WO2019189238A1 - Adhesive composition - Google Patents

Adhesive composition Download PDF

Info

Publication number
WO2019189238A1
WO2019189238A1 PCT/JP2019/012966 JP2019012966W WO2019189238A1 WO 2019189238 A1 WO2019189238 A1 WO 2019189238A1 JP 2019012966 W JP2019012966 W JP 2019012966W WO 2019189238 A1 WO2019189238 A1 WO 2019189238A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
core
weight
adhesive composition
shell
Prior art date
Application number
PCT/JP2019/012966
Other languages
French (fr)
Japanese (ja)
Inventor
秀輔 吉原
岸 肇
松田 聡
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020510949A priority Critical patent/JP7184874B2/en
Publication of WO2019189238A1 publication Critical patent/WO2019189238A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an adhesive composition containing an adhesive resin and core-shell polymer particles.
  • structural adhesives have been used in various fields.
  • a method of strengthening the joining of structural members has been attempted as a technique for achieving both weight reduction and rigidity improvement of a vehicle body, and as one of the joining methods, joining by using an adhesive and spot welding in combination.
  • the technology (weld bond method) is drawing attention.
  • an adhesive to be applied to the joining site an epoxy resin-based thermosetting adhesive (structural adhesive) is widely used, and is cured by heating after spot welding.
  • a strength member is arranged in the longitudinal direction of the center of the blade, and a member formed of a composite material is bonded with an adhesive along the shape of the blade surface and the back surface of the blade so as to sandwich the strength member.
  • Patent Document 2 discloses a structural adhesive composition excellent in flowing water pressure resistance, which contains an epoxy resin, core-shell rubber particles in a dispersed form in which primary particles and secondary aggregates are mixed, and a curing agent. Is disclosed. This document does not describe fatigue resistance. In the adhesive composition described in this document, it is necessary to mix the secondary aggregates of the core-shell type rubber particles with the primary particles. Therefore, it is difficult to control the particle size of the aggregates and the content of the aggregates, It is considered that the physical properties of the adhesive are not stable.
  • Patent Document 3 discloses an epoxy resin composition that can be used as a structural adhesive, and includes an epoxy resin, core-shell rubber particles, and a hollow polymer. This document does not describe fatigue resistance. In addition, when a hollow polymer is used, it is considered that the hollow polymer is destroyed by an impact received when the components are mixed and mixed, and it is difficult to disperse the hollow polymer as primary particles.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an adhesive composition that is excellent in fatigue resistance and that undergoes cohesive failure at the time of fatigue failure.
  • the present inventors have determined that, in addition to the nanometer-order core-shell polymer particles blended to improve the toughness of the adhesive, polymer particles having a particle size larger than the core-shell polymer particles at a specific ratio.
  • the adhesive layer has high toughness and induces cracks inside the adhesive layer during fatigue failure.
  • the present inventors have found that a highly reliable adhesive composition that greatly improves fatigue resistance and undergoes cohesive failure at the time of fatigue failure can be obtained. That is, the present invention includes the following 1) to 7).
  • Adhesive composition 1) containing an adhesive resin, a core-shell polymer particle (A) having a volume average particle diameter of 10 to 300 nm, and a polymer particle (B) having a volume average particle diameter of 400 nm to 10000 nm;
  • the weight ratio of (B) is 1: 2 to 2: 1, and each of the core-shell polymer particles (A) and the polymer particles (B) is dispersed as primary particles in the adhesive composition.
  • Adhesive composition 2) The adhesive composition according to 1), wherein the polymer particles (B) are polymer particles having no hollow structure. 3) The adhesive composition according to 1) or 2), wherein the polymer particles (B) are core-shell polymer particles.
  • the core layer of the core-shell polymer particle (A) or the core layer of the polymer particle (B) is selected from the group consisting of (i) a diene monomer and a (meth) acrylic acid ester monomer.
  • a rubber elastic body composed of 50% by weight or more of at least one monomer and less than 50% by weight of another copolymerizable vinyl monomer, (ii) a polysiloxane rubber-based elastic body, (iii) Crosslinked aromatic vinyl, or (iv) a mixture of two or more of (i) to (iii) above, and the other copolymerizable vinyl monomer is an aromatic vinyl compound or a vinyl cyanide compound
  • an adhesive composition that is excellent in fatigue resistance and that undergoes cohesive failure at the time of fatigue failure.
  • a conceptual diagram showing a state of cohesive failure in which cracks are generated inside the adhesive layer when an adhesive containing only polymer particles (B) having a large particle size is used.
  • the conceptual diagram which shows the state of the cohesive failure which the crack produced inside the adhesive bond layer when using the adhesive agent which mix
  • the side view which shows this test piece and spacer in the process of manufacturing the shearing-bonding test piece used by evaluation of an Example and a comparative example Side view showing a shear adhesion test piece used in the evaluation of Examples and Comparative Examples
  • the adhesive composition of the present invention contains an adhesive resin, a core-shell polymer particle (A) having a volume average particle diameter of 10 to 300 nm, and a polymer particle (B) having a volume average particle diameter of 400 nm to 10000 nm,
  • the weight ratio of polymer particles (A): polymer particles (B) is 1: 2 to 2: 1, and the core-shell polymer particles (A) and the polymer particles (B) are dispersed as primary particles in the adhesive composition. It is characterized by being formed.
  • the adhesive resin which is a matrix resin in the adhesive composition of the present invention can be selected from various resins exhibiting adhesiveness regardless of thermoplasticity and curability, and is not particularly limited. Examples include vinyl acetate copolymer resin, polyolefin resin, polyamide resin, synthetic rubber, acrylic resin, polyurethane resin, etc.
  • vinyl acetate copolymer resin polyolefin resin, polyamide resin, synthetic rubber, acrylic resin, polyurethane resin, etc.
  • curable resin phenol resin, epoxy resin, polyurethane curable resin, urea resin, melamine resin, acrylic reaction Examples thereof include resins. From the viewpoints of adhesiveness, applicability, heat resistance, etc., an epoxy resin is preferable.
  • the epoxy resin may generally be a compound having two or more epoxy groups.
  • bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AD type, bisphenol Bifunctional glycidyl ether type such as epoxy compound having bisphenyl group such as AF type and biphenyl type, epoxy compound such as polyalkylene glycol type and alkylene glycol type, epoxy compound having naphthalene ring, epoxy compound having fluorene group Epoxy resin, phenol novolak type, orthocresol novolak type and other novolak type epoxy resin, polyfunctional glycidyl ether, tetraphenylol ethane type and other polyfunctional type glycidyl ether type epoxy resin, die -Glycidyl ester type epoxy resins of synthetic fatty acids such as acids, N, N, N ', N'-tetraglycidyldiaminodiphenylmethane (TGDDM),
  • An epoxy resin can be suitably selected according to the use etc. of an adhesive composition, and only 1 type may be used and it may be used in combination of 2 or more type.
  • Bisphenol A-type epoxy resins and bisphenol F-type epoxy resins are particularly preferable in terms of facilitating the adjustment of the viscosity of the adhesive composition.
  • Bisphenol A type epoxy resin is a polycondensation compound of bisphenol A and epichlorohydrin.
  • the bisphenol A skeleton enhances heat resistance and also improves toughness and tensile shear bond strength. Furthermore, the ether group in the skeleton improves chemical resistance, and the methylene chain increases flexibility.
  • This bisphenol A type epoxy resin those ranging from liquid to solid can be used depending on the molecular weight, but those which are liquid to semi-solid at room temperature are preferred, and liquids are particularly preferred. This is because the handling property and the application workability of the composition become easy.
  • the epoxy equivalent is preferably in the range of 180 to 300 g / eq.
  • an epoxy equivalent means the gram number of the resin containing 1 gram equivalent of an epoxy group (unit: g / eq).
  • a modified epoxy resin such as urethane-modified epoxy resin or dimer acid modification
  • the epoxy resin the structure is not particularly limited as long as it has a urethane bond and two or more epoxy groups in the molecule. From the point that it can be introduced into the molecule, a resin obtained by reacting a urethane bond-containing compound having an isocyanate group with a hydroxy group-containing epoxy compound is preferable. These epoxy resins can be used alone or in combination of two or more.
  • the adhesive composition of the present invention may contain an appropriate curing agent depending on the type of adhesive resin.
  • the curing agent used in combination with the adhesive resin only needs to have an active group capable of reacting with an epoxy group.
  • curing agents include imidazole compounds such as dicyandiamide, 4,4′-diaminodiphenylsulfone, and 2-n-heptadecylimidazole, adipic acid dihydrazide, stearic acid dihydrazide, isophthalic acid dihydrazide, and dibasic acid hydrazide.
  • Organic acid hydrazide compounds such as isophthalic acid dihydrazide, urea compounds such as N, N-dialkylurea derivatives and N, N-dialkylthiourea derivatives, acid anhydrides such as tetrahydrophthalic anhydride, semicarbazide, cyanoacetamide, diamino Amine compounds such as diphenylmethane, tertiary amine, polyamine, isophoronediamine, m-phenylenediamine, aminotriazole such as 3-amino-1,2,4-triazole, N-aminoethylpiperazine, melamines, acetog Guanamines such as anamin and benzoguanamine, guanidines, dimethylureas, boron trifluoride complex compounds, boron trichloride complex compounds, liquid phenols such as trisdimethylaminomethylphenol, polythiols, triphenylphosphine, keti
  • the blending amount is preferably in the range of 5 to 30 parts by weight with respect to 100 parts by weight of the adhesive resin.
  • the blending amount of the curing agent is 5 parts by weight or more, the curing rate of the adhesive composition is high, and the curing reaction proceeds sufficiently to improve physical properties such as adhesive strength.
  • a preferable amount of the curing agent is in the range of 7 to 30 parts by weight.
  • the adhesive composition of the present invention contains core-shell polymer particles (A) having a smaller particle size compared to the polymer particles (B). By mix
  • the volume average particle size of the core-shell polymer particles (A) is 10 nm to 300 nm, more preferably 30 nm to 250 nm, still more preferably 60 nm to 200 nm, and most preferably 80 nm to 150 nm.
  • the volume average particle diameter of the core-shell polymer particles (A) is less than 10 nm or larger than 300 nm, the effect of toughening the adhesive composition by the core-shell polymer particles (A) is reduced.
  • the volume average particle size (Mv) of the core-shell polymer particles (A) is measured using a Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.) while being dispersed in an aqueous latex or resin composition. Value.
  • the aqueous latex is diluted with deionized water and the sample concentration is adjusted so that the Signal Level is in the range of 0.6 to 0.8.
  • the refractive index of water and the refractive index of the polymer particles to be measured were input, and the measurement time was 600 seconds.
  • the resin composition When measuring the volume average particle diameter of the particles in the resin composition, the resin composition is diluted with methyl ethyl ketone and the sample concentration is adjusted so that the signal level is in the range of 0.6 to 0.8.
  • the refractive index of methyl ethyl ketone and the refractive index of the polymer particles to be measured were input, and the measurement time was 600 seconds.
  • the description regarding the measurement of the above volume average particle diameter is applied also to the measurement of the volume average particle diameter of a polymer particle (B).
  • the core-shell polymer particle (A) is a core-shell polymer particle in which a shell layer is formed by graft polymerization of a graft copolymerizable monomer (a monomer for shell formation) to a crosslinked polymer to be a core layer, It has a structure having a core layer made of a cross-linked polymer existing inside and at least one shell layer covering the periphery or part of the cross-linked polymer by graft polymerization on the surface of the core layer. From the point that the viscosity of the adhesive composition of the present invention is kept low and easy to handle, the core-shell polymer particles are stably dispersed in the adhesive composition, and the toughening effect of the adhesive composition is enhanced.
  • the weight ratio of the core layer to the shell layer is preferably in the range of 50/50 to 99/1 in terms of the value of core layer / shell layer (weight ratio of monomers forming the polymer of each layer) / 40 to 95/5 is more preferable, and 70/30 to 90/10 is still more preferable.
  • the core layer is preferably composed of a crosslinked polymer and does not substantially dissolve in the solvent. Therefore, the gel content of the core layer is preferably 60% by weight or more, more preferably 80% by weight or more, further preferably 90% by weight or more, and particularly preferably 95% by weight or more.
  • the core layer comprises (i) 50% by weight or more of at least one monomer selected from the group consisting of diene monomers and (meth) acrylate monomers, and other copolymerizable vinyls.
  • Rubber elastic body composed of less than 50% by weight of monomer, (ii) polysiloxane rubber-based elastic body, (iii) cross-linked aromatic vinyl, or (iv) two kinds of (i) to (iii) above It is preferable to consist of a mixture of the above.
  • the other copolymerizable vinyl monomer is selected from the group consisting of an aromatic vinyl compound, a vinyl cyanide compound, an unsaturated carboxylic acid derivative, a (meth) acrylic acid amide derivative, and a maleimide derivative. It is preferable that it is a seed or more.
  • (meth) acryl means acryl and / or methacryl.
  • diene monomer examples include butadiene, isoprene, chloroprene and the like, and butadiene is particularly preferable.
  • (meth) acrylic acid ester monomer examples include butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate, and the like, and butyl acrylate and 2-ethylhexyl acrylate are particularly preferable. These may be used alone or in combination of two or more.
  • the amount of one or more monomers selected from the group consisting of diene monomers and (meth) acrylic acid ester monomers is preferably 50% by weight or more based on the total weight of the core layer. Preferably it is 60 weight% or more. When the amount of the monomer used is less than 50% by weight, the toughening effect exhibited by the core-shell polymer particles may be reduced.
  • the core layer may be a homopolymer or a copolymer obtained by polymerizing one or more monomers selected from the group consisting of a diene monomer and a (meth) acrylic acid ester monomer. However, it may be a copolymer of a diene monomer and / or a (meth) acrylate monomer and a vinyl monomer copolymerizable therewith.
  • a copolymerizable vinyl monomer one kind selected from the group consisting of aromatic vinyl compounds, vinyl cyanide compounds, unsaturated carboxylic acid derivatives, (meth) acrylic acid amide derivatives, and maleimide derivatives. The above monomers are mentioned.
  • Examples of the aromatic vinyl compound include styrene, ⁇ -methylstyrene, and vinyl naphthalene.
  • Examples of the vinyl cyanide compound include (meth) acrylonitrile and substituted acrylonitrile.
  • Examples of the unsaturated carboxylic acid derivative include (meth) acrylic acid, itaconic acid, crotonic acid, maleic anhydride and the like.
  • Examples of the (meth) acrylamide derivative include (meth) acrylamide (including N-substituted product).
  • Examples of the maleimide derivative include maleic imide (including N-substituted product). These may be used alone or in combination of two or more.
  • the amount of these copolymerizable vinyl monomers used is preferably less than 50% by weight, more preferably less than 40% by weight, based on the weight of the entire core layer.
  • the core layer may be a cross-linked aromatic vinyl.
  • the crosslinked body include a copolymer of an aromatic vinyl compound and a crosslinking monomer.
  • the aromatic vinyl compound include unsubstituted vinyl aromatic compounds such as styrene and 2-vinylnaphthalene; substituted vinyl aromatic compounds such as ⁇ -methylstyrene; 3-methylstyrene, 4-methylstyrene, 2,4 -Ring alkylated vinyl aromatic compounds such as dimethyl styrene, 2,5-dimethyl styrene, 3,5-dimethyl styrene, 2,4,6-trimethyl styrene; ring alkoxyl such as 4-methoxy styrene and 4-ethoxy styrene Vinyl aromatic compounds; ring halogenated aromatic compounds such as 2-chlorostyrene and 3-chlorostyrene; ring ester-substituted vinyl aromatic compounds such as 4-acetoxystyrene;
  • the polymer constituting the core layer is obtained by copolymerizing a crosslinking monomer in order to adjust the degree of crosslinking.
  • a crosslinking monomer examples include divinylbenzene, butanediol di (meth) acrylate, triallyl (iso) cyanurate, allyl (meth) acrylate, diallyl itaconate, diallyl phthalate, and the like.
  • the amount of the crosslinkable monomer used is 0.2 to 7% by weight, preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, based on the total weight of the core-shell polymer particles. If the amount used exceeds 7% by weight, the toughening effect and stress relaxation effect of the core-shell polymer particles may be reduced.
  • the core layer may include a polysiloxane rubber-based elastic body.
  • a polysiloxane rubber-based elastic body for example, a polysiloxane rubber composed of alkyl or aryl disubstituted silyloxy units such as dimethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy and the like can be used.
  • the polysiloxane rubber-based elastic body may be crosslinked by using a polyfunctional alkoxysilane compound partly at the time of polymerization, or by radically reacting a silane compound having a vinyl reactive group, if necessary. What introduced the structure is more preferable.
  • the glass transition temperature of the core layer (hereinafter sometimes simply referred to as “Tg”) is preferably 0 ° C. or lower in order to enhance the toughness and stress relaxation effect of the obtained adhesive composition, and ⁇ 20 ° C.
  • Tg glass transition temperature of the core layer
  • the following is more preferable, ⁇ 40 ° C. or lower is further preferable, and ⁇ 60 ° C. or lower is particularly preferable.
  • the polymer constituting the shell layer in the core-shell polymer particle is a (meth) acrylic acid ester monomer, aromatic vinyl monomer, vinyl cyanide monomer, unsaturated carboxylic acid derivative, (meth) acrylamide derivative And (co) polymers obtained by polymerizing one or more selected from the group consisting of maleimide derivatives.
  • the shell layer of the core-shell polymer particles (A) can effectively prevent the core-shell polymer particles (A) from reaggregating and deteriorating the dispersion state when the adhesive composition is cured.
  • It preferably has a group.
  • the reactive group for example, at least one group selected from the group consisting of an epoxy group, a carboxyl group, a hydroxyl group, an amino group, and a carbon-carbon double bond is preferable.
  • the shell layer having a reactive group is a (meth) acrylic acid ester monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, an unsaturated carboxylic acid derivative, a (meth) acrylamide derivative, and / or It is preferably composed of a copolymer obtained by copolymerizing a maleimide derivative and one or more kinds of vinyl monomers having a reactive group as described above.
  • the reactive group which the shell layer of a core shell polymer particle (A) has includes an epoxy group.
  • Examples of the (meth) acrylic acid ester monomers include (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Examples include acid alkyl esters. Examples of aromatic vinyl monomers include alkyl-substituted styrenes such as styrene and ⁇ -methylstyrene, and halogen-substituted styrenes such as bromostyrene and chlorostyrene. Examples of the vinyl cyanide monomer include (meth) acrylonitrile and substituted (meth) acrylonitrile.
  • Examples of the unsaturated carboxylic acid derivative include (meth) acrylic acid, itaconic acid, crotonic acid, maleic anhydride and the like.
  • Examples of the (meth) acrylamide derivative include (meth) acrylamide (including N-substituted product).
  • Examples of the maleimide derivative include maleic imide (including N-substituted product).
  • Examples of the monomer having a reactive group include (meth) acrylic acid esters having a reactive side chain such as 2-hydroxyethyl (meth) acrylate, 2-aminoethyl (meth) acrylate, (meth ) Glycidyl acrylate, etc .;
  • Examples of the vinyl ether having a reactive group include glycidyl vinyl ether and allyl vinyl ether.
  • the shell layer of the core-shell polymer particles (A) is made of, for example, an aromatic vinyl monomer (especially styrene) 0 to 50% by mass (preferably 5 to 40% by mass), a vinyl cyanide monomer. (Especially acrylonitrile) 0-50% by mass (preferably 1-30% by mass, more preferably 10-25% by mass), (meth) acrylic acid ester monomer (especially methyl methacrylate) 0-50% by mass ( Preferably 5 to 45% by mass) and a monomer having a reactive group (particularly glycidyl methacrylate) 0 to 50% by mass (preferably 5 to 30% by mass, more preferably 10 to 25% by mass). It is preferable to comprise a layer-forming monomer (100% by mass in total).
  • the production method of the core-shell polymer particles is not particularly limited, and can be produced by a known method such as emulsion polymerization, suspension polymerization, microsuspension polymerization, and the like. Among these, the production method by multistage emulsion polymerization is particularly preferable.
  • emulsifying (dispersing) agents used in emulsion polymerization include alkyl or aryl sulfonic acids such as dioctyl sulfosuccinic acid and dodecylbenzene sulfonic acid, alkyl or aryl ether sulfonic acids, alkyl or aryl sulfuric acids such as dodecyl sulfuric acid, Alkyl or aryl ether sulfuric acid, alkyl or aryl substituted phosphoric acid, alkyl or aryl ether substituted phosphoric acid, N-alkyl or aryl sarcosine acid such as dodecyl sarcosine acid, alkyl or aryl carboxylic acid such as oleic acid or stearic acid, alkyl or aryl Alkali metal salts or ammonium salts of various acids such as ether carboxylic acids; Nonionic emulsifiers or dispersants such as alkyl or
  • the emulsifier is preferably an anionic emulsifier from the viewpoint of polymerization stability, more preferably an anionic emulsifier of an alkali metal salt, and still more preferably an anionic emulsifier of a sodium salt and / or a potassium salt.
  • emulsifying (dispersing) agents may be used as little as possible within the range that does not hinder the dispersion stability in the preparation process of the aqueous latex containing the core-shell polymer particles.
  • it may be extracted and removed to a residual amount that does not affect the physical properties of the produced adhesive composition. For this reason, it is more preferable that the emulsifying (dispersing) agent has water solubility.
  • the core-shell polymer particles (A) are dispersed in the form of primary particles.
  • the dispersion in the state of primary particles means that, for example, the value of volume average particle diameter (Mv) / number average particle diameter (Mn) of the particles measured in the adhesive composition is 3 or less. Can be confirmed. This value is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less.
  • the volume average particle diameter (Mv) / number average particle diameter (Mn) of the particles measured in the adhesive composition exceeds 3, the adhesive composition contains a lot of secondary aggregates. As a result, the physical properties of the adhesive are not stable, for example, it is difficult to develop high fatigue resistance.
  • volume average particle diameter (Mv) / number average particle diameter (Mn) is the volume average of particles in the adhesive composition according to the above description using Microtrac UPA (manufactured by Nikkiso Co., Ltd.).
  • the particle diameter (Mv) and the number average particle diameter (Mn) are measured, respectively, and the volume average particle diameter (Mv) is divided by the number average particle diameter (Mn).
  • the content of the core-shell polymer particles (A) in the adhesive composition of the present invention is preferably 0.5 to 20 parts by weight, more preferably 3 to 15 parts by weight with respect to 100 parts by weight of the adhesive composition. More preferably, it is 5 to 10 parts by weight.
  • the content of the core-shell polymer particles (A) is less than 0.5 parts by weight, the toughening effect of the adhesive composition by the core-shell polymer particles (A) is reduced. At the time of fracture, cracks propagate at the interface between the adhesive layer and the substrate, and the fatigue resistance may be reduced.
  • polymer particles (B) In the adhesive composition of this invention, the polymer particle (B) with a larger particle size is contained with a core-shell polymer particle (A) compared with this.
  • the polymer particle (B) is a particle whose shape does not substantially change in the adhesive composition and after curing, and changes depending on the blending ratio and curing conditions, for example, an island part of a sea-island structure generated by polymer alloy. Such a formulation does not correspond to the polymer particles (B).
  • the polymer particles (B) are preferably polymer particles that do not have a hollow structure (that is, polymer particles that do not have cavities containing liquid and / or gas inside the particles).
  • the particles are not easily destroyed even when subjected to an impact when the components are blended and mixed, and it is easy to disperse as primary particles.
  • the polymer particles (B) as described above, control of the particle diameter and control of the content of the particles are facilitated, and the physical properties of the adhesive are stabilized.
  • the volume average particle diameter of the polymer particles (B) is 400 nm to 10000 nm, more preferably 500 nm to 8000 nm, still more preferably 1000 nm to 6000 nm, and most preferably 2000 nm to 4000 nm.
  • the volume average particle diameter of the polymer particles (B) can be measured in the same manner as the volume average particle diameter of the core-shell polymer particles (A) described above.
  • the polymer particle (B) according to the present invention is a particle composed of a polymer because it is suitable for relieving repeated stress during long-term use.
  • the shape of the particles is not particularly limited, and may be any shape such as a spherical shape or a flat plate shape.
  • the type of polymer constituting the polymer particles (B) is not particularly limited, and examples thereof include rubbers, acrylic resins, polyolefins, polystyrenes, urethanes, polyesters, polyamides, polyimides, polysiloxanes, fluorine-containing resins, and core-shell polymers. It is done.
  • the polymer particle (B) is a polyolefin, polysiloxane, fluorine-containing resin, or core-shell polymer particle because it is easy to design to ensure separation at the interface between the matrix resin and the polymer particle (B). preferable.
  • Specific examples of the polyolefin include polyethylene and polypropylene, and specific examples of the fluorine-containing resin include polytetrafluoroethylene.
  • the core-shell polymer particles which is a preferred embodiment of the polymer particles (B) are the same as the details of the core-shell polymer particles (A), and thus description thereof is omitted.
  • the polymer particles (B) are peeled from the matrix resin at the time of fatigue failure, in the core-shell polymer particles that are a preferred embodiment of the polymer particles (B), the shell layer is separated from the matrix resin. It is preferable that there is no reactive group that reacts, or the amount is small even if it has.
  • the content of the monomer unit having a reactive group contained in the polymer constituting the shell layer of the core-shell polymer particle is 0 to 5 parts by weight with respect to 100 parts by weight of the polymer particle (B). It is preferably 0 to 4 parts by weight, more preferably 0 to 3 parts by weight, and most preferably 0 to 2 parts by weight.
  • the reactive group and the monomer having the reactive group are the same as described above.
  • the polymer particles (B) are dispersed in the form of primary particles in the same manner as the core-shell polymer particles (A).
  • the primary dispersion means that the volume average particle diameter (Mv) / number average particle diameter (Mn) of the particles measured in the adhesive composition is 3. This can be confirmed by the following.
  • the preferred range and calculation method of volume average particle size (Mv) / number average particle size (Mn) are the same as those described above for the core-shell polymer particles (A).
  • the content of the polymer particles (B) in the adhesive composition of the present invention is preferably 1 to 10 parts by weight, more preferably 2 to 8 parts by weight, with respect to 100 parts by weight of the adhesive composition.
  • the amount is more preferably 3 to 6 parts by weight, and particularly preferably 4 to 5 parts by weight.
  • the content of the polymer particles (B) is less than 1 part by weight, the effect obtained by the addition of the polymer particles (B) is reduced.
  • the adhesive composition of the core-shell polymer particles (A) is used. The adhesive composition may become so brittle that the toughening effect of the product is not exhibited, and the fatigue resistance may be reduced.
  • the amount of the polymer particles (B) is relatively larger than 1: 2
  • the adhesive composition becomes brittle, and the fatigue resistance is lowered.
  • the amount of the core-shell polymer particles (A) is relatively larger than 2: 1, cracks propagate at the interface between the adhesive layer and the base material at the time of fatigue failure, resulting in interface failure, and fatigue resistance characteristics are reduced. To do.
  • the fracture surface of the test piece after the shear adhesion fatigue test is visually confirmed, and an area of 40% or more of the fracture surface
  • the case where the adhesive remains on the surface of the metal substrate is evaluated as cohesive failure (CF), and the case where it is less than 40% is evaluated as interfacial failure (AF).
  • CF cohesive failure
  • AF interfacial failure
  • the fatigue-breaked surface is observed with a reflection electron image of a scanning electron microscope, and each pixel of the obtained image is divided into monochrome 255 gradations to express the distribution of lightness.
  • binarizing 0 to 218 as an adhesive and gradations from 219 to 255 as an adherend and calculating the ratio of the area where the adhesive layer remains.
  • a thixotropic agent may be blended in the adhesive composition of the present invention in order to improve handling properties.
  • a thixotropic agent is not particularly limited, and examples thereof include carbon black such as ketjen black, silica, fine calcium carbonate, sepiolite and the like.
  • a thixotropic agent can be used 1 type or in combination of 2 or more types.
  • the blending amount is preferably 10 parts by weight or less with respect to 100 parts by weight of the adhesive resin from the viewpoint of application workability and adhesive strength.
  • the thixotropic agent it is preferable to use solid particles having an average particle diameter measured by a laser diffraction / scattering method within a range of 0.01 ⁇ m to 0.1 ⁇ m. If the average particle size is less than 0.01 ⁇ m, the viscosity of the adhesive composition may be increased and handling properties may be deteriorated. On the other hand, if the average particle size exceeds 0.1 ⁇ m, application workability and adhesive strength may be reduced. Because.
  • the adhesive composition of the present invention can also be blended with a filler for adjusting the viscosity of the composition and improving mechanical properties to the extent that the effects of the present invention are not impaired.
  • a filler is not particularly limited, for example, calcium carbonate, talc, magnesia, calcium silicate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, alumina, zircon, graphite, barium sulfate, clay, mica, Kaolin, wollastonite, mica, feldspar, syenite, chlorite, talc, bentonite, montmorillonite, barite, dolomite, quartz, diatomite, calcium silicate, aluminum silicate, barium carbonate, magnesium carbonate , Zinc carbonate, textile fiber, glass fiber, aramid pulp, boron fiber, carbon fiber, phosphate, crystalline silica, amorphous silica, fused silica, fumed silica, calcined silica, precipitated
  • the average particle diameter measured by a laser diffraction / scattering method is preferably in the range of 0.05 ⁇ m to 500 ⁇ m. If the average particle size is less than 0.05 ⁇ m, the viscosity of the adhesive composition may be increased and the handleability may deteriorate, and if it exceeds 500 ⁇ m, the filler tends to settle and the uniformity of the composition may decrease. There is sex.
  • various additives such as a catalyst, a curing accelerator, a plasticizer, a reactive diluent, a reaction retarding agent, an antioxidant, an antioxidant, a pigment, Dyes, colorants, coupling agents, leveling agents, thixotropic agents, adhesion imparting agents, flame retardants, antistatic agents, conductivity imparting agents, lubricants, slidability imparting agents, UV absorbers, surfactants, A dispersant, a dispersion stabilizer, an antifoaming agent, a dehydrating agent, a crosslinking agent, a rust preventive agent, a solvent and the like can be blended.
  • the adhesive composition of the present invention can be prepared by uniformly mixing and stirring these blended components with a known mixing and dispersing machine such as a planetary mixer, a disper, a Henschel mixer, a kneader and the like. Also, after preparing a mixture of the adhesive resin and the core-shell polymer particles (A) and a mixture of the adhesive resin and the polymer particles (B), respectively, the both mixtures are mixed to prepare the adhesive composition of the present invention. May be. Further, in order to disperse each of the core-shell polymer particles (A) and the polymer particles (B) as primary particles in the adhesive composition, the core-shell polymer particles (A) and / or the polymer particles (B) are dispersed. This can be achieved by dissolving the adhesive resin and then distilling off the dispersion medium (or solvent) from the dispersion.
  • a known mixing and dispersing machine such as a planetary mixer, a disper, a Henschel mixer, a knea
  • the adhesive composition of the present invention thus prepared is applied to an adherend by a known method such as spraying, gunning, brushing or the like.
  • a known method such as spraying, gunning, brushing or the like.
  • spot welding after application welding bond method
  • the adhesive composition of the present invention has high fatigue resistance and adhesion reliability, it can be used, for example, in automobiles, vehicles (bullet trains, trains), wind power generators, civil engineering, architecture, electronics, ships, aircraft, space industry, etc. It can be used as an adhesive for structural members. At this time, high joint strength to the structural part can be ensured by the combined use (weld bond method) such as spot welding using an electrode or the like. In addition, it can be used as an adhesive for general office work, medical use, and electronic materials.
  • volume average particle diameter (Mv) The volume average particle diameter (Mv) of the polymer particles dispersed in the aqueous latex or resin composition was measured using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.). The aqueous latex diluted with deionized water and the resin composition diluted with methyl ethyl ketone were used as measurement samples. For measurement, enter the refractive index of water or methyl ethyl ketone, and the refractive index of each polymer particle, and adjust the sample concentration so that the measurement time is 600 seconds and the Signal Level is in the range of 0.6 to 0.8. went.
  • a glass reactor 180 parts by weight of deionized water, 0.002 parts by weight of disodium ethylenediaminetetraacetate (EDTA), 0.001 part by weight of ferrous sulfate heptahydrate, sodium formaldehyde sulfoxylate (SFS) 0 .04 parts by weight and 0.5 parts by weight of sodium dodecylbenzenesulfonate (SDBS) were charged, and the temperature was raised to 45 ° C. while stirring in a nitrogen stream.
  • EDTA disodium ethylenediaminetetraacetate
  • FSS sodium formaldehyde sulfoxylate
  • SDBS sodium dodecylbenzenesulfonate
  • a monomer mixture of 98 parts by weight of n-butyl acrylate (BA), 2 parts by weight of allyl methacrylate (ALMA) and 0.02 parts by weight of cumene hydroperoxide (CHP) was added dropwise over 5 hours.
  • 1 part by weight of SDBS in an aqueous solution having a concentration of 5% by weight was continuously added over 5 hours.
  • Stirring was continued for 1 hour after completion of the monomer mixture addition to complete the polymerization, and an acrylic rubber latex (R-1) containing acrylic rubber particles was obtained.
  • the volume average particle diameter of the acrylic rubber particles contained in the obtained latex was 100 nm.
  • 0.025 parts by weight of PHP was added after 3, 5, and 7 hours from the start of polymerization.
  • 0.0006 part by weight of EDTA and 0.003 part by weight of ferrous sulfate heptahydrate were added after 4, 6 and 8 hours from the start of polymerization.
  • the residual monomer was removed by devolatilization under reduced pressure to complete the polymerization, and a polybutadiene rubber latex (R-2) containing polybutadiene rubber particles was obtained.
  • the volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 80 nm.
  • a glass reactor having a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer and emulsifier addition device, 173 parts by weight of deionized water, 0.3 part by weight of SDBS, and 1% aqueous sodium nitrite solution After adding 0.008 part by weight and adjusting to 30 ° C. in a nitrogen atmosphere, the emulsified monomer solution obtained above was charged. Thereafter, the temperature was raised to 65 ° C., and a monomer mixture of 83 parts by weight of BA and 4.15 parts by weight of ALMA was continuously added over 210 minutes.
  • aqueous latex L-1 containing core-shell polymer particles.
  • the volume average particle size of the core-shell polymer particles contained in the obtained aqueous latex was 110 nm.
  • aqueous latex L-2
  • the volume average particle size of the core-shell polymer particles contained in the obtained aqueous latex was 110 nm.
  • aqueous latex (L-3) containing core-shell polymer particles.
  • the volume average particle size of the core-shell polymer particles contained in the obtained aqueous latex was 3000 nm.
  • aqueous latex (L-4) containing core-shell polymer particles After 0.15 parts by weight of SDBS was added three times at 60 minute intervals, a mixture of 30 parts by weight of MMA and 0.08 parts by weight of TBP was continuously added over 180 minutes. 0.04 part by weight of TBP was added, and stirring was further continued for 30 minutes to complete the polymerization, thereby obtaining an aqueous latex (L-4) containing core-shell polymer particles.
  • the volume average particle diameter of the core-shell polymer particles contained in the obtained aqueous latex was 500 nm.
  • MEK a 1: 1 mixture of bisphenol A type diglycidyl ether (DGEBA, manufactured by Mitsubishi Chemical), which is an epoxy resin, jER828 and jER1001 is used so that the weight ratio of the core-shell polymer particles and the epoxy resin mixture is 25:75.
  • DGEBA bisphenol A type diglycidyl ether
  • MEK was distilled off under reduced pressure to obtain an epoxy resin composition (M-1) in which the core-shell polymer particles (A) were dispersed as primary particles.
  • Examples 1 to 5 and Comparative Examples 1 to 5 Rotate the epoxy resin, the core-shell polymer particle (A) -dispersed epoxy resin composition, the polymer particle (B) -dispersed epoxy resin composition, and the curing agent along the blending amounts described in the “mixing ratio” column of Table 1.
  • -It mixed with the revolution mixer made by Shinkey Co., Ltd.
  • the blending amount is based on weight. It was confirmed by Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.) that the core-shell polymer particles (A) and the polymer particles (B) were dispersed as primary particles in the obtained adhesive composition.
  • the compounding amounts of the epoxy resin, the core-shell polymer particles (A), and the polymer particles (B) with respect to 100 parts by weight of each adhesive composition are as described in the “Composition composition” column of Table 1.
  • Table 1 shows the results of the number of fracture cycles and the type of fracture measured or specified by conducting a fatigue test using each adhesive composition.
  • Epoxy resin bisphenol A type epoxy resin (jER828 and jER1001, manufactured by Mitsubishi Chemical Corporation).
  • Curing agent Diaminodiphenyl sulfone (DDS) (SumiCure S, manufactured by Sumitomo Chemical Co., Ltd.)
  • the core-shell polymer particles (A) and the polymer particles (B) are dispersed as primary particles at an appropriate blending ratio in the epoxy resin composition, and the number of fracture cycles in the fatigue test is In many cases, the fatigue resistance is greatly improved, and the failure mode at the time of fatigue failure is cohesive failure (CF), which indicates that an adhesive composition having high reliability was obtained.
  • CF cohesive failure
  • Comparative Example 1 is an epoxy resin composition containing neither the core-shell polymer particles (A) nor the polymer particles (B).
  • the core-shell polymer particles (A) are dispersed in the epoxy resin composition.
  • the polymer particles (B) are not included.
  • Comparative Examples 2 and 3 as compared with Comparative Example 1, the number of fracture cycles in the fatigue test was not improved, and the failure mode at the time of fatigue failure was interface failure (AF) as in Comparative Example 1. This is presumably because, as shown in FIG. 1, resistance was large for cracks to propagate in the adhesive layer, and interface fracture was induced.
  • Comparative Example 4 is an epoxy resin composition that does not contain core-shell polymer particles (A) and in which polymer particles (B) are dispersed, and Comparative Example 5 includes both core-shell polymer particles (A) and polymer particles (B).
  • Comparative Example 5 includes both core-shell polymer particles (A) and polymer particles (B).
  • the fracture mode at the time of fatigue fracture was cohesive fracture (CF), but the number of fracture cycles in the fatigue test was not improved. It is considered that the toughness of the adhesive layer was not improved because the core-shell polymer particles (A) were not included or the blending ratio was small.
  • Examples 6 and 7 and Comparative Examples 6 and 7 According to the blending amount described in the column of “Mixing ratio” in Table 2, the epoxy resin, the core-shell polymer particles (A) dispersed epoxy resin composition, the polymer particles (B), and the curing agent are rotated and revolved (( And an adhesive composition was obtained.
  • the blending amount is based on weight. It was confirmed by Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.) that the core-shell polymer particles (A) and the polymer particles (B) were dispersed as primary particles in the obtained adhesive composition.
  • the compounding amounts of the epoxy resin, the core-shell polymer particles (A), and the polymer particles (B) with respect to 100 parts by weight of each adhesive composition are as described in the “Composition composition” column of Table 2.
  • Table 2 shows the results of the number of fracture cycles and the type of fracture measured or specified by conducting a fatigue test using each adhesive composition.
  • Example 6 the materials constituting the polymer particles (B) were changed, but in the epoxy resin composition, the core-shell polymer particles (A) and the polymer particles (B) were mixed at an appropriate blending ratio.
  • CF cohesive fracture
  • Comparative Example 6 is an epoxy resin composition using polymer particles (B) having a volume average particle diameter as large as 17 ⁇ m
  • Comparative Example 7 is a blending ratio of polymer particles (B) to core-shell polymer particles (A). Is a low epoxy resin composition.
  • the number of fracture cycles in the fatigue test was not improved, and the fracture mode at the time of fatigue fracture was also interface fracture (AF).
  • Adhesive layer 11 11 'Base material 12 12' Spacer (aluminum plate) 13 13 'Spacer (Nitoflon tape) 14 Adhesive composition 15 Adhesive layer

