JP6808931B2 - Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery - Google Patents

Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery Download PDF

Info

Publication number
JP6808931B2
JP6808931B2 JP2015232300A JP2015232300A JP6808931B2 JP 6808931 B2 JP6808931 B2 JP 6808931B2 JP 2015232300 A JP2015232300 A JP 2015232300A JP 2015232300 A JP2015232300 A JP 2015232300A JP 6808931 B2 JP6808931 B2 JP 6808931B2
Authority
JP
Japan
Prior art keywords
adhesive layer
particulate polymer
secondary battery
aqueous secondary
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015232300A
Other languages
Japanese (ja)
Other versions
JP2017098203A (en
Inventor
一輝 浅井
一輝 浅井
裕美 高松
裕美 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2015232300A priority Critical patent/JP6808931B2/en
Publication of JP2017098203A publication Critical patent/JP2017098203A/en
Application granted granted Critical
Publication of JP6808931B2 publication Critical patent/JP6808931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Graft Or Block Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cell Separators (AREA)

Description

本発明は、非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池に関するものである。 The present invention relates to a composition for a non-aqueous secondary battery adhesive layer, a non-aqueous secondary battery adhesive layer, and a non-aqueous secondary battery.

リチウムイオン二次電池などの非水系二次電池(以下、「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、二次電池は、一般に、正極、負極、及び、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。 Non-aqueous secondary batteries such as lithium-ion secondary batteries (hereinafter, may be abbreviated as "secondary batteries") are small and lightweight, have high energy density, and can be repeatedly charged and discharged. , Used in a wide range of applications. A secondary battery generally includes a positive electrode, a negative electrode, and a battery member such as a separator that separates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.

ここで、近年、二次電池においては、電池部材同士を接着するための接着層を設けた電池部材が使用されている。接着層を設けることで二次電池の内部抵抗が増大し、二次電池の低温出力特性が劣化することを抑制するために、電解液に対する膨潤度(以下、「電解液膨潤度」ともいう)が比較的高い重合体をコア部とし、電解液膨潤度が比較的低い重合体をシェル部とするコアシェル構造を有する粒子状重合体を含む接着層用組成物や、かかる組成物を用いて形成された接着層を備えるセパレータ基材が提案されてきた(例えば、特許文献1参照)。特許文献1に記載の接着層用組成物又はセパレータによれば、二次電池の低温出力特性を向上させることができる。 Here, in recent years, in a secondary battery, a battery member provided with an adhesive layer for adhering the battery members to each other has been used. The degree of swelling with respect to the electrolytic solution (hereinafter, also referred to as "degree of swelling of the electrolytic solution") in order to suppress the deterioration of the low temperature output characteristics of the secondary battery due to the increase in the internal resistance of the secondary battery by providing the adhesive layer. A composition for an adhesive layer containing a particulate polymer having a core-shell structure having a polymer having a relatively high swelling degree as a core portion and a polymer having a relatively low degree of swelling of an electrolytic solution as a shell portion, or a composition formed by using such a composition. A separator base material having an adhesive layer has been proposed (see, for example, Patent Document 1). According to the adhesive layer composition or separator described in Patent Document 1, the low temperature output characteristics of the secondary battery can be improved.

国際公開第2015/005145号International Publication No. 2015/005145

特許文献1に記載の従来の接着層用組成物は、一の粒子状重合体にて高膨潤度の重合体と低膨潤度の重合体を並存させることで、双方の重合体の特性を発揮させて、二次電池の低温出力特性を向上させている。
ここで、非水系二次電池の製造に際しては、セパレータ基材などの基材に接着層などの機能層を形成してなる電池部材を、そのまま捲き取って保存及び運搬することが一般的であるため、電池部材には、保存及び運搬中に接着層を介して隣接する電池部材同士が膠着する(即ち、ブロッキングする)のを抑制するという要求がある。しかし、上記従来の接着層用組成物は、二次電池の低温出力特性の向上に加えて、ブロッキングを抑制するという点で改善の余地があった。
The conventional composition for an adhesive layer described in Patent Document 1 exhibits the characteristics of both polymers by coexisting a polymer having a high swelling degree and a polymer having a low swelling degree in one particulate polymer. The low temperature output characteristics of the secondary battery are improved.
Here, in the manufacture of a non-aqueous secondary battery, it is common to wind up the battery member, which is formed by forming a functional layer such as an adhesive layer on a base material such as a separator base material, and store and transport the battery member as it is. Therefore, the battery member is required to prevent the adjacent battery members from sticking to each other (that is, blocking) via the adhesive layer during storage and transportation. However, the above-mentioned conventional composition for an adhesive layer has room for improvement in that it suppresses blocking in addition to improving the low temperature output characteristics of the secondary battery.

そこで、本発明は接着層に優れた耐ブロッキング性を発揮させることができ、かつ、二次電池に優れた低温出力特性を発揮させることができる、非水系二次電池接着層用組成物を提供することを目的とする。
また、本発明は、耐ブロッキング性に優れると共に、二次電池に優れた低温出力特性を発揮させることができる非水系二次電池用接着層を提供することを目的とする。
さらに、本発明は、低温出力特性に優れる非水系二次電池を提供することを目的とする。
Therefore, the present invention provides a non-aqueous secondary battery adhesive layer composition capable of exhibiting excellent blocking resistance in the adhesive layer and exhibiting excellent low temperature output characteristics in the secondary battery. The purpose is to do.
Another object of the present invention is to provide an adhesive layer for a non-aqueous secondary battery, which is excellent in blocking resistance and can exhibit excellent low temperature output characteristics in a secondary battery.
A further object of the present invention is to provide a non-aqueous secondary battery having excellent low temperature output characteristics.

本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、体積平均粒子径D50が特定範囲内である少なくとも2種類の粒子状重合体を含有させた非水系二次電池接着層用組成物において、一方の粒子状重合体として、コア部と、所定のガラス転移温度を有するシェル部とを備えるコアシェル構造を有する粒子状重合体を用い、他方の粒子状重合体として、接着性が比較的強い粒子状重合体を用いることで、接着層の耐ブロッキング性を向上させるとともに、二次電池の低温出力特性を優れたものとすることができることを見出し、本発明を完成させた。 The present inventor has conducted diligent studies for the purpose of solving the above problems. Then, the present inventor has used the composition for a non-aqueous secondary battery adhesive layer containing at least two kinds of particulate polymers having a volume average particle diameter D50 within a specific range as one of the particulate polymers. By using a particulate polymer having a core-shell structure having a core portion and a shell portion having a predetermined glass transition temperature, and using a particulate polymer having a relatively strong adhesiveness as the other particulate polymer, The present invention has been completed by finding that the blocking resistance of the adhesive layer can be improved and the low temperature output characteristics of the secondary battery can be improved.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池接着層用組成物は、粒子状重合体A、粒子状重合体B及び結着材を含む非水系二次電池接着層用組成物であって、前記粒子状重合体Aが、80℃未満である少なくとも一つのガラス転移温度を有し、前記粒子状重合体Bが、コア部と、ガラス転移温度が80℃以上である、前記コア部の外表面を覆うシェル部とを備えるコアシェル構造を有し、さらに、前記粒子状重合体Aの体積平均粒子径D50A及び前記粒子状重合体Bの体積平均粒子径D50Bの両方が、0.1μm以上5μm以下であることを特徴とする。このように、共に、体積平均粒子径D50が特定範囲内であって、ガラス転移温度が低く接着性を有する粒子状重合体Aと、ガラス転移温度が比較的高いシェル部を有するコアシェル構造の粒子状重合体Bとを含有させることで、耐ブロッキング性の高い接着層を形成することができ、さらに、二次電池に優れた低温出力特性を発揮させることができる組成物を得ることができる。
なお、粒子状重合体の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
That is, the present invention aims to advantageously solve the above problems, and the composition for a non-aqueous secondary battery adhesive layer of the present invention comprises a particulate polymer A, a particulate polymer B, and a binder. A composition for a non-aqueous secondary battery adhesive layer containing a coating material, wherein the particulate polymer A has at least one glass transition temperature of less than 80 ° C., and the particulate polymer B is a core. It has a core-shell structure including a portion and a shell portion covering the outer surface of the core portion having a glass transition temperature of 80 ° C. or higher, and further, the volume average particle diameter D50 A of the particulate polymer A and the particles. Both of the volume average particle diameters D50 B of the state polymer B are 0.1 μm or more and 5 μm or less. As described above, both of the particles having a core-shell structure having a particulate polymer A having a volume average particle diameter D50 within a specific range and having a low glass transition temperature and adhesiveness and a shell portion having a relatively high glass transition temperature. By containing the state polymer B, an adhesive layer having high blocking resistance can be formed, and a composition capable of exhibiting excellent low temperature output characteristics in a secondary battery can be obtained.
The "glass transition temperature" of the particulate polymer can be measured by using the measuring method described in the examples of the present specification.

ここで、本発明の非水系二次電池接着層用組成物において、前記粒子状重合体Aの含有量が、前記粒子状重合体Bの含有量に対して、質量基準で、2/3倍以上9倍以下であることが好ましい。このように、接着性が異なる2種類の粒子状重合体の含有比率を特定範囲とすることで、接着層の耐ブロッキング性を一層向上させるとともに、接着層の接着性を向上させることができ、さらに、二次電池の低温出力特性を一層向上させることができるからである。 Here, in the composition for the non-aqueous secondary battery adhesive layer of the present invention, the content of the particulate polymer A is 2/3 times the content of the particulate polymer B on a mass basis. It is preferably 9 times or more and 9 times or less. By setting the content ratio of the two types of particulate polymers having different adhesiveness within a specific range in this way, the blocking resistance of the adhesive layer can be further improved and the adhesiveness of the adhesive layer can be improved. Further, the low temperature output characteristics of the secondary battery can be further improved.

また、本発明の非水系二次電池接着層用組成物は、前記粒子状重合体Bの体積平均粒子径D50Bが、前記粒子状重合体Aの体積平均粒子径D50Aの0.5倍以上5倍以下であることが好ましい。このように、体積平均粒子径の比率が特定範囲にある2つの粒子状重合体を含有させることで、接着層の耐ブロッキング性を一層向上させるとともに、接着性の密度を低減することができ、二次電池の低温出力特性を向上させることができるからである。 Further, in the composition for the non-aqueous secondary battery adhesive layer of the present invention, the volume average particle diameter D50 B of the particulate polymer B is 0.5 times the volume average particle diameter D50 A of the particulate polymer A. It is preferably 5 times or more and 5 times or less. By containing the two particulate polymers in which the ratio of the volume average particle diameters is in a specific range in this way, the blocking resistance of the adhesive layer can be further improved and the adhesive density can be reduced. This is because the low temperature output characteristics of the secondary battery can be improved.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用接着層は、上述の非水系二次電池接着層用組成物の何れかを用いて形成されることを特徴とする。このように、上述の組成物の何れかを用いれば、耐ブロッキング性に優れ、かつ、二次電池に優れた低温出力特性を発揮させることができる接着層を得ることができる。 The present invention also aims to advantageously solve the above problems, and the adhesive layer for a non-aqueous secondary battery of the present invention is any of the above-mentioned compositions for a non-aqueous secondary battery adhesive layer. It is characterized in that it is formed using. As described above, by using any of the above-mentioned compositions, it is possible to obtain an adhesive layer which is excellent in blocking resistance and can exhibit excellent low temperature output characteristics in a secondary battery.

さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述の非水系二次電池用接着層を備えることを特徴とする。このように、上述の接着層を用いれば、低温出力特性に優れる非水系二次電池を得ることができる。 Furthermore, the present invention aims to advantageously solve the above problems, and the non-aqueous secondary battery of the present invention is characterized by including the above-mentioned adhesive layer for a non-aqueous secondary battery. As described above, by using the above-mentioned adhesive layer, a non-aqueous secondary battery having excellent low temperature output characteristics can be obtained.

本発明によれば、接着層に優れた耐ブロッキング性を発揮させることができ、かつ、二次電池に優れた低温出力特性を発揮させることができる非水系二次電池接着層用組成物が得られる。
また、本発明によれば、耐ブロッキング性に優れ、かつ、二次電池に優れた低温出力特性を発揮させることができる非水系二次電池用接着層が得られる。
さらに、本発明によれば、低温出力特性に優れる非水系二次電池が得られる。
According to the present invention, a composition for a non-aqueous secondary battery adhesive layer can be obtained, which can exhibit excellent blocking resistance in the adhesive layer and exhibit excellent low temperature output characteristics in the secondary battery. Be done.
Further, according to the present invention, it is possible to obtain an adhesive layer for a non-aqueous secondary battery which is excellent in blocking resistance and can exhibit excellent low temperature output characteristics in a secondary battery.
Further, according to the present invention, a non-aqueous secondary battery having excellent low temperature output characteristics can be obtained.

以下、本発明の実施形態について詳細に説明する。
ここで、本発明の非水系二次電池接着層用組成物は、本発明の非水系二次電池用接着層を形成する際に用いることができる。また、本発明の非水系二次電池用接着層は、電池部材同士を接着する際に用いることができる。そして、本発明の非水系二次電池は、本発明の非水系二次電池用接着層を備えることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the composition for a non-aqueous secondary battery adhesive layer of the present invention can be used when forming the non-aqueous secondary battery adhesive layer of the present invention. Further, the adhesive layer for a non-aqueous secondary battery of the present invention can be used when adhering battery members to each other. The non-aqueous secondary battery of the present invention is characterized by including the adhesive layer for the non-aqueous secondary battery of the present invention.

