw data and to compute a confidence score for each piece of data.
- the confidence score may be representative of how informative or useful the data may be for training.
- data already used that is modeled by an existing model may not provide much or any incremental value, while new data that the model poorly predicts may be reused to improve the model for real-world driving applications.
- data that the DNNs are already trained to process accurately may not be as useful as data that the DNNs are not trained to process accurately.
- Active learning may be used to identify the data that may be used to provide increased performance for the DNNs in additional or alternative situations or environments.
- FIGs. 3A-3E include workflows used for training DNNs.
- FIG. 3A includes a workflow 300A.
- the workflow 300A may include data ingestion 122, passing of the data to dataset store(s) 302 (e.g., a service that handles immutable datasets for further processing), labeling the data using data labeling services 126, and training DNNs using model training 128.
- the frames selected for labelling may be randomly selected in some examples.
- the workflow 300A may include labeling of, for example, 300,000 to 600,000 frames (e.g., frames represented by the data).
- the DNNs Once the DNNs are trained, the DNNs may be used in simulation and/or re-simulation applications 304.
- the models may then be pruned, optimized, refined, and then deployed as deployed DNNs in the vehicle(s) 102 (e.g., in the software stack(s) 116).
- the training and refinement process may move to a second workflow, such as workflow 300B.
- FIG. 3B includes the workflow 300B.
- the workflow 300B may include a model store 306 that may contain pre-trained or previously trained models (e.g., DNNs).
- the pre- trained models may be used to score new data, and the score may be used to prioritize which data to label.
- a pre-trained DNN may be used to compute a score for each new frame selected where the score may represent a confidence in the prediction of the DNN.
- the confidence score is high (e.g., meaning the model is able to accurately handle the frame)
- the frame When the confidence score is high (e.g., meaning the model is able to accurately handle the frame), the frame may be deprioritized for labeling.
- the score is low, the frame may be prioritized.
- the frame may be labeled so that the DNN can leam from the frame, thereby further refining the pre-trained DNN.
- a scoring function may estimate an uncertainty pseudo- probability from the network output.
- dropout may be leveraged by computing an output of the DNN many times, and each time randomly dropping out (e.g., zeroing) neurons of the previous to last layer. The variance of the predictions of the DNN may then be leveraged, and the variance may encode the uncertainty in the prediction, thereby leading to a score.
- KPIs Key performance indicators
- metrics may be computed for one or more of the current DNNs (e.g., the best performing DNNs) in the model store 306 in order to determine conditions or combination of conditions which the current DNNs may not perform sufficiently well.
- one condition dimension may include properties of the whole image or frame, such as, but not limited to, lighting or illumination (e.g., day, night, cloudy, twilight, backlit, etc.), weather (e.g., clear, rain, snow, fog, etc.), setting (e.g., rural, urban, suburban, highway, etc.), topography (e.g., flat, curve, hill, etc.), geographic region (e.g., Europe, North America, China, etc.), sensor (e.g., camera) properties such as position and/or lens type, and/or a combination thereof.
- lighting or illumination e.g., day, night, cloudy, twilight, backlit, etc.
- weather e.g., clear, rain, snow, fog, etc.
- setting e.g., rural, urban, suburban, highway, etc.
- topography e.g., flat, curve, hill, etc.
- geographic region e.g., Europe, North America, China, etc.
- sensor
- the conditions or a combination of the conditions which the current DNNs are not considered to perform sufficiently well on may be used to direct mining and labeling of data (e.g., additional data) that may increase the accuracy of the DNNs with reference to the conditions or combination of conditions.
- the mining of the data may be facilitated by use tags that may have been added during data indexing and/or curation 124 (FIG. 1).
- the workflow 300B may provide for fine-tuning and/or transfer learning.
- the system may reload models from the model store 306 (as indicated by dashed line 310 in FIG. 3B) and continue to train them. This may be used for camera adaptation and quick experiments, for example.
- FIG. 3C includes workflow 300C.
- the workflow 300C may provide for active learning.
- the workflows 300 A and 300B may not be able to continue indefinitely as this may result in too much data for even the largest systems to retain and process. For example, a data collection of approximately 10,000 hours may result in 30- 50 petabytes of data, depending on the number of sensors of the vehicle(s) 102.
- the DNNs should be operating at high accuracy, and performing well on nearly all offline benchmarks.
- the workflow 300C may provide for edge-level confusion scoring, which may be similar to the workflow 300B, but performed at the edge. In general, this may mean that anything that the DNN fails to understand at the vehicle level while driving may be logged and posted via an API, and flagged for further inspection (e.g., labeling).
- pre-determined conditions or combinations of conditions may also be used to direct and focus data gathering at the edge.
- the vehicle(s) 102 may not collect all data, but may only collect data where certain conditions or combinations of conditions are met (e.g., at night, in the rain, in certain tunnel types, etc.).
- FIG. 3D includes workflow 300D.
- the workflow 300D may provide for training and refinement of the DNNs.
- the workflow 300D may follow the workflow 300C.
- the goal may be to use prediction scores and aggregate them on a map (e.g., a GPS or GNSS map), to illustrate locations or regions where the DNNs perform well, and where the DNNs perform less well (e.g., below desired accuracy levels).
- a heat map 312 may be generated to indicate the areas of lower performance, and the vehicle(s) 102 may be dispatched (e.g., at dispatch 308) to these locations.
- the KPIs and/or metrics may be leveraged to direct planning of routes for the vehicle(s) 102 in order to capture data representative of conditions or combinations of conditions that the DNN is not as accurate at generating predictions for.
- the simulation system 400 - may generate a global simulation that simulates a virtual world or environment (e.g., a simulated environment) that may include artificial intelligence (AI) vehicles or other objects (e.g., pedestrians, animals, etc.), hardware-in-the-loop (HIL) vehicles or other objects, software-in-the-loop (SIL) vehicles or other objects, and/or person-in-the-loop (PIL) vehicles or other objects.
- AI artificial intelligence
- HIL hardware-in-the-loop
- SIL software-in-the-loop
- PIL person-in-the-loop
- the global simulation may be maintained within an engine (e.g., a game engine), or other software- development environment, that may include a rendering engine (e.g., for 2D and/or 3D graphics), a physics engine (e.g., for collision detection, collision response, etc.), sound, scripting, animation, AI, networking, streaming, memory management, threading, localization support, scene graphs, cinematics, and/or other features.
- a rendering engine e.g., for 2D and/or 3D graphics
- a physics engine e.g., for collision detection, collision response, etc.
- sound e.g., for collision detection, collision response, etc.
- physics engine e.g., for collision detection, collision response, etc.
- sound e.g., for collision detection, collision response, etc.
- scripting e.g., for collision detection, collision response, etc.
- AI e.g., for collision detection, collision response, etc.
- sound e.g., for collision
- each virtual sensor of each virtual object may include their own instance of the engine (e.g., an instance for a virtual camera, a second instance for a virtual LIDAR sensor, a third instance for another virtual LIDAR sensor, etc.).
- an instance of the engine may be used for processing sensor data for each sensor with respect to the sensor’s perception of the global simulation.
- the instance may be used for processing image data with respect to the camera’s field of view in the simulated environment.
- IMU sensor the instance may be used for processing IMU data (e.g., representative of orientation) for the object in the simulated environment.
- AI e.g., hots
- vehicles or other objects may include pedestrians, animals, third- party vehicles, vehicles, and/or other object types.
- the AI objects in the simulated environment may be controlled using artificial intelligence (e.g., machine learning such as neural networks, rules-based control, a combination thereof, etc.) in a way that simulates, or emulates, how corresponding real-world objects would behave.
- artificial intelligence e.g., machine learning such as neural networks, rules-based control, a combination thereof, etc.
- the rules, or actions, for AI objects may be learned from one or more HIL objects, SIL objects, and/or PIL objects.
- the bot may be trained to act like a pedestrian in any of a number of different situations or environments (e.g., running, walking, jogging, not paying attention, on the phone, raining, snowing, in a city, in a suburban area, in a rural community, etc.).
- the simulated environment is used for testing vehicle performance (e.g., for HIL or SIL embodiments)
- the bot e.g., the pedestrian
- the bot may behave as a real-world pedestrian would (e.g., by jaywalking in rainy or dark conditions, failing to heed stop signs or traffic lights, etc.), in order to more accurately simulate a real-world environment.
- This method may be used for any AI bot in the simulated environment, such as vehicles, bicyclists, or motorcycles, whose AI hots may also be trained to behave as real- world objects would (e.g., weaving in and out of traffic, swerving, changing lanes with no signal or suddenly, braking unexpectedly, etc.).
- the AI objects that may be distant from the vehicle of interest may be represented in a simplified form - such as a radial distance function, or list of points at known positions in a plane, with associated instantaneous motion vectors.
- the AI objects may be modeled similarly to how AI agents may be modeled in videogame engines.
- HIL vehicles or objects may use hardware that is used in the physical vehicles or objects to at least assist in some of the control of the HIL vehicles or objects in the simulated environment.
- a vehicle controlled in a HIL environment may use one or more SoCs 1104 (FIG.l 1C), CPU(S) 1118, GPU(s) 1120, etc. in a data flow loop for controlling the vehicle in the simulated environment.
- the hardware from the vehicles may be an NVIDIA DRIVE AGX PegasusTM compute platform and/or an NVIDIA DRIVE PX XavierTM compute platform.
- the vehicle hardware e.g., vehicle hardware 104) may include some or all of the components and/or functionality described in U.S. Non-Provisional Application No.
- control decisions may be generated using the hardware that is configured for installation within a real-world autonomous vehicle (e.g., the vehicle 102) to execute at least a portion of a software stack(s) 116 (e.g., an autonomous driving software stack).
- a software stack(s) 116 e.g., an autonomous driving software stack
- SIL vehicles or objects may use software to simulate or emulate the hardware from the HIL vehicles or objects.
- software, hardware, or a combination thereof may be used to simulate or emulate the actual hardware (e.g., simulate the SoC(s) 1104).
- PIL vehicles or objects may use one or more hardware components that allow a remote operator (e.g., a human, a robot, etc.) to control the PIL vehicle or object within the simulated environment.
- a remote operator e.g., a human, a robot, etc.
- a person or robot may control the PIL vehicle using a remote control system (e.g., including one or more pedals, a steering wheel, a VR system, etc.), such as the remote control system described in U.S. Non-Provisional Application No. 16/366,506, filed on March 27, 2019, and hereby incorporated by reference in its entirety.
- the remote operator may control autonomous driving level 0, 1, or 2 (e.g., according to the Society of Automotive Engineers document J3016) virtual vehicles using a VR headset and a CPU(s) (e.g., an X86 processor), a GPU(s), or a combination thereof.
- the remote operator may control advanced AI-assisted level 2, 3, or 4 vehicles modeled using one or more advanced SoC platforms.
- the PIL vehicles or objects may be recorded and/or tracked, and the recordings and/or tracking data may be used to train or otherwise at least partially contribute to the control of AI objects, such as those described herein.
- FIG. 4A is an example illustration of a simulation system 400A, in accordance with some embodiments of the present disclosure.
- the simulation system 400 A may generate a simulated environment 410 that may include AI objects 412 (e.g., AI objects 412A and 412B), HIL objects 414, SIL objects 416, PIL objects 418, and/or other object types.
- the simulated environment 410 may include features of a driving environment, such as roads, bridges, tunnels, street signs, stop lights, crosswalks, buildings, trees and foliage, the sun, the moon, reflections, shadows, etc., in an effort to simulate a real-world environment accurately within the simulated environment 410.
- the features of the driving environment within the simulated environment 410 may be more true-to-life by including chips, paint, graffiti, wear and tear, damage, etc.
- the simulated environment may include an indoor environment (e.g., for a robot, a drone, etc.), an aerial environment (e.g., for a UAV, a drone, an airplane, etc.), an aquatic environment (e.g., for a boat, a ship, a submarine, etc.), and/or another environment type.
- the simulated environment 410 may be generated using virtual data, real-world data, or a combination thereof.
- the simulated environment may include real- world data augmented or changed using virtual data to generate combined data that may be used to simulate certain scenarios or situations with different and/or added elements (e.g., additional AI objects, environmental features, weather conditions, etc.).
- pre- recorded video may be augmented or changed to include additional pedestrians, obstacles, and/or the like, such that the virtual objects (e.g., executing the software stack(s) 116 as HIL objects and/or SIL objects) may be tested against variations in the real-world data.
- the simulated environment may be generated using rasterization, ray-tracing, using DNNs such as generative adversarial networks (GANs), another rendering technique, and/or a combination thereof.
- DNNs such as generative adversarial networks (GANs), another rendering technique, and/or a combination thereof.
- GANs generative adversarial networks
- the simulation system 400A may use real-time ray-tracing.
- one or more hardware accelerators may be used by the simulation system 400A to perform real-time ray-tracing.
- the ray-tracing may be used to simulate LIDAR sensor for accurate generation of LIDAR data. For example, ray casting may be used in an effort to simulate LIDAR reflectivity.
- ray-tracing techniques used by the simulation system 400A may include one or more techniques described in U.S. Provisional Patent Application No. 62/644, 385, filed March 17, 2018, U.S. Provisional Patent Application No. 62/644,386, filed March 17, 2018, U.S. Provisional Patent Application No. 62/644,601, filed March 19, 2018, and U.S. Provisional Application No. 62/644,806, filed March 19, 2018, U.S. Non-Provisional Patent Application No. 16/354,983, filed on March 15, 2019, and/or U.S. Non-Provisional Patent Application No. 16/355,214, filed on March 15, 2019, each of which is hereby incorporated by reference in its entirety.
- the simulated environment may be rendered, at least in part, using one or more DNNs, such as generative adversarial neural networks (GANs).
- DNNs such as generative adversarial neural networks
- real-world data may be collected, such as real-world data captured by autonomous vehicles (e.g., camera(s), LIDAR sensor(s), RADAR sensor(s), etc.), robots, and/or other objects, as well as real-world data that may be captured by any sensors (e.g., images or video pulled from data stores, online resources such as search engines, etc.).
- the real- world data may then be segmented, classified, and/or categorized, such as by labeling differing portions of the real-world data based on class (e.g., for an image of a landscape, portions of the image - such as pixels or groups of pixels - may be labeled as car, sky, tree, road, building, water, waterfall, vehicle, bus, truck, sedan, etc.).
- a GAN (or other DNN) may then be trained using the segmented, classified, and/or categorized data to generate new versions of the different types of objects, landscapes, and/or other features as graphics within the simulated environment.
- the simulator component(s) 402 of the simulation system 400 may communicate with vehicle simulator component s) 406 over a wired and/or wireless connection.
- the connection may be a wired connection using one or more sensor switches 408, where the sensor switches may provide low-voltage differential signaling (LVDS) output.
- LVDS low-voltage differential signaling
- the sensor data e.g., image data
- the simulator component(s) 402 may include any number of compute nodes (e.g., computers, servers, etc.) interconnected in order to ensure synchronization of the world state.
- the communication between each of the compute nodes may be managed by a distributed shared memory (DSM) system (e.g., DSM 424 of FIG. 4C) using a distributed shared memory protocol (e.g., a coherence protocol).
- DSM distributed shared memory
- the DSM may include a combination of hardware (cache coherence circuits, network interfaces, etc.) and software.
- This shared memory architecture may separate memory into shared parts distributed among nodes and main memory, or distributing all memory between all nodes.
- IB InfiniBand
- the communication between and among different nodes of the simulation system 400 (and/or 600) may use IB.
- the simulator component s) 402 may include one or more GPUs 404.
- the virtual vehicle being simulated may include any number of sensors (e.g., virtual or simulated sensors) that may correspond to one or more of the sensors described herein at least with respect to FIGs. 11 A-l 1C.
- each sensor of the vehicle may correspond to, or be hosted by, one of the GPUs 404.
- processing for a LIDAR sensor may be executed on a first GPU 404
- processing for a wide-view camera may be executed on a second GPU 404
- processing for a RADAR sensor may be executed on a third GPU, and so on.
- each sensor with respect to the simulated environment may be capable of executing in parallel with each other sensor using a plurality of GPUs 404 to enable real-time simulation.
- two or more sensors may correspond to, or be hosted by, one of the GPUs 404.
- the two or more sensors may be processed by separate threads on the GPU 404 and may be processed in parallel.
- the processing for a single sensor may be distributed across more than one GPU.
- one or more TPUs, CPUs, and/or other processor types may be used for processing the sensor data.
- Vehicle simulator components 406 may include a compute node of the simulation system 400A that corresponds to a single vehicle represented in the simulated environment 410. Each other vehicle (e.g., 414, 418, 416, etc.) may include a respective node of the simulation system. As a result, the simulation system 400A may be scalable to any number of vehicles or objects as each vehicle or object may be hosted by, or managed by, its own node in the system 400A. In the illustration of FIG. 4A, the vehicle simulator component(s) 406 may correspond to a HIL vehicle (e.g., because the vehicle hardware 104 is used). However, this is not intended to be limiting and, as illustrated in FIG.
- the simulation system 400 may include SIL vehicles, HIL vehicles, PIL vehicles, and/or AI vehicles.
- the simulator component s) 402 e.g., simulator host device
- the simulator component s) 402 may include one or more compute nodes of the simulation system 400A, and may host the simulation of the environment with respect to each actor (e.g., with respect to each HIL, SIL, PIL, and AI actors), as well as hosting the rendering and management of the environment or world state (e.g., the road, signs, trees, foliage, sky, sun, lighting, etc.).
- the simulator component(s) 402 may include a server(s) and associated components (e.g., CPU(s), GPU(s), computers, etc.) that may host a simulator (e.g., NVIDIA’s DRIVETM Constellation AV Simulator).
- a simulator e.g., NVIDIA’s DRIVETM Constellation AV Simulator.
- the vehicle hardware 104 may correspond to the vehicle hardware 104 of FIG. 1 that may be used in the physical vehicle 102. However, in the simulation system 400 A, the vehicle hardware 104 may be incorporated into the vehicle simulator component(s) 406. As such, because the vehicle hardware 104 may be configured for installation within the vehicle 102, the simulation system 400 A may be specifically configured to use the vehicle hardware 104 within a node (e.g., of a server platform) of the simulation system 400 A. For example, similar interfaces used in the physical vehicle 102 may need to be used by the vehicle simulator component(s) 406 to communicate with the vehicle hardware 104.
- a node e.g., of a server platform
- the interfaces may include: (1) CAN interfaces, including a PCAN adapter, (2) Ethernet interfaces, including RAW UDP sockets with IP address, origin, VLA, and/or source IP all preserved, (3) Serial interfaces, with a USB to serial adapter, (4) camera interfaces, (5) InfiniBand (IB) interfaces, and/or other interface types.
- CAN interfaces including a PCAN adapter
- Ethernet interfaces including RAW UDP sockets with IP address, origin, VLA, and/or source IP all preserved
- Serial interfaces with a USB to serial adapter
- camera interfaces with a USB to serial adapter
- IB InfiniBand
- the sensor data may be used by the software stack(s) 116 (e.g., the autonomous driving software stack) executed on the vehicle hardware 104 to perform one or more operations (e.g., generate one or more controls, route planning, detecting objects, identifying drivable free- space, monitoring the environment for obstacle avoidance, etc.).
- the software stack(s) 116 e.g., the autonomous driving software stack
- the vehicle hardware 104 may perform one or more operations (e.g., generate one or more controls, route planning, detecting objects, identifying drivable free- space, monitoring the environment for obstacle avoidance, etc.).
- the identical, or substantially identical, hardware components used by the vehicle 102 e.g., a physical vehicle
- the vehicle hardware 104 in the simulation system 400A thus provides for a more accurate simulation of how the vehicle 102 will perform in real-world situations, scenarios, and environments without having to actually find and test the vehicle 102 in the real-world. This may reduce the amount of driving time required for testing the hardware/software combination used in the physical vehicle 102 and may reduce safety risks by not requiring actual real-world testing (especially for dangerous situations, such as other vehicles driving erratically or at unsafe speeds, children playing in the street, ice on a bridge, etc.).
- the vehicle simulator component(s) 406 may manage the simulation of the vehicle (or other object) using additional hardware, such as a computer - e.g., an X86 box.
- additional processing for virtual sensors of the virtual object may be executed using the vehicle simulation component s) 406.
- at least some of the processing may be performed by the simulator component(s) 402, and other of the processing may be executed by the vehicle simulator component(s) 406 (or 420, or 422, as described herein).
- the processing of the virtual sensors may be executed entirely on the vehicle simulator component(s) 406.
- FIG. 4B is another example illustration of a simulation system 400B, in accordance with some embodiments of the present disclosure.
- the simulation system 400B may include the simulator component(s) 402 (as one or more compute nodes), the vehicle simulator component(s) 406 (as one or more compute nodes) for a HIL object(s), the vehicle simulator components) 420 (as one or more compute nodes) for a SIL object(s), the vehicle simulator component s) 406 (as one or more compute nodes) for a PIL object(s), and/or additional component(s) (or compute nodes) for AI objects and/or other object types.
- Each of the PIL, HIL, SIL, AI, and/or other object type compute nodes may communicate with the simulator component(s) 402 to capture from the global simulation at least data that corresponds to the respective object within the simulate environment 410.
- the vehicle simulator component s) 422 may receive (e.g., retrieve, obtain, etc.), from the global simulation (e.g., represented by the simulated environment 410) hosted by the simulator component(s) 402, data that corresponds to, is associated with, and/or is required by the vehicle simulator component(s) 422 to perform one or more operations by the vehicle simulator component(s) 422 for the PIL object.
- data e.g., virtual sensor data corresponding to a field(s) of view of virtual camera(s) of the virtual vehicle, virtual LIDAR data, virtual RADAR data, virtual location data, virtual IMU data, etc.
- corresponding to each sensor of the PIL object may be received from the simulator component(s) 402.
