WO2019188508A1 - 増粘安定剤、及びそれを用いた電子デバイス製造用溶剤組成物 - Google Patents

増粘安定剤、及びそれを用いた電子デバイス製造用溶剤組成物 Download PDF

Info

Publication number
WO2019188508A1
WO2019188508A1 PCT/JP2019/011207 JP2019011207W WO2019188508A1 WO 2019188508 A1 WO2019188508 A1 WO 2019188508A1 JP 2019011207 W JP2019011207 W JP 2019011207W WO 2019188508 A1 WO2019188508 A1 WO 2019188508A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon group
carbon atoms
aliphatic hydrocarbon
divalent
compound
Prior art date
Application number
PCT/JP2019/011207
Other languages
English (en)
French (fr)
Inventor
鈴木陽二
懸橋理枝
東海直治
Original Assignee
株式会社ダイセル
地方独立行政法人大阪産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 地方独立行政法人大阪産業技術研究所 filed Critical 株式会社ダイセル
Priority to CN201980023728.7A priority Critical patent/CN111936462B/zh
Priority to JP2020510702A priority patent/JP7270935B2/ja
Priority to EP19777518.2A priority patent/EP3778564A4/en
Priority to US17/043,416 priority patent/US20210017124A1/en
Priority to KR1020207030928A priority patent/KR20200138315A/ko
Publication of WO2019188508A1 publication Critical patent/WO2019188508A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/34Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/35Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/36Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/08Preparation of carboxylic acid amides from amides by reaction at nitrogen atoms of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C291/00Compounds containing carbon and nitrogen and having functional groups not covered by groups C07C201/00 - C07C281/00
    • C07C291/02Compounds containing carbon and nitrogen and having functional groups not covered by groups C07C201/00 - C07C281/00 containing nitrogen-oxide bonds
    • C07C291/04Compounds containing carbon and nitrogen and having functional groups not covered by groups C07C201/00 - C07C281/00 containing nitrogen-oxide bonds containing amino-oxide bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines

Definitions

  • the present invention relates to a novel compound that thickens and stabilizes a fluid organic substance such as oil and a solvent composition for producing an electronic device containing the compound.
  • the method of thickening and stabilizing the liquid is a very important technology in the industry.
  • a metastable emulsion of mayonnaise or salad dressing can stably maintain the emulsion for a long period of time. This is because the aqueous component is thickened and stabilized. For this reason, various thickening stabilizers have been developed.
  • an alkyl acrylate copolymer As a compound that thickens and stabilizes an aqueous medium, for example, an alkyl acrylate copolymer is known.
  • 12-hydroxystearic acid is known as a thickening stabilizer for fluid organic substances (for example, organic substances having fluidity such as oily media) (Patent Document 1, etc.).
  • 12-Hydroxystearic acid is mainly used for its gelling action for disposal of edible oil.
  • 12-hydroxystearic acid could not adjust the degree of gelation and could only be induced to either solidify or remain liquid. That is, the present condition is that the compound which thickens a fluid organic substance to desired viscosity has not been found yet.
  • an object of the present invention is to provide a compound capable of thickening a fluid organic substance to a desired viscosity and stabilizing the composition uniformly.
  • Another object of the present invention is to provide a precursor of the compound capable of thickening a fluid organic substance to a desired viscosity and stabilizing the composition uniformly.
  • Another object of the present invention is to provide a solvent composition that contains a compatible product of the compound and a flowable organic substance and that is suitably used for manufacturing an electronic device.
  • Still another object of the present invention is to provide a method for producing the solvent composition.
  • the inventors of the present invention can increase the viscosity of a fluid organic substance by dissolving the compound represented by the following formula (1) with the fluid organic substance. , That a compatibilized material having a uniform composition (preventing sedimentation, local aggregation, or concentration of the composition and maintaining a uniform state stably) can be obtained, represented by the following formula (1): It has been found that the viscosity of the obtained compatible product can be controlled by adjusting the carbon number of the resulting compound. The present invention has been completed based on these findings.
  • R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms
  • R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group, and R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH—) The compound represented by these is provided.
  • the present invention also provides the following formula (2): (Wherein R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms, R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms. R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group, and R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH—) The compound represented by these is provided.
  • the compound represented by the following formula (3) and the compound represented by the following formula (4) are reacted, or the compound represented by the following formula (3 ′) and the following formula (
  • a method for producing a compound represented by the formula (2) is provided, in which a compound represented by the following formula (2) is obtained by reacting the compound represented by 4 ′).
  • R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms
  • R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group, and R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH— R 7 is a hydrogen atom or 1 carbon atom And in formula (3), OR 7 forms a ring by dehydration condensation or dealcoholization condensation with a hydrogen atom constituting L 2. May be)
  • the present invention also provides the following formula (2): (Wherein R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms, R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms. R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group, and R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH—)
  • a compound represented by the formula (1) (Wherein R 1 to R 6 and L 1 to L 3 are the same as above) The manufacturing method of the compound represented by Formula (1) which obtains the compound represented by is provided.
  • the present invention also provides a solvent composition for producing an electronic device comprising a compatible product of the compound represented by the above formula (1) and a fluid organic substance.
  • the present invention also provides that the fluid organic substance is at least one selected from hydrocarbon oils, ethers, halogenated hydrocarbons, petroleum components, animal and vegetable oils, silicone oils, esters, aromatic carboxylic acids, pyridines, and alcohols.
  • the above-mentioned solvent composition for producing an electronic device is provided.
  • the present invention also provides the following formula (1): (Wherein R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms, R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms. R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group, and R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH—)
  • the manufacturing method of the solvent composition for electronic device manufacture which obtains the said solvent composition for electronic device manufacture through the process of compatibilizing the compound and fluid organic substance which are represented by this is provided.
  • the compound represented by the formula (1) of the present invention is easily mixed with a fluid organic substance to easily thicken the fluid organic substance and make the composition of the composition containing the fluid organic substance uniform. Can be stabilized. Therefore, it can be suitably used as a thickening stabilizer for paints, adhesives, inks, lubricants, pharmaceuticals, quasi drugs, cosmetics, and the like.
  • the compound represented by the formula (2) of the present invention is oxidized, the compound represented by the formula (1) useful as described above can be easily produced. That is, the compound represented by the formula (2) is extremely useful as a precursor of the compound represented by the formula (1).
  • the solvent composition for electronic device manufacture of this invention containing the compound represented by the said Formula (1) has moderate viscosity and shear thinning property. For this reason, it is difficult for the liquid to sag and has good coating properties (or ejection properties). Furthermore, compared with a solvent composition obtained by thickening a fluid organic substance with ethyl cellulose, the solvent composition for manufacturing an electronic device of the present invention can be fired at a low temperature, and the coating composition to which the solvent composition is applied is applied. The body can be prevented from being softened and deformed by being exposed to high temperature for a long time. In addition, the residual amount of ash after baking can be significantly reduced, and the occurrence of various problems caused by the residual ash (for example, deterioration of electrical characteristics when used in conductive ink) is suppressed. be able to.
  • FIG. 3 is a diagram showing a 1 H-NMR measurement result of a compound (2-3) obtained in an example.
  • FIG. 3 is a diagram showing a 1 H-NMR measurement result of a compound (1-3) obtained in an example.
  • FIG. 3 is a diagram showing a 1 H-NMR measurement result of a compound (2-4) obtained in an example.
  • FIG. 3 is a diagram showing a 1 H-NMR measurement result of a compound (1-4) obtained in an example.
  • FIG. 3 is a diagram showing a 1 H-NMR measurement result of a compound (2-1) obtained in an example.
  • FIG. 3 is a diagram showing a 1 H-NMR measurement result of a compound (1-1) obtained in an example.
  • the compound (1) of the present invention is represented by the following formula (1).
  • R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms
  • R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group, and R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH—)
  • R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms, such as decyl group, lauryl group, myristyl group, pentadecyl group, stearyl group, palmityl group, nonadecyl group, eicosyl group, behenyl.
  • a linear alkyl group such as a group; a linear alkenyl group such as a decenyl group, a pentadecenyl group, an oleyl group and an eicosenyl group; a linear alkynyl group such as a pentadecynyl group, an octadecynyl group and a nonadecynyl group.
  • R 1 is a monovalent compound having 14 to 25 carbon atoms because it is excellent in the thickening effect of the fluid organic substance and can suppress the remaining of ash to an extremely low level even when fired at a low temperature.
  • a linear aliphatic hydrocarbon group (particularly preferably, an alkyl group having 14 to 25 carbon atoms) is preferable, and a monovalent linear aliphatic hydrocarbon group having 18 to 21 carbon atoms (particularly preferably) is particularly preferable.
  • Examples of the divalent aliphatic hydrocarbon group having 2, 4, 6, or 8 carbon atoms in R 2 and R 3 include an ethylene group, an n-butylene group, an n-hexylene group, and an n-octylene group. .
  • Examples of the divalent alicyclic hydrocarbon group having 6 carbon atoms in R 2 and R 3 include a 1,4-cyclohexylene group, a 1,3-cyclohexylene group, and a 1,2-cyclohexylene group. .
  • Examples of the divalent aromatic hydrocarbon group in R 2 and R 3 include arylene groups having 6 to 10 carbon atoms such as 1,4-phenylene group, 1,3-phenylene group and 1,2-phenylene group. Can be mentioned.