(非水系二次電池接着層用組成物)
本発明の非水系二次電池接着層用組成物は、粒子状重合体A、粒子状重合体B、及び結着材を含む。そして、粒子状重合体Aが、80℃未満である少なくとも一つのガラス転移温度を有する。さらに、粒子状重合体Bが、コア部と、ガラス転移温度が80℃以上である、コア部の外表面を覆うシェル部とを備えるコアシェル構造を有する。さらに、粒子状重合体Aの体積平均粒子径D50A及び粒子状重合体Bの体積平均粒子径D50Bが、0.1μm以上5μm以下である。
ここで、結着材に併せて、上述のような粒子状重合体A及びBを非水系二次電池接着層用組成物に配合することで、上述したような優れた効果が得られる理由は明らかではないが、以下の通りであると推察される。
すなわち、コアシェル構造を有する粒子状重合体Bは、そのシェル部のガラス転移温度が比較的高く、接着層用組成物に配合された場合に主として耐ブロッキング性を向上させるように機能する。一方、粒子状重合体Aは、粒子状重合体Bよりも低い、少なくとも一つの80℃未満のガラス転移温度を有し、接着性に富む。そして、接着層中において、粒子状重合体A及びBが存在することで、粒子状重合体Aにより接着層の接着性を維持しながらも、粒子状重合体Bの存在により接着層のブロッキングを抑制することができるようになると推察される。
さらに、二次電池内におけるイオン拡散性を向上させるためには、接着層中にリチウムイオンなどの電池反応に寄与するイオンが通過可能な間隙を設けることが好ましい。そこで、本発明者らが更に検討をしたところ、粒子状重合体A及びBとして、0.1μm以上5μm以下という特定範囲の体積平均粒子径D50を有するものを配合することで、接着層の接着性及び耐ブロッキング性に併せて、二次電池の低温出力特性も向上させることができることを新たに見出した。これは、上記特定範囲の体積平均粒子径D50を有する粒子状重合体A及びBの間において、電池反応に寄与するイオンの通過に適したサイズの間隙が創出されやすく、これにより、接着層の抵抗を下げることができるので、二次電池の低温出力特性を向上させることができるためであると推察される。
(Composition for non-aqueous secondary battery adhesive layer)
The composition for a non-aqueous secondary battery adhesive layer of the present invention contains a particulate polymer A, a particulate polymer B, and a binder. And the particulate polymer A has at least one glass transition temperature of less than 80 ° C. Further, the particulate polymer B has a core-shell structure including a core portion and a shell portion covering the outer surface of the core portion having a glass transition temperature of 80 ° C. or higher. Further, the volume average particle diameter D50 A of the particulate polymer A and the volume average particle diameter D50 B of the particulate polymer B are 0.1 μm or more and 5 μm or less.
Here, the reason why the above-mentioned excellent effects can be obtained by blending the above-mentioned particulate polymers A and B with the composition for the non-aqueous secondary battery adhesive layer together with the binder. Although it is not clear, it is presumed to be as follows.
That is, the particulate polymer B having a core-shell structure has a relatively high glass transition temperature in the shell portion, and functions mainly to improve blocking resistance when blended in the composition for an adhesive layer. On the other hand, the particulate polymer A has at least one glass transition temperature of less than 80 ° C., which is lower than that of the particulate polymer B, and is rich in adhesiveness. The presence of the particulate polymers A and B in the adhesive layer prevents the adhesive layer from being blocked by the presence of the particulate polymer B while maintaining the adhesiveness of the adhesive layer by the particulate polymer A. It is presumed that it will be possible to suppress it.
Further, in order to improve the ion diffusivity in the secondary battery, it is preferable to provide a gap in the adhesive layer through which ions contributing to the battery reaction such as lithium ions can pass. Therefore, as a result of further studies by the present inventors, the adhesive layer is adhered by blending the particulate polymers A and B having a volume average particle diameter D50 in a specific range of 0.1 μm or more and 5 μm or less. It was newly found that the low temperature output characteristics of the secondary battery can be improved in addition to the properties and blocking resistance. This makes it easy to create gaps of a size suitable for the passage of ions that contribute to the battery reaction between the particulate polymers A and B having the volume average particle diameter D50 in the specific range, whereby the adhesive layer It is presumed that this is because the resistance can be lowered and the low temperature output characteristics of the secondary battery can be improved.

<粒子状重合体>
本発明の非水系二次電池接着層用組成物が含有する粒子状重合体A及びBについて、以下に性状及び組成について説明する。ここで、粒子状重合体とは、組成物やスラリー中において粒子形状を維持した状態で分散している成分である。なお、粒子状重合体は、組成物を用いて形成した接着層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
<Particulate polymer>
The properties and composition of the particulate polymers A and B contained in the composition for the non-aqueous secondary battery adhesive layer of the present invention will be described below. Here, the particulate polymer is a component dispersed in the composition or slurry while maintaining the particle shape. The particulate polymer may have a particle shape or any other shape in the adhesive layer formed by using the composition.

−粒子状重合体の性状−
[粒子状重合体A]
80℃未満である少なくとも一つのガラス転移温度を有する粒子状重合体Aは、本発明の非水系二次電池接着層用組成物を用いた接着層における接着性を向上させるとともに、当該接着層を備える二次電池に優れた低温出力特性を発揮させうる成分である。ここで、粒子状重合体Aの構造に応じて、上述した「80℃未満である少なくとも一つのガラス転移温度」は、粒子状重合体Aのどの部分(又は全体)のガラス転移温度に対応するものであるかということについて概略的に説明する。すなわち、粒子状重合体Aがコアシェル構造を有さない、単一の重合体からなる場合には、上記「80℃未満である少なくとも一つのガラス転移温度」は粒子状重合体A全体のガラス転移温度である。一方、粒子状重合体Aがコアシェル構造を有する場合には、「80℃未満である少なくとも一つのガラス転移温度」は、シェル部のガラス転移温度であることが好ましい。
-Characteristics of particulate polymer-
[Particulate Polymer A]
The particulate polymer A having at least one glass transition temperature of less than 80 ° C. improves the adhesiveness in the adhesive layer using the composition for the non-aqueous secondary battery adhesive layer of the present invention, and makes the adhesive layer. It is a component that can bring out excellent low-temperature output characteristics in the secondary battery provided. Here, depending on the structure of the particulate polymer A, the above-mentioned "at least one glass transition temperature of less than 80 ° C." corresponds to the glass transition temperature of any part (or the whole) of the particulate polymer A. I will briefly explain whether it is a thing. That is, when the particulate polymer A does not have a core-shell structure and is composed of a single polymer, the above-mentioned "at least one glass transition temperature of less than 80 ° C." is the glass transition of the entire particulate polymer A. The temperature. On the other hand, when the particulate polymer A has a core-shell structure, the "at least one glass transition temperature of less than 80 ° C." is preferably the glass transition temperature of the shell portion.

[[粒子状重合体Aのガラス転移温度]]
また、上記「80℃未満である少なくとも一つのガラス転移温度」は、80℃未満であることが好ましく、75℃未満であることがより好ましく、70℃未満であることがさらに好ましい。また、「80℃未満である少なくとも一つのガラス転移温度」は、通常、20℃以上である。粒子状重合体Aの「80℃未満である少なくとも一つのガラス転移温度」が上記範囲内であれば、組成物を用いて形成される接着層の電池部材間における接着性を向上させることができる。
[[Glass transition temperature of particulate polymer A]]
Further, the above-mentioned "at least one glass transition temperature of less than 80 ° C." is preferably less than 80 ° C., more preferably less than 75 ° C., and further preferably less than 70 ° C. Further, the "at least one glass transition temperature of less than 80 ° C." is usually 20 ° C. or higher. When the "at least one glass transition temperature of less than 80 ° C." of the particulate polymer A is within the above range, the adhesiveness of the adhesive layer formed by using the composition between the battery members can be improved. ..

なお、粒子状重合体Aの「80℃未満である少なくとも一つのガラス転移温度」を調整する方法としては、例えば、粒子状重合体を調製するために用いる単量体の種類及び量を適切に選択することが挙げられる。 As a method for adjusting "at least one glass transition temperature of less than 80 ° C." of the particulate polymer A, for example, the type and amount of the monomer used for preparing the particulate polymer are appropriately selected. There is a choice.

[[粒子状重合体Aの構造]]
粒子状重合体Aは、いかなる構造であってもよく、例えば、粒子形状を有する個々の重合体が個別に存在していてもよく、粒子形状を有する個々の重合体が接触して存在していてもよく、また、粒子形状を有する個々の重合体が複合化して存在していてもよい。
個々の粒子が接触または複合化して存在している場合としては、例えば、コア部とコア部の外表面を覆うシェル部とを備えるコアシェル構造を有していても良い。また、シェル部は、コア部の外表面を部分的に覆っていても良い。即ち、粒子状重合体Aのシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいない被覆態様であってもよい。
[[Structure of Particulate Polymer A]]
The particulate polymer A may have any structure, for example, individual polymers having a particle shape may be individually present, and individual polymers having a particle shape are present in contact with each other. Alternatively, individual polymers having a particle shape may be present as a composite.
When the individual particles are present in contact or in combination, for example, a core-shell structure may have a core portion and a shell portion that covers the outer surface of the core portion. Further, the shell portion may partially cover the outer surface of the core portion. That is, the shell portion of the particulate polymer A may cover the outer surface of the core portion, but may not cover the entire outer surface of the core portion.

[[粒子状重合体Aの体積平均粒子径D50A]]
粒子状重合体Aの体積平均粒子径D50Aは、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.4μm以上であることがさらに好ましく、5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることが特に好ましい。粒子状重合体Aの体積平均粒子径D50Aが上記下限値以上であれば、粒子状重合体Aの凝集性が過度に高まることを抑制して、接着層内にて粒子状重合体Aを適度に分散させることができ、接着層を備える二次電池の内部抵抗の上昇を抑制し、二次電池の低温出力特性を向上させることができる。粒子状重合体Aの体積平均粒子径D50Aが上記上限値以下であれば、接着層の接着性を一層向上させることができる。
[[Volume average particle diameter D50 A of particulate polymer A ]]
The volume average particle diameter D50 A of the particulate polymer A is preferably 0.1 μm or more, more preferably 0.3 μm or more, further preferably 0.4 μm or more, and 5 μm or less. It is preferably 3 μm or less, and particularly preferably 2 μm or less. When the volume average particle diameter D50 A of the particulate polymer A is not more than the above lower limit value, it is possible to suppress the excessive increase in the cohesiveness of the particulate polymer A and to form the particulate polymer A in the adhesive layer. It can be appropriately dispersed, the increase in internal resistance of the secondary battery provided with the adhesive layer can be suppressed, and the low temperature output characteristics of the secondary battery can be improved. When the volume average particle diameter D50 A of the particulate polymer A is not more than the above upper limit value, the adhesiveness of the adhesive layer can be further improved.

なお、粒子状重合体Aの体積平均粒子径D50Aは、本明細書の実施例に記載の測定方法を用いて測定することができる。
また、粒子状重合体Aがコアシェル構造を有する場合には、コア部及びシェル部を含む全体の粒子径が上記範囲内であることが好ましい。
また、粒子状重合体Aの体積平均粒子径D50Aは、重合時に添加する乳化剤や単量体の量などに基づいて、調節することができる。
The volume average particle diameter D50 A of the particulate polymer A can be measured by using the measuring method described in the examples of the present specification.
When the particulate polymer A has a core-shell structure, the total particle size including the core portion and the shell portion is preferably within the above range.
Further, the volume average particle diameter D50 A of the particulate polymer A can be adjusted based on the amount of emulsifier or monomer added at the time of polymerization.

[粒子状重合体B]
コア部と、ガラス転移温度が80℃以上である、コア部の外表面を覆うシェル部とを備えるコアシェル構造を有する粒子状重合体Bは、接着層の耐ブロッキング性を向上させうる成分である。
[Particulate Polymer B]
The particulate polymer B having a core-shell structure including a core portion and a shell portion covering the outer surface of the core portion having a glass transition temperature of 80 ° C. or higher is a component capable of improving the blocking resistance of the adhesive layer. ..

[[粒子状重合体Bのガラス転移温度]]
また、粒子状重合体Bのシェル部のガラス転移温度は、80℃以上であることが必要であり、90℃以上であることが好ましく、100℃以上であることがより好ましい。また、粒子状重合体Bのシェル部のガラス転移温度は、通常、300℃以下である。粒子状重合体Bのシェル部のガラス転移温度が上記下限値以上であれば、接着層中において粒子状重合体Bが変形しにくくなり、耐ブロッキング性が向上するとともに、当該接着層を備える二次電池の低温出力特性を向上させることができる。なお、粒子状重合体Bのガラス転移温度は、粒子状重合体Aと同様の方途により調節することができる。
[[Glass transition temperature of particulate polymer B]]
Further, the glass transition temperature of the shell portion of the particulate polymer B needs to be 80 ° C. or higher, preferably 90 ° C. or higher, and more preferably 100 ° C. or higher. The glass transition temperature of the shell portion of the particulate polymer B is usually 300 ° C. or lower. When the glass transition temperature of the shell portion of the particulate polymer B is equal to or higher than the above lower limit value, the particulate polymer B is less likely to be deformed in the adhesive layer, the blocking resistance is improved, and the adhesive layer is provided. The low temperature output characteristics of the next battery can be improved. The glass transition temperature of the particulate polymer B can be adjusted in the same manner as that of the particulate polymer A.

さらに、粒子状重合体Bのコア部のガラス転移温度が、80℃未満であることが好ましく、75℃未満であることがより好ましく、70℃未満であることが更に好ましい。また、粒子状重合体Bのコア部のガラス転移温度は、通常、20℃以上である。粒子状重合体Bのコア部のガラス転移温度が上記範囲内であれば、粒子状重合体Bに、接着層の耐ブロッキング性を向上させる機能と共に、接着性を向上させる機能を付与することができるからである。 Further, the glass transition temperature of the core portion of the particulate polymer B is preferably less than 80 ° C, more preferably less than 75 ° C, and even more preferably less than 70 ° C. The glass transition temperature of the core portion of the particulate polymer B is usually 20 ° C. or higher. When the glass transition temperature of the core portion of the particulate polymer B is within the above range, the particulate polymer B can be provided with a function of improving the blocking resistance of the adhesive layer and a function of improving the adhesiveness. Because it can be done.

