WO2019189773A1 - Substrate having surface made entirely or at least partially of metal material wherein surface of said metal material has holes, and substrate-resin cured product composite containing said substrate and resin cured product - Google Patents

Substrate having surface made entirely or at least partially of metal material wherein surface of said metal material has holes, and substrate-resin cured product composite containing said substrate and resin cured product Download PDF

Info

Publication number
WO2019189773A1
WO2019189773A1 PCT/JP2019/014029 JP2019014029W WO2019189773A1 WO 2019189773 A1 WO2019189773 A1 WO 2019189773A1 JP 2019014029 W JP2019014029 W JP 2019014029W WO 2019189773 A1 WO2019189773 A1 WO 2019189773A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
base material
substrate
metal material
hole
Prior art date
Application number
PCT/JP2019/014029
Other languages
French (fr)
Japanese (ja)
Inventor
太一 永井
益代 西村
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Publication of WO2019189773A1 publication Critical patent/WO2019189773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a base material-resin comprising a base material in which at least all or a part of the surface is made of a metal material, the surface of the metal material having specific holes, and the base material and a cured resin product. It relates to a composite of a cured product.
  • Patent Document 1 describes as follows.
  • (1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less.
  • the bonding strength of the metal / resin composite structure obtained by the method disclosed in Patent Document 1 may be insufficient.
  • the present invention solves the above-mentioned problems of the prior art, that is, a base material having a metal material having a specific hole excellent in bonding strength with a resin, and a base material-resin curing containing the base material and a resin cured product.
  • the object is to provide a composite of objects.
  • the present inventors have found a base material in which at least all or a part of the surface is made of a metal material, and the surface of the metal material has a specific hole.
  • the headline and the present invention were completed. That is, the gist of the present invention is as follows.
  • the load length ratio (Pmr) of the cross-sectional curve is 40% or more at a cutting level of 30% and an evaluation length of 10 ⁇ m.
  • the average value (a) of the diameter at the inlet of the hole and the average of the hole depth is 2 or more and 50 or less [2] A substrate-resin composite containing a substrate and a cured resin, wherein the substrate is described in [1] A composite of a base material and a resin cured product, wherein a resin cured product is contained in pores on the surface of the metal material of the base material.
  • the base material is excellent in bonding strength with a resin, and at least all or part of the surface is made of a metal material, and the surface of the metal material has a specific hole and the base material.
  • a substrate-resin cured product composite containing a cured resin product can be provided.
  • hole means not a through hole but a recess.
  • the base material applied to the embodiment of the present invention is not particularly limited as long as at least the whole or a part of the surface is a base material made of a metal material.
  • the metal material present on all or a part of at least the surface of the substrate include iron, iron alloy, titanium, titanium alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, and copper alloy. It is not limited.
  • the base material is not particularly limited, and includes wrought material, extruded material, cast material, and die-cast material.
  • the said metal material may be used independently and may be used in combination of 2 or more types of metal materials.
  • aluminum or an aluminum alloy is preferable from the viewpoint of light weight and high strength.
  • aluminum or an aluminum alloy may be simply referred to as “aluminum material”.
  • the iron or iron alloy is not particularly limited, and examples include industrially used ordinary steel, chrome molybdenum steel, and stainless steel. Specifically, S45C, SCM415, SUS304, SUS316, SUS430, etc. standardized by JISG4051, JISG4053, JISG4304, etc. are mentioned.
  • the titanium or titanium alloy is not particularly limited, and includes pure titanium, ⁇ - ⁇ alloy, ⁇ alloy and the like used in the industry. Specifically, one to four kinds of pure titanium, Ti-6Al-4V, Ti-22V-4Al, and other titanium alloys specified in JISH-4600 are listed.
  • Aluminum or aluminum alloy is not particularly limited, and any aluminum material used in the industry can be applied.
  • An aluminum material refers to a material containing 60% or more of aluminum, and examples of alloy components other than aluminum include magnesium, silicon, titanium, chromium, manganese, iron, nickel, copper, and zinc.
  • alloy components other than aluminum include magnesium, silicon, titanium, chromium, manganese, iron, nickel, copper, and zinc.
  • A1050, A2014, A2024, A3003, A5052, A5N01, A6061, A6063, A7075, AC4A, ADC12 and the like specified in JIS HH 5302 and JIS HH 5202 are listed.
  • the magnesium alloy is not particularly limited, and any magnesium alloy used in the industry can be applied. Specific examples of the magnesium alloy include AZ92, AZ91, AZ80, AZ63, AZ61, AZ31, AM100, AM60, AM50, AM20, AS41, AS21, AE42, ACM522, and the like.
  • Copper or copper alloy is not particularly limited, and any copper or copper alloy used in the industry can be applied. Specific examples of copper or copper alloy include C1020, C1100, C1220, C2801, C4621, C6140, etc., which are standardized in JIS H3100.
  • the shape of the base material having at least all or part of the surface made of a metal material is not particularly limited as long as the resin can be joined to the base material. May be. Moreover, the structure which combined these may be sufficient.
  • the base material includes all intermediate products and finished products in the category of the base material according to the embodiment of the present invention. If at least all or a part of the surface of the base material is a metal material, the other part may be a material other than the metal material.
  • a base material may be comprised only from a metal material. Examples of the material other than the metal material include, but are not limited to, metals other than the base material, resin, rubber, wood, ceramic, composite material, and the like.
  • the joining method of materials other than the said base material is not specifically limited.
  • the shape of the surface of the joint portion of the metal material of the base material to be joined to the resin may be a flat surface or a curved surface, but is not particularly limited.
  • the base material may be subjected to plastic processing, cutting processing, blast processing, polishing processing, electric discharge processing, drilling processing, heat treatment (age hardening processing, solution treatment, etc.).
  • the base material may be subjected to surface treatment (chemical conversion treatment, plating treatment, anodizing treatment, etc.), but these film components may be polished or chemically treated before forming the holes described below. Is preferably removed.
  • the surface is made of a metal material, the surface of the metal material has pores, and satisfies the following requirements (1) and (2).
  • the load length ratio (Pmr) of the cross-sectional curve is 40% or more at a cutting level of 30% and an evaluation length of 10 ⁇ m.
  • the average value (a) of the diameter at the inlet of the hole and the average of the hole depth is 2 or more and 50 or less
  • the load length ratio of the cross-sectional curve is less than the lower limit value, the strength is lowered, so that the bonding strength with the resin is lowered.
  • the load length ratio of the cross-sectional curve is more preferably 45% or more, and further preferably 50% or more.
  • the upper limit of the load length ratio of the cross-sectional curve is 95% or less.
  • the aspect ratio is less than 2, the bonding strength with the resin decreases. Even when the load length ratio of the cross-sectional curve is equal to or more than the above lower limit value, when the aspect ratio is less than 2, excellent bonding strength with the resin cannot be obtained. Further, even when the aspect ratio is 2 or more, when the load length ratio of the cross-sectional curve is less than the lower limit value, the strength is lowered, so that excellent bonding strength cannot be obtained. Therefore, in order to obtain excellent bonding strength with the resin, it is necessary to satisfy the two requirements (1) and (2) at the same time.
  • the load length ratio (Pmr (c)) of the cross-sectional curve represents the ratio of the load length Ml (c) of the contour curve element at the cutting level c to the evaluation length (ln) as shown in the equation (A).
  • the measuring method is defined in JIS B 0601.
  • (A) Pmr (c) Ml (c) / ln
  • the load length ratio of the cross-sectional curve in the embodiment of the present invention is determined by observing the cross-sectional structure appearing at the cut surface by electron microscope observation when cut in the direction perpendicular to the actual surface of the base material having the metal material having holes. Measure from the photograph taken.
  • a method for preparing a sample for observing the cross-sectional structure is not particularly limited, and examples thereof include a mechanical polishing method, a focused ion beam method, an ion milling method, and a microtome method. In short, it is only necessary to observe the structure of the holes.
  • the distance be Rt.
  • the cutting level c is set to 30%. That is, the cutting level is 30% from the top line with respect to Rt.
  • the evaluation length is set to 10 ⁇ m.
  • the load length Ml (c) is obtained by measuring the sum of the actual lengths (Ml 1 to Ml 9 in FIG. 1) of the contour curve elements cut at a cutting level of 30% from a photograph taken with an electron microscope. It can ask for.
  • the load length ratio of the cross-sectional curve in the embodiment of the present invention means that the cross-sectional structure that appears at the cut surface when the substrate is cut in the direction perpendicular to the actual surface of the base material having the metal material with holes is measured with an electron microscope.
  • the ratio of the load length Ml (c) at the height of 30% from the top line to Rt with respect to the evaluation length of 10 ⁇ m is shown.
  • the magnification is 10,000 times or more in observation with an electron microscope.
  • the aspect ratio according to the embodiment of the present invention is calculated by the ratio (b / a) of the average value (a) of the diameters at the hole entrance and the average value (b) of the hole depth.
  • An aspect ratio of 2 or more means that there is a hole in which (b) has an average value of hole depths twice or more that of (a).
  • the average value of the diameter at the entrance of the hole can be measured from a photograph of the surface of the base material having the metal material having the hole taken with an electron microscope. As shown in FIG. 2, circular or elliptical holes are observed on the surface of the metal material of the base material according to the embodiment of the present invention.
  • the average value of the diameter at the entrance of the hole is the average value of the diameter (a in FIG. 2) or the short diameter (b in FIG. 2) of the circular or elliptical opening formed on the surface.
  • the average value of the diameters at the entrances of the holes was taken with an electron microscope when a large number of holes were to be measured, and the cross-sectional structure that appeared at the cut ends when cut in a direction perpendicular to the actual surface of the substrate. It can also be measured from photographs.
  • the average value of the diameter at the entrance of the hole is the average value of the opening width of the uppermost part of the formed hole (c in FIG. 3).
  • the total length is divided and divided by 10 to obtain the average value of the diameters at the hole entrances.
  • the magnification is 10,000 times or more in observation with an electron microscope.
  • the average diameter measurement method at the entrance of the hole is more preferably obtained from a photograph of the surface of the base material having the metal material having the hole taken with an electron microscope.
  • the average value of the hole depth is measured from a photograph taken by observing an electron microscope of a cross-sectional structure that appears at the cut edge when cut in a direction perpendicular to the actual surface of the substrate. In order to obtain the hole depth, it is preferable that the magnification is 10,000 times or more in observation with an electron microscope.
  • the average value of the hole depth is an average value of the length (d in FIG. 3) between the uppermost part and the deepest part in the formed hole, and the top 10 are selected from the longest hole depths, The length from the top to the deepest part is measured, and all are integrated and divided by 10 to obtain the average value of the hole depth.
  • the diameter range at the hole entrance of the base material is preferably 50 nm or more and 4000 nm or less. More preferably, it is 60 nm or more and 2000 nm or less, More preferably, it is 70 nm or more and 1000 nm or less.
  • the range of the hole depth of the base material is preferably 100 nm or more and 10 ⁇ m or less, More preferably, it is 200 nm or more and 9 micrometers or less, More preferably, it is 300 nm or more and 8 micrometers or less.
  • the aspect ratio defined in (2) above according to the embodiment of the present invention is 2 or more and 50 or less. From the viewpoint of further improving the bonding strength between the base material having the metal material having holes and the resin according to the embodiment of the present invention, the range of the aspect ratio is 2 or more, preferably 3 or more, Preferably it is 4 or more. When the aspect ratio exceeds 50, the strength of the metal material itself decreases.
  • the hole should just confirm one or more places by observing arbitrary 10 places on the surface and cross section of the base material. More specifically, in the embodiment of the present invention, the number of holes having the aspect ratio on the surface of the metal material preferably has one or more per 1 ⁇ m 2 of the surface area of the metal material. It is more preferable to have the above. The hole does not need to be present on the entire surface of the base material, and it is sufficient that the hole has at least a portion to be bonded to a resin described later.
  • the method for producing the substrate having the metal material having the holes is not particularly limited, and examples thereof include known methods such as an imprint method, a laser processing method, and a chemical etching method.
  • the imprint method is a method of forming a hole by pressing a substrate or a roll having a plurality of protrusions against a base material having a metal material, and examples thereof include a transfer method and a press patterning method.
  • the laser processing method is a method of forming holes by irradiating the surface of a metal material with laser light.
  • the chemical etching method is a method in which a substrate having a metal material is brought into contact with a treatment liquid using a chemical to cause corrosion to form holes.
  • a method for producing holes by film formation is excluded.
  • the coating include an anodic oxide coating, chemical conversion coating (phosphate coating, zirconium coating, chromium coating, silicate coating, lithium conversion coating), plating film, and the like.
  • the following chemical etching method is suitable as a method for producing the substrate having the holes.
  • This chemical etching method is particularly suitable for the production of a substrate having an aluminum material on at least all or part of its surface.
  • a surface treating agent (zinc ions and an alkali source) containing a lithium ion source and an alkali source on the surface of the substrate whose whole or part of the surface is made of a metal material.
  • a manufacturing method including a process is suitable.
  • the surface treatment agent of the first step is applied to the surface of the substrate made of at least all or part of the surface of the metal material.
  • a film containing lithium element is formed.
  • at least all or part of the surface is accompanied by a dissolution reaction of a passive film including an oxide film on the surface of the base material made of a metal material.
  • the film containing lithium element can be formed using a known method. Examples include boehmite treatment and chemical conversion treatment, but are not limited thereto.
  • the film containing lithium element includes a hydroxide film, an oxide film, a hydrated oxide film and the like containing a metal derived from a base material.
  • the treatment method for example, the methods described in JP-A-48-89138, JP-A-53-11841 and the like can be used.
  • the surface treatment agent in the first step contains a lithium ion source and an alkali source as components.
  • the form of the lithium ion source is not particularly limited, and is suitable from hydroxide, chloride, carbonate, bicarbonate, nitrate, nitrite, sulfate, persulfate, bromide, bromate, etc. Can be selected from one or more.
  • the treatment liquid used in the first step according to the embodiment of the present invention preferably contains lithium ions in the range of 0.001 mol / L to 5.00 mol / L, more preferably 0.10 mol / L to 4.00 mol / L, More preferably, it contains 0.50 mol / L or more and 3.50 mol / L or less.
  • the lithium salt concentration may exceed the saturation solubility.
  • the surface treatment agent in the first step contains an alkali source.
  • the alkali source include hydroxides of alkali metals or alkaline earth metals, magnesium hydroxides, or water-soluble amine compounds.
  • the alkali metal or alkaline earth metal hydroxide is not particularly limited, and one or more suitable ones can be selected from lithium, sodium, potassium, calcium and the like.
  • the surface treatment agent in the first step is usually 0.001 mol / L or more and 5.00 mol / L or less, more preferably 0.005 mol / L or more and 4.00 mol / L or less, more preferably as an alkali source. Includes 0.01 mol / L or more and 3.00 mol / L or less. Further, the hydroxide concentration of the alkali metal, alkaline earth metal and magnesium may exceed the saturation solubility.
  • the water-soluble amine compound includes a primary amine to which an alkyl group having 1 to 12 carbon atoms is bonded, a secondary amine to which an alkyl group having 1 to 12 carbon atoms is bonded, and an alkyl group having 1 to 12 carbon atoms.
  • any of the bound tertiary amines can be used, and in addition to these water-soluble amines, aromatic amines in which a part or all of the alkyl group or hydroxyalkyl group is substituted with a phenol group are also used.
  • at least one methylene of the alkyl group having 1 to 12 carbon atoms may be substituted with —NH—.
  • water-soluble amine compounds include monoethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, dimethylaminoethanol, triethylenetetraamine, hexamethylenetetraamine, ethylenediamine, and ammonia.
  • One type or two or more types can be selected.
  • the treatment liquid used in the first step according to the embodiment of the present invention is preferably a water-soluble amine compound of 0.001 mol / L to 1.00 mol / L, more preferably 0.005 mol / L to 0.90 mol / L.
  • the following can be mentioned, More preferably, 0.01 mol / L or more and 0.80 mol / L or less are included.
  • the surface treatment agent in the first step among the alkali metal or alkaline earth metal hydroxide, magnesium hydroxide, and water-soluble amine compound, even if one component is used alone, several components are used in combination. It can also be used.
  • the surface treatment agent in the first step does not contain zinc ions and silicate ions.
  • zinc ions when zinc ions are present, when a base material having an aluminum material is used as the metal material, a desired hole cannot be obtained because a zinc-substituted film is formed on the surface of the aluminum material.
  • silicate ions when silicate ions are present, a film containing silicon is formed on the surface of the aluminum material, so that desired holes cannot be obtained.
  • transition metal ions such as copper, iron, nickel and tin. Alkali metal, alkaline earth metal, magnesium hydroxide, sodium, potassium, magnesium, calcium and the like supplied from these salts may be included in the film.
  • the surface treatment agent in the first step can be easily prepared by dissolving a lithium ion source and an alkali source in ion exchange water, industrial water, tap water and the like.
  • elements such as aluminum, magnesium, silicon, titanium, chromium, manganese, iron, nickel, copper, and zinc derived from the base material and water may be present.
  • An organic solvent, a surfactant, and a chelating agent may be added to the surface treatment agent in the first step.
  • the total content is preferably 50.0% by mass or less based on the total amount of the surface treatment agent.
  • a film containing lithium element By contacting the surface treatment agent in the first step, a film containing lithium element can be formed on the surface of the base material in which at least all or part of the surface is made of a metal material.
  • the adhesion amount of the film is not particularly limited, and the film may be a continuous film or a discontinuous film.
  • Examples of the method of bringing the surface treatment agent in the first step into contact with a base material having at least all or part of the surface made of a metal material include treatment methods by dipping and spraying. By contacting the surface treatment agent, a film containing lithium element can be formed on the substrate, but an electrolytic treatment can be used in combination.
  • the liquid temperature of the surface treatment agent when used in the first step is preferably 20.0 ° C to 100.0 ° C.
  • the pH is preferably adjusted from 8.0 to 13.0.
  • the contact time is preferably 5 seconds to 1800 seconds.
  • a water washing step and a drying step may be performed as necessary.
  • the acidic aqueous solution in the second step contains an inorganic acid.
  • the inorganic acid one or more suitable ones can be selected from sulfuric acid, nitric acid, hydrochloric acid, amidosulfuric acid and the like, but are not limited thereto.
  • the aqueous solution may contain an organic acid, an inorganic acid salt, an organic acid salt, or the like, but it is preferable that the aqueous solution does not contain a transition metal.
  • the organic acid one or more suitable ones can be selected from formic acid, citric acid, oxalic acid, malic acid, succinic acid, malonic acid, ethylenediaminetetraacetic acid, gluconic acid, and the like. It is not limited.
  • the inorganic acid salt and organic acid salt can be selected from one or more suitable ones from alkali metal salts, alkaline earth metal salts and ammonium salts of the inorganic acids and organic acids. It is not limited to.
  • the said aqueous solution can mix
  • the total content of the components including the inorganic acid is preferably 0.1% by mass to 70.0% by mass, and preferably 0.5% by mass to 50.0% by mass with respect to the total amount of the acidic aqueous solution. Is more preferable, and it is further more preferable that it is 1.0 mass% to 45.0 mass%.
  • a surfactant or chelating agent may be added to the acidic aqueous solution in the second step.
  • the total content is 10.0 mass% or less with respect to the whole quantity of acidic aqueous solution.
  • the acidic aqueous solution in the second step can be easily prepared by dissolving each of the above components in ion exchange water, industrial water, tap water or the like.
  • elements such as aluminum, magnesium, silicon, titanium, chromium, manganese, iron, nickel, copper, and zinc derived from the base material and water may be present.
  • membrane containing the lithium element formed by said 1st process may mix.
  • Examples of the method of bringing the acidic aqueous solution containing the inorganic acid in the second step into contact with a substrate having at least a part of the surface made of a metal material include a treatment method by dipping and spraying. It is also possible to use electrolytic treatment in combination.
  • the acidic aqueous solution used in the second step preferably has a liquid temperature of 10.0 ° C to 80.0 ° C.
  • the pH may be acidic, and for example, it is preferably adjusted to pH 6.0 or lower.
  • the contact time is preferably about 1 to 1800 seconds, more preferably 900 seconds or less.
  • a water washing step and a drying step are usually performed. In the water washing step, ultrasonic waves may be used in combination. In the drying step, natural drying may be used, and a dryer, air blow, oven, or the like may be used.
  • the whole surface of the base material which has a metallic material may be processed, and it processes partially. May be. In order to obtain an excellent bonding strength with the resin, it is only necessary to treat only the portion bonded to the resin.
  • the base material having a metal material used for the base material manufacturing method according to the embodiment of the present invention is shot blasted, sandblasted, or ground before the manufacturing method (hole forming step) according to the embodiment of the present invention.
  • Mechanical roughening treatment such as processing, physical roughening treatment such as laser processing or plasma processing, or roughening treatment may be performed in advance by a chemical method.
  • corrugated shape formed after these processes is not ask
  • the base material having a metal material used in the base material manufacturing method according to the embodiment of the present invention cleans the surface of the metal material before the manufacturing method (hole forming step) according to the embodiment of the present invention. Therefore, a pretreatment consisting of a degreasing treatment, an acid treatment with an acid aqueous solution, and / or an alkali treatment with an alkali solution may be performed.
  • the method of the degreasing treatment is not particularly limited, and for example, a solvent-based, aqueous-based or emulsion-based degreasing agent can be used, and an alkali salt, a surfactant or the like may be included.
  • inorganic acids such as sulfuric acid, nitric acid, phosphoric acid and hydrofluoric acid, organic acids such as citric acid and gluconic acid, and those prepared by mixing these can be used.
  • organic acids such as citric acid and gluconic acid
  • alkali treatment those prepared with an alkali reagent such as sodium hydroxide or potassium hydroxide, or those prepared by mixing them can be used.
  • a film may be formed on the surface of the metal material having holes.
  • the film formation method may be a coating type or a reaction type.
  • the film to be formed include a natural oxide film, an anodized film, a chemical conversion film (phosphate-based film, zirconium-based film, chromium-based film). Film), a silane coupling agent cured film, a plating film, and the like, but are not limited thereto.
  • the film thickness is not particularly limited, but is preferably 100 nm or less. When the thickness of the film is thicker than 100 nm, the bonding strength with the resin may decrease. The thickness of the film can be appropriately adjusted according to the shape of the hole.
  • the water washing step may be performed before and after all the steps (for example, a surface processing step, a surface cleaning step, a hole forming step, a post-treatment step, etc.).
  • you may perform a drying process suitably after each water washing process.
  • the substrate-resin cured product composite according to an embodiment of the present invention is a substrate-resin composite including a substrate and a resin cured product, and the substrate is the substrate described above,
  • the cured resin in the composite of the substrate and the cured resin according to the embodiment of the present invention includes a thermoplastic resin, a thermosetting resin, a thermoplastic elastomer, a resin paint cured to a coating film, an adhesive It may be any resin such as a cured agent.
  • the substrate-resin cured product composite manufacturing method includes a hole forming step, which is a step included in the substrate manufacturing method according to the embodiment of the present invention, and the hole forming step. And putting the resin into the holes of the surface of the metal material. After the step of putting the resin into the holes, the resin is cured by cooling, leaving, or heating to form a base material-cured resin composite.
  • the composite of the base material-resin cured product may be composed only of the base material and the resin cured product, or in addition to the base material having the metal material having the holes and the resin cured product, You may include the other party material which contacts the resin cured material.
  • the counterpart material may be not only a resin material but also any material including metal, rubber, wood, ceramic, and composite material.
  • the shape of the counterpart material is not particularly limited, and may be a plate, a rod, a band, a tube, a wire, a film, or the like.
  • an adhesive is applied to the surface of a base material having a metal material having pores or the surface of the base material.
  • a method of bonding materials together and bonding a method of applying a resin to the surface or surface of a base material having a metal material having holes and bonding by thermocompression bonding, a surface or surface of a base material having a metal material having holes
  • the surface or surface of the substrate is made by insert molding and joining (hereinafter referred to as injection molding joining), the surface of the substrate having the holes or the surface of the substrate by curing the resin paint after contacting the surface. Form a coating on top And a method of, and the like.
  • the thermoplastic resin can be selected from known thermoplastic resins depending on the application.
  • polyamide resin, polycarbonate resin, polyvinyl resin, polyphenylene sulfide resin, polyacrylic resin, polyester resin, polyacetal resin, acrylonitrile / butadiene / styrene copolymer resin, polystyrene resin, polyimide resin, etc. 1 type or 2 or more types can be selected from, but is not limited thereto.
  • thermosetting resin can be selected from known thermosetting resins depending on the application.
  • one or two or more suitable ones can be selected from a phenol resin, an epoxy resin, a urea resin, a melamine resin, etc., but is not limited thereto.
  • thermoplastic elastomer can be selected from known thermoplastic elastomers according to applications.
  • one or two or more suitable materials can be selected from polyester elastomers, vinyl chloride elastomers, polyamide elastomers and the like, but the invention is not limited thereto.
  • the resin paint can be selected from known resin paints according to the application.
  • one or two or more suitable resins can be selected from an epoxy resin, an acrylic resin, a polyester resin, a urethane resin, and the like, but the invention is not limited thereto.
  • the paint may optionally contain components such as a pigment, a dispersant, a plasticizer, and a solvent.
  • the adhesive examples include a vinyl chloride resin adhesive, a vinyl acetate resin adhesive, a polyvinyl alcohol adhesive, a polyacryl adhesive, a polyamide adhesive, a cellulose adhesive, a urea resin adhesive, and a melamine.
  • Resin adhesives phenol resin adhesives, epoxy resin adhesives, silicon resin adhesives, polyester adhesives, polyurethane adhesives, chloroprene rubber adhesives, nitrile rubber adhesives, styrene / butadiene rubber adhesives
  • One or two or more suitable adhesives can be selected from, but not limited to, adhesives, silicone rubber adhesives, acrylic rubber adhesives, urethane rubber adhesives, hot melt adhesives, etc. is not.
  • thermoplastic resin thermosetting resin
  • thermoplastic elastomer thermoplastic elastomer
  • resin paint and adhesive
  • one or more suitable materials can be selected from glass fiber, carbon fiber, metal fiber, ceramic fiber, glass bead, carbon powder, metal powder, ceramic powder, aluminum oxide powder, etc. It is not limited to.
  • the type, content and shape of the filler are not particularly limited.
  • a composite of a base material having a metal material having holes according to an embodiment of the present invention and a cured resin is an automotive member, an aircraft member, an electronic device member, a mobile device member, an OA device member, It is useful as a material for members for home appliances and medical devices.
  • the base material having the metal material having the holes can improve not only the bonding strength with the resin but also the adhesion of the plating film and the like.
  • the base material having a metal material having holes and the composite of the base material and the resin cured product according to the embodiment of the present invention are not limited to the above-mentioned usage.
  • the composite of the base material-resin cured product according to Examples 1 to 3 and Comparative Examples 1 to 3 is a surface cleaning process ⁇ a hole forming process (first process ⁇ second process) ⁇ injection molding joining. It manufactured through each process. Hereinafter, each process of the said process process is demonstrated.
  • the surface cleaning step is alkali degreasing ⁇ Fine Cleaner 315E manufactured by Nippon Parkerizing Co., Ltd., 30 g / L (solid content concentration), 70 ° C., immersion time 1 minute ⁇ , followed by alkaline washing (sodium hydroxide 1.0 mol / L, 40 C., immersion time 1 minute), and water washing was performed after each step.
  • the substrate was immersed in a surface treatment agent containing lithium ions, and then washed with water.
  • the pH was adjusted using an aqueous nitric acid solution and an aqueous sodium hydroxide solution.
  • the substrate was immersed in an acidic aqueous solution containing an inorganic acid, and then washed with water and dried.
  • injection molding joining process In the injection molding joining process, a polyphenylene sulfide resin (PPS resin) containing 30% glass fiber was injection molded to the base material after the hole forming process.
  • An electric servo injection molding machine Si-50III manufactured by Toyo Machine Metal Co., Ltd. was used for the injection molding.
  • the injection molding conditions were preheat 125 ° C., molding temperature 320 ° C., mold temperature 135 ° C., injection speed 30 mm / second, injection pressure 1000 kgf, holding pressure 1200 kgf, and cooling time 15 seconds.
  • the dimension of the molded PPS resin is 10 mm wide ⁇ 45 mm long ⁇ 3 mm thick.
  • the joining area of a base material and PPS resin is 10 mm x 5 mm.
  • Example 1 As the base material, A2017 standardized by JIS H 4000 was used. As a 1st process, the base material was immersed for 300 second using the following process liquids (1). As a second step, the substrate was immersed for 180 seconds using the following treatment liquid (2). Thus, the base material-cured resin composite according to Example 1 was obtained.
  • the treatment liquid (1) has a target volume of 3.0 mol / L (mol / L) lithium chloride and 0.1 mol / L magnesium nitrate hexahydrate added to ion-exchanged water, While measuring the pH with a handy pH meter (portable pH meter HM-30P manufactured by Toa DKK Co., Ltd.) and a pH measuring electrode (GST-2739C manufactured by the same company), it was adjusted to pH 10.0 using nitric acid and sodium hydroxide. Adjusted and adjusted to the target capacity.
  • the temperature of the treatment liquid (1) was 60 ° C.
  • the treatment liquid (2) was added so that nitric acid was 6.5 mol / L (mol / L) with respect to ion-exchanged water. In this example, pH adjustment was not performed.
  • the temperature of the treatment liquid (2) was 50 ° C.
  • Example 2 A substrate-resin cured product composite of [Example 2] was produced in the same manner as in [Example 1] except that the substrate was changed to A3003 standardized by JIS H4000.
  • Example 3 A substrate-resin cured product composite of [Example 3] was produced in the same manner as in [Example 1] except that the substrate was changed to A5052 standardized by JIS H4000.
  • the base material was A2017 standardized by JIS H4000.
  • a base material-cured resin composite was produced in the same manner as in [Example 1] except that the treatment conditions in the first step and the second step were changed. Specifically, as a first step, the substrate was immersed for 60 seconds using the following treatment liquid (3). As a second step, the substrate was immersed for 300 seconds using the following treatment liquid (4).
  • the treatment liquid (3) has a target volume of 4.20 mol / L (mol / L) sodium hydroxide, 0.66 mol / L zinc nitrate, and 0.06 mol / L sodium thiosulfate. Were added to ion-exchanged water and adjusted to the target volume. The temperature of the treatment liquid (3) was 35 ° C.
  • the treatment liquid (4) has a target volume of sulfuric acid at 0.84 mol / L (mol / L), ferric chloride at 0.96 mol / L, and ferric chloride at 0.03 mol / L. Copper and manganese sulfate monohydrate at 0.05 mol / L were added to ion-exchanged water. In this example, pH adjustment was not performed.
  • the temperature of the treatment liquid (4) was 30 ° C.
  • the aspect ratio was calculated by the ratio (b / a) of the average value (a) of the diameters at the inlets of the holes and the average value (b) of the hole depths.
  • the average value (a) of the diameter at the entrance of the hole was measured from a photograph obtained by photographing the surface of the base material after the treatment in Examples 1 to 3 and Comparative Examples 1 to 3 with the electron microscope at a magnification of 50,000 times.
  • the top 10 were selected from those having a long diameter or short diameter of the opening of the hole, their lengths were measured, and all of them were integrated and divided by 10 to obtain the average value of the diameters at the inlet of the hole.
  • the average value (b) of the hole depth was measured from photographs obtained by photographing the cross sections of the substrates after the treatments of Examples 1 to 3 and Comparative Examples 1 to 3 with the electron microscope at a magnification of 30,000 times.
  • the top 10 were selected from those having the longest hole depth, the length of the deepest part was measured from the uppermost part, and the total was divided by 10 to obtain the average value of the hole depth.
  • a case where the aspect ratio (b / a) was 2 or more was evaluated as good (“A”), and a case where the aspect ratio (b / a) was less than 2 or not calculated was determined as bad (“B”).
  • the results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Provided is a substrate having a surface made entirely or at least partially of a metal material, wherein the surface of the metal material has holes, and requirements (1) and (2) below are satisfied. (1) The load length ratio (Pmr) of a cross section curve is at least 40% at a cutting level of 30% and an evaluation length of 10 μm. (2) The aspect ratio (b/a) of the average hole entrance diameter (a) to the average hole depth (b) is 2-50.

