WO2019189014A1 - 空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池 - Google Patents

空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池 Download PDF

Info

Publication number
WO2019189014A1
WO2019189014A1 PCT/JP2019/012567 JP2019012567W WO2019189014A1 WO 2019189014 A1 WO2019189014 A1 WO 2019189014A1 JP 2019012567 W JP2019012567 W JP 2019012567W WO 2019189014 A1 WO2019189014 A1 WO 2019189014A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
catalyst
air
air secondary
electrode
Prior art date
Application number
PCT/JP2019/012567
Other languages
English (en)
French (fr)
Inventor
昇平 夘野木
剛史 梶原
賢大 遠藤
茂和 安岡
芳克 渡部
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Priority to CN201980023869.9A priority Critical patent/CN111937198B/zh
Priority to US16/981,275 priority patent/US11322751B2/en
Priority to EP19775557.2A priority patent/EP3780195A4/en
Publication of WO2019189014A1 publication Critical patent/WO2019189014A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6447Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a method for producing a catalyst for an air secondary battery, a method for producing an air secondary battery, a catalyst for an air secondary battery, and an air secondary battery.
  • an air-hydrogen secondary battery using an alkaline aqueous solution (alkaline electrolyte) as an electrolyte and having a hydrogen storage alloy capable of occluding and releasing hydrogen as a negative electrode active material in the negative electrode has the following merits. Therefore, it is expected as a next-generation secondary battery.
  • the active material of the positive electrode is oxygen in the air
  • the battery capacity of the air-hydrogen secondary battery depends only on the capacity of the negative electrode, so the capacity is increased by the amount of hydrogen storage alloy.
  • the air-hydrogen secondary battery may have a higher energy density than the nickel-hydrogen secondary battery that similarly uses a hydrogen storage alloy.
  • the air electrode of the air-hydrogen secondary battery reduces hydroxide to generate hydroxide ions as represented by reaction formula (I) during discharge, and generates oxygen ions as represented by reaction formula (II) during charging. And produce water. Oxygen generated at the air electrode is released into the atmosphere from a portion of the air electrode that is open to the atmosphere.
  • a pyrochlore type oxide is used as a catalyst in the air electrode that is the positive electrode of the air-hydrogen secondary battery as described above.
  • the pyrochlore type oxide include transition element oxides.
  • bismuth ruthenium oxides disclosed in Patent Document 1 are known. Since this bismuth ruthenium oxide has catalytic activity for oxygen generation and oxygen reduction, it is used for the positive electrode of an air-hydrogen secondary battery.
  • the bismuth ruthenium oxide is manufactured by a manufacturing method in which a precursor is generated by a coprecipitation method using bismuth nitrate and ruthenium chloride as starting materials, and then the precursor is fired.
  • a by-product is formed in the process.
  • the bismuth ruthenium oxide itself does not cause a dissolution and precipitation reaction
  • the above-mentioned by-product causes a dissolution precipitation reaction.
  • the chemical reaction hereinafter referred to as battery reaction
  • the dissolution and precipitation reaction of the metal component (mainly bismuth) in the by-product is repeated, and the metal component is degenerated on the electrode plate.
  • the present invention has been made on the basis of the above circumstances, and the object of the present invention is to provide a method for producing a catalyst for an air secondary battery and a method for producing an air secondary battery capable of suppressing the occurrence of a minute short circuit. Another object is to provide a catalyst for an air secondary battery and an air secondary battery.
  • a method for producing a catalyst for an air secondary battery for use in an air electrode of an air secondary battery the precursor preparing step for preparing a precursor of a pyrochlore oxide. And a baking step of baking the precursor to form a pyrochlore oxide, and an acid treatment step of immersing the pyrochlore oxide obtained in the baking step in an acidic aqueous solution and acid-treating it.
  • a method for producing a catalyst for an air secondary battery is provided.
  • the pyrochlore type oxide has the general formula: A 2 ⁇ X B 2 ⁇ Y O 7 ⁇ Z (where X, Y, and Z each represent a numerical value of 0 or more and 1 or less, and A is Bi, Pb, Tb Represents at least one element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Mn, Y, Zn, and B represents Ru, Ir, Si, Ge, Ta, Sn, Hf, Zr, Ti, Nb, V, Sb, Rh, Cr, Re, Sc, Co, Cu, In, Ga, Cd, Fe, Ni, W, Mo At least one element is represented.) A transition element oxide of a pyrochlore type having a composition represented by
  • the acidic aqueous solution is preferably one of a nitric acid aqueous solution, a hydrochloric acid aqueous solution, and a sulfuric acid aqueous solution.
  • the pyrochlore type transition element oxide is preferably a pyrochlore type bismuth ruthenium oxide.
  • the value of X / Y which is the ratio of the amount of bismuth to the amount of ruthenium, is 0.90 or less. It is preferable that the acid treatment is performed so that
  • the acid treatment is performed so that a value of X / Y which is a ratio of the amount of bismuth to the amount of ruthenium is 0.80 or more.
  • an air electrode manufacturing process for manufacturing an air electrode by supporting an air electrode mixture containing a catalyst for an air secondary battery on an air electrode substrate, and a negative electrode by supporting a negative electrode mixture on a negative electrode substrate.
  • the air secondary battery catalyst is manufactured by any one of the air secondary battery catalyst manufacturing methods described above.
  • the negative electrode manufacturing process further includes a process of adding a hydrogen storage alloy to the negative electrode mixture.
  • a catalyst for an air secondary battery used for an air electrode of an air secondary battery which is subjected to an acid treatment immersed in an acidic aqueous solution, and removes by-products generated in the manufacturing process.
  • a catalyst for an air secondary battery comprising the pyrochlore type oxide in the prepared state.
  • the pyrochlore type oxide has the general formula: A 2 ⁇ X B 2 ⁇ Y O 7 ⁇ Z (where X, Y, and Z each represent a numerical value of 0 or more and 1 or less, and A is Bi, Pb, Tb Represents at least one element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Mn, Y, Zn, and B represents Ru, Ir, Si, Ge, Ta, Sn, Hf, Zr, Ti, Nb, V, Sb, Rh, Cr, Re, Sc, Co, Cu, In, Ga, Cd, Fe, Ni, W, Mo At least one element is represented.) A transition element oxide of a pyrochlore type having a composition represented by
  • the pyrochlore type transition element oxide is preferably a bismuth ruthenium oxide.
  • the bismuth ruthenium oxide has a ratio of X / Y which is the ratio of the amount of bismuth to the amount of ruthenium, where X is the amount of bismuth contained in the bismuth ruthenium oxide and Y is the amount of ruthenium. It is preferable that the value is 0.90 or less.
  • the value of X / Y which is the ratio of the amount of bismuth to the amount of ruthenium, is 0.80 or more.
  • an air secondary battery that includes any air secondary battery catalyst.
  • the negative electrode preferably contains a hydrogen storage alloy.
  • the method for producing a catalyst for an air secondary battery according to the present invention includes an acid treatment step in which a pyrochlore type oxide is immersed in an acidic aqueous solution and subjected to an acid treatment. By passing through this acid treatment step, a pyrochlore type oxide is produced. By-products are removed, and dendrites associated with dissolution and precipitation reactions of metal components in the by-products can be prevented. Therefore, according to this invention, the manufacturing method of the catalyst for air secondary batteries which can suppress generation
  • FIG. 1 is a cross-sectional view schematically showing an air-hydrogen secondary battery according to an embodiment of the present invention.
  • 2 is a graph showing X-ray diffraction profiles of the bismuth ruthenium oxide powder of Example 1 and the bismuth ruthenium oxide powder of Comparative Example 1.
  • FIG. 2 is a photograph of an SEM image (magnification: 300 times) of the bismuth ruthenium oxide of Example 1.
  • FIG. 4 is a SEM image (magnification: 300 times) of the bismuth ruthenium oxide of Comparative Example 1. It is the graph which showed the relationship between a discharge capacity rate and cycle number. It is the graph which showed the relationship between the battery voltage at the time of a rest after completion
  • an air-hydrogen secondary battery (hereinafter simply referred to as a battery) 2 incorporating an air electrode including an air secondary battery catalyst according to the present invention will be described with reference to the drawings.
  • the battery 2 is formed such that an electrode group 6 placed in a container 4 is sandwiched between a top plate 8 and a bottom plate 10.
  • the electrode group 6 is formed by superposing a negative electrode 12 and an air electrode (positive electrode) 14 via a separator 16.
  • the negative electrode 12 includes a conductive negative electrode base material having a porous structure and a large number of holes, and a negative electrode mixture supported in the above-described holes and on the surface of the negative electrode base material.
  • foamed nickel can be used as such a negative electrode substrate.
  • the negative electrode mixture includes a hydrogen storage alloy powder that is an aggregate of hydrogen storage alloy particles capable of storing and releasing hydrogen as a negative electrode active material, a conductive agent, and a binder.
  • a hydrogen storage alloy powder that is an aggregate of hydrogen storage alloy particles capable of storing and releasing hydrogen as a negative electrode active material, a conductive agent, and a binder.
  • graphite, carbon black, etc. can be used as the conductive agent.
  • the hydrogen storage alloy constituting the hydrogen storage alloy particles is not particularly limited, but rare earth-Mg—Ni based hydrogen storage alloys are used.
  • the composition of the rare earth-Mg—Ni-based hydrogen storage alloy can be freely selected.
  • Ln is derived from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y, Zr and Ti.
  • Represents at least one element selected from the group, and the subscripts a, b, x, and y are 0.05 ⁇ a ⁇ 0.30, 0 ⁇ b ⁇ 0.50, and 0.01 ⁇ x ⁇ 0. 30 represents a number satisfying 2.8 ⁇ y ⁇ 3.9.
  • the hydrogen storage alloy particles are obtained, for example, as follows.
  • metal raw materials are weighed and mixed so as to have a predetermined composition, and this mixture is melted in an inert gas atmosphere, for example, in a high-frequency induction melting furnace to form an ingot.
  • the obtained ingot is heated to 900 to 1200 ° C. in an inert gas atmosphere, and subjected to a heat treatment that is maintained at that temperature for 5 to 24 hours to be homogenized. Thereafter, the ingot is pulverized and sieved to obtain a hydrogen storage alloy powder that is an aggregate of hydrogen storage alloy particles having a desired particle diameter.
  • binder for example, sodium polyacrylate, carboxymethyl cellulose, styrene butadiene rubber or the like is used.
  • the negative electrode 12 can be produced, for example, as follows.
  • a negative electrode mixture paste is prepared by kneading a hydrogen storage alloy powder, which is an aggregate of hydrogen storage alloy particles, a conductive agent, a binder and water.
  • the obtained negative electrode mixture paste is filled in the negative electrode substrate and dried. After drying, the negative electrode substrate to which the hydrogen storage alloy particles and the like are attached is rolled to increase the amount of alloy per volume, and then cut, whereby the negative electrode 12 is produced.
  • the negative electrode 12 has a plate shape as a whole.
  • the air electrode 14 includes a conductive air electrode base material having a porous structure and a large number of holes, and an air electrode mixture (positive electrode) supported in the above-described holes and on the surface of the air electrode base material. A mixture).
  • foamed nickel or nickel mesh can be used as such an air electrode base material.
  • the air electrode mixture includes a catalyst for an air secondary battery, a conductive agent, and a binder.
  • the catalyst for the air secondary battery As the catalyst for the air secondary battery, a pyrochlore oxide that has been subjected to an acid treatment immersed in an acidic aqueous solution is used.
  • the pyrochlore type oxide to be subjected to the acid treatment has a general formula: A 2 ⁇ X B 2 ⁇ Y O 7 ⁇ Z (where X, Y, and Z are numerical values of 0 or more and 1 or less, respectively)
  • A represents at least one selected from Bi, Pb, Tb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Mn, Y, Zn.
  • B represents Ru, Ir, Si, Ge, Ta, Sn, Hf, Zr, Ti, Nb, V, Sb, Rh, Cr, Re, Sc, Co, Cu, In, Ga, Cd
  • a pyrochlore type transition element oxide having a composition represented by: at least one element selected from Fe, Ni, W, and Mo. More preferably, bismuth ruthenium oxide is used. This bismuth ruthenium oxide has a two-way catalytic activity of oxygen generation and oxygen reduction, and has a pyrochlore type structure.
  • the catalyst for the air secondary battery is produced as follows.
  • pyrochlore-type bismuth ruthenium oxide is prepared. Specifically, it is as follows.
  • Bi (NO 3 ) 3 ⁇ 5H 2 O and RuCl 3 ⁇ 3H 2 O are poured into distilled water so as to have the same concentration, stirred and Bi (NO 3 ) 3 ⁇ 5H 2 O and RuCl 3 ⁇ 3H.