Abstract

An adhesive composition which contains an adhesive resin, core-shell polymer particles (A) that have a volume average particle diameter of 10-300 nm, and polymer particles (B) that have a volume average particle diameter of 400-10,000 nm, and which is configured such that the weight ratio of the core-shell polymer particles (A) to the polymer particles (B) is from 1:2 to 2:1, and the core-shell polymer particles (A) and the polymer particles (B) are dispersed in the adhesive composition in the form of primary particles, respectively.

Description

接着剤組成物Adhesive composition
 本発明は、接着性樹脂とコアシェルポリマー粒子を含む接着剤組成物に関する。 The present invention relates to an adhesive composition containing an adhesive resin and core-shell polymer particles.
 近年、構造用接着剤は多様な分野で使用されている。例えば自動車分野において、車体の軽量化と剛性の向上を両立させる技術として構造部材の接合を強化させる方法が試みられており、その接合方法の一つとして、接着剤とスポット溶接との併用による接合技術(ウエルドボンド工法)が注目されている。接合部位に塗布される接着剤としては、エポキシ樹脂系の加熱硬化型接着剤(構造用接着剤)が広く用いられており、スポット溶接後に加熱によって硬化させられる。 In recent years, structural adhesives have been used in various fields. For example, in the automobile field, a method of strengthening the joining of structural members has been attempted as a technique for achieving both weight reduction and rigidity improvement of a vehicle body, and as one of the joining methods, joining by using an adhesive and spot welding in combination. The technology (weld bond method) is drawing attention. As an adhesive to be applied to the joining site, an epoxy resin-based thermosetting adhesive (structural adhesive) is widely used, and is cured by heating after spot welding.
 また風力発電装置の分野においては、装置全体にかかる荷重を低減するためにブレード自体の軽量化、高強度化、高剛性化が必要であり、該ブレードに繊維強化樹脂複合材を用いることが主流となっている。そのようなブレードの構造は、強度部材をブレード中心長手方向に配置し、その強度部材を挟み込むように、ブレード表面とブレード裏面の形状に沿って複合材で成形された部材を接着剤により貼り合わせたものが多い。 In the field of wind power generators, it is necessary to reduce the weight of the blade itself, increase its strength, and increase its rigidity in order to reduce the load applied to the entire device, and it is mainstream to use a fiber reinforced resin composite material for the blade. It has become. In such a blade structure, a strength member is arranged in the longitudinal direction of the center of the blade, and a member formed of a composite material is bonded with an adhesive along the shape of the blade surface and the back surface of the blade so as to sandwich the strength member. There are many things.
 これら接着剤には長期使用にも耐える高い耐疲労特性が求められ、一般に接着剤の靭性が着目される。接着剤の靭性を向上させる方法としては、例えば特許文献1に記載のように、エポキシ樹脂にコアシェル構造を有するポリマー微粒子を添加する方法がある。しかしながら、接着剤の靭性を向上させると疲労破壊時に接着剤層と被着材との界面で剥がれる界面破壊が誘起され、結果として耐疲労特性が向上しづらいという課題があった。これは図1に示すように、接着剤の靭性向上によって相対的に弱い界面において亀裂が誘起され、進展してしまうことが要因であると考えられる。 These adhesives are required to have high fatigue resistance that can withstand long-term use, and the toughness of the adhesive is generally noted. As a method for improving the toughness of the adhesive, for example, as described in Patent Document 1, there is a method of adding polymer fine particles having a core-shell structure to an epoxy resin. However, when the toughness of the adhesive is improved, there is a problem that an interface fracture that peels off at the interface between the adhesive layer and the adherend during fatigue failure is induced, and as a result, it is difficult to improve fatigue resistance. As shown in FIG. 1, this is considered to be caused by the fact that a crack is induced and progresses at a relatively weak interface due to the improvement in the toughness of the adhesive.
 接着剤層の破壊形式には、接着剤層の内部が破壊する「凝集破壊」と、上記「界面破壊」がある。接着剤層と被着材とが接着されていることを保証するためにも、破壊形式としては凝集破壊が好ましい。界面破壊は接着力をコントロールできていない状態であり、信頼性に乏しい。以上のことから、高い耐疲労特性を有し、かつ疲労破壊時には凝集破壊をする接着剤が求められている。 There are two types of adhesive layer destruction: “cohesive failure” in which the inside of the adhesive layer breaks and the above “interfacial failure”. In order to ensure that the adhesive layer and the adherend are adhered, cohesive failure is preferred as the failure mode. Interfacial fracture is a condition in which the adhesive force cannot be controlled and is not reliable. In view of the above, there is a demand for an adhesive that has high fatigue resistance and that undergoes cohesive failure during fatigue failure.
 特許文献2には、エポキシ樹脂と、一次粒子と二次凝集体とが混在する分散形態をなすコアシェル型ゴム粒子と、硬化剤とを含有する、耐流水圧性に優れた構造用接着剤組成物が開示されている。この文献には耐疲労性についての記載はない。この文献に記載の接着剤組成物ではコアシェル型ゴム粒子の二次凝集体を一次粒子と混在させる必要があるため、凝集体の粒子径の制御や凝集体の含有率の制御が困難であり、接着剤の物性が安定しないと考えられる。 Patent Document 2 discloses a structural adhesive composition excellent in flowing water pressure resistance, which contains an epoxy resin, core-shell rubber particles in a dispersed form in which primary particles and secondary aggregates are mixed, and a curing agent. Is disclosed. This document does not describe fatigue resistance. In the adhesive composition described in this document, it is necessary to mix the secondary aggregates of the core-shell type rubber particles with the primary particles. Therefore, it is difficult to control the particle size of the aggregates and the content of the aggregates, It is considered that the physical properties of the adhesive are not stable.
 特許文献3には、エポキシ樹脂と、コアシェル型ゴム粒子と、中空ポリマーからなる、構造用接着剤として使用可能なエポキシ樹脂組成物が開示されている。この文献には耐疲労性についての記載はない。また、中空ポリマーを使用すると、各成分を配合・混合する時に受ける衝撃によって、該中空ポリマーが破壊され、これを一次粒子として分散させることは困難になると考えられる。 Patent Document 3 discloses an epoxy resin composition that can be used as a structural adhesive, and includes an epoxy resin, core-shell rubber particles, and a hollow polymer. This document does not describe fatigue resistance. In addition, when a hollow polymer is used, it is considered that the hollow polymer is destroyed by an impact received when the components are mixed and mixed, and it is difficult to disperse the hollow polymer as primary particles.
国際公開第2015/064561号International Publication No. 2015/064561 特開2015-108077号公報JP2015-108077A 特開2010-270198号公報JP 2010-270198 A
 本発明は、上記現状に鑑み、耐疲労特性に優れると共に、疲労破壊時には凝集破壊をする接着剤組成物を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide an adhesive composition that is excellent in fatigue resistance and that undergoes cohesive failure at the time of fatigue failure.
 本発明者らは鋭意検討した結果、接着剤の靱性を向上するために配合されるナノメートルオーダーのコアシェルポリマー粒子に加えて、該コアシェルポリマー粒子よりも粒径が大きいポリマー粒子を特定の比率で接着剤組成物に配合し、いずれの粒子も接着剤組成物中で1次粒子として分散させることで、接着剤層が高い靭性を有し、かつ疲労破壊時には該接着剤層内部で亀裂を誘起することができ、結果として、耐疲労特性が大きく向上し、かつ疲労破壊時には凝集破壊をする、信頼性が高い接着剤組成物が得られることを見出し、本発明に至った。即ち本発明は下記1)~7)である。 As a result of intensive studies, the present inventors have determined that, in addition to the nanometer-order core-shell polymer particles blended to improve the toughness of the adhesive, polymer particles having a particle size larger than the core-shell polymer particles at a specific ratio. By blending into the adhesive composition and dispersing all the particles as primary particles in the adhesive composition, the adhesive layer has high toughness and induces cracks inside the adhesive layer during fatigue failure As a result, the present inventors have found that a highly reliable adhesive composition that greatly improves fatigue resistance and undergoes cohesive failure at the time of fatigue failure can be obtained. That is, the present invention includes the following 1) to 7).
 1)接着性樹脂、体積平均粒子径が10~300nmのコアシェルポリマー粒子(A)、及び体積平均粒子径が400nm~10000nmのポリマー粒子(B)を含有し、コアシェルポリマー粒子(A):ポリマー粒子(B)の重量比率が1:2~2:1であり、コアシェルポリマー粒子(A)とポリマー粒子(B)それぞれが接着剤組成物中で1次粒子として分散していることを特徴とする接着剤組成物。
 2)ポリマー粒子(B)が中空の構造を有しないポリマー粒子である1)に記載の接着剤組成物。
 3)ポリマー粒子(B)がコアシェルポリマー粒子である1)又は2)に記載の接着剤組成物。
 4)前記コアシェルポリマー粒子(A)のコア層、または、前記ポリマー粒子(B)のコア層が、(i)ジエン系単量体及び(メタ)アクリル酸エステル系単量体からなる群より選ばれる1種以上の単量体50重量%以上、及び、他の共重合可能なビニル単量体50重量%未満から構成されるゴム弾性体、(ii)ポリシロキサンゴム系弾性体、(iii)芳香族ビニル架橋体、または(iv)前記(i)~(iii)のうち2種以上の混合物からなり、前記他の共重合可能なビニル単量体が、芳香族ビニル化合物、シアン化ビニル化合物、不飽和カルボン酸誘導体、(メタ)アクリル酸アミド誘導体、及び、マレイミド誘導体からなる群より選ばれる1種以上である、1)~3)のいずれかに記載の接着剤組成物。
 5)前記コアシェルポリマー粒子(A)のシェル層が反応性基を含む、1)~4)のいずれかに記載の接着剤組成物。
 6)前記反応性基がエポキシ基を含む、5)に記載の接着剤組成物。
 7)前記ポリマー粒子(B)のシェル層を構成するポリマーに含まれる、反応性基を有する単量体単位の含有量が、ポリマー粒子(B)100重量部に対し0~5重量部である、3)~6)のいずれかに記載の接着剤組成物。
 8)前記接着性樹脂が、エポキシ樹脂を含む、1)~7)のいずれかに記載の接着剤組成物。
1) containing an adhesive resin, a core-shell polymer particle (A) having a volume average particle diameter of 10 to 300 nm, and a polymer particle (B) having a volume average particle diameter of 400 nm to 10000 nm; The weight ratio of (B) is 1: 2 to 2: 1, and each of the core-shell polymer particles (A) and the polymer particles (B) is dispersed as primary particles in the adhesive composition. Adhesive composition.
2) The adhesive composition according to 1), wherein the polymer particles (B) are polymer particles having no hollow structure.
3) The adhesive composition according to 1) or 2), wherein the polymer particles (B) are core-shell polymer particles.
4) The core layer of the core-shell polymer particle (A) or the core layer of the polymer particle (B) is selected from the group consisting of (i) a diene monomer and a (meth) acrylic acid ester monomer. A rubber elastic body composed of 50% by weight or more of at least one monomer and less than 50% by weight of another copolymerizable vinyl monomer, (ii) a polysiloxane rubber-based elastic body, (iii) Crosslinked aromatic vinyl, or (iv) a mixture of two or more of (i) to (iii) above, and the other copolymerizable vinyl monomer is an aromatic vinyl compound or a vinyl cyanide compound The adhesive composition according to any one of 1) to 3), which is at least one member selected from the group consisting of an unsaturated carboxylic acid derivative, a (meth) acrylic acid amide derivative, and a maleimide derivative.
5) The adhesive composition according to any one of 1) to 4), wherein the shell layer of the core-shell polymer particle (A) contains a reactive group.
6) The adhesive composition according to 5), wherein the reactive group includes an epoxy group.
7) The content of the monomer unit having a reactive group contained in the polymer constituting the shell layer of the polymer particle (B) is 0 to 5 parts by weight with respect to 100 parts by weight of the polymer particle (B). 3) The adhesive composition according to any one of 6) to 6).
8) The adhesive composition according to any one of 1) to 7), wherein the adhesive resin includes an epoxy resin.
 本発明によれば、耐疲労特性に優れると共に、疲労破壊時には凝集破壊をする接着剤組成物を提供することができる。 According to the present invention, it is possible to provide an adhesive composition that is excellent in fatigue resistance and that undergoes cohesive failure at the time of fatigue failure.
比較のため、コアシェルポリマー粒子(A)のみを配合した接着剤を用いた際に接着剤層と基材との界面で亀裂が生じた界面破壊の状態を示す概念図For comparison, a conceptual diagram showing a state of interfacial fracture in which a crack occurs at the interface between the adhesive layer and the base material when an adhesive containing only the core-shell polymer particles (A) is used. 比較のため、粒径が大きいポリマー粒子(B)のみを配合した接着剤を用いた際に接着剤層の内部で亀裂が生じた凝集破壊の状態を示す概念図For comparison, a conceptual diagram showing a state of cohesive failure in which cracks are generated inside the adhesive layer when an adhesive containing only polymer particles (B) having a large particle size is used. コアシェルポリマー粒子(A)と、粒径が大きいポリマー粒子(B)を配合した接着剤を用いた際に接着剤層の内部で亀裂が生じた凝集破壊の状態を示す概念図The conceptual diagram which shows the state of the cohesive failure which the crack produced inside the adhesive bond layer when using the adhesive agent which mix | blended the core-shell polymer particle (A) and the polymer particle (B) with a large particle size 実施例および比較例の評価で使用したせん断接着試験片を製造する過程における該試験片とスペーサーを示す側面図The side view which shows this test piece and spacer in the process of manufacturing the shearing-bonding test piece used by evaluation of an Example and a comparative example 実施例および比較例の評価で使用したせん断接着試験片を示す側面図Side view showing a shear adhesion test piece used in the evaluation of Examples and Comparative Examples
 本発明の接着剤組成物は、接着性樹脂、体積平均粒子径が10~300nmのコアシェルポリマー粒子(A)、及び、体積平均粒子径が400nm~10000nmのポリマー粒子(B)を含有し、コアシェルポリマー粒子(A):ポリマー粒子(B)の重量比率が1:2~2:1であり、コアシェルポリマー粒子(A)とポリマー粒子(B)それぞれが接着剤組成物中で1次粒子として分散形態していることを特徴とする。 The adhesive composition of the present invention contains an adhesive resin, a core-shell polymer particle (A) having a volume average particle diameter of 10 to 300 nm, and a polymer particle (B) having a volume average particle diameter of 400 nm to 10000 nm, The weight ratio of polymer particles (A): polymer particles (B) is 1: 2 to 2: 1, and the core-shell polymer particles (A) and the polymer particles (B) are dispersed as primary particles in the adhesive composition. It is characterized by being formed.
 (接着性樹脂)
 本発明の接着剤組成物においてマトリックス樹脂たる接着性樹脂は、熱可塑性、硬化性を問わず、接着性を示す種々の樹脂から選択可能であり、特に限定されないが、例えば熱可塑性樹脂では、エチレン酢酸ビニル共重合体樹脂、ポリオレフィン樹脂、ポリアミド樹脂、合成ゴム、アクリル樹脂、 ポリウレタン樹脂等が挙げられ、硬化性樹脂ではフェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アクリル系反応樹脂等が挙げられる。接着性、塗布性、耐熱性などの観点からエポキシ樹脂であることが好ましい。
(Adhesive resin)
The adhesive resin which is a matrix resin in the adhesive composition of the present invention can be selected from various resins exhibiting adhesiveness regardless of thermoplasticity and curability, and is not particularly limited. Examples include vinyl acetate copolymer resin, polyolefin resin, polyamide resin, synthetic rubber, acrylic resin, polyurethane resin, etc. For curable resin, phenol resin, epoxy resin, polyurethane curable resin, urea resin, melamine resin, acrylic reaction Examples thereof include resins. From the viewpoints of adhesiveness, applicability, heat resistance, etc., an epoxy resin is preferable.
 エポキシ樹脂としては、一般にエポキシ基を2個以上有する化合物であればよく、例えば、ビスフェノールA型、ビスフェノールF型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールS型、ビスフェノールAD型、ビスフェノールAF型、ビフェニル型等のビスフェニル基を有するエポキシ化合物、ポリアルキレングリコール型、アルキレングリコール型等のエポキシ化合物、ナフタレン環を有するエポキシ化合物、フルオレン基を有するエポキシ化合物等の二官能型のグリシジルエーテル型エポキシ樹脂、フェノールノボラック型、オルソクレゾールノボラック型等のノボラック型エポキシ樹脂、多官能グリシジルエーテル、テトラフェニロールエタン型等の多官能型のグリシジルエーテル型エポキシ樹脂、ダイマー酸等の合成脂肪酸のグリシジルエステル型エポキシ樹脂、N,N,N′,N′-テトラグリシジルジアミノジフェニルメタン(TGDDM)、テトラグリシジル-m-キシリレンジアミン、トリグリシジル-p-アミノフェノール、N,N-ジグリシジルアニリン等のグリシジルアミノ基を有する芳香族エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、トリシクロデカン環を有するエポキシ化合物(例えば、ジシクロペンタジエンとm-クレゾールのようなクレゾール類またはフェノール類を重合させた後、エピクロルヒドリンを反応させる製造方法によって得られるエポキシ化合物)、トリスヒドロキシフェニルメタン型エポキシ樹脂、ソルビトール型エポキシ樹脂、ポリグリセロール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、複素環式エポキシ樹脂、ジアリールスルホン型エポキシ樹脂、ペンタエリスリトール型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂等が挙げられる。エポキシ樹脂は接着剤組成物の用途等に応じて適宜選択することができ、1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。接着剤組成物の粘度調整が容易となる点で、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が特に好ましい。 The epoxy resin may generally be a compound having two or more epoxy groups. For example, bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AD type, bisphenol Bifunctional glycidyl ether type such as epoxy compound having bisphenyl group such as AF type and biphenyl type, epoxy compound such as polyalkylene glycol type and alkylene glycol type, epoxy compound having naphthalene ring, epoxy compound having fluorene group Epoxy resin, phenol novolak type, orthocresol novolak type and other novolak type epoxy resin, polyfunctional glycidyl ether, tetraphenylol ethane type and other polyfunctional type glycidyl ether type epoxy resin, die -Glycidyl ester type epoxy resins of synthetic fatty acids such as acids, N, N, N ', N'-tetraglycidyldiaminodiphenylmethane (TGDDM), tetraglycidyl-m-xylylenediamine, triglycidyl-p-aminophenol, N, Aromatic epoxy resins having a glycidylamino group such as N-diglycidylaniline, trishydroxyphenylmethane type epoxy resins, epoxy compounds having a tricyclodecane ring (for example, cresols such as dicyclopentadiene and m-cresol, or phenols) Epoxy compounds obtained by a production method in which epichlorohydrin is reacted after polymerizing the polymer), trishydroxyphenylmethane type epoxy resin, sorbitol type epoxy resin, polyglycerol type epoxy resin, glycidyl ester Ether type epoxy resins, heterocyclic epoxy resins, diaryl sulfone type epoxy resin, pentaerythritol type epoxy resin, trimethylol propane type epoxy resin and the like. An epoxy resin can be suitably selected according to the use etc. of an adhesive composition, and only 1 type may be used and it may be used in combination of 2 or more type. Bisphenol A-type epoxy resins and bisphenol F-type epoxy resins are particularly preferable in terms of facilitating the adjustment of the viscosity of the adhesive composition.
 ビスフェノールA型エポキシ樹脂は、ビスフェノールAとエピクロルヒドリンとの重縮合化合物である。ビスフェノールA骨格は、耐熱性を高め、また、靭性を向上させて引張剪断接着強さを高め、更に、該骨格中のエーテル基は耐薬品性を向上させ、メチレン鎖は可撓性を高める。このビスフェノールA型エポキシ樹脂としては、分子量に応じて液状のものから固形のものまでを使用できるが、常温で液状から半固形状となるものが好ましく、特に液状のものが好ましい。取扱い性や組成物の塗布作業性が容易となるからである。また、そのエポキシ当量は、180~300g/eqの範囲内であるものが好適である。なお、エポキシ当量は1グラム当量のエポキシ基を含む樹脂のグラム数を意味する(単位:g/eq)。 Bisphenol A type epoxy resin is a polycondensation compound of bisphenol A and epichlorohydrin. The bisphenol A skeleton enhances heat resistance and also improves toughness and tensile shear bond strength. Furthermore, the ether group in the skeleton improves chemical resistance, and the methylene chain increases flexibility. As this bisphenol A type epoxy resin, those ranging from liquid to solid can be used depending on the molecular weight, but those which are liquid to semi-solid at room temperature are preferred, and liquids are particularly preferred. This is because the handling property and the application workability of the composition become easy. The epoxy equivalent is preferably in the range of 180 to 300 g / eq. In addition, an epoxy equivalent means the gram number of the resin containing 1 gram equivalent of an epoxy group (unit: g / eq).
 更に、エポキシ樹脂として、ウレタン変性エポキシ樹脂、ダイマー酸変性等の変性エポキシ樹脂を用いることも可能である。ウレタン変性エポキシ樹脂としては、分子中にウレタン結合と2個以上のエポキシ基とを有する樹脂であれば、その構造が特に限定されるものではないが、ウレタン結合とエポキシ基とを効率的に1分子中に導入することができる点から、イソシアネート基を有するウレタン結合含有化合物とヒドロキシ基含有エポキシ化合物とを反応させて得られる樹脂であることが好ましい。これらエポキシ樹脂はそれぞれを単独でまたは2種以上を組み合わせて使用することが可能である。 Furthermore, it is also possible to use a modified epoxy resin such as urethane-modified epoxy resin or dimer acid modification as the epoxy resin. As the urethane-modified epoxy resin, the structure is not particularly limited as long as it has a urethane bond and two or more epoxy groups in the molecule. From the point that it can be introduced into the molecule, a resin obtained by reacting a urethane bond-containing compound having an isocyanate group with a hydroxy group-containing epoxy compound is preferable. These epoxy resins can be used alone or in combination of two or more.