[[粒子状重合体Bの体積平均粒子径D50B]]
粒子状重合体Bの体積平均粒子径D50Bは、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることがさらに好ましく、5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることがより好ましい。粒子状重合体Bの体積平均粒子径D50Bが上記下限値以上であれば、粒子状重合体Bの凝集性が過度に高まることを抑制して、接着層内にて粒子状重合体Bを適度に分散させることができ、接着層の内部抵抗の上昇を抑制し、二次電池の低温出力特性を向上させることができる。粒子状重合体Bの体積平均粒子径D50Bが上記上限値以下であれば、接着層の接着性を一層向上させることができる。なお、粒子状重合体Bの体積平均粒子径D50Bは、粒子状重合体Aの場合と同様の方途により調節することができる。また、粒子状重合体Bの体積平均粒子径D50Bは、コア部及びシェル部を含む粒子状重合体B全体としての体積平均粒子径である。
[[Volume average particle diameter D50 B of particulate polymer B ]]
The volume average particle diameter D50 B of the particulate polymer B is preferably 0.1 μm or more, more preferably 0.3 μm or more, further preferably 0.5 μm or more, and 5 μm or less. It is preferably 3 μm or less, more preferably 2 μm or less. When the volume average particle diameter D50 B of the particulate polymer B is not more than the above lower limit value, it is possible to suppress the excessive increase in the cohesiveness of the particulate polymer B and to form the particulate polymer B in the adhesive layer. It can be appropriately dispersed, the increase in the internal resistance of the adhesive layer can be suppressed, and the low temperature output characteristics of the secondary battery can be improved. When the volume average particle diameter D50 B of the particulate polymer B is not more than the above upper limit value, the adhesiveness of the adhesive layer can be further improved. The volume average particle diameter D50 B of the particulate polymer B can be adjusted in the same manner as in the case of the particulate polymer A. Further, the volume average particle diameter D50 B of the particulate polymer B is the volume average particle diameter of the entire particulate polymer B including the core portion and the shell portion.

[[粒子状重合体Bの構造]]
粒子状重合体Bは、コア部と、コア部とコア部の外表面を覆うシェル部とを備えるコアシェル構造を有する。好ましくは粒子状重合体Bのシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいない部分被覆態様である。例えば、コアシェル構造の粒子状重合体Bにおいて、粒子形状のコア部を部分的に被覆するように、粒子形状のシェル部が接触して存在していても良い。
[[Structure of Particulate Polymer B]]
The particulate polymer B has a core-shell structure including a core portion and a core portion and a shell portion that covers the outer surface of the core portion. Preferably, the shell portion of the particulate polymer B is a partially coated embodiment that covers the outer surface of the core portion but does not cover the entire outer surface of the core portion. For example, in the particulate polymer B having a core-shell structure, the particle-shaped shell portions may be present in contact with each other so as to partially cover the particle-shaped core portion.

なお、粒子状重合体Bは、所期の効果を著しく損なわない限り、上述したコア部及びシェル部以外に任意の構成要素を備えていてもよい。具体的には、例えば、有機粒子は、コア部の内部に、コア部とは別の重合体で形成された部分を有していてもよい。具体例を挙げると、有機粒子をシード重合法で製造する場合に用いたシード粒子が、コア部の内部に残留していてもよい。 The particulate polymer B may include any component other than the above-mentioned core portion and shell portion as long as the desired effect is not significantly impaired. Specifically, for example, the organic particles may have a portion formed of a polymer different from the core portion inside the core portion. To give a specific example, the seed particles used when the organic particles are produced by the seed polymerization method may remain inside the core portion.

−粒子状単量体の組成−
[粒子状重合体A]
粒子状重合体Aは、粒子状重合体が80℃未満である少なくとも一つのガラス転移温度を有する限りにおいて、あらゆる組成とすることができる。粒子状重合体Aを調製するために用いうる単量体としては、特に限定されることなく、例えば、塩化ビニル、塩化ビニリデン等の塩化ビニル系単量体;酢酸ビニル等の酢酸ビニル系単量体;スチレン、α−メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等の芳香族ビニル単量体;ビニルアミン等のビニルアミン系単量体;N−ビニルホルムアミド、N−ビニルアセトアミド等のビニルアミド系単量体;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステル単量体;N−ヒドロキシメチル(メタ)アクリルアミド、アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド単量体;アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル単量体;2−(パーフルオロヘキシル)エチルメタクリレート、2−(パーフルオロブチル)エチルアクリレート等のフッ素含有(メタ)アクリレート単量体;マレイミド;フェニルマレイミド等のマレイミド誘導体;1,3−ブタジエン、イソプレン等のジエン系単量体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
なお、本発明において、(メタ)アクリレートとは、アクリレート及び/又はメタクリレートを意味し、(メタ)アクリルアミドとは、アクリルアミド及び/又はメタクリルアミドを意味し、(メタ)アクリロニトリルとは、アクリロニトリル及び/又はメタクリロニトリルを意味する。
-Composition of particulate monomer-
[Particulate Polymer A]
The particulate polymer A can have any composition as long as the particulate polymer has at least one glass transition temperature of less than 80 ° C. The monomer that can be used to prepare the particulate polymer A is not particularly limited, and is, for example, a vinyl chloride-based monomer such as vinyl chloride or vinylidene chloride; a vinyl acetate-based single amount such as vinyl acetate. Body: Aromatic vinyl monomers such as styrene, α-methylstyrene, styrenesulfonic acid, butoxystyrene, vinylnaphthalene; Vinylamine-based monomers such as vinylamine; Vinylamide-based monomers such as N-vinylformamide and N-vinylacetamide. Quantities; (meth) acrylic acid ester monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl acrylate; N-hydroxymethyl (meth) acrylamide, acrylamide, (Meta) acrylamide monomer such as methacrylamide; (meth) acrylonitrile monomer such as acrylonitrile and methacrylonitrile; fluorine-containing such as 2- (perfluorohexyl) ethyl methacrylate and 2- (perfluorobutyl) ethyl acrylate Examples thereof include (meth) acrylate monomers; maleimides; maleimide derivatives such as phenylmaleimide; and diene monomers such as 1,3-butadiene and isoprene. In addition, one of these may be used alone, or two or more of them may be used in combination at any ratio.
In the present invention, (meth) acrylate means acrylate and / or methacrylate, (meth) acrylamide means acrylamide and / or methacrylamide, and (meth) acrylonitrile means acrylonitrile and / or Methacrylonitrile.

さらに、粒子状重合体Aは、酸基含有単量体単位を含みうる。ここで、酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、及び、水酸基を有する単量体が挙げられる。 Further, the particulate polymer A may contain an acid group-containing monomer unit. Here, as the acid group-containing monomer, a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and , Monomer having a hydroxyl group can be mentioned.

そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
さらに、リン酸基を有する単量体としては、例えば、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。
また、水酸基を有する単量体としては、例えば、アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピルなどが挙げられる。
なお、本発明において、(メタ)アリルとは、アリル及び/又はメタリルを意味し、(メタ)アクリロイルとは、アクリロイル及び/又はメタクリロイルを意味する。
Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid. Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, and 2-acrylamide-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
Further, examples of the monomer having a phosphate group include -2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl. And so on.
Examples of the monomer having a hydroxyl group include -2-hydroxyethyl acrylate, -2-hydroxypropyl acrylate, -2-hydroxyethyl methacrylate, and -2-hydroxypropyl methacrylate.
In the present invention, (meth) allyl means allyl and / or metharyl, and (meth) acryloyl means acryloyl and / or methacrylic.

さらに、粒子状重合体Aは、上記単量体単位に加え、架橋性単量体単位を含んでいることが好ましい。架橋性単量体とは、加熱又はエネルギー線の照射により、重合中又は重合後に架橋構造を形成しうる単量体である。 Further, the particulate polymer A preferably contains a crosslinkable monomer unit in addition to the above-mentioned monomer unit. The crosslinkable monomer is a monomer capable of forming a crosslinked structure during or after polymerization by heating or irradiation with energy rays.

架橋性単量体としては、例えば、当該単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン等のジビニル化合物;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the crosslinkable monomer include a polyfunctional monomer having two or more polymerization-reactive groups in the monomer. Examples of such a polyfunctional monomer include divinyl compounds such as divinylbenzene; di (meth) such as ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, and 1,3-butylene glycol diacrylate. ) Acrylic acid ester compounds; Tri (meth) acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; Eethylene unsaturated monomers containing epoxy groups such as allylglycidyl ether and glycidyl methacrylate; etc. Can be mentioned. In addition, one of these may be used alone, or two or more of them may be used in combination at any ratio.

粒子状重合体Aを調製するにあたり、上記各種単量体の組合せ及び配合割合は、目的とする粒子状重合体Aのガラス転移温度、粒子径、構造などに応じて、任意に変更することができる。 In preparing the particulate polymer A, the combination and blending ratio of the various monomers may be arbitrarily changed according to the glass transition temperature, particle size, structure, etc. of the target particulate polymer A. it can.

[粒子状重合体B]
粒子状重合体Bは、シェル部のガラス転移温度を80℃以上とすることができる限りにおいて、あらゆる組成とすることができる。粒子状重合体Bを調製するにあたり、粒子状重合体Aについて上述した単量体を用いることができる。さらに、粒子状重合体Bを調製するにあたり、上記各種単量体の組合せ及び配合割合は、目的とする粒子状重合体の性状に応じて、任意に変更することができる。
[Particulate Polymer B]
The particulate polymer B can have any composition as long as the glass transition temperature of the shell portion can be 80 ° C. or higher. In preparing the particulate polymer B, the above-mentioned monomer can be used for the particulate polymer A. Further, in preparing the particulate polymer B, the combination and blending ratio of the various monomers can be arbitrarily changed according to the properties of the target particulate polymer.

−粒子状重合体の調製方法−
上述した粒子状重合体A及びBは、特に限定されることなく、既知の重合方法により調製することができる。重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。また、乳化重合においては、シード粒子を用いるシード重合を採用してもよい。さらに、コアシェル構造を有する粒子状重合体A/Bを調製する場合には、例えば、多段階乳化重合法が挙げられる。そして、多段階乳化重合法としては、例えば国際公開第2015/005145号に記載される既知の重合法を用いることができる。また、多段階乳化重合に使用される乳化剤、分散剤、重合開始剤、連鎖移動剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
-Method of preparing particulate polymer-
The above-mentioned particulate polymers A and B can be prepared by a known polymerization method without particular limitation. The polymerization mode is not particularly limited, and any mode such as a solution polymerization method, a suspension polymerization method, a massive polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used. Further, in the emulsion polymerization, seed polymerization using seed particles may be adopted. Further, when preparing the particulate polymer A / B having a core-shell structure, for example, a multi-step emulsion polymerization method can be mentioned. Then, as the multi-step emulsification polymerization method, for example, a known polymerization method described in International Publication No. 2015/005145 can be used. Further, as the emulsifier, dispersant, polymerization initiator, chain transfer agent and the like used in the multi-step emulsion polymerization, commonly used ones can be used, and the amount used may be the amount generally used. it can.

具体的には、多段階乳化重合法の重合手順として、まず、溶媒である水に、コア部を形成する単量体および乳化剤を混合し、その後重合開始剤を入れ、乳化重合することによってコア部を構成する粒子状の重合体を得る。さらに、このコア部を構成する粒子状の重合体の存在下にシェル部を形成する単量体の重合を行うことによって、コアシェル構造を有する粒子状重合体を得ることができる。この際、コア部の外表面をシェル部によって部分的に覆う観点から、シェル部の重合体の単量体は複数回に分割して、または、連続で重合系に供給することが好ましい。シェル部の重合体の単量体を重合系に分割して、または、連続で供給することにより、シェル部を構成する重合体が粒子状に形成され、当該粒子がコア部と結合することで、コア部を部分的に覆うシェル部を形成することができる。
また、シェル部の重合体を形成する単量体は、重合溶媒に対して親和性の低い単量体を用いると、コア部を部分的に覆うシェル部を形成し易くなる傾向がある。重合溶媒が水の場合、シェル部の重合体を形成する単量体は、疎水性単量体を含むことが好ましく、上述した通り芳香族ビニル単量体を含むことが特に好ましい。
また、用いる乳化剤量を少なくすると、コア部を部分的に覆うシェル部を形成し易くなる傾向があり、適宜乳化剤量を調整することで、コア部を部分的に覆うシェル部を形成することができる。
なお、コアシェル構造を有する粒子状重合体A/Bのコア部の直径、コアシェル構造を有する粒子状重合体A/Bの粒子径、および、シェル部が粒子形状である場合のシェル部の直径は、例えば、乳化剤の量、単量体の量などを調整することにより、所望の範囲にすることができる。
Specifically, as a polymerization procedure of the multi-step emulsion polymerization method, first, a monomer and an emulsifier forming a core portion are mixed with water as a solvent, then a polymerization initiator is added, and the core is emulsion-polymerized. A particulate polymer constituting the part is obtained. Further, by polymerizing the monomer forming the shell portion in the presence of the particulate polymer constituting the core portion, a particulate polymer having a core-shell structure can be obtained. At this time, from the viewpoint of partially covering the outer surface of the core portion with the shell portion, it is preferable that the monomer of the polymer in the shell portion is divided into a plurality of times or continuously supplied to the polymerization system. By dividing the monomer of the polymer in the shell portion into a polymerization system or supplying it continuously, the polymer constituting the shell portion is formed in the form of particles, and the particles are bonded to the core portion. , A shell portion that partially covers the core portion can be formed.
Further, when a monomer having a low affinity for the polymerization solvent is used as the monomer forming the polymer of the shell portion, the shell portion that partially covers the core portion tends to be easily formed. When the polymerization solvent is water, the monomer forming the polymer in the shell portion preferably contains a hydrophobic monomer, and particularly preferably contains an aromatic vinyl monomer as described above.
Further, if the amount of emulsifier used is reduced, it tends to be easy to form a shell portion that partially covers the core portion, and by appropriately adjusting the amount of emulsifier, a shell portion that partially covers the core portion can be formed. it can.
The diameter of the core portion of the particulate polymer A / B having a core-shell structure, the particle diameter of the particulate polymer A / B having a core-shell structure, and the diameter of the shell portion when the shell portion has a particle shape are For example, the desired range can be obtained by adjusting the amount of the emulsifier, the amount of the monomer, and the like.

そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。 As the emulsifier, dispersant, polymerization initiator, polymerization aid and the like used for the polymerization, those generally used can be used, and the amount used can also be the amount generally used.

−粒子状重合体A及びBの含有比率−
粒子状重合体A及び粒子状重合体Bの含有比率は、粒子状重合体Aの含有量が、粒子状重合体Bの含有量に対して、質量基準で、2/3倍以上であることが好ましく、1倍以上であることがより好ましく、9倍以下であることが好ましく、4倍以下であることがより好ましい。粒子状重合体Aの含有量を上記下限値以上とすることで、接着層の接着性を向上させるとともに、二次電池の低温出力特性を向上させることができる。また粒子状重合体Aの含有量を上記上限値以下とすることで、接着層の耐ブロッキング性を向上させることができる。
-Content ratio of particulate polymers A and B-
The content ratio of the particulate polymer A and the particulate polymer B is such that the content of the particulate polymer A is 2/3 times or more on a mass basis with respect to the content of the particulate polymer B. Is preferable, 1 times or more is more preferable, 9 times or less is preferable, and 4 times or less is more preferable. By setting the content of the particulate polymer A to the above lower limit value or more, the adhesiveness of the adhesive layer can be improved and the low temperature output characteristics of the secondary battery can be improved. Further, by setting the content of the particulate polymer A to the above upper limit value or less, the blocking resistance of the adhesive layer can be improved.

−粒子状重合体の体積平均粒子径D50の比率−
ここで、粒子状重合体Bの体積平均粒子径D50Bは、粒子状重合体Aの体積平均粒子径D50Aの0.5倍以上が好ましく、0.6倍以上がより好ましく、0.7倍以上が更に好ましく、5倍以下が好ましく、4倍以下がより好ましく、3倍以下がさらに好ましく、2倍以下が特に好ましい。粒子状重合体A及びBの各体積平均粒子径D50を上記範囲内とすることで、接着層のイオン拡散性を向上させて、二次電池の低温出力特性を向上させることができる。特に、上記下限値以上であれば、接着層の耐ブロッキング特性を向上させることができ、上記上限値以下であれば、接着層の電池部材間における接着性を向上させることができる。
-Ratio of volume average particle size D50 of particulate polymer-
Here, the volume average particle size D50 B of the particulate polymer B is preferably 0.5 times or more, more preferably 0.6 times or more, more preferably 0.7 times the volume average particle size D50 A of the particulate polymer A. More than twice, more preferably five times or less, more preferably four times or less, further preferably three times or less, and particularly preferably two times or less. By setting the volume average particle diameter D50 of the particulate polymers A and B within the above range, the ion diffusivity of the adhesive layer can be improved and the low temperature output characteristics of the secondary battery can be improved. In particular, if it is at least the above lower limit value, the blocking resistance property of the adhesive layer can be improved, and if it is at least the above upper limit value, the adhesiveness between the battery members of the adhesive layer can be improved.

<結着材>
そして、非水系二次電池接着層用組成物は、上述した粒子状重合体A及びBの他に結着材を含む。ここで、結着材とは、粒子状重合体A及びBを接着層から脱落しにくくし得る成分であり、上記粒子状重合体A及びBとは異なる成分である。結着材としては、かかる機能を奏しうる限りにおいて、特に限定されることなく、既知の結着材、例えば、熱可塑性エラストマーを用いることができる。そして、熱可塑性エラストマーとしては、共役ジエン系重合体及びアクリル系重合体が好ましく、アクリル系重合体がより好ましい。
ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指し、共役ジエン系重合体の具体例としては、スチレン−ブタジエン共重合体(SBR)などの、芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位を含む重合体や、アクリルゴム(NBR)(アクリロニトリル単位及びブタジエン単位を含む重合体)などが挙げられるが、スチレン−ブタジエン共重合体が好ましい。また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を含む重合体を指す。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、粒子状重合体を調製するために用いる単量体と同様のものを用いることができる。
なお、これらの結着材は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<Bundling material>
The composition for the non-aqueous secondary battery adhesive layer contains a binder in addition to the above-mentioned particulate polymers A and B. Here, the binder is a component that makes it difficult for the particulate polymers A and B to fall off from the adhesive layer, and is a component different from the particulate polymers A and B. As the binder, a known binder, for example, a thermoplastic elastomer can be used without particular limitation as long as it can perform such a function. As the thermoplastic elastomer, a conjugated diene polymer and an acrylic polymer are preferable, and an acrylic polymer is more preferable.
Here, the conjugated diene-based polymer refers to a polymer containing a conjugated diene monomer unit, and specific examples of the conjugated diene-based polymer include aromatic vinyl such as a styrene-butadiene copolymer (SBR). Examples thereof include a polymer containing a monomer unit and an aliphatic conjugated diene monomer unit, acrylic rubber (NBR) (a polymer containing an acrylonitrile unit and a butadiene unit), and a styrene-butadiene copolymer is preferable. Further, the acrylic polymer refers to a polymer containing a (meth) acrylic acid ester monomer unit. Here, as the (meth) acrylic acid ester monomer capable of forming the (meth) acrylic acid ester monomer unit, the same monomer as that used for preparing the particulate polymer may be used. it can.
One type of these binders may be used alone, or two or more types may be used in combination.

また、結着材は粒子状であっても良いが、この場合の粒子径は粒子状重合体A及びBよりも小さいことが好ましく、通常0.05μm以上0.4μm未満である。結着材が粒子状である場合に、粒子径が粒子状重合体A及びBよりも小さければ、粒子状重合体A及びBの接着層からの脱落を効果的に抑制することができるからである。 The binder may be in the form of particles, but in this case, the particle size is preferably smaller than that of the particulate polymers A and B, and is usually 0.05 μm or more and less than 0.4 μm. This is because when the binder is in the form of particles and the particle size is smaller than that of the particulate polymers A and B, it is possible to effectively suppress the detachment of the particulate polymers A and B from the adhesive layer. is there.

<その他の成分>
非水系二次電池接着層用組成物は、上述した粒子状重合体、結着材以外にも、任意のその他の成分を含んでいてもよい。これらのその他の成分としては、例えば、濡れ剤、粘度調整剤、電解液添加剤などの既知の添加剤が挙げられる。これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<Other ingredients>
The composition for the non-aqueous secondary battery adhesive layer may contain any other components in addition to the above-mentioned particulate polymer and binder. Examples of these other components include known additives such as wetting agents, viscosity modifiers, and electrolyte additives. One of these other components may be used alone, or two or more thereof may be used in combination.

−粒子状重合体A及びBの含有量−
本発明の非水系二次電池接着層用組成物における粒子状重合体A及びBの合計含有量は、粒子状重合体A及びB、並びに結着材の合計固形分量を100質量%として、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることが更に好ましい。
-Contents of particulate polymers A and B-
The total content of the particulate polymers A and B in the composition for the non-aqueous secondary battery adhesive layer of the present invention is 50, where the total solid content of the particulate polymers A and B and the binder is 100% by mass. It is preferably 0% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, preferably 95% by mass or less, and more preferably 90% by mass or less. It is preferably 85% by mass or less, and more preferably 85% by mass or less.

<非水系二次電池接着層用組成物の調製方法>
ここで、非水系二次電池接着層用組成物の調製方法は、特に限定はされないが、例えば、粒子状重合体A及びBと、結着材と、濡れ剤などの任意のその他の成分とを溶媒に溶解又は分散させて接着剤組成物を調製する。具体的には、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ビーズミル、ロールミル、フィルミックス等の分散機を使用し、粒子状重合体A及びBと、結着材やその他の成分とを溶媒中に分散又は溶解させて非水系二次電池接着層用組成物を調製する。
<Method of preparing composition for non-aqueous secondary battery adhesive layer>
Here, the method for preparing the composition for the non-aqueous secondary battery adhesive layer is not particularly limited, but includes, for example, particulate polymers A and B, a binder, and any other component such as a wetting agent. Is dissolved or dispersed in a solvent to prepare an adhesive composition. Specifically, a disperser such as a ball mill, a sand mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, a bead mill, a roll mill, or a fill mix is used to combine the particulate polymers A and B. , A binder and other components are dispersed or dissolved in a solvent to prepare a composition for a non-aqueous secondary battery adhesive layer.

(非水系二次電池用接着層)
上述した非水系二次電池接着層用組成物を用い、適切な基材上に接着層を形成することができる。具体的には、非水系二次電池接着層用組成物を適切な基材上で乾燥することにより、非水系二次電池用接着層を形成することができる。即ち、本発明の非水系二次電池用接着層は、上述した非水系二次電池接着層用組成物の乾燥物よりなり、通常、上記有機粒子及び上記接着層用結着材を含有し、任意に、上記その他の成分を含有する。なお、上述した粒子状重合体A/B、及び/または接着層用結着材が架橋性単量体単位を含む場合には、かかる架橋性単量体単位間にて、スラリー組成物の乾燥時、または、乾燥後に任意に実施される熱処理時に架橋が形成されていてもよい(即ち、非水系二次電池用接着層は、上述した粒子状重合体A/B、及び/または接着層用結着材の架橋物を含んでいてもよい)。なお、非水系二次電池用接着層中に含まれている各成分の好適な存在比は、非水系二次電池接着層用組成物中の各成分の好適な存在比と同じである。
また、接着層用組成物中においてコアシェル構造を有する粒子状重合体A/Bを配合した場合には、有機粒子全体としての形状は元の粒子形状から変化している場合であっても、コアシェル構造自体は維持されていることが好ましい。
そして、本発明の非水系二次電池用接着層は、上述した粒子状重合体A及びBを含んでいるので、耐ブロッキング性に優れ、かつ、当該接着層を備える二次電池の低温出力特性を優れたものとすることができる。
(Adhesive layer for non-aqueous secondary batteries)
The adhesive layer for a non-aqueous secondary battery adhesive layer described above can be used to form an adhesive layer on an appropriate base material. Specifically, the non-aqueous secondary battery adhesive layer can be formed by drying the composition for the non-aqueous secondary battery adhesive layer on an appropriate base material. That is, the adhesive layer for a non-aqueous secondary battery of the present invention comprises a dried product of the above-mentioned composition for a non-aqueous secondary battery adhesive layer, and usually contains the above-mentioned organic particles and the above-mentioned binder for the adhesive layer. Optionally, it contains the above other components. When the above-mentioned particulate polymer A / B and / or the binder for the adhesive layer contains a crosslinkable monomer unit, the slurry composition is dried between the crosslinkable monomer units. Crosslinks may be formed at the time or during a heat treatment optionally performed after drying (that is, the adhesive layer for a non-aqueous secondary battery is for the above-mentioned particulate polymer A / B and / or the adhesive layer. It may contain a crosslinked product of the binder). The preferable abundance ratio of each component contained in the non-aqueous secondary battery adhesive layer is the same as the preferable abundance ratio of each component in the non-aqueous secondary battery adhesive layer composition.
Further, when the particulate polymer A / B having a core-shell structure is blended in the composition for the adhesive layer, the core shell even if the shape of the organic particles as a whole is changed from the original particle shape. The structure itself is preferably maintained.
Since the adhesive layer for a non-aqueous secondary battery of the present invention contains the above-mentioned particulate polymers A and B, it is excellent in blocking resistance and has low temperature output characteristics of the secondary battery provided with the adhesive layer. Can be made excellent.

<基材>
接着層を形成する基材としては、特に限定されず、例えばセパレータの一部を構成する部材として接着層を使用する場合には、基材としてはセパレータ基材を用いることができ、また、電極の一部を構成する部材として接着層を使用する場合には、基材としては集電体上に電極合材層を形成してなる電極基材を用いることができる。また、基材上に形成した接着層の用法に特に制限は無く、例えばセパレータ基材等の上に接着層を形成してそのままセパレータ等の電池部材として使用してもよいし、電極基材上に接着層を形成して電極として使用してもよいし、離型基材上に形成した接着層を基材から一度剥離し、他の基材に貼り付けて電池部材として使用してもよい。
しかし、接着層から離型基材を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材としてセパレータ基材又は電極基材を用いることが好ましい。
<Base material>
The base material forming the adhesive layer is not particularly limited. For example, when the adhesive layer is used as a member constituting a part of the separator, the separator base material can be used as the base material, and the electrode. When an adhesive layer is used as a member constituting a part of the above, an electrode base material formed by forming an electrode mixture layer on a current collector can be used as the base material. Further, the usage of the adhesive layer formed on the base material is not particularly limited, and for example, the adhesive layer may be formed on the separator base material or the like and used as it is as a battery member such as the separator, or on the electrode base material. The adhesive layer may be formed on the base material and used as an electrode, or the adhesive layer formed on the release base material may be peeled off from the base material once and attached to another base material to be used as a battery member. ..
However, from the viewpoint of improving the manufacturing efficiency of the battery member by omitting the step of peeling the release base material from the adhesive layer, it is preferable to use a separator base material or an electrode base material as the base material.