  • preparing 2 O mixed aqueous solution of At this time, the temperature of distilled water shall be 60 degreeC or more and 90 degrees C or less. And 1 mol% / l or more and 3 mol% / l or less NaOH aqueous solution is added to this mixed aqueous solution. At this time, the bath temperature is maintained at 60 ° C. or higher and 90 ° C. or lower, and stirring is performed while performing oxygen bubbling.
  • the solution containing the precipitate generated by this operation is kept at 80 ° C. or higher and 100 ° C. or lower to evaporate a part of the water to form a paste.
  • This paste is transferred to an evaporating dish, heated to 100 ° C. or higher and 150 ° C. or lower, and kept in that state for 10 hours or longer and 20 hours or shorter to be dried to obtain a dried paste.
  • pulverizing this dried material with a mortar it heats to the temperature of 500 degreeC or more and 700 degrees C or less in an air atmosphere, it bakes by hold
  • the obtained fired product is washed with distilled water at 60 ° C. or higher and 90 ° C. or lower and then dried. Thereby, a pyrochlore-type bismuth ruthenium oxide is obtained.
  • the prepared bismuth ruthenium oxide is subjected to nitric acid treatment to be immersed in an aqueous nitric acid solution as an acid treatment. Specifically, it is as follows.
  • the concentration of the nitric acid aqueous solution is preferably 1 mol% / l or more and 3 mol% / l or less, and the amount of the nitric acid aqueous solution is prepared so that the amount is 40 ml with respect to 2 g of bismuth ruthenium oxide.
  • the temperature of the aqueous nitric acid solution is preferably set to 20 ° C. or higher and 25 ° C. or lower.
  • bismuth ruthenium oxide is immersed in the prepared aqueous nitric acid solution and stirred for 10 minutes to 10 hours. After a predetermined time has elapsed, bismuth ruthenium oxide is suction filtered from the aqueous nitric acid solution. The filtered bismuth ruthenium oxide is put into ion-exchanged water set to 60 ° C. or higher and 80 ° C. or lower and washed.
  • the washed bismuth ruthenium oxide is held for 10 to 14 hours in a reduced pressure environment at room temperature (25 ° C.) and dried.
  • drying the washed bismuth ruthenium oxide drying conditions may be adopted in which it is kept in the atmosphere at 80 ° C. to 150 ° C. for 1 hour to 24 hours.
  • the acidic aqueous solution used for acid treatment is not limited to nitric acid aqueous solution, In addition to nitric acid aqueous solution, hydrochloric acid aqueous solution and sulfuric acid aqueous solution can be used. In these hydrochloric acid aqueous solution and sulfuric acid aqueous solution, the effect that a by-product can be removed similarly to the nitric acid aqueous solution can be obtained.
  • the conductive agent is not particularly limited.
  • the binder serves to bind the redox catalyst and to impart appropriate water repellency to the air electrode 14.
  • the binder is not particularly limited, and for example, a fluororesin is used.
  • a fluororesin for example, polytetrafluoroethylene (PTFE) is used.
  • the air electrode 14 can be manufactured as follows, for example.
  • an air electrode mixture paste containing bismuth ruthenium oxide, a binder and water is prepared.
  • the obtained air electrode mixture paste is formed into a sheet shape, and then press-bonded to a nickel mesh (air electrode base material). Thereby, the intermediate product of an air electrode is obtained.
  • the obtained intermediate product is put into a firing furnace and subjected to a firing process.
  • This baking process is performed in an inert gas atmosphere.
  • this inert gas for example, nitrogen gas or argon gas is used.
  • heating is performed at a temperature of 300 ° C. or higher and 400 ° C. or lower, and this state is maintained for 10 minutes or longer and 20 minutes or shorter.
  • the intermediate product is naturally cooled in a firing furnace, and is taken out into the atmosphere when the temperature of the intermediate product becomes 150 ° C. or lower. Thereby, the intermediate product to which the baking process was performed is obtained.
  • the air electrode 14 is obtained.
  • the air electrode 14 and the negative electrode 12 obtained as described above are laminated via the separator 16, whereby the electrode group 6 is formed.
  • the separator 16 is disposed to avoid a short circuit between the air electrode 14 and the negative electrode 12, and an electrically insulating material is employed.
  • the material used for the separator 16 include a material obtained by imparting a hydrophilic functional group to a polyamide fiber nonwoven fabric, a material obtained by imparting a hydrophilic functional group to a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene, and the like. it can.
  • the formed electrode group 6 is put in the container 4 together with the alkaline electrolyte.
  • the container 4 is not particularly limited as long as the electrode group 6 and the alkaline electrolyte can be accommodated.
  • a polyethylene bag-like container hereinafter referred to as an accommodation bag 18
  • the storage bag 18 is provided with a chuck-in / out opening (not shown) in a part thereof and an opening 20 in another part thereof.
  • the electrode group 6 is accommodated in the accommodation bag 18 through the above-described entrance / exit.
  • the carbon nonwoven fabric 24 is disposed on the air electrode 14 side of the electrode group 6 so as to be in contact with the air electrode 14.
  • This carbon nonwoven fabric 24 is subjected to water repellent treatment by PTFE.
  • a separator 17 is disposed on the negative electrode 12 side of the electrode group 6 so as to be in contact with the negative electrode 12.
  • the separator 17 is made of the same material and the same shape as the separator 16 described above.
  • the electrode group 6 accommodated in the accommodation bag 18 is placed on the separator 17 disposed on the negative electrode side, as shown in FIG.
  • a carbon nonwoven fabric 24 is disposed on the air electrode 14 of the electrode group 6. And only the carbon nonwoven fabric 24 is exposed from the opening 20 of the storage bag 18.
  • the electrode group 6 housed in the housing bag 18 as described above is sandwiched between the top plate 8 and the bottom plate 10 together with the housing bag 18.
  • the top plate 8 is a plate material made of acrylic resin, and has an air passage 26 at a position facing the opening 20 of the containing bag 18 as shown in FIG.
  • the air passage 26 has a single serpentine shape as a whole, and an end thereof is open to the atmosphere.
  • the bottom plate 10 is an acrylic resin plate having the same size as the top plate 8.
  • the bottom plate 10 does not have a ventilation path.
  • the accommodation bag 18 containing the electrode group 6 is placed on the bottom plate 10 with a flat negative electrode side buffer plate 22 made of resin interposed. Then, the top plate 8 is placed on the housing bag 18 that houses the electrode group 6. In this manner, the electrode group 6 accommodated in the accommodation bag 18 is sandwiched from above and below by the top plate 8 and the bottom plate 10. At this time, the air passage 26 of the top plate 8 is opposed to the carbon nonwoven fabric 24. Since the carbon non-woven fabric 24 allows gas to pass but blocks moisture, the air electrode 14 is opened to the atmosphere via the carbon non-woven fabric 24 and the air passage 26. That is, the air electrode 14 comes into contact with the atmosphere through the carbon nonwoven fabric 24.
  • the top plate 8 and the bottom plate 10 sandwiching the electrode group 6 accommodated in the accommodation bag 18 from above and below are, as schematically illustrated in FIG. 1, the peripheral edge portions 38 and 40 of the top plate 8 and the bottom plate 10. Is sandwiched from above and below by the couplers 34 and 36. In this way, the battery 2 is formed.
  • an air electrode lead (positive electrode lead) 42 is electrically connected to the air electrode (positive electrode) 14, and a negative electrode lead 44 is electrically connected to the negative electrode 12.
  • the air electrode lead 42 and the negative electrode lead 44 are schematically illustrated in FIG. 1, the air electrode lead 42 and the negative electrode lead 44 are drawn out of the containing bag 18 while maintaining airtightness and watertightness.
  • An air electrode terminal (positive electrode terminal) 46 is provided at the tip of the air electrode lead 42, and a negative electrode terminal 48 is provided at the tip of the negative electrode lead 44. Therefore, in the battery 2, input and output of current at the time of charging / discharging is performed using the air electrode terminal 46 and the negative electrode terminal 48.
  • Bi (NO 3) 3 ⁇ 5H 2 O and RuCl 3 ⁇ 3H 2 O was prepared a predetermined amount, these Bi (NO 3) 3 ⁇ 5H 2 O and RuCl 3 ⁇ 3H 2 O is the same concentration as
  • the mixture was poured into distilled water at 75 ° C. and stirred to prepare a mixed aqueous solution of Bi (NO 3 ) 3 .5H 2 O and RuCl 3 .3H 2 O. And 2 mol% / l NaOH aqueous solution was added to this mixed aqueous solution.
  • the bath temperature at this time was 75 ° C., and stirring was performed while oxygen bubbling was performed.
  • the solution containing the precipitate generated by this operation was kept at 85 ° C.
  • the obtained bismuth ruthenium oxide was pulverized using a mortar to obtain a powder of bismuth ruthenium oxide as an aggregate of particles having a predetermined particle diameter.
  • a secondary electron image was observed with a scanning electron microscope.
  • the particle diameter of the bismuth ruthenium oxide was 0.1 ⁇ m or less.
  • the bismuth ruthenium oxide powder was taken out from the aqueous nitric acid solution by suction filtration.
  • the extracted bismuth ruthenium oxide powder was washed with 1 liter of ion-exchanged water heated to 70 ° C. After washing, the bismuth ruthenium oxide powder was dried by placing it in a vacuum container at room temperature of 25 ° C. and holding it in a vacuum environment for 12 hours.
  • nitric acid-treated bismuth ruthenium oxide powder that is, a catalyst for an air secondary battery was obtained.
  • the paste of the air electrode mixture was produced by mixing uniformly.
  • the obtained air electrode mixture paste was formed into a sheet shape, and the sheet-like air electrode mixture paste was press-bonded to a nickel mesh having a mesh number of 60, a wire diameter of 0.08 mm, and an opening ratio of 60%.
  • the air electrode mixture pressure-bonded to the nickel mesh was heated to 340 ° C. in a nitrogen gas atmosphere, held at this temperature for 13 minutes, and fired. After firing, the air electrode 14 was obtained by cutting into 40 mm length and 40 mm width. The thickness of the air electrode 14 was 0.20 mm.
  • the ingot was heat-treated for 10 hours in an argon gas atmosphere at a temperature of 1000 ° C., and then mechanically pulverized in an argon gas atmosphere to obtain a rare earth-Mg—Ni hydrogen storage alloy powder. Obtained.
  • the obtained rare earth-Mg—Ni-based hydrogen storage alloy powder was measured for volume average particle size (MV) using a laser diffraction / scattering particle size distribution analyzer. As a result, the volume average particle size (MV) was 60 ⁇ m.
  • composition of this hydrogen storage alloy powder was analyzed by high frequency plasma spectroscopy (ICP), the composition was Nd 0.89 Mg 0.11 Ni 3.33 Al 0.17 .
  • This negative electrode mixture paste was filled into a foamed nickel sheet having an area density (weight per unit area) of about 250 g / m 2 and a thickness of about 0.6 mm, dried, and a foamed nickel sheet filled with the negative electrode mixture was obtained. Obtained. The obtained sheet was rolled to increase the amount of alloy per volume, and then cut into a length of 40 mm and a width of 40 mm to obtain a negative electrode 12. The thickness of the negative electrode 12 was 0.25 mm.
  • the obtained negative electrode 12 was subjected to an activation treatment.
  • the procedure of this activation process is shown below.
  • a general sintered nickel hydroxide positive electrode was prepared.
  • this nickel hydroxide positive electrode the one whose positive electrode capacity is sufficiently larger than the negative electrode capacity of the negative electrode 12 was prepared.
  • the nickel hydroxide positive electrode and the obtained negative electrode 12 were overlapped with a separator formed of a polyethylene nonwoven fabric interposed therebetween to form an activation treatment electrode group.
  • This electrode group for activation treatment was housed in an acrylic resin container together with a predetermined amount of alkaline electrolyte. Thereby, the single electrode cell of the nickel-hydrogen secondary battery was formed.
  • the negative electrode 12 was removed from the monopolar cell. In this way, the negative electrode 12 that had been activated and charged was obtained.
  • the obtained air electrode 14 and negative electrode 12 were superposed with a separator 16 sandwiched between them to produce an electrode group 6.
  • the separator 16 used for the production of this electrode group 6 was formed of a nonwoven fabric made of polypropylene fiber having a sulfone group, and its thickness was 0.1 mm (weight per unit area 53 g / m 2 ).
  • the storage bag 18 is, for example, a polyethylene bag, and is provided with a chucked inlet / outlet (not shown) in a part, and another part has an opening 20 having a length of 30 mm and a width of 30 mm. Is provided.
  • the electrode group 6 was put into the accommodation bag 18 from the above-mentioned entrance / exit.
  • a separator 17 different from the separator 16 is disposed under the electrode group 6 (under the negative electrode 12), and water repellent by PTFE on the electrode group 6 (on the air electrode 14).
  • Treated carbon non-woven fabric (length 45 mm, width 45 mm, thickness 0.2 mm) 24 was disposed.