Description

少なくとも表面の全部又は一部が金属材料からなる基材であって、該金属材料の表面が孔を有する基材及び該基材と樹脂硬化物を含む基材-樹脂硬化物の複合体A base material having at least all or part of a surface made of a metal material, the surface of the metal material having pores, and a base material-resin cured product composite comprising the base material and a resin cured product
 本発明は、少なくとも表面の全部又は一部が金属材料からなる基材であって、前記金属材料の表面が特定の孔を有する基材と、該基材と樹脂硬化物を含む基材-樹脂硬化物の複合体に関する。 The present invention provides a base material-resin comprising a base material in which at least all or a part of the surface is made of a metal material, the surface of the metal material having specific holes, and the base material and a cured resin product. It relates to a composite of a cured product.
 金属材料と樹脂を接合する方法の一つとして、金属材料表面を粗化処理した後に樹脂をインサート成形する方法が知られている。例えば、特許文献1には以下のように記載されている。 As a method for joining a metal material and a resin, a method is known in which a resin is insert-molded after the surface of the metal material is roughened. For example, Patent Document 1 describes as follows.
 金属部材と、熱可塑性樹脂組成物からなる樹脂部材とが接合してなる金属/樹脂複合構造体であって、前記金属部材の表面上の、平行関係にある任意の3直線部、及び当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)及び(2)を同時に満たす金属/樹脂複合構造体。
 (1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
 (2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
A metal / resin composite structure formed by joining a metal member and a resin member made of a thermoplastic resin composition, and any three linear portions in parallel relation on the surface of the metal member, and the 3 Surface roughness measured according to JIS B0601 (corresponding international standard: ISO4287) for a total of 6 straight line parts composed of arbitrary 3 straight line parts orthogonal to the straight line part simultaneously satisfies the following requirements (1) and (2). Filling metal / resin composite structure.
(1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less. (2) Evaluation length of all straight line portions. Ten point average roughness (Rz) at 4 mm exceeds 2 μm
特開2016-27189号公報JP 2016-27189 A
 本発明者らの検討によれば、特許文献1に開示されている方法で得られた金属/樹脂複合構造体の接合強度は、不十分な場合があった。 According to the study by the present inventors, the bonding strength of the metal / resin composite structure obtained by the method disclosed in Patent Document 1 may be insufficient.
 本発明は、上記の従来技術の問題を解決すること、すなわち、樹脂との接合強度に優れる特定の孔を有する金属材料を有する基材及び前記基材と樹脂硬化物を含む基材-樹脂硬化物の複合体を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, that is, a base material having a metal material having a specific hole excellent in bonding strength with a resin, and a base material-resin curing containing the base material and a resin cured product. The object is to provide a composite of objects.
 本発明者らは、上記課題を解決するために鋭意検討した結果、少なくとも表面の全部又は一部が金属材料からなる基材であって、前記金属材料の表面が特定の孔を有する基材を見出し、本発明を完成するに至った。
 すなわち、本発明の主旨は以下のとおりである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a base material in which at least all or a part of the surface is made of a metal material, and the surface of the metal material has a specific hole. The headline and the present invention were completed.
That is, the gist of the present invention is as follows.
[1]少なくとも表面の全部又は一部が金属材料からなる基材であって、該金属材料の表面が孔を有し、以下の(1)及び(2)の要件を満たす、基材。
 (1)断面曲線の負荷長さ率(Pmr)が切断レベル30%、評価長さ10μmにおいて40%以上である
 (2)孔の入口における直径の平均値(a)と、孔深さの平均値(b)とのアスペクト比(b/a)が2以上50以下である
[2]基材と樹脂硬化物を含む基材-樹脂複合体であって、該基材が[1]に記載の基材であり、該基材が有する金属材料の表面における孔に、樹脂硬化物を含む、基材-樹脂硬化物の複合体。
[1] A base material in which at least a part of the surface is made of a metal material, and the surface of the metal material has pores and satisfies the following requirements (1) and (2).
(1) The load length ratio (Pmr) of the cross-sectional curve is 40% or more at a cutting level of 30% and an evaluation length of 10 μm. (2) The average value (a) of the diameter at the inlet of the hole and the average of the hole depth The aspect ratio (b / a) to the value (b) is 2 or more and 50 or less [2] A substrate-resin composite containing a substrate and a cured resin, wherein the substrate is described in [1] A composite of a base material and a resin cured product, wherein a resin cured product is contained in pores on the surface of the metal material of the base material.
 本発明によれば、樹脂との接合強度に優れる、少なくとも表面の全部又は一部が金属材料からなる基材であって、前記金属材料の表面が特定の孔を有する基材及び前記基材と樹脂硬化物を含む基材-樹脂硬化物の複合体を提供することができる。 According to the present invention, the base material is excellent in bonding strength with a resin, and at least all or part of the surface is made of a metal material, and the surface of the metal material has a specific hole and the base material. A substrate-resin cured product composite containing a cured resin product can be provided.
基材の表面の断面構造及びその断面曲線の負荷長さ率の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the cross-sectional structure of the surface of a base material, and the load length rate of the cross-sectional curve. 基材の表面に存在する孔の形状及び孔の直径の測定箇所を説明するための模式図である。It is a schematic diagram for demonstrating the measurement location of the shape of the hole which exists in the surface of a base material, and the diameter of a hole. 図1に記載の基材の断面構造の模式図であり、孔の入口における直径及び孔深さの測定方法を説明するための模式図である。It is a schematic diagram of the cross-sectional structure of the base material of FIG. 1, and is a schematic diagram for demonstrating the measuring method of the diameter and hole depth in the inlet_port | entrance of a hole.
 以下、本発明について詳細に説明する。
 なお、本明細書において、「孔」とは貫通孔ではなく、凹みを形成するものを意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, “hole” means not a through hole but a recess.
<少なくとも表面の全部又は一部が金属材料からなる基材>
 本発明の実施形態に適用される基材は、少なくとも表面の全部又は一部が金属材料からなる基材であれば特に制限されない。
 基材の少なくとも表面の全部又は一部に存在する金属材料は、鉄、鉄合金、チタン、チタン合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金等を挙げることができるが、特に限定されない。基材は、特に限定されず、展伸材、押出材、鋳造材、ダイカスト材を含む。前記金属材料は、単独で用いてもよいし、二種類以上の金属材料を組み合わせて使用してもよい。これらの金属材料の中でも、軽量かつ高強度の観点から、アルミニウム又はアルミニウム合金が好ましい。以後、アルミニウム又はアルミニウム合金を単に「アルミニウム材」と称することもある。
<Substrate whose entire surface or at least part is made of a metal material>
The base material applied to the embodiment of the present invention is not particularly limited as long as at least the whole or a part of the surface is a base material made of a metal material.
Examples of the metal material present on all or a part of at least the surface of the substrate include iron, iron alloy, titanium, titanium alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, and copper alloy. It is not limited. The base material is not particularly limited, and includes wrought material, extruded material, cast material, and die-cast material. The said metal material may be used independently and may be used in combination of 2 or more types of metal materials. Among these metal materials, aluminum or an aluminum alloy is preferable from the viewpoint of light weight and high strength. Hereinafter, aluminum or an aluminum alloy may be simply referred to as “aluminum material”.
 鉄又は鉄合金は、特に限定されず、産業上使用される普通鋼、クロムモリブデン鋼、ステンレス鋼などが挙げられる。具体的には、JISG 4051、JIS G 4053、JIS G4304などに規格されたS45C、SCM415、SUS304、SUS316、SUS430などが挙げられる。 The iron or iron alloy is not particularly limited, and examples include industrially used ordinary steel, chrome molybdenum steel, and stainless steel. Specifically, S45C, SCM415, SUS304, SUS316, SUS430, etc. standardized by JISG4051, JISG4053, JISG4304, etc. are mentioned.
 チタン又はチタン合金は、特に限定されず、産業上使用される純チタン、α-β合金、β合金などが挙げられる。具体的にはJISH 4600に規格された1種から4種の純チタン、Ti-6Al-4V、Ti-22V-4Alなどのチタン合金が挙げられる。 The titanium or titanium alloy is not particularly limited, and includes pure titanium, α-β alloy, β alloy and the like used in the industry. Specifically, one to four kinds of pure titanium, Ti-6Al-4V, Ti-22V-4Al, and other titanium alloys specified in JISH-4600 are listed.
 アルミニウム又はアルミニウム合金は、特に限定されず、産業上使用されるいずれのアルミニウム材も適用できる。アルミニウム材とは、アルミニウムを60%以上含む材料を指し、アルミニウム以外の合金成分としては、例えば、マグネシウム、ケイ素、チタン、クロム、マンガン、鉄、ニッケル、銅、亜鉛を挙げることができる。具体的には、例えば、JIS H 4000、JIS H 5302及びJIS H 5202に規格されたA1050、A2014、A2024、A3003、A5052、A5N01、A6061、A6063、A7075、AC4A、ADC12などが挙げられる。 Aluminum or aluminum alloy is not particularly limited, and any aluminum material used in the industry can be applied. An aluminum material refers to a material containing 60% or more of aluminum, and examples of alloy components other than aluminum include magnesium, silicon, titanium, chromium, manganese, iron, nickel, copper, and zinc. Specifically, for example, A1050, A2014, A2024, A3003, A5052, A5N01, A6061, A6063, A7075, AC4A, ADC12 and the like specified in JIS HH 5302 and JIS HH 5202 are listed.
 マグネシウム合金は、特に限定されず、産業上使用されるいずれのマグネシウム合金も適用できる。そのマグネシウム合金の具体例としては、AZ92、AZ91、AZ80、AZ63、AZ61、AZ31、AM100、AM60、AM50、AM20、AS41、AS21、AE42、ACM522等が挙げられる。 The magnesium alloy is not particularly limited, and any magnesium alloy used in the industry can be applied. Specific examples of the magnesium alloy include AZ92, AZ91, AZ80, AZ63, AZ61, AZ31, AM100, AM60, AM50, AM20, AS41, AS21, AE42, ACM522, and the like.
 銅又は銅合金は、特に限定されず、産業上使用されるいずれの銅又は銅合金も適用できる。銅又は銅合金の具体例としては、JIS H 3100に規格されたC1020、C1100、C1220、C2801、C4621、C6140などが挙げられる。 Copper or copper alloy is not particularly limited, and any copper or copper alloy used in the industry can be applied. Specific examples of copper or copper alloy include C1020, C1100, C1220, C2801, C4621, C6140, etc., which are standardized in JIS H3100.
 少なくとも表面の全部又は一部が金属材料からなる基材の形状は、樹脂が接合できる形状であれば特に限定されず、例えば、板、棒、帯、管、線、繊維、箔、塊であってもよい。また、これらを組み合わせた構造体であってもよい。なお、前記基材は中間製品、完成品の全てが本発明の実施形態にかかる基材の範疇に含まれる。前記基材の少なくとも表面の全部又は一部が金属材料であれば、それ以外の部分は金属材料以外の材料であってもよい。もちろん金属材料のみから基材が構成されてもよい。金属材料以外の材料とは、例えば、前記基材以外の金属、樹脂、ゴム、木材、セラミック、複合材料等が挙げられるが、これらに限定されない。前記基材以外の材料の接合方法は特に限定されない。また、樹脂と接合する、基材が有する金属材料の接合部表面の形状は、平面や曲面等が挙げられるが特に限定されない。 The shape of the base material having at least all or part of the surface made of a metal material is not particularly limited as long as the resin can be joined to the base material. May be. Moreover, the structure which combined these may be sufficient. The base material includes all intermediate products and finished products in the category of the base material according to the embodiment of the present invention. If at least all or a part of the surface of the base material is a metal material, the other part may be a material other than the metal material. Of course, a base material may be comprised only from a metal material. Examples of the material other than the metal material include, but are not limited to, metals other than the base material, resin, rubber, wood, ceramic, composite material, and the like. The joining method of materials other than the said base material is not specifically limited. In addition, the shape of the surface of the joint portion of the metal material of the base material to be joined to the resin may be a flat surface or a curved surface, but is not particularly limited.
 前記基材は、塑性加工、切削加工、ブラスト加工、研磨加工、放電加工、穴あけ加工、熱処理(時効硬化処理、溶体化処理など)が施されていてもよい。また、前記基材は、表面処理(化成処理、めっき処理、陽極酸化処理など)が施されていてもよいが、下記で説明する孔を形成する前に研磨や化学処理等によってこれらの皮膜成分を除去することが好ましい。 The base material may be subjected to plastic processing, cutting processing, blast processing, polishing processing, electric discharge processing, drilling processing, heat treatment (age hardening processing, solution treatment, etc.). In addition, the base material may be subjected to surface treatment (chemical conversion treatment, plating treatment, anodizing treatment, etc.), but these film components may be polished or chemically treated before forming the holes described below. Is preferably removed.
 本発明の実施形態に係る、少なくとも表面の全部又は一部が金属材料からなる基材は、該金属材料の表面が孔を有し、以下の(1)及び(2)の要件を満たす。
 (1)断面曲線の負荷長さ率(Pmr)が切断レベル30%、評価長さ10μmにおいて40%以上である
 (2)孔の入口における直径の平均値(a)と、孔深さの平均値(b)とのアスペクト比(b/a)が2以上50以下である
In the base material according to the embodiment of the present invention, at least a part of the surface is made of a metal material, the surface of the metal material has pores, and satisfies the following requirements (1) and (2).
(1) The load length ratio (Pmr) of the cross-sectional curve is 40% or more at a cutting level of 30% and an evaluation length of 10 μm. (2) The average value (a) of the diameter at the inlet of the hole and the average of the hole depth The aspect ratio (b / a) to the value (b) is 2 or more and 50 or less
 これにより、前記孔を有する金属材料を有する基材を、基材-樹脂硬化物の複合体の製造に用いた場合、樹脂との接合強度が優れた複合体を形成することができる。断面曲線の負荷長さ率が上記下限値未満であると、上記強度が低下するため樹脂との接合強度が低下する。断面曲線の負荷長さ率は、より好ましくは45%以上であり、さらに好ましくは50%以上である。断面曲線の負荷長さ率の上限については特に制限はないが、負荷長さ率が高すぎると金属表面に存在する孔の割合が少なく、樹脂との優れた接合強度が得られないという観点から、通常、95%以下である。
 また、アスペクト比が2未満の場合、樹脂との接合強度は低下する。
 断面曲線の負荷長さ率が上記下限値以上であっても、アスペクト比が2未満の場合は、樹脂との優れた接合強度が得られない。また、アスペクト比が2以上であっても断面曲線の負荷長さ率が上記下限値未満であると、上記強度が低下するため、優れた接合強度が得られない。
 したがって、樹脂との優れた接合強度を得るためには、前記(1)及び(2)の2つの要件を同時に満たすことが必要である。
As a result, when a base material having a metal material having pores is used in the manufacture of a base-resin cured product composite, a composite having excellent bonding strength with the resin can be formed. When the load length ratio of the cross-sectional curve is less than the lower limit value, the strength is lowered, so that the bonding strength with the resin is lowered. The load length ratio of the cross-sectional curve is more preferably 45% or more, and further preferably 50% or more. There is no particular limitation on the upper limit of the load length ratio of the cross-sectional curve, but if the load length ratio is too high, the proportion of holes present on the metal surface is small, and excellent bonding strength with the resin cannot be obtained. Usually, it is 95% or less.
On the other hand, when the aspect ratio is less than 2, the bonding strength with the resin decreases.
Even when the load length ratio of the cross-sectional curve is equal to or more than the above lower limit value, when the aspect ratio is less than 2, excellent bonding strength with the resin cannot be obtained. Further, even when the aspect ratio is 2 or more, when the load length ratio of the cross-sectional curve is less than the lower limit value, the strength is lowered, so that excellent bonding strength cannot be obtained.