- This data may be used to generate an instance of the simulated environment corresponding to the field of view of a remote operator of the virtual vehicle controlled by the remote operator, and the portion of the simulated environment may be projected on a display (e.g., a display of a VR headset, a computer or television display, etc.) for assisting the remote operator in controlling the virtual vehicle through the simulated environment 410.
- the controls generated or input by the remote operator using the vehicle simulator component(s) 422 may be transmitted to the simulator components) 402 for updating a state of the virtual vehicle within the simulated environment 410.
- the vehicle simulator components) 420 may receive (e.g., retrieve, obtain, etc.), from the global simulation hosted by the simulator component s) 402, data that corresponds to, is associated with, and/or is required by the vehicle simulator component(s) 420 to perform one or more operations by the vehicle simulator component(s) 420 for the SIL object.
- data e.g., virtual sensor data corresponding to a field(s) of view of virtual camera(s) of the virtual vehicle, virtual LIDAR data, virtual RADAR data, virtual location data, virtual IMU data, etc.
- data e.g., virtual sensor data corresponding to a field(s) of view of virtual camera(s) of the virtual vehicle, virtual LIDAR data, virtual RADAR data, virtual location data, virtual IMU data, etc.
- This data may be used to generate an instance of the simulated environment for each sensor (e.g., a first instance from a field of view of a first virtual camera of the virtual vehicle, a second instance from a field of view of a second virtual camera, a third instance from a field of view of a virtual LIDAR sensor, etc.).
- the instances of the simulated environment may thus be used to generate sensor data for each sensor by the vehicle simulator component s) 420.
- the sensor data may be encoded using one or more codecs (e.g., each sensor may use its own codec, or each sensor type may use its own codec) in order to generate encoded sensor data that may be understood or familiar to an autonomous driving software stack simulated or emulated by the vehicle simulator component(s) 420.
- a first vehicle manufacturer may use a first type of LIDAR data
- a second vehicle manufacturer may use a second type of LIDAR data, etc.
- the codecs may customize the sensor data to the types of sensor data used by the manufacturers.
- the simulation system 400 may be universal, customizable, and/or useable by any number of different sensor types depending on the types of sensors and the corresponding data types used by different manufacturers.
- the sensor data and/or encoded sensor data may be used by an autonomous driving software stack to perform one or more operations (e.g., object detection, path planning, control determinations, actuation types, etc.).
- the sensor data and/or encoded data may be used as inputs to one or more DNNs of the autonomous driving software stack, and the outputs of the one or more DNNs may be used for updating a state of the virtual vehicle within the simulated environment 410.
- the reliability and efficacy of the autonomous driving software stack, including one or more DNNs may be tested, fine-tuned, verified, and/or validated within the simulated environment.
- the vehicle simulator component(s) 406 may receive (e.g., retrieve, obtain, etc.), from the global simulation hosted by the simulator component(s) 402, data that corresponds to, is associated with, and/or is required by the vehicle simulator component(s) 406 to perform one or more operations by the vehicle simulator component(s) 406 for the HIL object.
- data e.g., virtual sensor data corresponding to a field(s) of view of virtual camera(s) of the virtual vehicle, virtual LIDAR data, virtual RADAR data, virtual location data, virtual IMU data, etc.
- data e.g., virtual sensor data corresponding to a field(s) of view of virtual camera(s) of the virtual vehicle, virtual LIDAR data, virtual RADAR data, virtual location data, virtual IMU data, etc.
- This data may be used to generate an instance of the simulated environment for each sensor (e.g., a first instance from a field of view of a first virtual camera of the virtual vehicle, a second instance from a field of view of a second virtual camera, a third instance from a field of view of a virtual LIDAR sensor, etc.).
- the instances of the simulated environment may thus be used to generate sensor data for each sensor by the vehicle simulator component(s) 420.
- the sensor data may be encoded using one or more codecs (e.g., each sensor may use its own codec, or each sensor type may use its own codec) in order to generate encoded sensor data that may be understood or familiar to an autonomous driving software stack executing on the vehicle hardware 104 of the vehicle simulator component(s) 420. Similar to the SIL object described herein, the sensor data and/or encoded sensor data may be used by an autonomous driving software stack to perform one or more operations (e.g., object detection, path planning, control determinations, actuation types, etc.).
- operations e.g., object detection, path planning, control determinations, actuation types, etc.
- FIG. 4C is another example illustration of a simulation system 400C, in accordance with some embodiments of the present disclosure.
- the simulation system 400C may include distributed shared memory (DSM) system 242, the simulator component(s) 402 (as one or more compute nodes), the vehicle simulator component(s) 406 (as one or more compute nodes) for a HIL object(s), the vehicle simulator component(s) 420 (as one or more compute nodes) for a SIL object(s), the vehicle simulator component(s) 406 (as one or more compute nodes) for a PIL object(s), and/or additional component s) (or compute nodes) for AI objects and/or other object types (not shown).
- DSM distributed shared memory
- the simulation system 400C may include any number of HIL objects (e.g., each including its own vehicle simulator component(s) 406), any number of SIL objects (e.g., each including its own vehicle simulator components) 420), any number of PIL objects (e.g., each including its own vehicle simulator component(s) 422), and/or any number of AI objects (not shown, but may be hosted by the simulation components) 402 and/or separate compute nodes, depending on the embodiment).
- HIL objects e.g., each including its own vehicle simulator component(s) 406
- SIL objects e.g., each including its own vehicle simulator components
- PIL objects e.g., each including its own vehicle simulator component(s) 422
- AI objects not shown, but may be hosted by the simulation components 402 and/or separate compute nodes, depending on the embodiment.
- the vehicle simulator component(s) 406 may include one or more SoC(s) 1104 (or other components) that may be configured for installation and use within a physical vehicle. As such, as described herein, the simulation system 400C may be configured to use the SoC(s) 1104 and/or other vehicle hardware 104 by using specific interfaces for communicating with the SoC(s) 1104 and/or other vehicle hardware.
- the vehicle simulator component s) 420 may include one or more software instances 430 that may be hosted on one or more GPUs and/or CPUs to simulate or emulate the SoC(s) 1104.
- the vehicle simulator component s) 422 may include one or more SoC(s) 426, one or more CPU(s) 428 (e.g., X86 boxes), and/or a combination thereof, in addition to the component s) that may be used by the remote operator (e.g., keyboard, mouse, joystick, monitors, VR systems, steering wheel, pedals, in-vehicle components, such as light switches, blinkers, HMI display(s), etc., and/or other component(s)).
- the simulation component(s) 402 may include any number of CPU(s) 432 (e.g., X86 boxes), GPU(s), and/or a combination thereof.
- the CPU(s) 432 may host the simulation software for maintaining the global simulation, and the GPU(s) 434 may be used for rendering, physics, and/or other functionality for generating the simulated environment 410.
- the simulation system 400C may include the DSM 424.
- the DSM 424 may use one or more distributed shared memory protocols to maintain the state of the global simulation using the state of each of the objects (e.g., HIL objects, SIL objects, PIL objects, AI objects, etc.).
- each of the compute nodes corresponding to the vehicle simulator component(s) 406, 420, and/or 422 may be in communication with the simulation component s) 402 via the DSM 424.
- real-time simulation may be possible.
- the simulation system 400 may use a distributed shared memory protocol to maintain the state of the global simulation and each instance of the simulation (e.g., by each vehicle, object, and/or sensor) in real-time.
- network protocols e.g., TCP, UDP, etc.
- MMO massive multiplayer online
- FIG. 4D is an example illustration of a hardware-in-the- loop configuration, in accordance with some embodiments of the present disclosure.
- the vehicle simulator component(s) 406 may include the vehicle hardware 104, as described herein, and may include one or more computers) 436, one or more GPU(s) (not shown), and/or one or more CPU(s) (not shown).
- the computer(s) 436, GPU(s), and/or CPU(s) may manage or host the simulation software 438, or instance thereof, executing on the vehicle simulator component(s) 406.
- the vehicle hardware 104 may execute the software stack(s) 116 (e.g., an autonomous driving software stack, an IX software stack, etc.).
- the other vehicle simulator component(s) 406 within the simulation environment 400 may need to be configured for communication with the vehicle hardware 104.
- the vehicle hardware 104 may be configured for installation within a physical vehicle (e.g., the vehicle 102)
- the vehicle hardware 104 may be configured to communicate over one or more connection types and/or communication protocols that are not standard in computing environments (e.g., in server-based platforms, in general-purpose computers, etc.).
- a CAN interface, LVDS interface, USB interface, Ethernet interface, InfiniBand (IB) interface, and/or other interfaces may be used by the vehicle hardware 104 to communicate signals with other components of the physical vehicle.
- the vehicle simulator component s) 406 (and/or other component(s) of the simulation system 400 in addition to, or alternative from, the vehicle simulator component(s) 406) may need to be configured for use with the vehicle hardware 104.
- one or more CAN interfaces, LVDS interfaces, USB interfaces, Ethernet interfaces, and/or other interface may be used to provide for communication (e.g., over one or more communication protocols, such as LVDS) between vehicle hardware 104 and the other component(s) of the simulation system 400.
- the virtual vehicle that may correspond to the vehicle simulator component(s) 406 within the simulation system 400 may be modeled as a game object within an instance of a game engine.
- each of the virtual sensors of the virtual vehicle may be interfaced using sockets within the virtual vehicle’s software stack(s) 116 executed on the vehicle hardware 104.
- each of the virtual sensors of the virtual vehicle may include an instance of the game engine, in addition to the instance of the game engine associated with the simulation software 438 for the virtual vehicle.
- the vehicle simulator component(s) 406 include a plurality of GPUs
- each of the sensors may be executed on a single GPU. In other examples, multiple sensors may be executed on a single GPU, or at least as many sensors as feasible to ensure real-time generation of the virtual sensor data.
- HIL objects in the simulator system 400 may provide for a scalable solution that may simulate or emulate various driving conditions for autonomous software and hardware systems (e.g., NVIDIA’s DRIVE AGX PegasusTM compute platform and/or DRIVE PX XavierTM compute platform).
- autonomous software and hardware systems e.g., NVIDIA’s DRIVE AGX PegasusTM compute platform and/or DRIVE PX XavierTM compute platform.
- HIL objects may include the ability to test DNNs faster than real-time, the ability to scale verification with computing resources (e.g., rather than vehicles or test tracks), the ability to perform deterministic regression testing (e.g., the real-world environment is never the same twice, but a simulated environment can be), optimal ground truth labeling (e.g., no hand-labeling required), the ability to test scenarios difficult to produce in the real-world, rapid generation of test permutations, and the ability to test a larger space of permutations in simulation as compared to real-world.
- FIG. 4E is an example illustration of a hardware-in-the- loop configuration, in accordance with some embodiments of the present disclosure.
- the HIL configuration of FIG. 4E may include vehicle simulator component(s) 406, including the SoC(s) 1104, a chassis fan(s) 456 and/or water-cooling system.
- the HIL configuration may include a two-box solution (e.g., the simulator components) 402 in a first box and the vehicle simulator component(s) 406 in a second box).
- the vehicle simulator component(s) 406 may include one or more GPUs 452 (e.g., NVIDIA QUADRO GPU(s)) that may provide, in an example, non-limiting embodiment, 8 DP/HDMI video streams that may be synchronized using sync component(s) 454 (e.g., through a QUADRO Sync II Card).
- GPUs 452 e.g., NVIDIA QUADRO GPU(s)
- 8 DP/HDMI video streams may be synchronized using sync component(s) 454 (e.g., through a QUADRO Sync II Card).
- the vehicle simulator component(s) 406 may include a network interface (e.g., one or more network interface cards (NICs) 450) that may simulate or emulate RADAR sensors, LIDAR sensors, and/or IMU sensors (e.g., by providing 8 Gigabit ports with precision time protocol (PTP) support).
- NICs network interface cards
- IMU sensors e.g., by providing 8 Gigabit ports with precision time protocol (PTP) support
- the vehicle simulator component(s) 406 may include an input/output (TO) analog integrated circuit.
- Registered Jack (RJ) interfaces e.g., RJ45
- high speed data (HSD) interfaces USB interfaces
- PPS pulse per second
- Ethernet e.g., lOGb Ethernet (GbE)
- CAN e.g., CAN interfaces
- HDMI interfaces e.g., HDMI interfaces, and/or other interface types
- FIG. 4F is an example illustration of a software-in-the- loop configuration, in accordance with some embodiments of the present disclosure.
- the vehicle simulator component(s) 420 may include computers) 440, GPU(s) (not shown), CPU(s) (not shown), and/or other components.
- the computer(s) 440, GPU(s), and/or CPU(s) may manage or host the simulation software 438, or instance thereof, executing on the vehicle simulator components) 420, and may host the software stack(s) 116.
- the vehicle simulator component s) 420 may simulate or emulate, using software, the vehicle hardware 104 in an effort to execute the software stack(s) 116 as accurately as possible.
- the vehicle simulator component s) 420 may be configured to communicate over one or more virtual connection types and/or communication protocols that are not standard in computing environments.
- a virtual CAN interface, virtual LVDS interface, virtual USB interface, virtual Ethernet interface, and/or other virtual interfaces may be used by the computers) 440, CPU(s), and/or GPU(s) of the vehicle simulator component(s) 420 to provide for communication (e.g., over one or more communication protocols, such as LVDS) between the software stack(s) 116 and the simulation software 438 within the simulation system 400.
- the virtual interfaces may include middleware that may be used to provide a continuous feedback loop with the software stack(s) 116.
- the virtual interfaces may simulate or emulate the communications between the vehicle hardware 104 and the physical vehicle using one or more software protocols, hardware (e.g., CPU(s), GPU(s), computer(s) 440, etc.), or a combination thereof.
- the computer(s) 440 in some examples, may include X86 CPU hardware, and one or more X86 CPUs may execute both the simulation software 438 and the software stack(s) 116.
- the computer(s) 440 may include GPU hardware (e.g., an NVIDIA DGX system and/or cloud-based NVIDIA Tesla servers).
- the virtual vehicle that may correspond to the vehicle simulator component(s) 420 within the simulation system 400 may be modeled as a game object within an instance of a game engine.
- each of the virtual sensors of the virtual vehicle may be interfaced using sockets within the virtual vehicle’s software stack(s) 116 executed on the vehicle simulator component(s) 420.
- each of the virtual sensors of the virtual vehicle may include an instance of the game engine, in addition to the instance of the game engine associated with the simulation software 438 for the virtual vehicle.
- the vehicle simulator components) 406 include a plurality of GPUs, each of the sensors may be executed on a single GPU. In other examples, multiple sensors may be executed on a single GPU, or at least as many sensors as feasible to ensure real-time generation of the virtual sensor data.
- each block of method 500 comprises a computing process that may be performed using any combination of hardware, firmware, and/or software. For instance, various functions may be carried out by a processor executing instructions stored in memory.
- the method may also be embodied as computer- usable instructions stored on computer storage media.
- the method may be provided by a standalone application, a service or hosted service (standalone or in combination with another hosted service), or a plug-in to another product, to name a few.
- method 500 is described, by way of example, with respect to the simulation system 400 of FIGs. 4A-4C. However, the method may additionally or alternatively be executed by any one system, or any combination of systems, including, but not limited to, those described herein.
- FIG. 5 is a flow diagram showing a method 500 for generating a simulated environment using a hardware-in- the- loop object, in accordance with some embodiments of the present disclosure.
- the method 500 includes transmitting, from a first hardware component to a second hardware component, simulation data.
- simulation component(s) 402 may transmit simulation data to one or more of the vehicle simulator component(s) 406, the vehicle simulator component(s) 420, and/or the vehicle simulator component(s) 422.
- the simulation data may be representative of at least a portion of the simulated environment 410 hosted by the simulation component(s) 402, and may correspond to the simulated environment 410 with respect to at least one virtual sensor of a virtual object (e.g., a HIL object, a SIL object, a PIL object, and/or an AI object).
- a virtual object e.g., a HIL object, a SIL object, a PIL object, and/or an AI object.
- the simulation data may correspond to at least the data from the simulation necessary to generate a field of view of the virtual camera within the simulated environment 410.
- the method 500 includes receiving a signal by the first hardware component and from the second hardware component.
- the simulator component(s) 402 may receive a signal from one of the vehicle simulator component s) 406, the vehicle simulator component s) 420, and/or the vehicle simulator component s) 422.
- the signal may be representative of an operation (e.g., control, path planning, object detection, etc.) corresponding to a virtual object (e.g., a HIL object, a SIL object, a PIL object, and/or an AI object) as determined by a software stack(s) 116.
- a virtual object e.g., a HIL object, a SIL object, a PIL object, and/or an AI object
- the signal (or data represented thereby) may be transmitted from the vehicle hardware 104 to one or more other vehicle simulator component(s) 406, and then the vehicle simulator component(s) 406 may transmit the signal to the simulator component(s) 402.
- the signals between the vehicle simulator component(s) 406 e.g., between the vehicle hardware 104 and one or more GPU(s), CPU(s), and/or computer(s) 436) may be transmitted via a CAN interface, a USB interface, an LVDS interface, an Ethernet interface, and/or another interface.
- the signal (or data represented thereby) may be transmitted from the vehicle simulator component(s) 420 to the simulator component(s) 402, where the data included in the signal may be generated by the software stack(s) 116 executing on simulated or emulated vehicle hardware 104.
- the vehicle simulator component s) 420 may use a virtual CAN, a virtual LVDS interface, a virtual USB interface, a virtual Ethernet interface, and/or other virtual interfaces.
- the method 500 includes updating, by the first hardware component, one or more attributes of a virtual object within a simulated environment. For example, based at least in part on the signal received from the vehicle simulator component(s) 406, the vehicle simulator component s) 420, and/or the vehicle simulator component(s) 422, the simulator component(s) 402 may update the global simulation (and the simulated environment may be updated accordingly). In some examples, the data represented by the signal may be used to update a location, orientation, speed, and/or other attributes of the virtual object hosted by the vehicle simulator component(s) 406, the vehicle simulator component s) 420, and/or the vehicle simulator component(s) 422.
- FIG. 6A is an example illustration of a simulation system 600 at runtime, in accordance with some embodiments of the present disclosure.
- Some or all of the components of the simulation system 600 may be used in the simulation system 400, and some or all of the components of the simulation system 400 may be used in the simulation system 600.
- components, features, and/or functionality described with respect to the simulation system 400 may be associated with the simulation system 600, and vice versa.
- each of the simulation systems 600A and 600B (FIG. 6B) may include similar and/or shared components, features, and/or functionality.
- the simulation system 600A may include the simulator component s) 402, codec(s) 614, content data store(s) 602, scenario data store(s) 604, vehicle simulator component(s) 420 (e.g., for a SIL object), and vehicle simulator component(s) 406 (e.g., for a HIL object).
- the content data store(s) 602 may include detailed content information for modeling cars, trucks, people, bicyclists, signs, buildings, trees, curbs, and/or other features of the simulated environment.
- the scenario data store(s) 604 may include scenario information that may include dangerous scenario information (e.g., that is unsafe to test in the real-world environment), such as a child in an intersection.
- the simulator component(s) 402 may include an AI engine 608 that simulates traffic, pedestrians, weather, and/or other AI features of the simulated environment.
- the simulator component(s) 402 may include a virtual world manager 610 that manages the world state for the global simulation.
- the simulator component(s) 402 may further include a virtual sensor manger 612 that may mange the virtual sensors.
- the AI engine 608 may model traffic similar to how traffic is modeled in an automotive video game, and may be done using a game engine, as described herein.
- custom AI may be used to provide the determinism and computational level of detail necessary for large-scale reproducible automotive simulation.
- traffic may be modeled using SIL objects, HIL objects, PIL objects, AI objects, and/or combination thereof.
- the system 600 may create a subclass of an AI controller that examines map data, computes a route, and drives the route while avoiding other cars.
- the AI controller may compute desired steering, acceleration, and/or braking, and may apply those values to the virtual objects.
- the vehicle properties used may include mass, max RPM, torque curves, and/or other properties.
- a physics engine may be used to determine states of AI objects. As described herein, for vehicles or other objects that may be far away and may not have an impact on a current sensor(s), the system may choose not to apply physics for those objects and only determine locations and/or instantaneous motion vectors. Ray-casting may be used for each wheel to ensure that the wheels of the vehicles are in contact.
- traffic AI may operate according to a script (e.g., rules-based traffic).
- Traffic AI maneuvers for virtual objects may include lateral lane changes (e.g., direction, distance, duration, shape, etc.), longitudinal movement (e.g., matching speed, relative target, delta to target, absolute value), route following, and/or path following.
- the triggers for the traffic AI maneuvers may be time-based (e.g., three seconds), velocity-based (e.g., at sixty mph), proximity- based to map (e.g., within twenty feet of intersection), proximity-based to actor (e.g., within twenty feet of another object), lane clear, and/or others.
- the AI engine 608 may model pedestrian AI similar to traffic AI, described herein, but for pedestrians.
- the pedestrians may be modeled similar to real pedestrians, and the system 600 may infer pedestrian conduct based on learned behaviors.
- the simulator component s) 402 may be used to adjust the time of day such that street lights turn on and off, headlights turn on and off, shadows, glares, and/or sunsets are considered, etc. In some examples, only lights within a threshold distance to the virtual object may be considered to increase efficiency.
- Weather may be accounted for by the simulator component(s) 402 (e.g., by the virtual world manager 610).
- the weather may be used to update the coefficients of friction for the driving surfaces, and temperature information may be used to update tire interaction with the driving surfaces.
- the system 600 may generate meshes to describe where rainwater and snow may accumulate based on the structure of the scene, and the meshes may be employed when rain or snow are present in the simulation.
- the simulator component(s) 402 may alternatively be included in the vehicle simulator component(s) 420 and/or 406.
- the vehicle simulator components) 420 and/or the vehicle simulator component(s) 406 may include the virtual sensor manager 612 for managing each of the sensors of the associated virtual object.