  • a portion around the opening 20 of the storage bag 18 was brought into close contact with the carbon nonwoven fabric 24, and only the carbon nonwoven fabric 24 was exposed from the storage bag 18 through the opening 20.
  • 10 ml of alkaline electrolyte (5 mol% / l aqueous KOH solution) was injected from the inlet / outlet. Thereafter, the chuck at the entrance / exit was closed, and the inside of the storage bag 18 was degassed under reduced pressure.
  • the top plate 8 is a plate material made of acrylic resin, and has an air passage 26 whose end is open to the atmosphere.
  • the air passage 26 has a single serpentine shape having a width of 2 mm, an end width of 2.5 mm, a depth of 1 mm, and a peak width of 1 mm.
  • the air passage 26 faces the carbon nonwoven fabric 24 through the opening 20.
  • the bottom plate 10 is a plate material made of acrylic resin having the same size as the top plate 8 and does not have a vent hole.
  • the battery 2 as shown in FIG. 1 was manufactured.
  • the obtained battery 2 was allowed to stand for 3 hours in an environment of 25 ° C., and the alkaline electrolyte was infiltrated into the electrode group 6.
  • An air electrode lead 42 is electrically connected to the air electrode 14, and a negative electrode lead 44 is electrically connected to the negative electrode 12.
  • the air electrode lead 42 and the negative electrode lead 44 are connected to the airtight and watertight of the housing bag 18. It extends appropriately from the inner side to the outer side of the containing bag 18 in a state in which the property is maintained.
  • An air electrode terminal 46 is attached to the tip of the air electrode lead 42, and a negative electrode terminal 48 is attached to the tip of the negative electrode lead 44.
  • the obtained battery 2 is discharged through the air electrode terminal 46 and the negative electrode terminal 48 under the condition that the current value per unit area of the air electrode 14 is 20 mA / cm 2. did.
  • An air-hydrogen secondary battery was manufactured in the same manner as in Example 1 except that bismuth ruthenium oxide was not subjected to nitric acid treatment and bismuth ruthenium oxide not subjected to nitric acid treatment was used.
  • a part of the powder of bismuth ruthenium oxide treated with nitric acid in Example 1 and a part of the powder of bismuth ruthenium oxide not treated with nitric acid in Comparative Example 1 were separated in advance as analytical samples, and this analytical sample Were subjected to X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • a parallel beam X-ray diffractometer was used for the analysis.
  • the analysis conditions were as follows: the X-ray source was CuK ⁇ , the tube voltage was 40 kV, the tube current was 15 mA, the scan speed was 5 degrees / min, and the step width was 0.02 degrees.
  • the profile of the analysis result is shown in FIG.
  • the peak marked with a triangle mark is a by-product peak. From the profile of this analysis result, it can be seen that by-products are generated in the catalyst for the air secondary battery according to Comparative Example 1 in which the nitric acid treatment is not performed.
  • Example 1 the by-product peak disappeared.
  • the catalyst for the air secondary battery of Example 1 has been subjected to nitric acid treatment, and it is considered that by-products with high crystallinity have been removed by this nitric acid treatment.
  • Example 1 has a background intensity lower than that of Comparative Example 1, and by-products that are considered to be amorphous are also removed at the same time.
  • Example 1 A part of the powder of bismuth ruthenium oxide treated with nitric acid in Example 1 and a part of the powder of bismuth ruthenium oxide not treated with nitric acid in Comparative Example 1 were separated in advance as analytical samples, and this analytical sample At the same time as observation with a scanning electron microscope (SEM), the composition of the sample was analyzed using an energy dispersive X-ray spectrometer (EDS).
  • SEM scanning electron microscope
  • the photograph of the SEM image (magnification: 300 times) of the analysis result of Example 1 is shown in FIG. 3, and the photograph of the SEM image (magnification: 300 times) of the analysis result of Comparative Example 1 is shown in FIG.
  • the composition analysis by area mapping was performed from the SEM image of the analysis result.
  • Table 1 shows the composition of elements detected by composition analysis.
  • the ratio of bismuth to ruthenium (Bi / Ru) is also shown.
  • the ratio (Bi / Ru) of bismuth to ruthenium in the air secondary battery catalyst of Example 1 was 0.85.
  • the ratio (Bi / Ru) of the bismuth amount to the ruthenium amount of the catalyst for the air secondary battery of Comparative Example 1 was 0.91. That is, in Example 1, the ratio of the bismuth amount to the ruthenium amount is lower than that of Comparative Example 1. This is considered due to the removal of by-products by the nitric acid treatment.
  • the Bi / Ru value is 0.91, and if the bismuth ruthenium oxide is subjected to nitric acid treatment, by-products are removed, and the Bi / Ru value is It can be seen that it is lower than 0.91.
  • Example 1 Each battery before characteristic evaluation according to Example 1 and Comparative Example 1 was charged for 2.2 hours at a charging current of 180 mA after standing for 3 hours in an environment of 25 ° C., and then Allowed to stand for 20 minutes.
  • the battery after being left for 20 minutes was discharged under the same environment until the battery voltage reached 0.4 V with a discharge current of 180 mA, and then left for 10 minutes.
  • the charging / discharging cycle described above was defined as one cycle and repeated 20 cycles.
  • the graph of the transition of the discharge capacity ratio relating to the battery of Example 1 shows a stable value with a discharge capacity ratio of approximately 98 to 99% even when the charge / discharge cycle proceeds and is stable. That is, the battery of Example 1 is discharged by an amount approximately equal to the charged amount, and the state is maintained even if the charge / discharge cycle proceeds. That is, the battery of Example 1 has a low self-discharge. This is probably because the battery of Example 1 did not have a micro short circuit.
  • the discharge capacity rate is reduced as the charge / discharge cycle progresses. That is, in the battery of Comparative Example 1, the amount discharged is smaller than the amount charged, and self-discharge occurs. This is presumably because a minute short circuit occurred in the battery of Comparative Example 1.
  • the graph of the voltage transition relating to the battery of Example 1 shows that the value of the battery voltage changes at about 1.35 V, and is stable without a rapid decrease. This is probably because the battery of Example 1 did not have a micro short circuit.
  • Example 1 and Comparative Example 1 after 20 cycles of charging and discharging were disassembled in the above characteristic analysis of the air-hydrogen secondary battery, and the separator was taken out. About the separator which concerns on Example 1, and the separator which concerns on the comparative example 1, one part was cut out and the sample for analysis was extract
  • the obtained analytical sample was subjected to X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • the analysis conditions were as follows: the X-ray source was CuK ⁇ , the tube voltage was 40 kV, the tube current was 15 mA, the scan speed was 1 degree / min, and the step width was 0.01 degree.
  • the profile of the analysis result is shown in FIG.
  • the sample for an analysis was prepared also about the unused separator, and the X-ray diffraction (XRD) analysis was performed also about this unused separator on the same conditions as the above.
  • XRD X-ray diffraction
  • the bismuth ruthenium oxide is treated with nitric acid and the Bi / Ru value is 0.90 or less, it is considered that the by-product is removed to such an extent that the effect of preventing the precipitation of bismuth is obtained. .
  • the bismuth ruthenium oxide is preferably treated with nitric acid, and the Bi / Ru value is preferably as low as 0.90 or less.
  • the Bi / Ru value is more preferably 0.90 or less and 0.80 or more.
  • this invention is not limited to an above-described Example,
  • a catalyst for air secondary batteries above-mentioned transition element oxide is mentioned other than bismuth ruthenium oxide.
  • the present invention by performing an acid treatment on the above transition element oxide, a by-product generated in the process of producing the above transition element oxide can be removed, and the air in a state where the by-product is removed. Since the secondary battery catalyst is obtained, it is possible to suppress the occurrence of a problem that the transition element in the by-product grows in dendrite.
  • 1st aspect of this invention is a manufacturing method of the catalyst for air secondary batteries used for the air electrode of an air secondary battery, Comprising: The precursor preparation process which prepares the precursor of a pyrochlore type oxide, The said precursor And an acid treatment step in which the pyrochlore oxide obtained by the firing step is immersed in an acidic aqueous solution and subjected to an acid treatment. It is a manufacturing method of a catalyst.
  • the pyrochlore type oxide has the general formula: A 2-X B 2-Y O 7-Z (where X, Y, Z Represents a numerical value of 0 or more and 1 or less, and A represents Bi, Pb, Tb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Mn , Y, Zn represents at least one element selected from the group consisting of Ru, Ir, Si, Ge, Ta, Sn, Hf, Zr, Ti, Nb, V, Sb, Rh, Cr, Re, Sc, It represents at least one element selected from Co, Cu, In, Ga, Cd, Fe, Ni, W, and Mo.) is a pyrochlore type transition element oxide. And a method for producing a catalyst for an air secondary battery.
  • a third aspect of the present invention is the air secondary battery catalyst according to the first or second aspect of the present invention, wherein the acidic aqueous solution is any one of a nitric acid aqueous solution, a hydrochloric acid aqueous solution, and a sulfuric acid aqueous solution. It is a manufacturing method.
  • the catalyst for an air secondary battery according to the second or third aspect of the present invention wherein the pyrochlore type transition element oxide is a pyrochlore type bismuth ruthenium oxide. It is a manufacturing method.
  • the amount of ruthenium when the amount of bismuth contained in the bismuth ruthenium oxide is X and the amount of ruthenium is Y, the amount of ruthenium
  • This is a method for producing a catalyst for an air secondary battery, wherein the acid treatment is performed so that the value of X / Y, which is the ratio of the amount of bismuth with respect to, is 0.90 or less.
  • the acid is adjusted so that a value of X / Y which is a ratio of the amount of bismuth to the amount of ruthenium is 0.80 or more. It is a manufacturing method of the catalyst for air secondary batteries with which a process is performed.
  • an air electrode manufacturing process for manufacturing an air electrode by supporting an air electrode mixture containing a catalyst for an air secondary battery on an air electrode substrate, and a negative electrode mixture being supported on a negative electrode substrate.
  • the air secondary battery catalyst is manufactured by the method for manufacturing an air secondary battery catalyst according to any one of the first to sixth aspects of the present invention described above. It is.
  • the negative electrode manufacturing step further includes a process of adding a hydrogen storage alloy to the negative electrode mixture. is there.
  • a ninth aspect of the present invention is a catalyst for an air secondary battery used for an air electrode of an air secondary battery, wherein an acid treatment immersed in an acidic aqueous solution is performed, and a by-product generated in the manufacturing process is A catalyst for an air secondary battery comprising the pyrochlore oxide in a removed state.
  • the pyrochlore-type oxide has the general formula: A 2 ⁇ X B 2 ⁇ Y O 7 ⁇ Z (where X, Y, Z Represents a numerical value of 0 or more and 1 or less, and A represents Bi, Pb, Tb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Mn , Y, Zn represents at least one element selected from the group consisting of Ru, Ir, Si, Ge, Ta, Sn, Hf, Zr, Ti, Nb, V, Sb, Rh, Cr, Re, Sc, It represents at least one element selected from Co, Cu, In, Ga, Cd, Fe, Ni, W, and Mo.) is a pyrochlore type transition element oxide. It is a catalyst for an air secondary battery.
  • the eleventh aspect of the present invention is the catalyst for an air secondary battery according to the tenth aspect of the present invention, wherein the pyrochlore type transition element oxide is bismuth ruthenium oxide.
  • the bismuth ruthenium oxide has X as the amount of bismuth contained in the bismuth ruthenium oxide and Y as the amount of ruthenium.
  • the air secondary battery catalyst has a value of X / Y, which is a ratio of the amount of the bismuth to the amount of ruthenium, of 0.90 or less.
  • a thirteenth aspect of the present invention is the air secondary according to the twelfth aspect of the present invention, wherein the value of X / Y which is the ratio of the amount of bismuth to the amount of ruthenium is 0.80 or more. It is a battery catalyst.
  • a fourteenth aspect of the present invention includes an electrode group including an air electrode and a negative electrode superimposed via a separator, and a container containing the electrode group together with an alkaline electrolyte.
  • An air secondary battery comprising the air secondary battery catalyst according to any of the ninth to eleventh aspects of the present invention.
  • a fifteenth aspect of the present invention is an air secondary battery according to the fourteenth aspect of the present invention, wherein the negative electrode includes a hydrogen storage alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