Therefore, in order to obtain excellent bonding strength with the resin, it is necessary to satisfy the two requirements (1) and (2) at the same time.
 本発明の実施形態に係る孔を有する金属材料の断面曲線の負荷長さ率及びアスペクト比の測定方法を以下に説明する。 A method for measuring a load length ratio and an aspect ratio of a cross-sectional curve of a metal material having holes according to an embodiment of the present invention will be described below.
(断面曲線の負荷長さ率(Pmr(c)))
 断面曲線の負荷長さ率(Pmr(c))は、式(A)に示すように、評価長さ(ln)に対する切断レベルcにおける輪郭曲線要素の負荷長さMl(c)の比を表したものであり、その測定方法はJIS B 0601に規定されている。
(A)  Pmr(c) = Ml(c)/ ln
 しかしながら、本発明の実施形態に係る孔の形状は市販の表面粗さ計等では正確に測定することが困難である。したがって、本発明の実施形態における断面曲線の負荷長さ率は、孔を有する金属材料を有する基材の実表面に対して垂直方向に切断したとき、その切り口に現れる断面構造を電子顕微鏡観察で撮影した写真から測定する。断面構造を観察するための試料の作製方法は、特に限定されないが、例えば、機械研磨法、集束イオンビーム法、イオンミリング法、ミクロトーム法などが挙げられる。要するに、孔の構造が観察できればよい。
(Load length ratio of cross-sectional curve (Pmr (c)))
The load length ratio (Pmr (c)) of the cross-sectional curve represents the ratio of the load length Ml (c) of the contour curve element at the cutting level c to the evaluation length (ln) as shown in the equation (A). The measuring method is defined in JIS B 0601.
(A) Pmr (c) = Ml (c) / ln
However, it is difficult to accurately measure the shape of the hole according to the embodiment of the present invention with a commercially available surface roughness meter or the like. Therefore, the load length ratio of the cross-sectional curve in the embodiment of the present invention is determined by observing the cross-sectional structure appearing at the cut surface by electron microscope observation when cut in the direction perpendicular to the actual surface of the base material having the metal material having holes. Measure from the photograph taken. A method for preparing a sample for observing the cross-sectional structure is not particularly limited, and examples thereof include a mechanical polishing method, a focused ion beam method, an ion milling method, and a microtome method. In short, it is only necessary to observe the structure of the holes.
 図1に示した表面に孔を有する金属材料を有する基材の断面模式図において、この厚さ方向に直交し、かつ凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインの距離をRtとする。本発明の実施形態においては切断レベルcを30%と設定する。つまり、Rtに対してトップラインから30%の高さが切断レベルである。本発明の実施形態においては、評価長さは10μmに設定する。負荷長さMl(c)は、電子顕微鏡で撮影した写真から切断レベル30%によって切断された輪郭曲線要素の実体側の長さ(図1においてはMlからMl)の和を測定することにより求めることができる。
 したがって、本発明の実施形態における断面曲線の負荷長さ率とは、孔を有する金属材料を有する基材の実表面に対して垂直方向に切断したとき、その切り口に現れる断面構造を電子顕微鏡で撮影した写真において、Rtに対してトップラインから30%の高さにおける負荷長さMl(c)の評価長さ10μmに対する比率を表したものである。断面曲線の負荷長さ率を求めるためには、電子顕微鏡観察において倍率を1万倍以上にすることが好適である。
In the cross-sectional schematic diagram of the base material having a metal material having holes on the surface shown in FIG. 1, the top line orthogonal to this thickness direction and passing through the highest part of the concavo-convex part and the bottom line passing through the deepest part. Let the distance be Rt. In the embodiment of the present invention, the cutting level c is set to 30%. That is, the cutting level is 30% from the top line with respect to Rt. In the embodiment of the present invention, the evaluation length is set to 10 μm. The load length Ml (c) is obtained by measuring the sum of the actual lengths (Ml 1 to Ml 9 in FIG. 1) of the contour curve elements cut at a cutting level of 30% from a photograph taken with an electron microscope. It can ask for.
Therefore, the load length ratio of the cross-sectional curve in the embodiment of the present invention means that the cross-sectional structure that appears at the cut surface when the substrate is cut in the direction perpendicular to the actual surface of the base material having the metal material with holes is measured with an electron microscope. In the photograph taken, the ratio of the load length Ml (c) at the height of 30% from the top line to Rt with respect to the evaluation length of 10 μm is shown. In order to obtain the load length ratio of the cross-sectional curve, it is preferable that the magnification is 10,000 times or more in observation with an electron microscope.
(アスペクト比)
 本発明の実施形態に係るアスペクト比は、孔の入口における直径の平均値(a)と、孔の深さの平均値(b)の比(b/a)により算出される。アスペクト比が2以上とは、前記(b)が前記(a)の2倍以上の孔深さの平均値を有する孔が存在することを意味する。孔の入口における直径の平均値は、孔を有する金属材料を有する基材の表面を電子顕微鏡で撮影した写真から測定可能である。本発明の実施形態に係る基材が有する金属材料の表面には、図2に示すように円形又は楕円形の孔が観察される。本発明の実施形態に係る孔の入口における直径の平均値は、表面に形成されている円形又は楕円形の開口部の直径(図2のa)又は短径(図2のb)の平均値であり、開口部の直径又は短径の長いものから上位2割の孔を選択し、それらの長さを測定し、全てを積算してその上位2割の孔の数で除したものを孔の入口における直径の平均値とする。孔の直径を求めるためには、電子顕微鏡観察において倍率を1万倍以上にすることが好適である。
(aspect ratio)
The aspect ratio according to the embodiment of the present invention is calculated by the ratio (b / a) of the average value (a) of the diameters at the hole entrance and the average value (b) of the hole depth. An aspect ratio of 2 or more means that there is a hole in which (b) has an average value of hole depths twice or more that of (a). The average value of the diameter at the entrance of the hole can be measured from a photograph of the surface of the base material having the metal material having the hole taken with an electron microscope. As shown in FIG. 2, circular or elliptical holes are observed on the surface of the metal material of the base material according to the embodiment of the present invention. The average value of the diameter at the entrance of the hole according to the embodiment of the present invention is the average value of the diameter (a in FIG. 2) or the short diameter (b in FIG. 2) of the circular or elliptical opening formed on the surface. Select the top 20% of the holes with the longest diameter or short diameter, measure their lengths, add them all up and divide by the number of the top 20% holes. The average diameter at the entrance of In order to obtain the diameter of the hole, it is preferable that the magnification is 10,000 times or more in observation with an electron microscope.
 孔の入口における直径の平均値は、多数の孔を測定対象とする場合には、前記基材の実表面に対して垂直方向に切断したとき、その切り口に現れる断面構造を電子顕微鏡で撮影した写真からも測定可能である。その場合、孔の入口における直径の平均値は、形成されている孔の最上部の開口幅(図3のc)の平均値であり、開口幅の長いものから上位10個を選択し、それらの長さを測定し、全てを積算して10で除したものを孔の入口における直径の平均値とする。孔の直径を求めるためには、電子顕微鏡観察において倍率を1万倍以上にすることが好適である。孔の入口における直径の平均値の測定方法は、孔を有する金属材料を有する基材の表面を電子顕微鏡で撮影した写真から求めるほうがより好ましい。 The average value of the diameters at the entrances of the holes was taken with an electron microscope when a large number of holes were to be measured, and the cross-sectional structure that appeared at the cut ends when cut in a direction perpendicular to the actual surface of the substrate. It can also be measured from photographs. In that case, the average value of the diameter at the entrance of the hole is the average value of the opening width of the uppermost part of the formed hole (c in FIG. 3). The total length is divided and divided by 10 to obtain the average value of the diameters at the hole entrances. In order to obtain the diameter of the hole, it is preferable that the magnification is 10,000 times or more in observation with an electron microscope. The average diameter measurement method at the entrance of the hole is more preferably obtained from a photograph of the surface of the base material having the metal material having the hole taken with an electron microscope.
 孔深さの平均値は、前記基材の実表面に対して垂直方向に切断したとき、その切り口に現れる断面構造を電子顕微鏡観察で撮影した写真から測定する。孔深さを求めるためには、電子顕微鏡観察において倍率を1万倍以上にすることが好適である。
 孔深さの平均値は、形成されている孔における最上部から最深部の間の長さ(図3のd)の平均値であり、孔深さの長いものから上位10個を選択し、それらの最上部から最深部の長さを測定し、全てを積算して10で除したものを孔深さの平均値とする。
The average value of the hole depth is measured from a photograph taken by observing an electron microscope of a cross-sectional structure that appears at the cut edge when cut in a direction perpendicular to the actual surface of the substrate. In order to obtain the hole depth, it is preferable that the magnification is 10,000 times or more in observation with an electron microscope.
The average value of the hole depth is an average value of the length (d in FIG. 3) between the uppermost part and the deepest part in the formed hole, and the top 10 are selected from the longest hole depths, The length from the top to the deepest part is measured, and all are integrated and divided by 10 to obtain the average value of the hole depth.
 本発明の実施形態に係る孔を有する金属材料を有する基材と樹脂との接合強度をより一層向上させる観点から、前記基材の孔の入口における直径の範囲は、好ましくは50nm以上4000nm以下であり、より好ましくは60nm以上2000nm以下であり、さらに好ましくは70nm以上1000nm以下である。 From the viewpoint of further improving the bonding strength between the base material having the metal material having holes and the resin according to the embodiment of the present invention, the diameter range at the hole entrance of the base material is preferably 50 nm or more and 4000 nm or less. More preferably, it is 60 nm or more and 2000 nm or less, More preferably, it is 70 nm or more and 1000 nm or less.
 本発明の実施形態に係る孔を有する金属材料を有する基材と樹脂との接合強度をより一層向上させる観点から、前記基材の孔深さの範囲は、好ましくは100nm以上10μm以下であり、より好ましくは200nm以上9μm以下であり、さらに好ましくは300nm以上8μm以下である。 From the viewpoint of further improving the bonding strength between the base material having a metal material having holes according to the embodiment of the present invention and the resin, the range of the hole depth of the base material is preferably 100 nm or more and 10 μm or less, More preferably, it is 200 nm or more and 9 micrometers or less, More preferably, it is 300 nm or more and 8 micrometers or less.
 本発明の実施形態に係る上記(2)で規定されるアスペクト比は、2以上50以下である。本発明の実施形態に係る孔を有する金属材料を有する基材と樹脂との接合強度をより一層向上させる観点から、前記アスペクト比の範囲は、2以上であり、好ましくは3以上であり、さらに好ましくは4以上である。前記アスペクト比が50を超える場合、金属材料自身の強度が低下する。 The aspect ratio defined in (2) above according to the embodiment of the present invention is 2 or more and 50 or less. From the viewpoint of further improving the bonding strength between the base material having the metal material having holes and the resin according to the embodiment of the present invention, the range of the aspect ratio is 2 or more, preferably 3 or more, Preferably it is 4 or more. When the aspect ratio exceeds 50, the strength of the metal material itself decreases.
 前記孔は、前記基材の表面及び断面の任意の10箇所を観察して1箇所以上確認できればよい。
 より具体的には、本発明の実施形態において、金属材料の表面における、前記アスペクト比を有する孔の数は、金属材料の表面の面積1μmあたり、1個以上を有することが好ましく、2個以上有することがより好ましい。
 前記孔は、前記基材の全面に存在する必要はなく、少なくとも後述する樹脂と接合する部分が有していればよい。
The hole should just confirm one or more places by observing arbitrary 10 places on the surface and cross section of the base material.
More specifically, in the embodiment of the present invention, the number of holes having the aspect ratio on the surface of the metal material preferably has one or more per 1 μm 2 of the surface area of the metal material. It is more preferable to have the above.
The hole does not need to be present on the entire surface of the base material, and it is sufficient that the hole has at least a portion to be bonded to a resin described later.
<孔を有する金属材料を有する基材の製造方法>
 次に、本発明の実施形態に係る孔を有する金属材料を有する基材の製造方法(以下、孔形成工程と称することもある)について説明する。
 本発明の実施形態において、前記の孔を有する金属材料を有する基材を製造する方法は、特に限定されず、インプリント法、レーザー加工法、化学エッチング法などの公知の方法が挙げられる。インプリント法は、複数の突起を有する基板又はロールを、金属材料を有する基材に押し付けて孔を形成する方法であり、転写法やプレスパターニング法などが挙げられる。レーザー加工法は、金属材料の表面にレーザー光を照射して孔を形成させる方法である。化学エッチング法は、化学薬品を用いた処理液に金属材料を有する基材を接触させることにより腐食を進行させ、孔を形成させる方法である。
 本発明の実施形態に係る孔形成工程においては、皮膜形成による孔の作製方法は除く。皮膜としては、陽極酸化皮膜、化成皮膜(リン酸塩系皮膜、ジルコニウム系皮膜、クロム系皮膜、ケイ酸塩皮膜、リチウム系化成皮膜)、めっき膜等が挙げられる。
<Method for Producing Substrate Having Metal Material with Holes>
Next, a method for producing a base material having a metal material having holes according to an embodiment of the present invention (hereinafter also referred to as a hole forming step) will be described.
In the embodiment of the present invention, the method for producing the substrate having the metal material having the holes is not particularly limited, and examples thereof include known methods such as an imprint method, a laser processing method, and a chemical etching method. The imprint method is a method of forming a hole by pressing a substrate or a roll having a plurality of protrusions against a base material having a metal material, and examples thereof include a transfer method and a press patterning method. The laser processing method is a method of forming holes by irradiating the surface of a metal material with laser light. The chemical etching method is a method in which a substrate having a metal material is brought into contact with a treatment liquid using a chemical to cause corrosion to form holes.
In the hole forming step according to the embodiment of the present invention, a method for producing holes by film formation is excluded. Examples of the coating include an anodic oxide coating, chemical conversion coating (phosphate coating, zirconium coating, chromium coating, silicate coating, lithium conversion coating), plating film, and the like.
 本発明の実施形態において、前記孔を有する基材を製造する方法として、以下に示す化学エッチング法が好適である。この化学エッチング法は、少なくとも表面の全部又は一部にアルミニウム材を有する基材の製造に対して特に好適である。
 前記孔を有する基材を製造する方法として、具体的には、少なくとも表面の全部又は一部が金属材料からなる基材の表面に、リチウムイオン源とアルカリ源を含む表面処理剤(亜鉛イオン及びケイ酸イオンを含むものを除くものであることが好ましい)を接触させる第一工程と、前記表面処理剤を接触させた前記基材の表面上に、無機酸を含む酸性水溶液を接触させる第二工程を含む、製造方法が好適である。
In the embodiment of the present invention, the following chemical etching method is suitable as a method for producing the substrate having the holes. This chemical etching method is particularly suitable for the production of a substrate having an aluminum material on at least all or part of its surface.
As a method for producing the substrate having pores, specifically, a surface treating agent (zinc ions and an alkali source) containing a lithium ion source and an alkali source on the surface of the substrate whose whole or part of the surface is made of a metal material. A first step of contacting the surface of the base material in contact with the surface treatment agent, and a second step of contacting an acidic aqueous solution containing an inorganic acid. A manufacturing method including a process is suitable.