- one or more of the codecs 614 may be included in the vehicle simulator component(s) 420 and/or the vehicle simulator component(s) 406.
- the virtual sensor manager 612 may generate sensor data corresponding to a sensor of the virtual object, and the sensor data may be used by sensor emulator 616 of the codec(s) 614 to encode the sensor data according to the sensor data format or type used by the software stack(s) 116 (e.g., the software stack(s) 116 executing on the vehicle simulator component(s) 420 and/or the vehicle simulator component(s) 406).
- the software stack(s) 116 e.g., the software stack(s) 116 executing on the vehicle simulator component(s) 420 and/or the vehicle simulator component(s) 406.
- the codec(s) 614 may provide an interface to the software stack(s) 116.
- the codec(s) 614 (and/or other codec(s) described herein) may include an encoder/decoder framework.
- the codec(s) 614 may include CAN steering, throttle requests, and/or may be used to send sensor data to the software stack(s) 116 in SIL and HIL embodiments.
- the codec(s) 614 may be beneficial to the simulation systems described herein (e.g., 400 and 600). For example, as data is produced by the re-simulation systems 100 and the simulation systems 400 and 600, the data may be transmitted to the software stack(s) 116 such that the following standards may be met.
- the data may be transferred to the software stack(s) 116 such that minimal impact is introduced to the software stack(s) 116 and/or the vehicle hardware 104 (in HIL embodiments). This may result in more accurate simulations as the software stack(s) 116 and/or the vehicle hardware 104 may be operating in an environment that closely resembles deployment in a real-world environment.
- the data may be transmitted to the software stack(s) 116 such that the simulator and/or re-simulator may be agnostic to the actual hardware configuration of the system under test. This may reduce development overhead due to bugs or separate code paths depending on the simulation configuration.
- the data may be transmitted to the software stack(s) 116 such that the data may match (e.g., bit-to-bit) the data sent from a physical sensor of a physical vehicle (e.g., the vehicle 102).
- the data may be transmitted to efficiently in both SIL and HIL embodiments.
- the sensor emulator 616 may emulate at least cameras, LIDAR sensors, and/or RADAR sensors. With respect to LIDAR sensors, some LIDAR sensors report tracked objects. As such, for each frame represented by the virtual sensor data, the simulator component(s) 402 may create a list of all tracked objects (e.g., trees, vehicles, pedestrians, foliage, etc.) within range of the virtual object having the virtual LIDAR sensors, and may cast virtual rays toward the tracked objects. When a significant number of rays strike a tracked object, that object may be added to the report of the LIDAR data. In some examples, the LIDAR sensors may be modeled using simple ray-casting without reflection, adjustable field of view, adjustable noise, and/or adjustable drop-outs.
- the LIDAR sensors may be modeled using simple ray-casting without reflection, adjustable field of view, adjustable noise, and/or adjustable drop-outs.
- LIDAR with moving parts, limited fields of view, and/or variable resolutions may be simulated.
- the LIDAR sensors may be modeled as solid state LIDAR and/or as Optix-based LIDAR.
- the rays may bounce from water, reflective materials, and/or windows. Texture may be assigned to roads, signs, and/or vehicles to model laser reflection at the wavelengths corresponding to the textures.
- RADAR may be implemented similarly to LIDAR. As described herein, RADAR and/or LIDAR may be simulated using ray-tracing techniques.
- the vehicle simulator component(s) 406, 420, and/or 422 may include a feedback loop with the simulator components) 402 (and/or the component s) that generate the virtual sensor data).
- the feedback loop may be used to provide information for updating the virtual sensor data capture or generation.
- the feedback loop may be based on sensor feedback, such as changes to exposure responsive to lighting conditions (e.g., increase exposure in dim lighting conditions so that the image data may be processed by the DNNs properly).
- the feedback loop may be representative of changes to energy level (e.g., to boost energy to produce more useable or accurate LIDAR data).
- GNNS sensors e.g., GPS sensors
- the virtual sensor data may be transmitted to the software stack(s) 116 using the codec(s) 614 to be converted to a bit-to-bit correct signal (e.g., corresponding accurately to the signals generated by the physical sensors of the physical vehicles).
- One or more plugin application programming interfaces (APIs) 606 may be used.
- the plugin APIs 606 may include first-party and/or third-party plugins.
- third parties may customize the simulation system 600B using their own plugin APIs 606 for providing custom information, such as performance timings, suspension dynamics, tire dynamics, etc.
- the plugin APIs 606 may include an ego-dynamics component s) (not shown) that may receive information from the simulator components) 402 including position, velocity, car state, and/or other information, and may provide information to the simulator component(s) 402 including performance timings, suspension dynamics, tire dynamics, and/or other information.
- the simulator component(s) 402 may provide CAN throttle, steering, and the driving surface information to the ego-dynamics component(s).
- the ego-dynamics component s) may include an off-the- shelf vehicle dynamics package (e.g., IPG CARMAKER or VIRTUAL TEST DRIVE), while in other examples the ego-dynamics component(s) may be customized and/or received (e.g., from a first-party and/or a third-party).
- an off-the- shelf vehicle dynamics package e.g., IPG CARMAKER or VIRTUAL TEST DRIVE
- the ego-dynamics component(s) may be customized and/or received (e.g., from a first-party and/or a third-party).
- the plugin APIs 606 may include a key performance indicator (KPI) API.
- KPI key performance indicator
- the KPI API may receive CAN data, ground truth, and/or virtual object state information (e.g., from the software stack(s) 116) from the simulator component s) 402 and may generate and/or provide a report (in real-time) that includes KPI’s and/or commands to save state, restore state, and/or apply changes.
- FIG. 6B includes a cloud-based architecture for a simulation system 600B, in accordance with some embodiment of the present disclosure.
- the simulation system 600B may, at least partly, reside in the cloud and may communicate over one or more networks, such as but not limited to those described herein (e.g., with respect to network 1190 of FIG. 1D), with one or more GPU platforms 624 (e.g., that may include GPUs, CPUs, TPUS, and/or other processor types) and/or one or more HIL platforms 626 (e.g., which may include some or all of the components from the vehicle simulator component s) 406, described herein).
- GPU platforms 624 e.g., that may include GPUs, CPUs, TPUS, and/or other processor types
- HIL platforms 626 e.g., which may include some or all of the components from the vehicle simulator component s 406, described herein.
- a simulated environment 628 may be modeled by interconnected components including a simulation engine 630, an AI engine 632, a global illumination (GI) engine 634, an asset data store(s) 636, and/or other components.
- these component s may be used to model a simulated environment (e.g., a virtual world) in a virtualized interactive platform (e.g., similar to a massive multiplayer online (MMO) game environment.
- the simulated environment may further include physics, traffic simulation, weather simulation, and/or other features and simulations for the simulated environment.
- GI engine 634 may calculate GI once and share the calculation with each of the nodes 618(1)-618(N) and 620(l)-620(N) (e.g., the calculation of GI may be view independent).
- the simulated environment 628 may include an AI universe 622 that provides data to GPU platforms 624 (e.g., GPU servers) that may create renderings for each sensor of the vehicle (e.g., at the virtual sensor/codec(s) 618 for a first virtual object and at the virtual sensor codec(s) 620 for a second virtual object).
- the GPU platform 624 may receive data about the simulated environment 628 and may create sensor inputs for each of 618(1)- 6l8(N), 620(1 )-620(N), and/or virtual sensor/codec pairs corresponding to other virtual objects (depending on the embodiment).
- the sensor inputs may be provided to the vehicle hardware 104 which may use the software stack(s) 116 to perform one or more operations and/or generate one or more commands, such as those described herein.
- the virtual sensor data from each of the virtual sensors may be encoded using a codec prior to being used by (or transmitted to) the software stack(s) 116.
- each of the sensors may be executed on its own GPU within the GPU platform 624, while in other examples, two or more sensors may share the same GPU within the GPU platform 624.
- the one or more operations or commands may be transmitted to the simulation engine 630 which may update the behavior of one or more of the virtual objects based on the operations and/or commands.
- the simulation engine 630 may use the AI engine 632 to update the behavior of the AI agents as well as the virtual objects in the simulated environment 628.
- the simulation engine 630 may then update the object data and characteristics (e.g., within the asset data store(s) 636), may update the GI (and/or other aspects such as reflections, shadows, etc.), and then may generate and provide updated sensor inputs to the GPU platform 624. This process may repeat until a simulation is completed.
- FIG. 7 includes a data flow diagram illustrating a process 700 for re-simulation or simulation using one or more codecs, in accordance with some embodiments of the present disclosure.
- the process 700 may include a current state and/or sensor data be transmitted from the simulation and/or re-simulation to one or more codecs 704. At least some of the data (e.g., the sensor data) may then be encoded using the codec(s) 704 and provided to the software stack(s) 706 (e.g., similar to the software stack(s) 116) for a current time slice.
- the driving commands and new sensor state may then transmitted (e.g., via CAN or V-CAN) to the codec(s) 704 and back to the simulation and/or re- simulation.
- the driving commands generated originally by the software stack(s) 706 may then be passed to ego-object dynamics which may use custom or built-in dynamics to update the object state for the particular type of virtual object being simulated and the updated object state may be passed back to the simulation and/or re-simulation.
- the simulation system may use the object’s state, commands, and/or information, in addition to using traffic AI, pedestrian AI, and/or other features of the simulation platform, to generate or update the simulated environment (e.g., to a current state).
- the current state may be passed to the KPI framework (e.g., at the same time as the driving commands being passed to the ego-object dynamics 708, in some embodiments), and the KPI framework 710 may monitor and evaluate the current simulation and/or re-simulation.
- the codec(s) 704 may buffer simulation data to increase performance and/or reduce latency of the system.
- FIG. 8 includes a data flow diagram for key performance indicator (KPI) analysis and observation, in accordance with some embodiments of the present disclosure.
- KPI evaluation component may evaluate the performance of the virtual object(s) (e.g., vehicles, robots, etc.).
- Logs 806 may be generated and passed to re- simulator/simulator 804.
- the re-simulator/simulator 804 may provide sensor data to the software stack(s) 116 which may be executed using HIL, SIL, or a combination thereof.
- the KPI evaluation component 802 may use different metrics for each simulation or re- simulation instance.
- KPI evaluation component may provide access to the original re-played CAN data and/or the newly generated CAN data from the software stack(s) 116 (e.g., from HIL or SIL).
- performance could be as simple as testing that the new CAN data does not create a false positive - such as by triggering Automatic Emergency Braking (AEB), or another ADAS functionality.
- AEB Automatic Emergency Braking
- the KPI evaluation component 802 may determine whether the new CAN data triggers a blind spot warning, or a lane departure warning. As a result, the system may help reduce the false positives that plague conventional ADAS systems.
- the KPI evaluation component 802 may also determine whether the new CAN data fails to trigger a warning that should have been implemented.
- the KPI evaluation component 802 may also provide for more complex comparisons.
- the KPI evaluation component 802 may be as complex as running analytics on the two differing CAN streams to find deviations.
- the KPI evaluation component 802 may compare the new CAN data against the original CAN data, and may evaluate both trajectories to determine which trajectory would best meet the systems safety goals.
- the KPI evaluation component 802 may use one or more methods described in U.S. Provisional Application No. 62/625,351, or U.S. Non- Provisional Patent Application No. 16/256,780, each hereby incorporated by reference in its entirety.
- the KPI Evaluation component 802 may use one or of the methods described in U.S. Provisional Application No. 62/628,831, or U.S. Non- Provisional Patent Application No. 16/269,921, each hereby incorporated by reference in its entirety.
- safety procedures may be determined based on safe time of arrival calculations.
- the KPI evaluation component 802 may also use the method described in U.S. Provisional Application No. 62/622,538 or U.S. Non-Provisional Patent Application No. 16/258,272, hereby incorporated by reference in its entirety, which may be used to detect hazardous driving using machine learning.
- machine learning and deep neural networks may be used for redundancy and for path checking e.g., for a rationality checker as part of functional safety for autonomous driving. These techniques may be extended for use with the KPI evaluation component 802 to evaluate the performance of the system.
- the KPI Evaluation component may also use additional approaches to assess the performance of the system. For example, the KPI evaluation component 802 may consider whether the time to arrival (TTA) in the path of the cross-traffic is less than a threshold time - e.g. two seconds.
- the threshold may vary depending on the speed of the vehicle, road conditions, weather, traffic, and/or other variables. For example, the threshold duration may be two seconds for speeds up to twenty MPH, and one second for any greater speed. Alternatively, the threshold duration may be reduced or capped whenever the system detects hazardous road conditions such as wet roads, ice, or snow. In some examples, hazardous road conditions may be detected by a DNN trained to detect such conditions.
- the KPI evaluation component may include an API, as described herein.
- the KPI evaluation component 802 may include additional inputs and/or provide more functionality.
- the simulator may be able to share the“ground truth” for the scene, and may be able to determine the capability of the virtual object with respect to avoiding collisions, staying-in-lane, and/or performing other behaviors.
- the KPI evaluation component 802 may be more than a passive witness to the experiment, and may include an API to save the state of any ongoing simulation, change state or trigger behaviors, and continue with those changes. This may allow the KPI evaluation component to not only evaluate the car performance but to try to explore the space of potential dangerous scenarios.
- each block of methods 900 and 1000 comprises a computing process that may be performed using any combination of hardware, firmware, and/or software. For instance, various functions may be carried out by a processor executing instructions stored in memory.
- the methods may also be embodied as computer-usable instructions stored on computer storage media. The methods may be provided by a standalone application, a service or hosted service (standalone or in combination with another hosted service), or a plug-in to another product, to name a few.
- methods 900 and 1000 are described, by way of example, with respect to the re-simulation system 100 of FIG. 1, the simulation system 400 of FIGs. 4A-4C, and the simulation system 600 of FIGs. 6A-6B. However, these methods may additionally or alternatively be executed by any one system, or any combination of systems, including, but not limited to, those described herein.
- FIG. 9 is a flow diagram showing a method 900 for controlling a virtual object in a simulated environment, in accordance with some embodiments of the present disclosure.
- the method 900 includes receiving simulation data representative of a simulated environment from a simulation host device.
- the vehicle simulator component(s) 406, 420, and/or 422 may receive, from the simulator component(s) 402, simulation data representative of the simulated environment 410.
- the simulation data received may be the simulation data corresponding to the sensors of the virtual object hosted by the vehicle simulator component(s).
- the method 900 includes generating virtual sensor data for each of a dynamically configurable number of virtual sensors.
- the vehicle simulator component(s) 406, 420, and/or 422 may generate virtual sensor data using the simulation data for each of the virtual sensors of the vehicle.
- the virtual sensor data may be representative of the simulated environment 410 as perceived by at least one virtual sensor of a dynamically configurable number of virtual sensors of a virtual object within the simulated environment 410 (e.g., sensor data of a field of view of a virtual camera(s), sensor data of an orientation of the virtual vehicle using virtual IMU sensors, etc.).
- the number of virtual sensors used may be dynamically configurable such that one sensor may be used in a first simulation, five in another, ten in another, etc.
- the dynamic configuration may be determined based on vehicle types (e.g., a first vehicle of year X, make Y, model Z may include 20 sensors, while a second vehicle of year A, make B, model C may include 30 sensors).
- the simulation system 400, 600 may be dynamically configurable to generate virtual sensor data for each of the virtual sensors of each, or any vehicle in the simulated environment.
- any number of different virtual objects may be simulated within the simulated environment at any one time.
- a same or different number of virtual sensors and/or type of virtual sensors may generate virtual sensor data.
- the virtual sensor data for each virtual sensor may be representative of any other virtual objects as perceived by the respective virtual sensor.
- the simulation system 400, 600 e.g., using the DSM 424) may generate virtual sensor data for each of the virtual sensors that reflects the simulation state of the simulated environment with respect to each other virtual object. In this way, the simulation system is scalable and configurable to any number of virtual objects each having any number of virtual sensors that may each be processed in real-time.
- the method 900 includes encoding the virtual sensor data.
- the virtual sensor data may be encoded using one or more codecs (e.g., codec(s) 614) to generate encoded sensor data.
- the virtual sensor data may be encoded to a format that is familiar to the software stack(s) 116 of the virtual object.
- the method 900 includes computing, by one or more machine learning models, at least one output.
- one or more DNNs of the software stack(s) 116 may uses the encoded sensor data to generate one or more outputs (e.g., objects detections, controls, actuations, path plans, guidance, etc.).
- the software stack(s) 116 may be executed on the vehicle hardware 104 (e.g., for HIL objects), so the software and hardware used in the physical vehicle (e.g., physical vehicle) may be used in the simulation system 400 and 600 to more accurately produce results consistent with real-world deployment.
- the method 900 includes transmitting, to the simulation host device, a signal.
- the output (or data representative thereof) may be transmitted in a signal to the simulation component(s) 402 to update the global simulation, and thus the simulation environment.
- FIG. 10 is a flow diagram showing a method 1000 for controlling a virtual object in a simulated environment using machine learning models trained on physical sensor data, in accordance with some embodiments of the present disclosure.
- the method 1000 includes receiving physical sensor data generated by a physical sensor.
- the vehicle(s) 102 e.g., a physical or physical vehicle(s)
- the re-simulation and/or simulation system may receive the physical sensor data.
- the method 1000 includes training a machine learning model using the physical sensor data.
- one or more DNNs that may be used in the software stack(s) 116 may be trained using the physical sensor data. Once trained, the DNN’s may be considered trained DNNs.
- the method 1000 includes receiving virtual sensor data generated by a virtual sensor.
- the vehicle simulator component(s) 406, 420, and/or 422 may generate virtual sensor data using one or more virtual sensors and/or one or more codecs.
- the method 1000 includes applying the virtual sensor data to a trained machine learning model.
- the virtual sensor data - which may be in the same format as the physical sensor data that was used to train the machine learning model - may be applied to the trained machine learning model.
- the method 1000 includes computing an output by the trained machine learning model.
- the trained DNN may compute one or more outputs using the virtual sensor data.
- the virtual sensor data may be encoded prior to use by the trained DNN.
- the method 1000 includes controlling a virtual object within a simulated environment based at least in part on the output.
- the virtual object e.g., virtual vehicle
- the outputs may be used for control.
- the outputs may be object detection, lane detection, drivable free-space detection, safety procedure determination, etc.
- the outputs may be tested using one or more KPI’s to determine the accuracy and effectiveness of the trained DNNs in any of a number of scenarios and environments. As such, where the trained DNNs suffer, fine-tuning may be executed to improve, validate, and verify the DNNs prior to deployment of the DNNs in real-world, physical vehicles (e.g., the vehicle 102).
- FIG. 11A is an illustration of an example autonomous vehicle 102, in accordance with some embodiments of the present disclosure.
- the autonomous vehicle 102 may include a passenger vehicle, such as a car, a truck, a bus, and/or another type of vehicle that accommodates one or more passengers.
- Autonomous vehicles are generally described in terms of automation levels, defined by the National Highway Traffic Safety Administration (NHTSA), a division of the US Department of Transportation, and the Society of Automotive Engineers (SAE) "Taxonomy and Definitions for Terms Related to Driving Automation Systems for On- Road Motor Vehicles” (Standard No. J3016-201806, published on June 15, 2018, Standard No.
- NHSA National Highway Traffic Safety Administration
- SAE Society of Automotive Engineers
- the vehicle 102 may be capable of functionality in accordance with one or more of Level 3 - Level 5 of the autonomous driving levels.
- the vehicle 102 may be capable of conditional automation (Level 3), high automation (Level 4), and/or full automation (Level 5), depending on the embodiment.
- the vehicle 102 may include components such as a chassis, a vehicle body, wheels (e.g., 2, 4, 6, 8, 18, etc.), tires, axles, and other components of a vehicle.
- the vehicle 102 may include a propulsion system 1150, such as an internal combustion engine, hybrid electric power plant, an all-electric engine, and/or another propulsion system type.
- the propulsion system 1150 may be connected to a drive train of the vehicle 102, which may include a transmission, to enable the propulsion of the vehicle 102.
- the propulsion system 1150 may be controlled in response to receiving signals from the throttle/accelerator 1152.
- a steering system 1154 which may include a steering wheel, may be used to steer the vehicle 102 (e.g., along a desired path or route) when the propulsion system 1150 is operating (e.g., when the vehicle is in motion).
- the steering system 1154 may receive signals from a steering actuator 1156.
- the steering wheel may be optional for full automation (Level 5) functionality.
- the brake sensor system 1146 may be used to operate the vehicle brakes in response to receiving signals from the brake actuators 1148 and/or brake sensors.
- Controller(s) 1136 which may include one or more system on chips (SoCs) 1104 (FIG. 11C) and/or GPU(s), may provide signals (e.g., representative of commands) to one or more components and/or systems of the vehicle 102.
- the controller(s) may send signals to operate the vehicle brakes via one or more brake actuators 1148, to operate the steering system 1154 via one or more steering actuators 1156, to operate the propulsion system 1150 via one or more throttle/accelerators 1152.
- the controller(s) 1136 may include one or more onboard (e.g., integrated) computing devices (e.g., supercomputers) that process sensor signals, and output operation commands (e.g., signals representing commands) to enable autonomous driving and/or to assist a human driver in driving the vehicle 102.
- the controller(s) 1136 may include a first controller 1136 for autonomous driving functions, a second controller 1136 for functional safety functions, a third controller 1136 for artificial intelligence functionality (e.g., computer vision), a fourth controller 1136 for infotainment functionality, a fifth controller 1136 for redundancy in emergency conditions, and/or other controllers.
- a single controller 1136 may handle two or more of the above functionalities, two or more controllers 1136 may handle a single functionality, and/or any combination thereof.
- the controller(s) 1136 may provide the signals for controlling one or more components and/or systems of the vehicle 102 in response to sensor data received from one or more sensors (e.g., sensor inputs).