  • a divalent aliphatic hydrocarbon group having 2, 4, 6, or 8 carbon atoms (particularly preferably a straight chain) is preferable in that the thickening effect of the fluid organic substance is excellent.
  • -Like alkylene group is preferable, more preferably a divalent aliphatic hydrocarbon group having 2, 4, or 6 carbon atoms (particularly preferably a linear alkylene group), particularly preferably a divalent group having 2 or 4 carbon atoms.
  • an aliphatic hydrocarbon group (particularly preferably a linear alkylene group) most preferably a divalent aliphatic hydrocarbon group having 2 carbon atoms (particularly preferably a linear alkylene group).
  • R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms, and among them, a linear or branched alkylene group is preferable and particularly preferable from the viewpoint of excellent thickening effect of a fluid organic substance. Is a linear alkylene group.
  • R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms, and among them, a divalent aliphatic hydrocarbon group having 1 to 7 carbon atoms is more preferable because it is excellent in the thickening effect of the fluid organic substance.
  • Aliphatic hydrocarbon group particularly preferably a divalent aliphatic hydrocarbon group having 3 to 7 carbon atoms, most preferably a divalent aliphatic hydrocarbon group having 3 to 6 carbon atoms, particularly preferably 3 to 5 carbon atoms These are divalent aliphatic hydrocarbon groups.
  • R 4 is preferably a linear or branched alkylene group having 1 to 8 carbon atoms, more preferably a linear alkylene group having 1 to 7 carbon atoms, particularly preferably a straight chain group having 3 to 7 carbon atoms.
  • a linear alkylene group most preferably a linear alkylene group having 3 to 6 carbon atoms, particularly preferably a linear alkylene group having 3 to 5 carbon atoms.
  • Examples of the monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms in R 5 and R 6 include a straight or branched chain having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • hydroxyalkyl ether group in R 5 and R 6 examples include mono- or di (hydroxy) C 1-3 alkyl ether groups such as 2-hydroxyethoxy group, 2-hydroxypropoxy group, 2,3-dihydroxypropoxy group and the like. Is mentioned.
  • R 5 and R 6 are the same or different, preferably a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a linear or branched alkyl group having 1 to 3 carbon atoms. Group, particularly preferably a linear alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
  • the compounds represented by the formula (1) are particularly preferable in terms of excellent solubility of the fluid organic substance. Moreover, the said compound is preferable also at the point which can carry out thickening stabilization, maintaining the transparency, when the said fluid organic substance is transparent, in the fluid organic substance.
  • the compound (2) of the present invention is represented by the following formula (2).
  • the compound (2) is useful as a precursor for the compound (1).
  • R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms
  • R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group
  • R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH—)
  • R 1 to R 6 and L 1 to L 3 are the same as above.
  • the compound (2) includes a compound represented by the following formula (3) (hereinafter sometimes referred to as “compound (3)”) and a compound represented by the following formula (4) (hereinafter referred to as “compound (3)”). 4) ”or a compound represented by the following formula (3 ′) (hereinafter sometimes referred to as“ compound (3 ′) ”) and the following formula (4 ′): (Hereinafter, sometimes referred to as “compound (4 ′)”).
  • R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms
  • R 2 and R 3 are the same or different, and are divalent divalent having 2, 4, 6, or 8 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group, a bivalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group, and R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • R 5, R 6 are the same or different, .L 1 ⁇ L 3 showing a monovalent aliphatic hydrocarbon group, or a hydroxyalkyl ether group having 1 to 3 carbon atoms represents an amide bond, and L 1 When L 3 is —CONH—, L 2 is —NHCO—, and when L 1 and L 3 are —NHCO—, L 2 is —CONH— R 7 is a hydrogen atom or 1 carbon atom And in formula (3), OR 7 forms a ring by dehydration condensation or dealcoholization condensation with a hydrogen atom constituting L 2. May be)
  • R 1 to R 6 and L 1 to L 2 are the same as above.
  • Examples of the alkyl group having 1 to 3 carbon atoms for R 7 in the above formulas (3) and (4 ′) include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • the ring formed by dehydration condensation or dealcohol condensation of OR 7 in formula (3) with the hydrogen atom constituting L 2 includes, for example, pyrrolidine-2,5-dione ring, piperidine-2,6-dione A ring etc. are mentioned.
  • the amount of the compound (4) used may be 1 mol or more with respect to 1 mol of the compound (3), and an excessive amount may be used.
  • the amount of the compound (4 ′) used may be 1 mol or more with respect to 1 mol of the compound (3 ′), and an excess amount may be used.
  • reaction of the compound (3) and the compound (4), or the compound (3 ') and the compound (4') can be carried out, for example, by stirring at a temperature of 100 to 120 ° C for 10 to 20 hours.
  • the reaction atmosphere is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the reaction can be carried out by any method such as batch, semi-batch and continuous methods.
  • the obtained reaction product can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, etc., or a combination means combining these.
  • the compound (1) can be produced by obtaining the compound (2) by the above method and oxidizing the obtained compound (2).
  • hydrogen peroxide As the oxidizing agent used for the oxidation of the compound (2) obtained by the above method, for example, hydrogen peroxide can be used.
  • hydrogen peroxide pure hydrogen peroxide may be used, but from the viewpoint of handleability, it is usually diluted with an appropriate solvent (for example, water) and used (for example, 5 to 70% by weight). Hydrogen oxide water).
  • the amount of hydrogen peroxide to be used is, for example, about 0.1 to 10 mol with respect to 1 mol of compound (2).
  • the oxidation reaction can be performed, for example, by stirring at a temperature of 30 to 70 ° C. for 3 to 20 hours.
  • the oxidation reaction of the compound (2) is performed in the presence or absence of a solvent.
  • a solvent include alcohol solvents such as methanol, ethanol, 2-propanol, and butanol; ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, dioxolane, 1,2-dimethoxyethane, and cyclopentyl methyl ether.
  • ester solvents such as butyl acetate and ethyl acetate
  • hydrocarbon solvents such as pentane, hexane, heptane and octane
  • nitrile solvents such as acetonitrile and benzonitrile.
  • the obtained reaction product can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, etc., or a combination means combining these.
  • a compound represented by the following formula (3-1) can be produced by the following method.
  • R 1 , R 2 , R 3 and R 7 are the same as above.
  • two R 7 in R 7 and wherein in formula (3a) (3d), respectively may be the same or may be different.
  • two COOR 7 in the formula may be subjected to dehydration condensation to form an acid anhydride.
  • the compound represented, for example by a following formula (3'-1) can be manufactured with the following method.
  • R 1 , R 2 , R 3 and R 7 are the same as above.
  • Two R 7 in the formula (3b ′) may be the same or different.
  • two COOR 7 in the formula may be dehydrated and condensed to form an acid anhydride.
  • the step [1] is a step of obtaining a compound represented by the formula (3c) by reacting the compound represented by the formula (3a) with the compound represented by the formula (3b).
  • the usage-amount of the compound represented by Formula (3b) should just be 1 mol or more with respect to 1 mol of compounds represented by Formula (3a), and can also use excess amount.
  • the reaction temperature of this reaction is, for example, 80 to 150 ° C., and the reaction time is, for example, about 1 to 24 hours.
  • the step [2] is a step of obtaining a compound represented by the formula (3-1) by reacting the compound represented by the formula (3c) with the compound represented by the formula (3d).
  • the amount of the compound represented by the formula (3d) may be 1 mol or more, preferably 1 to 3 mol relative to 1 mol of the compound represented by the formula (3c).
  • the reaction temperature of this reaction is, for example, 80 to 150 ° C., and the reaction time is, for example, about 0.5 to 10 hours. As this reaction proceeds, water is produced. Therefore, it is preferable to perform the reaction while removing water using a dehydrating agent (for example, acetic anhydride or the like) in order to promote the progress of the reaction.
  • a dehydrating agent for example, acetic anhydride or the like
  • the reaction [2] is preferably performed in the presence of a solvent.
  • a solvent examples include pentafluorophenol, N, N-dimethylformamide, dimethylacetamide, o-dichlorobenzene, and the like. These can be used alone or in combination of two or more.
  • reaction [2] can be carried out in the presence of a base such as triethylamine, pyridine, 4-dimethylaminopyridine, if necessary.
  • a base such as triethylamine, pyridine, 4-dimethylaminopyridine, if necessary.
  • the step [3] is a step of obtaining the compound represented by the formula (3c ′) by reacting the compound represented by the formula (3a ′) with the compound represented by the formula (3b ′).
  • the reaction [3] can be carried out under conditions similar to those of the above reaction [2].
  • the step [4] is a step of obtaining a compound represented by the formula (3′-1) by reacting a compound represented by the formula (3c ′) with a compound represented by the formula (3d ′). .
  • the reaction [4] can be carried out under the same conditions as in the above reaction [1].
  • the obtained reaction product is separated by a separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination means combining these. It can be purified.
  • a separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination means combining these. It can be purified.
  • the solvent composition for manufacturing an electronic device of the present invention is a composition containing a compatible material of the above compound (1) and a fluid organic substance, and the composition of the fluid organic substance is thickened by the compound (1). Is a uniformly stabilized composition.