電池2は、セパレータ16を介して重ね合わされた空気極14及び負極12を含む電極群6と、電極群6をアルカリ電解液とともに収容している収容袋18と、を備え、空気極14は、空気二次電池用触媒を含み、この空気二次電池用触媒は、ビスマスルテニウム酸化物の前駆体を調製する前駆体調製工程と、この前駆体調製工程により得られたビスマスルテニウム酸化物の前駆体を焼成しビスマスルテニウム酸化物を形成する焼成工程と、この焼成工程により得られたビスマスルテニウム酸化物を硝酸水溶液に浸漬させる硝酸処理工程と、を備えている空気二次電池用触媒の製造方法により製造される。

Description

空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池
 本発明は、空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池に関する。
 近年、高効率でクリーンなエネルギー変換装置として大気中の酸素を正極活物質とする空気二次電池が注目を集めている。
 なかでも、電解液としてアルカリ性水溶液(アルカリ電解液)を用い、負極活物質である水素を吸蔵放出可能な水素吸蔵合金を負極に備えた空気水素二次電池は、以下に示すようなメリットがあるため、次世代の二次電池として期待されている。
 まず、空気水素二次電池は、正極の活物質が空気中の酸素であるため、電池内に正極活物質を貯蔵するためのスペースを確保する必要がなく、このスペースを省略すれば、その分だけ電池の省スペース化が図れるメリットがある。また、このスペースを省略せずに水素吸蔵合金の貯蔵に利用した場合、空気水素二次電池の電池容量は負極の容量にのみ依存するため、水素吸蔵合金の量が増える分だけ高容量化が図れるメリットがある。つまり、空気水素二次電池は、同じく水素吸蔵合金を用いるニッケル水素二次電池に比べ、より高いエネルギー密度が得られる可能性がある。
 上記の空気水素二次電池のようにアルカリ電解液を用いる空気二次電池では、空気極において以下に示すような充放電反応が起こる。
 放電:O+2HO+4e→4OH・・・(I)
 充電:4OH→O+2HO+4e・・・(II)
 空気水素二次電池の空気極は、放電時には反応式(I)で表されるように酸素を還元して水酸化物イオンを生成し、充電時には反応式(II)で表されるように酸素と水を生成する。空気極で発生した酸素は、空気極における大気に開放されている部分から大気中に放出される。
 上記したような空気水素二次電池の正極である空気極には、触媒として、パイロクロア型酸化物が用いられる。このパイロクロア型酸化物としては、遷移元素酸化物が挙げられ、例えば、特許文献1に開示されているようなビスマスルテニウム酸化物が知られている。このビスマスルテニウム酸化物は、酸素発生と酸素還元に対して触媒活性を有していることから、空気水素二次電池の正極に用いられる。
 このビスマスルテニウム酸化物は、例えば、硝酸ビスマスと塩化ルテニウムを出発原料とする共沈法により前駆体を生成し、その後、当該前駆体を焼成するといった製造方法により製造される。
特開2016-152068号公報
 ところで、上記したビスマスルテニウム酸化物の製造方法においては、その過程で副生成物が形成される。この副生成物が混入した触媒を用いて空気極を作成し、当該空気極を備えた空気水素二次電池について充放電サイクルを行うと、ビスマスルテニウム酸化物自体は溶解析出反応を起こさないものの、上記した副生成物が溶解析出反応を起こす。詳しくは、電池における充放電の際の化学反応(以下、電池反応という)にともない、副生成物中の金属成分(主にビスマス)の溶解析出反応が繰り返され、極板上で金属成分が樹枝状に析出するいわゆるデンドライト成長をする。このように金属成分がデンドライト成長すると、当該金属成分はセパレータ中に伸びていき、最終的にはセパレータを突き抜けてしまう。その結果、微小短絡を発生させるという問題が生じる。このように微小短絡が発生すると、電池内部では、正極及び負極の間で、電解質を介したイオン伝導性だけではなく、電子伝導性が存在することになる。電子伝導性が存在する場合、電池は自己放電を起こしていることになる。金属成分のデンドライト成長は、充放電のサイクルにともない増加するので、充放電サイクルが進行すると自己放電量も増える。その結果、比較的少ないサイクル数で電池の放電容量の低下が起こり、早期に電池の寿命が尽きてしまう。
 このため、充放電を繰り返した場合でも、従来よりも放電容量の低下が起こり難く、放電容量が安定している空気二次電池を開発することが望まれている。
 本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、微小短絡の発生を抑制することができる空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池を提供することにある。
 上記目的を達成するために、本発明によれば、空気二次電池の空気極に用いる空気二次電池用触媒の製造方法であって、パイロクロア型酸化物の前駆体を調製する前駆体調製工程と、前記前駆体を焼成し、パイロクロア型酸化物を形成する焼成工程と、前記焼成工程により得られた前記パイロクロア型酸化物を酸性水溶液に浸漬させ酸処理する酸処理工程と、を備えている空気二次電池用触媒の製造方法が提供される。
 前記パイロクロア型酸化物は、一般式:A2-X2-Y7-Z(ただし、X、Y、Zは、それぞれ0以上1以下の数値を表し、Aは、Bi、Pb、Tb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Mn、Y、Znから選ばれる少なくとも1種の元素を表し、Bは、Ru、Ir、Si、Ge、Ta、Sn、Hf、Zr、Ti、Nb、V、Sb、Rh、Cr、Re、Sc、Co、Cu、In、Ga、Cd、Fe、Ni、W、Moから選ばれる少なくとも1種の元素を表している。)で表される組成を有しているパイロクロア型の遷移元素酸化物である構成とすることが好ましい。
 前記酸性水溶液は、硝酸水溶液、塩酸水溶液、硫酸水溶液のうちのいずれかである構成とすることが好ましい。
 前記パイロクロア型の遷移元素酸化物は、パイロクロア型のビスマスルテニウム酸化物である構成とすることが好ましい。
 前記ビスマスルテニウム酸化物に含まれているビスマスの量をX、ルテニウムの量をYとした場合に、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.90以下となるように前記酸処理が施される構成とすることが好ましい。
 前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.80以上となるように前記酸処理が施される構成とすることが好ましい。
 また、本発明によれば、空気二次電池用触媒を含む空気極合剤を空気極基材に担持させ空気極を製造する空気極製造工程と、負極合剤を負極基材に担持させ負極を製造する負極製造工程と、前記空気極と、前記負極とをセパレータを介して重ね合わせて電極群を形成する電極群形成工程と、前記電極群をアルカリ電解液とともに容器に収容する収容工程と、を備え、前記空気二次電池用触媒は、上記した何れかの空気二次電池用触媒の製造方法により製造される、空気二次電池の製造方法が提供される。
 前記負極製造工程は、前記負極合剤に水素吸蔵合金を含有させるプロセスを更に含む構成とすることが好ましい。
 また、本発明によれば、空気二次電池の空気極に用いられる空気二次電池用触媒であって、酸性水溶液に浸漬される酸処理が施され、製造過程で生じた副生成物が除去された状態のパイロクロア型酸化物を含む、空気二次電池用触媒が提供される。
 前記パイロクロア型酸化物は、一般式:A2-X2-Y7-Z(ただし、X、Y、Zは、それぞれ0以上1以下の数値を表し、Aは、Bi、Pb、Tb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Mn、Y、Znから選ばれる少なくとも1種の元素を表し、Bは、Ru、Ir、Si、Ge、Ta、Sn、Hf、Zr、Ti、Nb、V、Sb、Rh、Cr、Re、Sc、Co、Cu、In、Ga、Cd、Fe、Ni、W、Moから選ばれる少なくとも1種の元素を表している。)で表される組成を有しているパイロクロア型の遷移元素酸化物である構成とすることが好ましい。
 前記パイロクロア型の遷移元素酸化物は、ビスマスルテニウム酸化物である構成とすることが好ましい。
 前記ビスマスルテニウム酸化物は、前記ビスマスルテニウム酸化物に含まれているビスマスの量をX、ルテニウムの量をYとした場合に、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.90以下である構成とすることが好ましい。
 前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.80以上である構成とすることが好ましい。
 また、本発明によれば、セパレータを介して重ね合わされた空気極及び負極を含む電極群と、前記電極群をアルカリ電解液とともに収容している容器と、を備え、前記空気極は、上記した何れかの空気二次電池用触媒を含んでいる、空気二次電池が提供される。
 前記負極は、水素吸蔵合金を含んでいる構成とすることが好ましい。
 本発明に係る空気二次電池用触媒の製造方法は、パイロクロア型酸化物を酸性水溶液に浸漬させ酸処理する酸処理工程を含んでおり、この酸処理工程を経ることにより、パイロクロア型酸化物の副生成物が除去され、副生成物中の金属成分の溶解析出反応にともなうデンドライトが生じることを防止することができる。よって、本発明によれば、微小短絡の発生を抑制することができる空気二次電池用触媒の製造方法を提供することができる。
本発明の一実施形態に係る空気水素二次電池を概略的に示した断面図である。 実施例1のビスマスルテニウム酸化物の粉末及び比較例1のビスマスルテニウム酸化物の粉末のX線回折プロファイルを示したグラフである。 実施例1のビスマスルテニウム酸化物のSEM画像(倍率:300倍)の写真である。 比較例1のビスマスルテニウム酸化物のSEM画像(倍率:300倍)の写真である。 放電容量率とサイクル数との関係を示したグラフである。 充電終了後の休止時における電池電圧と経過時間との関係を示したグラフである。 実施例1のセパレータ、比較例1のセパレータ及び未使用のセパレータのX線回折プロファイルを示したグラフである。
 以下、本発明に係る空気二次電池用触媒を含む空気極を組み込んだ空気水素二次電池(以下、単に電池と称する)2について図面を参照して説明する。
 図1に示すように、電池2は、容器4に入れられた電極群6が、天板8と底板10との間に挟まれて形成されている。
 電極群6は、負極12と、空気極(正極)14とがセパレータ16を介して重ね合わされて形成されている。
 負極12は、多孔質構造をなし多数の空孔を有する導電性の負極基材と、前記した空孔内及び負極基材の表面に担持された負極合剤とを含んでいる。
 このような負極基材としては、例えば発泡ニッケルを用いることができる。
 負極合剤は、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子の集合体である水素吸蔵合金粉末、導電剤及び結着剤を含む。ここで、導電剤としては、黒鉛、カーボンブラック等を用いることができる。