- the sensor data may be received from, for example and without limitation, global navigation satellite systems sensor(s) 1158 (e.g., Global Positioning System sensor(s)), RADAR sensor(s) 1160, ultrasonic sensor(s) 1162, LIDAR sensor(s) 1164, inertial measurement unit (IMU) sensor(s) 1166 (e.g., accelerometer(s), gyroscope(s), magnetic compass(es), magnetometers), etc.), microphone(s) 1196, stereo camera(s) 1168, wide-view camera(s) 1170 (e.g., fisheye cameras), infrared camera(s) 1172, surround camera(s) 1174 (e.g., 360 degree cameras), long-range and/or mid-range camera(s) 1198, speed sensor(s) 1144 (
- One or more of the controller(s) 1136 may receive inputs (e.g., represented by input data) from an instrument cluster 1132 of the vehicle 102 and provide outputs (e.g., represented by output data, display data, etc.) via a human-machine interface (HMI) display 1134, an audible annunciator, a loudspeaker, and/or via other components of the vehicle 102.
- the outputs may include information such as vehicle velocity, speed, time, map data (e.g., the HD map 1122 of FIG.
- location data e.g., the vehicle’s 102 location, such as on a map
- direction e.g., direction
- location of other vehicles e.g., an occupancy grid
- information about objects and status of objects as perceived by the controller(s) 1136 etc.
- the HMI display 1134 may display information about the presence of one or more objects (e.g., a street sign, caution sign, traffic light changing, etc.), and/or information about driving maneuvers the vehicle has made, is making, or will make (e.g., changing lanes now, taking exit 34B in two miles, etc.).
- the vehicle 102 further includes a network interface 1124 which may use one or more wireless antenna(s) 1126 and/or modem(s) to communicate over one or more networks.
- the network interface 1124 may be capable of communication over LTE, WCDMA, UMTS, GSM, CDMA2000, etc.
- the wireless antenna(s) 1126 may also enable communication between objects in the environment (e.g., vehicles, mobile devices, etc.), using local area network(s), such as Bluetooth, Bluetooth LE, Z-Wave, ZigBee, etc., and/or low power wide-area network(s) (LPWANs), such as LoRaWAN, SigFox, etc.
- local area network(s) such as Bluetooth, Bluetooth LE, Z-Wave, ZigBee, etc.
- LPWANs low power wide-area network(s)
- FIG. 11B is an example of camera locations and fields of view for the example autonomous vehicle 102 of FIG. 11 A, in accordance with some embodiments of the present disclosure.
- the cameras and respective fields of view are one example embodiment and are not intended to be limiting. For example, additional and/or alternative cameras may be included and/or the cameras may be located at different locations on the vehicle 102.
- the camera types for the cameras may include, but are not limited to, digital cameras that may be adapted for use with the components and/or systems of the vehicle 102.
- the camera(s) may operate at automotive safety integrity level (ASIL) B and/or at another ASIL.
- ASIL automotive safety integrity level
- the camera types may be capable of any image capture rate, such as 60 frames per second (fps), 1120 fps, 240 fps, etc., depending on the embodiment.
- the cameras may be capable of using rolling shutters, global shutters, another type of shutter, or a combination thereof.
- the color filter array may include a red clear clear clear (RCCC) color filter array, a red clear clear blue (RCCB) color filter array, a red blue green clear (RBGC) color filter array, a Foveon X3 color filter array, a Bayer sensors (RGGB) color filter array, a monochrome sensor color filter array, and/or another type of color filter array.
- RCCC red clear clear clear
- RCCB red clear clear blue
- RBGC red blue green clear
- Foveon X3 color filter array a Bayer sensors (RGGB) color filter array
- RGGB Bayer sensors
- monochrome sensor color filter array and/or another type of color filter array.
- clear pixel cameras such as cameras with an RCCC, an RCCB, and/or an RBGC color filter array, may be used in an effort to increase light sensitivity.
- one or more of the camera(s) may be used to perform advanced driver assistance systems (ADAS) functions (e.g., as part of a redundant or fail-safe design).
- ADAS advanced driver assistance systems
- a Multi-Function Mono Camera may be installed to provide functions including lane departure warning, traffic sign assist and intelligent headlamp control.
- One or more of the camera(s) (e.g., all of the cameras) may record and provide image data (e.g., video) simultaneously.
- One or more of the cameras may be mounted in a mounting assembly, such as a custom designed (3-D printed) assembly, in order to cut out stray light and reflections from within the car (e.g., reflections from the dashboard reflected in the windshield mirrors) which may interfere with the camera’s image data capture abilities.
- a mounting assembly such as a custom designed (3-D printed) assembly
- the wing-mirror assemblies may be custom 3-D printed so that the camera mounting plate matches the shape of the wing-mirror.
- the camera(s) may be integrated into the wing-mirror.
- the camera(s) may also be integrated within the four pillars at each comer of the cabin.
- Cameras with a field of view that include portions of the environment in front of the vehicle 102 may be used for surround view, to help identify forward facing paths and obstacles, as well aid in, with the help of one or more controllers 1136 and/or control SoCs, providing information critical to generating an occupancy grid and/or determining the preferred vehicle paths.
- Front-facing cameras may be used to perform many of the same ADAS functions as LIDAR, including emergency braking, pedestrian detection, and collision avoidance. Front- facing cameras may also be used for ADAS functions and systems including Lane Departure Warnings (“LDW”), Autonomous Cruise Control (“ACC”), and/or other functions such as traffic sign recognition.
- LDW Lane Departure Warnings
- ACC Autonomous Cruise Control
- a variety of cameras may be used in a front-facing configuration, including, for example, a monocular camera platform that includes a CMOS (complementary metal oxide semiconductor) color imager.
- CMOS complementary metal oxide semiconductor
- Another example may be a wide-view camera(s) 1170 that may be used to perceive objects coming into view from the periphery (e.g., pedestrians, crossing traffic or bicycles). Although only one wide-view camera is illustrated in FIG. 11B, there may any number of wide-view cameras 1170 on the vehicle 102.
- long-range camera(s) 1198 e.g., a long-view stereo camera pair
- the long-range camera(s) 1198 may also be used for object detection and classification, as well as basic object tracking.
- stereo cameras 1168 may also be included in a front- facing configuration.
- the stereo camera(s) 1168 may include an integrated control unit comprising a scalable processing unit, which may provide a programmable logic (FPGA) and a multi-core micro-processor with an integrated CAN or Ethernet interface on a single chip. Such a unit may be used to generate a 3-D map of the vehicle’s environment, including a distance estimate for all the points in the image.
- An alternative stereo camera(s) 1168 may include a compact stereo vision sensor(s) that may include two camera lenses (one each on the left and right) and an image processing chip that may measure the distance from the vehicle to the target object and use the generated information (e.g., metadata) to activate the autonomous emergency braking and lane departure warning functions.
- Other types of stereo camera(s) 1168 may be used in addition to, or alternatively from, those described herein.
- Cameras with a field of view that include portions of the environment to the side of the vehicle 102 may be used for surround view, providing information used to create and update the occupancy grid, as well as to generate side impact collision warnings.
- surround camera(s) 1174 e.g., four surround cameras 1174 as illustrated in FIG. 11B
- the surround camera(s) 1174 may include wide- view camera(s) 1170, fisheye camera(s), 360 degree camera(s), and/or the like.
- four fisheye cameras may be positioned on the vehicle’s front, rear, and sides.
- the vehicle may use three surround camera(s) 1174 (e.g., left, right, and rear), and may leverage one or more other camera(s) (e.g., a forward-facing camera) as a fourth surround view camera.
- Cameras with a field of view that include portions of the environment to the rear of the vehicle 102 may be used for park assistance, surround view, rear collision warnings, and creating and updating the occupancy grid.
- a wide variety of cameras may be used including, but not limited to, cameras that are also suitable as a front facing camera(s) (e.g., long-range and/or mid-range camera(s) 1198, stereo camera(s) 1168), infrared camera(s) 1172, etc.), as described herein.
- FIG. 11C is a block diagram of an example system architecture for the example autonomous vehicle 102 of FIG. 11 A, in accordance with some embodiments of the present disclosure. It should be understood that this and other arrangements described herein are set forth only as examples. Other arrangements and elements (e.g., machines, interfaces, functions, orders, groupings of functions, etc.) may be used in addition to or instead of those shown, and some elements may be omitted altogether. Further, many of the elements described herein are functional entities that may be implemented as discrete or distributed components or in conjunction with other components, and in any suitable combination and location. Various functions described herein as being performed by entities may be carried out by hardware, firmware, and/or software. For instance, various functions may be carried out by a processor executing instructions stored in memory.
- the bus 1102 may include a Controller Area Network (CAN) data interface (alternatively referred to herein as a“CAN bus”).
- CAN Controller Area Network
- a CAN may be a network inside the vehicle 102 used to aid in control of various features and functionality of the vehicle 102, such as actuation of brakes, acceleration, braking, steering, windshield wipers, etc.
- a CAN bus may be configured to have dozens or even hundreds of nodes, each with its own unique identifier (e.g., a CAN ID).
- the CAN bus may be read to find steering wheel angle, ground speed, engine revolutions per minute (RPMs), button positions, and/or other vehicle status indicators.
- the CAN bus may be ASIL B compliant.
- bus 1102 is described herein as being a CAN bus, this is not intended to be limiting.
- FlexRay and/or Ethernet may be used.
- a single line is used to represent the bus 1102, this is not intended to be limiting.
- two or more busses 1102 may be used to perform different functions, and/or may be used for redundancy.
- a first bus 1102 may be used for collision avoidance functionality and a second bus 1102 may be used for actuation control.
- each bus 1102 may communicate with any of the components of the vehicle 102, and two or more busses 1102 may communicate with the same components.
- each SoC 1104, each controller 1136, and/or each computer within the vehicle may have access to the same input data (e.g., inputs from sensors of the vehicle 102), and may be connected to a common bus, such the CAN bus.
- the vehicle 102 may include one or more controller(s) 1136, such as those described herein with respect to FIG. 11 A.
- the controller(s) 1136 may be used for a variety of functions.
- the controllers) 1136 may be coupled to any of the various other components and systems of the vehicle 102, and may be used for control of the vehicle 102, artificial intelligence of the vehicle 102, infotainment for the vehicle 102, and/or the like.
- the vehicle 102 may include a system(s) on a chip (SoC) 1104.
- SoC system(s) on a chip
- the SoC 1104 may include CPU(s) 1106, GPU(s) 1108, processor(s) 1110, cache(s) 1112, accelerator(s) 1114, data store(s) 1116, and/or other components and features not illustrated.
- the SoC(s) 1104 may be used to control the vehicle 102 in a variety of platforms and systems.
- the SoC(s) 1104 may be combined in a system (e.g., the system of the vehicle 102) with an HD map 1122 which may obtain map refreshes and/or updates via a network interface 1124 from one or more servers (e.g., server(s) 1178 of FIG. 11D).
- the CPU(s) 1106 may include a CPU cluster or CPU complex (alternatively referred to herein as a“CCPLEX”).
- the CPU(s) 1106 may include multiple cores and/or L2 caches.
- the CPU(s) 1106 may include eight cores in a coherent multi-processor configuration.
- the CPU(s) 1106 may include four dual-core clusters where each cluster has a dedicated L2 cache (e.g., a 2 MB L2 cache).
- the CPU(s) 1106 (e.g., the CCPLEX) may be configured to support simultaneous cluster operation enabling any combination of the clusters of the CPU(s) 1106 to be active at any given time.
- the CPU(s) 1106 may implement power management capabilities that include one or more of the following features: individual hardware blocks may be clock- gated automatically when idle to save dynamic power; each core clock may be gated when the core is not actively executing instructions due to execution of WFEWFE instructions; each core may be independently power-gated; each core cluster may be independently clock gated when all cores are clock-gated or power-gated; and/or each core cluster may be independently power- gated when all cores are power- gated.
- the CPU(s) 1106 may further implement an enhanced algorithm for managing power states, where allowed power states and expected wakeup times are specified, and the hardware/microcode determines the best power state to enter for the core, cluster, and CCPLEX.
- the processing cores may support simplified power state entry sequences in software with the work offloaded to microcode.
- the GPU(s) 1108 may include an integrated GPU (alternatively referred to herein as an“iGPU”).
- the GPU(s) 1108 may be programmable and may be efficient for parallel workloads.
- the GPU(s) 1108, in some examples, may use an enhanced tensor instruction set.
- the GPU(s) 1108 may include one or more streaming microprocessors, where each streaming microprocessor may include an Ll cache (e.g., an Ll cache with at least 96KB storage capacity), and two or more of the streaming microprocessors may share an L2 cache (e.g., an L2 cache with a 512 KB storage capacity).
- the GPU(s) 1108 may include at least eight streaming microprocessors.
- the GPU(s) 1108 may use compute application programming interface(s) (API(s)).
- the GPU(s) 1108 may use one or more parallel computing platforms and/or programming models (e.g., NVIDIA’s CUDA).
- the GPU(s) 1108 may be power-optimized for best performance in automotive and embedded use cases.
- the GPU(s) 1108 may be fabricated on a Fin field-effect transistor (FinFET).
- FinFET Fin field-effect transistor
- Each streaming microprocessor may incorporate a number of mixed-precision processing cores partitioned into multiple blocks. For example, and without limitation, 64 PF32 cores and 32 PF64 cores may be partitioned into four processing blocks.
- each processing block may be allocated 16 FP32 cores, 8 FP64 cores, 16 INT32 cores, two mixed-precision NVIDIA TENSOR COREs for deep learning matrix arithmetic, an L0 instruction cache, a warp scheduler, a dispatch unit, and/or a 64 KB register file.
- the streaming microprocessors may include independent parallel integer and floating-point data paths to provide for efficient execution of workloads with a mix of computation and addressing calculations.
- the streaming microprocessors may include independent thread scheduling capability to enable fmer-grain synchronization and cooperation between parallel threads.
- the streaming microprocessors may include a combined Ll data cache and shared memory unit in order to improve performance while simplifying programming.
- the GPU(s) 1108 may include a high bandwidth memory (HBM) and/or a 16 GB HBM2 memory subsystem to provide, in some examples, about 900 GB/second peak memory bandwidth.
- HBM high bandwidth memory
- SGRAM synchronous graphics random-access memory
- GDDR5 graphics double data rate type five synchronous random-access memory
- the GPU(s) 1108 may include unified memory technology including access counters to allow for more accurate migration of memory pages to the processor that accesses them most frequently, thereby improving efficiency for memory ranges shared between processors.
- address translation services (ATS) support may be used to allow the GPU(s) 1108 to access the CPU(s) 1106 page tables directly.
- MMU memory management unit
- an address translation request may be transmitted to the CPU(s) 1106.
- the CPU(s) 1106 may look in its page tables for the virtual-to-physical mapping for the address and transmits the translation back to the GPU(s) 1108.
- unified memory technology may allow a single unified virtual address space for memory of both the CPU(s) 1106 and the GPU(s) 1108, thereby simplifying the GPU(s) 1108 programming and porting of applications to the GPU(s) 1108.
- the GPU(s) 1108 may include an access counter that may keep track of the frequency of access of the GPU(s) 1108 to memory of other processors.
- the access counter may help ensure that memory pages are moved to the physical memory of the processor that is accessing the pages most frequently.
- the SoC(s) 1104 may include any number of cache(s) 1112, including those described herein.
- the cache(s) 1112 may include an L3 cache that is available to both the CPU(s) 1106 and the GPU(s) 1108 (e.g., that is connected both the CPU(s) 1106 and the GPU(s) 1108).
- the cache(s) 1112 may include a write-back cache that may keep track of states of lines, such as by using a cache coherence protocol (e.g., MEI, MESI, MSI, etc.).
- the L3 cache may include 4 MB or more, depending on the embodiment, although smaller cache sizes may be used.
- the SoC(s) 1104 may include one or more accelerators 1114 (e.g., hardware accelerators, software accelerators, or a combination thereof).
- the SoC(s) 1104 may include a hardware acceleration cluster that may include optimized hardware accelerators and/or large on-chip memory.
- the large on-chip memory e.g., 4MB of SRAM
- the hardware acceleration cluster may be used to complement the GPU(s) 1108 and to off-load some of the tasks of the GPU(s) 1108 (e.g., to free up more cycles of the GPU(s) 1108 for performing other tasks).
- the accelerator s) 1114 may be used for targeted workloads (e.g., perception, convolutional neural networks (CNNs), etc.) that are stable enough to be amenable to acceleration.
- CNN convolutional neural networks
- the term“CNN,” as used herein, may include all types of CNNs, including region-based or regional convolutional neural networks (RCNNs) and Fast RCNNs (e.g., as used for object detection).
- the accelerator(s) 1114 may include a deep learning accelerator(s) (DLA).
- the DLA(s) may include one or more Tensor processing units (TPUs) that may be configured to provide an additional ten trillion operations per second for deep learning applications and inferencing.
- the TPUs may be accelerators configured to, and optimized for, performing image processing functions (e.g., for CNNs, RCNNs, etc.).
- the DLA(s) may further be optimized for a specific set of neural network types and floating point operations, as well as inferencing.
- the design of the DLA(s) may provide more performance per millimeter than a general-purpose GPU, and vastly exceeds the performance of a CPU.
- the TPU(s) may perform several functions, including a single- instance convolution function, supporting, for example, GNT8, INT16, and FP16 data types for both features and weights, as well as post-processor functions.
- the DLA(s) may quickly and efficiently execute neural networks, especially CNNs, on processed or unprocessed data for any of a variety of functions, including, for example and without limitation: a CNN for object identification and detection using data from camera sensors; a CNN for distance estimation using data from camera sensors; a CNN for emergency vehicle detection and identification and detection using data from microphones; a CNN for facial recognition and vehicle owner identification using data from camera sensors; and/or a CNN for security and/or safety related events.
- the DLA(s) may perform any function of the GPU(s) 1108, and by using an inference accelerator, for example, a designer may target either the DLA(s) or the GPU(s) 1108 for any function. For example, the designer may focus processing of CNNs and floating point operations on the DLA(s) and leave other functions to the GPU(s) 1108 and/or other accelerator(s) 1114.
- the accelerators 1114 may include a programmable vision accelerator(s) (PVA), which may alternatively be referred to herein as a computer vision accelerator.
- PVA programmable vision accelerator
- the PVA(s) may be designed and configured to accelerate computer vision algorithms for the advanced driver assistance systems (ADAS), autonomous driving, and/or augmented reality (AR) and/or virtual reality (VR) applications.
- ADAS advanced driver assistance systems
- AR augmented reality
- VR virtual reality
- the PVA(s) may provide a balance between performance and flexibility.
- each PVA(s) may include, for example and without limitation, any number of reduced instruction set computer (RISC) cores, direct memory access (DMA), and/or any number of vector processors.
- RISC reduced instruction set computer
- DMA direct memory access
- the RISC cores may interact with image sensors (e.g., the image sensors of any of the cameras described herein), image signal processor(s), and/or the like. Each of the RISC cores may include any amount of memory. The RISC cores may use any of a number of protocols, depending on the embodiment. In some examples, the RISC cores may execute a real-time operating system (RTOS). The RISC cores may be implemented using one or more integrated circuit devices, application specific integrated circuits (ASICs), and/or memory devices. For example, the RISC cores may include an instruction cache and/or a tightly coupled RAM.
- RTOS real-time operating system
- ASICs application specific integrated circuits
- the RISC cores may include an instruction cache and/or a tightly coupled RAM.
- the DMA may enable components of the PVA(s) to access the system memory independently of the CPU(s) 1106.
- the DMA may support any number of features used to provide optimization to the PVA including, but not limited to, supporting multi- dimensional addressing and/or circular addressing.
- the DMA may support up to six or more dimensions of addressing, which may include block width, block height, block depth, horizontal block stepping, vertical block stepping, and/or depth stepping.
- the vector processors may be programmable processors that may be designed to efficiently and flexibly execute programming for computer vision algorithms and provide signal processing capabilities.
- the PVA may include a PVA core and two vector processing subsystem partitions.
- the PVA core may include a processor subsystem, DMA engine(s) (e.g., two DMA engines), and/or other peripherals.
- the vector processing subsystem may operate as the primary processing engine of the PVA, and may include a vector processing unit (VPU), an instruction cache, and/or vector memory (e.g., VMEM).
- VPU core may include a digital signal processor such as, for example, a single instruction, multiple data (SIMD), very long instruction word (VLIW) digital signal processor. The combination of the SIMD and VLIW may enhance throughput and speed.
- SIMD single instruction, multiple data
- VLIW very long instruction word
- Each of the vector processors may include an instruction cache and may be coupled to dedicated memory. As a result, in some examples, each of the vector processors may be configured to execute independently of the other vector processors. In other examples, the vector processors that are included in a particular PVA may be configured to employ data parallelism. For example, in some embodiments, the plurality of vector processors included in a single PVA may execute the same computer vision algorithm, but on different regions of an image. In other examples, the vector processors included in a particular PVA may simultaneously execute different computer vision algorithms, on the same image, or even execute different algorithms on sequential images or portions of an image. Among other things, any number of PVAs may be included in the hardware acceleration cluster and any number of vector processors may be included in each of the PVAs. In addition, the PVA(s) may include additional error correcting code (ECC) memory, to enhance overall system safety.
- ECC error correcting code
- the accelerators 1114 may include a computer vision network on-chip and SRAM, for providing a high-bandwidth, low latency SRAM for the accelerator(s) 1114.
- the on-chip memory may include at least 4MB SRAM, consisting of, for example and without limitation, eight field- configurable memory blocks, that may be accessible by both the PVA and the DLA.
- Each pair of memory blocks may include an advanced peripheral bus (APB) interface, configuration circuitry, a controller, and a multiplexer. Any type of memory may be used.
- the PVA and DLA may access the memory via a backbone that provides the PVA and DLA with high-speed access to memory.