 少なくとも表面の全部又は一部が金属材料からなる基材の表面に孔を形成する工程では、少なくとも表面の全部又は一部が金属材料からなる基材の表面に、第一工程の表面処理剤を接触させることにより、リチウム元素を含む皮膜を形成させる。その際、少なくとも表面の全部又は一部が金属材料からなる基材表面の酸化皮膜を含む不動態皮膜の溶解反応を伴う。
 リチウム元素を含む皮膜は、公知の方法を用いて形成させることが可能である。例えば、ベーマイト処理や化成処理が挙げられるがこれらに限定されるものではない。ここでリチウム元素を含む皮膜とは、基材由来の金属を含む水酸化皮膜、酸化皮膜、水和酸化皮膜などが含まれる。処理方法としては、例えば、特開昭48-89138号公報、特開昭53-11841号公報などに記載の方法を用いることができる。
In the step of forming pores on the surface of the substrate made of a metal material, at least all or part of the surface, the surface treatment agent of the first step is applied to the surface of the substrate made of at least all or part of the surface of the metal material. By bringing them into contact, a film containing lithium element is formed. At that time, at least all or part of the surface is accompanied by a dissolution reaction of a passive film including an oxide film on the surface of the base material made of a metal material.
The film containing lithium element can be formed using a known method. Examples include boehmite treatment and chemical conversion treatment, but are not limited thereto. Here, the film containing lithium element includes a hydroxide film, an oxide film, a hydrated oxide film and the like containing a metal derived from a base material. As the treatment method, for example, the methods described in JP-A-48-89138, JP-A-53-11841 and the like can be used.
 第一工程の表面処理剤は、リチウムイオン源及びアルカリ源を成分として含む。 The surface treatment agent in the first step contains a lithium ion source and an alkali source as components.
(リチウムイオン源)
 リチウムイオン源の形態は特に限定されず、水酸化物、塩化物、炭酸塩、重炭酸塩、硝酸塩、亜硝酸塩、硫酸塩、過硫酸塩、臭化塩、及び臭素酸塩等から適当なものを1種又は2種以上選択することができる。
 本発明の実施形態に係る第一工程に用いる処理液は、リチウムイオンを好ましくは0.001mol/L以上5.00mol/L以下、より好ましくは0.10mol/L以上4.00mol/L以下、さらに好ましくは0.50mol/L以上3.50mol/L以下を含む。また、前記リチウム塩濃度は、飽和溶解度を超えていてもよい。
(Lithium ion source)
The form of the lithium ion source is not particularly limited, and is suitable from hydroxide, chloride, carbonate, bicarbonate, nitrate, nitrite, sulfate, persulfate, bromide, bromate, etc. Can be selected from one or more.
The treatment liquid used in the first step according to the embodiment of the present invention preferably contains lithium ions in the range of 0.001 mol / L to 5.00 mol / L, more preferably 0.10 mol / L to 4.00 mol / L, More preferably, it contains 0.50 mol / L or more and 3.50 mol / L or less. The lithium salt concentration may exceed the saturation solubility.
(アルカリ源)
 第一工程の表面処理剤は、アルカリ源を含む。アルカリ源としては、アルカリ金属又はアルカリ土類金属の水酸物、マグネシウムの水酸化物、又は水溶性アミン化合物を例示できる。
 アルカリ金属又はアルカリ土類金属の水酸化物としては、特に限定されず、リチウム、ナトリウム、カリウム、カルシウム等から適当なものを1種又は2種以上選択することができる。
 第一工程の表面処理剤は、アルカリ源として、水酸化物イオンを通常0.001mol/L以上5.00mol/L以下、より好ましくは0.005mol/L以上4.00mol/L以下、さらに好ましくは0.01mol/L以上3.00mol/L以下を含む。また、前記アルカリ金属及び、アルカリ土類金属及びマグネシウムの水酸化物濃度は、飽和溶解度を超えていてもよい。
(Alkali source)
The surface treatment agent in the first step contains an alkali source. Examples of the alkali source include hydroxides of alkali metals or alkaline earth metals, magnesium hydroxides, or water-soluble amine compounds.
The alkali metal or alkaline earth metal hydroxide is not particularly limited, and one or more suitable ones can be selected from lithium, sodium, potassium, calcium and the like.
The surface treatment agent in the first step is usually 0.001 mol / L or more and 5.00 mol / L or less, more preferably 0.005 mol / L or more and 4.00 mol / L or less, more preferably as an alkali source. Includes 0.01 mol / L or more and 3.00 mol / L or less. Further, the hydroxide concentration of the alkali metal, alkaline earth metal and magnesium may exceed the saturation solubility.
 水溶性アミン化合物としては、炭素数1~12のアルキル基が結合した第一級アミン、炭素数1~12のアルキル基が結合した第二級アミン、炭素数1~12のアルキル基が結合した第三級アミン、及び炭素数1~12のヒドロキシアルキル基が結合した第一級アミン、炭素数1~12のヒドロキシアルキル基が結合した第二級アミン、炭素数1~12のヒドロキシアルキル基が結合した第三級アミンのいずれもが使用でき、またこれらの水溶性アミンのほかに、前記のアルキル基もしくはヒドロキシアルキル基の一部又は全部がフェノール基で置換された芳香族アミンも用いられる。
 また、前記の炭素数1~12のアルキル基が有する少なくとも1つのメチレンが、-NH-で置換されていてもよい。
 具体的な水溶性アミン化合物は、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジメチルアミノエタノール、トリエチレンテトラアミン、ヘキサメチレンテトラアミン、エチレンジアミン、及びアンモニア等から適当なものを1種又は2種以上選択することができる。
 本発明の実施形態に係る第一工程に用いる処理液は、水溶性アミン化合物を好ましくは0.001mol/L以上1.00mol/L以下、より好ましくは0.005mol/L以上0.90mol/L以下を挙げることができ、さらに好ましくは、0.01mol/L以上0.80mol/L以下を含む。
The water-soluble amine compound includes a primary amine to which an alkyl group having 1 to 12 carbon atoms is bonded, a secondary amine to which an alkyl group having 1 to 12 carbon atoms is bonded, and an alkyl group having 1 to 12 carbon atoms. A tertiary amine, a primary amine bonded with a C1-C12 hydroxyalkyl group, a secondary amine bonded with a C1-C12 hydroxyalkyl group, and a C1-C12 hydroxyalkyl group. Any of the bound tertiary amines can be used, and in addition to these water-soluble amines, aromatic amines in which a part or all of the alkyl group or hydroxyalkyl group is substituted with a phenol group are also used.
In addition, at least one methylene of the alkyl group having 1 to 12 carbon atoms may be substituted with —NH—.
Specific examples of water-soluble amine compounds include monoethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, dimethylaminoethanol, triethylenetetraamine, hexamethylenetetraamine, ethylenediamine, and ammonia. One type or two or more types can be selected.
The treatment liquid used in the first step according to the embodiment of the present invention is preferably a water-soluble amine compound of 0.001 mol / L to 1.00 mol / L, more preferably 0.005 mol / L to 0.90 mol / L. The following can be mentioned, More preferably, 0.01 mol / L or more and 0.80 mol / L or less are included.
 第一工程の表面処理剤として、アルカリ金属又はアルカリ土類金属の水酸化物、マグネシウムの水酸化物、及び水溶性アミン化合物のうち、一つの成分を単独で用いても、数種類の成分を併用して用いることもできる。 As the surface treatment agent in the first step, among the alkali metal or alkaline earth metal hydroxide, magnesium hydroxide, and water-soluble amine compound, even if one component is used alone, several components are used in combination. It can also be used.
 第一工程の表面処理剤は、亜鉛イオン及びケイ酸イオンを含まないことが望ましい。亜鉛イオンが存在する場合、金属材料としてアルミニウム材を有する基材を用いる場合、アルミニウム材表面に亜鉛置換皮膜が形成するため所望の孔が得られなくなる。また、ケイ酸イオンが存在する場合、アルミニウム材表面にケイ素を含む皮膜が形成するため所望の孔が得られなくなる。さらに、銅、鉄、ニッケル、錫、などの遷移金属イオンについても含まないことが望ましい。アルカリ金属、及びアルカリ土類金属、及びマグネシウムの水酸化物、これらの塩から供給されるナトリウム、カリウム、マグネシウム、カルシウム等は、皮膜中に含まれてもよい。 It is desirable that the surface treatment agent in the first step does not contain zinc ions and silicate ions. When zinc ions are present, when a base material having an aluminum material is used as the metal material, a desired hole cannot be obtained because a zinc-substituted film is formed on the surface of the aluminum material. Further, when silicate ions are present, a film containing silicon is formed on the surface of the aluminum material, so that desired holes cannot be obtained. Furthermore, it is desirable not to include transition metal ions such as copper, iron, nickel and tin. Alkali metal, alkaline earth metal, magnesium hydroxide, sodium, potassium, magnesium, calcium and the like supplied from these salts may be included in the film.
 第一工程の表面処理剤は、リチウムイオン源及びアルカリ源をイオン交換水、工業用水、水道水等に溶解させることにより容易に調製することができる。前記表面処理剤中には、前記基材及び水由来のアルミニウム、マグネシウム、ケイ素、チタン、クロム、マンガン、鉄、ニッケル、銅、亜鉛等の元素が存在していてもよい。 The surface treatment agent in the first step can be easily prepared by dissolving a lithium ion source and an alkali source in ion exchange water, industrial water, tap water and the like. In the surface treatment agent, elements such as aluminum, magnesium, silicon, titanium, chromium, manganese, iron, nickel, copper, and zinc derived from the base material and water may be present.
 第一工程の表面処理剤には、有機溶媒、界面活性剤、キレート剤を添加してもよい。これら他の成分を添加する場合、その合計含有量は、表面処理剤の全量に対して50.0質量%以下であることが好ましい。 An organic solvent, a surfactant, and a chelating agent may be added to the surface treatment agent in the first step. When these other components are added, the total content is preferably 50.0% by mass or less based on the total amount of the surface treatment agent.
 第一工程の表面処理剤に接触させることによって、少なくとも表面の全部又は一部が金属材料からなる基材表面にリチウム元素を含む皮膜を形成させることができる。前記皮膜の付着量としては、特に制限されず、前記皮膜は連続膜であっても、不連続膜であってもよい。 By contacting the surface treatment agent in the first step, a film containing lithium element can be formed on the surface of the base material in which at least all or part of the surface is made of a metal material. The adhesion amount of the film is not particularly limited, and the film may be a continuous film or a discontinuous film.
 第一工程の表面処理剤を、少なくとも表面の全部又は一部が金属材料からなる基材に接触させる方法としては、浸漬、スプレーによる処理方法が挙げられる。前記表面処理剤を接触させることにより、前記基材上にリチウム元素を含む皮膜を形成させることが可能であるが、電解処理を併用することも可能である。
 第一工程で用いるときの表面処理剤の液温は20.0℃から100.0℃が好ましい。pHは8.0から13.0に調整することが好ましい。接触時間は5秒から1800秒が好ましい。前記第一工程の後は、必要に応じて水洗工程、乾燥工程を行ってもよい。
Examples of the method of bringing the surface treatment agent in the first step into contact with a base material having at least all or part of the surface made of a metal material include treatment methods by dipping and spraying. By contacting the surface treatment agent, a film containing lithium element can be formed on the substrate, but an electrolytic treatment can be used in combination.
The liquid temperature of the surface treatment agent when used in the first step is preferably 20.0 ° C to 100.0 ° C. The pH is preferably adjusted from 8.0 to 13.0. The contact time is preferably 5 seconds to 1800 seconds. After the first step, a water washing step and a drying step may be performed as necessary.
 前記第二工程の酸性水溶液は、無機酸を含む。前記無機酸としては、硫酸、硝酸、塩酸、及びアミド硫酸等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。また、前記水溶液には、有機酸、無機酸塩、及び有機酸塩等を含んでもよいが遷移金属を含まないことが望ましい。
 前記有機酸としては、蟻酸、クエン酸、シュウ酸、リンゴ酸、コハク酸、マロン酸、エチレンジアミン四酢酸、グルコン酸等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。また、前記無機酸塩及び有機酸塩は、前記無機酸及び有機酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。前記水溶液は、上記の無機酸、有機酸、又はこれらの塩を1種又は2種類以上配合することができる。前記有機酸、無機酸塩又は有機酸塩いずれか単独の酸性水溶液であっても前記の孔が形成される場合もあるが、工業的な観点から無機酸単独の酸性水溶液が好ましい。
The acidic aqueous solution in the second step contains an inorganic acid. As the inorganic acid, one or more suitable ones can be selected from sulfuric acid, nitric acid, hydrochloric acid, amidosulfuric acid and the like, but are not limited thereto. The aqueous solution may contain an organic acid, an inorganic acid salt, an organic acid salt, or the like, but it is preferable that the aqueous solution does not contain a transition metal.
As the organic acid, one or more suitable ones can be selected from formic acid, citric acid, oxalic acid, malic acid, succinic acid, malonic acid, ethylenediaminetetraacetic acid, gluconic acid, and the like. It is not limited. In addition, the inorganic acid salt and organic acid salt can be selected from one or more suitable ones from alkali metal salts, alkaline earth metal salts and ammonium salts of the inorganic acids and organic acids. It is not limited to. The said aqueous solution can mix | blend 1 type (s) or 2 or more types of said inorganic acid, organic acid, or these salts. Although the pores may be formed even if the organic acid, the inorganic acid salt, or the organic acid salt is used alone, the acidic aqueous solution containing only the inorganic acid is preferable from an industrial viewpoint.
 前記無機酸を含む成分の合計含有量は、酸性水溶液の全量に対して0.1質量%から70.0質量%であることが好ましく、0.5質量%から50.0質量%であることがより好ましく、1.0質量%から45.0質量%であることがさらに好ましい。 The total content of the components including the inorganic acid is preferably 0.1% by mass to 70.0% by mass, and preferably 0.5% by mass to 50.0% by mass with respect to the total amount of the acidic aqueous solution. Is more preferable, and it is further more preferable that it is 1.0 mass% to 45.0 mass%.
 第二工程の酸性水溶液には、界面活性剤やキレート剤等を添加してもよい。これら他の成分を添加する場合、その合計含有量は、酸性水溶液の全量に対して10.0質量%以下であることが好ましい。 A surfactant or chelating agent may be added to the acidic aqueous solution in the second step. When adding these other components, it is preferable that the total content is 10.0 mass% or less with respect to the whole quantity of acidic aqueous solution.
 第二工程の酸性水溶液は、前記の各成分をイオン交換水、工業用水、水道水等に溶解させることによって容易に調製することができる。前記酸性水溶液中には、前記基材及び水由来のアルミニウム、マグネシウム、ケイ素、チタン、クロム、マンガン、鉄、ニッケル、銅、亜鉛等の元素が存在していてもよい。また、前記第一工程により形成したリチウム元素を含む皮膜の溶解に伴う成分が混入してもよい。 The acidic aqueous solution in the second step can be easily prepared by dissolving each of the above components in ion exchange water, industrial water, tap water or the like. In the acidic aqueous solution, elements such as aluminum, magnesium, silicon, titanium, chromium, manganese, iron, nickel, copper, and zinc derived from the base material and water may be present. Moreover, the component accompanying the melt | dissolution of the film | membrane containing the lithium element formed by said 1st process may mix.
 第二工程の無機酸を含む酸性水溶液を、少なくとも表面の全部又は一部が金属材料からなる基材に接触させる方法としては、浸漬、スプレーによる処理方法が挙げられる。また、電解処理を併用することも可能である。
 第二工程に用いるときの前記酸性水溶液は液温が10.0℃から80.0℃が好ましい。pHは酸性であればよく、例えば、pH6.0以下に調整することが好ましい。接触時間は1秒から1800秒程度が好ましく、900秒以下であることがより好ましい。第二工程の後は、通常、水洗工程や乾燥工程が行われる。水洗工程においては、超音波を併用してもよい。乾燥工程においては、自然乾燥でもよく、ドライヤー、エアーブロー、オーブン等を用いてもよい。
Examples of the method of bringing the acidic aqueous solution containing the inorganic acid in the second step into contact with a substrate having at least a part of the surface made of a metal material include a treatment method by dipping and spraying. It is also possible to use electrolytic treatment in combination.
The acidic aqueous solution used in the second step preferably has a liquid temperature of 10.0 ° C to 80.0 ° C. The pH may be acidic, and for example, it is preferably adjusted to pH 6.0 or lower. The contact time is preferably about 1 to 1800 seconds, more preferably 900 seconds or less. After the second step, a water washing step and a drying step are usually performed. In the water washing step, ultrasonic waves may be used in combination. In the drying step, natural drying may be used, and a dryer, air blow, oven, or the like may be used.