 水素吸蔵合金粒子を構成する水素吸蔵合金としては、特に限定されるものではないが、希土類-Mg-Ni系水素吸蔵合金が用いられる。この希土類-Mg-Ni系水素吸蔵合金の組成は自由に選択できるが、例えば、一般式:
Ln1-xMgNiy-a-bAl・・・(III)
で表されるものを用いるのが好ましい。
 ただし、一般式(III)中、Lnは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Y、Zr及びTiよりなる群から選ばれた少なくとも1種の元素を表し、Mは、V、Nb、Ta、Cr、Mo、Mn、Fe、Co、Ga、Zn、Sn、In、Cu、Si、P及びBよりなる群から選ばれた少なくとも1種の元素を表し、添字a、b、x、yは、それぞれ0.05≦a≦0.30、0≦b≦0.50、0.01≦x≦0.30、2.8≦y≦3.9を満たす数を表す。
 ここで、水素吸蔵合金粒子は、例えば以下のようにして得られる。
 まず、所定の組成となるように金属原材料を秤量して混合し、この混合物を不活性ガス雰囲気下にて、例えば、高周波誘導溶解炉で溶解してインゴットにする。得られたインゴットは、不活性ガス雰囲気下にて900~1200℃に加熱され、その温度で5~24時間保持する熱処理が施され均質化される。この後、インゴットを粉砕し、篩分けを行うことにより所望粒径の水素吸蔵合金粒子の集合体である水素吸蔵合金粉末を得る。
 結着剤としては、例えば、ポリアクリル酸ナトリウム、カルボキシメチルセルロース、スチレンブタジエンゴム等が用いられる。
 ここで、負極12は、例えば以下のようにして作製することができる。
 まず、水素吸蔵合金粒子の集合体である水素吸蔵合金粉末、導電剤、結着剤及び水を混練して負極合剤ペーストを調製する。得られた負極合剤ペーストは負極基材に充填され、乾燥させられる。乾燥後、水素吸蔵合金粒子等が付着した負極基材はロール圧延されて、体積当たりの合金量を高められ、その後、裁断がなされ、これにより負極12が作製される。この負極12は、全体として板状をなしている。
 次に、空気極14は、多孔質構造をなし多数の空孔を有する導電性の空気極基材と、前記した空孔内及び空気極基材の表面に担持された空気極合剤(正極合剤)とを含んでいる。
 このような空気極基材としては、例えば、発泡ニッケルやニッケルメッシュを用いることができる。
 空気極合剤は、空気二次電池用触媒、導電剤及び結着剤を含む。
 空気二次電池用触媒としては、酸性水溶液に浸漬させる酸処理が施されたパイロクロア型酸化物が用いられる。ここで、酸処理が施される対象のパイロクロア型酸化物としては、一般式:A2-X2-Y7-Z(ただし、X、Y、Zは、それぞれ0以上1以下の数値を表し、Aは、Bi、Pb、Tb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Mn、Y、Znから選ばれる少なくとも1種の元素を表し、Bは、Ru、Ir、Si、Ge、Ta、Sn、Hf、Zr、Ti、Nb、V、Sb、Rh、Cr、Re、Sc、Co、Cu、In、Ga、Cd、Fe、Ni、W、Moから選ばれる少なくとも1種の元素を表している。)で表される組成を有しているパイロクロア型の遷移元素酸化物を用いることが好ましい。より好ましくはビスマスルテニウム酸化物が用いられる。このビスマスルテニウム酸化物は、酸素発生と酸素還元の二元触媒活性を有しており、パイロクロア型の構造を有している。
 空気二次電池用触媒は、以下のようにして作製される。
 まず、パイロクロア型のビスマスルテニウム酸化物が調製される。具体的には、以下の通りである。
 Bi(NO・5HO及びRuCl・3HOを同じ濃度となるように蒸留水の中に投入し、撹拌してBi(NO・5HO及びRuCl・3HOの混合水溶液を調製する。このとき蒸留水の温度は、60℃以上、90℃以下とする。そして、この混合水溶液に、1mol%/l以上、3mol%/l以下のNaOH水溶液を加える。この際の浴温度は60℃以上、90℃以下に保持し、酸素バブリングを行いながら撹拌する。この操作によって生じた沈殿物を含む溶液を80℃以上、100℃以下に保持して水分の一部を蒸発させてペーストを形成する。このペーストを蒸発皿に移し、100℃以上、150℃以下に加熱し、その状態で10時間以上、20時間以下保持して乾燥させ、ペーストの乾燥物を得る。そして、この乾燥物を乳鉢で粉砕した後、空気雰囲気下で500℃以上、700℃以下の温度に加熱し、0.5時間以上、2時間以下保持することにより焼成し、焼成物を得る。得られた焼成物を60℃以上、90℃以下の蒸留水を用いて水洗した後乾燥させる。これにより、パイロクロア型のビスマスルテニウム酸化物が得られる。
 次に、調製されたビスマスルテニウム酸化物に酸処理として硝酸水溶液に浸漬させる硝酸処理を施す。具体的には、以下の通りである。
 まず、硝酸水溶液を準備する。ここで、硝酸水溶液の濃度は、1mol%/l以上、3mol%/l以下とすることが好ましく、硝酸水溶液の量は、ビスマスルテニウム酸化物2gに対して40mlの割合となる量を準備することが好ましく、硝酸水溶液の温度は、20℃以上、25℃以下に設定することが好ましい。
 そして、準備された硝酸水溶液に中に、ビスマスルテニウム酸化物を浸漬し、10分以上、10時間以下撹拌する。所定時間経過後、硝酸水溶液中からビスマスルテニウム酸化物を吸引濾過する。濾別されたビスマスルテニウム酸化物は、60℃以上、80℃以下に設定されたイオン交換水に投入され洗浄される。
 洗浄されたビスマスルテニウム酸化物は、室温(25℃)の減圧環境下で10時間以上、14時間以下保持され、乾燥させられる。なお、洗浄されたビスマスルテニウム酸化物の乾燥に関しては、大気中において、80℃~150℃の温度環境下で1時間以上、24時間以下保持して乾燥する乾燥条件を採用しても構わない。
 以上のようにして、硝酸処理が施されたビスマスルテニウム酸化物を得る。このように硝酸処理を施すことにより、パイロクロア型酸化物の製造過程で生じる副生成物を除去することができる。なお、酸処理に用いられる酸性水溶液は、硝酸水溶液に限定されるものではなく、硝酸水溶液の他に塩酸水溶液、硫酸水溶液を用いることができる。これら、塩酸水溶液及び硫酸水溶液においても、硝酸水溶液と同様に副生成物を除去できるという効果が得られる。
 次に、導電剤としては、特に限定されるものではなく、例えば、ニッケル粒子の集合体であるニッケル粉末を用いることが好ましい。
 結着剤は、酸化還元触媒を結着させるとともに空気極14に適切な撥水性を付与する働きをする。ここで、結着剤としては、特に限定されるものではなく、例えば、フッ素樹脂が用いられる。なお、好ましいフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)が用いられる。
 空気極14は、例えば、以下のようにして作製することができる。
 まず、ビスマスルテニウム酸化物、結着剤及び水を含む空気極合剤ペーストを調製する。
 得られた空気極合剤ペーストは、シート状に成形され、その後、ニッケルメッシュ(空気極基材)にプレス圧着させられる。これにより、空気極の中間製品が得られる。
 次いで、得られた中間製品は、焼成炉に投入され焼成処理が行われる。この焼成処理は、不活性ガス雰囲気中で行われる。この不活性ガスとしては、例えば、窒素ガスやアルゴンガスが用いられる。焼成処理の条件としては、300℃以上、400℃以下の温度に加熱し、この状態で、10分以上、20分以下の間保持する。その後、中間製品を焼成炉内で自然冷却し、中間製品の温度が150℃以下になったところで大気中に取り出す。これにより、焼成処理が施された中間製品が得られる。この中間製品を所定形状に裁断することにより、空気極14を得る。
 以上のようにして得られた空気極14及び負極12は、セパレータ16を介して積層され、これにより電極群6が形成される。このセパレータ16は、空気極14及び負極12の間の短絡を避けるために配設され、電気絶縁性の材料が採用される。このセパレータ16に採用される材料としては、例えば、ポリアミド繊維製不織布に親水性官能基を付与したもの、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したもの等を用いることができる。
 形成された電極群6は、アルカリ電解液とともに容器4の中に入れられる。この容器4としては、電極群6とアルカリ電解液とを収容できるものであれば特に限定されるものではなく、例えば、ポリエチレン製の袋状の容器(以下、収容袋18という)が用いられる。この収容袋18は、例えば、チャック付きの出し入れ口(図示せず)が一部に設けられており、また別な一部に開口20が設けられている。電極群6は、上記した出し入れ口を通して収容袋18の内部に収容される。
 電極群6を収容袋18に収容する場合、電極群6の空気極14側に空気極14と接するようにカーボン不織布24を配設する。このカーボン不織布24は、PTFEにより撥水処理が施されている。また、電極群6の負極12側に負極12と接するようにセパレータ17を配設する。このセパレータ17は、例えば、上記したセパレータ16と同素材、同形状のものが用いられる。
 ここで、収容袋18に収容された電極群6は、図1に示すように、負極側に配設されたセパレータ17の上に載置されている。そして、電極群6の空気極14の上には、カーボン不織布24が配設されている。そして、収容袋18の開口20からはカーボン不織布24のみ露出した状態となっている。
 次いで、上記したような収容袋18に収容された電極群6は、収容袋18とともに天板8と底板10との間に挟まれる。
 天板8は、アクリル樹脂製の板材であり、図1に示すように、収容袋18の開口20に相対する位置に通気路26を有している。この通気路26は、全体として1本のサーペンタイン形状をなしており、端部が大気に開放されている。
 底板10は、天板8と同じ大きさのアクリル樹脂製の板材である。なお、底板10は、通気路を備えていない。
 電極群6を収容した収容袋18は、樹脂で形成された平板状の負極側緩衝板22を介在させた状態で底板10の上に載置される。そして、電極群6を収容した収容袋18の上に天板8が載置される。このようにして、収容袋18に収容された電極群6は天板8及び底板10により上下から挟まれる。このとき、天板8の通気路26はカーボン不織布24に相対している。カーボン不織布24は、気体は通すが水分は遮断するので、空気極14はカーボン不織布24及び通気路26を介して大気に開放されることになる。つまり、空気極14は、カーボン不織布24を通じて大気と接することになる。
 収容袋18に収容された電極群6を上下から挟んだ天板8及び底板10は、図1において概略的に記載されているように、天板8及び底板10の周端縁部38、40が連結具34、36により上下から挟みこまれている。このようにして、電池2が形成される。
 ここで、この電池2においては、空気極(正極)14に空気極リード(正極リード)42が電気的に接続されており、負極12に負極リード44が電気的に接続されている。これら空気極リード42及び負極リード44は、図1中においては概略的に記載してあるが、気密性及び水密性を保持した状態で収容袋18の外に引き出されている。そして、空気極リード42の先端には空気極端子(正極端子)46が設けられており、負極リード44の先端には負極端子48が設けられている。したがって、電池2においては、これら空気極端子46及び負極端子48を利用して充放電の際の電流の入力及び出力が行われる。
 [実施例]
 1.電池の製造
 (実施例1)
 (1)触媒合成