- the backbone may include a computer vision network on-chip that interconnects the PVA and the DLA to the memory (e.g., using the APB).
- the computer vision network on-chip may include an interface that determines, before transmission of any control signal/address/data, that both the PVA and the DLA provide ready and valid signals.
- Such an interface may provide for separate phases and separate channels for transmitting control signals/addresses/data, as well as burst-type communications for continuous data transfer.
- This type of interface may comply with ISO 26262 or IEC 61508 standards, although other standards and protocols may be used.
- the SoC(s) 1104 may include a real-time ray-tracing hardware accelerator, such as described in U.S. Patent Application No. 16/101,232, filed on August 10, 2018.
- the real-time ray- tracing hardware accelerator may be used to quickly and efficiently determine the positions and extents of objects (e.g., within a world model), to generate realOtime visualization simulations, for RADAR signal interpretation, for sound propagation synthesis and/or analysis, for simulation of SONAR systems, for general wave propagation simulation, for comparison to LIDAR data for purposes of localization and/or other functions, and/or for other uses.
- the accelerator(s) 1114 have a wide array of uses for autonomous driving.
- the PVA may be a programmable vision accelerator that may be used for key processing stages in ADAS and autonomous vehicles.
- the PVA’s capabilities are a good match for algorithmic domains needing predictable processing, at low power and low latency. In other words, the PVA performs well on semi-dense or dense regular computation, even on small data sets, which need predictable run-times with low latency and low power.
- the PVAs are designed to run classic computer vision algorithms, as they are efficient at object detection and operating on integer math.
- the PVA is used to perform computer stereo vision.
- a semi-global matching-based algorithm may be used in some examples, although this is not intended to be limiting.
- Many applications for Level 3-5 autonomous driving require motion estimation/stereo matching on-the-fly (e.g., structure from motion, pedestrian recognition, lane detection, etc.).
- the PVA may perform computer stereo vision function on inputs from two monocular cameras.
- the PVA may be used to perform dense optical flow. According to process raw RADAR data (e.g., using a 4D Fast Fourier Transform) to provide Processed RADAR. In other examples, the PVA is used for time of flight depth processing, by processing raw time of flight data to provide processed time of flight data, for example.
- the DLA may be used to run any type of network to enhance control and driving safety, including for example, a neural network that outputs a measure of confidence for each object detection.
- a confidence value may be interpreted as a probability, or as providing a relative“weight” of each detection compared to other detections.
- This confidence value enables the system to make further decisions regarding which detections should be considered as true positive detections rather than false positive detections.
- the system may set a threshold value for the confidence and consider only the detections exceeding the threshold value as true positive detections.
- AEB automatic emergency braking
- the DLA may run a neural network for regressing the confidence value.
- the neural network may take as its input at least some subset of parameters, such as bounding box dimensions, ground plane estimate obtained (e.g. from another subsystem), inertial measurement unit (IMU) sensor 1166 output that correlates with the vehicle 102 orientation, distance, 3D location estimates of the object obtained from the neural network and/or other sensors (e.g., LIDAR sensor(s) 1164 or RADAR sensor(s) 1160), among others.
- IMU inertial measurement unit
- the SoC(s) 1104 may include data store(s) 1116 (e.g., memory).
- the data store(s) 1116 may be on-chip memory of the SoC(s) 1104, which may store neural networks to be executed on the GPU and/or the DLA. In some examples, the data store(s) 1116 may be large enough in capacity to store multiple instances of neural networks for redundancy and safety.
- the data store(s) 1112 may comprise L2 or L3 cache(s) 1112. Reference to the data store(s) 1116 may include reference to the memory associated with the PVA, DLA, and/or other accelerator(s) 1114, as described herein.
- the SoC(s) 1104 may include one or more processors) 1110 (e.g., embedded processors).
- the processor(s) 1110 may include a boot and power management processor that may be a dedicated processor and subsystem to handle boot power and management functions and related security enforcement.
- the boot and power management processor may be a part of the SoC(s) 1104 boot sequence and may provide runtime power management services.
- the boot power and management processor may provide clock and voltage programming, assistance in system low power state transitions, management of SoC(s) 1104 thermals and temperature sensors, and/or management of the SoC(s) 1104 power states.
- Each temperature sensor may be implemented as a ring-oscillator whose output frequency is proportional to temperature, and the SoC(s) 1104 may use the ring- oscillators to detect temperatures of the CPU(s) 1106, GPU(s) 1108, and/or accelerator(s) 1114. If temperatures are determined to exceed a threshold, the boot and power management processor may enter a temperature fault routine and put the SoC(s) 1104 into a lower power state and/or put the vehicle 102 into a chauffeur to safe stop mode (e.g., bring the vehicle 102 to a safe stop).
- a chauffeur to safe stop mode e.g., bring the vehicle 102 to a safe stop.
- the processor(s) 1110 may further include a set of embedded processors that may serve as an audio processing engine.
- the audio processing engine may be an audio subsystem that enables full hardware support for multi-channel audio over multiple interfaces, and a broad and flexible range of audio TO interfaces.
- the audio processing engine is a dedicated processor core with a digital signal processor with dedicated RAM.
- the processor(s) 1110 may further include an always on processor engine that may provide necessary hardware features to support low power sensor management and wake use cases.
- the always on processor engine may include a processor core, a tightly coupled RAM, supporting peripherals (e.g., timers and interrupt controllers), various TO controller peripherals, and routing logic.
- the processor(s) 1110 may further include a safety cluster engine that includes a dedicated processor subsystem to handle safety management for automotive applications.
- the safety cluster engine may include two or more processor cores, a tightly coupled RAM, support peripherals (e.g., timers, an interrupt controller, etc.), and/or routing logic.
- the two or more cores may operate in a lockstep mode and function as a single core with comparison logic to detect any differences between their operations.
- the processor(s) 1110 may further include a real-time camera engine that may include a dedicated processor subsystem for handling real-time camera management.
- the processor(s) 1110 may further include a high-dynamic range signal processor that may include an image signal processor that is a hardware engine that is part of the camera processing pipeline.
- the processor(s) 1110 may include a video image compositor that may be a processing block (e.g., implemented on a microprocessor) that implements video post- processing functions needed by a video playback application to produce the final image for the player window.
- the video image compositor may perform lens distortion correction on wide- view camera(s) 1170, surround camera(s) 1174, and/or on in-cabin monitoring camera sensors.
- In-cabin monitoring camera sensor is preferably monitored by a neural network running on another instance of the Advanced SoC, configured to identify in cabin events and respond accordingly.
- An in-cabin system may perform lip reading to activate cellular service and place a phone call, dictate emails, change the vehicle’s destination, activate or change the vehicle’s infotainment system and settings, or provide voice- activated web surfing. Certain functions are available to the driver only when the vehicle is operating in an autonomous mode, and are disabled otherwise.
- the video image compositor may include enhanced temporal noise reduction for both spatial and temporal noise reduction. For example, where motion occurs in a video, the noise reduction weights spatial information appropriately, decreasing the weight of information provided by adjacent frames. Where an image or portion of an image does not include motion, the temporal noise reduction performed by the video image compositor may use information from the previous image to reduce noise in the current image.
- the video image compositor may also be configured to perform stereo rectification on input stereo lens frames.
- the video image compositor may further be used for user interface composition when the operating system desktop is in use, and the GPU(s) 1108 is not required to continuously render new surfaces. Even when the GPU(s) 1108 is powered on and active doing 3D rendering, the video image compositor may be used to offload the GPU(s) 1108 to improve performance and responsiveness.
- the SoC(s) 1104 may further include a mobile industry processor interface (MIPI) camera serial interface for receiving video and input from cameras, a high-speed interface, and/or a video input block that may be used for camera and related pixel input functions.
- the SoC(s) 1104 may further include an input/output controller(s) that may be controlled by software and may be used for receiving I/O signals that are uncommitted to a specific role.
- MIPI mobile industry processor interface
- the SoC(s) 1104 may further include a broad range of peripheral interfaces to enable communication with peripherals, audio codecs, power management, and/or other devices.
- the SoC(s) 1104 may be used to process data from cameras (e.g., connected over Gigabit Multimedia Serial Link and Ethernet), sensors (e.g., LIDAR sensor(s) 1164, RADAR sensor(s) 1160, etc. that may be connected over Ethernet), data from bus 1102 (e.g., speed of vehicle 102, steering wheel position, etc.), data from GNSS sensor(s) 1158 (e.g., connected over Ethernet or CAN bus).
- the SoC(s) 1104 may further include dedicated high-performance mass storage controllers that may include their own DMA engines, and that may be used to free the CPU(s) 1106 from routine data management tasks.
- the SoC(s) 1104 may be an end-to-end platform with a flexible architecture that spans automation levels 3-5, thereby providing a comprehensive functional safety architecture that leverages and makes efficient use of computer vision and ADAS techniques for diversity and redundancy, provides a platform for a flexible, reliable driving software stack, along with deep learning tools.
- the SoC(s) 1104 may be faster, more reliable, and even more energy-efficient and space-efficient than conventional systems.
- the accelerator s) 1114 when combined with the CPU(s) 1106, the GPU(s) 1108, and the data store(s) 1116, may provide for a fast, efficient platform for level 3-5 autonomous vehicles.
- CPUs may be configured using high-level programming language, such as the C programming language, to execute a wide variety of processing algorithms across a wide variety of visual data.
- CPUs are oftentimes unable to meet the performance requirements of many computer vision applications, such as those related to execution time and power consumption, for example.
- many CPUs are unable to execute complex object detection algorithms in real-time, which is a requirement of in-vehicle ADAS applications, and a requirement for practical Level 3-5 autonomous vehicles.
- a CNN executing on the DLA or dGPU may include a text and word recognition, allowing the supercomputer to read and understand traffic signs, including signs for which the neural network has not been specifically trained.
- the DLA may further include a neural network that is able to identify, interpret, and provides semantic understanding of the sign, and to pass that semantic understanding to the path planning modules running on the CPU Complex.
- multiple neural networks may be run simultaneously, as is required for Level 3, 4, or 5 driving.
- a warning sign consisting of“Caution: flashing lights indicate icy conditions,” along with an electric light, may be independently or collectively interpreted by several neural networks.
- the sign itself may be identified as a traffic sign by a first deployed neural network (e.g., a neural network that has been trained), the text“Flashing lights indicate icy conditions” may be interpreted by a second deployed neural network, which informs the vehicle’s path planning software (preferably executing on the CPU Complex) that when flashing lights are detected, icy conditions exist.
- the flashing light may be identified by operating a third deployed neural network over multiple frames, informing the vehicle’s path-planning software of the presence (or absence) of flashing lights. All three neural networks may run simultaneously, such as within the DLA and/or on the GPU(s) 1108.
- a CNN for facial recognition and vehicle owner identification may use data from camera sensors to identify the presence of an authorized driver and/or owner of the vehicle 102.
- the always on sensor processing engine may be used to unlock the vehicle when the owner approaches the driver door and turn on the lights, and, in security mode, to disable the vehicle when the owner leaves the vehicle.
- the SoC(s) 1104 provide for security against theft and/or caijacking.
- a CNN for emergency vehicle detection and identification may use data from microphones 1196 to detect and identify emergency vehicle sirens.
- the SoC(s) 1104 use the CNN for classifying environmental and urban sounds, as well as classifying visual data.
- the CNN running on the DLA is trained to identify the relative closing speed of the emergency vehicle (e.g., by using the Doppler effect).
- the CNN may also be trained to identify emergency vehicles specific to the local area in which the vehicle is operating, as identified by GNSS sensor(s) 1158.
- a control program may be used to execute an emergency vehicle safety routine, slowing the vehicle, pulling over to the side of the road, parking the vehicle, and/or idling the vehicle, with the assistance of ultrasonic sensors 1162, until the emergency vehicle(s) passes.
- the vehicle may include a CPU(s) 1118 (e.g., discrete CPU(s), or dCPU(s)), that may be coupled to the SoC(s) 1104 via a high-speed interconnect (e.g., PCIe).
- the CPU(s) 1118 may include an X86 processor, for example.
- the CPU(s) 1118 may be used to perform any of a variety of functions, including arbitrating potentially inconsistent results between ADAS sensors and the SoC(s) 1104, and/or monitoring the status and health of the controllers) 1136 and/or infotainment SoC 1130, for example.
- the vehicle 102 may include a GPU(s) 1120 (e.g., discrete GPU(s), or dGPU(s)), that may be coupled to the SoC(s) 1104 via a high-speed interconnect (e.g., NVIDIA’s NVLINK).
- the GPU(s) 1120 may provide additional artificial intelligence functionality, such as by executing redundant and/or different neural networks, and may be used to train and/or update neural networks based on input (e.g., sensor data) from sensors of the vehicle 102.
- the vehicle 102 may further include the network interface 1124 which may include one or more wireless antennas 1126 (e.g., one or more wireless antennas for different communication protocols, such as a cellular antenna, a Bluetooth antenna, etc.).
- the network interface 1124 may be used to enable wireless connectivity over the Internet with the cloud (e.g., with the server(s) 1178 and/or other network devices), with other vehicles, and/or with computing devices (e.g., client devices of passengers).
- a direct link may be established between the two vehicles and/or an indirect link may be established (e.g., across networks and over the Internet). Direct links may be provided using a vehicle-to-vehicle communication link.
- the vehicle-to-vehicle communication link may provide the vehicle 102 information about vehicles in proximity to the vehicle 102 (e.g., vehicles in front of, on the side of, and/or behind the vehicle 102). This functionality may be part of a cooperative adaptive cruise control functionality of the vehicle 102.
- the network interface 1124 may include a SoC that provides modulation and demodulation functionality and enables the controllers) 1136 to communicate over wireless networks.
- the network interface 1124 may include a radio frequency front-end for up-conversion from baseband to radio frequency, and down conversion from radio frequency to baseband. The frequency conversions may be performed through well-known processes, and/or may be performed using super-heterodyne processes.
- the radio frequency front end functionality may be provided by a separate chip.
- the network interface may include wireless functionality for communicating over LTE, WCDMA, UMTS, GSM, CDMA2000, Bluetooth, Bluetooth LE, Wi-Fi, Z-Wave, ZigBee, LoRaWAN, and/or other wireless protocols.
- the vehicle 102 may further include data store(s) 1128 which may include off-chip (e.g., off the SoC(s) 1104) storage.
- the data store(s) 1128 may include one or more storage elements including RAM, SRAM, DRAM, VRAM, Flash, hard disks, and/or other components and/or devices that may store at least one bit of data.
- the vehicle 102 may further include GNSS sensor(s) 1158.
- the GNSS sensor(s) 1158 e.g., GPS and/or assisted GPS sensors, to assist in mapping, perception, occupancy grid generation, and/or path planning functions. Any number of GNSS sensor(s) 1158 may be used, including, for example and without limitation, a GPS using a USB connector with an Ethernet to Serial (RS-232) bridge.
- RS-232 Ethernet to Serial
- the vehicle 102 may further include RADAR sensor(s) 1160.
- the RADAR sensor(s) 1160 may be used by the vehicle 102 for long-range vehicle detection, even in darkness and/or severe weather conditions. RADAR functional safety levels may be ASIL B.
- the RADAR sensor(s) 1160 may use the CAN and/or the bus 1102 (e.g., to transmit data generated by the RADAR sensor(s) 1160) for control and to access object tracking data, with access to Ethernet to access raw data in some examples.
- a wide variety of RADAR sensor types may be used.
- the RADAR sensor(s) 1160 may be suitable for front, rear, and side RADAR use.
- Pulse Doppler RADAR sensor(s) are used.
- the RADAR sensor(s) 1160 may include different configurations, such as long range with narrow field of view, short range with wide field of view, short range side coverage, etc.
- long-range RADAR may be used for adaptive cruise control functionality.
- the long-range RADAR systems may provide a broad field of view realized by two or more independent scans, such as within a 250m range.
- the RADAR sensor(s) 1160 may help in distinguishing between static and moving objects, and may be used by ADAS systems for emergency brake assist and forward collision warning.
- Long- range RADAR sensors may include monostatic multimodal RADAR with multiple (e.g., six or more) fixed RADAR antennae and a high-speed CAN and FlexRay interface.
- the central four antennae may create a focused beam pattern, designed to record the vehicle’s 102 surroundings at higher speeds with minimal interference from traffic in adjacent lanes.
- the other two antennae may expand the field of view, making it possible to quickly detect vehicles entering or leaving the vehicle’s 102 lane.
- Mid-range RADAR systems may include, as an example, a range of up to 1160m (front) or 80m (rear), and a field of view of up to 42 degrees (front) or 1150 degrees (rear).
- Short-range RADAR systems may include, without limitation, RADAR sensors designed to be installed at both ends of the rear bumper. When installed at both ends of the rear bumper, such a RADAR sensor systems may create two beams that constantly monitor the blind spot in the rear and next to the vehicle.
- Short-range RADAR systems may be used in an ADAS system for blind spot detection and/or lane change assist.
- the vehicle 102 may further include ultrasonic sensor(s) 1162.
- the ultrasonic sensor(s) 1162 which may be positioned at the front, back, and/or the sides of the vehicle 102, may be used for park assist and/or to create and update an occupancy grid.
- a wide variety of ultrasonic sensor(s) 1162 may be used, and different ultrasonic sensor(s) 1162 may be used for different ranges of detection (e.g., 2.5m, 4m).
- the ultrasonic sensor(s) 1162 may operate at functional safety levels of ASIL B.
- the vehicle 102 may include LIDAR sensor(s) 1164.
- the LIDAR sensor(s) 1164 may be used for object and pedestrian detection, emergency braking, collision avoidance, and/or other functions.
- the LIDAR sensor(s) 1164 may be functional safety level ASIL B.
- the vehicle 102 may include multiple LIDAR sensors 1164 (e.g., two, four, six, etc.) that may use Ethernet (e.g., to provide data to a Gigabit Ethernet switch).
- the LIDAR sensor(s) 1164 may be capable of providing a list of objects and their distances for a 360-degree field of view.
- Commercially available LIDAR sensor(s) 1164 may have an advertised range of approximately l02m, with an accuracy of 2cm-3cm, and with support for a 102Mbps Ethernet connection, for example.
- one or more non-protruding LIDAR sensors 1164 may be used.
- the LIDAR sensor(s) 1164 may be implemented as a small device that may be embedded into the front, rear, sides, and/or comers of the vehicle 102.
- the LIDAR sensor(s) 1164 may provide up to a H20-degree horizontal and 35- degree vertical field-of-view, with a 200m range even for low-reflectivity objects.
- Front- mounted LIDAR sensor(s) 1164 may be configured for a horizontal field of view between 45 degrees and 135 degrees.
- LIDAR technologies such as 3D flash LIDAR
- 3D Flash LIDAR uses a flash of a laser as a transmission source, to illuminate vehicle surroundings up to approximately 200m.
- a flash LIDAR unit includes a receptor, which records the laser pulse transit time and the reflected light on each pixel, which in turn corresponds to the range from the vehicle to the objects. Flash LIDAR may allow for highly accurate and distortion- free images of the surroundings to be generated with every laser flash.
- four flash LIDAR sensors may be deployed, one at each side of the vehicle 102.
- Available 3D flash LIDAR systems include a solid-state 3D staring array LIDAR camera with no moving parts other than a fan (e.g., a non-scanning LIDAR device).
- the flash LIDAR device may use a 5 nanosecond class I (eye-safe) laser pulse per frame and may capture the reflected laser light in the form of 3D range point clouds and co registered intensity data.
- the LIDAR sensor(s) 1164 may be less susceptible to motion blur, vibration, and/or shock.
- the vehicle may further include IMU sensor(s) 1166.
- the IMU sensor(s) 1166 may be located at a center of the rear axle of the vehicle 102, in some examples.
- the IMU sensor(s) 1166 may include, for example and without limitation, an accelerometer(s), a magnetometers), a gyroscope(s), a magnetic compass(es), and/or other sensor types.
- the IMU sensor(s) 1166 may include accelerometers and gyroscopes
- the IMU sensor(s) 1166 may include accelerometers, gyroscopes, and magnetometers.
- the IMU sensor(s) 1166 may be implemented as a miniature, high performance GPS- Aided Inertial Navigation System (GPS/INS) that combines micro- electro-mechanical systems (MEMS) inertial sensors, a high-sensitivity GPS receiver, and advanced Kalman filtering algorithms to provide estimates of position, velocity, and attitude.
- GPS/INS GPS- Aided Inertial Navigation System
- MEMS micro- electro-mechanical systems
- the IMU sensor(s) 1166 may enable the vehicle 102 to estimate heading without requiring input from a magnetic sensor by directly observing and correlating the changes in velocity from GPS to the IMU sensor(s) 1166.
- the IMU sensor(s) 1166 and the GNSS sensor(s) 1158 may be combined in a single integrated unit.
- the vehicle may include microphone(s) 1196 placed in and/or around the vehicle 102.
- the microphone(s) 1196 may be used for emergency vehicle detection and identification, among other things.
- the vehicle may further include any number of camera types, including stereo camera(s) 1168, wide-view camera(s) 1170, infrared camera(s) 1172, surround camera(s) 1174, long-range and/or mid-range camera(s) 1198, and/or other camera types.
- the cameras may be used to capture image data around an entire periphery of the vehicle 102.
- the types of cameras used depends on the embodiments and requirements for the vehicle 102, and any combination of camera types may be used to provide the necessary coverage around the vehicle 102.
- the number of cameras may differ depending on the embodiment.
- the vehicle may include six cameras, seven cameras, ten cameras, twelve cameras, and/or another number of cameras.
- the cameras may support, as an example and without limitation, Gigabit Multimedia Serial Link (GMSL) and/or Gigabit Ethernet. Each of the camera(s) is described with more detail herein with respect to FIG. 11A and FIG. 11B.
- GMSL Gigabit Multimedia Serial Link
- the vehicle 102 may further include vibration sensor(s) 1142.