 なお、本発明の実施形態に係る製造方法(孔形成工程)では、金属材料を有する基材の表面を処理する際、金属材料を有する基材の全面を処理してもよく、部分的に処理してもよい。樹脂との優れた接合強度を得るためには樹脂と接合する部位だけを処理すればよい。 In addition, in the manufacturing method (hole formation process) which concerns on embodiment of this invention, when processing the surface of the base material which has a metallic material, the whole surface of the base material which has a metallic material may be processed, and it processes partially. May be. In order to obtain an excellent bonding strength with the resin, it is only necessary to treat only the portion bonded to the resin.
 本発明の実施形態に係る孔を有する金属材料を有する基材の製造方法においては、他の工程が存在していてもよい。他の工程の例としては、本発明の実施形態に係る製造方法(孔形成工程)を行う前に、基材が有する金属材料の表面を加工する工程や清浄化させる工程を挙げることができる。また、基材が有する金属材料の表面に孔を形成した後、基材-樹脂硬化物の複合体を製造する方法に供する前に、皮膜を形成する工程を行ってもよい。各工程は、必要であれば繰り返し行ってもよい。以下、各工程を詳述する。 In the method for manufacturing a base material having a metal material having holes according to an embodiment of the present invention, other steps may exist. As an example of another process, before performing the manufacturing method (hole formation process) which concerns on embodiment of this invention, the process of processing the surface of the metal material which a base material has, and the process of cleaning can be mentioned. Further, after forming holes on the surface of the metal material possessed by the base material, a step of forming a film may be carried out before being subjected to a method for producing a base material-resin cured product composite. Each step may be repeated if necessary. Hereinafter, each process is explained in full detail.
(表面加工工程)
 本発明の実施形態にかかる基材の製造方法に用いられる、金属材料を有する基材は、本発明の実施形態に係る製造方法(孔形成工程)の前に、ショットブラスト加工、サンドブラスト加工、研削加工等の機械的粗化処理や、レーザー加工、プラズマ加工等の物理的粗化処理や、化学的方法によりあらかじめ粗化処理を実施してもよい。これらの加工後に形成される凹凸形状は問わない。
(Surface machining process)
The base material having a metal material used for the base material manufacturing method according to the embodiment of the present invention is shot blasted, sandblasted, or ground before the manufacturing method (hole forming step) according to the embodiment of the present invention. Mechanical roughening treatment such as processing, physical roughening treatment such as laser processing or plasma processing, or roughening treatment may be performed in advance by a chemical method. The uneven | corrugated shape formed after these processes is not ask | required.
(表面清浄工程)
 本発明の実施形態にかかる基材の製造方法に用いられる、金属材料を有する基材は、本発明の実施形態に係る製造方法(孔形成工程)の前に、金属材料の表面を清浄化するため、脱脂処理、酸水溶液による酸処理、及び/又は、アルカリ溶液によるアルカリ処理からなる前処理を行ってもよい。
 脱脂処理の方法は、特に限定されず、例えば、溶剤系、水系又はエマルジョン系の脱脂剤を用いることができ、アルカリ塩、界面活性剤等を含んでいてもよい。酸処理による前処理の方法としては、硫酸、硝酸、リン酸、フッ酸等の無機酸や、クエン酸、グルコン酸等の有機酸、これらを混合して調製したものなどを用いることができる。また、アルカリ処理による前処理の方法としては、水酸化ナトリウムや水酸化カリウムなどのアルカリ試薬を調製したもの、又はこれらを混合して調製したものなどを用いることができる。
(Surface cleaning process)
The base material having a metal material used in the base material manufacturing method according to the embodiment of the present invention cleans the surface of the metal material before the manufacturing method (hole forming step) according to the embodiment of the present invention. Therefore, a pretreatment consisting of a degreasing treatment, an acid treatment with an acid aqueous solution, and / or an alkali treatment with an alkali solution may be performed.
The method of the degreasing treatment is not particularly limited, and for example, a solvent-based, aqueous-based or emulsion-based degreasing agent can be used, and an alkali salt, a surfactant or the like may be included. As a pretreatment method by acid treatment, inorganic acids such as sulfuric acid, nitric acid, phosphoric acid and hydrofluoric acid, organic acids such as citric acid and gluconic acid, and those prepared by mixing these can be used. In addition, as a pretreatment method by alkali treatment, those prepared with an alkali reagent such as sodium hydroxide or potassium hydroxide, or those prepared by mixing them can be used.
(後処理工程)
 本発明の実施形態にかかる基材の製造方法(孔形成工程)の実施後、孔を有する金属材料の表面に皮膜を形成させてもよい。皮膜の形成方法は塗布型であっても反応型であってもよく、形成させる皮膜としては、例えば、自然酸化膜、陽極酸化皮膜、化成皮膜(リン酸塩系皮膜、ジルコニウム系皮膜、クロム系皮膜)、シランカップリング剤硬化皮膜、めっき膜等が挙げられるが、これらに限定されない。皮膜を形成する場合、その膜厚は特に限定されないが、100nm以下にすることが望ましい。前記皮膜の厚みが100nmよりも厚い場合、樹脂との接合強度が低下する場合がある。前記皮膜の厚みは、孔の形状に応じて適宜調整することができる。
(Post-processing process)
After the substrate manufacturing method (hole forming step) according to the embodiment of the present invention is performed, a film may be formed on the surface of the metal material having holes. The film formation method may be a coating type or a reaction type. Examples of the film to be formed include a natural oxide film, an anodized film, a chemical conversion film (phosphate-based film, zirconium-based film, chromium-based film). Film), a silane coupling agent cured film, a plating film, and the like, but are not limited thereto. When the film is formed, the film thickness is not particularly limited, but is preferably 100 nm or less. When the thickness of the film is thicker than 100 nm, the bonding strength with the resin may decrease. The thickness of the film can be appropriately adjusted according to the shape of the hole.
(その他の処理工程)
 前述の工程のほか、必要に応じてその他の工程を適宜行ってもよい。例えば、水洗工程はすべての工程(例えば、表面加工工程、表面清浄工程、孔形成工程、後処理工程等)の前後に行ってもよい。また、各水洗工程後に適宜乾燥工程を行ってもよい。
(Other processing steps)
In addition to the steps described above, other steps may be appropriately performed as necessary. For example, the water washing step may be performed before and after all the steps (for example, a surface processing step, a surface cleaning step, a hole forming step, a post-treatment step, etc.). Moreover, you may perform a drying process suitably after each water washing process.
<基材-樹脂硬化物の複合体の製造方法>
 本発明の実施形態に係る基材-樹脂硬化物の複合体は、基材と樹脂硬化物を含む基材-樹脂複合体であって、該基材が前記で説明した基材であり、該基材が有する金属材料の表面における孔に、樹脂硬化物を含むものである。
 本発明の実施形態に係る基材-樹脂硬化物の複合体における樹脂硬化物とは、熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー、樹脂塗料が硬化して塗膜となったもの、接着剤が硬化したものなど、あらゆる樹脂であってよい。
 本発明の実施形態に係る基材-樹脂硬化物の複合体の製造方法は、本発明の実施形態に係る基材の製造方法に含まれる工程である孔形成工程と、前記孔形成工程において形成された、金属材料の表面が有する孔に前記樹脂を入れる工程と、を含む。前記孔に前記樹脂を入れる工程の後に、前記樹脂を冷却、放置、又は加熱によって硬化して、基材-樹脂硬化物の複合体を形成する。基材-樹脂硬化物の複合体とは、前記基材と樹脂硬化物のみから構成されるものであってもよいし、前記孔を有する金属材料を有する基材と前記樹脂硬化物に加え、その樹脂硬化物に接触する相手材を含むものであってもよい。前記相手材は、樹脂材料だけでなく、金属、ゴム、木材、セラミック、複合材料を含むあらゆる材料であってよい。また、前記相手材の形状は特に限定されず、板、棒、帯、管、線、フィルム等であってもよい。
<Method for producing composite of base material-cured resin product>
The substrate-resin cured product composite according to an embodiment of the present invention is a substrate-resin composite including a substrate and a resin cured product, and the substrate is the substrate described above, The hole in the surface of the metal material which a base material has contains resin hardened | cured material.
The cured resin in the composite of the substrate and the cured resin according to the embodiment of the present invention includes a thermoplastic resin, a thermosetting resin, a thermoplastic elastomer, a resin paint cured to a coating film, an adhesive It may be any resin such as a cured agent.
The substrate-resin cured product composite manufacturing method according to the embodiment of the present invention includes a hole forming step, which is a step included in the substrate manufacturing method according to the embodiment of the present invention, and the hole forming step. And putting the resin into the holes of the surface of the metal material. After the step of putting the resin into the holes, the resin is cured by cooling, leaving, or heating to form a base material-cured resin composite. The composite of the base material-resin cured product may be composed only of the base material and the resin cured product, or in addition to the base material having the metal material having the holes and the resin cured product, You may include the other party material which contacts the resin cured material. The counterpart material may be not only a resin material but also any material including metal, rubber, wood, ceramic, and composite material. The shape of the counterpart material is not particularly limited, and may be a plate, a rod, a band, a tube, a wire, a film, or the like.
 本発明の実施形態に係る基材-樹脂硬化物の複合体を製造する具体的な方法としては、孔を有する金属材料を有する基材の表面又は表面上に対して接着剤を塗布した後に相手材を貼り合わせて接合する方法、孔を有する金属材料を有する基材の表面又は表面上に対して樹脂を当て熱圧着により接合する方法、孔を有する金属材料を有する基材の表面又は表面上に対して樹脂を当てレーザー加熱により樹脂を溶融させて金属と樹脂を接合する方法、孔を有する金属材料を有する基材を射出成形用金型内にセットしてこの金型内に溶融した樹脂をインサート成形して接合する方法(以後、射出成形接合と称する)、前記孔を有する基材の表面又は表面上に対して樹脂塗料を接触させた後に硬化させることで前記基材の表面又は表面上に塗膜を形成する方法などが挙げられる。 As a specific method for producing a composite of a base material and a resin cured product according to an embodiment of the present invention, an adhesive is applied to the surface of a base material having a metal material having pores or the surface of the base material. A method of bonding materials together and bonding, a method of applying a resin to the surface or surface of a base material having a metal material having holes and bonding by thermocompression bonding, a surface or surface of a base material having a metal material having holes A method of joining a metal and a resin by melting the resin by laser heating and applying a resin to the resin, and setting a base material having a metal material having holes in an injection mold and melting the resin in the mold The surface or surface of the substrate is made by insert molding and joining (hereinafter referred to as injection molding joining), the surface of the substrate having the holes or the surface of the substrate by curing the resin paint after contacting the surface. Form a coating on top And a method of, and the like.
 前記熱可塑性樹脂は、用途に応じて公知の熱可塑性樹脂から選択することができる。例えば、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリアクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、アクリロニトリル・ブタジエン・スチレン共重合系樹脂、ポリスチレン系樹脂、ポリイミド系樹脂等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。 The thermoplastic resin can be selected from known thermoplastic resins depending on the application. For example, polyamide resin, polycarbonate resin, polyvinyl resin, polyphenylene sulfide resin, polyacrylic resin, polyester resin, polyacetal resin, acrylonitrile / butadiene / styrene copolymer resin, polystyrene resin, polyimide resin, etc. 1 type or 2 or more types can be selected from, but is not limited thereto.
 前記熱硬化性樹脂は、用途に応じて公知の熱硬化性樹脂から選択することができる。例えば、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。 The thermosetting resin can be selected from known thermosetting resins depending on the application. For example, one or two or more suitable ones can be selected from a phenol resin, an epoxy resin, a urea resin, a melamine resin, etc., but is not limited thereto.
 前記熱可塑性エラストマーは、用途に応じて公知の熱可塑性エラストマーから選択することができる。例えば、ポリエステル系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。 The thermoplastic elastomer can be selected from known thermoplastic elastomers according to applications. For example, one or two or more suitable materials can be selected from polyester elastomers, vinyl chloride elastomers, polyamide elastomers and the like, but the invention is not limited thereto.
 前記樹脂塗料は、用途に応じて公知の樹脂塗料から選択することができる。例えば、エポキシ系樹脂、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。該塗料は、顔料、分散剤、可塑剤、溶剤などの成分を任意に含んでもよい。 The resin paint can be selected from known resin paints according to the application. For example, one or two or more suitable resins can be selected from an epoxy resin, an acrylic resin, a polyester resin, a urethane resin, and the like, but the invention is not limited thereto. The paint may optionally contain components such as a pigment, a dispersant, a plasticizer, and a solvent.
 前記接着剤は、例えば、塩化ビニル樹脂系接着剤、酢酸ビニル樹脂系接着剤、ポリビニルアルコール系接着剤、ポリアクリル系接着剤、ポリアミド系接着剤、セルロース系接着剤、ユリア樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、エポキシ樹脂系接着剤、シリコン樹脂系接着剤、ポリエステル系接着剤、ポリウレタン系接着剤、クロロプレンゴム系接着剤、ニトリルゴム系接着剤、スチレン・ブタジエンゴム系接着剤、シリコンゴム系接着剤、アクリルゴム系接着剤、ウレタンゴム系接着剤、ホットメルト接着剤等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。 Examples of the adhesive include a vinyl chloride resin adhesive, a vinyl acetate resin adhesive, a polyvinyl alcohol adhesive, a polyacryl adhesive, a polyamide adhesive, a cellulose adhesive, a urea resin adhesive, and a melamine. Resin adhesives, phenol resin adhesives, epoxy resin adhesives, silicon resin adhesives, polyester adhesives, polyurethane adhesives, chloroprene rubber adhesives, nitrile rubber adhesives, styrene / butadiene rubber adhesives One or two or more suitable adhesives can be selected from, but not limited to, adhesives, silicone rubber adhesives, acrylic rubber adhesives, urethane rubber adhesives, hot melt adhesives, etc. is not.
 前記、熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー、樹脂塗料、接着剤には公知の充填剤が含まれていてもよい。例えば、ガラス繊維、カーボン繊維、金属繊維、セラミック繊維、ガラスビーズ、カーボン粉末、金属粉末、セラミック粉末、酸化アルミニウム粉末、等から適当なものを1種又は2種以上選択することができるが、これらに限定されるものではない。充填剤の種類、含有量及び形状は、特に限定されるものではない。 The above-mentioned thermoplastic resin, thermosetting resin, thermoplastic elastomer, resin paint, and adhesive may contain a known filler. For example, one or more suitable materials can be selected from glass fiber, carbon fiber, metal fiber, ceramic fiber, glass bead, carbon powder, metal powder, ceramic powder, aluminum oxide powder, etc. It is not limited to. The type, content and shape of the filler are not particularly limited.
<本発明の実施形態に係る孔を有する金属材料を有する基材及び樹脂硬化物との複合体の用途>
 本発明の実施形態に係る孔を有する金属材料を有する基材と、樹脂硬化物との複合体は、自動車用部材、航空機用部材、電子機器用部材、モバイル機器用部材、OA機器用部材、家電機器用部材、医療機器用部材の材料として有用である。前記孔を有する金属材料を有する基材は、樹脂との接合強度のみならず、めっき膜などの密着性も向上させることができる。なお、本発明の実施形態に係る、孔を有する金属材料を有する基材及び基材-樹脂硬化物の複合体は上記の使用用途に限定されるものではない。
<Use of a composite of a base material having a metal material having holes and a cured resin product according to an embodiment of the present invention>