 第1ステップとして、Bi(NO・5HO及びRuCl・3HOを所定量準備し、これらBi(NO・5HO及びRuCl・3HOが同じ濃度となるように75℃の蒸留水中に投入し、撹拌してBi(NO・5HO及びRuCl・3HOの混合水溶液を調製した。そして、この混合水溶液に、2mol%/lのNaOH水溶液を加えた。この際の浴温度は75℃とし、酸素バブリングを行いながら撹拌した。この操作によって生じた沈殿物を含む溶液を85℃に保持して水分の一部を蒸発させてペーストを形成した。このペーストを蒸発皿に移し、120℃に加熱し、その状態で12時間保持して乾燥させ、ペーストの乾燥物(前駆体)を得た。そして、第2ステップとして、この乾燥物を乳鉢で粉砕した後、空気雰囲気下で600℃に加熱し、1時間保持することにより焼成し、焼成物を得た。得られた焼成物を70℃の蒸留水を用いて水洗した後、吸引濾過し、乾燥させた。これにより、パイロクロア型のビスマスルテニウム酸化物を得た。
 得られたビスマスルテニウム酸化物を、乳鉢を用いて粉砕することにより所定粒子径の粒子の集合体であるビスマスルテニウム酸化物の粉末を得た。このビスマスルテニウム酸化物の粉末に関し、走査型電子顕微鏡による二次電子像を観察した結果、ビスマスルテニウム酸化物の粒子径は0.1μm以下であった。
 次いで、第3ステップとして、ビスマスルテニウム酸化物の粉末2gを40mlの硝酸水溶液とともにスターラーの撹拌槽に入れ、当該硝酸水溶液の温度を25℃に保持したまま6時間撹拌した。ここで、硝酸水溶液の濃度は2mol%/lとした。
 撹拌が終了した後、硝酸水溶液中からビスマスルテニウム酸化物の粉末を吸引濾過することにより取り出した。取り出されたビスマスルテニウム酸化物の粉末は、70℃に加熱したイオン交換水1リットルで洗浄した。洗浄後、ビスマスルテニウム酸化物の粉末を、25℃の室温下で減圧容器に入れ、減圧環境下で12時間保持することにより乾燥を行った。
 以上のようにして、硝酸処理されたビスマスルテニウム酸化物の粉末、すなわち、空気二次電池用触媒を得た。
 (2)空気極の製造
 硝酸処理されたビスマスルテニウム酸化物の粉末、ニッケル粉末、ポリテトラフルオロエチレン(PTFE)ディスパージョン及びイオン交換水を、質量比で56.5:16.1:16.1:11.3の割合で均一に混合して空気極合剤のペーストを作製した。
 得られた空気極合剤のペーストをシート状に成形し、シート状の空気極合剤のペーストをメッシュ数60、線径0.08mm、開口率60%のニッケルメッシュにプレス圧着させた。
 ニッケルメッシュに圧着された空気極合剤を窒素ガス雰囲気下で340℃に加熱し、この温度で13分間保持し、焼成した。焼成後、縦40mm、横40mmに裁断して、空気極14を得た。なお、空気極14の厚さは0.20mmであった。
 (3)負極の製造
 Nd、Mg、Ni、Alの各金属材料を所定のモル比となるように混合した後、高周波誘導溶解炉に投入しアルゴンガス雰囲気下にて溶解させ、得られた溶湯を鋳型に流し込み、25℃の室温まで冷却してインゴットを作製した。
 ついで、このインゴットに対し、温度1000℃のアルゴンガス雰囲気下にて10時間保持する熱処理を施した後、アルゴンガス雰囲気下で機械的に粉砕して、希土類-Mg-Ni系水素吸蔵合金粉末を得た。得られた希土類-Mg-Ni系水素吸蔵合金粉末について、レーザー回折・散乱式粒径分布測定装置により体積平均粒径(MV)を測定した。その結果、体積平均粒径(MV)は60μmであった。
 この水素吸蔵合金粉末の組成を高周波プラズマ分光分析法(ICP)によって分析したところ、組成は、Nd0.89Mg0.11Ni3.33Al0.17であった。
 得られた水素吸蔵合金の粉末100質量部に対し、ポリアクリル酸ナトリウムの粉末0.2質量部、カルボキシメチルセルロースの粉末0.04質量部、スチレンブタジエンゴムのディスパージョン3.0質量部、カーボンブラックの粉末0.5質量部、水22.4質量部を添加して25℃の環境下において混練し、負極合剤ペーストを調製した。
 この負極合剤ペーストを面密度(目付)が約250g/m、厚みが約0.6mmの発泡ニッケルのシートに充填し、これを乾燥させ、負極合剤が充填された発泡ニッケルのシートを得た。得られたシートは圧延され、体積当たりの合金量を高めた後、縦40mm、横40mmに切断して負極12を得た。なお、負極12の厚さは、0.25mmであった。
 次に、得られた負極12に、活性化処理を施した。この活性化処理の手順を以下に示す。
 まず、一般的な焼結式の水酸化ニッケル正極を準備した。なお、この水酸化ニッケル正極としては、その正極容量が負極12の負極容量よりも十分大きいものを準備した。そして、この水酸化ニッケル正極と、得られた負極12とを、これらの間にポリエチレンの不織布で形成されたセパレータを介在させた状態で重ね合わせて、活性化処理用電極群を形成した。この活性化処理用電極群を所定量のアルカリ電解液とともにアクリル樹脂製の容器に収容した。これにより、ニッケル水素二次電池の単極セルを形成した。
 この単極セルに対し、初回の充放電操作として、温度25℃の環境下にて、5時間静置後、0.1Itで14時間の充電を行った後、0.5Itで電池電圧が0.70Vになるまで放電させた。次いで、2回目の充放電操作として、温度25℃の環境下にて、単極セルを5時間静置後、0.5Itで2.8時間の充電を行った後に、0.5Itで電池電圧が0.70Vになるまで放電させる操作を行った。2回目以降は、上記した2回目の充放電操作を1サイクルとする充放電サイクルを複数回行うことにより負極12の活性化処理を行った。また、各充放電サイクルにおいては単極セルの容量を求めた。そして、得られた容量の最大値を負極の容量とした。なお、負極の容量は700mAhであった。
 その後、0.5Itで2.8時間の充電を行った後、単極セルから負極12を取り外した。このようにして、活性化処理及び充電が済んだ負極12を得た。
 (4)空気水素二次電池の製造
 得られた空気極14及び負極12を、これらの間にセパレータ16を挟んだ状態で重ね合わせ、電極群6を作製した。この電極群6の作製に使用したセパレータ16はスルホン基を有するポリプロピレン繊維製不織布により形成されており、その厚みは0.1mm(目付量53g/m)であった。
 次いで、評価用の収容袋18を準備し、この収容袋18内に上記した電極群6を収容した。この収容袋18は、例えば、ポリエチレン製の袋であり、チャック付きの出し入れ口(図示せず)が一部に設けられており、また別な一部に縦が30mm、横が30mmの開口20が設けられている。
 電極群6は上記した出し入れ口から収容袋18内へ入れられた。収容袋18内では、電極群6の下(負極12の下)に、セパレータ16とは別のセパレータ17を配設するとともに、電極群6の上(空気極14の上)にPTFEにより撥水処理を施したカーボン不織布(縦が45mm、横が45mm、厚さが0.2mm)24を配設した。そして、収容袋18の開口20の周囲の部分をカーボン不織布24に密着させ、収容袋18からは開口20を介してカーボン不織布24のみ露出させた状態とした。そして、出し入れ口よりアルカリ電解液(5mol%/lのKOH水溶液)を10ml注入した。その後、出し入れ口のチャックを閉め、収容袋18内を減圧脱泡した。
 上記したような状態で収容袋18に収容されている電極群6を収容袋18とともに天板8と底板10との間に挟んだ。このとき、収容袋18と底板10との間には負極側緩衝板22を介在させた。そして、天板8及び底板10を連結具34、36で連結し固定した。ここで、天板8は、アクリル樹脂製の板材であり、端部が大気に開放されている通気路26を有している。この通気路26は、幅が2mm、端幅が2.5mm、深さが1mm、山幅が1mmである全体として1本のサーペンタイン形状をなしている。この通気路26は、開口20を介してカーボン不織布24に臨んでいる。底板10は、天板8と同じ大きさのアクリル樹脂製の板材であり、通気孔は備えていない。
 以上のようにして、図1に示すような電池2を製造した。得られた電池2は、25℃の環境下で3時間静置し、電極群6にアルカリ電解液を浸透させた。
 なお、空気極14には空気極リード42が、負極12には負極リード44が、それぞれ電気的に接続されており、これら空気極リード42及び負極リード44は、収容袋18の気密性及び水密性を保持した状態で収容袋18の内側から外側へ適切に延びている。また、空気極リード42の先端には空気極端子46が取り付けられており、負極リード44の先端には負極端子48が取り付けられている。
 得られた電池2については、空気極端子46及び負極端子48を介して、空気極14の単位面積当たりの電流値が20mA/cmとなる条件で放電を行い、特性評価前の電池2とした。
 (比較例1)
 ビスマスルテニウム酸化物に硝酸処理を行わず、硝酸処理を施していないビスマスルテニウム酸化物を用いたことを除いて、実施例1と同様にして空気水素二次電池を製造した。
 2.空気二次電池用触媒及び空気水素二次電池の評価
 (1)空気二次電池用触媒のX線回折(XRD)分析
 (i)分析条件
 実施例1における硝酸処理されたビスマスルテニウム酸化物の粉末の一部及び比較例1における硝酸処理されていないビスマスルテニウム酸化物の粉末の一部を予め分析用試料として取り分けておき、この分析用試料についてX線回折(XRD)分析を行った。分析には平行ビームX線回折装置を用いた。ここでの分析の条件は、X線源はCuKα、管電圧は40kV、管電流は15mA、スキャンスピードは5度/min、ステップ幅は0.02度であった。分析結果のプロファイルを図2に示した。
 (ii)考察
 分析結果のプロファイルにおいて、三角形のマークを付した部分のピークは副生成物のピークである。この分析結果のプロファイルから、硝酸処理が施されていない比較例1に係る空気二次電池用触媒は、副生成物が生じていることがわかる。
 一方、実施例1では、副生成物のピークが消失している。実施例1の空気二次電池用触媒は、硝酸処理が施されており、この硝酸処理により結晶性の高い副生成物が除去されたものと考えられる。また、実施例1は、比較例1に対して、全体的にバックグラウンドの強度が低下しており、非晶質とみられる副生成物も同時に除去されていると考えられる。
 (2)空気二次電池用触媒の組成分析
 (i)分析条件
 実施例1における硝酸処理されたビスマスルテニウム酸化物の粉末の一部及び比較例1における硝酸処理されていないビスマスルテニウム酸化物の粉末の一部を予め分析用試料として取り分けておき、この分析用試料について走査型電子顕微鏡(SEM)観察を行うと同時に、エネルギー分散型X線分光器(EDS)を用いて、試料の組成の分析を行った。
 実施例1の分析結果のSEM画像(倍率:300倍)の写真を図3に示し、比較例1の分析結果のSEM画像(倍率:300倍)の写真を図4に示した。分析結果のSEM画像から、エリアマッピングによる組成分析を行った。組成分析により検出された元素の組成を表1に示した。また、ルテニウム量に対するビスマス量の比(Bi/Ru)も併せて示した。
Figure JPOXMLDOC01-appb-T000001
 (ii)考察
 実施例1の空気二次電池用触媒のルテニウム量に対するビスマス量の比(Bi/Ru)は0.85であった。一方、比較例1の空気二次電池用触媒のルテニウム量に対するビスマス量の比(Bi/Ru)は0.91であった。つまり、実施例1は、比較例1に対してルテニウム量に対するビスマス量の比が低下している。これは、硝酸処理により副生成物が除去されたことに起因すると考えられる。