  • the fluid organic material as a raw material is an organic material having a viscosity [25 ° C., viscosity ( ⁇ ) at a shear rate of 1 s ⁇ 1 ] measured by a rheometer, for example, less than 0.5 Pa ⁇ s.
  • fluid organic substances include hydrocarbon oils (for example, hexane, cyclohexane, isododecane, benzene, toluene, polyalphaolefin, liquid paraffin, etc.), ethers (for example, tetrahydrofuran, etc.), halogenated hydrocarbons.
  • the above-mentioned solvent composition for producing an electronic device can be produced through a step of dissolving the compound (1) and a fluid organic substance. More specifically, the total amount of the fluid organic substance and the compound (1) can be mixed and heated to be compatible with each other and then cooled. In addition, the compound (1) is mixed with a part of the fluid organic substance, heated and compatible, and then cooled to produce a solvent composition for producing an electronic device. It can also be produced by mixing with a substance.
  • the temperature at the time of compatibility is appropriately selected depending on the types of the compound (1) and the fluid organic substance, and is not particularly limited as long as the compound (1) and the fluid organic substance are compatible with each other. It is preferable that the temperature does not exceed 100 ° C. When the boiling point of the fluid organic substance is 100 ° C or less, the boiling point is preferable.
  • the cooling after the compatibilization is not limited as long as it can be cooled to room temperature (for example, 25 ° C.) or lower, and may be gradually cooled at room temperature or rapidly by ice cooling or the like.
  • the amount of the compound (1) used depends on the kind of the fluid organic substance, but for example, 0.1 to 100 parts by weight, preferably 0.5 to 80 parts by weight with respect to 1000 parts by weight of the fluid organic substance, Particularly preferred is 1 to 60 parts by weight, and most preferred is 1 to 30 parts by weight.
  • the solvent composition for producing an electronic device of the present invention may contain other components within the range not impairing the effects of the present invention, in addition to the compound (1) and the fluid organic substance.
  • the content of the compatible material (or the total amount of the compound (1) and the flowable organic substance) in the total amount of the solvent composition for producing an electronic device is, for example, 30% by weight or more, preferably 50% by weight or more, particularly preferably Is 60% by weight or more, most preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the upper limit is 100% by weight. That is, the solvent composition for manufacturing an electronic device of the present invention may contain only a compatible material of the compound (1) and a fluid organic substance without substantially containing other components. As other components, it can adjust suitably according to a use.
  • the viscosity of the solvent composition for producing an electronic device of the present invention [viscosity ( ⁇ ) at 25 ° C., shear rate of 0.3 s ⁇ 1 ] by a rheometer is in the range of 10 Pa ⁇ s or more (for example, 10 to 100 Pa ⁇ s). It is preferable that the applied composition can be prevented from sagging or flowing, and the coating accuracy can be improved.
  • the viscosity [ ⁇ at a shear rate of 0.1 s ⁇ 1 at 25 ° C. and a shear rate ( ⁇ )] of the solvent composition for producing an electronic device of the present invention is in the range of 10 Pa ⁇ s or more (for example, 10 to 100 Pa ⁇ s). It is preferable that the applied composition can be prevented from sagging or flowing, and the coating accuracy can be improved.
  • the solvent composition for producing an electronic device of the present invention has shearing properties and has a viscosity ratio [viscosity at 25 ° C. by rheometer and shear rate of 1 s ⁇ 1 / viscosity at shear rate of 10 s ⁇ 1 by rheometer. ] Is for example more than 1.5, preferably 2 or more, particularly preferably 3 or more.
  • the upper limit is, for example, 10, preferably 8. Therefore, the viscosity can be reduced at the time of application. For example, when applying using a printing machine or the like, the discharge property is excellent. In addition, by drastically increasing the viscosity after application, the applied composition can be prevented from sagging, and the application accuracy can be improved.
  • the solvent composition for producing an electronic device of the present invention has an appropriate viscosity and shear thinning property as described above, a binder resin (for example, an ethyl cellulose resin, an alkyl cellulose resin, a polyvinyl acetal resin, an acrylic resin or the like having a molecular weight of 10,000 or more)
  • a binder resin for example, an ethyl cellulose resin, an alkyl cellulose resin, a polyvinyl acetal resin, an acrylic resin or the like having a molecular weight of 10,000 or more
  • the addition amount is, for example, 10% by weight or less, preferably 5% by weight or less of the total amount of the composition (100% by weight).
  • the added amount of the binder resin exceeds the above range, the residual amount of ash derived from the binder resin generated by baking increases, and various problems caused by the residual ash (for example, deterioration of electrical characteristics when used in conductive ink) There is a tendency that it becomes difficult to suppress the occurrence of.
  • the solvent composition for producing an electronic device of the present invention is excellent in thermal decomposability and easily has a low molecular weight. Therefore, the solvent composition for producing an electronic device of the present invention has a lower temperature (for example, 100 to 350 ° C., preferably 150 to 300 ° C., particularly preferably 150 to 300 ° C.) compared with a solvent composition to which a viscosity is imparted by a binder resin such as ethyl cellulose. 250 ° C.), and softening and deformation of the coated body in the baking process can be prevented.
  • a lower temperature for example, 100 to 350 ° C., preferably 150 to 300 ° C., particularly preferably 150 to 300 ° C.
  • a binder resin such as ethyl cellulose. 250 ° C.
  • the solvent composition for producing an electronic device of the present invention has the above characteristics, for example, a capacitor, an inductor, a varistor, a thermistor, a speaker, an actuator, an antenna, a solid oxide fuel cell (SOFC), etc. (particularly, a multilayer ceramic capacitor)
  • SOFC solid oxide fuel cell
  • it is useful as a solvent for ink for manufacturing wiring and / or electrodes.
  • it is particularly useful as an adhesive solvent in the production of electronic devices.
  • Example 1 Provide of Compound (1-3)> Methyl docosanoate (20.0 g, 56.4 mmol) and ethylenediamine (16.9 g, 281 mmol) were stirred at 110 ° C. for 18 hours, and the reaction was washed with methanol and then filtered. The filtrate was evaporated, and the resulting residue was purified by recrystallization using hexane. N-docosanoylethylenediamine was obtained as white crystals (yield 65%, 14.0 g, 36.7 mmol).
  • N-dimethylformamide 40 ml
  • N-docosanoylethylenediamine 12.0 g, 31.4 mmol
  • triethylamine 6.35 g, 62.8 mmol
  • succinic anhydride 3.45 g, 34.5 mmol
  • acetic anhydride 4.81 g, 47.1 mmol
  • the reaction mixture was poured into water (200 ml) and the precipitate was filtered and washed with water.
  • N-docosanoylaminoethylsuccinimide (4.00 g, 8.60 mmol) and N, N-dimethyl-1,3-propanediamine (2.63 g, 25.8 mmol) were stirred at 120 ° C. for 18 hours.
  • the reaction mixture was poured into methanol and the precipitate was filtered and washed with methanol. The obtained solid was purified by recrystallization using acetone and methanol.
  • Example 2 Provide of Compound (1-4)> N-docosanoylaminoethylsuccinimide was obtained in the same manner as in Example 1.
  • N-docosanoylaminoethylsuccinimide (8.00 g, 17.2 mmol) and hexamethylenediamine (10.0 g, 86.1 mmol) were stirred at 120 ° C. for 18 hours.
  • the reaction mixture was poured into methanol and the precipitate was filtered and washed with methanol.
  • the obtained solid was purified by recrystallization using acetonitrile and methanol.
  • N- (docosanoylaminoethyl) aminosuccinamoylaminohexylamine was obtained as a white crystalline powder (yield 69% 6.91 g, 11.9 mmol).
  • N- (docosanoylaminoethyl) aminosuccinamoylaminohexylamine (3.25 g, 5.59 mmol)
  • 37% aqueous formaldehyde (2.73 ml)
  • formic acid (1.55 g, 33.7 mmol) were added to 2-propanol ( 15 ml) and stirred at 100 ° C. for 4 hours.
  • the reaction mixture was poured into 1M aqueous sodium hydroxide solution (20 ml) and the crystals were filtered.
  • Example 3 ⁇ Production of Compound (1-1)> Methyl eicosanoate (18.0 g, 55.1 mmol) and ethylenediamine (16.5 g, 276 mmol) were stirred at 110 ° C. for 18 hours, and the reaction was washed with methanol and filtered. The filtrate was evaporated, and the resulting residue was purified by recrystallization using hexane. N-eicosanoylethylenediamine was obtained as white crystals (yield 68%, 13.3 g, 37.5 mmol).
  • N-eicosanoylaminoethylsuccinimide (4.00 g, 9.16 mmol) and N, N-dimethyl-1,3-propanediamine (2.81 g, 27.5 mmol) were stirred at 120 ° C. for 18 hours.
  • the reaction mixture was poured into methanol and the precipitate was filtered and washed with methanol.
  • the obtained solid was purified by recrystallization using acetone and methanol.
  • the 1 H-NMR (CDCl 3 ) measurement result of the obtained compound is shown in FIG.
  • N- (eicosanoylaminoethylaminosuccinamoylaminopropyl) -N, N-dimethylamine oxide represented by the following formula (1-1) was obtained as a white solid ( Yield 58%, 2.39 g, 4.30 mmol).
  • the 1 H-NMR (CDCl 3 ) measurement result of the obtained compound is shown in FIG.