 本発明の接着剤組成物は、接着性樹脂の種類に応じて適切な硬化剤を含有してもよい。接着性樹脂がエポキシ樹脂である場合、これと組み合わせて使用する硬化剤は、エポキシ基と反応しうる活性基を有するものであればよい。そのような硬化剤としては、例えば、ジシアンジアミド、4,4'-ジアミノジフェニルスルホン、2-n-ヘプタデシルイミダゾール等のイミダゾール系化合物、アジピン酸ジヒドラジド、ステアリン酸ジヒドラジド、イソフタル酸ジヒドラジド、二塩基酸ヒドラジド、イソフタル酸ジヒドラジド等の有機酸ヒドラジド系化合物、N,N-ジアルキル尿素誘導体やN,N-ジアルキルチオ尿素誘導体等の尿素系化合物、テトラヒドロ無水フタル酸等の酸無水物、セミカルバジド、シアノアセトアミド、ジアミノジフェニルメタン、3級アミン、ポリアミン、イソホロンジアミン、m-フェニレンジアミン等のアミン系化合物、3-アミノ-1,2,4-トリアゾール等のアミノトリアゾール、N-アミノエチルピペラジン、メラミン類、アセトグアナミンやベンゾグアナミン等のグアナミン類、グアニジン類、ジメチルウレア類、三フッ化ホウ素錯化合物、三塩化ホウ素錯化合物、トリスジメチルアミノメチルフェノール等の液状フェノール、ポリチオール、トリフェニルホスフィン、ケチミン化合物、スルホニウム塩、オニウム塩、フェノールノボラック樹脂等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いることもできる。中でも、組成物の接着強度等の観点から、ジシアンジアミド、4,4'-ジアミノジフェニルスルホン、イソホロンジアミンが好適である。 The adhesive composition of the present invention may contain an appropriate curing agent depending on the type of adhesive resin. When the adhesive resin is an epoxy resin, the curing agent used in combination with the adhesive resin only needs to have an active group capable of reacting with an epoxy group. Examples of such curing agents include imidazole compounds such as dicyandiamide, 4,4′-diaminodiphenylsulfone, and 2-n-heptadecylimidazole, adipic acid dihydrazide, stearic acid dihydrazide, isophthalic acid dihydrazide, and dibasic acid hydrazide. Organic acid hydrazide compounds such as isophthalic acid dihydrazide, urea compounds such as N, N-dialkylurea derivatives and N, N-dialkylthiourea derivatives, acid anhydrides such as tetrahydrophthalic anhydride, semicarbazide, cyanoacetamide, diamino Amine compounds such as diphenylmethane, tertiary amine, polyamine, isophoronediamine, m-phenylenediamine, aminotriazole such as 3-amino-1,2,4-triazole, N-aminoethylpiperazine, melamines, acetog Guanamines such as anamin and benzoguanamine, guanidines, dimethylureas, boron trifluoride complex compounds, boron trichloride complex compounds, liquid phenols such as trisdimethylaminomethylphenol, polythiols, triphenylphosphine, ketimine compounds, sulfonium salts, Examples thereof include onium salts and phenol novolac resins. These may be used alone or in combination of two or more. Of these, dicyandiamide, 4,4′-diaminodiphenylsulfone, and isophoronediamine are preferable from the viewpoint of the adhesive strength of the composition.
 硬化剤を配合する場合、その配合量は、接着性樹脂100重量部に対して、5重量部~30重量部の範囲内であることが好ましい。硬化剤の配合量が5重量部以上であると、接着剤組成物の硬化速度が速く、かつ充分に硬化反応が進行して接着強度等の物性が向上するため好ましく、一方、30重量部以下であると、接着剤組成物に要求される所望の物性が得られ易くなる。好ましい硬化剤の配合量は7重量部~30重量部の範囲内である。 When the curing agent is blended, the blending amount is preferably in the range of 5 to 30 parts by weight with respect to 100 parts by weight of the adhesive resin. When the blending amount of the curing agent is 5 parts by weight or more, the curing rate of the adhesive composition is high, and the curing reaction proceeds sufficiently to improve physical properties such as adhesive strength. On the other hand, 30 parts by weight or less. When it is, it becomes easy to obtain the desired physical property requested | required of an adhesive composition. A preferable amount of the curing agent is in the range of 7 to 30 parts by weight.
 (コアシェルポリマー粒子(A))
 本発明の接着剤組成物は、ポリマー粒子(B)と比較して粒径が小さいコアシェルポリマー粒子(A)を含有する。これを配合することにより、接着剤組成物の靱性を高めて、優れた耐疲労特性を達成することができる。
(Core-shell polymer particles (A))
The adhesive composition of the present invention contains core-shell polymer particles (A) having a smaller particle size compared to the polymer particles (B). By mix | blending this, the toughness of adhesive composition can be improved and the outstanding fatigue-resistant characteristic can be achieved.
 コアシェルポリマー粒子(A)の体積平均粒子径は10nm~300nmであり、30nm~250nmであることがより好ましく、60nm~200nmであることがさらに好ましく、80nm~150nmであることが最も好ましい。コアシェルポリマー粒子(A)の体積平均粒子径が10nm未満、または300nmよりも大きい場合は、コアシェルポリマー粒子(A)による接着剤組成物の高靭化効果が小さくなる。 The volume average particle size of the core-shell polymer particles (A) is 10 nm to 300 nm, more preferably 30 nm to 250 nm, still more preferably 60 nm to 200 nm, and most preferably 80 nm to 150 nm. When the volume average particle diameter of the core-shell polymer particles (A) is less than 10 nm or larger than 300 nm, the effect of toughening the adhesive composition by the core-shell polymer particles (A) is reduced.
 本発明において、コアシェルポリマー粒子(A)の体積平均粒子径(Mv)は、水性ラテックスまたは樹脂組成物中に分散している状態で、マイクロトラックUPA150(日機装株式会社製)を用いて測定される値である。水性ラテックス中の粒子の体積平均粒子径を測定する場合には、水性ラテックスを脱イオン水で希釈してSignal Levelが0.6~0.8の範囲内になるように試料濃度を調整し、水の屈折率、および測定対象のポリマー粒子の屈折率を入力し、計測時間を600秒として行った。樹脂組成物中の粒子の体積平均粒子径を測定する場合には、樹脂組成物をメチルエチルケトンで希釈してSignal Levelが0.6~0.8の範囲内になるように試料濃度を調整し、メチルエチルケトンの屈折率、および測定対象のポリマー粒子の屈折率を入力し、計測時間を600秒として行った。なお、以上の体積平均粒子径の測定に関する記載は、ポリマー粒子(B)の体積平均粒子径の測定にも適用する。 In the present invention, the volume average particle size (Mv) of the core-shell polymer particles (A) is measured using a Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.) while being dispersed in an aqueous latex or resin composition. Value. When measuring the volume average particle size of the particles in the aqueous latex, the aqueous latex is diluted with deionized water and the sample concentration is adjusted so that the Signal Level is in the range of 0.6 to 0.8. The refractive index of water and the refractive index of the polymer particles to be measured were input, and the measurement time was 600 seconds. When measuring the volume average particle diameter of the particles in the resin composition, the resin composition is diluted with methyl ethyl ketone and the sample concentration is adjusted so that the signal level is in the range of 0.6 to 0.8. The refractive index of methyl ethyl ketone and the refractive index of the polymer particles to be measured were input, and the measurement time was 600 seconds. In addition, the description regarding the measurement of the above volume average particle diameter is applied also to the measurement of the volume average particle diameter of a polymer particle (B).
 コアシェルポリマー粒子(A)は、コア層となる架橋重合体に対し、グラフト共重合可能な単量体(シェル形成用単量体)をグラフト重合してシェル層を形成したコアシェルポリマー粒子であり、内部に存在する架橋重合体からなるコア層と、コア層の表面にグラフト重合して架橋重合体の周囲又は一部を覆っている少なくとも1つのシェル層とを有する構造を有する。本発明の接着剤組成物の粘度を低く抑え取扱し易くする点、接着剤組成物中でコアシェルポリマー粒子を安定に分散させる点、及び、接着剤組成物の高靭化効果を高める点から、コア層とシェル層の重量比率は、コア層/シェル層(各層の重合体を形成する単量体の重量比率)の値で、50/50~99/1の範囲であることが好ましく、60/40~95/5であることがより好ましく、70/30~90/10であることがさらに好ましい。 The core-shell polymer particle (A) is a core-shell polymer particle in which a shell layer is formed by graft polymerization of a graft copolymerizable monomer (a monomer for shell formation) to a crosslinked polymer to be a core layer, It has a structure having a core layer made of a cross-linked polymer existing inside and at least one shell layer covering the periphery or part of the cross-linked polymer by graft polymerization on the surface of the core layer. From the point that the viscosity of the adhesive composition of the present invention is kept low and easy to handle, the core-shell polymer particles are stably dispersed in the adhesive composition, and the toughening effect of the adhesive composition is enhanced. The weight ratio of the core layer to the shell layer is preferably in the range of 50/50 to 99/1 in terms of the value of core layer / shell layer (weight ratio of monomers forming the polymer of each layer) / 40 to 95/5 is more preferable, and 70/30 to 90/10 is still more preferable.
 前記コア層は架橋された重合体から構成され、溶剤に対して実質的に溶解しないものであることが好ましい。よって、コア層のゲル分は好ましくは60重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上、特に好ましくは95重量%以上である。 The core layer is preferably composed of a crosslinked polymer and does not substantially dissolve in the solvent. Therefore, the gel content of the core layer is preferably 60% by weight or more, more preferably 80% by weight or more, further preferably 90% by weight or more, and particularly preferably 95% by weight or more.
 コア層は、(i)ジエン系単量体及び(メタ)アクリル酸エステル系単量体からなる群より選ばれる1種以上の単量体50重量%以上、及び、他の共重合可能なビニル単量体50重量%未満から構成されるゴム弾性体、(ii)ポリシロキサンゴム系弾性体、(iii)芳香族ビニル架橋体、または(iv)前記(i)~(iii)のうち2種以上の混合物からなることが好ましい。また、前記他の共重合可能なビニル単量体が、芳香族ビニル化合物、シアン化ビニル化合物、不飽和カルボン酸誘導体、(メタ)アクリル酸アミド誘導体、及び、マレイミド誘導体からなる群より選ばれる1種以上であることが好ましい。なお、本発明において(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味する。 The core layer comprises (i) 50% by weight or more of at least one monomer selected from the group consisting of diene monomers and (meth) acrylate monomers, and other copolymerizable vinyls. Rubber elastic body composed of less than 50% by weight of monomer, (ii) polysiloxane rubber-based elastic body, (iii) cross-linked aromatic vinyl, or (iv) two kinds of (i) to (iii) above It is preferable to consist of a mixture of the above. The other copolymerizable vinyl monomer is selected from the group consisting of an aromatic vinyl compound, a vinyl cyanide compound, an unsaturated carboxylic acid derivative, a (meth) acrylic acid amide derivative, and a maleimide derivative. It is preferable that it is a seed or more. In the present invention, (meth) acryl means acryl and / or methacryl.
 前記ジエン系単量体としては、例えばブタジエン、イソプレン、クロロプレン等を挙げることができるが、ブタジエンが特に好ましい。前記(メタ)アクリル酸エステル系単量体としては、例えばアクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸ラウリルなどが挙げられるが、アクリル酸ブチルとアクリル酸2-エチルヘキシルが特に好ましい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the diene monomer include butadiene, isoprene, chloroprene and the like, and butadiene is particularly preferable. Examples of the (meth) acrylic acid ester monomer include butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate, and the like, and butyl acrylate and 2-ethylhexyl acrylate are particularly preferable. These may be used alone or in combination of two or more.
 ジエン系単量体および(メタ)アクリル酸エステル系単量体からなる群より選ばれる1種以上の単量体の使用量は、コア層全体の重量に対して好ましくは50重量%以上、より好ましくは60重量%以上である。該単量体の使用量が50重量%未満の場合には、コアシェルポリマー粒子により発揮される高靭化効果が低下する場合がある。 The amount of one or more monomers selected from the group consisting of diene monomers and (meth) acrylic acid ester monomers is preferably 50% by weight or more based on the total weight of the core layer. Preferably it is 60 weight% or more. When the amount of the monomer used is less than 50% by weight, the toughening effect exhibited by the core-shell polymer particles may be reduced.
 前記コア層は、ジエン系単量体および(メタ)アクリル酸エステル系単量体からなる群より選ばれる1種以上の単量体が重合してなる単独重合体または共重合体であってよいが、ジエン系単量体および/または(メタ)アクリル酸エステル系単量体と、これらと共重合可能なビニル単量体との共重合体であってもよい。そのような共重合可能なビニル単量体としては、芳香族ビニル化合物、シアン化ビニル化合物、不飽和カルボン酸誘導体、(メタ)アクリル酸アミド誘導体、及び、マレイミド誘導体からなる群より選ばれる1種以上の単量体が挙げられる。芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、ビニルナフタレン等が挙げられ、シアン化ビニル化合物としては、例えば(メタ)アクリロニトリル、置換アクリロニトリル等が挙げられる。不飽和カルボン酸誘導体としては、例えば(メタ)アクリル酸、イタコン酸、クロトン酸、無水マレイン酸等が挙げられる。(メタ)アクリルアミド誘導体としては、(メタ)アクリルアミド(N-置換物を含む)等が挙げられる。マレイミド誘導体としては、マレイン酸イミド(N-置換物を含む)等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの共重合可能なビニル単量体の使用量は、コア層全体の重量に対して、好ましくは50重量%未満、より好ましくは40重量%未満である。 The core layer may be a homopolymer or a copolymer obtained by polymerizing one or more monomers selected from the group consisting of a diene monomer and a (meth) acrylic acid ester monomer. However, it may be a copolymer of a diene monomer and / or a (meth) acrylate monomer and a vinyl monomer copolymerizable therewith. As such a copolymerizable vinyl monomer, one kind selected from the group consisting of aromatic vinyl compounds, vinyl cyanide compounds, unsaturated carboxylic acid derivatives, (meth) acrylic acid amide derivatives, and maleimide derivatives. The above monomers are mentioned. Examples of the aromatic vinyl compound include styrene, α-methylstyrene, and vinyl naphthalene. Examples of the vinyl cyanide compound include (meth) acrylonitrile and substituted acrylonitrile. Examples of the unsaturated carboxylic acid derivative include (meth) acrylic acid, itaconic acid, crotonic acid, maleic anhydride and the like. Examples of the (meth) acrylamide derivative include (meth) acrylamide (including N-substituted product). Examples of the maleimide derivative include maleic imide (including N-substituted product). These may be used alone or in combination of two or more. The amount of these copolymerizable vinyl monomers used is preferably less than 50% by weight, more preferably less than 40% by weight, based on the weight of the entire core layer.
 前記コア層は芳香族ビニル架橋体であってもよい。該架橋体としては、芳香族ビニル化合物と架橋性単量体の共重合体を挙げることができる。芳香族ビニル化合物としては例えば、スチレン、2-ビニルナフタレン等の無置換ビニル芳香族化合物類;α-メチルスチレン等の置換ビニル芳香族化合物類;3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6-トリメチルスチレン等の環アルキル化ビニル芳香族化合物類;4-メトキシスチレン、4-エトキシスチレン等の環アルコキシル化ビニル芳香族化合物類;2-クロロスチレン、3-クロロスチレン等の環ハロゲン化ビニル芳香族化合物類;4-アセトキシスチレン等の環エステル置換ビニル芳香族化合物類;4-ヒトロキシスチレン等の環ヒドロキシル化ビニル芳香族化合物類が挙げられる。コア層に芳香族ビニル架橋体を用いたコアシェルポリマー粒子を含む接着剤組成物は、剛性が低下することなく高靭化されるため好ましい。 The core layer may be a cross-linked aromatic vinyl. Examples of the crosslinked body include a copolymer of an aromatic vinyl compound and a crosslinking monomer. Examples of the aromatic vinyl compound include unsubstituted vinyl aromatic compounds such as styrene and 2-vinylnaphthalene; substituted vinyl aromatic compounds such as α-methylstyrene; 3-methylstyrene, 4-methylstyrene, 2,4 -Ring alkylated vinyl aromatic compounds such as dimethyl styrene, 2,5-dimethyl styrene, 3,5-dimethyl styrene, 2,4,6-trimethyl styrene; ring alkoxyl such as 4-methoxy styrene and 4-ethoxy styrene Vinyl aromatic compounds; ring halogenated aromatic compounds such as 2-chlorostyrene and 3-chlorostyrene; ring ester-substituted vinyl aromatic compounds such as 4-acetoxystyrene; and rings such as 4-humanoxystyrene Examples include hydroxylated vinyl aromatics. An adhesive composition containing core-shell polymer particles using an aromatic vinyl cross-linked body in the core layer is preferable because it can be toughened without a decrease in rigidity.
 コア層が(i)ゴム弾性体または(iii)芳香族ビニル架橋体を含む場合、該コア層を構成する重合体は、架橋度を調節するために、架橋性単量体を共重合したものが好ましい。架橋性単量体としては、例えば、ジビニルベンゼン、ブタンジオールジ(メタ)アクリレート、(イソ)シアヌル酸トリアリル、(メタ)アクリル酸アリル、イタコン酸ジアリル、フタル酸ジアリル等が挙げられる。架橋性単量体の使用量はコアシェルポリマー粒子全体の重量に対して0.2~7重量%、好ましくは0.5~5重量%、更に好ましくは1~3重量%である。使用量が7重量%を超えると、コアシェルポリマー粒子が有する高靭化効果や応力緩和効果が低下する場合がある。 When the core layer includes (i) a rubber elastic body or (iii) an aromatic vinyl crosslinked body, the polymer constituting the core layer is obtained by copolymerizing a crosslinking monomer in order to adjust the degree of crosslinking. Is preferred. Examples of the crosslinkable monomer include divinylbenzene, butanediol di (meth) acrylate, triallyl (iso) cyanurate, allyl (meth) acrylate, diallyl itaconate, diallyl phthalate, and the like. The amount of the crosslinkable monomer used is 0.2 to 7% by weight, preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, based on the total weight of the core-shell polymer particles. If the amount used exceeds 7% by weight, the toughening effect and stress relaxation effect of the core-shell polymer particles may be reduced.
 コア層は、ポリシロキサンゴム系弾性体を含むものであってもよい。ポリシロキサンゴム系弾性体としては、例えばジメチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ等の、アルキルまたはアリール2置換シリルオキシ単位から構成されるポリシロキサンゴムを使用できる。また、前記ポリシロキサンゴム系弾性体は、必要に応じて、重合時に多官能性のアルコキシシラン化合物を一部併用するか、ビニル反応性基を持ったシラン化合物をラジカル反応させること等により、架橋構造を導入したものがより好ましい。 The core layer may include a polysiloxane rubber-based elastic body. As the polysiloxane rubber-based elastic body, for example, a polysiloxane rubber composed of alkyl or aryl disubstituted silyloxy units such as dimethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy and the like can be used. In addition, the polysiloxane rubber-based elastic body may be crosslinked by using a polyfunctional alkoxysilane compound partly at the time of polymerization, or by radically reacting a silane compound having a vinyl reactive group, if necessary. What introduced the structure is more preferable.
 コア層のガラス転移温度(以下、単に「Tg」と称する場合がある)は、得られる接着剤組成物の靱性や応力緩和効果を高める為に、0℃以下であることが好ましく、-20℃以下がより好ましく、-40℃以下が更に好ましく、-60℃以下が特に好ましい。 The glass transition temperature of the core layer (hereinafter sometimes simply referred to as “Tg”) is preferably 0 ° C. or lower in order to enhance the toughness and stress relaxation effect of the obtained adhesive composition, and −20 ° C. The following is more preferable, −40 ° C. or lower is further preferable, and −60 ° C. or lower is particularly preferable.
 コアシェルポリマー粒子におけるシェル層を構成するポリマーは、(メタ)アクリル酸エステル系単量体、芳香族ビニル系単量体、シアン化ビニル系単量体、不飽和カルボン酸誘導体、(メタ)アクリルアミド誘導体、及び、マレイミド誘導体からなる群より選ばれる1種以上を重合して得られる(共)重合体が好ましい。 The polymer constituting the shell layer in the core-shell polymer particle is a (meth) acrylic acid ester monomer, aromatic vinyl monomer, vinyl cyanide monomer, unsaturated carboxylic acid derivative, (meth) acrylamide derivative And (co) polymers obtained by polymerizing one or more selected from the group consisting of maleimide derivatives.
 特にコアシェルポリマー粒子(A)のシェル層は、接着剤組成物の硬化時にコアシェルポリマー粒子(A)同士が再凝集して分散状態が悪化することを効果的に抑制することができるため、反応性基を有することが好ましい。反応性基としては、例えば、エポキシ基、カルボキシル基、水酸基、アミノ基、及び炭素-炭素二重結合からなる群より選択される少なくとも1つの基が好ましい。反応基を有するシェル層は、(メタ)アクリル酸エステル系単量体、芳香族ビニル系単量体、シアン化ビニル系単量体、不飽和カルボン酸誘導体、(メタ)アクリルアミド誘導体、及び/またはマレイミド誘導体と、前述のような反応性基を有する1種類以上のビニル単量体を共重合して得られる共重合体から構成されることが好ましい。なかでも、コアシェルポリマー粒子(A)のシェル層が有する反応性基はエポキシ基を含むことが好ましい。 In particular, the shell layer of the core-shell polymer particles (A) can effectively prevent the core-shell polymer particles (A) from reaggregating and deteriorating the dispersion state when the adhesive composition is cured. It preferably has a group. As the reactive group, for example, at least one group selected from the group consisting of an epoxy group, a carboxyl group, a hydroxyl group, an amino group, and a carbon-carbon double bond is preferable. The shell layer having a reactive group is a (meth) acrylic acid ester monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, an unsaturated carboxylic acid derivative, a (meth) acrylamide derivative, and / or It is preferably composed of a copolymer obtained by copolymerizing a maleimide derivative and one or more kinds of vinyl monomers having a reactive group as described above. Especially, it is preferable that the reactive group which the shell layer of a core shell polymer particle (A) has includes an epoxy group.