 以上より、ビスマスルテニウム酸化物に硝酸処理を施さなければ、Bi/Ruの値は0.91となり、ビスマスルテニウム酸化物に硝酸処理を施すと、副生成物が除去され、Bi/Ruの値は0.91よりも低くなることがわかる。
 (3)空気水素二次電池の特性分析
 (i)分析条件
 実施例1及び比較例1に係る特性評価前の各電池に対し、25℃の環境下にて、3時間静置後、電流値が180mAとなる充電電流で2.2時間充電し、その後、20分間静置した。
 ついで、20分間静置した後の電池に対し、同一の環境下にて、電流値が180mAとなる放電電流で電池電圧が0.4Vになるまで放電した後、10分間静置した。
 上記した充放電のサイクルを1サイクルとして、20サイクル繰り返した。
 なお、通気路26には充放電によらず、常に1分間当たり13mlの空気を流し続けた。
 各サイクルにおいて、充電時における充電容量及び放電時における放電容量を求めた。得られた充電容量及び放電容量から、各サイクルにおける充電容量に対する放電容量の百分率を放電容量率として求めた。そして、放電容量率とサイクル数との関係から放電容量の推移を求めた。その結果を図5に示した。
 また、20サイクル目の充電を行った後の休止状態において、電池電圧と経過時間との関係を求めた。この電池電圧と経過時間との関係から電圧推移を求めた。その結果を図6に示した。
 (ii)考察
 実施例1の電池に係る放電容量率の推移のグラフは、充放電サイクルが進行しても放電容量率が、98~99%程度でほぼ一定の値を示し、安定している。つまり、実施例1の電池は、充電した量とほぼ等しい量だけ放電されており、しかも、その状態は充放電サイクルが進行しても維持されている。つまり、実施例1の電池は、自己放電が低く抑えられている。これは、実施例1の電池では、微小短絡が発生していないためと考えられる。
 一方、比較例1の電池に係る放電容量率の推移のグラフは、充放電サイクルの進行に伴って放電容量率が低下している。つまり、比較例1の電池は、充電した量に比べ放電した量が少なくなっており自己放電を起こしている。これは、比較例1の電池では、微小短絡が発生しているためと考えられる。
 また、実施例1の電池に係る電圧推移のグラフは、電池電圧の値が1.35V程度で推移し、急激な低下もなく安定している。これは、実施例1の電池では、微小短絡が発生していないためと考えられる。
 一方、比較例1の電池に係る電圧推移のグラフは、電池電圧の値が休止状態開始直後から急激に低下している。これは、比較例1の電池では、微小短絡が発生しているためと考えられる。
 (4)セパレータのX線回折(XRD)分析
 (i)分析条件
 上記した空気水素二次電池の特性分析において充放電を20サイクル繰り返した後の実施例1及び比較例1の電池を解体し、セパレータを取り出した。実施例1に係るセパレータ及び比較例1に係るセパレータについて、一部を切り取り、分析用試料を採取した。得られた分析用試料についてX線回折(XRD)分析を行った。分析には平行ビームX線回折装置を用いた。ここでの分析の条件は、X線源はCuKα、管電圧は40kV、管電流は15mA、スキャンスピードは1度/min、ステップ幅は0.01度であった。分析結果のプロファイルを図7に示した。
 なお、未使用のセパレータについても分析用試料を準備し、この未使用のセパレータについても、上記と同条件でX線回折(XRD)分析を行った。得られた分析結果のプロファイルを図7に併せて示した。
 (ii)考察
 比較例1に係るセパレータのプロファイルでは、黒塗りの三角形のマークを付した部分にピークがある。このピークは、ビスマスのピークに相当する。つまり、比較例1に係るセパレータにはビスマスが析出していることがわかる。このことから、硝酸処理を施していない比較例1においては、副生成物が残存しており、この副生成物に含まれているビスマスが電池反応にともない溶解析出反応を起こし、デンドライト成長して、セパレータ内に伸びたものと考えられる。このセパレータ内に伸びたビスマスが微小短絡の原因となっていると考えられる。
 実施例1に係るセパレータのプロファイルでは、黒塗りの三角形のマークを付した部分にピークは存在していない。また、未使用のセパレータのプロファイルと実施例1のセパレータのプロファイルとはほぼ一致しており、実施例1のセパレータは、充放電が繰り返されても初期の状態が維持されている。これらのことから、実施例1に係るセパレータにはビスマスの析出は起こっていないといえる。これは、硝酸処理により副生成物が除去されたことに起因しているためと考えられる。
 以上より、硝酸処理により副生成物が除去されれば、ビスマスの析出は起こらず微小短絡の発生を抑制できるといえる。ビスマスルテニウム酸化物は、硝酸処理を施され、Bi/Ruの値が0.90以下となれば、ビスマスの析出が起こらない効果が得られる程度に副生成物が除去された状態となると考えられる。このため、ビスマスルテニウム酸化物については、硝酸処理を施し、Bi/Ruの値が0.90以下でなるべく低くなることが好ましいと考えられる。ただし、Bi/Ruの値が0.80未満となるとビスマスルテニウム酸化物の結晶構造が変化する可能性がある。よって、Bi/Ruの値は、0.90以下、0.80以上とすることがより好ましいと考えられる。
 なお、本発明は上記した実施例に限定されるものではなく、空気二次電池用触媒としては、ビスマスルテニウム酸化物の他に、前記した遷移元素酸化物が挙げられる。本発明によれば、前記した遷移元素酸化物に対し酸処理を施すことにより、前記した遷移元素酸化物の製造過程で生じる副生成物を除去でき、副生成物が除去された状態の空気二次電池用触媒が得られので、副生成物中の遷移元素がデンドライト成長する不具合の発生を抑制することができる。
 <本発明の態様>
 本発明の第1の態様は、空気二次電池の空気極に用いる空気二次電池用触媒の製造方法であって、パイロクロア型酸化物の前駆体を調製する前駆体調製工程と、前記前駆体を焼成し、パイロクロア型酸化物を形成する焼成工程と、前記焼成工程により得られた前記パイロクロア型酸化物を酸性水溶液に浸漬させ酸処理する酸処理工程と、を備えている空気二次電池用触媒の製造方法である。
 本発明の第2の態様は、上記した本発明の第1の態様において、前記パイロクロア型酸化物は、一般式:A2-X2-Y7-Z(ただし、X、Y、Zは、それぞれ0以上1以下の数値を表し、Aは、Bi、Pb、Tb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Mn、Y、Znから選ばれる少なくとも1種の元素を表し、Bは、Ru、Ir、Si、Ge、Ta、Sn、Hf、Zr、Ti、Nb、V、Sb、Rh、Cr、Re、Sc、Co、Cu、In、Ga、Cd、Fe、Ni、W、Moから選ばれる少なくとも1種の元素を表している。)で表される組成を有しているパイロクロア型の遷移元素酸化物である、空気二次電池用触媒の製造方法である。
 本発明の第3の態様は、上記した本発明の第1又は第2の態様において、前記酸性水溶液は、硝酸水溶液、塩酸水溶液、硫酸水溶液のうちのいずれかである、空気二次電池用触媒の製造方法である。
 本発明の第4の態様は、上記した本発明の第2又は第3の態様において、前記パイロクロア型の遷移元素酸化物は、パイロクロア型のビスマスルテニウム酸化物である、空気二次電池用触媒の製造方法である。
 本発明の第5の態様は、上記した本発明の第4の態様において、前記ビスマスルテニウム酸化物に含まれているビスマスの量をX、ルテニウムの量をYとした場合に、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.90以下となるように前記酸処理が施される、空気二次電池用触媒の製造方法である。
 本発明の第6の態様は、上記した本発明の第5の態様において、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.80以上となるように前記酸処理が施される、空気二次電池用触媒の製造方法である。
 本発明の第7の態様は、空気二次電池用触媒を含む空気極合剤を空気極基材に担持させ空気極を製造する空気極製造工程と、負極合剤を負極基材に担持させ負極を製造する負極製造工程と、前記空気極と、前記負極とをセパレータを介して重ね合わせて電極群を形成する電極群形成工程と、前記電極群をアルカリ電解液とともに容器に収容する収容工程と、を備え、前記空気二次電池用触媒は、上記した本発明の第1~6の態様の何れかの空気二次電池用触媒の製造方法により製造される、空気二次電池の製造方法である。
 本発明の第8の態様は、上記した本発明の第7の態様において、前記負極製造工程は、前記負極合剤に水素吸蔵合金を含有させるプロセスを更に含む、空気二次電池の製造方法である。
 本発明の第9の態様は、空気二次電池の空気極に用いられる空気二次電池用触媒であって、酸性水溶液に浸漬される酸処理が施され、製造過程で生じた副生成物が除去された状態のパイロクロア型酸化物を含む、空気二次電池用触媒である。
 本発明の第10の態様は、上記した本発明の第9の態様において、前記パイロクロア型酸化物は、一般式:A2-X2-Y7-Z(ただし、X、Y、Zは、それぞれ0以上1以下の数値を表し、Aは、Bi、Pb、Tb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Mn、Y、Znから選ばれる少なくとも1種の元素を表し、Bは、Ru、Ir、Si、Ge、Ta、Sn、Hf、Zr、Ti、Nb、V、Sb、Rh、Cr、Re、Sc、Co、Cu、In、Ga、Cd、Fe、Ni、W、Moから選ばれる少なくとも1種の元素を表している。)で表される組成を有しているパイロクロア型の遷移元素酸化物である、空気二次電池用触媒である。
 本発明の第11の態様は、上記した本発明の第10の態様において、前記パイロクロア型の遷移元素酸化物は、ビスマスルテニウム酸化物である、空気二次電池用触媒である。
 本発明の第12の態様は、上記した本発明の第11の態様において、前記ビスマスルテニウム酸化物は、前記ビスマスルテニウム酸化物に含まれているビスマスの量をX、ルテニウムの量をYとした場合に、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.90以下である、空気二次電池用触媒である。
 本発明の第13の態様は、上記した本発明の第12の態様において、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.80以上である、空気二次電池用触媒である。
 本発明の第14の態様は、セパレータを介して重ね合わされた空気極及び負極を含む電極群と、前記電極群をアルカリ電解液とともに収容している容器と、を備え、前記空気極は、上記した本発明の第9~11の態様の何れかの空気二次電池用触媒を含んでいる、空気二次電池である。
 本発明の第15の態様は、上記した本発明の第14の態様において、前記負極は、水素吸蔵合金を含んでいる、空気二次電池である。
2         電池(空気水素二次電池)
4         容器
6         電極群
8         天板
10        底板
12        負極
14        空気極(正極)
16        セパレータ
24        カーボン不織布
26        通気路