[セパレータ基材]
接着層を形成するセパレータ基材としては、特に限定されることなく、例えば特開2012−204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
なお、セパレータ基材に対して、接着層以外の、所期の機能を発揮し得る任意の層を適用することも可能である。
[Separator base material]
The separator base material for forming the adhesive layer is not particularly limited, and for example, those described in JP2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, and as a result, the ratio of the electrode active material in the secondary battery can be increased and the capacity per volume can be increased. A microporous film made of a resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable.
It is also possible to apply any layer other than the adhesive layer that can exhibit the desired function to the separator base material.

[電極基材]
接着層を形成する電極基材(正極基材及び負極基材)としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。
ここで、集電体、電極合材層中の成分(例えば、電極活物質(正極活物質、負極活物質)及び電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)など)、並びに、集電体上への電極合材層の形成方法は、既知のものを用いることができ、例えば特開2013−145763号公報に記載のものを用いることができる。
なお、電極基材は、接着層以外の、所期の機能を有する任意の層をその一部に含んでいてもよい。
[Electrode substrate]
The electrode base material (positive electrode base material and negative electrode base material) forming the adhesive layer is not particularly limited, and examples thereof include an electrode base material in which an electrode mixture layer is formed on a current collector.
Here, the components in the current collector, the electrode mixture layer (for example, the electrode active material (positive electrode active material, the negative electrode active material) and the binder for the electrode mixture layer (the binder for the positive electrode mixture layer, the negative electrode combination). As a method for forming the electrode mixture layer on the current collector, a known method can be used, for example, the one described in Japanese Patent Application Laid-Open No. 2013-145763. be able to.
The electrode base material may include an arbitrary layer having an desired function other than the adhesive layer as a part thereof.

[離型基材]
接着層を形成する離型基材としては、特に限定されず、既知の離型基材を用いることができる。
[Release base material]
The release base material that forms the adhesive layer is not particularly limited, and a known release base material can be used.

<非水系二次電池用接着層の形成方法>
上述したセパレータ基材、電極基材などの基材上に接着層を形成する方法としては、以下の方法が挙げられる。:
1)接着層用組成物をセパレータ基材または電極基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)接着層用組成物にセパレータ基材または電極基材を浸漬後、これを乾燥する方法;
3)接着層用組成物を、離型基材上に塗布、乾燥して接着層を製造し、得られた接着層をセパレータ基材または電極基材の表面に転写する方法。
これらの中でも、前記1)の方法が、接着層の膜厚制御をしやすいことから特に好ましい。該1)の方法は、詳細には、接着層用組成物をセパレータ基材または電極基材上に塗布する工程(塗布工程)と、セパレータ基材または電極基材上に塗布された接着層用組成物を乾燥させて接着層を形成する工程(乾燥工程)を備える。
<Method of forming an adhesive layer for non-aqueous secondary batteries>
Examples of the method for forming the adhesive layer on the substrate such as the separator substrate and the electrode substrate described above include the following methods. :
1) A method in which the composition for an adhesive layer is applied to the surface of a separator base material or an electrode base material (in the case of an electrode base material, the surface on the electrode mixture layer side, the same applies hereinafter), and then dried;
2) A method of immersing the separator base material or the electrode base material in the composition for the adhesive layer and then drying it;
3) A method in which the composition for an adhesive layer is applied onto a release base material and dried to produce an adhesive layer, and the obtained adhesive layer is transferred to the surface of a separator base material or an electrode base material.
Among these, the method 1) is particularly preferable because it is easy to control the film thickness of the adhesive layer. Specifically, the method of 1) includes a step of applying the composition for an adhesive layer on a separator base material or an electrode base material (coating step) and a step of applying the composition for an adhesive layer on the separator base material or the electrode base material. A step (drying step) of drying the composition to form an adhesive layer is provided.

塗布工程において、接着層用組成物をセパレータ基材または電極基材上に塗布する方法は、特に制限は無く、例えば、スプレーコート法、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。なかでも、より薄い接着層を形成する点から、グラビア法が好ましい。
また乾燥工程において、基材上の接着層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは30〜80℃で、乾燥時間は好ましくは30秒〜10分である。
In the coating step, the method of coating the composition for the adhesive layer on the separator base material or the electrode base material is not particularly limited, and for example, a spray coating method, a doctor blade method, a reverse roll method, a direct roll method, a gravure method, etc. Examples include the extraction method and the brush coating method. Of these, the gravure method is preferable from the viewpoint of forming a thinner adhesive layer.
Further, in the drying step, the method for drying the composition for the adhesive layer on the substrate is not particularly limited, and a known method can be used, for example, drying with warm air, hot air, low humidity air, vacuum drying, infrared rays, or the like. A drying method by irradiating an electron beam or the like can be mentioned. The drying conditions are not particularly limited, but the drying temperature is preferably 30 to 80 ° C., and the drying time is preferably 30 seconds to 10 minutes.

なお、基材上に形成された接着層の厚みは、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上であり、好ましくは3μm以下、より好ましくは1.5μm以下、さらに好ましくは1μm以下である。接着層の厚みが、前記範囲の下限値以上であることで、接着層の強度を十分に確保することができ、前記範囲の上限値以下であることで、接着層のイオン拡散性を確保し二次電池の低温出力特性をさらに向上させることができる。 The thickness of the adhesive layer formed on the substrate is preferably 0.1 μm or more, more preferably 0.3 μm or more, still more preferably 0.5 μm or more, preferably 3 μm or less, and more preferably 1. It is 5 μm or less, more preferably 1 μm or less. When the thickness of the adhesive layer is at least the lower limit of the above range, the strength of the adhesive layer can be sufficiently secured, and when it is at least the upper limit of the above range, the ion diffusivity of the adhesive layer is ensured. The low temperature output characteristics of the secondary battery can be further improved.

(非水系二次電池)
本発明の非水系二次電池は、上述した非水系二次電池用接着層を備え、当該非水系二次電池用接着層を介して電池部材同士を接着したことを特徴とする。そして、本発明の非水系二次電池は、低温出力特性に優れている。
具体的には、本発明の非水系二次電池は、例えば、正極と、負極と、セパレータと、電解液とを備え、正極上、負極上及びセパレータ上の少なくとも1つの上に、或いは、これらの電池部材と電池容器との間に、上述した非水系二次電池用接着層を形成したものである。そして、本発明の非水系二次電池の一例では、非水系二次電池用接着層を介して、正極とセパレータ、及び/又は、負極とセパレータが接着されて一体化される。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of the present invention is provided with the above-mentioned adhesive layer for a non-aqueous secondary battery, and the battery members are adhered to each other via the adhesive layer for the non-aqueous secondary battery. The non-aqueous secondary battery of the present invention is excellent in low temperature output characteristics.
Specifically, the non-aqueous secondary battery of the present invention includes, for example, a positive electrode, a negative electrode, a separator, and an electrolytic solution, and is provided on or on at least one of the positive electrode, the negative electrode, and the separator. The above-mentioned adhesive layer for a non-aqueous secondary battery is formed between the battery member and the battery container. Then, in an example of the non-aqueous secondary battery of the present invention, the positive electrode and the separator and / or the negative electrode and the separator are adhered and integrated via the adhesive layer for the non-aqueous secondary battery.

特に、本発明の非水系二次電池は、捲回型又は積層型であることが好ましい。二次電池を捲回型又は積層型に成形する際に、例えば、熱プレス工程を実施することで、本発明の接着層により良好な接着性が発揮されることで、良好な低温出力特性を得ることができるからである。 In particular, the non-aqueous secondary battery of the present invention is preferably a wound type or a laminated type. When the secondary battery is molded into a wound type or a laminated type, for example, by carrying out a heat pressing process, good adhesiveness is exhibited by the adhesive layer of the present invention, so that good low temperature output characteristics can be obtained. Because it can be obtained.

<正極及び負極>
本発明の二次電池は、上述したように、正極、負極、及びセパレータの少なくとも一つが接着層を有する。すなわち、集電体上に電極合材層を形成してなる電極基材の上に接着層を設けてなる電極を用いることができる。なお、電極基材及びセパレータ基材としては、「非水系二次電池用接着層」の項で挙げたものと同様のものを用いることができる。
また、接着層を有さない正極及び負極としては、特に限定されることなく、上述した電極基材よりなる電極を用いることができる。
<Positive electrode and negative electrode>
In the secondary battery of the present invention, as described above, at least one of the positive electrode, the negative electrode, and the separator has an adhesive layer. That is, it is possible to use an electrode in which an adhesive layer is provided on an electrode base material formed by forming an electrode mixture layer on a current collector. As the electrode base material and the separator base material, the same ones as those mentioned in the section of "Adhesive layer for non-aqueous secondary battery" can be used.
Further, the positive electrode and the negative electrode having no adhesive layer are not particularly limited, and an electrode made of the above-mentioned electrode base material can be used.

<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolytic solution>
As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. As the supporting electrolyte, for example, a lithium salt is used in a lithium ion secondary battery. Lithium salts include, for example, LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like. Of these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and show a high degree of dissociation. One type of electrolyte may be used alone, or two or more types may be used in combination. Normally, the more the supporting electrolyte with a higher degree of dissociation is used, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.

電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
The organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, in a lithium ion secondary battery, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC) , Propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC) and other carbonates; esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane, Sulfur-containing compounds such as dimethyl sulfoxide; and the like are preferably used. Further, a mixed solution of these solvents may be used. Among them, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Generally, the lower the viscosity of the solvent used, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of solvent.
The concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Further, a known additive may be added to the electrolytic solution.

<非水系二次電池の製造方法>
非水系二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、得られた正極−セパレータ−負極の積層体を、そのまま、或いは、必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造し得る。ここで、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Manufacturing method of non-aqueous secondary battery>
The non-aqueous secondary battery is a battery, for example, in which a positive electrode and a negative electrode are superposed with each other via a separator, and the obtained positive electrode-separator-negative electrode laminate is wound as it is or, if necessary, rolled or folded. It can be manufactured by putting it in a container, injecting an electrolytic solution into a battery container, and sealing it. Here, if necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like may be placed in the battery container to prevent the pressure inside the battery from rising and overcharge / discharge. The shape of the battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, or the like.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の上記重合体における割合は、特に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
実施例及び比較例において、ガラス転移温度、粒子状重合体の体積平均粒子径D50、接着性(電池部材間の接着性)、接着層の耐ブロッキング性、二次電池の低温出力特性は、下記の方法で測定及び評価した。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the following description, "%" and "part" representing quantities are based on mass unless otherwise specified.
Further, in a polymer produced by copolymerizing a plurality of types of monomers, the ratio of structural units formed by polymerizing a certain monomer in the above-mentioned polymer is usually the same unless otherwise specified. It is consistent with the ratio (preparation ratio) of the certain monomer to all the monomers used for the polymerization of the polymer.
In the examples and comparative examples, the glass transition temperature, the volume average particle diameter D50 of the particulate polymer, the adhesiveness (adhesiveness between the battery members), the blocking resistance of the adhesive layer, and the low temperature output characteristics of the secondary battery are as follows. It was measured and evaluated by the method of.

<ガラス転移温度>
実施例、比較例にて製造した粒子状重合体(1)及び(2)を、それぞれ、測定試料とした。測定試料10mgをアルミパンに計量し、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製「EXSTAR DSC6220」)にて、リファレンスとして空のアルミパンを用い、測定温度範囲−100℃〜500℃の間で、昇温速度10℃/分で、JIS Z 8703に規定された条件下で測定を実施し、示差走査熱量分析(DSC)曲線を得た。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移温度(℃)として求めた。
<Glass transition temperature>
The particulate polymers (1) and (2) produced in Examples and Comparative Examples were used as measurement samples, respectively. Weigh 10 mg of the measurement sample into an aluminum pan, and use an empty aluminum pan as a reference with a differential thermal analysis measuring device (“EXSTAR DSC6220” manufactured by SII Nanotechnology), and measure the temperature range from -100 ° C to 500 ° C. Measurements were performed at a heating rate of 10 ° C./min under the conditions specified in JIS Z 8703 to obtain a differential scanning calorimetry (DSC) curve. In this heating process, the baseline immediately before the heat absorption peak of the DSC curve whose differential signal (DDSC) becomes 0.05 mW / min / mg or more and the tangent line of the DSC curve at the inflection point that first appears after the heat absorption peak. The intersection with was determined as the glass transition temperature (° C.).

<粒子状重合体の体積平均粒子径D50>
実施例、比較例で製造した各粒子状重合体(1)、(2)について、固形分濃度0.1質量%に調整した水分散溶液の、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS−230」)により測定された粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径(μm)として求め、体積平均粒子径D50とした。
<Volume average particle size D50 of particulate polymer>
A laser diffraction type particle size distribution measuring device (Beckman Coulter) for an aqueous dispersion solution adjusted to a solid content concentration of 0.1% by mass for each of the particulate polymers (1) and (2) produced in Examples and Comparative Examples. In the particle size distribution (volume basis) measured by the company, product name "LS-230"), it was determined as the particle size (μm) at which the cumulative volume calculated from the small diameter side is 50%, and was set as the volume average particle size D50. ..