 前記(メタ)アクリル酸エステル系単量体としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどの(メタ)アクリル酸アルキルエステルが挙げられる。芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン等のアルキル置換スチレン、ブロモスチレン、クロロスチレン等のハロゲン置換スチレン類等が挙げられる。シアン化ビニル系単量体としては、(メタ)アクリロニトリル、置換(メタ)アクリロニトリル等が挙げられる。不飽和カルボン酸誘導体としては、例えば(メタ)アクリル酸、イタコン酸、クロトン酸、無水マレイン酸等が挙げられる。(メタ)アクリルアミド誘導体としては、(メタ)アクリルアミド(N-置換物を含む)等が挙げられる。マレイミド誘導体としては、マレイン酸イミド(N-置換物を含む)等が挙げられる。反応性基を有する単量体としては、例えば、反応性側鎖を有する(メタ)アクリル酸エステル類として、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸グリシジル等;反応性基を有するビニルエーテルとして、グリシジルビニルエーテル、アリルビニルエーテル等が挙げられる。 Examples of the (meth) acrylic acid ester monomers include (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Examples include acid alkyl esters. Examples of aromatic vinyl monomers include alkyl-substituted styrenes such as styrene and α-methylstyrene, and halogen-substituted styrenes such as bromostyrene and chlorostyrene. Examples of the vinyl cyanide monomer include (meth) acrylonitrile and substituted (meth) acrylonitrile. Examples of the unsaturated carboxylic acid derivative include (meth) acrylic acid, itaconic acid, crotonic acid, maleic anhydride and the like. Examples of the (meth) acrylamide derivative include (meth) acrylamide (including N-substituted product). Examples of the maleimide derivative include maleic imide (including N-substituted product). Examples of the monomer having a reactive group include (meth) acrylic acid esters having a reactive side chain such as 2-hydroxyethyl (meth) acrylate, 2-aminoethyl (meth) acrylate, (meth ) Glycidyl acrylate, etc .; Examples of the vinyl ether having a reactive group include glycidyl vinyl ether and allyl vinyl ether.
 本発明では、コアシェルポリマー粒子(A)のシェル層を、例えば、芳香族ビニル系単量体(特にスチレン)0~50質量%(好ましくは5~40質量%)、シアン化ビニル系単量体(特にアクリロニトリル)0~50質量%(好ましくは1~30質量%、より好ましくは10~25質量%)、(メタ)アクリル酸エステル系単量体(特にメタクリル酸メチル)0~50質量%(好ましくは5~45質量%)、反応性基を有する単量体(特にメタクリル酸グリシジル)0~50質量%(好ましくは5~30質量%、より好ましくは10~25質量%)を組み合わせたシェル層形成用モノマー(合計100質量%)のポリマーから構成することが好ましい。 In the present invention, the shell layer of the core-shell polymer particles (A) is made of, for example, an aromatic vinyl monomer (especially styrene) 0 to 50% by mass (preferably 5 to 40% by mass), a vinyl cyanide monomer. (Especially acrylonitrile) 0-50% by mass (preferably 1-30% by mass, more preferably 10-25% by mass), (meth) acrylic acid ester monomer (especially methyl methacrylate) 0-50% by mass ( Preferably 5 to 45% by mass) and a monomer having a reactive group (particularly glycidyl methacrylate) 0 to 50% by mass (preferably 5 to 30% by mass, more preferably 10 to 25% by mass). It is preferable to comprise a layer-forming monomer (100% by mass in total).
 コアシェルポリマー粒子の製造方法は特に制限されず、周知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などにより製造することができる。この中でも特に、多段乳化重合による製造方法が好適である。乳化重合で使用する乳化(分散)剤としては、具体的には、ジオクチルスルホコハク酸やドデシルベンゼンスルホン酸等のアルキルまたはアリールスルホン酸、アルキルまたはアリールエーテルスルホン酸、ドデシル硫酸等のアルキルまたはアリール硫酸、アルキルまたはアリールエーテル硫酸、アルキルまたはアリール置換燐酸、アルキルまたはアリールエーテル置換燐酸、ドデシルザルコシン酸等のN-アルキルまたはアリールザルコシン酸、オレイン酸やステアリン酸等のアルキルまたはアリールカルボン酸、アルキルまたはアリールエーテルカルボン酸等の、各種の酸類のアルカリ金属塩またはアンモニウム塩;アルキルまたはアリール置換ポリエチレングリコール等の非イオン性乳化剤または分散剤;ポリビニルアルコール、アルキル置換セルロース、ポリビニルピロリドン、ポリアクリル酸誘導体等の分散剤等が挙げられる。これらは1種類または2種類以上を適宜組み合わせて使用できる。 The production method of the core-shell polymer particles is not particularly limited, and can be produced by a known method such as emulsion polymerization, suspension polymerization, microsuspension polymerization, and the like. Among these, the production method by multistage emulsion polymerization is particularly preferable. Specific examples of emulsifying (dispersing) agents used in emulsion polymerization include alkyl or aryl sulfonic acids such as dioctyl sulfosuccinic acid and dodecylbenzene sulfonic acid, alkyl or aryl ether sulfonic acids, alkyl or aryl sulfuric acids such as dodecyl sulfuric acid, Alkyl or aryl ether sulfuric acid, alkyl or aryl substituted phosphoric acid, alkyl or aryl ether substituted phosphoric acid, N-alkyl or aryl sarcosine acid such as dodecyl sarcosine acid, alkyl or aryl carboxylic acid such as oleic acid or stearic acid, alkyl or aryl Alkali metal salts or ammonium salts of various acids such as ether carboxylic acids; Nonionic emulsifiers or dispersants such as alkyl or aryl substituted polyethylene glycols; Polyvinyl alcohol, Al Le substituted cellulose, polyvinyl pyrrolidone, dispersants such as polyacrylic acid derivatives. These can be used alone or in combination of two or more.
 乳化剤は、重合安定性の観点から、好ましくはアニオン性乳化剤であり、より好ましくはアルカリ金属塩のアニオン性乳化剤、さらに好ましくはナトリウム塩及び/又はカリウム塩のアニオン性乳化剤である。 The emulsifier is preferably an anionic emulsifier from the viewpoint of polymerization stability, more preferably an anionic emulsifier of an alkali metal salt, and still more preferably an anionic emulsifier of a sodium salt and / or a potassium salt.
 これら乳化(分散)剤は、コアシェルポリマー粒子を含む水性ラテックスの作製過程において分散安定性に支障を来さない範囲でできる限り少量を使用してもよい。あるいは、本発明の接着剤組成物を作製する過程において、製造される接着剤組成物の物性に影響を及ぼさない程度の残存量まで抽出除去されてもよい。この為、乳化(分散)剤は、水溶性を有していることがより好ましい。 These emulsifying (dispersing) agents may be used as little as possible within the range that does not hinder the dispersion stability in the preparation process of the aqueous latex containing the core-shell polymer particles. Alternatively, in the process of producing the adhesive composition of the present invention, it may be extracted and removed to a residual amount that does not affect the physical properties of the produced adhesive composition. For this reason, it is more preferable that the emulsifying (dispersing) agent has water solubility.
 本発明の接着剤組成物において、コアシェルポリマー粒子(A)は一次粒子の状態で分散している。一次粒子の状態で分散していることは、例えば、接着剤組成物中で測定される該粒子の体積平均粒子径(Mv)/個数平均粒子径(Mn)の値が3以下であることによって確認することができる。この値は好ましくは2.5以下、より好ましくは2以下、さらに好ましくは1.5以下である。接着剤組成物中で測定される粒子の体積平均粒子径(Mv)/個数平均粒子径(Mn)の値が3を超えている場合、その接着剤組成物には二次凝集体が多く含まれ、高い耐疲労特性の発現が困難になるなど、接着剤の物性が安定しないことになる。なお、体積平均粒子径(Mv)/個数平均粒子径(Mn)の値は、マイクロトラックUPA(日機装株式会社製)を用いて、上記の記載に準じて接着剤組成物中における粒子の体積平均粒子径(Mv)と個数平均粒子径(Mn)をそれぞれ測定し、体積平均粒子径(Mv)を個数平均粒子径(Mn)で除することによって求めることができる。 In the adhesive composition of the present invention, the core-shell polymer particles (A) are dispersed in the form of primary particles. The dispersion in the state of primary particles means that, for example, the value of volume average particle diameter (Mv) / number average particle diameter (Mn) of the particles measured in the adhesive composition is 3 or less. Can be confirmed. This value is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less. When the volume average particle diameter (Mv) / number average particle diameter (Mn) of the particles measured in the adhesive composition exceeds 3, the adhesive composition contains a lot of secondary aggregates. As a result, the physical properties of the adhesive are not stable, for example, it is difficult to develop high fatigue resistance. In addition, the value of volume average particle diameter (Mv) / number average particle diameter (Mn) is the volume average of particles in the adhesive composition according to the above description using Microtrac UPA (manufactured by Nikkiso Co., Ltd.). The particle diameter (Mv) and the number average particle diameter (Mn) are measured, respectively, and the volume average particle diameter (Mv) is divided by the number average particle diameter (Mn).
 本発明の接着剤組成物におけるコアシェルポリマー粒子(A)の含有率は、好ましくは接着剤組成物100重量部に対し0.5~20重量部であり、より好ましくは3~15重量部であり、さらに好ましくは5~10重量部である。コアシェルポリマー粒子(A)の含有率が0.5重量部未満である場合は、コアシェルポリマー粒子(A)による接着剤組成物の高靭化効果が小さくなり、20重量部より大きい場合は、疲労破壊時に亀裂が接着剤層と基材との界面で伝播し、耐疲労特性が低下する場合がある。 The content of the core-shell polymer particles (A) in the adhesive composition of the present invention is preferably 0.5 to 20 parts by weight, more preferably 3 to 15 parts by weight with respect to 100 parts by weight of the adhesive composition. More preferably, it is 5 to 10 parts by weight. When the content of the core-shell polymer particles (A) is less than 0.5 parts by weight, the toughening effect of the adhesive composition by the core-shell polymer particles (A) is reduced. At the time of fracture, cracks propagate at the interface between the adhesive layer and the substrate, and the fatigue resistance may be reduced.
 (ポリマー粒子(B))
 本発明の接着剤組成物では、コアシェルポリマー粒子(A)と共に、これと比較して粒径が大きいポリマー粒子(B)を含有する。ポリマー粒子(B)は接着剤組成物中および硬化後にも実質的にその形状が変化しない粒子であり、例えばポリマーアロイにより生成する海島構造の島部のように、配合比率や硬化条件で変化する類の配合物はポリマー粒子(B)に該当しない。また、ポリマー粒子(B)は、中空の構造を有しないポリマー粒子(即ち、粒子の内部に液体及び/又は気体を含む空洞を有しないポリマー粒子)であることが好ましい。このようなポリマー粒子を使用すると、各成分を配合・混合する時に衝撃を受けても粒子が破壊されにくく、一次粒子として分散させることが容易になるためである。以上のようなポリマー粒子(B)を配合することにより、粒子径の制御や粒子の含有率の制御が容易となり、接着剤の物性が安定する。
(Polymer particles (B))
In the adhesive composition of this invention, the polymer particle (B) with a larger particle size is contained with a core-shell polymer particle (A) compared with this. The polymer particle (B) is a particle whose shape does not substantially change in the adhesive composition and after curing, and changes depending on the blending ratio and curing conditions, for example, an island part of a sea-island structure generated by polymer alloy. Such a formulation does not correspond to the polymer particles (B). The polymer particles (B) are preferably polymer particles that do not have a hollow structure (that is, polymer particles that do not have cavities containing liquid and / or gas inside the particles). When such polymer particles are used, the particles are not easily destroyed even when subjected to an impact when the components are blended and mixed, and it is easy to disperse as primary particles. By blending the polymer particles (B) as described above, control of the particle diameter and control of the content of the particles are facilitated, and the physical properties of the adhesive are stabilized.
 ポリマー粒子(B)を配合することにより、接着剤層と基材との界面と比較して、図3で示すように接着剤層内部のマトリックス樹脂とポリマー粒子(B)の界面において剥離が生じやすくなるため、接着剤層と基材との界面ではなく、接着剤層中に亀裂を誘起しやすくなる。その結果、疲労破壊時には界面破壊よりも凝集破壊が進行しやすくなる。しかし、図2に示すようにポリマー粒子(B)のみの配合では、接着剤層の靱性が低く、優れた耐疲労特性を達成できない。粒径が小さなコアシェルポリマー粒子(A)と、粒径が大きなポリマー粒子(B)の双方を配合することにより、相乗的に、耐疲労特性が向上する効果を達成することができる。 By blending the polymer particles (B), peeling occurs at the interface between the matrix resin and the polymer particles (B) inside the adhesive layer as shown in FIG. 3 as compared with the interface between the adhesive layer and the substrate. Since it becomes easy, it becomes easy to induce a crack not in the interface of an adhesive bond layer and a base material but in an adhesive bond layer. As a result, cohesive failure is more likely to proceed than interface failure during fatigue failure. However, as shown in FIG. 2, the blending of only the polymer particles (B) has a low toughness of the adhesive layer and cannot achieve excellent fatigue resistance. By blending both the core-shell polymer particles (A) having a small particle size and the polymer particles (B) having a large particle size, an effect of synergistically improving the fatigue resistance can be achieved.
 ポリマー粒子(B)の体積平均粒子径は400nm~10000nmであり、500nm~8000nmであることがより好ましく、1000nm~6000nmであることがさらに好ましく、2000nm~4000nmであることが最も好ましい。ポリマー粒子(B)の体積平均粒子径が400nm未満の場合は、マトリックス樹脂と該ポリマー粒子の界面での剥離が生じにくいため、接着剤層中に亀裂を誘起する効果が小さくなる。また、ポリマー粒子(B)の体積平均粒子径が10000nmよりも大きい場合は、接着剤層中に亀裂を誘起するためにポリマー粒子(B)の含有量を増やす必要が生じ、高い耐疲労特性の発現が困難になる。ポリマー粒子(B)の体積平均粒子径は、上述したコアシェルポリマー粒子(A)の体積平均粒子径と同様に測定することができる。 The volume average particle diameter of the polymer particles (B) is 400 nm to 10000 nm, more preferably 500 nm to 8000 nm, still more preferably 1000 nm to 6000 nm, and most preferably 2000 nm to 4000 nm. When the volume average particle diameter of the polymer particles (B) is less than 400 nm, peeling at the interface between the matrix resin and the polymer particles is difficult to occur, so that the effect of inducing cracks in the adhesive layer is reduced. Moreover, when the volume average particle diameter of the polymer particles (B) is larger than 10000 nm, it is necessary to increase the content of the polymer particles (B) in order to induce cracks in the adhesive layer. Expression becomes difficult. The volume average particle diameter of the polymer particles (B) can be measured in the same manner as the volume average particle diameter of the core-shell polymer particles (A) described above.
 本発明に係るポリマー粒子(B)は、長期使用時の繰り返し応力を緩和するのに好適であることから、ポリマーから構成される粒子である。粒子の形状は特に限定されず、球状、平板状などいかなる形状の粒子であってもよい。ポリマー粒子(B)を構成するポリマーの種類としては特に限定されず、例えば、ゴム類、アクリル樹脂、ポリオレフィン、ポリスチレン、ウレタン、ポリエステル、ポリアミド、ポリイミド、ポリシロキサン、フッ素含有樹脂、コアシェルポリマーなどが挙げられる。マトリックス樹脂とポリマー粒子(B)との界面での剥離を確保できるような設計が容易であることから、ポリマー粒子(B)は、ポリオレフィン、ポリシロキサン、フッ素含有樹脂、コアシェルポリマー粒子であることが好ましい。ポリオレフィンの具体例としては、例えばポリエチレン、ポリプロピレンが挙げられ、フッ素含有樹脂の具体例としては、例えばポリテトラフルオロエチレンが挙げられる。 The polymer particle (B) according to the present invention is a particle composed of a polymer because it is suitable for relieving repeated stress during long-term use. The shape of the particles is not particularly limited, and may be any shape such as a spherical shape or a flat plate shape. The type of polymer constituting the polymer particles (B) is not particularly limited, and examples thereof include rubbers, acrylic resins, polyolefins, polystyrenes, urethanes, polyesters, polyamides, polyimides, polysiloxanes, fluorine-containing resins, and core-shell polymers. It is done. The polymer particle (B) is a polyolefin, polysiloxane, fluorine-containing resin, or core-shell polymer particle because it is easy to design to ensure separation at the interface between the matrix resin and the polymer particle (B). preferable. Specific examples of the polyolefin include polyethylene and polypropylene, and specific examples of the fluorine-containing resin include polytetrafluoroethylene.
 ポリマー粒子(B)の好ましい態様であるコアシェルポリマー粒子の詳細は、コアシェルポリマー粒子(A)の詳細と同様であるため、記載を省略する。しかし、ポリマー粒子(B)は疲労破壊時にマトリックス樹脂と剥離することが発明の効果の観点から好ましいため、ポリマー粒子(B)の好ましい態様であるコアシェルポリマー粒子においては、シェル層が、マトリックス樹脂と反応する反応性基を有しないか、または、有していてもその量が少ないことが好ましい。具体的には、コアシェルポリマー粒子のシェル層を構成するポリマーに含まれる、反応性基を有する単量体単位の含有量は、ポリマー粒子(B)100重量部に対し0~5重量部であることが好ましく、0~4重量部であることがより好ましく、0~3重量部であることがさらに好ましく、0~2重量部であることが最も好ましい。前記反応性基、及び該反応性基を有する単量体は、上記と同様である。 Details of the core-shell polymer particles, which is a preferred embodiment of the polymer particles (B), are the same as the details of the core-shell polymer particles (A), and thus description thereof is omitted. However, since it is preferable from the viewpoint of the effect of the invention that the polymer particles (B) are peeled from the matrix resin at the time of fatigue failure, in the core-shell polymer particles that are a preferred embodiment of the polymer particles (B), the shell layer is separated from the matrix resin. It is preferable that there is no reactive group that reacts, or the amount is small even if it has. Specifically, the content of the monomer unit having a reactive group contained in the polymer constituting the shell layer of the core-shell polymer particle is 0 to 5 parts by weight with respect to 100 parts by weight of the polymer particle (B). It is preferably 0 to 4 parts by weight, more preferably 0 to 3 parts by weight, and most preferably 0 to 2 parts by weight. The reactive group and the monomer having the reactive group are the same as described above.
 本発明の接着剤組成物において、ポリマー粒子(B)は、コアシェルポリマー粒子(A)と同様、一次粒子の状態で分散している。一次分散していることは、コアシェルポリマー粒子(A)の場合と同様、接着剤組成物中で測定される該粒子の体積平均粒子径(Mv)/個数平均粒子径(Mn)の値が3以下であることによって確認することができる。体積平均粒子径(Mv)/個数平均粒子径(Mn)の好ましい範囲や算出方法は、コアシェルポリマー粒子(A)に関する上記記載と同様である。 In the adhesive composition of the present invention, the polymer particles (B) are dispersed in the form of primary particles in the same manner as the core-shell polymer particles (A). As in the case of the core-shell polymer particles (A), the primary dispersion means that the volume average particle diameter (Mv) / number average particle diameter (Mn) of the particles measured in the adhesive composition is 3. This can be confirmed by the following. The preferred range and calculation method of volume average particle size (Mv) / number average particle size (Mn) are the same as those described above for the core-shell polymer particles (A).
 本発明の接着剤組成物におけるポリマー粒子(B)の含有率は、接着剤組成物100重量部に対し1~10重量部であることが好ましく、2~8重量部であることがより好ましく、3~6重量部であることがさらに好ましく、4~5重量部であることが特に好ましい。ポリマー粒子(B)の含有率が1重量部未満の場合は、ポリマー粒子(B)の添加により得られる効果が小さくなり、10重量部より大きい場合は、コアシェルポリマー粒子(A)による接着剤組成物の高靭化効果が発現しないほど接着剤組成物が脆化し、耐疲労特性が低下する場合がある。 The content of the polymer particles (B) in the adhesive composition of the present invention is preferably 1 to 10 parts by weight, more preferably 2 to 8 parts by weight, with respect to 100 parts by weight of the adhesive composition. The amount is more preferably 3 to 6 parts by weight, and particularly preferably 4 to 5 parts by weight. When the content of the polymer particles (B) is less than 1 part by weight, the effect obtained by the addition of the polymer particles (B) is reduced. When the content is more than 10 parts by weight, the adhesive composition of the core-shell polymer particles (A) is used. The adhesive composition may become so brittle that the toughening effect of the product is not exhibited, and the fatigue resistance may be reduced.
 本発明の接着剤組成物において、コアシェルポリマー粒子(A)とポリマー粒子(B)の重量比率は、(A):(B)=1:2~2:1であり、2:3~3:2であることが好ましく、4:5~5:4であることがより好ましく、1:1であることがさらに好ましい。1:2よりもポリマー粒子(B)の量が相対的に多い場合は接着剤組成物が脆化し、耐疲労特性が低下する。2:1よりもコアシェルポリマー粒子(A)の量が相対的に多い場合は、疲労破壊時に亀裂が接着剤層と基材との界面で伝播し、界面破壊となり、また、耐疲労特性が低下する。 In the adhesive composition of the present invention, the weight ratio of the core-shell polymer particles (A) to the polymer particles (B) is (A) :( B) = 1: 2 to 2: 1, and 2: 3 to 3: 2 is preferable, 4: 5 to 5: 4 is more preferable, and 1: 1 is further preferable. When the amount of the polymer particles (B) is relatively larger than 1: 2, the adhesive composition becomes brittle, and the fatigue resistance is lowered. When the amount of the core-shell polymer particles (A) is relatively larger than 2: 1, cracks propagate at the interface between the adhesive layer and the base material at the time of fatigue failure, resulting in interface failure, and fatigue resistance characteristics are reduced. To do.
 以上述べた疲労試験後の破壊形式の特定については種々の方法があるが、本発明においては、せん断接着疲労試験後の試験片の破断面を目視で確認し、破断面の40%以上の領域で金属基材表面に接着剤が残存している場合を凝集破壊(CF)と評価し、40%未満の場合を界面破壊(AF)と評価する。目視以外の方法としては、疲労破壊した面を走査型電子顕微鏡の反射電子像で観察し、それにより得られた画像の各ピクセルをモノクロ255階調に分けて明度の分布を表し、階調が0~218までを接着剤、階調が219~255までを被着体として二値化し、接着剤層が残存している領域の割合を算出する方法も挙げられる。 Although there are various methods for specifying the type of fracture after the fatigue test described above, in the present invention, the fracture surface of the test piece after the shear adhesion fatigue test is visually confirmed, and an area of 40% or more of the fracture surface The case where the adhesive remains on the surface of the metal substrate is evaluated as cohesive failure (CF), and the case where it is less than 40% is evaluated as interfacial failure (AF). As a method other than visual observation, the fatigue-breaked surface is observed with a reflection electron image of a scanning electron microscope, and each pixel of the obtained image is divided into monochrome 255 gradations to express the distribution of lightness. There is also a method of binarizing 0 to 218 as an adhesive and gradations from 219 to 255 as an adherend and calculating the ratio of the area where the adhesive layer remains.