  • Example 4 Provide of Compound (1-5)> A compound represented by the following formula (2-5) was obtained in the same manner as in Example 2 except that methyl octadecanoate was used instead of methyl docosanoate, and a compound represented by the following formula (1-5) was obtained. Obtained.
  • Example 5 Provide of Compound (1-6)> A compound represented by the following formula (2-6) was obtained in the same manner as in Example 1 except that methyl octadecanoate was used instead of methyl docosanoate, and a compound represented by the following formula (1-6) was obtained. Obtained.
  • Example 6 Provide of Compound (1-7)> A compound represented by the following formula (2-7) was obtained in the same manner as in Example 2 except that methyl palmitate was used instead of methyl docosinate, and a compound represented by the following formula (1-7) was obtained. Obtained.
  • Example 7 Provide of Compound (1-8)> A compound represented by the following formula (2-8) was obtained in the same manner as in Example 1 except that methyl palmitate was used instead of methyl docosinate, and a compound represented by the following formula (1-8) was obtained. Obtained.
  • Example 8 Provide of Compound (1-9)> A compound represented by the following formula (2-9) was obtained in the same manner as in Example 2 except that methyl myristate was used instead of methyl docosinate, and a compound represented by the following formula (1-9) was obtained. Obtained.
  • ethyl cellulose (EC: trade name “Etocel STD200”, manufactured by Nisshin Kasei Co., Ltd.) is used as a thickening stabilizer, heated and dissolved at a liquid temperature of 80 ° C. for 24 hours, and cooled to 25 ° C. A solvent composition was obtained.
  • the viscosity of the obtained solvent composition is a viscosity / viscoelasticity measuring device equipped with a cone plate sensor (60 mm diameter, cone angle 1 °, 35 mm diameter cone angles 1 °, 2 °, 4 °) and a Peltier temperature controller. (Rheometer) (trade name “Rheo Stress 600”, manufactured by HAAKE Corporation), and measuring the viscosity by changing the shear rate from 0.1 to 100 s ⁇ 1 in logarithmic steps under a constant flow viscosity measurement mode at 25 ° C. The thickening effect (shear thinning and thickening) was evaluated.
  • the solvent composition of the present invention has an appropriate viscosity and shear thinning property and has a very low residual ash content.
  • the solvent composition of the comparative example had a low viscosity, poor shearing properties, and a high ash residual rate.
  • [1] A compound represented by formula (1).
  • [2] The compound according to [1], wherein R 2 and R 3 in the formula (1) are the same or different and each is a divalent aliphatic hydrocarbon group having 2, 4, 6, or 8 carbon atoms.
  • [3] The compound according to [1], wherein R 2 and R 3 in the formula (1) are the same or different and are a linear alkylene group having 2, 4, 6, or 8 carbon atoms.
  • R 2 and R 3 in the formula (1) are the same or different and each is a divalent aliphatic hydrocarbon group having 2 or 4 carbon atoms.
  • R 5 and R 6 in formula (1) are the same or different and are monovalent aliphatic hydrocarbon groups having 1 to 3 carbon atoms.
  • a solvent composition comprising a compatible product of the compound according to any one of [1] to [17] and a fluid organic substance.
  • the solvent composition according to [23] wherein the fluid organic substance has a viscosity of less than 0.5 Pa ⁇ s at 25 ° C. and a shear rate of 1 s ⁇ 1 by a rheometer.
  • the fluid organic substance is at least one selected from hydrocarbon oils, ethers, halogenated hydrocarbons, petroleum components, animal and vegetable oils, silicone oils, esters, aromatic carboxylic acids, pyridines, and alcohols.
  • the solvent composition according to any one of [23] to [26] which has a viscosity of 10 Pa ⁇ s or more at 25 ° C.
  • the viscosity ratio [viscosity at 25 ° C. by rheometer and shear rate of 1 s ⁇ 1 / viscosity at shear rate of 10 s ⁇ 1 by rheometer] exceeds 1.5, [23] to [27]
  • the solvent composition as described in any one of these.
  • the content of at least one polymer compound selected from ethyl cellulose resin, alkyl cellulose resin, polyvinyl acetal resin, and acrylic resin is 10% by weight or less of the total amount of the solvent composition, [23] to [28 ] The solvent composition as described in any one of.
  • An ink comprising the solvent composition according to any one of [23] to [33].
  • [36] A conductive ink comprising the solvent composition according to any one of [23] to [33].
  • the compound represented by the formula (1) of the present invention can be suitably used as a thickening stabilizer for paints, adhesives, inks, lubricating oils, pharmaceuticals, quasi drugs, cosmetics and the like.