A composite of a base material having a metal material having holes according to an embodiment of the present invention and a cured resin is an automotive member, an aircraft member, an electronic device member, a mobile device member, an OA device member, It is useful as a material for members for home appliances and medical devices. The base material having the metal material having the holes can improve not only the bonding strength with the resin but also the adhesion of the plating film and the like. The base material having a metal material having holes and the composite of the base material and the resin cured product according to the embodiment of the present invention are not limited to the above-mentioned usage.
 以下に、実施例を比較例とともに挙げ、本発明及びその効果を具体的に説明する。なお、実施例で使用した基材、すべての処理に用いた薬剤は、市販されている材料や試薬の中から任意に選定したものであり、本発明の実際の用途を限定するものではない。 Hereinafter, the present invention and its effects will be described in detail with reference to examples and comparative examples. In addition, the base material used in the Example and the chemical | medical agent used for all the processes were arbitrarily selected from the commercially available material and reagent, and do not limit the actual use of this invention.
 実施例1から3及び比較例1から3に係る基材-樹脂硬化物の複合体の製造においては、特に断りのない限り、基材として幅20mm×長さ45mm×厚み1.5mmのアルミニウム材を用いた。 In the manufacture of the composite of the base material-resin cured product according to Examples 1 to 3 and Comparative Examples 1 to 3, an aluminum material having a width of 20 mm, a length of 45 mm, and a thickness of 1.5 mm as a base material unless otherwise specified. Was used.
<基材-樹脂硬化物の複合体の製造方法>
 実施例1から3及び比較例1から3に係る基材-樹脂硬化物の複合体は、特に断りのない限り、表面清浄工程→孔形成工程(第一工程→第二工程)→射出成形接合工程の各工程を経て製造した。以下、当該処理工程の各処理を説明する。
<Method for producing composite of base material-cured resin product>
Unless otherwise specified, the composite of the base material-resin cured product according to Examples 1 to 3 and Comparative Examples 1 to 3 is a surface cleaning process → a hole forming process (first process → second process) → injection molding joining. It manufactured through each process. Hereinafter, each process of the said process process is demonstrated.
(表面清浄工程)
 表面清浄工程は、アルカリ脱脂{ファインクリーナー315E 日本パーカライジング株式会社製、30g/L(固形分濃度)、70℃、浸漬時間1分}の後、アルカリ洗(水酸化ナトリウム1.0mol/L、40℃、浸漬時間1分)を実施し、各工程後に水洗を実施した。
(Surface cleaning process)
The surface cleaning step is alkali degreasing {Fine Cleaner 315E manufactured by Nippon Parkerizing Co., Ltd., 30 g / L (solid content concentration), 70 ° C., immersion time 1 minute}, followed by alkaline washing (sodium hydroxide 1.0 mol / L, 40 C., immersion time 1 minute), and water washing was performed after each step.
(孔形成工程)
第一工程
 第一工程は、リチウムイオンを含む表面処理剤に基材を浸漬した後、水洗を実施した。pHに関しては、硝酸水溶液及び水酸化ナトリウム水溶液を用いて調整した。
(Hole formation process)
First Step In the first step, the substrate was immersed in a surface treatment agent containing lithium ions, and then washed with water. The pH was adjusted using an aqueous nitric acid solution and an aqueous sodium hydroxide solution.
第二工程
 第二工程は、無機酸を含む酸性水溶液に基材を浸漬した後、水洗及び乾燥を実施した。
Second Step In the second step, the substrate was immersed in an acidic aqueous solution containing an inorganic acid, and then washed with water and dried.
(射出成形接合工程)
 射出成形接合工程は、前記孔形成工程後の基材に対し、ガラスファイバーを30%含むポリフェニレンサルファイド樹脂(PPS樹脂)を射出成形した。射出成形には東洋機械金属株式会社製電動サーボ射出成形機(Si-50III)を用いた。射出成形条件は、プレヒート125℃、成形温度320℃、金型温度135℃、射出速度30mm/秒、射出圧力1000kgf、保圧1200kgf、冷却時間15秒とした。成形されたPPS樹脂の寸法は、幅10mm×長さ45mm×厚み3mmである。また、基材とPPS樹脂の接合面積は10mm×5mmである。
(Injection molding joining process)
In the injection molding joining process, a polyphenylene sulfide resin (PPS resin) containing 30% glass fiber was injection molded to the base material after the hole forming process. An electric servo injection molding machine (Si-50III) manufactured by Toyo Machine Metal Co., Ltd. was used for the injection molding. The injection molding conditions were preheat 125 ° C., molding temperature 320 ° C., mold temperature 135 ° C., injection speed 30 mm / second, injection pressure 1000 kgf, holding pressure 1200 kgf, and cooling time 15 seconds. The dimension of the molded PPS resin is 10 mm wide × 45 mm long × 3 mm thick. Moreover, the joining area of a base material and PPS resin is 10 mm x 5 mm.
 以下、上述した基材及び処理工程に基づき、実施例1から3及び比較例1から3に係る基材-樹脂硬化物の複合体を製造した。以下に、実施例及び比較例での手順等を述べる。 Hereinafter, the base material-cured resin composites according to Examples 1 to 3 and Comparative Examples 1 to 3 were manufactured based on the above-described base materials and processing steps. Hereinafter, procedures and the like in Examples and Comparative Examples will be described.
[実施例1]
 基材として、JIS H 4000で規格されたA2017を用いた。第一工程として、以下の処理液(1)を用いて基材を300秒間浸漬した。第二工程として、以下の処理液(2)を用いて、基材を180秒間浸漬した。このようにして、実施例1に係る基材-樹脂硬化物の複合体を得た。
[Example 1]
As the base material, A2017 standardized by JIS H 4000 was used. As a 1st process, the base material was immersed for 300 second using the following process liquids (1). As a second step, the substrate was immersed for 180 seconds using the following treatment liquid (2). Thus, the base material-cured resin composite according to Example 1 was obtained.
 処理液(1)は、目的の容量で、3.0mol/L(モル/L)となる塩化リチウムと、0.1mol/Lとなる硝酸マグネシウム6水和物と、をイオン交換水に加え、ハンディpHメーター(東亜ディーケーケー株式会社製ポータブルpH計HM-30P)とpH計測用電極(同社製GST-2739C)でpHを計測しながら、硝酸と水酸化ナトリウムを用いて、それをpH10.0に調整し、目標の容量に調整した。処理液(1)の温度は60℃とした。 The treatment liquid (1) has a target volume of 3.0 mol / L (mol / L) lithium chloride and 0.1 mol / L magnesium nitrate hexahydrate added to ion-exchanged water, While measuring the pH with a handy pH meter (portable pH meter HM-30P manufactured by Toa DKK Co., Ltd.) and a pH measuring electrode (GST-2739C manufactured by the same company), it was adjusted to pH 10.0 using nitric acid and sodium hydroxide. Adjusted and adjusted to the target capacity. The temperature of the treatment liquid (1) was 60 ° C.
 処理液(2)は、イオン交換水に対して、硝酸が6.5mol/L(モル/L)となるように加えた。今回の例示では、pH調整は実施しなかった。処理液(2)の温度は50℃とした。 The treatment liquid (2) was added so that nitric acid was 6.5 mol / L (mol / L) with respect to ion-exchanged water. In this example, pH adjustment was not performed. The temperature of the treatment liquid (2) was 50 ° C.
[実施例2]
 基材をJIS H4000で規格されたA3003に変更した点以外は[実施例1]と同様の方法で[実施例2]の基材-樹脂硬化物の複合体を製造した。
[Example 2]
A substrate-resin cured product composite of [Example 2] was produced in the same manner as in [Example 1] except that the substrate was changed to A3003 standardized by JIS H4000.
[実施例3]
 基材をJIS H4000で規格されたA5052に変更した点以外は[実施例1]と同様の方法で[実施例3]の基材-樹脂硬化物の複合体を製造した。
[Example 3]
A substrate-resin cured product composite of [Example 3] was produced in the same manner as in [Example 1] except that the substrate was changed to A5052 standardized by JIS H4000.
[比較例1]
 基材をJIS H4000で規格されたA2017とした。第一工程及び第二工程の処理条件を変更した点以外は[実施例1]と同様の方法で、基材-樹脂硬化物の複合体を製造した。具体的には、第一工程として、以下の処理液(3)を用いて基材を60秒間浸漬した。第二工程として、以下の処理液(4)を用いて、基材を300秒間浸漬した。
[Comparative Example 1]
The base material was A2017 standardized by JIS H4000. A base material-cured resin composite was produced in the same manner as in [Example 1] except that the treatment conditions in the first step and the second step were changed. Specifically, as a first step, the substrate was immersed for 60 seconds using the following treatment liquid (3). As a second step, the substrate was immersed for 300 seconds using the following treatment liquid (4).
 処理液(3)は、目的の容量で、4.20mol/L(モル/L)となる水酸化ナトリウムと、0.66mol/Lとなる硝酸亜鉛と、0.06mol/Lとなるチオ硫酸ナトリウムと、をイオン交換水に加え、目標の容量に調整した。処理液(3)の温度は35℃とした。 The treatment liquid (3) has a target volume of 4.20 mol / L (mol / L) sodium hydroxide, 0.66 mol / L zinc nitrate, and 0.06 mol / L sodium thiosulfate. Were added to ion-exchanged water and adjusted to the target volume. The temperature of the treatment liquid (3) was 35 ° C.
 処理液(4)は、目的の容量で、0.84mol/L(モル/L)となる硫酸と、0.96mol/Lとなる塩化第二鉄と、0.03mol/Lとなる塩化第二銅と、0.05mol/Lとなる硫酸マンガン1水和物と、をイオン交換水に加えた。今回の例示では、pH調整は実施しなかった。処理液(4)の温度は30℃とした。 The treatment liquid (4) has a target volume of sulfuric acid at 0.84 mol / L (mol / L), ferric chloride at 0.96 mol / L, and ferric chloride at 0.03 mol / L. Copper and manganese sulfate monohydrate at 0.05 mol / L were added to ion-exchanged water. In this example, pH adjustment was not performed. The temperature of the treatment liquid (4) was 30 ° C.
[比較例2]
 基材をJIS H4000で規格されたA3003に変更した点以外は[比較例1]と同様の方法で[比較例2]の基材-樹脂硬化物の複合体を製造した。
[Comparative Example 2]
A base material-cured resin composite of [Comparative Example 2] was produced in the same manner as in [Comparative Example 1] except that the base material was changed to A3003 standardized by JIS H4000.
[比較例3]
 基材をJIS H4000で規格されたA5052に変更した点以外は[比較例1]と同様の方法で[比較例3]の基材-樹脂硬化物の複合体を製造した。
[Comparative Example 3]
A base material-cured resin composite of [Comparative Example 3] was produced in the same manner as in [Comparative Example 1] except that the base material was changed to A5052 standardized by JIS H4000.
(断面曲線の負荷長さ率)
 実施例1から3及び比較例1から3の処理後の基材の断面曲線の負荷長さ率の測定は、前記処理後の基材を電界放出形走査電子顕微鏡(日立ハイテクノロジーズ製、S-4700TypeII)により、倍率1万倍で断面観察を行い、得られた断面観察写真について画像処理ソフト(ImageJ)を用いて測定した。切断レベル30%、評価長さ10μmにおける断面曲線の負荷長さ率が40%以上の場合を良(「A」)とし、40%未満及び算出不可能な場合を悪(「B」)とした。結果を表1に示す。
(Load length ratio of section curve)
The measurement of the load length ratio of the cross-sectional curves of the substrates after the treatments of Examples 1 to 3 and Comparative Examples 1 to 3 was carried out using a field emission scanning electron microscope (S- 4700 Type II), the cross-section was observed at a magnification of 10,000 times, and the obtained cross-section observation photograph was measured using image processing software (ImageJ). A case where the load length ratio of the cross section curve at a cutting level of 30% and an evaluation length of 10 μm was 40% or more was judged as good (“A”), and a case where it was less than 40% and could not be calculated was judged as bad (“B”). . The results are shown in Table 1.
(アスペクト比)
 アスペクト比は、孔の入口における直径の平均値(a)と、孔深さの平均値(b)の比(b/a)により算出した。
 孔の入口における直径の平均値(a)は、実施例1から3及び比較例1から3の処理後の基材の表面を前記電子顕微鏡により、倍率5万倍で撮影した写真から測定した。孔の開口部の直径又は短径の長いものから上位10個を選択し、それらの長さを測定し、全てを積算して10で除したものを孔の入口における直径の平均値とした。
 孔深さの平均値(b)は、実施例1から3及び比較例1から3の処理後の基材の断面を前記電子顕微鏡により、倍率3万倍で撮影した写真から測定した。孔深さの長いものから上位10個を選択し、それらの最上部から最深部の長さを測定し、全てを積算して10で除したものを孔深さの平均値とした。
 アスペクト比(b/a)が2以上の場合を良(「A」)、2未満及び算出不可能な場合を悪(「B」)とした。結果を表1に示す。
(aspect ratio)
The aspect ratio was calculated by the ratio (b / a) of the average value (a) of the diameters at the inlets of the holes and the average value (b) of the hole depths.
The average value (a) of the diameter at the entrance of the hole was measured from a photograph obtained by photographing the surface of the base material after the treatment in Examples 1 to 3 and Comparative Examples 1 to 3 with the electron microscope at a magnification of 50,000 times. The top 10 were selected from those having a long diameter or short diameter of the opening of the hole, their lengths were measured, and all of them were integrated and divided by 10 to obtain the average value of the diameters at the inlet of the hole.
The average value (b) of the hole depth was measured from photographs obtained by photographing the cross sections of the substrates after the treatments of Examples 1 to 3 and Comparative Examples 1 to 3 with the electron microscope at a magnification of 30,000 times. The top 10 were selected from those having the longest hole depth, the length of the deepest part was measured from the uppermost part, and the total was divided by 10 to obtain the average value of the hole depth.
A case where the aspect ratio (b / a) was 2 or more was evaluated as good (“A”), and a case where the aspect ratio (b / a) was less than 2 or not calculated was determined as bad (“B”). The results are shown in Table 1.
(引張せん断試験)
 実施例1から3及び比較例1から3の基材-樹脂硬化物の複合体について、ISO19095-3に規格化された引張せん断試験方法により接合強度を評価した。引張せん断試験は、株式会社島津製作所製オートグラフ精密万能試験機(AG-100kNX)を使用した。評価は、室温25℃、引張速度10mm/分の条件にて行った。引張せん断強度(接合強度:MPa)は破壊荷重(N)/接合部面積(50mm)として算出した。引張せん断試験後の基材と樹脂硬化物との間の接合部の破壊形態を目視で調べた。
 結果を表1に示す。樹脂硬化物が基材側の接合面積に対して70%以上の面積に残存する破壊形態である場合を良(「A」)、樹脂硬化物が基材側の接合面積に対して10%以上70%未満の面積に残存する破壊形態である場合を悪(「B」)、樹脂硬化物が基材側の接合面積に対して10%未満の面積に残存する破壊形態である場合をさらに悪(「C」)とした。接合強度が30MPa以上で、接合部の破壊形態の評価が良(「A」)の場合、樹脂との接合強度が優れていると定義した。
(Tensile shear test)
With respect to the composites of base material and resin cured product of Examples 1 to 3 and Comparative Examples 1 to 3, the bonding strength was evaluated by a tensile shear test method standardized to ISO19095-3. For the tensile shear test, an autograph precision universal testing machine (AG-100kNX) manufactured by Shimadzu Corporation was used. Evaluation was performed under conditions of room temperature of 25 ° C. and a tensile speed of 10 mm / min. The tensile shear strength (joining strength: MPa) was calculated as breaking load (N) / joint area (50 mm 2 ). The fracture form of the joint between the base material and the cured resin after the tensile shear test was visually examined.
The results are shown in Table 1. The case where the cured resin is in a destructive form in which it remains in an area of 70% or more with respect to the bonding area on the substrate side (“A”) is good, and the cured resin is 10% or more with respect to the bonding area on the substrate side. The case where the fracture form remains in an area of less than 70% is bad ("B"), and the case where the cured resin is a fracture form which remains in an area of less than 10% with respect to the bonding area on the base material side is even worse. ("C"). When the bonding strength was 30 MPa or more and the evaluation of the fracture mode of the bonded portion was good (“A”), it was defined that the bonding strength with the resin was excellent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (2)