- the vibration sensor(s) 1142 may measure vibrations of components of the vehicle, such as the axle(s). For example, changes in vibrations may indicate a change in road surfaces. In another example, when two or more vibration sensors 1142 are used, the differences between the vibrations may be used to determine friction or slippage of the road surface (e.g., when the difference in vibration is between a power-driven axle and a freely rotating axle).
- the vehicle 102 may include an ADAS system 1138.
- the ADAS system 1138 may include a SoC, in some examples.
- the ADAS system 1138 may include autonomous/adaptive/automatic cruise control (ACC), cooperative adaptive cruise control (CACC), forward crash warning (FCW), automatic emergency braking (AEB), lane departure warnings (LDW), lane keep assist (LKA), blind spot warning (BSW), rear cross- traffic warning (RCTW), collision warning systems (CWS), lane centering (LC), and/or other features and functionality.
- the ACC systems may use RADAR sensor(s) 1160, LIDAR sensor(s) 1164, and/or a camera(s).
- the ACC systems may include longitudinal ACC and/or lateral ACC.
- Longitudinal ACC monitors and controls the distance to the vehicle immediately ahead of the vehicle 102 and automatically adjust the vehicle speed to maintain a safe distance from vehicles ahead. Lateral ACC performs distance keeping, and advises the vehicle 102 to change lanes when necessary. Lateral ACC is related to other ADAS applications such as LCA and CWS.
- CACC uses information from other vehicles that may be received via the network interface 1124 and/or the wireless antenna(s) 1126 from other vehicles via a wireless link, or indirectly, over a network connection (e.g., over the Internet).
- Direct links may be provided by a vehicle-to-vehicle (V2V) communication link
- indirect links may be infrastructure-to-vehicle (I2V) communication link.
- V2V communication concept provides information about the immediately preceding vehicles (e.g., vehicles immediately ahead of and in the same lane as the vehicle 102), while the 12 V communication concept provides information about traffic further ahead.
- CACC systems may include either or both 12 V and V2V information sources. Given the information of the vehicles ahead of the vehicle 102, CACC may be more reliable and it has potential to improve traffic flow smoothness and reduce congestion on the road.
- FCW systems are designed to alert the driver to a hazard, so that the driver may take corrective action.
- FCW systems use a front-facing camera and/or RADAR sensor(s) 1160, coupled to a dedicated processor, DSP, FPGA, and/or ASIC, that is electrically coupled to driver feedback, such as a display, speaker, and/or vibrating component.
- FCW systems may provide a warning, such as in the form of a sound, visual warning, vibration and/or a quick brake pulse.
- AEB systems detect an impending forward collision with another vehicle or other object, and may automatically apply the brakes if the driver does not take corrective action within a specified time or distance parameter.
- AEB systems may use front-facing camera(s) and/or RADAR sensor(s) 1160, coupled to a dedicated processor, DSP, FPGA, and/or ASIC.
- the AEB system detects a hazard, it typically first alerts the driver to take corrective action to avoid the collision and, if the driver does not take corrective action, the AEB system may automatically apply the brakes in an effort to prevent, or at least mitigate, the impact of the predicted collision.
- AEB systems may include techniques such as dynamic brake support and/or crash imminent braking.
- LDW systems provide visual, audible, and/or tactile warnings, such as steering wheel or seat vibrations, to alert the driver when the vehicle 102 crosses lane markings.
- a LDW system does not activate when the driver indicates an intentional lane departure, by activating a turn signal.
- LDW systems may use front-side facing cameras, coupled to a dedicated processor, DSP, FPGA, and/or ASIC, that is electrically coupled to driver feedback, such as a display, speaker, and/or vibrating component.
- LKA systems are a variation of LDW systems. LKA systems provide steering input or braking to correct the vehicle 102 if the vehicle 102 starts to exit the lane.
- BSW systems detects and warn the driver of vehicles in an automobile’s blind spot.
- BSW systems may provide a visual, audible, and/or tactile alert to indicate that merging or changing lanes is unsafe. The system may provide an additional warning when the driver uses a turn signal.
- BSW systems may use rear-side facing camera(s) and/or RADAR sensor(s) 1160, coupled to a dedicated processor, DSP, FPGA, and/or ASIC, that is electrically coupled to driver feedback, such as a display, speaker, and/or vibrating component.
- RCTW systems may provide visual, audible, and/or tactile notification when an object is detected outside the rear-camera range when the vehicle 102 is backing up. Some RCTW systems include AEB to ensure that the vehicle brakes are applied to avoid a crash. RCTW systems may use one or more rear- facing RADAR sensor(s) 1160, coupled to a dedicated processor, DSP, FPGA, and/or ASIC, that is electrically coupled to driver feedback, such as a display, speaker, and/or vibrating component.
- driver feedback such as a display, speaker, and/or vibrating component.
- ADAS systems may be prone to false positive results which may be annoying and distracting to a driver, but typically are not catastrophic, because the ADAS systems alert the driver and allow the driver to decide whether a safety condition truly exists and act accordingly.
- the vehicle 102 itself must, in the case of conflicting results, decide whether to heed the result from a primary computer or a secondary computer (e.g., a first controller 1136 or a second controller 1136).
- the ADAS system 1138 may be abackup and/or secondary computer for providing perception information to a backup computer rationality module.
- the backup computer rationality monitor may run a redundant diverse software on hardware components to detect faults in perception and dynamic driving tasks.
- Outputs from the ADAS system 1138 may be provided to a supervisory MCU. If outputs from the primary computer and the secondary computer conflict, the supervisory MCU must determine how to reconcile the conflict to ensure safe operation.
- the primary computer may be configured to provide the supervisory MCU with a confidence score, indicating the primary computer’s confidence in the chosen result. If the confidence score exceeds a threshold, the supervisory MCU may follow the primary computer’s direction, regardless of whether the secondary computer provides a conflicting or inconsistent result. Where the confidence score does not meet the threshold, and where the primary and secondary computer indicate different results (e.g., the conflict), the supervisory MCU may arbitrate between the computers to determine the appropriate outcome.
- the supervisory MCU may be configured to run a neural network(s) that is trained and configured to determine, based on outputs from the primary computer and the secondary computer, conditions under which the secondary computer provides false alarms.
- the neural network(s) in the supervisory MCU may learn when the secondary computer’s output may be trusted, and when it cannot.
- the secondary computer is a RADAR-based FCW system
- a neural network(s) in the supervisory MCU may learn when the FCW system is identifying metallic objects that are not, in fact, hazards, such as a drainage grate or manhole cover that triggers an alarm.
- a neural network in the supervisory MCU may leam to override the LDW when bicyclists or pedestrians are present and a lane departure is, in fact, the safest maneuver.
- the supervisory MCU may include at least one of a DLA or GPU suitable for running the neural network(s) with associated memory.
- the supervisory MCU may comprise and/or be included as a component of the SoC(s) 1104.
- ADAS system 1138 may include a secondary computer that performs ADAS functionality using traditional rules of computer vision.
- the secondary computer may use classic computer vision rules (if-then), and the presence of a neural network(s) in the supervisory MCU may improve reliability, safety and performance.
- the diverse implementation and intentional non- identity makes the overall system more fault-tolerant, especially to faults caused by software (or software- hardware interface) functionality.
- the supervisory MCU may have greater confidence that the overall result is correct, and the bug in software or hardware on primary computer is not causing material error.
- the output of the ADAS system 1138 may be fed into the primary computer’s perception block and/or the primary computer’s dynamic driving task block. For example, if the ADAS system 1138 indicates a forward crash warning due to an object immediately ahead, the perception block may use this information when identifying objects.
- the secondary computer may have its own neural network which is trained and thus reduces the risk of false positives, as described herein.
- the vehicle 102 may further include the infotainment SoC 1130 (e.g., an in-vehicle infotainment system (IVI)). Although illustrated and described as a SoC, the infotainment system may not be a SoC, and may include two or more discrete components.
- infotainment SoC 1130 e.g., an in-vehicle infotainment system (IVI)
- IVI in-vehicle infotainment system
- the infotainment system may not be a SoC, and may include two or more discrete components.
- the infotainment SoC 1130 may include a combination of hardware and software that may be used to provide audio (e.g., music, a personal digital assistant, navigational instructions, news, radio, etc.), video (e.g., TV, movies, streaming, etc.), phone (e.g., hands-free calling), network connectivity (e.g., LTE, Wi-Fi, etc.), and/or information services (e.g., navigation systems, rear-parking assistance, a radio data system, vehicle related information such as fuel level, total distance covered, brake fuel level, oil level, door open/close, air filter information, etc.) to the vehicle 102.
- audio e.g., music, a personal digital assistant, navigational instructions, news, radio, etc.
- video e.g., TV, movies, streaming, etc.
- phone e.g., hands-free calling
- network connectivity e.g., LTE, Wi-Fi, etc.
- information services e.g., navigation systems, rear-parking assistance
- the infotainment SoC 1130 may radios, disk players, navigation systems, video players, USB and Bluetooth connectivity, carputers, in-car entertainment, Wi-Fi, steering wheel audio controls, hands free voice control, a heads-up display (HUD), an HMI display 1134, a telematics device, a control panel (e.g., for controlling and/or interacting with various components, features, and/or systems), and/or other components.
- HUD heads-up display
- HMI display 1134 e.g., a telematics device
- control panel e.g., for controlling and/or interacting with various components, features, and/or systems
- the infotainment SoC 1130 may further be used to provide information (e.g., visual and/or audible) to a user(s) of the vehicle, such as information from the ADAS system 1138, autonomous driving information such as planned vehicle maneuvers, trajectories, surrounding environment information (e.g., intersection information, vehicle information, road information, etc.), and/or other information.
- information e.g., visual and/or audible
- a user(s) of the vehicle such as information from the ADAS system 1138, autonomous driving information such as planned vehicle maneuvers, trajectories, surrounding environment information (e.g., intersection information, vehicle information, road information, etc.), and/or other information.
- the infotainment SoC 1130 may include GPU functionality.
- the infotainment SoC 1130 may communicate over the bus 1102 (e.g., CAN bus, Ethernet, etc.) with other devices, systems, and/or components of the vehicle 102.
- the infotainment SoC 1130 may be coupled to a supervisory MCU such that the GPU of the infotainment system may perform some self-driving functions in the event that the primary controllers) 1136 (e.g., the primary and/or backup computers of the vehicle 102) fail.
- the infotainment SoC 1130 may put the vehicle 102 into a chauffeur to safe stop mode, as described herein.
- the vehicle 102 may further include an instrument cluster 1132 (e.g., a digital dash, an electronic instrument cluster, a digital instrument panel, etc.).
- the instrument cluster 1132 may include a controller and/or supercomputer (e.g., a discrete controller or supercomputer).
- the instrument cluster 1132 may include a set of instrumentation such as a speedometer, fuel level, oil pressure, tachometer, odometer, turn indicators, gearshift position indicator, seat belt warning light(s), parking-brake warning light(s), engine- malfunction light(s), airbag (SRS) system information, lighting controls, safety system controls, navigation information, etc.
- information may be displayed and/or shared among the infotainment SoC 1130 and the instrument cluster 1132.
- the instrument cluster 1132 may be included as part of the infotainment SoC 1130, or vice versa.
- FIG. 11D is a system diagram for communication between cloud-based server(s) and the example autonomous vehicle 102 of FIG. 11 A, in accordance with some embodiments of the present disclosure.
- the system 1176 may include server(s) 1178, network(s) 1190, and vehicles, including the vehicle 102.
- the server(s) 1178 may include a plurality of GPUs 1184(A)- 1184(H) (collectively referred to herein as GPUs 1184), PCIe switches 1182(A)- 1182(H) (collectively referred to herein as PCIe switches 1182), and/or CPUs 1180(A)- 1180(B) (collectively referred to herein as CPUs 1180).
- the GPUs 1184, the CPUs 1180, and the PCIe switches may be interconnected with high-speed interconnects such as, for example and without limitation, NVLink interfaces 1188 developed by NVIDIA and/or PCIe connections 1186.
- the GPUs 1184 are connected via NVLink and/or NVSwitch SoC and the GPUs 1184 and the PCIe switches 1182 are connected via PCIe interconnects.
- eight GPUs 1184, two CPUs 1180, and two PCIe switches are illustrated, this is not intended to be limiting.
- each of the server(s) 1178 may include any number of GPUs 1184, CPUs 1180, and/or PCIe switches.
- the server(s) 1178 may each include eight, sixteen, thirty-two, and/or more GPUs 1184.
- the server(s) 1178 may receive, over the network(s) 1190 and from the vehicles, image data representative of images showing unexpected or changed road conditions, such as recently commenced road- work.
- the server(s) 1178 may transmit, over the network(s) 1190 and to the vehicles, neural networks 1192, updated neural networks 1192, and/or map information 1194, including information regarding traffic and road conditions.
- the updates to the map information 1194 may include updates for the HD map 1122, such as information regarding construction sites, potholes, detours, flooding, and/or other obstructions.
- the neural networks 1192, the updated neural networks 1192, and/or the map information 1194 may have resulted from new training and/or experiences represented in data received from any number of vehicles in the environment, and/or based on training performed at a datacenter (e.g., using the server(s) 1178 and/or other servers).
- the server(s) 1178 may be used to train machine learning models (e.g., neural networks) based on training data.
- the training data may be generated by the vehicles, and/or may be generated in a simulation (e.g., using a game engine).
- the training data is tagged (e.g., where the neural network benefits from supervised learning) and/or undergoes other pre-processing, while in other examples the training data is not tagged and/or pre-processed (e.g., where the neural network does not require supervised learning).
- the machine learning models may be used by the vehicles (e.g., transmitted to the vehicles over the network(s) 1190, and/or the machine learning models may be used by the server(s) 1178 to remotely monitor the vehicles.
- the server(s) 1178 may receive data from the vehicles and apply the data to up-to-date real-time neural networks for real-time intelligent inferencing.
- the server(s) 1178 may include deep-leaming supercomputers and/or dedicated AI computers powered by GPU(s) 1184, such as a DGX and DGX Station machines developed by NVIDIA.
- the server(s) 1178 may include deep learning infrastructure that use only CPU-powered datacenters.
- the deep- learning infrastructure of the server(s) 1178 may be capable of fast, real- time inferencing, and may use that capability to evaluate and verify the health of the processors, software, and/or associated hardware in the vehicle 102.
- the deep- leaming infrastructure may receive periodic updates from the vehicle 102, such as a sequence of images and/or objects that the vehicle 102 has located in that sequence of images (e.g., via computer vision and/or other machine learning object classification techniques).
- the deep-leaming infrastructure may run its own neural network to identify the objects and compare them with the objects identified by the vehicle 102 and, if the results do not match and the infrastructure concludes that the AI in the vehicle 102 is malfunctioning, the server(s) 1178 may transmit a signal to the vehicle 102 instructing a fail-safe computer of the vehicle 102 to assume control, notify the passengers, and complete a safe parking maneuver.
- the server(s) 1178 may include the GPU(s) 1184 and one or more programmable inference accelerators (e.g., NVIDIA’ s TensorRT 3).
- programmable inference accelerators e.g., NVIDIA’ s TensorRT 3
- the combination of GPU-powered servers and inference acceleration may make real-time responsiveness possible.
- servers powered by CPUs, FPGAs, and other processors may be used for inferencing.
- FIG. 12 is a block diagram of an example computing device 1200 suitable for use in implementing some embodiments of the present disclosure.
- Computing device 1200 may include a bus 1202 that directly or indirectly couples the following devices: memory 1204, one or more central processing units (CPUs) 1206, one or more graphics processing units (GPUs) 1208, a communication interface 1210, input/output (I/O) ports 1212, input/output components 1214, a power supply 1216, and one or more presentation components 1218 (e.g., display(s)).
- CPUs central processing units
- GPUs graphics processing units
- a presentation component 1218 such as a display device, may be considered an I/O component 1214 (e.g., if the display is a touch screen).
- the CPUs 1206 and/or GPUs 1208 may include memory (e.g., the memory 1204 may be representative of a storage device in addition to the memory of the GPUs 1208, the CPUs 1206, and/or other components).
- the computing device of FIG. 12 is merely illustrative.
- Distinction is not made between such categories as“workstation,”“server,” “laptop,”“desktop,”“tablet,”“client device,”“mobile device,”“hand-held device,”“game console,”“electronic control unit (ECU),”“virtual reality system,” and/or other device or system types, as all are contemplated within the scope of the computing device of FIG. 12.
- the bus 1202 may represent one or more busses, such as an address bus, a data bus, a control bus, or a combination thereof.
- the bus 1202 may include one or more bus types, such as an industry standard architecture (ISA) bus, an extended industry standard architecture (EISA) bus, a video electronics standards association (VESA) bus, a peripheral component interconnect (PCI) bus, a peripheral component interconnect express (PCIe) bus, and/or another type of bus.
- ISA industry standard architecture
- EISA extended industry standard architecture
- VESA video electronics standards association
- PCI peripheral component interconnect
- PCIe peripheral component interconnect express
- the memory 1204 may include any of a variety of computer-readable media.
- the computer-readable media may be any available media that may be accessed by the computing device 1200.
- the computer-readable media may include both volatile and nonvolatile media, and removable and non-removable media.
- the computer-readable media may comprise computer-storage media and communication media.
- the computer-storage media may include both volatile and nonvolatile media and/or removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, and/or other data types.
- the memory 1204 may store computer- readable instructions (e.g., that represent a program(s) and/or a program element(s), such as an operating system.
- Computer-storage media may include, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to store the desired information and which may be accessed by computing device 1200.
- computer storage media does not comprise signals per se.
- the communication media may embody computer-readable instructions, data structures, program modules, and/or other data types in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
- modulated data signal may refer to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
- the communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer-readable media.
- the CPU(s) 1206 may be configured to execute the computer-readable instructions to control one or more components of the computing device 1200 to perform one or more of the methods and/or processes described herein.
- the CPU(s) 1206 may each include one or more cores (e.g., one, two, four, eight, twenty-eight, seventy-two, etc.) that are capable of handling a multitude of software threads simultaneously.
- the CPU(s) 1206 may include any type of processor, and may include different types of processors depending on the type of computing device 1200 implemented (e.g., processors with fewer cores for mobile devices and processors with more cores for servers).
- the processor may be an ARM processor implemented using Reduced Instruction Set Computing (RISC) or an x86 processor implemented using Complex Instruction Set Computing (CISC).
- the computing device 1200 may include one or more CPUs 1206 in addition to one or more microprocessors or supplementary co- processors, such as math co-processors.
- the GPU(s) 1208 may be used by the computing device 1200 to render graphics (e.g., 3D graphics).
- the GPU(s) 1208 may include hundreds or thousands of cores that are capable of handling hundreds or thousands of software threads simultaneously.
- the GPU(s) 1208 may generate pixel data for output images in response to rendering commands (e.g., rendering commands from the CPU(s) 1206 received via a host interface).
- the GPU(s) 1208 may include graphics memory, such as display memory, for storing pixel data.
- the display memory may be included as part of the memory 1204.
- the GPU(s) 708 may include two or more GPUs operating in parallel (e.g., via a link).
- each GPU 1208 may generate pixel data for different portions of an output image or for different output images (e.g., a first GPU for a first image and a second GPU for a second image).
- Each GPU may include its own memory, or may share memory with other GPUs.
- the CPU(s) 1206 may be used to render graphics.
- the communication interface 1210 may include one or more receivers, transmitters, and/or transceivers that enable the computing device 700 to communicate with other computing devices via an electronic communication network, included wired and/or wireless communications.
- the communication interface 1210 may include components and functionality to enable communication over any of a number of different networks, such as wireless networks (e.g., Wi-Fi, Z-Wave, Bluetooth, Bluetooth LE, ZigBee, etc.), wired networks (e.g., communicating over Ethernet), low-power wide-area networks (e.g., LoRaWAN, SigFox, etc.), and/or the Internet.
- wireless networks e.g., Wi-Fi, Z-Wave, Bluetooth, Bluetooth LE, ZigBee, etc.
- wired networks e.g., communicating over Ethernet
- low-power wide-area networks e.g., LoRaWAN, SigFox, etc.
- the EO ports 1212 may enable the computing device 1200 to be logically coupled to other devices including the EO components 1214, the presentation component(s) 1218, and/or other components, some of which may be built in to (e.g., integrated in) the computing device 1200.
- Illustrative I/O components 1214 include a microphone, mouse, keyboard, joystick, game pad, game controller, satellite dish, scanner, printer, wireless device, etc.
- the I/O components 1214 may provide a natural user interface (NUI) that processes air gestures, voice, or other physiological inputs generated by a user. In some instances, inputs may be transmitted to an appropriate network element for further processing.
- NUI natural user interface
- An NUI may implement any combination of speech recognition, stylus recognition, facial recognition, biometric recognition, gesture recognition both on screen and adjacent to the screen, air gestures, head and eye tracking, and touch recognition (as described in more detail below) associated with a display of the computing device 1200.
- the computing device 1200 may be include depth cameras, such as stereoscopic camera systems, infrared camera systems, RGB camera systems, touchscreen technology, and combinations of these, for gesture detection and recognition. Additionally, the computing device 1200 may include accelerometers or gyroscopes (e.g., as part of an inertia measurement unit (IMU)) that enable detection of motion. In some examples, the output of the accelerometers or gyroscopes may be used by the computing device 1200 to render immersive augmented reality or virtual reality.
- IMU inertia measurement unit
- the power supply 1216 may include a hard- wired power supply, a battery power supply, or a combination thereof.
- the power supply 1216 may provide power to the computing device 1200 to enable the components of the computing device 1200 to operate.
- the presentation component(s) 1218 may include a display (e.g., a monitor, a touch screen, a television screen, a heads-up-display (HUD), other display types, or a combination thereof), speakers, and/or other presentation components.