<電池部材間の接着性>
実施例、比較例で作成した非水系二次電池用接着層を形成した正極、及びセパレータを、それぞれ幅10mm、長さ50mmに切り出した。そして、正極とセパレータ積層させて積層体とした。そして、温度80℃、荷重10kN/mのロールプレスで積層体をプレスし、試験片を得た。この試験片を、電極(正極)の集電体側の面を下にして、電極の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。そして、セパレータ基材の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を、正極及びセパレータを備える積層体について3回行い、応力の平均値をピール強度として求めて、下記の基準で評価した 。ピール強度の値が大きいほど、電池部材間の接着性が高いことを示す。
A:ピール強度が10N/m以上
B:ピール強度が5N/m以上10N/m未満
C:ピール強度が5N/m未満
<Adhesion between battery members>
The positive electrode and the separator on which the non-aqueous secondary battery adhesive layer prepared in Examples and Comparative Examples were formed were cut out to a width of 10 mm and a length of 50 mm, respectively. Then, the positive electrode and the separator were laminated to form a laminated body. Then, the laminate was pressed with a roll press having a temperature of 80 ° C. and a load of 10 kN / m to obtain a test piece. This test piece was attached with cellophane tape on the surface of the electrode with the side of the electrode (positive electrode) on the current collector side facing down. At this time, as the cellophane tape, the one specified in JIS Z1522 was used. The cellophane tape was fixed on a horizontal test table. Then, the stress when one end of the separator base material was pulled vertically upward at a tensile speed of 50 mm / min and peeled off was measured. This measurement was performed three times for the laminate provided with the positive electrode and the separator, and the average value of stress was obtained as the peel strength and evaluated according to the following criteria. The larger the peel strength value, the higher the adhesiveness between the battery members.
A: Peel strength is 10 N / m or more B: Peel strength is 5 N / m or more and less than 10 N / m C: Peel strength is less than 5 N / m

<接着層の耐ブロッキング性>
実施例、比較例で作成した非水系二次電池用接着層を形成したセパレータ及び正極を、幅5cm×長さ5cm、にそれぞれ正方形に裁断した。得られた正方形片を、接着層付きセパレータ同士、及び接着層付き正極同士が、それぞれ、接着層面が向かい合うように、2枚重ね合わせ、重ね合わせた後に40℃、10g/cm2の加圧下に置いて、測定試料を作製した。得られた測定試料を24時間放置し、接着層付きセパレータ同士、及び接着層付き正極同士が接着しているか確認した。24時間放置後の測定試料において、重ね合わせられた非水系二次電池用接着層を形成したセパレータ、又は正極同士が接着している場合、重ね合わせられたセパレータ、又は正極の正方形片1枚全体を固定し、もう1枚を0.3N/mの力で引っ張り、剥離可能か否かを確認し、接着状態(ブロッキング状態)を下記基準で評価した。接着が観察されないほど耐ブロッキング性が良好であることを表す。
A:正方形片同士が接着していない。
B:正方形片同士同士が接着しているが剥がれる。
C:正方形片同士同士が接着し剥がれない。
<Blocking resistance of adhesive layer>
The separator and the positive electrode on which the adhesive layer for the non-aqueous secondary battery prepared in Examples and Comparative Examples were formed were cut into squares having a width of 5 cm and a length of 5 cm. Two of the obtained square pieces were superposed so that the separators with the adhesive layer and the positive electrodes with the adhesive layer faced each other, and after the superposition, the pressure was applied at 40 ° C. and 10 g / cm 2. It was placed to prepare a measurement sample. The obtained measurement sample was left to stand for 24 hours, and it was confirmed whether the separators with an adhesive layer and the positive electrodes with an adhesive layer were adhered to each other. In the measurement sample left for 24 hours, the separator forming the adhesive layer for the non-aqueous secondary battery, or when the positive electrodes are adhered to each other, the overlapped separator or the entire square piece of the positive electrode Was fixed, and the other sheet was pulled with a force of 0.3 N / m to confirm whether or not it could be peeled off, and the adhesive state (blocking state) was evaluated according to the following criteria. It indicates that the blocking resistance is so good that no adhesion is observed.
A: The square pieces are not glued together.
B: The square pieces are adhered to each other but peeled off.
C: Square pieces adhere to each other and do not peel off.

<二次電池の低温出力特性>
実施例、比較例にて製造した容量40mAhの積層ラミネート型リチウムイオン二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cの充電レートで5時間の充電の操作を行い、その時の電圧V0を測定した。その後、−10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。
そして、電圧変化ΔVを、ΔV=V0−V1にて計算し、下記の基準で評価した。この電圧変化ΔVの値が小さいほど、二次電池が低温出力特性に優れることを示す。
A:電圧変化ΔVが350mV未満
B:電圧変化ΔVが350mV以上500mV未満
C:電圧変化ΔVが500mV以上
<Low temperature output characteristics of secondary batteries>
The laminated laminated lithium ion secondary battery having a capacity of 40 mAh produced in Examples and Comparative Examples was allowed to stand for 24 hours in an environment of 25 ° C. Then, in an environment of 25 ° C., a charging operation was performed at a charging rate of 0.1 C for 5 hours, and the voltage V0 at that time was measured. Then, the discharge operation was performed at a discharge rate of 1C in an environment of −10 ° C., and the voltage V1 15 seconds after the start of discharge was measured.
Then, the voltage change ΔV was calculated by ΔV = V0-V1 and evaluated according to the following criteria. The smaller the value of the voltage change ΔV, the better the low temperature output characteristic of the secondary battery.
A: Voltage change ΔV is less than 350 mV B: Voltage change ΔV is 350 mV or more and less than 500 mV C: Voltage change ΔV is 500 mV or more

(実施例1)
<粒子状重合体(1)の調製>
粒子状重合体(1)として、粒子状重合体A1を調製した。
撹拌機を備えた反応器に、イオン交換水70部、過流酸カリウム0.5部を供給し、気相部を窒素ガスで置換し、60℃に昇温した。
一方、別の容器でイオン交換水50部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.3部、並びに、重合性単量体として、メタクリル酸メチル60部、アクリル酸ブチル35部、メタクリル酸4部、架橋性単量体としてエチレングリコールジメタクリレート1部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続添加して、60℃で重合を行った。添加終了後、70℃に加温して3時間撹拌して反応を終了し、粒子状重合体A1を含む水分散液を調製した。そして、粒子状重合体A1の体積平均粒子径D50(1)、及びガラス転移温度を測定した。結果を表1に示す。
(Example 1)
<Preparation of Particulate Polymer (1)>
As the particulate polymer (1), the particulate polymer A1 was prepared.
70 parts of ion-exchanged water and 0.5 part of potassium persulfate were supplied to a reactor equipped with a stirrer, the gas phase part was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
On the other hand, in another container, 50 parts of ion-exchanged water, 0.3 part of sodium dodecylbenzenesulfonate as an emulsifier, 60 parts of methyl methacrylate, 35 parts of butyl acrylate, and 4 parts of methacrylic acid as polymerizable monomers. One part of ethylene glycol dimethacrylate was mixed as a crosslinkable monomer to obtain a monomer mixture. This monomer mixture was continuously added to the reactor over 4 hours and polymerized at 60 ° C. After completion of the addition, the mixture was heated to 70 ° C. and stirred for 3 hours to complete the reaction, and an aqueous dispersion containing the particulate polymer A1 was prepared. Then, the volume average particle diameter D50 (1) of the particulate polymer A1 and the glass transition temperature were measured. The results are shown in Table 1.

<粒子状重合体(2)の調製>
粒子状重合体(2)として、コアシェル構造を有する粒子状重合体B1を調製した。
まず、コア部の形成にあたり、攪拌機付き5MPa耐圧容器に、メタクリル酸メチル単量体42部、アクリル酸ブチル24.5部、メタクリル酸単量体2.8部、エチレングリコールジメタクリレート0.7部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で、シェル部を形成するために、スチレン29.7部、メタクリル酸単量体0.3部を連続添加し、70℃に加温して重合を継続し、転化率が96%になった時点で、冷却し反応を停止して、粒子状重合体B1を含む水分散液を製造した。そして、粒子状重合体B1の体積平均粒子径D50(2)、及びガラス転移温度を測定した。結果を表1に示す。
<Preparation of Particulate Polymer (2)>
As the particulate polymer (2), a particulate polymer B1 having a core-shell structure was prepared.
First, in forming the core portion, 42 parts of methyl methacrylate monomer, 24.5 parts of butyl acrylate, 2.8 parts of methacrylic acid monomer, and 0.7 part of ethylene glycol dimethacrylate were placed in a 5 MPa pressure resistant container equipped with a stirrer. , 1 part of sodium dodecylbenzene sulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were added, and the mixture was sufficiently stirred and then heated to 60 ° C. to initiate polymerization. .. When the polymerization conversion rate reached 96%, 29.7 parts of styrene and 0.3 part of methacrylic acid monomer were continuously added to form a shell part, and the mixture was heated to 70 ° C. to continue polymerization. Then, when the conversion rate reached 96%, the mixture was cooled and the reaction was stopped to produce an aqueous dispersion containing the particulate polymer B1. Then, the volume average particle diameter D50 (2) of the particulate polymer B1 and the glass transition temperature were measured. The results are shown in Table 1.

<接着層用結着材の作製>
撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、並びに過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
一方、別の容器でイオン交換水50部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.5部、並びに、重合性単量体として、アクリル酸ブチル94部、アクリロニトリル2部、メタクリル酸2部、N−ヒドロキシメチルアクリルアミド1部及びアリルグリシジルエーテル1部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、接着層用結着材としてアクリル系重合体を含む水分散液を製造した。得られたアクリル系重合体の体積平均粒子径D50は0.36μmであった。
<Manufacturing of binder for adhesive layer>
In a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.15 parts of sodium lauryl sulfate (manufactured by Kao Chemical Co., Ltd., product name "Emar 2F") as an emulsifier, and 0.5 part of ammonium perfluate are added. The gas phase portion was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
On the other hand, in another container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as an emulsifier, and 94 parts of butyl acrylate, 2 parts of acrylonitrile, 2 parts of methacrylate, N- as a polymerizable monomer. 1 part of hydroxymethylacrylamide and 1 part of allylglycidyl ether were mixed to obtain a monomer mixture. This monomer mixture was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the addition, the reaction was further completed with stirring at 70 ° C. for 3 hours to produce an aqueous dispersion containing an acrylic polymer as a binder for the adhesive layer. The volume average particle diameter D50 of the obtained acrylic polymer was 0.36 μm.

<非水系二次電池接着層用組成物スラリーの作製>
固形分相当で、上記粒子状重合体(1)75部と、上記粒子状重合体(2)25質量部とを撹拌容器内で混合し、さらに上記接着層用結着材22部混合し、非水系二次電池接着層用組成物を得た。
さらに上記粒子状重合体(1)と(2)の固形分100部に対し、表面張力調整剤(エチレンオキサイド-プロピレンオキサイド共重合体)1部を添加し、さらにイオン交換水により希釈し、固形分濃度30%の非水系二次電池接着層用組成物スラリーを得た。
<Preparation of composition slurry for non-aqueous secondary battery adhesive layer>
75 parts of the particulate polymer (1) and 25 parts by mass of the particulate polymer (2), which are equivalent to the solid content, are mixed in a stirring container, and 22 parts of the adhesive layer binder are further mixed. A composition for a non-aqueous secondary battery adhesive layer was obtained.
Further, 1 part of a surface tension adjusting agent (ethylene oxide-propylene oxide copolymer) is added to 100 parts of the solid content of the particulate polymers (1) and (2), further diluted with ion-exchanged water, and solidified. A composition slurry for a non-aqueous secondary battery adhesive layer having a dilution of 30% was obtained.

<非水系二次電池用接着層を形成したセパレータの作製>
セパレータ(ポリプロピレン製、セルガード2500)基材上に、上記接着層用組成物スラリーを塗布し、50℃で3分間乾燥させた。この操作をセパレータ基材の両面について行い、片面厚み1μmずつの非水系二次電池用接着層を両面に備えるセパレータを得た。得られたセパレータにつき、上述の方法に従って試験片を作成して、接着層の耐ブロッキング性及び接着性を評価した。結果を表1に示す。
<Manufacturing a separator with an adhesive layer for non-aqueous secondary batteries>
The composition slurry for the adhesive layer was applied onto a separator (made of polypropylene, Celguard 2500) substrate and dried at 50 ° C. for 3 minutes. This operation was performed on both sides of the separator base material to obtain a separator having an adhesive layer for a non-aqueous secondary battery having a thickness of 1 μm on each side. For the obtained separator, a test piece was prepared according to the above method, and the blocking resistance and adhesiveness of the adhesive layer were evaluated. The results are shown in Table 1.

<負極の作製>
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33部、イタコン酸3.5部、スチレン63.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状の負極用結着材(SBR)を含む混合物を得た。上記負極用結着材を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、負極用結着材を含む水分散液を得た。
次に、負極活物質としての人造黒鉛(体積平均粒子径D50:15.6μm)100部を、増粘剤としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部に添加して、イオン交換水で固形分濃度68%に調整した後、25℃で60分間混合した。さらにイオン交換水で固形分濃度62%に調整した後、さらに25℃で15分間混合した。次いで、得られた混合液に、上記の負極用結着材を固形分相当量で1.5部添加し、イオン交換水で最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して二次電池負極用スラリー組成物を得た。
そして、上記で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た(片面負極)。
<Manufacturing of negative electrode>
In a 5 MPa pressure resistant container with a stirrer, 33 parts of 1,3-butadiene, 3.5 parts of itaconic acid, 63.5 parts of styrene, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and as a polymerization initiator. 0.5 part of potassium persulfate was added, and the mixture was sufficiently stirred and then heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the mixture was cooled to stop the reaction to obtain a mixture containing particulate negative electrode binder (SBR). A 5% aqueous sodium hydroxide solution was added to the mixture containing the binder for the negative electrode to adjust the pH to 8, and then unreacted monomers were removed by hot vacuum distillation, and then cooled to 30 ° C. or lower. An aqueous dispersion containing a binder for the negative electrode was obtained.
Next, 100 parts of artificial graphite (volume average particle diameter D50: 15.6 μm) as a negative electrode active material and a 2% aqueous solution of carboxymethyl cellulose sodium salt (“MAC350HC” manufactured by Nippon Paper Co., Ltd.) as a thickener are added to the solid content. It was added to 1 part in a considerable amount, adjusted to a solid content concentration of 68% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Further, after adjusting the solid content concentration to 62% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes. Next, 1.5 parts of the above negative electrode binder was added to the obtained mixed solution in an amount equivalent to the solid content, and the final solid content concentration was adjusted to 52% with ion-exchanged water for another 10 minutes. Mixed. This was defoamed under reduced pressure to obtain a slurry composition for the negative electrode of a secondary battery.
Then, the slurry composition for the negative electrode obtained above is applied to a copper foil having a thickness of 20 μm, which is a current collector, with a comma coater so that the film thickness after drying is about 150 μm, and dried. It was. This drying was carried out by transporting the copper foil at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it was heat-treated at 120 degreeC for 2 minutes to obtain the negative electrode raw fabric before pressing. The negative electrode raw material before pressing was rolled by a roll press to obtain a negative electrode after pressing with a thickness of the negative electrode mixture layer of 80 μm (single-sided negative electrode).