  1.  少なくとも表面の全部又は一部が金属材料からなる基材であって、該金属材料の表面が孔を有し、以下の(1)と(2)の要件を満たす、基材。
     (1)断面曲線の負荷長さ率(Pmr)が切断レベル30%、評価長さ10μmにおいて40%以上である
     (2)孔の入口における直径の平均値(a)と、孔深さの平均値(b)とのアスペクト比(b/a)が2以上50以下である
    A substrate in which at least all or part of the surface is made of a metal material, and the surface of the metal material has pores and satisfies the following requirements (1) and (2).
    (1) The load length ratio (Pmr) of the cross-sectional curve is 40% or more at a cutting level of 30% and an evaluation length of 10 μm. (2) The average value (a) of the diameter at the inlet of the hole and the average of the hole depth The aspect ratio (b / a) to the value (b) is 2 or more and 50 or less
  2.  基材と樹脂硬化物を含む基材-樹脂複合体であって、該基材が請求項1に記載の基材であり、該基材が有する金属材料の表面における孔に、樹脂硬化物を含む、基材-樹脂硬化物の複合体。 A base material-resin composite comprising a base material and a cured resin product, wherein the base material is the base material according to claim 1, and the cured resin product is provided in a hole in the surface of the metal material of the base material. A composite of a substrate and a cured resin.
PCT/JP2019/014029 2018-03-30 2019-03-29 Substrate having surface made entirely or at least partially of metal material wherein surface of said metal material has holes, and substrate-resin cured product composite containing said substrate and resin cured product WO2019189773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068521 2018-03-30
JP2018068521A JP7123605B2 (en) 2018-03-30 2018-03-30 A substrate at least all or part of the surface of which is made of a metallic material, the substrate having pores on the surface of the metallic material, and a substrate-resin cured product composite comprising the substrate and a cured resin product