- the presentation component(s) 1218 may receive data from other components (e.g., the GPU(s) 1208, the CPU(s) 1206, etc.), and output the data (e.g., as an image, video, sound, etc.).
- the disclosure may be described in the general context of computer code or machine-useable instructions, including computer-executable instructions such as program modules, being executed by a computer or other machine, such as a personal data assistant or other handheld device.
- program modules including routines, programs, objects, components, data structures, etc., refer to code that perform particular tasks or implement particular abstract data types.
- the disclosure may be practiced in a variety of system configurations, including hand-held devices, consumer electronics, general-purpose computers, more specialty computing devices, etc.
- the disclosure may also be practiced in distributed computing environments where tasks are performed by remote-processing devices that are linked through a communications network.
- element A, element B, and/or element C may include only element A, only element B, only element C, element A and element B, element A and element C, element B and element C, or elements A, B, and C.
- “at least one of element A or element B” may include at least one of element A, at least one of element B, or at least one of element A and at least one of element B.
- “at least one of element A and element B” may include at least one of element A, at least one of element B, or at least one of element A and at least one of element B.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Neurology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980022511.4A CN111919225B (zh) | 2018-03-27 | 2019-03-27 | 使用模拟环境对自主机器进行培训、测试和验证 |
DE112019001605.9T DE112019001605T5 (de) | 2018-03-27 | 2019-03-27 | Trainieren, testen und verifizieren von autonomen maschinen unter verwendung simulierter umgebungen |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862648399P | 2018-03-27 | 2018-03-27 | |
US62/648,399 | 2018-03-27 | ||
US16/366,875 US11436484B2 (en) | 2018-03-27 | 2019-03-27 | Training, testing, and verifying autonomous machines using simulated environments |
US16/366,875 | 2019-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019191306A1 true WO2019191306A1 (en) | 2019-10-03 |
Family
ID=68054483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/024400 WO2019191306A1 (en) | 2018-03-27 | 2019-03-27 | Training, testing, and verifying autonomous machines using simulated environments |
Country Status (4)
Country | Link |
---|---|
US (2) | US11436484B2 (de) |
CN (1) | CN111919225B (de) |
DE (1) | DE112019001605T5 (de) |
WO (1) | WO2019191306A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112925223A (zh) * | 2021-02-03 | 2021-06-08 | 北京航空航天大学 | 基于视觉传感网络的无人机三维跟踪虚拟测试仿真系统 |
CN112937564A (zh) * | 2019-11-27 | 2021-06-11 | 初速度(苏州)科技有限公司 | 换道决策模型生成方法和无人车换道决策方法及装置 |
WO2023092579A1 (en) * | 2021-11-29 | 2023-06-01 | Siemens Aktiengesellschaft | Method and apparatus for simulating deployment for ai model, storage medium, and electronic device |
Families Citing this family (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9836895B1 (en) | 2015-06-19 | 2017-12-05 | Waymo Llc | Simulating virtual objects |
WO2019048034A1 (en) * | 2017-09-06 | 2019-03-14 | Swiss Reinsurance Company Ltd. | ELECTRONIC TRACKING AND RECORDING IDENTIFICATION SYSTEM FOR TELEMATIC DEVICES, AND CORRESPONDING METHOD THEREOF |
US10678241B2 (en) * | 2017-09-06 | 2020-06-09 | GM Global Technology Operations LLC | Unsupervised learning agents for autonomous driving applications |
US11206375B2 (en) | 2018-03-28 | 2021-12-21 | Gal Zuckerman | Analyzing past events by utilizing imagery data captured by a plurality of on-road vehicles |
CN108508761A (zh) * | 2018-03-28 | 2018-09-07 | 惠州市德赛西威汽车电子股份有限公司 | 一种基于CarMaker仿真环境的AEB算法功能验证方法 |
US10671077B2 (en) * | 2018-04-17 | 2020-06-02 | Toyota Research Institute, Inc. | System and method for full-stack verification of autonomous agents |
US20190340317A1 (en) * | 2018-05-07 | 2019-11-07 | Microsoft Technology Licensing, Llc | Computer vision through simulated hardware optimization |
US20190346841A1 (en) * | 2018-05-09 | 2019-11-14 | GM Global Technology Operations LLC | Method and system for remotely guiding an autonomous vehicle |
US11354406B2 (en) * | 2018-06-28 | 2022-06-07 | Intel Corporation | Physics-based approach for attack detection and localization in closed-loop controls for autonomous vehicles |
US10901416B2 (en) * | 2018-07-19 | 2021-01-26 | Honda Motor Co., Ltd. | Scene creation system for autonomous vehicles and methods thereof |
US10768629B2 (en) * | 2018-07-24 | 2020-09-08 | Pony Ai Inc. | Generative adversarial network enriched driving simulation |
WO2020026459A1 (ja) * | 2018-08-03 | 2020-02-06 | 日本電気株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
US11138418B2 (en) * | 2018-08-06 | 2021-10-05 | Gal Zuckerman | Systems and methods for tracking persons by utilizing imagery data captured by on-road vehicles |
US10816979B2 (en) * | 2018-08-24 | 2020-10-27 | Baidu Usa Llc | Image data acquisition logic of an autonomous driving vehicle for capturing image data using cameras |
US20200074230A1 (en) * | 2018-09-04 | 2020-03-05 | Luminar Technologies, Inc. | Automatically generating training data for a lidar using simulated vehicles in virtual space |
EP3850548A1 (de) | 2018-09-11 | 2021-07-21 | NVIDIA Corporation | Vorhersage von zukünftigen objekttrajektorien für autonome maschinenanwendungen |
US11341295B2 (en) * | 2018-09-27 | 2022-05-24 | Intel Corporation | Methods, systems, and devices for efficient computation of simulation runs |
US11040714B2 (en) * | 2018-09-28 | 2021-06-22 | Intel Corporation | Vehicle controller and method for controlling a vehicle |
US11762451B2 (en) * | 2018-09-29 | 2023-09-19 | Intel Corporation | Methods and apparatus to add common sense reasoning to artificial intelligence in the context of human machine interfaces |
US10891951B2 (en) * | 2018-10-17 | 2021-01-12 | Ford Global Technologies, Llc | Vehicle language processing |
US10896116B1 (en) | 2018-10-19 | 2021-01-19 | Waymo Llc | Detecting performance regressions in software for controlling autonomous vehicles |
US10754030B2 (en) * | 2018-10-23 | 2020-08-25 | Baidu Usa Llc | Methods and systems for radar simulation and object classification |
US11461963B2 (en) * | 2018-11-16 | 2022-10-04 | Uatc, Llc | Systems and methods for generating synthetic light detection and ranging data via machine learning |
US10824913B1 (en) * | 2018-11-21 | 2020-11-03 | Amazon Technologies, LLC | Training machine learning models for physical agents and robotic controls with simulations |
US10678740B1 (en) * | 2018-11-21 | 2020-06-09 | Zoox, Inc. | Coordinated component interface control framework |
US11087049B2 (en) * | 2018-11-27 | 2021-08-10 | Hitachi, Ltd. | Online self-driving car virtual test and development system |
US10922840B2 (en) * | 2018-12-20 | 2021-02-16 | Here Global B.V. | Method and apparatus for localization of position data |
US11214268B2 (en) * | 2018-12-28 | 2022-01-04 | Intel Corporation | Methods and apparatus for unsupervised multimodal anomaly detection for autonomous vehicles |
US11076022B2 (en) * | 2018-12-31 | 2021-07-27 | Lyft, Inc. | Systems and methods for implementing robotics frameworks |
US11656620B2 (en) * | 2018-12-31 | 2023-05-23 | Luminar, Llc | Generating environmental parameters based on sensor data using machine learning |
US10776542B2 (en) * | 2019-01-30 | 2020-09-15 | StradVision, Inc. | Method and device for calibrating physics engine of virtual world simulator to be used for learning of deep learning-based device, and a learning method and learning device for real state network used therefor |
US11548494B2 (en) * | 2019-02-11 | 2023-01-10 | Ford Global Technologies, Llc | Lap learning for vehicle energy management optimization |
US10860878B2 (en) * | 2019-02-16 | 2020-12-08 | Wipro Limited | Method and system for synthesizing three-dimensional data |
US11693417B2 (en) * | 2019-03-15 | 2023-07-04 | Volkswagen Aktiengesellschaft | Generating training data using simulated environments and training machine learning models for vehicle guidance |
US11153193B2 (en) * | 2019-03-18 | 2021-10-19 | Senai Networks Ltd | Method of and system for testing a computer network |
CA3134819A1 (en) * | 2019-03-23 | 2020-10-01 | Uatc, Llc | Systems and methods for generating synthetic sensor data via machine learning |
US11169532B2 (en) * | 2019-03-26 | 2021-11-09 | Intel Corporation | Computer-assisted (CA)/autonomous driving (AD) vehicle inference model creation |
US11105642B2 (en) * | 2019-04-17 | 2021-08-31 | Waymo Llc | Stranding and scoping analysis for autonomous vehicle services |
DE102019206212A1 (de) * | 2019-04-30 | 2020-11-05 | Ford Global Technologies, Llc | Verfahren zum Durchführen von computerunterstützten Simulationen |
US11280905B2 (en) * | 2019-05-03 | 2022-03-22 | Seagate Technology Llc | Underwater imaging system with multiple connected autonomous underwater vehicles |
EP3739361A1 (de) * | 2019-05-13 | 2020-11-18 | Aptiv Technologies Limited | Verfahren und system zum fusionieren von belegungskarten |
US10755691B1 (en) * | 2019-05-21 | 2020-08-25 | Ford Global Technologies, Llc | Systems and methods for acoustic control of a vehicle's interior |
GB201907342D0 (en) * | 2019-05-24 | 2019-07-10 | Tomtom Global Content Bv | Supplementing electronic map data from user behaviour |
US11391649B2 (en) * | 2019-05-29 | 2022-07-19 | Pony Ai Inc. | Driving emulation system for an autonomous vehicle |
US11995895B2 (en) | 2019-06-03 | 2024-05-28 | Nvidia Corporation | Multi-object tracking using correlation filters in video analytics applications |
US11138433B2 (en) * | 2019-06-07 | 2021-10-05 | The Boeing Company | Cabin experience network with a sensor processing unit |
US11254312B2 (en) * | 2019-06-07 | 2022-02-22 | Tusimple, Inc. | Autonomous vehicle simulation system |
US11298017B2 (en) * | 2019-06-27 | 2022-04-12 | Bao Tran | Medical analysis system |
US11422553B2 (en) * | 2019-06-28 | 2022-08-23 | Intel Corporation | Methods and apparatus to adjust autonomous vehicle driving software using machine programming |
US11069420B2 (en) * | 2019-07-25 | 2021-07-20 | Micron Technology, Inc. | In-system test of a memory device |
US11385610B2 (en) * | 2019-08-16 | 2022-07-12 | Exato IP LLC | Stage automation system |
US11829871B2 (en) * | 2019-08-20 | 2023-11-28 | Lg Electronics Inc. | Validating performance of a neural network trained using labeled training data |
US11340622B2 (en) * | 2019-08-30 | 2022-05-24 | Waymo Llc | Determining respective impacts of agents |
US11126891B2 (en) * | 2019-09-11 | 2021-09-21 | Toyota Research Institute, Inc. | Systems and methods for simulating sensor data using a generative model |
US11907815B1 (en) * | 2019-09-26 | 2024-02-20 | Hrl Laboratories, Llc | System and method for improved generalization from concept constrained dreams |
US11645050B2 (en) * | 2019-10-21 | 2023-05-09 | Woven Alpha, Inc. | Vehicle software developer systems, methods and devices for vehicle software development |
KR20210047477A (ko) * | 2019-10-22 | 2021-04-30 | 현대자동차주식회사 | 오류 모니터링을 이용한 운전자 숙련용 주행 모델 생성 장치 및 방법 |
EP3816741B1 (de) * | 2019-10-31 | 2023-11-29 | TTTech Auto AG | Sicherheitsmonitor für erweiterte fahrerassistenzsysteme |
DE102019216836A1 (de) * | 2019-10-31 | 2021-05-06 | Psa Automobiles Sa | Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt sowie Kraftfahrzeug |
US20210133502A1 (en) * | 2019-11-01 | 2021-05-06 | The Boeing Company | Computing device, method and computer program product for generating training data for a machine learning system |
US11487968B2 (en) * | 2019-12-16 | 2022-11-01 | Nvidia Corporation | Neural network based facial analysis using facial landmarks and associated confidence values |
CA3160259A1 (en) * | 2019-12-19 | 2021-06-24 | Ryan Michael McKay | Self-optimizing labeling platform |
US12071030B2 (en) * | 2019-12-23 | 2024-08-27 | Lyft, Inc. | Camera-sensor fusion module for surface detection and fleet vehicle control systems and methods |
US11765067B1 (en) * | 2019-12-28 | 2023-09-19 | Waymo Llc | Methods and apparatus for monitoring a sensor validator |
US11687778B2 (en) | 2020-01-06 | 2023-06-27 | The Research Foundation For The State University Of New York | Fakecatcher: detection of synthetic portrait videos using biological signals |
US11922292B2 (en) | 2020-01-27 | 2024-03-05 | Google Llc | Shared scratchpad memory with parallel load-store |
KR20210106807A (ko) * | 2020-02-21 | 2021-08-31 | 현대자동차주식회사 | 노면 분류 장치 및 이를 이용한 차량의 터레인 모드 제어 시스템 |
EP4107672A4 (de) * | 2020-02-21 | 2024-03-13 | Edge Case Research, Inc. | Automatisierte identifizierung von trainingsdatenkandidaten für wahrnehmungssysteme |
US11425224B2 (en) * | 2020-02-25 | 2022-08-23 | Level 3 Communications, Llc | Disaggregated and distributed composable infrastructure |
US20210286924A1 (en) * | 2020-03-11 | 2021-09-16 | Aurora Innovation, Inc. | Generating autonomous vehicle simulation data from logged data |
US12005909B2 (en) | 2020-03-13 | 2024-06-11 | Ford Global Technologies, Llc | Vehicle roof assembly |
US11493625B2 (en) | 2020-03-16 | 2022-11-08 | Nio Technology (Anhui) Co., Ltd. | Simulated LiDAR devices and systems |
DE102020107776A1 (de) | 2020-03-20 | 2021-09-23 | Bayerische Motoren Werke Aktiengesellschaft | Trainieren eines automatischen Erkennungssystems |
US11403437B2 (en) | 2020-03-25 | 2022-08-02 | Ford Global Technologies, Llc | Method and system for determining sensor placement for a workspace |
US11364883B2 (en) * | 2020-03-27 | 2022-06-21 | Nvidia Corporation | Leveraging rear-view sensors for automatic emergency braking in autonomous machine applications |
US11676291B1 (en) | 2020-04-20 | 2023-06-13 | Everguard, Inc. | Adaptive multimodal safety systems and methods |
US11675878B1 (en) | 2020-04-30 | 2023-06-13 | Everguard, Inc. | Auto-labeling method for multimodal safety systems |
US11803955B1 (en) | 2020-04-30 | 2023-10-31 | Everguard, Inc. | Multimodal safety systems and methods |
WO2021231229A1 (en) * | 2020-05-13 | 2021-11-18 | National Instruments Corporation | System for emulating an environment for testing a frequency modulated continuous wave (fmcw) light detection and ranging (l1dar) system |
CN113687316A (zh) | 2020-05-17 | 2021-11-23 | 是德科技股份有限公司 | 用于仿真测试系统的时间同步和等待时间补偿 |
CN116194350A (zh) * | 2020-05-27 | 2023-05-30 | 柯尼亚塔有限公司 | 生成多个模拟边缘情况驾驶场景 |
CN111723907B (zh) * | 2020-06-11 | 2023-02-24 | 浪潮电子信息产业股份有限公司 | 一种模型训练设备、方法、系统及计算机可读存储介质 |
EP4165460A4 (de) * | 2020-06-12 | 2023-12-06 | University of Washington | Augenverfolgung in augennahen anzeigen |
KR20210155179A (ko) * | 2020-06-15 | 2021-12-22 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
FR3111460B1 (fr) * | 2020-06-16 | 2023-03-31 | Continental Automotive | Procédé de génération d’images d’une caméra intérieure de véhicule |
US20210406562A1 (en) * | 2020-06-24 | 2021-12-30 | Keysight Technologies, Inc. | Autonomous drive emulation methods and devices |
US11989020B1 (en) * | 2020-07-14 | 2024-05-21 | Aurora Operations, Inc. | Training machine learning model(s), in simulation, for use in controlling autonomous vehicle(s) |
DE102020119908A1 (de) | 2020-07-28 | 2022-02-03 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und System zum Labeln von Sensordaten zur Verwendung beim Machine Learning |
WO2022024302A1 (ja) * | 2020-07-30 | 2022-02-03 | 株式会社安川電機 | 機械学習データ生成装置、機械学習装置、機械学習モデルの生成方法及びプログラム |
EP3951673A1 (de) * | 2020-08-04 | 2022-02-09 | Aptiv Technologies Limited | Verfahren und system zum sammeln von trainingsdaten, die zum trainieren eines systems zum autonomen fahren eines fahrzeugs geeignet sind |
US11420647B2 (en) | 2020-08-13 | 2022-08-23 | Argo AI, LLC | Enhanced static object classification using lidar |
EP3958129A1 (de) * | 2020-08-17 | 2022-02-23 | Volvo Car Corporation | Verfahren und system zur validierung einer software für die autonome steuerung für ein selbstfahrendes fahrzeug |
DE102020210600A1 (de) * | 2020-08-20 | 2022-02-24 | Ford Global Technologies, Llc | System zum Durchführen einer XiL-basierten Simulation |
US11809790B2 (en) * | 2020-09-22 | 2023-11-07 | Beijing Voyager Technology Co., Ltd. | Architecture for distributed system simulation timing alignment |
US11755469B2 (en) | 2020-09-24 | 2023-09-12 | Argo AI, LLC | System for executing structured tests across a fleet of autonomous vehicles |
CN112052183B (zh) * | 2020-09-28 | 2023-07-07 | 英博超算(南京)科技有限公司 | 一种基于虚拟车辆平台的中间件调试方法 |
DE102020212505A1 (de) | 2020-10-02 | 2022-04-07 | Ford Global Technologies, Llc | Erzeugen eines vereinfachten Modells für XiL-Systeme |
US20220126445A1 (en) * | 2020-10-28 | 2022-04-28 | Nvidia Corporation | Machine learning model for task and motion planning |
US20220153298A1 (en) * | 2020-11-17 | 2022-05-19 | Uatc, Llc | Generating Motion Scenarios for Self-Driving Vehicles |
CN112286206B (zh) * | 2020-11-17 | 2024-01-23 | 苏州智加科技有限公司 | 自动驾驶的模拟方法、系统、设备、可读存储介质及平台 |
DE102020215017A1 (de) * | 2020-11-30 | 2022-06-02 | Siemens Mobility GmbH | Verfahren zum Testen eines Objekterkennungssystems |
CN112445728B (zh) * | 2020-11-30 | 2023-07-21 | 中科院软件研究所南京软件技术研究院 | 一种支持多种硬件接口的机器人开发板ros通讯系统 |
DE102020215657A1 (de) * | 2020-12-10 | 2022-06-15 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und System zum Testen eines Steuergeräts eines Fahrzeugs |
US11807233B1 (en) * | 2020-12-23 | 2023-11-07 | Zoox, Inc. | Procedurally generated safety system determination |
US20220204009A1 (en) * | 2020-12-29 | 2022-06-30 | Waymo Llc | Simulations of sensor behavior in an autonomous vehicle |
WO2022146742A1 (en) * | 2020-12-30 | 2022-07-07 | Robocars Inc. | Systems and methods for testing, training and instructing autonomous vehicles |
US12005922B2 (en) * | 2020-12-31 | 2024-06-11 | Honda Motor Co., Ltd. | Toward simulation of driver behavior in driving automation |
DE102021103367A1 (de) | 2021-02-12 | 2022-08-18 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Erzeugung realistischer bildbasierter Daten zum Entwickeln und Testen von Fahrerassistenzsystemen |
US20220264255A1 (en) * | 2021-02-15 | 2022-08-18 | Craig Walden Grass | Network unilateral communication location electronic underpinning system |
KR20220117625A (ko) * | 2021-02-17 | 2022-08-24 | 한국기술교육대학교 산학협력단 | 자율형 cps의 성능 자가진화를 위한 연합 강화학습 기반의 자율형 cps 자가진화 프레임워크 및 이를 이용한 자율형 cps의 성능 자가진화 방법 |
GB2604100A (en) * | 2021-02-17 | 2022-08-31 | Continental Automotive Gmbh | System and method for training neural network for geographical information |
EP4047483A1 (de) * | 2021-02-23 | 2022-08-24 | Aptiv Technologies Limited | Computerkarte zur prüfung von fahrzeuginterner software |
CN113066112B (zh) * | 2021-03-25 | 2021-10-22 | 泰瑞数创科技(北京)有限公司 | 一种基于三维模型数据的室内外融合方法及装置 |
US11810225B2 (en) * | 2021-03-30 | 2023-11-07 | Zoox, Inc. | Top-down scene generation |
US11858514B2 (en) | 2021-03-30 | 2024-01-02 | Zoox, Inc. | Top-down scene discrimination |
US11775909B2 (en) * | 2021-03-31 | 2023-10-03 | Caterpillar Inc. | Monitoring operator condition using sensor data |
US20240193918A1 (en) * | 2021-04-12 | 2024-06-13 | Visualaim Llc | Techniques for automated component classification |
WO2022226238A1 (en) * | 2021-04-21 | 2022-10-27 | Nvidia Corporation | End-to-end evaluation of perception systems for autonomous systems and applications |