<正極の作製>
正極活物質としてのLiCoO2(体積平均粒子径D50:12μm)100部と、導電材としてのアセチレンブラック(電気化学工業社製「HS−100」)を2部と、正極用結着材としてのポリフッ化ビニリデン(クレハ社製、#7208)を固形分相当で2部とを混合し、N−メチルピロリドンを加えて全固形分濃度を70質量%とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
そして、上記正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極合材層の厚みが80μmのプレス後の正極を得た(片面正極)。
<Preparation of positive electrode>
100 parts of LiCoO 2 (volume average particle size D50: 12 μm) as a positive electrode active material, 2 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and a binder for a positive electrode. Two parts of polyvinylidene fluoride (manufactured by Kureha Co., Ltd., # 7208) corresponding to the solid content were mixed, and N-methylpyrrolidone was added to adjust the total solid content concentration to 70% by mass. These were mixed by a planetary mixer to prepare a slurry composition for a positive electrode.
Then, the slurry composition for a positive electrode was applied to an aluminum foil having a thickness of 20 μm, which is a current collector, with a comma coater so that the film thickness after drying was about 150 μm, and dried. This drying was carried out by transporting the copper foil at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it was heat-treated at 120 degreeC for 2 minutes to obtain the positive electrode raw fabric before pressing. The raw electrode of the positive electrode before pressing was rolled by a roll press to obtain a positive electrode after pressing with a thickness of the positive electrode mixture layer of 80 μm (single-sided positive electrode).

<リチウムイオン二次電池の製造>
上記で得られたプレス後の正極を4cm×4cmの正方形に切り出し、正極の正極合材層の面上に上記で得られた非水系二次電池用接着層付きセパレータを5cm×5cmに切り出し配置した。さらに上記の通り作製したプレス後の負極を4.2cm×4.2cmに切り出し、これを非水系二次電池用接着層付きセパレータ上に、負極合材層側の表面が対向するよう配置し、積層体とした。次いで得られた積層体を温度60℃、0.5MPaでプレスして接着させた。続いて接着した積層体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)(体積比)=68.5/30/1.5、電解質:濃度1MのLiPF6)を空気が残らないように注入した。そして、150℃で、当該アルミ包材外装の開口をヒートシールし、アルミ包材外装を密封閉口し、40mAhの積層ラミネート型リチウムイオン二次電池を製造した。
そして、製造したリチウムイオン二次電池について、低温出力特性を評価した。結果を表1に示す。
<Manufacturing of lithium-ion secondary batteries>
The positive electrode after pressing obtained above is cut out into a square of 4 cm × 4 cm, and the separator with an adhesive layer for a non-aqueous secondary battery obtained above is cut out and arranged on the surface of the positive electrode mixture layer of the positive electrode in a size of 5 cm × 5 cm. did. Further, the pressed negative electrode prepared as described above was cut into a size of 4.2 cm × 4.2 cm, and this was placed on a separator with an adhesive layer for a non-aqueous secondary battery so that the surfaces on the negative electrode mixture layer side faced each other. It was made into a laminated body. Next, the obtained laminate was pressed at a temperature of 60 ° C. and 0.5 MPa to bond them. Subsequently, the bonded laminate was wrapped with an aluminum packaging material exterior as the battery exterior, and the electrolytic solution (solvent: ethylene carbonate (EC) / diethyl carbonate (DEC) / vinylene carbonate (VC) (volume ratio) = 68.5 / 30 / 1.5, electrolyte: LiPF 6 ) having a concentration of 1 M was injected so that no air remained. Then, at 150 ° C., the opening of the aluminum packaging material exterior was heat-sealed, and the aluminum packaging material exterior was sealed and closed to manufacture a 40 mAh laminated laminated lithium ion secondary battery.
Then, the low temperature output characteristics of the manufactured lithium ion secondary battery were evaluated. The results are shown in Table 1.

(実施例2)
粒子状重合体(1)として粒子状重合体A2を調製した。粒子状重合体A2の調製にあたり、メタクリル酸メチルの配合量を68部とし、アクリル酸ブチル27部に変更した以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Example 2)
Particulate polymer A2 was prepared as the particulate polymer (1). In the preparation of the particulate polymer A2, various measurements and evaluations were carried out in the same manner as in Example 1 except that the blending amount of methyl methacrylate was 68 parts and changed to 27 parts of butyl acrylate. The results are shown in Table 1.

(実施例3)
粒子状重合体(2)としてコアシェル構造の粒子状重合体B2を調製した。粒子状重合体B2の調製において、シェル部の形成時のスチレンの配合量を27.6部とし、2−エチルヘキシルアクリレートを2.1部配合した以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Example 3)
A particulate polymer B2 having a core-shell structure was prepared as the particulate polymer (2). In the preparation of the particulate polymer B2, various measurements were carried out in the same manner as in Example 1 except that the amount of styrene at the time of forming the shell portion was 27.6 parts and 2.1 parts of 2-ethylhexyl acrylate was blended. Evaluation was performed. The results are shown in Table 1.

(実施例4)
非水系二次電池接着層用組成物スラリーの作製時に、粒子状重合体(1)の配合量を85部とし、粒子状重合体(2)の配合量を15部とした以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Example 4)
Example 1 except that the amount of the particulate polymer (1) was 85 parts and the amount of the particulate polymer (2) was 15 parts when the composition slurry for the non-aqueous secondary battery adhesive layer was prepared. In the same manner as above, various measurements and evaluations were performed. The results are shown in Table 1.

(実施例5)
粒子状重合体(1)として、粒子状重合体A1とは径の異なる粒子状重合体A3を、粒子状重合体(2)として、粒子状重合体B1とは径の異なる粒子状重合体B3を、それぞれ調製した。粒子状重合体A3の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を0.4部に変更した以外は、実施例1と同様にした。また、粒子状重合体B3の調製時にドデシルベンゼンスルホン酸ナトリウムの配合量を0.2部に、過硫酸カリウムの配合量を0.2部に変更した以外は実施例1と同様にした。
さらに、非水系二次電池接着層用組成物スラリーの作製時に、粒子状重合体(1)の配合量を85部とし、粒子状重合体(2)の配合量を15部とした。
これらの点以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Example 5)
As the particulate polymer (1), the particulate polymer A3 having a diameter different from that of the particulate polymer A1 is used, and as the particulate polymer (2), the particulate polymer B3 having a diameter different from that of the particulate polymer B1. Were prepared respectively. The same procedure as in Example 1 was carried out except that the blending amount of sodium dodecylbenzenesulfonate, which is an emulsifier, was changed to 0.4 part when the particulate polymer A3 was prepared. Further, the same procedure as in Example 1 was carried out except that the blending amount of sodium dodecylbenzenesulfonate was changed to 0.2 parts and the blending amount of potassium persulfate was changed to 0.2 parts at the time of preparing the particulate polymer B3.
Further, when the composition slurry for the non-aqueous secondary battery adhesive layer was prepared, the amount of the particulate polymer (1) was 85 parts, and the amount of the particulate polymer (2) was 15 parts.
Except for these points, various measurements and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
非水系二次電池接着層用組成物スラリーの作製時に、粒子状重合体(1)の配合量を60部とし、粒子状重合体(2)の配合量を40部とした以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Example 6)
Example 1 except that the amount of the particulate polymer (1) was 60 parts and the amount of the particulate polymer (2) was 40 parts when the composition slurry for the non-aqueous secondary battery adhesive layer was prepared. In the same manner as above, various measurements and evaluations were performed. The results are shown in Table 1.

(実施例7)
粒子状重合体(1)として、粒子状重合体A1とは径の異なる粒子状重合体A4を調製した。粒子状重合体A4の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を0.2部に変更した以外は、実施例1と同様にした。
さらに、非水系二次電池接着層用組成物スラリーの作製時に、粒子状重合体(1)の配合量を60部とし、粒子状重合体(2)の配合量を40部とした。
これらの点以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Example 7)
As the particulate polymer (1), a particulate polymer A4 having a diameter different from that of the particulate polymer A1 was prepared. This was the same as in Example 1 except that the blending amount of sodium dodecylbenzenesulfonate, which is an emulsifier, was changed to 0.2 part at the time of preparing the particulate polymer A4.
Further, at the time of preparing the composition slurry for the non-aqueous secondary battery adhesive layer, the blending amount of the particulate polymer (1) was 60 parts, and the blending amount of the particulate polymer (2) was 40 parts.
Except for these points, various measurements and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.

(実施例8)
粒子状重合体(1)として、粒子状重合体A1とは径の異なる粒子状重合体A5を、粒子状重合体(2)として、粒子状重合体B1とは径の異なる粒子状重合体B4を、それぞれ調製した。
粒子状重合体A5の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を0.2部に、過硫酸カリウムの配合量を0.2部に変更した以外は、実施例1と同様にした。
粒子状重合体B4の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を0.2部に、過硫酸カリウムの配合量を0.3部に変更した以外は、実施例1と同様にした。
さらに、非水系二次電池接着層用組成物スラリーの作製時に、粒子状重合体(1)の配合量を80部とし、粒子状重合体(2)の配合量を20部とした。
これらの点以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Example 8)
As the particulate polymer (1), the particulate polymer A5 having a diameter different from that of the particulate polymer A1 is used, and as the particulate polymer (2), the particulate polymer B4 having a diameter different from that of the particulate polymer B1. Were prepared respectively.
Similar to Example 1 except that the amount of the emulsifier sodium dodecylbenzenesulfonate was changed to 0.2 parts and the amount of potassium persulfate was changed to 0.2 parts at the time of preparing the particulate polymer A5. did.
The same as in Example 1 except that the amount of the emulsifier sodium dodecylbenzenesulfonate was changed to 0.2 parts and the amount of potassium persulfate was changed to 0.3 parts when the particulate polymer B4 was prepared. did.
Further, when the composition slurry for the non-aqueous secondary battery adhesive layer was prepared, the amount of the particulate polymer (1) was 80 parts, and the amount of the particulate polymer (2) was 20 parts.
Except for these points, various measurements and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.

(実施例9)
実施例1と同様にして、粒子状重合体A1及びB1を調製して、非水系二次電池接着層用組成物スラリーを調製した。そして、リチウムイオン二次電池の製造時に、接着層を形成することなくセパレータ基材をそのままセパレータとして使用し、負極、正極として、接着層を備える負極、接着層を備える正極を使用した以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。そして、上記方法に従って各種測定・評価を行った。結果を表1に示す。なお、接着層を備える負極及び接着層を備える正極の作製方法は、それぞれ以下の通りである。
(Example 9)
Particulate polymers A1 and B1 were prepared in the same manner as in Example 1 to prepare a composition slurry for a non-aqueous secondary battery adhesive layer. Then, in the production of the lithium ion secondary battery, the separator base material is used as it is as a separator without forming an adhesive layer, and as the negative electrode and the positive electrode, a negative electrode having an adhesive layer and a positive electrode having an adhesive layer are used. A lithium ion secondary battery was manufactured in the same manner as in Example 1. Then, various measurements and evaluations were performed according to the above method. The results are shown in Table 1. The methods for producing the negative electrode provided with the adhesive layer and the positive electrode provided with the adhesive layer are as follows.

<接着層を備える負極/正極の作製>
実施例1と同様にして、集電体上に厚さ80μmの負極/正極合材層を形成し、電極基材を得た後、負極/負極合材層側の面に、接着層用組成物スラリーを塗布し、50℃で3分間乾燥させた。これにより、厚さ1μmの接着層を片面に備える負極/正極を作製した。
<Preparation of negative electrode / positive electrode with adhesive layer>
In the same manner as in Example 1, a negative electrode / positive electrode mixture layer having a thickness of 80 μm is formed on the current collector, and after obtaining an electrode base material, a composition for an adhesive layer is formed on the surface on the negative electrode / negative electrode mixture layer side. The electrode slurry was applied and dried at 50 ° C. for 3 minutes. As a result, a negative electrode / positive electrode having an adhesive layer having a thickness of 1 μm on one side was produced.