 (任意成分)
 本発明の接着剤組成物には、取扱い性向上等のために、チキソ剤を配合してもよい。このようなチキソ剤としては特に限定されないが、例えば、ケッチェンブラック等のカーボンブラック、シリカ、微粒炭酸カルシウム、セピオライト等が挙げられる。チキソ剤は1種または2種類以上を組み合わせて使用することができる。チキソ剤を配合する場合、その配合量は、塗布作業性や接着強度の観点から、接着性樹脂100重量部に対して、10重量部以下とするのが好適である。また、チキソ剤としては、レーザ回折・散乱法によって測定した平均粒径が0.01μm~0.1μmの範囲内にある固体粒子を用いることが好ましい。この平均粒径が0.01μm未満では、接着剤組成物の粘度が高くなり取り扱い性が悪くなる恐れがあり、一方、0.1μmを超えると、塗布作業性や接着強度が低下する恐れがあるためである。
(Optional component)
A thixotropic agent may be blended in the adhesive composition of the present invention in order to improve handling properties. Such a thixotropic agent is not particularly limited, and examples thereof include carbon black such as ketjen black, silica, fine calcium carbonate, sepiolite and the like. A thixotropic agent can be used 1 type or in combination of 2 or more types. When the thixotropic agent is blended, the blending amount is preferably 10 parts by weight or less with respect to 100 parts by weight of the adhesive resin from the viewpoint of application workability and adhesive strength. As the thixotropic agent, it is preferable to use solid particles having an average particle diameter measured by a laser diffraction / scattering method within a range of 0.01 μm to 0.1 μm. If the average particle size is less than 0.01 μm, the viscosity of the adhesive composition may be increased and handling properties may be deteriorated. On the other hand, if the average particle size exceeds 0.1 μm, application workability and adhesive strength may be reduced. Because.
 また、本発明の接着剤組成物には、本発明の効果を損なわない程度に、組成物の粘性の調整や機械特性の向上等のために充填剤を配合することもできる。このような充填剤としては特に限定されないが、例えば、炭酸カルシウム、タルク、マグネシア、ケイ酸カルシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、アルミナ、ジルコン、グラファイト、硫酸バリウム、クレー、マイカ、カオリン、ウォラストナイト、雲母、長石、閃長石(シエナイト)、緑泥石(クロライト)、タルク、ベントナイト、モンモリロナイト、バライト、ドロマイト、石英、珪藻土、ケイ酸カルシウム、ケイ酸アルミニウム、炭酸バリウム、炭酸マグネシウム、炭酸亜鉛、織物繊維、ガラス繊維、アラミドパルプ、ホウ素繊維、炭素繊維、リン酸塩、結晶シリカ、非晶シリカ、溶融シリカ、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕(微粉末)シリカ等のシリカ、ろう石、ケイ砂、クリストバライト、セルロース、セメント、酸化カルシウム、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、二酸化チタン、中空セラミックビーズ、中空ガラスビーズ等の中空無機ビーズ、ポリエステル樹脂等による中空有機ビーズ、ガラスビーズ、金属粉末、瀝青物質等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。分散性等の点から、炭酸カルシウムが好適である。充填剤を配合する場合、その配合量は、塗布作業性や接着強度の観点から、接着性樹脂100重量部に対して、80重量部以下とするのが好適である。また、充填剤が粒子状である場合、レーザ回折・散乱法によって測定した平均粒径が0.05μm~500μmの範囲内であることが好ましい。平均粒径が0.05μm未満であると、接着剤組成物の粘度が高くなり取り扱い性が悪くなる恐れがあり、500μmを超えると、充填剤が沈降しやすく組成物の均一性が低下する可能性がある。 Further, the adhesive composition of the present invention can also be blended with a filler for adjusting the viscosity of the composition and improving mechanical properties to the extent that the effects of the present invention are not impaired. Such a filler is not particularly limited, for example, calcium carbonate, talc, magnesia, calcium silicate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, alumina, zircon, graphite, barium sulfate, clay, mica, Kaolin, wollastonite, mica, feldspar, syenite, chlorite, talc, bentonite, montmorillonite, barite, dolomite, quartz, diatomite, calcium silicate, aluminum silicate, barium carbonate, magnesium carbonate , Zinc carbonate, textile fiber, glass fiber, aramid pulp, boron fiber, carbon fiber, phosphate, crystalline silica, amorphous silica, fused silica, fumed silica, calcined silica, precipitated silica, ground (fine powder) silica, etc. Silica, wax, quartz sand, sand Stovalite, cellulose, cement, calcium oxide, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, titanium dioxide, hollow ceramic beads, hollow inorganic beads such as hollow glass beads, hollow organic beads such as polyester resin, glass beads , Metal powders, bitumen substances and the like. These may be used alone or in combination of two or more. From the viewpoint of dispersibility and the like, calcium carbonate is preferred. When blending the filler, the blending amount is preferably 80 parts by weight or less with respect to 100 parts by weight of the adhesive resin from the viewpoint of coating workability and adhesive strength. When the filler is in the form of particles, the average particle diameter measured by a laser diffraction / scattering method is preferably in the range of 0.05 μm to 500 μm. If the average particle size is less than 0.05 μm, the viscosity of the adhesive composition may be increased and the handleability may deteriorate, and if it exceeds 500 μm, the filler tends to settle and the uniformity of the composition may decrease. There is sex.
 本発明の接着剤組成物には、必要に応じて、各種の添加剤、例えば、触媒、硬化促進剤、可塑剤、反応性希釈剤、反応遅延剤、老化防止剤、酸化防止剤、顔料、染料、着色剤、カップリング剤、レベリング剤、揺変性付与剤、接着付与剤、難燃剤、帯電防止剤、導電性付与剤、潤滑剤、摺動性付与剤、紫外線吸収剤、界面活性剤、分散剤、分散安定剤、消泡剤、脱水剤、架橋剤、防錆剤、溶剤等を配合することができる。 In the adhesive composition of the present invention, various additives such as a catalyst, a curing accelerator, a plasticizer, a reactive diluent, a reaction retarding agent, an antioxidant, an antioxidant, a pigment, Dyes, colorants, coupling agents, leveling agents, thixotropic agents, adhesion imparting agents, flame retardants, antistatic agents, conductivity imparting agents, lubricants, slidability imparting agents, UV absorbers, surfactants, A dispersant, a dispersion stabilizer, an antifoaming agent, a dehydrating agent, a crosslinking agent, a rust preventive agent, a solvent and the like can be blended.
 本発明の接着剤組成物は、これら配合成分を公知の混合分散機、例えば、プラネタリーミキサー、ディスパー、ヘンシェルミキサー、ニーダー等で均質に混合攪拌することによって調製することができる。また、接着性樹脂とコアシェルポリマー粒子(A)の混合物と、接着性樹脂とポリマー粒子(B)の混合物それぞれを作製してから、両混合物を混合して本発明の接着剤組成物を調製してもよい。また、コアシェルポリマー粒子(A)とポリマー粒子(B)それぞれを、接着性組成物中で一次粒子として分散させるには、コアシェルポリマー粒子(A)及び/又はポリマー粒子(B)の分散液に対して、接着性樹脂を溶解した後、該分散液から分散媒(または溶媒)を留去することで達成することができる。 The adhesive composition of the present invention can be prepared by uniformly mixing and stirring these blended components with a known mixing and dispersing machine such as a planetary mixer, a disper, a Henschel mixer, a kneader and the like. Also, after preparing a mixture of the adhesive resin and the core-shell polymer particles (A) and a mixture of the adhesive resin and the polymer particles (B), respectively, the both mixtures are mixed to prepare the adhesive composition of the present invention. May be. Further, in order to disperse each of the core-shell polymer particles (A) and the polymer particles (B) as primary particles in the adhesive composition, the core-shell polymer particles (A) and / or the polymer particles (B) are dispersed. This can be achieved by dissolving the adhesive resin and then distilling off the dispersion medium (or solvent) from the dispersion.
 このようにして調製した本発明の接着剤組成物は、公知の方法、例えば、スプレー、ガン、刷毛塗り等の方法で被接着体に塗布される。加えて、塗布後にスポット溶接を併用して(ウェルドボンド工法)、被接着体の接合性を高めることも可能である。 The adhesive composition of the present invention thus prepared is applied to an adherend by a known method such as spraying, gunning, brushing or the like. In addition, it is also possible to enhance the bondability of the adherend by using spot welding after application (weld bond method).
 本発明の接着剤組成物は高い耐疲労特性と接着信頼性を有するため、例えば、自動車や車両(新幹線、電車)、風力発電機、土木、建築、エレクトロニクス、船舶、航空機、宇宙産業分野等の構造部材の接着剤として用いることができる。このとき、電極等を使用したスポット溶接等の併用(ウェルドボンド工法)により、構造部位への高い接合強度を確保することができる。他にも、一般事務用、医療用、電子材料用の接着剤としても用いることができる。 Since the adhesive composition of the present invention has high fatigue resistance and adhesion reliability, it can be used, for example, in automobiles, vehicles (bullet trains, trains), wind power generators, civil engineering, architecture, electronics, ships, aircraft, space industry, etc. It can be used as an adhesive for structural members. At this time, high joint strength to the structural part can be ensured by the combined use (weld bond method) such as spot welding using an electrode or the like. In addition, it can be used as an adhesive for general office work, medical use, and electronic materials.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、試薬は特に規定の無いものは和光純薬製のものを使用した。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, the thing made from Wako Purechemical was used if there is no special regulation.
 本発明で用いた評価方法について以下に説明する。
 [1]体積平均粒子径(Mv)
 水性ラテックスまたは樹脂組成物中に分散しているポリマー粒子の体積平均粒子径(Mv)はマイクロトラックUPA150(日機装株式会社製)を用いて測定した。水性ラテックスについては脱イオン水で希釈したもの、樹脂組成物についてはメチルエチルケトンで希釈したものを測定試料として用いた。測定は、水またはメチルエチルケトンの屈折率、およびそれぞれのポリマー粒子の屈折率を入力し、計測時間600秒、Signal Levelが0.6~0.8の範囲内になるように試料濃度を調整して行った。
The evaluation method used in the present invention will be described below.
[1] Volume average particle diameter (Mv)
The volume average particle diameter (Mv) of the polymer particles dispersed in the aqueous latex or resin composition was measured using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.). The aqueous latex diluted with deionized water and the resin composition diluted with methyl ethyl ketone were used as measurement samples. For measurement, enter the refractive index of water or methyl ethyl ketone, and the refractive index of each polymer particle, and adjust the sample concentration so that the measurement time is 600 seconds and the Signal Level is in the range of 0.6 to 0.8. went.
 [2]せん断接着試験片作製
 基材として厚み4mmのアルミ合金A2017Pを使用し、粒度100の研磨紙で研磨後、洗浄液で10分間超音波洗浄機にかけて脱脂した。スペーサーとして厚み1.0mmのアルミ板と厚み0.13mmのニトフロン(登録商標、PTFE)テープを用いた。図4で示すように、2枚の基材11と11′間に、スペーサーとして2枚のアルミ板12と12′及び2枚のニトフロンテープ13と13′を配置してこれらを積層し、形成された空間に接着剤組成物14を充填した。該接着剤組成物が硬化後、スペーサーを引き抜き、図5で示すように接着剤層15によって2枚の基材11と11′が接着した試験片を得た。
[2] Preparation of Shear Adhesive Specimen A 4 mm thick aluminum alloy A2017P was used as a base material, which was polished with abrasive paper having a particle size of 100 and degreased with a cleaning liquid for 10 minutes using an ultrasonic cleaner. As the spacer, a 1.0 mm thick aluminum plate and a 0.13 mm thick nitoflon (registered trademark, PTFE) tape were used. As shown in FIG. 4, two aluminum plates 12 and 12 ′ and two nitroflon tapes 13 and 13 ′ are arranged as spacers between two base materials 11 and 11 ′, and these are laminated. The formed space was filled with the adhesive composition 14. After the adhesive composition was cured, the spacer was pulled out to obtain a test piece in which the two substrates 11 and 11 'were bonded together by the adhesive layer 15 as shown in FIG.
 [3]せん断接着疲労試験
 試験機として電気油圧サーボ式材料試験機((株)島津製作所、サーボパルサー)を用い、前記で得た試験片に周波数5Hzの正弦波振動を与え、最大応力10MPaで、試験片が破断するまでの振動数を計測し、破断サイクル数とした。
[3] Shear adhesion fatigue test Using an electrohydraulic servo type material tester (Shimadzu Corporation, Servo Pulser) as a tester, a sine wave vibration with a frequency of 5 Hz was applied to the test piece obtained above, and the maximum stress was 10 MPa. The frequency until the test piece broke was measured and used as the number of break cycles.
 [4]疲労試験後の破壊形式の特定
 せん断接着疲労試験後の試験片の破断面を目視で確認し、破断面の40%以上の領域で金属基材表面に接着剤が残存している場合を凝集破壊(CF)と評価し、40%未満の場合を界面破壊(AF)と評価した。
[4] Identification of fracture type after fatigue test When the fracture surface of the test piece after the shear adhesion fatigue test is visually confirmed, and the adhesive remains on the surface of the metal substrate in an area of 40% or more of the fracture surface Was evaluated as cohesive failure (CF), and the case of less than 40% was evaluated as interfacial failure (AF).
 (製造例1)ゴムラテックスの調製
 (製造例1-1)アクリルゴムラテックス(R-1)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及び、モノマーと乳化剤の添加装置を有するガラス反応器に、脱イオン水180重量部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002重量部、硫酸第一鉄・7水和塩0.001重量部、ナトリウムホルムアルデヒドスルホキシレート(SFS)0.04重量部およびドデシルベンゼンスルホン酸ナトリウム(SDBS)0.5重量部を仕込み、窒素気流中で撹拌しながら45℃に昇温した。次にn-ブチルアクリレート(BA)98重量部、アリルメタクリレート(ALMA)2重量部およびクメンハイドロパーオキサイド(CHP)0.02重量部のモノマー混合物を5時間かけて滴下した。また、前記のモノマー混合物の添加とともに、1重量部のSDBSを5重量%濃度の水溶液にしたものを5時間にわたり連続的に追加した。モノマー混合物添加終了から1時間撹拌を続けて重合を完結し、アクリルゴム粒子を含むアクリルゴムラテックス(R-1)を得た。得られたラテックスに含まれるアクリルゴム粒子の体積平均粒子径は100nmであった。
(Production Example 1) Preparation of rubber latex (Production Example 1-1) Preparation of acrylic rubber latex (R-1) A thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer and emulsifier addition device are included. In a glass reactor, 180 parts by weight of deionized water, 0.002 parts by weight of disodium ethylenediaminetetraacetate (EDTA), 0.001 part by weight of ferrous sulfate heptahydrate, sodium formaldehyde sulfoxylate (SFS) 0 .04 parts by weight and 0.5 parts by weight of sodium dodecylbenzenesulfonate (SDBS) were charged, and the temperature was raised to 45 ° C. while stirring in a nitrogen stream. Next, a monomer mixture of 98 parts by weight of n-butyl acrylate (BA), 2 parts by weight of allyl methacrylate (ALMA) and 0.02 parts by weight of cumene hydroperoxide (CHP) was added dropwise over 5 hours. Along with the addition of the monomer mixture, 1 part by weight of SDBS in an aqueous solution having a concentration of 5% by weight was continuously added over 5 hours. Stirring was continued for 1 hour after completion of the monomer mixture addition to complete the polymerization, and an acrylic rubber latex (R-1) containing acrylic rubber particles was obtained. The volume average particle diameter of the acrylic rubber particles contained in the obtained latex was 100 nm.
 (製造例1-2)ポリブタジエンゴムラテックス(R-2)の調製
 耐圧重合機中に、水200重量部、リン酸三カリウム0.03重量部、EDTA0.002重量部、硫酸第一鉄・7水和塩0.001重量部、及び、SDBS1.55重量部を投入し、撹拌しつつ十分に窒素置換を行なって酸素を除いた後、ブタジエン(Bd)100重量部を系中に投入し、45℃に昇温した。パラメンタンハイドロパーオキサイド(PHP)0.03重量部、続いてSFS0.10重量部を投入し重合を開始した。重合開始から3、5、7時間経過後それぞれに、PHP0.025重量部を投入した。また、重合開始から4、6、8時間経過後それぞれに、EDTA0.0006重量部、及び硫酸第一鉄・7水和塩0.003重量部を投入した。重合開始から15時間経過後に減圧下残存モノマーを脱揮除去して重合を終了し、ポリブタジエンゴム粒子を含むポリブタジエンゴムラテックス(R-2)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は80nmであった。
(Production Example 1-2) Preparation of polybutadiene rubber latex (R-2) In a pressure-resistant polymerization machine, 200 parts by weight of water, 0.03 part by weight of tripotassium phosphate, 0.002 part by weight of EDTA, ferrous sulfate-7 After adding 0.001 part by weight of hydrated salt and 1.55 part by weight of SDBS, sufficiently purging with nitrogen and removing oxygen by stirring, 100 parts by weight of butadiene (Bd) was put into the system, The temperature was raised to 45 ° C. Polymerization was initiated by adding 0.03 part by weight of paramentane hydroperoxide (PHP), followed by 0.10 part by weight of SFS. 0.025 parts by weight of PHP was added after 3, 5, and 7 hours from the start of polymerization. In addition, 0.0006 part by weight of EDTA and 0.003 part by weight of ferrous sulfate heptahydrate were added after 4, 6 and 8 hours from the start of polymerization. After 15 hours from the start of polymerization, the residual monomer was removed by devolatilization under reduced pressure to complete the polymerization, and a polybutadiene rubber latex (R-2) containing polybutadiene rubber particles was obtained. The volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 80 nm.
 (製造例1-3)アクリルゴムラテックス(R-3)の調製
 n-ブチルアクリレート(BA)7重量部にアリルメタクリレート(ALMA)0.35重量部、アクリル酸ステアリル(SMA)0.07質量部、及び、開始剤としてラウロイルパーオキサイド(LPO)0.17重量部を加え溶解し、温度を30℃に調整した後、脱イオン水14重量部にSDBS0.13質量部を溶解し温度を調整した溶液に混合後、ホモミキサーにて10000rpmの速度で10分間攪拌して乳化モノマー液を得た。
(Production Example 1-3) Preparation of acrylic rubber latex (R-3) 7 parts by weight of n-butyl acrylate (BA) 0.35 parts by weight of allyl methacrylate (ALMA) and 0.07 parts by weight of stearyl acrylate (SMA) Then, 0.17 parts by weight of lauroyl peroxide (LPO) as an initiator was added and dissolved, the temperature was adjusted to 30 ° C., and then 0.13 parts by weight of SDBS was dissolved in 14 parts by weight of deionized water to adjust the temperature. After mixing with the solution, the mixture was stirred with a homomixer at a speed of 10,000 rpm for 10 minutes to obtain an emulsified monomer liquid.
 温度計、撹拌機、還流冷却器、窒素流入口、及び、モノマーと乳化剤の添加装置を有するガラス反応器に、脱イオン水173質量部、SDBS0.3重量部、及び、1%亜硝酸ナトリウム水溶液0.008重量部を加え、窒素雰囲気下、30℃に調整した後、上記で得た乳化モノマー液を投入した。その後、温度を65℃に昇温し、BA83重量部とALMA4.15重量部のモノマー混合物を210分かけて連続的に添加した。前記のモノマー混合物の添加とともに、0.7重量部のSDBSを5重量%濃度の水溶液にしたものを210分にわたり連続的に追加した。モノマー混合物添加終了から1時間撹拌を続けて重合を完結し、アクリルゴム粒子を含むアクリルゴムラテックス(R-3)を得た。得られたラテックスに含まれるアクリルゴム粒子の体積平均粒子径は3000nmであった。 In a glass reactor having a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer and emulsifier addition device, 173 parts by weight of deionized water, 0.3 part by weight of SDBS, and 1% aqueous sodium nitrite solution After adding 0.008 part by weight and adjusting to 30 ° C. in a nitrogen atmosphere, the emulsified monomer solution obtained above was charged. Thereafter, the temperature was raised to 65 ° C., and a monomer mixture of 83 parts by weight of BA and 4.15 parts by weight of ALMA was continuously added over 210 minutes. Along with the addition of the monomer mixture, 0.7 parts by weight of SDBS in a 5% strength by weight aqueous solution was continuously added over 210 minutes. Stirring was continued for 1 hour after completion of the monomer mixture addition to complete the polymerization, and an acrylic rubber latex (R-3) containing acrylic rubber particles was obtained. The volume average particle diameter of acrylic rubber particles contained in the obtained latex was 3000 nm.
 (製造例1-4)アクリルゴムラテックス(R-4)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及び、モノマーと乳化剤の添加装置を有するガラス反応器に、BA8.5重量部、ALMA0.17重量部、SDBS0.16重量部、CHP0.003重量部を脱イオン水220重量部に加え、さらに、EDTA0.0056重量部、硫酸第一鉄・7水和塩0.0014重量部、及びSFS0.06重量部を加えた後、温度を60℃に昇温し、BA91.5重量部とALMA1.87重量部、CHP0.03重量部のモノマー混合物を350分かけて連続的に添加した。前記モノマー混合物の添加後、SDBS0.15重量部を60分間隔で4回添加し、アクリルゴム粒子を含むアクリルゴムラテックス(R-4)を得た。得られたラテックスに含まれるアクリルゴム粒子の体積平均粒子径は300nmであった。
(Production Example 1-4) Preparation of acrylic rubber latex (R-4) A glass reactor having a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and an apparatus for adding monomers and emulsifiers was charged with 8.5 wt. Parts, ALMA 0.17 parts, SDBS 0.16 parts, CHP 0.003 parts by weight in addition to 220 parts by weight of deionized water, 0.0056 parts by weight of EDTA, ferrous sulfate and heptahydrate 0.0014 parts by weight And 0.06 parts by weight of SFS, and then the temperature was raised to 60 ° C., and a monomer mixture of 91.5 parts by weight of BA, 1.87 parts by weight of ALMA and 0.03 parts by weight of CHP was continuously added over 350 minutes. Added. After the addition of the monomer mixture, 0.15 parts by weight of SDBS was added four times at intervals of 60 minutes to obtain an acrylic rubber latex (R-4) containing acrylic rubber particles. The volume average particle diameter of the acrylic rubber particles contained in the obtained latex was 300 nm.