US20220340153A1 (en) * | 2021-04-22 | 2022-10-27 | Gm Cruise Holdings Llc | Simulated test creation |
US11714190B1 (en) | 2021-05-11 | 2023-08-01 | Waymo Llc | Methods and systems for radar testing and development using hardware-in-the-loop with continuous integration |
EP4347382A1 (de) * | 2021-06-02 | 2024-04-10 | BAE SYSTEMS plc | Verfahren und vorrichtung zur steuerung |
EP4098547A1 (de) * | 2021-06-02 | 2022-12-07 | BAE SYSTEMS plc | Verfahren und vorrichtung zur steuerung |
US12086053B1 (en) | 2021-06-03 | 2024-09-10 | Wells Fargo Bank, N.A. | Model validation as a service |
US20220402520A1 (en) * | 2021-06-16 | 2022-12-22 | Waymo Llc | Implementing synthetic scenes for autonomous vehicles |
CN115599372A (zh) * | 2021-07-09 | 2023-01-13 | 台达电子工业股份有限公司(Tw) | 离线式软件在环模拟的开发系统及其方法 |
US11947886B2 (en) | 2021-07-09 | 2024-04-02 | Delta Electronics, Inc. | Development system and method of offline software-in-the-loop simulation |
CN113676368B (zh) * | 2021-07-12 | 2022-07-19 | 交控科技股份有限公司 | 一种运用于ats网络性能测试的方法及装置 |
US20230035780A1 (en) * | 2021-07-29 | 2023-02-02 | Zoox, Inc. | Systematic fault detection in vehicle control systems |
US12085935B2 (en) | 2021-07-30 | 2024-09-10 | Waymo Llc | Open door reconstruction for sensor simulation |
DE102021208472B3 (de) * | 2021-08-04 | 2022-12-01 | Continental Autonomous Mobility Germany GmbH | Computerimplementiertes Verfahren zum Trainieren eines Machine-Learning-Modells für ein Fahrzeug oder einen Roboter |
EP4141679A1 (de) * | 2021-08-26 | 2023-03-01 | Siemens Aktiengesellschaft | Verwalten einer app, insbesondere testen der einsatzfähigkeit einer app mit einer trainierten funktion unter verwendung einer virtuellen testumgebung, verfahren und system |
CN113705102B (zh) * | 2021-08-31 | 2024-05-10 | 湖南苍树航天科技有限公司 | 海空集群对抗的推演仿真系统及方法、设备、存储介质 |
CN113484851B (zh) * | 2021-09-08 | 2021-11-16 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | 车载激光雷达的仿真测试系统、方法和整车在环测试系统 |
US12118779B1 (en) * | 2021-09-30 | 2024-10-15 | United Services Automobile Association (Usaa) | System and method for assessing structural damage in occluded aerial images |
US20230110713A1 (en) * | 2021-10-08 | 2023-04-13 | Nvidia Corporation | Training configuration-agnostic machine learning models using synthetic data for autonomous machine applications |
CN114061941B (zh) * | 2021-10-18 | 2023-12-19 | 吉林大学 | 一种新能源车辆变速箱的实验环境调节试验方法、系统以及试验箱 |
US20230297096A1 (en) * | 2022-03-18 | 2023-09-21 | Microsoft Technology Licensing, Llc | Machine learning design for long-term reliability and stress testing |
US20230309031A1 (en) * | 2022-03-24 | 2023-09-28 | L3Harris Technologies, Inc. | Radio frequency system including recommendation training agent for machine learning algorithm and related methods |
US11704698B1 (en) | 2022-03-29 | 2023-07-18 | Woven By Toyota, Inc. | Vehicle advertising system and method of using |
US12008681B2 (en) * | 2022-04-07 | 2024-06-11 | Gm Technology Operations Llc | Systems and methods for testing vehicle systems |
US12091001B2 (en) * | 2022-04-20 | 2024-09-17 | Gm Cruise Holdings Llc | Safety measurement of autonomous vehicle driving in simulation |
DE102022111744A1 (de) | 2022-05-11 | 2023-11-16 | Bayerische Motoren Werke Aktiengesellschaft | Computerimplementiertes Verfahren zum Erstellen einer Route für eine Kampagne zum Sammeln von Daten, Datenverarbeitungsvorrichtung, Server und Kraftfahrzeug |
DE102022204862A1 (de) * | 2022-05-17 | 2023-11-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Update einer Software eines Fahrzeugs auf Basis von Fahrzeugfelddaten |
US20240101150A1 (en) * | 2022-06-30 | 2024-03-28 | Zoox, Inc. | Conditional trajectory determination by a machine learned model |
DE102022119711A1 (de) | 2022-08-05 | 2024-02-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren, System und Computerprogrammprodukt zur Überprüfung von Datensätzen für das Testen und Trainieren eines Fahrerassistenzsystems (ADAS) und/oder eines automatisierten Fahrsystems (ADS) |
US11810574B1 (en) * | 2022-11-15 | 2023-11-07 | Leslie Helpert | Voice-driven internal physiological imaging |
US20240169122A1 (en) * | 2022-11-21 | 2024-05-23 | Foretellix Ltd. | Systems and methods for optimized vehicular simulations |
US12130602B2 (en) * | 2022-12-06 | 2024-10-29 | Gm Cruise Holdings Llc | Systems and techniques for validating a simulation framework |
DE102023201784A1 (de) * | 2023-02-27 | 2024-08-29 | Stellantis Auto Sas | Adaptive realdatenbasierte Simulation eines zentralisiert koordinierten Verkehrsraums |
DE102023201782A1 (de) * | 2023-02-27 | 2024-08-29 | Stellantis Auto Sas | Limitierter Agentenmodelleinsatz in Hybrid-Verkehrssimulation mit Realtrajektorien |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018002910A1 (en) * | 2016-06-28 | 2018-01-04 | Cognata Ltd. | Realistic 3d virtual world creation and simulation for training automated driving systems |
Family Cites Families (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001051970A (ja) * | 1999-08-04 | 2001-02-23 | Yamaha Motor Co Ltd | ユーザ認識度成長システム |
US7852462B2 (en) | 2000-05-08 | 2010-12-14 | Automotive Technologies International, Inc. | Vehicular component control methods based on blind spot monitoring |
US7068815B2 (en) | 2003-06-13 | 2006-06-27 | Sarnoff Corporation | Method and apparatus for ground detection and removal in vision systems |
US7409295B2 (en) | 2004-08-09 | 2008-08-05 | M/A-Com, Inc. | Imminent-collision detection system and process |
US8164628B2 (en) | 2006-01-04 | 2012-04-24 | Mobileye Technologies Ltd. | Estimating distance to an object using a sequence of images recorded by a monocular camera |
EP2383713B1 (de) | 2006-12-06 | 2013-05-29 | Mobileye Technologies Limited | Detektion und Erkennung von Verkehrszeichen |
US7787969B2 (en) * | 2007-06-15 | 2010-08-31 | Caterpillar Inc | Virtual sensor system and method |
JP4462333B2 (ja) | 2007-11-13 | 2010-05-12 | 株式会社デンソー | 走行支援装置 |
US8624926B2 (en) | 2008-04-14 | 2014-01-07 | Google Inc. | Panning using virtual surfaces |
KR101717787B1 (ko) | 2010-04-29 | 2017-03-17 | 엘지전자 주식회사 | 디스플레이장치 및 그의 음성신호 출력 방법 |
KR101225626B1 (ko) | 2010-07-19 | 2013-01-24 | 포항공과대학교 산학협력단 | 차선 인식 시스템 및 방법 |
US9547509B2 (en) * | 2012-02-23 | 2017-01-17 | Samsung Electronics Co., Ltd. | System and method for information acquisition of wireless sensor network data as cloud based service |
US9256222B2 (en) * | 2012-07-18 | 2016-02-09 | International Business Machines Corporation | Sensor virtualization through cloud storage and retrieval mechanisms |
US9489635B1 (en) * | 2012-11-01 | 2016-11-08 | Google Inc. | Methods and systems for vehicle perception feedback to classify data representative of types of objects and to request feedback regarding such classifications |
CN104424466B (zh) | 2013-08-21 | 2018-05-15 | 佳能株式会社 | 对象检测方法、对象检测设备及图像拾取设备 |
US9373057B1 (en) | 2013-11-01 | 2016-06-21 | Google Inc. | Training a neural network to detect objects in images |
CN103677838A (zh) * | 2013-12-17 | 2014-03-26 | 北京奥特美克科技股份有限公司 | 基于虚拟传感器的rtu传感器适配层及其设计方法 |
EP2950175B1 (de) * | 2014-05-27 | 2021-03-31 | dSPACE digital signal processing and control engineering GmbH | Verfahren und Vorrichtung zum Testen eines Steuergerätes |
US20160210382A1 (en) * | 2015-01-21 | 2016-07-21 | Ford Global Technologies, Llc | Autonomous driving refined in virtual environments |
US20160210775A1 (en) * | 2015-01-21 | 2016-07-21 | Ford Global Technologies, Llc | Virtual sensor testbed |
CN112923937B (zh) | 2015-02-10 | 2022-03-15 | 御眼视觉技术有限公司 | 沿着路段自主地导航自主车辆的系统、自主车辆及方法 |
US9811756B2 (en) | 2015-02-23 | 2017-11-07 | Mitsubishi Electric Research Laboratories, Inc. | Method for labeling images of street scenes |
US11630800B2 (en) | 2015-05-01 | 2023-04-18 | Nvidia Corporation | Programmable vision accelerator |
WO2016183074A1 (en) | 2015-05-10 | 2016-11-17 | Mobileye Vision Technologies Ltd. | Road profile along a predicted path |
US10002471B2 (en) | 2015-09-30 | 2018-06-19 | Ants Technology (Hk) Limited | Systems and methods for autonomous vehicle navigation |
US10176634B2 (en) * | 2015-10-16 | 2019-01-08 | Ford Global Technologies, Llc | Lane boundary detection data generation in virtual environment |
DE102015221920A1 (de) | 2015-11-09 | 2017-05-11 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren, Computerprogrammprodukt, Vorrichtung, und Fahrzeug umfassend die Vorrichtung zum Steuern einer Trajektorienplanung eines Egofahrzeugs |
US9740944B2 (en) * | 2015-12-18 | 2017-08-22 | Ford Global Technologies, Llc | Virtual sensor data generation for wheel stop detection |
DE102015226762B4 (de) | 2015-12-28 | 2024-04-25 | Robert Bosch Gmbh | Verfahren zur Korrektur mindestens eines Kollisionsparameters und korrespondierendes integriertes Sicherheitssystem für ein Fahrzeug |
US10134278B1 (en) | 2016-01-22 | 2018-11-20 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle application |
US9996771B2 (en) | 2016-02-15 | 2018-06-12 | Nvidia Corporation | System and method for procedurally synthesizing datasets of objects of interest for training machine-learning models |
US9802599B2 (en) | 2016-03-08 | 2017-10-31 | Ford Global Technologies, Llc | Vehicle lane placement |
JP6575818B2 (ja) | 2016-03-25 | 2019-09-18 | パナソニックIpマネジメント株式会社 | 運転支援方法およびそれを利用した運転支援装置、自動運転制御装置、車両、運転支援システム、プログラム |
US9896096B2 (en) | 2016-04-11 | 2018-02-20 | David E. Newman | Systems and methods for hazard mitigation |
US10032067B2 (en) | 2016-05-28 | 2018-07-24 | Samsung Electronics Co., Ltd. | System and method for a unified architecture multi-task deep learning machine for object recognition |
CN106114507B (zh) | 2016-06-21 | 2018-04-03 | 百度在线网络技术(北京)有限公司 | 用于智能车辆的局部轨迹规划方法和装置 |
EP4283563A3 (de) | 2016-06-27 | 2024-05-29 | Mobileye Vision Technologies Ltd. | Steuerung eines hostfahrzeugs basierend auf erfassten geparkten fahrzeugeigenschaften |
GB2553782B (en) | 2016-09-12 | 2021-10-20 | Niantic Inc | Predicting depth from image data using a statistical model |
US10127670B2 (en) | 2016-09-27 | 2018-11-13 | Xactware Solutions, Inc. | Computer vision systems and methods for detecting and modeling features of structures in images |
US10289469B2 (en) | 2016-10-28 | 2019-05-14 | Nvidia Corporation | Reliability enhancement utilizing speculative execution systems and methods |
US20180136332A1 (en) | 2016-11-15 | 2018-05-17 | Wheego Electric Cars, Inc. | Method and system to annotate objects and determine distances to objects in an image |
US20180158244A1 (en) * | 2016-12-02 | 2018-06-07 | Ayotle | Virtual sensor configuration |
EP3549102B1 (de) | 2016-12-02 | 2021-05-26 | Google LLC | Bestimmung der struktur und der bewegung in bildern unter verwendung neuronaler netze |
US10545029B2 (en) | 2016-12-30 | 2020-01-28 | DeepMap Inc. | Lane network construction using high definition maps for autonomous vehicles |
US10691847B2 (en) * | 2017-01-13 | 2020-06-23 | Sap Se | Real-time damage determination of an asset |
EP3352028A1 (de) * | 2017-01-23 | 2018-07-25 | dSPACE digital signal processing and control engineering GmbH | Verfahren zum test einer steuergerätefunktion eines steuergeräts eines fahrzeugs |
US11288595B2 (en) | 2017-02-14 | 2022-03-29 | Groq, Inc. | Minimizing memory and processor consumption in creating machine learning models |
US10146225B2 (en) * | 2017-03-02 | 2018-12-04 | GM Global Technology Operations LLC | Systems and methods for vehicle dimension prediction |
US10209718B2 (en) | 2017-03-14 | 2019-02-19 | Starsky Robotics, Inc. | Vehicle sensor system and method of use |
US11899669B2 (en) | 2017-03-20 | 2024-02-13 | Carnegie Mellon University | Searching of data structures in pre-processing data for a machine learning classifier |
US10460180B2 (en) | 2017-04-20 | 2019-10-29 | GM Global Technology Operations LLC | Systems and methods for visual classification with region proposals |
US10108867B1 (en) | 2017-04-25 | 2018-10-23 | Uber Technologies, Inc. | Image-based pedestrian detection |
US10310087B2 (en) | 2017-05-31 | 2019-06-04 | Uber Technologies, Inc. | Range-view LIDAR-based object detection |
US20180349746A1 (en) | 2017-05-31 | 2018-12-06 | Uber Technologies, Inc. | Top-View Lidar-Based Object Detection |
CN107506830A (zh) * | 2017-06-20 | 2017-12-22 | 同济大学 | 面向智能汽车规划决策模块的人工智能训练平台 |
US11214273B2 (en) | 2017-06-23 | 2022-01-04 | Nvidia Corporation | Method of using a single controller (ECU) for a fault-tolerant/fail-operational self-driving system |
US10007269B1 (en) | 2017-06-23 | 2018-06-26 | Uber Technologies, Inc. | Collision-avoidance system for autonomous-capable vehicle |
US20180373980A1 (en) | 2017-06-27 | 2018-12-27 | drive.ai Inc. | Method for training and refining an artificial intelligence |
US11188794B2 (en) | 2017-08-10 | 2021-11-30 | Intel Corporation | Convolutional neural network framework using reverse connections and objectness priors for object detection |
US10339669B2 (en) | 2017-08-22 | 2019-07-02 | Here Global B.V. | Method, apparatus, and system for a vertex-based evaluation of polygon similarity |
US11487988B2 (en) * | 2017-08-31 | 2022-11-01 | Ford Global Technologies, Llc | Augmenting real sensor recordings with simulated sensor data |
US10901423B2 (en) * | 2017-09-01 | 2021-01-26 | International Business Machines Corporation | Generating driving behavior models |
KR102026697B1 (ko) | 2017-09-21 | 2019-09-30 | 엘지전자 주식회사 | 주행 시스템 및 차량 |
US10579897B2 (en) | 2017-10-02 | 2020-03-03 | Xnor.ai Inc. | Image based object detection |
US10997491B2 (en) * | 2017-10-04 | 2021-05-04 | Huawei Technologies Co., Ltd. | Method of prediction of a state of an object in the environment using an action model of a neural network |
US10599546B1 (en) * | 2017-10-25 | 2020-03-24 | Uatc, Llc | Autonomous vehicle testing systems and methods |
US20190129831A1 (en) * | 2017-10-27 | 2019-05-02 | Uber Technologies, Inc. | Autonomous Vehicle Simulation Testing Systems and Methods |
US10580158B1 (en) | 2017-11-03 | 2020-03-03 | Zoox, Inc. | Dense depth estimation of image data |
CN111587407B (zh) | 2017-11-10 | 2024-01-23 | 辉达公司 | 用于安全且可靠的自主车辆的系统和方法 |
US11017550B2 (en) | 2017-11-15 | 2021-05-25 | Uatc, Llc | End-to-end tracking of objects |
US11062461B2 (en) | 2017-11-16 | 2021-07-13 | Zoox, Inc. | Pose determination from contact points |
US10762396B2 (en) | 2017-12-05 | 2020-09-01 | Utac, Llc | Multiple stage image based object detection and recognition |
WO2019109336A1 (en) | 2017-12-08 | 2019-06-13 | Baidu.Com Times Technology (Beijing) Co., Ltd. | Stereo camera depth determination using hardware accelerator |
US20190179979A1 (en) * | 2017-12-13 | 2019-06-13 | Uber Technologies, Inc. | Simulated Sensor Testing |
US11042163B2 (en) | 2018-01-07 | 2021-06-22 | Nvidia Corporation | Guiding vehicles through vehicle maneuvers using machine learning models |
WO2019157193A1 (en) | 2018-02-09 | 2019-08-15 | Nvidia Corporation | Controlling autonomous vehicles using safe arrival times |
US10816978B1 (en) * | 2018-02-22 | 2020-10-27 | Msc.Software Corporation | Automated vehicle artificial intelligence training based on simulations |
US10635844B1 (en) * | 2018-02-27 | 2020-04-28 | The Mathworks, Inc. | Methods and systems for simulating vision sensor detection at medium fidelity |
US10157331B1 (en) | 2018-03-08 | 2018-12-18 | Capital One Services, Llc | Systems and methods for image preprocessing to improve accuracy of object recognition |
US10942030B2 (en) | 2018-08-17 | 2021-03-09 | Lyft, Inc. | Road segment similarity determination |
US10625748B1 (en) | 2019-06-28 | 2020-04-21 | Lyft, Inc. | Approaches for encoding environmental information |
-
2019
- 2019-03-27 WO PCT/US2019/024400 patent/WO2019191306A1/en active Application Filing
- 2019-03-27 CN CN201980022511.4A patent/CN111919225B/zh active Active
- 2019-03-27 US US16/366,875 patent/US11436484B2/en active Active
- 2019-03-27 DE DE112019001605.9T patent/DE112019001605T5/de active Pending
-
2022
- 2022-08-30 US US17/898,887 patent/US20230004801A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018002910A1 (en) * | 2016-06-28 | 2018-01-04 | Cognata Ltd. | Realistic 3d virtual world creation and simulation for training automated driving systems |
Non-Patent Citations (1)
Title |
---|
ARVIND JAYARAMAN ET AL: "Creating 3D Virtual Driving Environments for Simulation-Aided Development of Autonomous Driving and Active Safety", SAE TECHNICAL PAPER SERIES, vol. 1, 28 March 2017 (2017-03-28), US, XP055518353, ISSN: 0148-7191, DOI: 10.4271/2017-01-0107 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112937564A (zh) * | 2019-11-27 | 2021-06-11 | 初速度(苏州)科技有限公司 | 换道决策模型生成方法和无人车换道决策方法及装置 |
CN112925223A (zh) * | 2021-02-03 | 2021-06-08 | 北京航空航天大学 | 基于视觉传感网络的无人机三维跟踪虚拟测试仿真系统 |
WO2023092579A1 (en) * | 2021-11-29 | 2023-06-01 | Siemens Aktiengesellschaft | Method and apparatus for simulating deployment for ai model, storage medium, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
DE112019001605T5 (de) | 2020-12-17 |
US20230004801A1 (en) | 2023-01-05 |
US11436484B2 (en) | 2022-09-06 |
CN111919225B (zh) | 2024-03-26 |
US20190303759A1 (en) | 2019-10-03 |
CN111919225A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11436484B2 (en) | Training, testing, and verifying autonomous machines using simulated environments | |
US11966673B2 (en) | Sensor simulation and learning sensor models with generative machine learning methods | |
US20240078363A1 (en) | Virtual environment scenarios and observers for autonomous machine applications | |
US11801861B2 (en) | Using image augmentation with simulated objects for training machine learning models in autonomous driving applications | |
US11941819B2 (en) | Object detection using skewed polygons suitable for parking space detection | |
US11989642B2 (en) | Future object trajectory predictions for autonomous machine applications | |
US11927502B2 (en) | Simulating realistic test data from transformed real-world sensor data for autonomous machine applications | |
US11897471B2 (en) | Intersection detection and classification in autonomous machine applications | |
US20200380274A1 (en) | Multi-object tracking using correlation filters in video analytics applications | |
US11592828B2 (en) | Using neural networks to perform fault detection in autonomous driving applications | |
US20220138568A1 (en) | Model-based reinforcement learning for behavior prediction | |
US12086208B2 (en) | Measuring the effects of augmentation artifacts on a machine learning network | |
US20240092390A1 (en) | Virtual agent trajectory prediction and traffic modeling for machine simulation systems and applications | |
US20240001957A1 (en) | Using image augmentation with simulated objects for training machine learning models in autonomous driving applications | |
CN116767245A (zh) | 使用自主系统和应用的神经网络的地图信息对象数据管理 | |
US20220340149A1 (en) | End-to-end evaluation of perception systems for autonomous systems and applications | |
US20230391365A1 (en) | Techniques for generating simulations for autonomous machines and applications | |
WO2023206346A1 (en) | Detecting hardware faults in data processing pipelines | |
US20240312123A1 (en) | Data augmentation for model training in autonomous systems and applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19717068 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19717068 Country of ref document: EP Kind code of ref document: A1 |