(比較例1)
粒子状重合体(1)として、ガラス転移温度が80℃超である粒子状重合体C1を調製した。粒子状重合体C1の調製時に、メタクリル酸メチル単量体の配合量を74部に変更し、アクリル酸ブチルの配合量を21部に変更した以外は実施例1と同様にして、粒子状重合体C1を含む水分散液を製造した。それ以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Comparative Example 1)
As the particulate polymer (1), a particulate polymer C1 having a glass transition temperature of more than 80 ° C. was prepared. Particulate weight in the same manner as in Example 1 except that the amount of the methyl methacrylate monomer was changed to 74 parts and the amount of butyl acrylate was changed to 21 parts at the time of preparing the particulate polymer C1. An aqueous dispersion containing the coalesced C1 was produced. Other than that, various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
粒子状重合体(2)として、コア部のガラス転移温度が80℃以上でありシェル部のガラス転移温度が80℃未満である粒子状重合体D1を調製した。粒子状重合体D1の調製時に、メタクリル酸メチルの配合量を52.5部、アクリル酸ブチルの配合量を14部、スチレンの配合量を26.4部とし、2−エチルヘキシルアクリレートを3.3部配合した以外は実施例4と同様にして粒子状重合体D1を含む水分散液を製造した。これ以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Comparative Example 2)
As the particulate polymer (2), a particulate polymer D1 having a core portion with a glass transition temperature of 80 ° C. or higher and a shell portion with a glass transition temperature of less than 80 ° C. was prepared. When preparing the particulate polymer D1, the amount of methyl methacrylate was 52.5 parts, the amount of butyl acrylate was 14 parts, the amount of styrene was 26.4 parts, and the amount of 2-ethylhexyl acrylate was 3.3. An aqueous dispersion containing the particulate polymer D1 was produced in the same manner as in Example 4 except that the parts were partially blended. Other than this, various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
粒子状重合体(1)として、体積平均粒子径が0.1μmよりも小さい粒子状重合体C2を、粒子状重合体(2)として、粒子状重合体B1とは径の異なる粒子状重合体B5を、それぞれ調製した。
粒子状重合体C2の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を3部に、過硫酸カリウム配合量を1部に変更した以外は、実施例1と同様にした。
粒子状重合体B5の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を0.6部に変更した以外は、実施例1と同様にした。
これらの点以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Comparative Example 3)
As the particulate polymer (1), the particulate polymer C2 having a volume average particle diameter smaller than 0.1 μm is used, and as the particulate polymer (2), the particulate polymer having a diameter different from that of the particulate polymer B1. B5 was prepared respectively.
The same procedure as in Example 1 was carried out except that the amount of the emulsifier sodium dodecylbenzenesulfonate was changed to 3 parts and the amount of potassium persulfate was changed to 1 part at the time of preparing the particulate polymer C2.
The same procedure as in Example 1 was carried out except that the blending amount of sodium dodecylbenzenesulfonate, which is an emulsifier, was changed to 0.6 parts when the particulate polymer B5 was prepared.
Except for these points, various measurements and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
粒子状重合体(1)として、粒子状重合体A1とは径の異なる粒子状重合体A6を、粒子状重合体(2)として、体積平均粒子径が0.1μmよりも小さい粒子状重合体D2を、それぞれ調製した。
粒子状重合体A6の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を0.6部に変更した以外は、実施例1と同様にした。
粒子状重合体D2の調製時に、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの配合量を3部に、過硫酸カリウム配合量を1部に変更した以外は、実施例1と同様にした。
これらの点以外は実施例1と同様にして、各種測定・評価を行った。結果を表1に示す。
(Comparative Example 4)
As the particulate polymer (1), a particulate polymer A6 having a diameter different from that of the particulate polymer A1 is used as a particulate polymer (2), and a particulate polymer having a volume average particle diameter smaller than 0.1 μm. D2 was prepared respectively.
The same procedure as in Example 1 was carried out except that the blending amount of sodium dodecylbenzenesulfonate, which is an emulsifier, was changed to 0.6 parts when the particulate polymer A6 was prepared.
The same procedure as in Example 1 was carried out except that the amount of the emulsifier sodium dodecylbenzenesulfonate was changed to 3 parts and the amount of potassium persulfate was changed to 1 part at the time of preparing the particulate polymer D2.
Except for these points, various measurements and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.

Figure 0006808931
Figure 0006808931

表1の実施例1〜9より、共に、体積平均粒子径D50が0.1μm以上5μm以下である2種類の粒子状重合体であって、80℃未満である少なくとも一つのガラス転移温度を有する粒子状重合体と、コアシェル構造を有し、シェル部のガラス転移温度が80℃以上である粒子状重合体と、結着材とを含む組成物から形成される接着層は、耐ブロッキング性に優れることが分かる。加えて、当該接着層を備える二次電池は低温出力特性に優れることが分かる。 From Examples 1 to 9 in Table 1, both are two kinds of particulate polymers having a volume average particle diameter D50 of 0.1 μm or more and 5 μm or less, and have at least one glass transition temperature of less than 80 ° C. The adhesive layer formed from the composition containing the particulate polymer, the particulate polymer having a core-shell structure and the glass transition temperature of the shell portion of 80 ° C. or higher, and the binder has blocking resistance. It turns out to be excellent. In addition, it can be seen that the secondary battery provided with the adhesive layer is excellent in low temperature output characteristics.

本発明によれば、接着層に優れた耐ブロッキング性を発揮させることができ、かつ、二次電池に優れた低温出力特性を発揮させることができる非水系二次電池接着層用組成物が得られる。
また、本発明によれば、耐ブロッキング性に優れ、かつ、二次電池に優れた低温出力特性を発揮させることができる非水系二次電池用接着層が得られる。
さらに、本発明によれば、低温出力特性に優れる非水系二次電池が得られる。
According to the present invention, a composition for a non-aqueous secondary battery adhesive layer can be obtained, which can exhibit excellent blocking resistance in the adhesive layer and exhibit excellent low temperature output characteristics in the secondary battery. Be done.
Further, according to the present invention, it is possible to obtain an adhesive layer for a non-aqueous secondary battery which is excellent in blocking resistance and can exhibit excellent low temperature output characteristics in a secondary battery.
Further, according to the present invention, a non-aqueous secondary battery having excellent low temperature output characteristics can be obtained.

Claims (5)

粒子状重合体A、粒子状重合体B及び結着材を含む非水系二次電池接着層用組成物であって、
前記粒子状重合体Aが、80℃未満である少なくとも一つのガラス転移温度を有し、
前記粒子状重合体Bが、コア部と、ガラス転移温度が80℃以上である、前記コア部の外表面を覆うシェル部とを備えるコアシェル構造を有し、さらに、
前記粒子状重合体Aの体積平均粒子径D50Aが、0.4μm以上5μm以下であり、且つ、前記粒子状重合体Bの体積平均粒子径D50Bが、0.1μm以上5μm以下であり、
前記粒子状重合体Bの体積平均粒子径D50Bが、前記粒子状重合体Aの体積平均粒子径D50Aの0.5倍以上5倍以下であり、且つ、
前記粒子状重合体Aの含有量が、前記粒子状重合体Bの含有量に対して、質量基準で、2/3倍以上9倍以下であり、
前記結着材が、前記粒子状重合体A及び前記粒子状重合体Bの双方よりも、体積平均粒子径D50が小さい粒子状重合体である、
非水系二次電池接着層用組成物。
A composition for a non-aqueous secondary battery adhesive layer containing a particulate polymer A, a particulate polymer B, and a binder.
The particulate polymer A has at least one glass transition temperature of less than 80 ° C.
The particulate polymer B has a core-shell structure including a core portion and a shell portion covering the outer surface of the core portion having a glass transition temperature of 80 ° C. or higher.
The volume average particle diameter D50 A of the particulate polymer A is 0.4 μm or more and 5 μm or less, and the volume average particle diameter D50 B of the particulate polymer B is 0.1 μm or more and 5 μm or less.
The volume average particle size D50 B of the particulate polymer B is 0.5 times or more and 5 times or less the volume average particle size D50 A of the particulate polymer A, and
The content of the particulate polymer A is, relative to the content of the particulate polymer B, and mass, are two / 3 times 9 times der below,
The binder is, than both the particulate polymer A and the particulate polymer B, the volume average particle size D50 Ru small particulate polymer der,
Composition for non-aqueous secondary battery adhesive layer.
前記結着材が、熱可塑性エラストマーである、請求項1に記載の非水系二次電池接着層用組成物。 The composition for a non-aqueous secondary battery adhesive layer according to claim 1, wherein the binder is a thermoplastic elastomer. 請求項1又は2に記載の非水系二次電池接着層用組成物を用いて形成した非水系二次電池用接着層。 An adhesive layer for a non-aqueous secondary battery formed by using the composition for a non-aqueous secondary battery adhesive layer according to claim 1 or 2 . 請求項に記載の非水系二次電池用接着層を備える、非水系二次電池。 A non-aqueous secondary battery comprising the adhesive layer for the non-aqueous secondary battery according to claim 3 . 捲回型又は積層型である請求項に記載の非水系二次電池。
The non-aqueous secondary battery according to claim 4 , which is a wound type or a laminated type.
JP2015232300A 2015-11-27 2015-11-27 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery Active JP6808931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232300A JP6808931B2 (en) 2015-11-27 2015-11-27 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232300A JP6808931B2 (en) 2015-11-27 2015-11-27 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2017098203A JP2017098203A (en) 2017-06-01
JP6808931B2 true JP6808931B2 (en) 2021-01-06

Family

ID=58817228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232300A Active JP6808931B2 (en) 2015-11-27 2015-11-27 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6808931B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019089492A1 (en) 2017-10-30 2019-05-09 Arkema Inc. Lithium ion battery separator
CN117317348A (en) 2017-12-28 2023-12-29 日本瑞翁株式会社 Laminate for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
KR102233770B1 (en) * 2018-02-01 2021-03-30 삼성에스디아이 주식회사 Separator, Lithium battery containging Separator, and method for preparing Separator
JP7184874B2 (en) * 2018-03-28 2022-12-06 株式会社カネカ adhesive composition
EP3876304A4 (en) * 2018-10-31 2022-08-03 Zeon Corporation Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, nonaqueous secondary battery separator, and nonaqueous secondary battery
WO2020091537A1 (en) * 2018-11-01 2020-05-07 주식회사 엘지화학 Separator and electrochemical device comprising same
JPWO2020175025A1 (en) * 2019-02-26 2021-12-23 日本ゼオン株式会社 Slurry composition for non-aqueous secondary battery functional layer, separator for non-aqueous secondary battery and non-aqueous secondary battery
US20230145168A1 (en) * 2020-04-17 2023-05-11 Mitsui Chemicals, Inc. Ingredient for secondary cell separator coating material, secondary cell separator coating material, secondary cell separator, method for producing secondary cell separator, and secondary cell
JP7186747B2 (en) 2020-07-27 2022-12-09 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery and manufacturing method thereof
CN113410576B (en) * 2021-06-17 2023-11-24 无锡恩捷新材料科技有限公司 Battery diaphragm and preparation method thereof, battery and preparation method of core-shell type sphere
JPWO2023008319A1 (en) 2021-07-30 2023-02-02
WO2023200253A1 (en) * 2022-04-14 2023-10-19 주식회사 엘지화학 Secondary battery binder composition and secondary battery electrode mixture comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682737B2 (en) * 2012-03-22 2015-03-11 日本ゼオン株式会社 Porous membrane for secondary battery and method for producing the same, electrode for secondary battery, separator for secondary battery, and secondary battery
US10141557B2 (en) * 2013-07-10 2018-11-27 Zeon Corporation Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery
JP6155967B2 (en) * 2013-08-23 2017-07-05 日本ゼオン株式会社 Adhesive for lithium ion secondary battery, separator with adhesive layer, electrode with adhesive layer, and lithium ion secondary battery
KR102301045B1 (en) * 2013-10-31 2021-09-09 제온 코포레이션 Particulate polymer for use in binder for lithium-ion secondary batte;adhesive layer;and porous-membrane composition
JP2015185514A (en) * 2014-03-26 2015-10-22 Jsr株式会社 Composition for production of separator, separator, and power storage device

Also Published As

Publication number Publication date
JP2017098203A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6808931B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery
JP7167440B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, laminate, and non-aqueous secondary battery
US11637327B2 (en) Composition for non-aqueous secondary battery functional layer, battery component for non-aqueous secondary battery, method of producing laminate for non-aqueous secondary battery, and non-aqueous secondary battery
JP6927043B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, separator with adhesive layer for non-aqueous secondary battery, electrode with adhesive layer for non-aqueous secondary battery, and non-aqueous secondary battery and Its manufacturing method
JP6155967B2 (en) Adhesive for lithium ion secondary battery, separator with adhesive layer, electrode with adhesive layer, and lithium ion secondary battery
US10930914B2 (en) Nonaqueous secondary battery porous film composition, nonaqueous secondary battery porous film, and nonaqueous secondary battery
JP7363777B2 (en) Slurry for non-aqueous secondary batteries, separators for non-aqueous secondary batteries, electrodes for non-aqueous secondary batteries, laminates for non-aqueous secondary batteries, and non-aqueous secondary batteries
US10177415B2 (en) Adhesive composition for electrochemical device, adhesive layer for electrochemical device, and electrochemical device
US20180053963A1 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6737182B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
WO2016031163A1 (en) Laminate for nonaqueous secondary batteries and method for manufacturing nonaqueous secondary battery member
JP6996515B2 (en) Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery and non-aqueous secondary battery
JP6988799B2 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP6834127B2 (en) A method for forming a functional layer for a non-aqueous secondary battery and a method for manufacturing a non-aqueous secondary battery
JP6515574B2 (en) Non-aqueous secondary battery functional layer binder, non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6665484B2 (en) Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
WO2017090242A1 (en) Composition for nonaqueous secondary battery adhesive layers, adhesive layer for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6536017B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, non-aqueous secondary battery member, non-aqueous secondary battery, and method for producing adhesive layer for non-aqueous secondary battery
JP6891392B2 (en) Laminate for non-aqueous secondary batteries
JP7306271B2 (en) Composition for non-aqueous secondary battery functional layer, battery member for non-aqueous secondary battery, method for producing laminate for non-aqueous secondary battery, and non-aqueous secondary battery
JP6693101B2 (en) Non-aqueous secondary battery functional layer composition, method for producing non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6808931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250