 (製造例2)コアシェルポリマーラテックスの調製
 (製造例2-1)コアシェルポリマーラテックス(L-1)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及びモノマーの添加装置を有するガラス反応器に、前記アクリルゴムラテックス(R-1)196重量部(アクリルゴム粒子70重量部を含む)、及び、水65重量部を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、及びSFS0.2重量部を加えた後、メチルメタクリレート(MMA)22.5量部、グリシジルメタクリレート(GMA)7.5重量部およびt-ブチルハイドロパーオキシド(TBP)0.08重量部の混合物を110分間かけて連続的に添加した。TBP0.04重量部を添加し、さらに1時間撹拌を続けて重合を完結させ、コアシェルポリマー粒子を含む水性ラテックス(L-1)を得た。得られた水性ラテックスに含まれるコアシェルポリマー粒子の体積平均粒子径は110nmであった。
(Production Example 2) Preparation of Core Shell Polymer Latex (Production Example 2-1) Preparation of Core Shell Polymer Latex (L-1) Glass reaction having thermometer, stirrer, reflux condenser, nitrogen inlet, and monomer addition device A vessel was charged with 196 parts by weight of the acrylic rubber latex (R-1) (including 70 parts by weight of acrylic rubber particles) and 65 parts by weight of water, and stirred at 60 ° C. while purging with nitrogen. After adding 0.004 part by weight of EDTA, 0.001 part by weight of ferrous sulfate heptahydrate and 0.2 part by weight of SFS, 22.5 parts by weight of methyl methacrylate (MMA) and glycidyl methacrylate (GMA) 7. A mixture of 5 parts by weight and 0.08 parts by weight of t-butyl hydroperoxide (TBP) was added continuously over 110 minutes. 0.04 part by weight of TBP was added, and stirring was further continued for 1 hour to complete the polymerization to obtain an aqueous latex (L-1) containing core-shell polymer particles. The volume average particle size of the core-shell polymer particles contained in the obtained aqueous latex was 110 nm.
 (製造例2-2)コアシェルポリマーラテックス(L-2)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及びモノマーの添加装置を有するガラス反応器に、前記ポリブタジエンゴムラテックス(R-2)241重量部(ポリブタジエンゴム粒子80重量部を含む)、及び、水65重量部を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、及びSFS0.2重量部を加えた後、MMA15重量部、GMA5重量部およびTBP0.08重量部の混合物を110分間かけて連続的に添加した。TBP0.04重量部を添加し、さらに1時間撹拌を続けて重合を完結させ、コアシェルポリマー粒子を含む水性ラテックス(L-2)を得た。得られた水性ラテックスに含まれるコアシェルポリマー粒子の体積平均粒子径は110nmであった。
Production Example 2-2 Preparation of Core-Shell Polymer Latex (L-2) The polybutadiene rubber latex (R-) was added to a glass reactor having a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. 2) 241 parts by weight (including 80 parts by weight of polybutadiene rubber particles) and 65 parts by weight of water were charged and stirred at 60 ° C. while purging with nitrogen. After adding 0.004 part by weight of EDTA, 0.001 part by weight of ferrous sulfate and heptahydrate, and 0.2 part by weight of SFS, a mixture of 15 parts by weight of MMA, 5 parts by weight of GMA and 0.08 part by weight of TBP is added for 110 minutes Over time. 0.04 part by weight of TBP was added, and stirring was further continued for 1 hour to complete the polymerization to obtain an aqueous latex (L-2) containing core-shell polymer particles. The volume average particle size of the core-shell polymer particles contained in the obtained aqueous latex was 110 nm.
 (製造例2-3)コアシェルポリマーラテックス(L-3)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及びモノマーの添加装置を有するガラス反応器に、前記アクリルゴムラテックス(R-3)308重量部(アクリルゴム粒子90重量部を含む)、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、及びSFS0.2重量部を加えた後、MMA8重量部、GMA2重量部およびTBP0.08重量部の混合物を60分間かけて連続的に添加した。TBP0.04重量部を添加し、さらに30分間撹拌を続けて重合を完結させ、コアシェルポリマー粒子を含む水性ラテックス(L-3)を得た。得られた水性ラテックスに含まれるコアシェルポリマー粒子の体積平均粒子径は3000nmであった。
(Production Example 2-3) Preparation of core-shell polymer latex (L-3) The acrylic rubber latex (R-) was added to a glass reactor having a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. 3) After adding 308 parts by weight (including 90 parts by weight of acrylic rubber particles), 0.004 parts by weight of EDTA, 0.001 part by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS, 8 parts by weight of MMA Part, 2 parts by weight of GMA and 0.08 parts by weight of TBP were continuously added over 60 minutes. 0.04 part by weight of TBP was added, and stirring was further continued for 30 minutes to complete the polymerization, thereby obtaining an aqueous latex (L-3) containing core-shell polymer particles. The volume average particle size of the core-shell polymer particles contained in the obtained aqueous latex was 3000 nm.
 (製造例2-4)コアシェルポリマーラテックス(L-4)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及びモノマーの添加装置を有するガラス反応器に、前記アクリルゴムラテックス(R-4)53.8重量部(アクリルゴム粒子17.6重量部を含む)、EDTA0.0058重量部、硫酸第一鉄・7水和塩0.0014重量部、及びSFS0.25重量部を加えた後、BA52.4重量部、ALMA1.05重量部、CHP0.015重量部を130分間かけて連続的に添加した。SDBS0.15重量部を60分間隔で3回添加した後に、MMA30重量部およびTBP0.08重量部の混合物を180分間かけて連続的に添加した。TBP0.04重量部を添加し、さらに30分間撹拌を続けて重合を完結させ、コアシェルポリマー粒子を含む水性ラテックス(L-4)を得た。得られた水性ラテックスに含まれるコアシェルポリマー粒子の体積平均粒子径は500nmであった。
(Production Example 2-4) Preparation of core-shell polymer latex (L-4) The acrylic rubber latex (R-) was added to a glass reactor having a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. 4) 53.8 parts by weight (including 17.6 parts by weight of acrylic rubber particles), 0.0058 parts by weight of EDTA, 0.0014 parts by weight of ferrous sulfate heptahydrate, and 0.25 parts by weight of SFS were added. Thereafter, 52.4 parts by weight of BA, 1.05 parts by weight of ALMA, and 0.015 parts by weight of CHP were continuously added over 130 minutes. After 0.15 parts by weight of SDBS was added three times at 60 minute intervals, a mixture of 30 parts by weight of MMA and 0.08 parts by weight of TBP was continuously added over 180 minutes. 0.04 part by weight of TBP was added, and stirring was further continued for 30 minutes to complete the polymerization, thereby obtaining an aqueous latex (L-4) containing core-shell polymer particles. The volume average particle diameter of the core-shell polymer particles contained in the obtained aqueous latex was 500 nm.
 (製造例3)コアシェルポリマー粒子(A)が1次粒子として分散しているエポキシ樹脂組成物の調製
 (製造例3-1)コアシェルポリマー粒子(A)分散エポキシ樹脂組成物(M-1)の調製
 30℃の1L混合槽にメチルエチルケトン(MEK)126重量部を仕込み、撹拌しながら、コアシェルポリマー粒子の水性ラテックス(L-1)を126重量部投入した。均一に混合後、水200重量部を80重量部/分の供給速度で投入した。供給終了後、速やかに撹拌を停止し、浮上性の凝集体を含むスラリー液を得た。次に、凝集体を残し、液相350重量部を槽下部の払い出し口より排出させた。得られた凝集体にMEK150重量部を追加して混合し、コアシェルポリマー粒子が分散したMEK分散液を得た。このMEK分散液に、エポキシ樹脂であるビスフェノールA型ジグリシジルエーテル(DGEBA、三菱化学製)jER828とjER1001の1:1混合物を、コアシェルポリマー粒子とエポキシ樹脂混合物が25:75の重量比となるように溶解し、MEKを減圧留去することで、コアシェルポリマー粒子(A)が一次粒子として分散したエポキシ樹脂組成物(M-1)を得た。
(Production Example 3) Preparation of epoxy resin composition in which core-shell polymer particles (A) are dispersed as primary particles (Production Example 3-1) Core-shell polymer particles (A) of dispersed epoxy resin composition (M-1) Preparation 126 parts by weight of methyl ethyl ketone (MEK) was charged in a 1 L mixing tank at 30 ° C., and 126 parts by weight of an aqueous latex (L-1) of core-shell polymer particles was charged with stirring. After mixing uniformly, 200 parts by weight of water was added at a feed rate of 80 parts by weight / min. After completion of the supply, the stirring was immediately stopped to obtain a slurry liquid containing floating aggregates. Next, the agglomerate was left, and 350 parts by weight of the liquid phase was discharged from the discharge port at the bottom of the tank. To the obtained aggregate, 150 parts by weight of MEK was added and mixed to obtain a MEK dispersion in which core-shell polymer particles were dispersed. In this MEK dispersion, a 1: 1 mixture of bisphenol A type diglycidyl ether (DGEBA, manufactured by Mitsubishi Chemical), which is an epoxy resin, jER828 and jER1001 is used so that the weight ratio of the core-shell polymer particles and the epoxy resin mixture is 25:75. Then, MEK was distilled off under reduced pressure to obtain an epoxy resin composition (M-1) in which the core-shell polymer particles (A) were dispersed as primary particles.
 (製造例3-2)コアシェルポリマー粒子(A)分散エポキシ樹脂組成物(M-2)の調製
 コアシェルポリマー粒子の水性ラテックス(L-1)を、コアシェルポリマー粒子の水性ラテックス(L-2)に変更した以外は製造例1と同様にして、コアシェルポリマー粒子(A)が一次粒子として分散したエポキシ樹脂組成物(M-2)を得た。
(Production Example 3-2) Preparation of Core Shell Polymer Particles (A) Dispersed Epoxy Resin Composition (M-2) The aqueous latex (L-1) of the core shell polymer particles was changed to the aqueous latex (L-2) of the core shell polymer particles. An epoxy resin composition (M-2) in which the core-shell polymer particles (A) were dispersed as primary particles was obtained in the same manner as in Production Example 1 except for the change.
 (製造例4)ポリマー粒子(B)が1次粒子として分散しているエポキシ樹脂組成物の調製
 (製造例4-1)ポリマー粒子(B)分散エポキシ樹脂組成物(N-1)の調製
 コアシェルポリマー粒子の水性ラテックス(L-1)を、コアシェルポリマー粒子の水性ラテックス(L-3)に変更した以外は製造例1と同様にして、ポリマー粒子(B)が一次粒子として分散したエポキシ樹脂組成物(N-1)を得た。
(Production Example 4) Preparation of epoxy resin composition in which polymer particles (B) are dispersed as primary particles (Production Example 4-1) Preparation of polymer particle (B) dispersed epoxy resin composition (N-1) Core shell Epoxy resin composition in which polymer particles (B) are dispersed as primary particles in the same manner as in Production Example 1 except that the aqueous latex of polymer particles (L-1) is changed to the aqueous latex of core-shell polymer particles (L-3) A product (N-1) was obtained.
 (製造例4-2)ポリマー粒子(B)エポキシ樹脂組成物(N-2)の調製
 コアシェルポリマー粒子の水性ラテックス(L-1)を、コアシェルポリマー粒子の水性ラテックス(L-4)に変更した以外は製造例1と同様にして、ポリマー粒子(B)が一次粒子として分散したエポキシ樹脂組成物(N-2)を得た。
(Production Example 4-2) Preparation of Polymer Particle (B) Epoxy Resin Composition (N-2) The aqueous latex (L-1) of the core-shell polymer particle was changed to the aqueous latex (L-4) of the core-shell polymer particle. Except for the above, an epoxy resin composition (N-2) in which polymer particles (B) were dispersed as primary particles was obtained in the same manner as in Production Example 1.
 (実施例1~5および比較例1~5)
 表1の「混合比」の欄に記載の配合量に沿って、エポキシ樹脂、コアシェルポリマー粒子(A)分散エポキシ樹脂組成物、ポリマー粒子(B)分散エポキシ樹脂組成物、及び、硬化剤を自転・公転ミキサー((株)シンキー製)で混合し、接着剤組成物を得た。なお、配合量は重量基準である。得られた接着剤組成物中でコアシェルポリマー粒子(A)およびポリマー粒子(B)が一次粒子として分散していることをマイクロトラックUPA150(日機装株式会社製)で確認した。
(Examples 1 to 5 and Comparative Examples 1 to 5)
Rotate the epoxy resin, the core-shell polymer particle (A) -dispersed epoxy resin composition, the polymer particle (B) -dispersed epoxy resin composition, and the curing agent along the blending amounts described in the “mixing ratio” column of Table 1. -It mixed with the revolution mixer (made by Shinkey Co., Ltd.), and the adhesive composition was obtained. The blending amount is based on weight. It was confirmed by Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.) that the core-shell polymer particles (A) and the polymer particles (B) were dispersed as primary particles in the obtained adhesive composition.
 各接着剤組成物100重量部に対するエポキシ樹脂、コアシェルポリマー粒子(A)、及び、ポリマー粒子(B)の配合量は、表1の「配合組成」の欄に記載のとおりである。各接着剤組成物を用いて疲労試験を行って測定または特定した破断サイクル数及び破壊形式の結果を、表1に示す。 The compounding amounts of the epoxy resin, the core-shell polymer particles (A), and the polymer particles (B) with respect to 100 parts by weight of each adhesive composition are as described in the “Composition composition” column of Table 1. Table 1 shows the results of the number of fracture cycles and the type of fracture measured or specified by conducting a fatigue test using each adhesive composition.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 なお表1において示した各原料の詳細は以下のとおりである。
 エポキシ樹脂:ビスフェノールA型エポキシ樹脂(jER828およびjER1001、三菱化学社製)。
 コアシェルポリマー粒子(A)分散エポキシ樹脂組成物:製造例3に記載。
 ポリマー粒子(B)分散エポキシ樹脂組成物:製造例4に記載。
 硬化剤:ジアミノジフェニルスルホン(DDS)(スミキュアS、住友化学社製)
The details of each raw material shown in Table 1 are as follows.
Epoxy resin: bisphenol A type epoxy resin (jER828 and jER1001, manufactured by Mitsubishi Chemical Corporation).
Core-shell polymer particles (A) dispersed epoxy resin composition: described in Production Example 3.
Polymer particle (B) dispersed epoxy resin composition: described in Production Example 4.
Curing agent: Diaminodiphenyl sulfone (DDS) (SumiCure S, manufactured by Sumitomo Chemical Co., Ltd.)
 実施例1~5は、それぞれ、エポキシ樹脂組成物において、適切な配合比率で、コアシェルポリマー粒子(A)とポリマー粒子(B)がともに一次粒子として分散しており、疲労試験における破断サイクル数が多く、耐疲労性が大きく向上し、かつ、疲労破壊時の破壊形式が凝集破壊(CF)であり、信頼性が高い接着剤組成物が得られたことが分かる。これは、図3に示したように、コアシェルポリマー粒子(A)によって接着剤層を高靭化すると共に、ポリマー粒子(B)によって接着剤層中に疲労破壊時の亀裂を誘起できるためと考えられる。 In each of Examples 1 to 5, the core-shell polymer particles (A) and the polymer particles (B) are dispersed as primary particles at an appropriate blending ratio in the epoxy resin composition, and the number of fracture cycles in the fatigue test is In many cases, the fatigue resistance is greatly improved, and the failure mode at the time of fatigue failure is cohesive failure (CF), which indicates that an adhesive composition having high reliability was obtained. This is because, as shown in FIG. 3, the core-shell polymer particles (A) can make the adhesive layer tough, and the polymer particles (B) can induce cracks during fatigue failure in the adhesive layer. It is done.
 比較例1は、コアシェルポリマー粒子(A)、ポリマー粒子(B)いずれも含まないエポキシ樹脂組成物であり、比較例2及び3は、エポキシ樹脂組成物においてコアシェルポリマー粒子(A)が分散しているが、ポリマー粒子(B)を含まないものである。比較例2及び3では、比較例1と比較して、疲労試験における破断サイクル数が向上せず、また、疲労破壊時の破壊形式も比較例1と同様、界面破壊(AF)となった。これは図1に示したように、接着剤層中に亀裂が進展するには抵抗が大きく、界面破壊を誘起したためと考えられる。 Comparative Example 1 is an epoxy resin composition containing neither the core-shell polymer particles (A) nor the polymer particles (B). In Comparative Examples 2 and 3, the core-shell polymer particles (A) are dispersed in the epoxy resin composition. However, the polymer particles (B) are not included. In Comparative Examples 2 and 3, as compared with Comparative Example 1, the number of fracture cycles in the fatigue test was not improved, and the failure mode at the time of fatigue failure was interface failure (AF) as in Comparative Example 1. This is presumably because, as shown in FIG. 1, resistance was large for cracks to propagate in the adhesive layer, and interface fracture was induced.
 また、比較例4はコアシェルポリマー粒子(A)を含まずポリマー粒子(B)が分散しているエポキシ樹脂組成物であり、比較例5は、コアシェルポリマー粒子(A)とポリマー粒子(B)双方が分散しているが、コアシェルポリマー粒子(A)に対するポリマー粒子(B)の配合比率が高いエポキシ樹脂組成物である。これらの比較例では、疲労破壊時の破壊形式は凝集破壊(CF)であったが、疲労試験における破断サイクル数が向上しなかった。コアシェルポリマー粒子(A)を含まない又はその配合比率が少ないため、接着剤層の靱性が向上しなかったためと考えられる。 Comparative Example 4 is an epoxy resin composition that does not contain core-shell polymer particles (A) and in which polymer particles (B) are dispersed, and Comparative Example 5 includes both core-shell polymer particles (A) and polymer particles (B). Is an epoxy resin composition having a high blending ratio of the polymer particles (B) to the core-shell polymer particles (A). In these comparative examples, the fracture mode at the time of fatigue fracture was cohesive fracture (CF), but the number of fracture cycles in the fatigue test was not improved. It is considered that the toughness of the adhesive layer was not improved because the core-shell polymer particles (A) were not included or the blending ratio was small.
 (実施例6,7および比較例6,7)
 表2の「混合比」の欄に記載の配合量に沿って、エポキシ樹脂、コアシェルポリマー粒子(A)分散エポキシ樹脂組成物、ポリマー粒子(B)、及び、硬化剤を自転・公転ミキサー((株)シンキー製)で混合し、接着剤組成物を得た。なお、配合量は重量基準である。得られた接着剤組成物中でコアシェルポリマー粒子(A)およびポリマー粒子(B)が一次粒子として分散していることをマイクロトラックUPA150(日機装株式会社製)で確認した。
(Examples 6 and 7 and Comparative Examples 6 and 7)
According to the blending amount described in the column of “Mixing ratio” in Table 2, the epoxy resin, the core-shell polymer particles (A) dispersed epoxy resin composition, the polymer particles (B), and the curing agent are rotated and revolved (( And an adhesive composition was obtained. The blending amount is based on weight. It was confirmed by Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.) that the core-shell polymer particles (A) and the polymer particles (B) were dispersed as primary particles in the obtained adhesive composition.
 各接着剤組成物100重量部に対するエポキシ樹脂、コアシェルポリマー粒子(A)、及び、ポリマー粒子(B)の配合量は、表2の「配合組成」の欄に記載のとおりである。各接着剤組成物を用いて疲労試験を行って測定または特定した破断サイクル数及び破壊形式の結果を、表2に示す。 The compounding amounts of the epoxy resin, the core-shell polymer particles (A), and the polymer particles (B) with respect to 100 parts by weight of each adhesive composition are as described in the “Composition composition” column of Table 2. Table 2 shows the results of the number of fracture cycles and the type of fracture measured or specified by conducting a fatigue test using each adhesive composition.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 なお表2において示した各原料の詳細は、以下に示したもの以外は、表1で示した各原料の詳細と同じである。
ポリマー粒子(B):
N-3:ポリプロピレン球状粒子、PPW-5(体積平均粒子径5μm、(セイシン企業社製)
N-4:ポリテトラフルオロエチレン球状粒子、ルブロンL-5(体積平均粒子径5μm、ダイキン社製)
N-5:ポリテトラフルオロエチレン球状粒子、ルブリカントL169J(体積平均粒子径17μm、旭硝子社製)
The details of each raw material shown in Table 2 are the same as the details of each raw material shown in Table 1 except for those shown below.
Polymer particles (B):
N-3: Polypropylene spherical particles, PPW-5 (volume average particle diameter 5 μm, manufactured by Seishin Enterprise Co., Ltd.)
N-4: Polytetrafluoroethylene spherical particles, Lubron L-5 (volume average particle diameter 5 μm, manufactured by Daikin)
N-5: Polytetrafluoroethylene spherical particles, Lubricant L169J (volume average particle diameter 17 μm, manufactured by Asahi Glass Co., Ltd.)
 実施例6~7は、それぞれ、ポリマー粒子(B)を構成する材料を変更したものであるが、エポキシ樹脂組成物において、適切な配合比率で、コアシェルポリマー粒子(A)とポリマー粒子(B)がともに一次粒子として分散しており、疲労試験における破断サイクル数が多く、耐疲労性が大きく向上し、かつ、疲労破壊時の破壊形式が凝集破壊(CF)であり、信頼性が高い接着剤組成物が得られたことが分かる。一方、比較例6は、体積平均粒子径が17μmと大きいポリマー粒子(B)を使用したエポキシ樹脂組成物であり、比較例7は、コアシェルポリマー粒子(A)に対するポリマー粒子(B)の配合比率が低いエポキシ樹脂組成物である。これらの比較例では、疲労試験における破断サイクル数が向上せず、また、疲労破壊時の破壊形式も界面破壊(AF)となった。 In Examples 6 to 7, the materials constituting the polymer particles (B) were changed, but in the epoxy resin composition, the core-shell polymer particles (A) and the polymer particles (B) were mixed at an appropriate blending ratio. Are dispersed as primary particles, have a large number of fracture cycles in fatigue tests, greatly improve fatigue resistance, and the fracture mode at the time of fatigue fracture is cohesive fracture (CF), which is a highly reliable adhesive It can be seen that a composition was obtained. On the other hand, Comparative Example 6 is an epoxy resin composition using polymer particles (B) having a volume average particle diameter as large as 17 μm, and Comparative Example 7 is a blending ratio of polymer particles (B) to core-shell polymer particles (A). Is a low epoxy resin composition. In these comparative examples, the number of fracture cycles in the fatigue test was not improved, and the fracture mode at the time of fatigue fracture was also interface fracture (AF).
11 11′ 基材
12 12′ スペーサー(アルミ板)
13 13′ スペーサー(ニトフロンテープ)
14 接着剤組成物
15 接着剤層
11 11 'Base material 12 12' Spacer (aluminum plate)
13 13 'Spacer (Nitoflon tape)
14 Adhesive composition 15 Adhesive layer