  • the solvent composition containing the compound represented by said Formula (1) has moderate viscosity and shearing property. Therefore, it does not easily drip and has good coating properties. Furthermore, it can be fired at a low temperature, and the residual amount of ash after firing can be significantly reduced. Therefore, the solvent composition is particularly useful as an ink solvent for producing an electronic device or a solvent for an adhesive for producing an electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Steroid Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

流動性有機物質を所望の粘度に増粘し、組成を均一に安定化することができる化合物を提供する。 本発明の化合物は、下記式(1)で表される。式(1)中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である。

Description

増粘安定剤、及びそれを用いた電子デバイス製造用溶剤組成物
 本発明は、オイル等の流動性有機物質を増粘安定化する新規な化合物、及びそれを含有する電子デバイス製造用溶剤組成物に関する。本願は、2018年3月30日に日本に出願した、特願2018-069615号の優先権を主張し、その内容をここに援用する。
 液体を増粘安定化する方法は産業上非常に重要な技術であり、例えば、準安定状態の乳化物であるマヨネーズやサラダドレッシング等が長期間安定的にその乳化状態を維持することができるのは、水性成分が増粘安定化されているためである。そのため、種々の増粘安定剤が開発されてきた。
 水性媒体を増粘安定化させる化合物としては、例えば、アルキルアクリレートコポリマー等が知られている。
 一方、流動性有機物質(例えば、油性媒体等の流動性を有する有機物質)の増粘安定剤としては12-ヒドロキシステアリン酸が知られている(特許文献1等)。12-ヒドロキシステアリン酸は、主に、食用油の廃棄処理にそのゲル化作用が利用されている。しかし、12-ヒドロキシステアリン酸はゲル化の程度を調整することができず、完全に固化するか液体のままかの何れかの状態に誘導することしかできなかった。即ち、流動性有機物質を所望の粘度に増粘する化合物は未だ見いだされていないのが現状である。
特開平01-163111号公報
 従って、本発明の目的は、流動性有機物質を所望の粘度に増粘し、組成を均一に安定化することができる化合物を提供することにある。
 本発明の他の目的は、流動性有機物質を所望の粘度に増粘し、組成を均一に安定化することができる前記化合物の前駆体を提供することにある。
 本発明の他の目的は、前記化合物と流動性有機物質との相溶物を含み、電子デバイス製造用に好適に使用される溶剤組成物を提供することにある。
 本発明の更に他の目的は、前記溶剤組成物の製造方法を提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、下記式(1)で表される化合物は、流動性有機物質と相溶させることにより、流動性有機物質を増粘することができ、組成が均一に安定化(組成物の沈降、局所的な凝集、又は濃縮を防ぎ、均一状態を安定的に維持すること)された相溶物が得られること、下記式(1)で表される化合物の炭素数を調整することにより、得られる相溶物の粘度をコントロールすることができることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は下記式(1)
Figure JPOXMLDOC01-appb-C000007
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
で表される化合物を提供する。
 本発明は、また、下記式(2)
Figure JPOXMLDOC01-appb-C000008
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
で表される化合物を提供する。
 本発明は、また、下記式(3)で表される化合物と、下記式(4)で表される化合物を反応させて、若しくは下記式(3’)で表される化合物と、下記式(4’)で表される化合物を反応させて、下記式(2)で表される化合物を得る、式(2)で表される化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000009
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である。R7は水素原子又は炭素数1~3のアルキル基を示す。尚、式(3)において、OR7はL2を構成する水素原子と脱水縮合又は脱アルコール縮合して、環を形成していてもよい)
 本発明は、また、下記式(2)
Figure JPOXMLDOC01-appb-C000010
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
で表される化合物を酸化して、下記式(1)
Figure JPOXMLDOC01-appb-C000011
(式中、R1~R6、L1~L3は、上記に同じ)
で表される化合物を得る、式(1)で表される化合物の製造方法を提供する。
 本発明は、また、前記の式(1)で表される化合物と流動性有機物質との相溶物を含む、電子デバイス製造用溶剤組成物を提供する。
 本発明は、また、流動性有機物質が、炭化水素油、エーテル、ハロゲン化炭化水素、石油成分、動植物油、シリコーン油、エステル、芳香族カルボン酸、ピリジン、及びアルコールから選択される少なくとも1種である、前記の電子デバイス製造用溶剤組成物を提供する。
 本発明は、また、下記式(1)
Figure JPOXMLDOC01-appb-C000012
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
で表される化合物と流動性有機物質とを相溶させる工程を経て、前記の電子デバイス製造用溶剤組成物を得る、電子デバイス製造用溶剤組成物の製造方法を提供する。
 本発明の式(1)で表される化合物は、流動性有機物質と相溶させることにより、容易に流動性有機物質を増粘し、流動性有機物質を含有する組成物の組成を均一に安定化することができる。そのため、塗料、接着剤、インク、潤滑油、医薬品、医薬部外品、化粧品等の増粘安定剤として好適に使用することができる。
 また、本発明の式(2)で表される化合物を酸化すれば、容易に上記の通り有用な式(1)で表される化合物を製造することができる。すなわち、式(2)で表される化合物は式(1)で表される化合物の前駆体として極めて有用である。
 そして、上記式(1)で表される化合物を含む、本発明の電子デバイス製造用溶剤組成物は、適度な粘度とシェアシニング性とを有する。そのため、液ダレしにくく、良好な塗布性(若しくは、吐出性)を有する。
 更に、エチルセルロースにより流動性有機物質を増粘して得られる溶剤組成物に比べて、本発明の電子デバイス製造用溶剤組成物は低温で焼成することができ、溶剤組成物が塗布された被塗布体が長時間高温に曝されることにより軟化、変形することを防止できる。その上、焼成後の灰分の残留量を著しく低減することができ、残留灰分により引き起こされていた種々の問題(例えば、導電性インクに使用した場合の電気特性の低下等)の発生を抑制することができる。
実施例で得られた化合物(2-3)の1H-NMR測定結果を示す図である。 実施例で得られた化合物(1-3)の1H-NMR測定結果を示す図である。 実施例で得られた化合物(2-4)の1H-NMR測定結果を示す図である。 実施例で得られた化合物(1-4)の1H-NMR測定結果を示す図である。 実施例で得られた化合物(2-1)の1H-NMR測定結果を示す図である。 実施例で得られた化合物(1-1)の1H-NMR測定結果を示す図である。
 [化合物(1)]
 本発明の化合物(1)は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000013
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
 R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基であり、例えば、デシル基、ラウリル基、ミリスチル基、ペンタデシル基、ステアリル基、パルミチル基、ノナデシル基、エイコシル基、ベヘニル基等の直鎖状アルキル基;デセニル基、ペンタデセニル基、オレイル基、エイコセニル基等の直鎖状アルケニル基;ペンタデシニル基、オクタデシニル基、ノナデシニル基等の直鎖状アルキニル基が挙げられる。
 R1としては、なかでも、流動性有機物質の増粘効果に優れ、且つ、低い温度で焼成しても灰分の残存を極めて低く抑制することができる点で、炭素数14~25の1価の直鎖状脂肪族炭化水素基(とりわけ好ましくは、炭素数14~25のアルキル基)が好ましく、特に好ましくは炭素数18~21の1価の直鎖状脂肪族炭化水素基(とりわけ好ましくは、炭素数18~21のアルキル基)である。
 R2、R3における炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基としては、例えば、エチレン基、n-ブチレン基、n-ヘキシレン基、n-オクチレン基が挙げられる。
 R2、R3における炭素数6の2価の脂環式炭化水素基としては、例えば、1,4-シクロヘキシレン基、1,3-シクロヘキシレン基、1,2-シクロヘキシレン基が挙げられる。
 R2、R3における2価の芳香族炭化水素基としては、例えば、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基等の炭素数6~10のアリーレン基が挙げられる。
 R2、R3としては、なかでも、流動性有機物質の増粘効果に優れる点で、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基(とりわけ好ましくは、直鎖状アルキレン基)が好ましく、より好ましくは炭素数2、4、若しくは6の2価の脂肪族炭化水素基(とりわけ好ましくは、直鎖状アルキレン基)、特に好ましくは炭素数2若しくは4の2価の脂肪族炭化水素基(とりわけ好ましくは、直鎖状アルキレン基)、最も好ましくは炭素数2の2価の脂肪族炭化水素基(とりわけ好ましくは、直鎖状アルキレン基)である。
 R4は炭素数1~8の2価の脂肪族炭化水素基を示し、なかでも、流動性有機物質の増粘効果に優れる点で、直鎖状又は分岐鎖状アルキレン基が好ましく、特に好ましくは直鎖状アルキレン基である。
 また、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、なかでも、流動性有機物質の増粘効果に優れる点で、より好ましくは炭素数1~7の2価の脂肪族炭化水素基、特に好ましくは炭素数3~7の2価の脂肪族炭化水素基、最も好ましくは炭素数3~6の2価の脂肪族炭化水素基、とりわけ好ましくは炭素数3~5の2価の脂肪族炭化水素基である。
 従って、R4としては、炭素数1~8の直鎖状又は分岐鎖状アルキレン基が好ましく、より好ましくは炭素数1~7の直鎖状アルキレン基、特に好ましくは炭素数3~7の直鎖状アルキレン基、最も好ましくは炭素数3~6の直鎖状アルキレン基、とりわけ好ましくは炭素数3~5の直鎖状アルキレン基である。
 R5、R6における炭素数1~3の1価の脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3の直鎖状又は分岐鎖状アルキル基;ビニル基、1-メチルビニル基、2-プロペニル基等の炭素数2~3の直鎖状又は分岐鎖状アルケニル基;エチニル基、プロピニル基等の炭素数2~3の直鎖状又は分岐鎖状アルキニル基等が挙げられる。