Publications (1)

Publication Number Publication Date
WO2019189773A1 true WO2019189773A1 (en) 2019-10-03

Family

ID=68062001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014029 WO2019189773A1 (en) 2018-03-30 2019-03-29 Substrate having surface made entirely or at least partially of metal material wherein surface of said metal material has holes, and substrate-resin cured product composite containing said substrate and resin cured product

Country Status (2)

Country Link
JP (2) JP7123605B2 (en)
WO (1) WO2019189773A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522706A (en) * 2020-11-27 2021-03-19 山东泰宝包装制品有限公司 Precise etching hidden type anti-counterfeiting process
WO2023243190A1 (en) * 2022-06-13 2023-12-21 メック株式会社 Method for producing aluminum-resin composite, and surface treatment agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114261A1 (en) * 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho High-strength cold rolled steel sheet excelling in chemical treatability
JP2008189914A (en) * 2007-01-10 2008-08-21 Mitsubishi Rayon Co Ltd Formed body and method for manufacturing the same
JP2010137475A (en) * 2008-12-12 2010-06-24 Furukawa-Sky Aluminum Corp Resin-coated aluminum sheet with excellent resin adhesiveness
JP2016142119A (en) * 2015-02-05 2016-08-08 三井化学株式会社 Arm for door checker and door checker
JP2017019164A (en) * 2015-07-09 2017-01-26 三井化学株式会社 Metal/resin composite structure and method for manufacturing metal/resin composite structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114261A1 (en) * 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho High-strength cold rolled steel sheet excelling in chemical treatability
JP2008189914A (en) * 2007-01-10 2008-08-21 Mitsubishi Rayon Co Ltd Formed body and method for manufacturing the same
JP2010137475A (en) * 2008-12-12 2010-06-24 Furukawa-Sky Aluminum Corp Resin-coated aluminum sheet with excellent resin adhesiveness
JP2016142119A (en) * 2015-02-05 2016-08-08 三井化学株式会社 Arm for door checker and door checker
JP2017019164A (en) * 2015-07-09 2017-01-26 三井化学株式会社 Metal/resin composite structure and method for manufacturing metal/resin composite structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522706A (en) * 2020-11-27 2021-03-19 山东泰宝包装制品有限公司 Precise etching hidden type anti-counterfeiting process
WO2023243190A1 (en) * 2022-06-13 2023-12-21 メック株式会社 Method for producing aluminum-resin composite, and surface treatment agent

Also Published As

Publication number Publication date
JP7123605B2 (en) 2022-08-23
JP7405905B2 (en) 2023-12-26
JP2019177603A (en) 2019-10-17
JP2022125057A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP7405905B2 (en) A base material at least in whole or in part made of a metal material, the surface of the metal material having pores, and a composite of the base material and a cured resin material, including the base material and a cured resin material.
US9297079B2 (en) Iron alloy article, iron alloy member, and method for producing the iron alloy article
CN102612572B (en) Aluminum alloy article, aluminum alloy member, and production method therefor
JP3404286B2 (en) Metal surface treatment method, and metal member having a surface obtained by the surface treatment method
JP5108891B2 (en) Method for producing metal resin composite
KR101411676B1 (en) Method for producing aluminum-resin complex
WO2011071102A1 (en) Aluminium/resin composite exhibiting excellent weather resistance and manufacturing method for same
JP6387301B2 (en) Aluminum resin bonded body and manufacturing method thereof
JP6543037B2 (en) Method of manufacturing metal-resin composite
WO2000070123A1 (en) Process for the surface treatment of magnesium alloys
TW554020B (en) Magnesium conversion coating composition and method of using same
JP2004003025A (en) Surface treatment imparting corrosion resistance for adhesion of adhesive for structure of metal
JP2019052351A (en) Trivalent chromium chemical conversion treatment liquid for zinc or zinc alloy substrate, and chemical conversion treatment method using the same
WO2011071062A1 (en) Bonded aluminium composite and manufacturing method for same
CN111344439A (en) Magnesium or aluminum metal part with black oxide coating and preparation method thereof
JP4124761B2 (en) Mg or Mg alloy casing and manufacturing method thereof
KR100855358B1 (en) Chemical Coating Solutions for Magnesium Alloys, Environmental-affinitive Surface Treating Methods Using the Same, and Magnesium Alloy Substrates thereby
EP3168328A1 (en) Etching agent and replenishing liquid
JP6654407B2 (en) Resin coated metal material
KR100927297B1 (en) Surface treatment method of metal body and manufacturing method of metal article
JP2005281717A (en) Method for forming chemical conversion-treated film of magnesium alloy
JP6967953B2 (en) Etching agent for roughening the surface of a base material whose surface is at least all or part of aluminum or an aluminum alloy, a method for producing a roughened base material, a roughened base material, a base material-a cured resin product. Manufacturing method of the bonded body and the bonded body of the base material-resin cured product
KR101458843B1 (en) Zinc electrolytic plating method improve the adhesion of zinc plating film
JP2018184633A (en) Porous aluminum alloy and method for producing the same, and laminate
CN104131305B (en) Pre-treating fluid for surface corrosion protection of zinc (or aluminium) alloy die castings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774664

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19774664

Country of ref document: EP

Kind code of ref document: A1