Claims (8)

  1.  接着性樹脂、
     体積平均粒子径が10~300nmのコアシェルポリマー粒子(A)、及び
     体積平均粒子径が400nm~10000nmのポリマー粒子(B)を含有し、
     コアシェルポリマー粒子(A):ポリマー粒子(B)の重量比率が1:2~2:1であり、
     コアシェルポリマー粒子(A)とポリマー粒子(B)それぞれが接着剤組成物中で1次粒子として分散していることを特徴とする接着剤組成物。
    Adhesive resin,
    A core-shell polymer particle (A) having a volume average particle diameter of 10 to 300 nm, and a polymer particle (B) having a volume average particle diameter of 400 nm to 10,000 nm,
    The weight ratio of core-shell polymer particles (A): polymer particles (B) is 1: 2 to 2: 1,
    Each of the core-shell polymer particles (A) and the polymer particles (B) is dispersed as primary particles in the adhesive composition.
  2.  ポリマー粒子(B)が中空の構造を有しないポリマー粒子である請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the polymer particles (B) are polymer particles having no hollow structure.
  3.  ポリマー粒子(B)がコアシェルポリマー粒子である請求項1又は2に記載の接着剤組成物。 The adhesive composition according to claim 1 or 2, wherein the polymer particles (B) are core-shell polymer particles.
  4.  前記コアシェルポリマー粒子(A)のコア層、または、前記ポリマー粒子(B)のコア層が、
     (i)ジエン系単量体及び(メタ)アクリル酸エステル系単量体からなる群より選ばれる1種以上の単量体50重量%以上、及び、他の共重合可能なビニル単量体50重量%未満から構成されるゴム弾性体、
     (ii)ポリシロキサンゴム系弾性体、
     (iii)芳香族ビニル架橋体、または
     (iv)前記(i)~(iii)のうち2種以上の混合物からなり、
     前記他の共重合可能なビニル単量体が、芳香族ビニル化合物、シアン化ビニル化合物、不飽和カルボン酸誘導体、(メタ)アクリル酸アミド誘導体、及び、マレイミド誘導体からなる群より選ばれる1種以上である、請求項1~3のいずれかに記載の接着剤組成物。
    The core layer of the core-shell polymer particles (A) or the core layer of the polymer particles (B)
    (I) 50% by weight or more of at least one monomer selected from the group consisting of diene monomers and (meth) acrylic acid ester monomers, and other copolymerizable vinyl monomers 50 Rubber elastic body composed of less than wt%,
    (Ii) a polysiloxane rubber-based elastic body,
    (Iii) a cross-linked aromatic vinyl, or (iv) a mixture of two or more of (i) to (iii) above,
    The other copolymerizable vinyl monomer is at least one selected from the group consisting of aromatic vinyl compounds, vinyl cyanide compounds, unsaturated carboxylic acid derivatives, (meth) acrylic acid amide derivatives, and maleimide derivatives. The adhesive composition according to any one of claims 1 to 3, wherein
  5.  前記コアシェルポリマー粒子(A)のシェル層が反応性基を含む、請求項1~4のいずれかに記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, wherein the shell layer of the core-shell polymer particles (A) contains a reactive group.
  6.  前記反応性基がエポキシ基を含む、請求項5に記載の接着剤組成物。 The adhesive composition according to claim 5, wherein the reactive group contains an epoxy group.
  7.  前記ポリマー粒子(B)のシェル層を構成するポリマーに含まれる、反応性基を有する単量体単位の含有量が、ポリマー粒子(B)100重量部に対し0~5重量部である、請求項3~6のいずれかに記載の接着剤組成物。 The content of the monomer unit having a reactive group contained in the polymer constituting the shell layer of the polymer particle (B) is 0 to 5 parts by weight with respect to 100 parts by weight of the polymer particle (B). Item 7. The adhesive composition according to any one of Items 3 to 6.
  8.  前記接着性樹脂が、エポキシ樹脂を含む、請求項1~7のいずれかに記載の接着剤組成物。
     