 R5、R6におけるヒドロキシアルキルエーテル基としては、例えば、2-ヒドロキシエトキシ基、2-ヒドロキシプロポキシ基、2,3-ジヒドロキシプロポキシ基等の、モノ又はジ(ヒドロキシ)C1-3アルキルエーテル基が挙げられる。
 R5、R6としては、なかでも、同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基が好ましく、より好ましくは炭素数1~3の直鎖状又は分岐鎖状アルキル基、特に好ましくは炭素数1~3の直鎖状アルキル基、とりわけ好ましくはメチル基である。
 式(1)で表される化合物としては、なかでも、下記式(1-1)~(1-9)で表される化合物が、流動性有機物質の溶解性に優れる点で好ましい。また前記化合物は流動性有機物質に、前記流動性有機物質が透明の場合はその透明性を維持しつつ、増粘安定化することができる点でも好ましい。
Figure JPOXMLDOC01-appb-C000014
 [化合物(2)]
 本発明の化合物(2)は下記式(2)で表される。化合物(2)は上記化合物(1)の前駆体として有用である。
Figure JPOXMLDOC01-appb-C000015
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
 上記式(2)中のR1~R6、L1~L3は上記に同じ。
 式(2)で表される化合物としては、なかでも、下記式(2-1)~(2-9)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
 [化合物(1)、化合物(2)の製造方法]
 上記化合物(2)は、下記式(3)で表される化合物(以後、「化合物(3)」と称する場合がある)と、下記式(4)で表される化合物(以後、「化合物(4)」と称する場合がある)を反応させて、若しくは下記式(3’)で表される化合物(以後、「化合物(3’)」と称する場合がある)と、下記式(4’)で表される化合物(以後、「化合物(4’)」と称する場合がある)を反応させることで製造することができる。
Figure JPOXMLDOC01-appb-C000017
(式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である。R7は水素原子又は炭素数1~3のアルキル基を示す。尚、式(3)において、OR7はL2を構成する水素原子と脱水縮合又は脱アルコール縮合して、環を形成していてもよい)
 上記式中のR1~R6、L1~L2は上記に同じ。
 上記式(3)、(4’)中のR7における炭素数1~3のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。
 式(3)中のOR7がL2を構成する水素原子と脱水縮合又は脱アルコール縮合して、形成する環としては、例えば、ピロリジン-2,5-ジオン環、ピペリジン-2,6-ジオン環等が挙げられる。
 化合物(4)の使用量は、化合物(3)1molに対して1mol以上であれば良く、過剰量使用することもできる。
 化合物(4’)の使用量は、化合物(3’)1molに対して1mol以上であれば良く、過剰量使用することもできる。
 化合物(3)と化合物(4)、若しくは化合物(3’)と化合物(4’)の反応は、例えば100~120℃の温度で10~20時間撹拌することにより行うことができる。
 反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。また、反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。
 反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 また、化合物(1)は、上記方法で化合物(2)を得、得られた化合物(2)を酸化することにより製造することができる。
 上記方法で得られた化合物(2)の酸化に使用する酸化剤としては、例えば、過酸化水素を使用することができる。前記過酸化水素としては、純粋な過酸化水素を用いてもよいが、取扱性の点から、通常、適当な溶媒(例えば、水)で希釈して用いられる(例えば、5~70重量%過酸化水素水)。過酸化水素の使用量は、化合物(2)1molに対して、例えば0.1~10mol程度である。
 酸化反応は、例えば30~70℃の温度で3~20時間撹拌することにより行うことができる。
 化合物(2)の酸化反応は、溶媒の存在下又は無溶媒下で行われる。前記溶媒としては、例えば、メタノール、エタノール、2-プロパノール、ブタノール等のアルコール系溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジオキソラン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;酢酸ブチル、酢酸エチル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン等の炭化水素系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 上記反応の原料となる化合物(3)として、例えば下記式(3-1)で表される化合物は、下記方法で製造することができる。尚、下記式中のR1、R2、R3、R7は上記に同じ。また、式(3a)中のR7と式(3d)中の2つのR7は、それぞれ同一であってもよく、異なっていてもよい。更に、式(3d)で表される化合物は、当該式中の2つのCOOR7が脱水縮合して酸無水物を形成していてもよい。
Figure JPOXMLDOC01-appb-C000018
 また、上記反応の原料となる化合物(3’)として、例えば下記式(3’-1)で表される化合物は、下記方法で製造することができる。尚、下記式中のR1、R2、R3、R7は上記に同じ。式(3b’)中の2つのR7は、同一であってもよく、異なっていてもよい。また、式(3b’)で表される化合物は、当該式中の2つのCOOR7が脱水縮合して酸無水物を形成していてもよい。
Figure JPOXMLDOC01-appb-C000019
 [1]の工程は、式(3a)で表される化合物と式(3b)で表される化合物を反応させて、式(3c)で表される化合物を得る工程である。式(3b)で表される化合物の使用量は、式(3a)で表される化合物1molに対して1mol以上であれば良く、過剰量使用することもできる。この反応の反応温度は、例えば80~150℃であり、反応時間は、例えば1~24時間程度である。
 [2]の工程は、式(3c)で表される化合物と式(3d)で表される化合物を反応させて、式(3-1)で表される化合物を得る工程である。式(3d)で表される化合物の使用量は、式(3c)で表される化合物1molに対して1mol以上であれば良く、好ましくは1~3molである。この反応の反応温度は、例えば80~150℃であり、反応時間は、例えば0.5~10時間程度である。この反応が進行すると、水が生成する。そのため、脱水剤(例えば、無水酢酸等)を使用して水を除去しつつ反応を行うことが、反応の進行を促進する上で好ましい。
 [2]の反応は溶媒の存在下で反応を行うことが好ましい。前記溶媒としては、例えば、ペンタフルオロフェノール、N,N-ジメチルホルムアミド、ジメチルアセトアミド、o-ジクロロベンゼン等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 また、[2]の反応は、必要に応じてトリエチルアミン、ピリジン、4-ジメチルアミノピリジン等の塩基の存在下で行うことができる。
 [3]の工程は、式(3a’)で表される化合物と式(3b’)で表される化合物を反応させて、式(3c’)で表される化合物を得る工程である。[3]の反応は、上記[2]の反応に準じた条件で行うことができる。
 [4]の工程は、式(3c’)で表される化合物と式(3d’)で表される化合物を反応させて、式(3’-1)で表される化合物を得る工程である。[4]の反応は、上記[1]の反応に準じた条件で行うことができる。
 各工程の反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 [電子デバイス製造用溶剤組成物]
 本発明の電子デバイス製造用溶剤組成物は、上記化合物(1)と流動性有機物質との相溶物を含む組成物であり、上記化合物(1)によって流動性有機物質が増粘され、組成が均一に安定化された組成物である。
 原料としての流動性有機物質は、レオメーターによる粘度[25℃、ずり速度1s-1における粘度(η)]が例えば0.5Pa・s未満の有機物質である。このような流動性有機物質としては、例えば、炭化水素油(例えば、ヘキサン、シクロヘキサン、イソドデカン、ベンゼン、トルエン、ポリαオレフィン、流動パラフィン等)、エーテル類(例えば、テトラヒドロフラン等)、ハロゲン化炭化水素(例えば、四塩化炭素、クロロベンゼン等)、石油成分(例えば、ケロシン、ガソリン、軽油、重油等)、動植物油(例えば、ヒマワリ油、オリーブ油、大豆油、コーン油、ヒマシ油、牛脂、ホホバ油、スクワラン等)、シリコーン油(例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン等)、エステル類(例えば、オレイン酸オクチルドデシル、オクタン酸セチル、エチルヘキサン酸セチル、グリセリルトリイソオクタネート、ネオペンチルグリコールジイソオクタネート等)、芳香族カルボン酸、ピリジン、アルコール類(例えば、α-ターピネオール、ジヒドロターピネオール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール)等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記電子デバイス製造用溶剤組成物は、化合物(1)と流動性有機物質を相溶させる工程を経て製造することができる。より詳細には、流動性有機物質の全量と化合物(1)を混合して加温し、相溶させた後、冷却することにより製造することができる。また、流動性有機物質の一部に化合物(1)を混合して、加温、相溶させた後、冷却して、電子デバイス製造用溶剤組成物を製造し、これを残りの流動性有機物質に混合する方法でも製造することができる。
 相溶の際の温度は、化合物(1)と流動性有機物質の種類によって適宜選択されるものであり、化合物(1)と流動性有機物質が相溶する温度であれば特に制限されないが、100℃を超えないことが好ましく、流動性有機物質の沸点が100℃以下の場合には沸点程度が好ましい。
 相溶後の冷却は、室温(例えば、25℃)以下にまで冷却することができればよく、室温で徐々に冷却してもよいし、氷冷等により急速に冷却してもよい。
 化合物(1)の使用量は、流動性有機物質の種類にもよるが、流動性有機物質1000重量部に対して、例えば0.1~100重量部、好ましくは0.5~80重量部、特に好ましくは1~60重量部、最も好ましくは1~30重量部である。化合物(1)を上記範囲で使用することにより、流動性有機物質が増粘され、組成が均一に安定化された組成物(若しくは、相溶物)が得られる。
 本発明の電子デバイス製造用溶剤組成物は、化合物(1)と流動性有機物質との相溶物以外にも本発明の効果を損なわない範囲内で他の成分を含有していてもよいが、電子デバイス製造用溶剤組成物全量における、前記相溶物の含有量(若しくは、化合物(1)と流動性有機物質の総量)は、例えば30重量%以上、好ましくは50重量%以上、特に好ましくは60重量%以上、最も好ましくは70重量%以上、とりわけ好ましくは90重量%以上である。尚、上限は100重量%である。すなわち、本発明の電子デバイス製造用溶剤組成物は、実質的に他の成分を含有せず、化合物(1)と流動性有機物質との相溶物のみからなるものであってもよい。他の成分としては、用途に応じて適宜調整することができる。