 

Claims (15)

  1.  空気二次電池の空気極に用いる空気二次電池用触媒の製造方法であって、パイロクロア型酸化物の前駆体を調製する前駆体調製工程と、
     前記前駆体を焼成し、パイロクロア型酸化物を形成する焼成工程と、
     前記焼成工程により得られた前記パイロクロア型酸化物を酸性水溶液に浸漬させ酸処理する酸処理工程と、
    を備えている空気二次電池用触媒の製造方法。
  2.  前記パイロクロア型酸化物は、一般式:A2-X2-Y7-Z(ただし、X、Y、Zは、それぞれ0以上1以下の数値を表し、Aは、Bi、Pb、Tb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Mn、Y、Znから選ばれる少なくとも1種の元素を表し、Bは、Ru、Ir、Si、Ge、Ta、Sn、Hf、Zr、Ti、Nb、V、Sb、Rh、Cr、Re、Sc、Co、Cu、In、Ga、Cd、Fe、Ni、W、Moから選ばれる少なくとも1種の元素を表している。)で表される組成を有しているパイロクロア型の遷移元素酸化物である、請求項1に記載の空気二次電池用触媒の製造方法。
  3.  前記酸性水溶液は、硝酸水溶液、塩酸水溶液、硫酸水溶液のうちのいずれかである、請求項1又は2に記載の空気二次電池用触媒の製造方法。
  4.  前記パイロクロア型の遷移元素酸化物は、パイロクロア型のビスマスルテニウム酸化物である、請求項2又は3に記載の空気二次電池用触媒の製造方法。
  5.  前記ビスマスルテニウム酸化物に含まれているビスマスの量をX、ルテニウムの量をYとした場合に、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.90以下となるように前記酸処理が施される、請求項4に記載の空気二次電池用触媒の製造方法。
  6.  前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.80以上となるように前記酸処理が施される、請求項5に記載の空気二次電池用触媒の製造方法。
  7.  空気二次電池用触媒を含む空気極合剤を空気極基材に担持させ空気極を製造する空気極製造工程と、
     負極合剤を負極基材に担持させ負極を製造する負極製造工程と、
     前記空気極と、前記負極とをセパレータを介して重ね合わせて電極群を形成する電極群形成工程と、
     前記電極群をアルカリ電解液とともに容器に収容する収容工程と、を備え、
     前記空気二次電池用触媒は、請求項1~6の何れかに記載の空気二次電池用触媒の製造方法により製造される、空気二次電池の製造方法。
  8.  前記負極製造工程は、前記負極合剤に水素吸蔵合金を含有させるプロセスを更に含む、請求項7に記載の空気二次電池の製造方法。
  9.  空気二次電池の空気極に用いられる空気二次電池用触媒であって、酸性水溶液に浸漬される酸処理が施され、製造過程で生じた副生成物が除去された状態のパイロクロア型酸化物を含む、空気二次電池用触媒。
  10.  前記パイロクロア型酸化物は、一般式:A2-X2-Y7-Z(ただし、X、Y、Zは、それぞれ0以上1以下の数値を表し、Aは、Bi、Pb、Tb、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Mn、Y、Znから選ばれる少なくとも1種の元素を表し、Bは、Ru、Ir、Si、Ge、Ta、Sn、Hf、Zr、Ti、Nb、V、Sb、Rh、Cr、Re、Sc、Co、Cu、In、Ga、Cd、Fe、Ni、W、Moから選ばれる少なくとも1種の元素を表している。)で表される組成を有しているパイロクロア型の遷移元素酸化物である、請求項9に記載の空気二次電池用触媒。
  11.  前記パイロクロア型の遷移元素酸化物は、ビスマスルテニウム酸化物である、請求項10に記載の空気二次電池用触媒。
  12.  前記ビスマスルテニウム酸化物は、前記ビスマスルテニウム酸化物に含まれているビスマスの量をX、ルテニウムの量をYとした場合に、前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.90以下である、請求項11に記載の空気二次電池用触媒。
  13.  前記ルテニウムの量に対する前記ビスマスの量の比であるX/Yの値が、0.80以上である、請求項12に記載の空気二次電池用触媒。
  14.  セパレータを介して重ね合わされた空気極及び負極を含む電極群と、
     前記電極群をアルカリ電解液とともに収容している容器と、を備え、
     前記空気極は、請求項9~13の何れかに記載の空気二次電池用触媒を含んでいる、空気二次電池。
  15.  前記負極は、水素吸蔵合金を含んでいる、請求項14に記載の空気二次電池。

     
PCT/JP2019/012567 2018-03-30 2019-03-25 空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池 WO2019189014A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023869.9A CN111937198B (zh) 2018-03-30 2019-03-25 空气二次电池用催化剂及其制造方法、空气二次电池及其制造方法
US16/981,275 US11322751B2 (en) 2018-03-30 2019-03-25 Method for producing catalyst for air secondary battery, method for producing air secondary battery, catalyst for air secondary battery, and air secondary battery
EP19775557.2A EP3780195A4 (en) 2018-03-30 2019-03-25 METHOD OF MANUFACTURING A CATALYST FOR SECONDARY AIR BATTERY, METHOD OF MANUFACTURING SECONDARY AIR BATTERY, CATALYST FOR SECONDARY AIR BATTERY, AND SECONDARY AIR BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018066454A JP7081762B2 (ja) 2018-03-30 2018-03-30 空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池
JP2018-066454 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189014A1 true WO2019189014A1 (ja) 2019-10-03

Family

ID=68058164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012567 WO2019189014A1 (ja) 2018-03-30 2019-03-25 空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池

Country Status (5)

Country Link
US (1) US11322751B2 (ja)
EP (1) EP3780195A4 (ja)
JP (1) JP7081762B2 (ja)
CN (1) CN111937198B (ja)
WO (1) WO2019189014A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412155B (zh) * 2019-01-23 2023-12-29 学校法人同志社 氧催化剂和使用该氧催化剂的电极
JP7299449B2 (ja) * 2019-11-12 2023-06-28 Fdk株式会社 空気二次電池用の空気極及びこの空気極を含む空気二次電池
JP7364317B2 (ja) * 2019-12-20 2023-10-18 Fdk株式会社 空気二次電池用の空気極触媒及びその製造方法、ならびに空気二次電池
JP7327798B2 (ja) * 2019-12-24 2023-08-16 学校法人神奈川大学 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池
JPWO2021161900A1 (ja) * 2020-02-12 2021-08-19
JP7414584B2 (ja) * 2020-02-27 2024-01-16 Fdk株式会社 空気二次電池用の空気極及び空気二次電池
JP6799346B1 (ja) 2020-05-21 2020-12-16 学校法人同志社 酸素触媒、当該酸素触媒を用いた電極及び電気化学測定法
JP7517685B2 (ja) 2020-10-06 2024-07-17 国立大学法人 大分大学 含ビスマスルテニウムパイロクロア金属酸化物の製造方法および酸素電極触媒の製造方法
CN114560536B (zh) * 2022-03-09 2023-07-28 四川塔菲尔环境科技有限公司 一种铽铼改性Ti/RuO2形稳阳极、制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119900A (ja) * 2005-09-06 2007-05-17 Central Res Inst Of Electric Power Ind 金属−多孔質基材複合材料及びその製造方法
JP2009272231A (ja) * 2008-05-09 2009-11-19 Tokyo Univ Of Science アルカリ形直接アルコール燃料電池、酸化物カソード触媒、及び金属酸化物
JP2014220111A (ja) * 2013-05-08 2014-11-20 Jx日鉱日石エネルギー株式会社 電極材料、膜電極接合体、燃料電池スタックおよび電極材料の製造方法
JP2016152068A (ja) 2015-02-16 2016-08-22 学校法人同志社 正極およびその製造方法、並びにその正極を用いた空気二次電池
JP2017063020A (ja) * 2010-12-03 2017-03-30 イムラ アメリカ インコーポレイテッド 充電式電気化学エネルギー貯蔵デバイス
JP2017112112A (ja) * 2011-04-05 2017-06-22 ブラックライト パワー インコーポレーティド H2oベース電気化学的水素−触媒パワーシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129525A (en) 1977-12-02 1978-12-12 Exxon Research & Engineering Co. Method of making lead-rich and bismuth-rich pyrochlore compounds using an alkaline medium
US4203871A (en) 1977-12-02 1980-05-20 Exxon Research & Engineering Co. Method of making lead and bismuth ruthenate and iridate pyrochlore compounds
CN102214827B (zh) 2010-08-31 2013-10-02 中国科学院上海硅酸盐研究所 双载体复合的锂空气电池空气电极组合物及其制备方法
JP5711710B2 (ja) * 2012-09-25 2015-05-07 富士フイルム株式会社 エッチング液、圧電素子の製造方法およびエッチング方法
KR20160150009A (ko) * 2015-06-18 2016-12-28 울산과학기술원 금속 공기 전지용 복합촉매, 이의 제조 방법, 및 이를 포함하는 금속 공기 전지용 공기극 및 금속 공기 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119900A (ja) * 2005-09-06 2007-05-17 Central Res Inst Of Electric Power Ind 金属−多孔質基材複合材料及びその製造方法
JP2009272231A (ja) * 2008-05-09 2009-11-19 Tokyo Univ Of Science アルカリ形直接アルコール燃料電池、酸化物カソード触媒、及び金属酸化物
JP2017063020A (ja) * 2010-12-03 2017-03-30 イムラ アメリカ インコーポレイテッド 充電式電気化学エネルギー貯蔵デバイス
JP2017112112A (ja) * 2011-04-05 2017-06-22 ブラックライト パワー インコーポレーティド H2oベース電気化学的水素−触媒パワーシステム
JP2014220111A (ja) * 2013-05-08 2014-11-20 Jx日鉱日石エネルギー株式会社 電極材料、膜電極接合体、燃料電池スタックおよび電極材料の製造方法
JP2016152068A (ja) 2015-02-16 2016-08-22 学校法人同志社 正極およびその製造方法、並びにその正極を用いた空気二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780195A4

Also Published As

Publication number Publication date
US11322751B2 (en) 2022-05-03
CN111937198B (zh) 2023-06-06
JP7081762B2 (ja) 2022-06-07
CN111937198A (zh) 2020-11-13
US20210043945A1 (en) 2021-02-11
JP2019179592A (ja) 2019-10-17
EP3780195A4 (en) 2022-01-05
EP3780195A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019189014A1 (ja) 空気二次電池用触媒の製造方法、空気二次電池の製造方法、空気二次電池用触媒及び空気二次電池
JP5470669B2 (ja) 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法
JP5884084B2 (ja) 負極活物質、蓄電デバイス及び負極活物質の製造方法
US11355751B2 (en) Air electrode for air secondary battery and air secondary battery
JP2018055811A (ja) 空気二次電池用の空気極及びこの空気極を含む空気−水素二次電池
JP2018055810A (ja) 空気二次電池用の空気極、この空気極を含む空気−水素二次電池
WO2021166662A1 (ja) アルカリ二次電池用のニッケル極、及びこのニッケル極を含むアルカリ二次電池
JP7364317B2 (ja) 空気二次電池用の空気極触媒及びその製造方法、ならびに空気二次電池
JP2022172734A (ja) 空気極用触媒、この空気極用触媒を含む空気極及びこの空気極を含む空気二次電池
JP6394955B2 (ja) 水素吸蔵合金、電極及びニッケル水素蓄電池
WO2024190570A1 (ja) 空気二次電池
JP2021153013A (ja) 空気二次電池
JP7149525B2 (ja) 空気二次電池用の空気極触媒及び空気二次電池
JP7122946B2 (ja) 空気二次電池用の空気極触媒、この空気極触媒の製造方法及び空気二次電池
JP2019145252A (ja) アルカリ二次電池用正極活物質の製造方法及びアルカリ二次電池の製造方法
US20230049091A1 (en) Catalyst for air secondary battery, air electrode, and air secondary battery
JP7572881B2 (ja) 空気二次電池用触媒、空気極及び空気二次電池
JP7414584B2 (ja) 空気二次電池用の空気極及び空気二次電池
JP2017076538A (ja) 空気二次電池の空気極の製造方法及び空気−水素二次電池
JP2020202155A (ja) 空気二次電池用の空気極及び空気二次電池
JP2024113887A (ja) 空気二次電池用の空気極及び空気二次電池
JP2021077563A (ja) 空気二次電池用の空気極及びこの空気極を含む空気二次電池
JP2024085594A (ja) 空気二次電池用の空気極及びこの空気極を含む空気二次電池
JP2023076130A (ja) 空気極用触媒、この空気極用触媒を含む空気極及びこの空気極を含む空気二次電池
JP2022138169A (ja) 空気二次電池用触媒、空気極及び空気二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019775557

Country of ref document: EP