     
    The adhesive composition according to any one of claims 1 to 7, wherein the adhesive resin contains an epoxy resin.

PCT/JP2019/012966 2018-03-28 2019-03-26 Adhesive composition WO2019189238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510949A JP7184874B2 (en) 2018-03-28 2019-03-26 adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061515 2018-03-28
JP2018-061515 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189238A1 true WO2019189238A1 (en) 2019-10-03

Family

ID=68062143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012966 WO2019189238A1 (en) 2018-03-28 2019-03-26 Adhesive composition

Country Status (2)

Country Link
JP (1) JP7184874B2 (en)
WO (1) WO2019189238A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955540A (en) * 1994-02-22 1999-09-21 The Dow Chemical Company Process for the preparation of multimodal ABS polymers
JP2012177013A (en) * 2011-02-25 2012-09-13 Adeka Corp Epoxy resin composition and insulating adhesive
JP2015501853A (en) * 2011-11-09 2015-01-19 サイテク・テクノロジー・コーポレーシヨン Structural adhesives and their application in bonding
WO2015064561A1 (en) * 2013-10-29 2015-05-07 株式会社カネカ Curable resin composition containing polymer fine particles and having improved storage stability
JP2015108077A (en) * 2013-12-05 2015-06-11 アイシン化工株式会社 Structural adhesive composition
JP2015529266A (en) * 2012-09-07 2015-10-05 ダウ グローバル テクノロジーズ エルエルシー Reinforced epoxy resin compound

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130377B1 (en) * 2007-10-18 2012-03-27 히다치 가세고교 가부시끼가이샤 Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
EP3750568A1 (en) * 2012-09-06 2020-12-16 Allergan, Inc. Hyaluronic acid/collagen-based dermal filler compositions and methods for making same
JP6700563B2 (en) * 2015-02-20 2020-05-27 株式会社スリーボンド Multi-component adhesive, method for producing reaction product thereof, and method for producing laminate
JP2016185632A (en) * 2015-03-27 2016-10-27 東レ株式会社 Laminated polyester film
JP6722477B2 (en) * 2015-04-09 2020-07-15 株式会社カネカ Curable resin composition containing fine polymer particles having improved peel adhesion and impact peel resistance
JP6808931B2 (en) * 2015-11-27 2021-01-06 日本ゼオン株式会社 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955540A (en) * 1994-02-22 1999-09-21 The Dow Chemical Company Process for the preparation of multimodal ABS polymers
JP2012177013A (en) * 2011-02-25 2012-09-13 Adeka Corp Epoxy resin composition and insulating adhesive
JP2015501853A (en) * 2011-11-09 2015-01-19 サイテク・テクノロジー・コーポレーシヨン Structural adhesives and their application in bonding
JP2015529266A (en) * 2012-09-07 2015-10-05 ダウ グローバル テクノロジーズ エルエルシー Reinforced epoxy resin compound
WO2015064561A1 (en) * 2013-10-29 2015-05-07 株式会社カネカ Curable resin composition containing polymer fine particles and having improved storage stability
JP2015108077A (en) * 2013-12-05 2015-06-11 アイシン化工株式会社 Structural adhesive composition

Also Published As

Publication number Publication date
JPWO2019189238A1 (en) 2021-03-18
JP7184874B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP6061837B2 (en) Structural adhesive composition
US9976027B2 (en) Polymer fine particle-containing curable resin composition having improved storage stability
KR100531712B1 (en) Water-based coating composition for inner surface of can and method of coating inner surface of can
JP6302207B2 (en) Method for manufacturing vehicle member
KR101717462B1 (en) Vinyl ester resin composition that contains polymer fine particles, process for production of same, and cured products of same
TW201529699A (en) Core-shell polymer-containing epoxy resin composition, cured product of same and method for producing same
JP2005255822A (en) Rubber-reinforced epoxy resin product
JP6694425B2 (en) Curable epoxy resin composition having excellent thixotropy
KR20140095520A (en) Polymer powder, curable resin composition, and cured product thereof
JP6966154B2 (en) Curable Compositions and Adhesives
JP6632401B2 (en) Structural adhesive composition
JP2010059388A (en) Epoxy resin composition and structural adhesive
JP2014141604A (en) Polymer fine particles-containing curable resin composition with improved storage stability
WO2017179653A1 (en) Toughened epoxy resin composition
JP2015532354A (en) Polymer particle dispersion using polyol
CN109476972B (en) Structural adhesive composition having good thread breakage properties and capable of being applied intermittently
JP2019172895A (en) Epoxy resin composition for paint
JPWO2019208569A1 (en) An adhesive method using a polymer fine particle-containing curable resin composition having excellent workability, and a laminate obtained by using the adhesive method.
WO2022138807A1 (en) Curable resin composition and adhesive agent
JP6523611B2 (en) Laminate in which dissimilar members are joined by a curable resin composition, and structural panel for vehicle
WO2019189238A1 (en) Adhesive composition
US20200017622A1 (en) Curable thermosetting resin compositions with improved mechanical properties
JP7290446B2 (en) Curable resin composition and use thereof
JP6722477B2 (en) Curable resin composition containing fine polymer particles having improved peel adhesion and impact peel resistance
JPH107750A (en) Method for reinforcing concrete structure, radical-polymerizable primer for use in the method, and composition forming radical-polymerized cured resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776904

Country of ref document: EP

Kind code of ref document: A1