 そして、本発明の電子デバイス製造用溶剤組成物のレオメーターによる粘度[25℃、ずり速度0.3s-1における粘度(η)]は、10Pa・s以上(例えば10~100Pa・s)の範囲であることが、塗布された組成物がダレる若しくは流れるのを抑制することができ、塗布精度を向上することができる点で好ましい。
 また、本発明の電子デバイス製造用溶剤組成物のレオメーターによる粘度[25℃、ずり速度0.1s-1における粘度(η)]は、10Pa・s以上(例えば10~100Pa・s)の範囲であることが、塗布された組成物がダレる若しくは流れるのを抑制することができ、塗布精度を向上することができる点で好ましい。
 本発明の電子デバイス製造用溶剤組成物はシェアシニング性を有し、粘度比[レオメーターによる25℃、ずり速度1s-1の時の粘度/レオメーターによるずり速度10s-1の時の粘度]は、例えば1.5超、好ましくは2以上、特に好ましくは3以上である。尚、上限は例えば10、好ましくは8である。そのため、塗布時は粘度を低下させることができ、例えば、印刷機等を利用して塗布する場合は吐出性に優れる。その上、塗布後は急激に粘度を増すことにより、塗布された組成物がダレるのを抑制することができ、塗布精度を向上することができる。
 本発明の電子デバイス製造用溶剤組成物は上記の通りの適度な粘度及びシェアシニング性を有するため、バインダー樹脂(例えば、エチルセルロース樹脂、アルキルセルロース樹脂、ポリビニルアセタール樹脂、アクリル樹脂等の分子量10000以上の高分子化合物)を添加する必要がなく、添加する場合であっても、添加量は、組成物全量(100重量%)の例えば10重量%以下であり、好ましくは5重量%以下である。バインダー樹脂の添加量が上記範囲を上回ると、焼成によって生じるバインダー樹脂由来の灰分の残留量が増し、残留灰分が原因の種々の問題(例えば、導電性インクに使用した場合の電気特性の低下)の発生を抑制することが困難となる傾向がある。
 更に、本発明の電子デバイス製造用溶剤組成物は熱分解性に優れ、容易に低分子量化する。そのため、本発明の電子デバイス製造用溶剤組成物はエチルセルロース等のバインダー樹脂により粘度が付与された溶剤組成物に比べて低温(例えば100~350℃、好ましくは150~300℃、特に好ましくは150~250℃)で焼成することができ、焼成工程における被塗布体の軟化、変形を防止することができる。
 本発明の電子デバイス製造用溶剤組成物は上記特性を兼ね備えるため、例えば、コンデンサ、インダクタ、バリスタ、サーミスタ、スピーカ、アクチュエータ、アンテナ、固体酸化物燃料電池(SOFC)等(特に、積層セラミックコンデンサ)の電子デバイス製造において、配線及び/又は電極を製造するためのインクの溶剤として有用である。また、前記電子デバイス製造において、接着剤の溶剤として特に有用である。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1<化合物(1-3)の製造>
 ドコサン酸メチル(20.0g、56.4mmol)およびエチレンジアミン(16.9g、281mmol)を110℃で18時間撹拌し、反応物をメタノールで洗浄後、濾過した。濾液を溶媒留去し、得られた残渣に対しヘキサンを用いて再結晶により精製した。N-ドコサノイルエチレンジアミンを白色結晶として得た(収率65%、14.0g、36.7mmol)。
 N-ジメチルホルムアミド(40ml)溶液に、N-ドコサノイルエチレンジアミン(12.0g、31.4mmol)およびトリエチルアミン(6.35g、62.8mmol)を無水コハク酸(3.45g、34.5mmol)に10分かけて加え、100℃で15分間撹拌した。無水コハク酸を溶解後、反応粗液に酢酸無水物(4.81g、47.1mmol)を10分かけて滴下し、100℃で1時間撹拌した。反応混合物を水(200ml)に注ぎ、沈殿物を濾過し、水で洗浄した。沈殿物を精製し2-プロパノールを用いた再結晶により精製した。N-ドコサノイルアミノエチルスクシンイミドを白色結晶性粉末として得た(収率92%、13.4g、28.9mmol)。
 N-ドコサノイルアミノエチルスクシンイミド(4.00g、8.60mmol)およびN,N-ジメチル-1,3-プロパンジアミン(2.63g、25.8mmol)を120℃で18時間撹拌した。反応混合物をメタノールに注ぎ、沈殿物を濾過し、メタノールで洗浄した。得られた固形物をアセトン、メタノールを用いて再結晶により精製した。下記式(2-3)で表される、N-(ドコサノイルアミノエチルアミノスクシナモイルアミノプロピル)-N,N-ジメチルアミン(化合物(2-3))を白色結晶性粉末として得た(収率94%、4.58g、8.08mmol)。得られた化合物の1H-NMR(CDCl3)測定結果を図1に示す。
Figure JPOXMLDOC01-appb-C000020
 N-(ドコサノイルアミノエチルアミノスクシナモイルアミノプロピル)-N,N-ジメチルアミン(4.00g、7.06mmol)、35%過酸化水素水(2.06ml)および、2-プロパノール(10ml)を60℃で5時間撹拌した。反応液に、パラジウムカーボン(約10mg)加え室温で18時間撹拌した。反応液を濾過し、溶媒を留去させた後、カラムクロマトグラフィー(シリカゲル、2-プロパノール/メタノール)で精製した。下記式(1-3)で表される、N-(ドコサノイルアミノエチルアミノスクシナモイルアミノプロピル)-N,N-ジメチルアミンオキシド(化合物(1-3))を白色固体として得た(収率69%、2.84g、4.87mmol)。得られた化合物の1H-NMR(CDCl3)測定結果を図2に示す。
Figure JPOXMLDOC01-appb-C000021
 実施例2<化合物(1-4)の製造>
 実施例1と同様の方法でN-ドコサノイルアミノエチルスクシンイミドを得た。
 得られたN-ドコサノイルアミノエチルスクシンイミド(8.00g、17.2mmol)およびヘキサメチレンジアミン(10.0g、86.1mmol)を120℃で18時間撹拌した。反応混合物をメタノールに注ぎ、沈殿物を濾過し、メタノールで洗浄した。得られた固形物をアセトニトリル、メタノールを用いて再結晶により精製した。N-(ドコサノイルアミノエチル)アミノスクシナモイルアミノヘキシルアミンを白色結晶性粉末として得た(収率69%6.91g、11.9mmol)。
 N-(ドコサノイルアミノエチル)アミノスクシナモイルアミノヘキシルアミン(3.25g、5.59mmol)、37%ホルムアルデヒド水溶液(2.73ml)およびギ酸(1.55g、33.7mmol)を2-プロパノール(15ml)に溶解し、100℃で4時間撹拌した。反応混合物を1M水酸化ナトリウム水溶液(20ml)に注ぎ結晶を濾過した。得られた結晶をメタノール、アセトンで再結晶し、下記式(2-4)で表される、N-(ドコサノイルアミノエチルアミノスクシナモイルアミノヘキシル)-N,N-ジメチルアミン(化合物(2-4))を白色固体として得た(収率89%、3.03g、4.98mmol)。得られた化合物の1H-NMR(CDCl3)測定結果を図3に示す。
Figure JPOXMLDOC01-appb-C000022
 N-(ドコサノイルアミノエチルアミノスクシナモイルアミノヘキシル)-N,N-ジメチルアミン(2.80g、4.60mmol)、35%過酸化水素水(1.30ml)および、2-プロパノール(10ml)を60℃で5時間撹拌した。反応液に、パラジウムカーボン(約10mg)加え室温で18時間撹拌した。反応液を濾過し、溶媒を留去させた後、カラムクロマトグラフィー(シリカゲル、2-プロパノール/メタノール)で精製した。下記式(1-4)で表される、N-(ドコサノイルアミノエチルアミノスクシナモイルアミノヘキシル)-N,N-ジメチルアミンオキシド(化合物(1-4))を白色固体として得た(収率74%、2.13g、3.40mmol)。得られた化合物の1H-NMR(CDCl3)測定結果を図4に示す。
Figure JPOXMLDOC01-appb-C000023
 実施例3<化合物(1-1)の製造>
 エイコサン酸メチル(18.0g、55.1mmol)およびエチレンジアミン(16.5g、276mmol)を110℃で18時間撹拌し、反応物をメタノールで洗浄後、濾過した。濾液を溶媒留去し、得られた残渣に対しヘキサンを用いて再結晶により精製した。N-エイコサノイルエチレンジアミンを白色結晶として得た(収率68%、13.3g、37.5mmol)。
 N-ジメチルホルムアミド(30ml)溶液に、N-エイコサノイルエチレンジアミン(10.0g、28.2mmol)およびトリエチルアミン(5.71g、56.4mmol)を無水コハク酸(3.10g、31.0mmol)に10分かけて加え、100℃で15分間撹拌した。無水コハク酸を溶解後、反応粗液に酢酸無水物(4.32g、42.3mmol)を10分かけて滴下し、100℃で1時間撹拌した。反応混合物を水(150ml)に注ぎ、沈殿物を濾過し、水で洗浄した。沈殿物を精製し2-プロパノールを用いた再結晶により精製した。N-エイコサノイルアミノエチルスクシンイミドを91%白色結晶性粉末として収量(11.2g、25.7mmol)を得た。
 N-エイコサノイルアミノエチルスクシンイミド(4.00g、9.16mmol)およびN,N-ジメチル-1,3-プロパンジアミン(2.81g、27.5mmol)を120℃で18時間撹拌した。反応混合物をメタノールに注ぎ、沈殿物を濾過し、メタノールで洗浄した。得られた固形物をアセトン、メタノールを用いて再結晶により精製した。下記式(2-1)で表される、N-(エイコサノイルアミノエチルアミノスクシナモイルアミノプロピル)-N,N-ジメチルアミン(化合物(2-1))を白色結晶性粉末として得た(収率91%、4.49g、8.34mmol)。得られた化合物の1H-NMR(CDCl3)測定結果を図5に示す。
Figure JPOXMLDOC01-appb-C000024
 N-(エイコサノイルアミノエチルアミノスクシナモイルアミノプロピル)-N,N-ジメチルアミン(4.00g、7.42mmol)、35%過酸化水素水(2.16ml)および、2-プロパノール(10ml)を60℃で5時間撹拌した。反応液に、パラジウムカーボン(約10mg)加え室温で18時間撹拌した。反応液を濾過し、溶媒を留去させた後、カラムクロマトグラフィー(シリカゲル、2-プロパノール/メタノール)で精製した。下記式(1-1)で表される、N-(エイコサノイルアミノエチルアミノスクシナモイルアミノプロピル)-N,N-ジメチルアミンオキシド(化合物(1-1))を白色固体として得た(収率58%、2.39g、4.30mmol)。得られた化合物の1H-NMR(CDCl3)測定結果を図6に示す。
Figure JPOXMLDOC01-appb-C000025
 実施例4<化合物(1-5)の製造>
 ドコサン酸メチルに代えてオクタデカン酸メチルを使用した以外は実施例2と同様にして、下記式(2-5)で表される化合物を得、下記式(1-5)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000026
 実施例5<化合物(1-6)の製造>
 ドコサン酸メチルに代えてオクタデカン酸メチルを使用した以外は実施例1と同様にして、下記式(2-6)で表される化合物を得、下記式(1-6)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000027
 実施例6<化合物(1-7)の製造>
 ドコサン酸メチルに代えてパルミチン酸メチルを使用した以外は実施例2と同様にして、下記式(2-7)で表される化合物を得、下記式(1-7)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000028
 実施例7<化合物(1-8)の製造>
 ドコサン酸メチルに代えてパルミチン酸メチルを使用した以外は実施例1と同様にして、下記式(2-8)で表される化合物を得、下記式(1-8)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000029
 実施例8<化合物(1-9)の製造>
 ドコサン酸メチルに代えてミリスチン酸メチルを使用した以外は実施例2と同様にして、下記式(2-9)で表される化合物を得、下記式(1-9)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000030
 実施例9~16、比較例1~2<溶剤組成物の製造>
 表1に示す各種流動性有機物質(1,3-ブタンジオール(1,3-BG)、α-ターピネオール(TPO))を試験管に1cm3ずつはかりとり、ここに増粘安定剤として上記実施例1~8で得られた化合物をそれぞれ10mg加えて混合し、100℃で加熱撹拌して流動性有機物質と増粘安定剤を相溶させ、25℃まで冷却して溶剤組成物を得た。尚、比較例では増粘安定剤としてエチルセルロース(EC:商品名「エトセルSTD200」、日新化成(株)製)を使用し、液温80℃で24時間加熱溶解し、25℃まで冷却して溶剤組成物を得た。
 得られた溶剤組成物の粘度はコーンプレートセンサー(直径60mmでコーン角1°、直径35mmでコーン角1°、2°、4°を使用)とペルチェ温度コントローラーを装着した粘度・粘弾性測定装置(レオメータ)(商品名「RheoStress600」、HAAKE社製)を用い、25℃条件下、定常流粘度測定モードにより、ずり速度を対数きざみで0.1~100s-1まで変化させて粘度を測定し、増粘効果(シェアシニング性、及び増粘性)を評価した。
 <シェアシニング性評価>
 得られた溶剤組成物の[ずり速度1s-1の時の粘度/ずり速度10s-1の時の粘度]から、下記基準に従ってシェアシニング性を評価した。
  1: 1.5以下
  2: 1.5を超え、3.0以下
  3: 3.0を超え、4.5以下
  4: 4.5超
 <増粘性評価>
 得られた溶剤組成物のずり速度0.1s-1の時の粘度から、下記基準に従って増粘性を評価した。
  1: 5Pa・s以下
  2: 5Pa・sを超え、10Pa・s以下
  3: 10Pa・sを超え、50Pa・s以下
  4: 50Pa・s超え
 また、実施例及び比較例で得られた溶剤組成物の250℃における灰分残存率を下記方法で測定した。
 TG-DTAを用い、溶剤組成物各20mgを20℃から400℃まで10℃/分で昇温し、250℃における残留灰分量を測定して、溶剤組成物全量に対する残留灰分量の割合(=灰分残存率)を算出した。
 上記結果を下記表にまとめて示す。
Figure JPOXMLDOC01-appb-T000031
 上記表1より、本発明の溶剤組成物は、適度な粘度とシェアシニング性を有しており、灰分残存率が非常に低いことが確認できた。一方、比較例の溶剤組成物は、粘度が低く、シェアシニング性に乏しく、灰分残存率が高かった。
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1] 式(1)で表される化合物。
[2] 式(1)中のR2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基である、[1]に記載の化合物。
[3] 式(1)中のR2、R3は同一又は異なって、炭素数2、4、6、若しくは8の直鎖状アルキレン基である、[1]に記載の化合物。
[4] 式(1)中のR2、R3は同一又は異なって、炭素数2若しくは4の2価の脂肪族炭化水素基である、[1]に記載の化合物。
[5] 式(1)中のR2、R3は同一又は異なって、炭素数2若しくは4の直鎖状アルキレン基である、[1]に記載の化合物。
[6] 式(1)中のR2、R3は同一又は異なって、炭素数2の2価の脂肪族炭化水素基である、[1]に記載の化合物。
[7] 式(1)中のR2、R3は同一に、炭素数2の直鎖状アルキレン基である、[1]に記載の化合物。
[8] 式(1)中のR4は炭素数1~8の直鎖状又は分岐鎖状アルキレン基である、[1]~[7]の何れか1つに記載の化合物。
[9] 式(1)中のR4は炭素数1~7の直鎖状アルキレン基である、[1]~[7]の何れか1つに記載の化合物。
[10] 式(1)中のR4は炭素数3~7の直鎖状アルキレン基である、[1]~[7]の何れか1つに記載の化合物。
[11] 式(1)中のR4は炭素数3~6の直鎖状アルキレン基である、[1]~[7]の何れか1つに記載の化合物。
[12] 式(1)中のR4は炭素数3~5の直鎖状アルキレン基である、[1]~[7]の何れか1つに記載の化合物。
[13] 式(1)中のR5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基である、[1]~[12]の何れか1つに記載の化合物。
[14] 式(1)中のR5、R6は同一又は異なって、炭素数1~3の直鎖状又は分岐鎖状アルキル基である、[1]~[12]の何れか1つに記載の化合物。
[15] 式(1)中のR5、R6は同一又は異なって、炭素数1~3の直鎖状アルキル基である、[1]~[12]の何れか1つに記載の化合物。
[16] 式(1)中のR5、R6は同一にメチル基である、[1]~[12]の何れか1つに記載の化合物。
[17] 式(1-1)~(1-9)で表される化合物から選択される少なくとも1種の化合物である、[1]~[16]の何れか1つに記載の化合物。
[18] 下記式(2)で表される化合物。
[19] 式(2-1)~(2-9)で表される化合物から選択される少なくとも1種の化合物である、[18]に記載の化合物。
[20] 式(3)で表される化合物と、式(4)で表される化合物を反応させて、若しくは式(3’)で表される化合物と、式(4’)で表される化合物を反応させて、式(2)で表される化合物を得る、式(2)で表される化合物の製造方法。
[21] 式(2)で表される化合物を酸化して、式(1)で表される化合物を得る、式(1)で表される化合物の製造方法。
[22] 式(2)で表される化合物1molに対して、過酸化水素を0.1~10mol反応させて酸化する、[21]に記載の式(1)で表される化合物の製造方法。
[23] [1]~[17]の何れか1つに記載の化合物と流動性有機物質との相溶物を含む溶剤組成物。
[24] 流動性有機物質の、レオメーターによる、25℃、ずり速度1s-1における粘度が0.5Pa・s未満である、[23]に記載の溶剤組成物。
[25] 流動性有機物質が、炭化水素油、エーテル、ハロゲン化炭化水素、石油成分、動植物油、シリコーン油、エステル、芳香族カルボン酸、ピリジン、及びアルコールから選択される少なくとも1種である、[23]又は[24]に記載の溶剤組成物。
[26] レオメーターによる、25℃、ずり速度0.3s-1における粘度が10Pa・s以上である、[23]~[25]の何れか1つに記載の溶剤組成物。
[27] レオメーターによる、25℃、ずり速度0.1s-1における粘度が10Pa・s以上である、[23]~[26]の何れか1つに記載の溶剤組成物。
[28] 粘度比[レオメーターによる25℃、ずり速度1s-1の時の粘度/レオメーターによるずり速度10s-1の時の粘度]が1.5超である、[23]~[27]の何れか1つに記載の溶剤組成物。
[29] エチルセルロース樹脂、アルキルセルロース樹脂、ポリビニルアセタール樹脂、及びアクリル樹脂から選択される少なくとも種の高分子化合物の含有量が、溶剤組成物全量の10重量%以下である、[23]~[28]の何れか1つに記載の溶剤組成物。
[30] 高分子化合物が、分子量10000以上の高分子化合物である、[29]に記載の溶剤組成物。
[31] 分子量10000以上の高分子化合物の含有量が、溶剤組成物全量の10重量%以下である、[23]~[28]の何れか1つに記載の溶剤組成物。
[32] 電子デバイス製造用である、[23]~[31]の何れか1つに記載の溶剤組成物。
[33] 積層セラミックコンデンサ製造用である、[23]~[31]の何れか1つに記載の溶剤組成物。
[34] [23]~[33]の何れか1つに記載の溶剤組成物を含むインク。
[35] [23]~[33]の何れか1つに記載の溶剤組成物を含む電子デバイス製造用インク。
[36] [23]~[33]の何れか1つに記載の溶剤組成物を含む導電性インク。
[37] [34]~[36]の何れか1つに記載のインクを使用して電子デバイスの配線及び/又は電極を製造する工程を有する、電子デバイス製造方法。
[38] [23]~[33]の何れか1つに記載の溶剤組成物を含む、電子デバイス製造用接着剤。
[39] [38]に記載の接着剤を使用して電子デバイスを製造する、電子デバイス製造方法。
[40] [1]~[17]の何れか1つに記載の化合物と流動性有機物質とを相溶させる工程を経て溶剤組成物を得る、溶剤組成物の製造方法。
[41] 流動性有機物質1000重量部に対して、[1]~[17]の何れか1つに記載の化合物を0.1~100重量部の割合で相溶させる、[40]に記載の溶剤組成物の製造方法。
[42] 式(1)で表される化合物と流動性有機物質とを相溶させる工程を経て、[23]~[33]の何れか1つに記載の溶剤組成物を得る、溶剤組成物の製造方法。
 本発明の式(1)で表される化合物は、塗料、接着剤、インク、潤滑油、医薬品、医薬部外品、化粧品等の増粘安定剤として好適に使用することができる。
 また、前記式(1)で表される化合物を含む溶剤組成物は、適度な粘度とシェアシニング性とを有する。そのため、液ダレしにくく、良好な塗布性を有する。更に、低温で焼成することができ、焼成後の灰分の残留量を著しく低減することができる。そのため、前記溶剤組成物は、電子デバイスを製造するためのインクの溶剤、或いは電子デバイス製造用接着剤の溶剤として特に有用である。

Claims (7)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
    で表される化合物。
  2.  下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
    で表される化合物。
  3.  下記式(3)で表される化合物と、下記式(4)で表される化合物を反応させて、若しくは下記式(3’)で表される化合物と、下記式(4’)で表される化合物を反応させて、下記式(2)で表される化合物を得る、式(2)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である。R7は水素原子又は炭素数1~3のアルキル基を示す。尚、式(3)において、OR7はL2を構成する水素原子と脱水縮合又は脱アルコール縮合して、環を形成していてもよい)
  4.  下記式(2)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
    で表される化合物を酸化して、下記式(1)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1~R6、L1~L3は、上記に同じ)
    で表される化合物を得る、式(1)で表される化合物の製造方法。
  5.  請求項1に記載の化合物と流動性有機物質との相溶物を含む、電子デバイス製造用溶剤組成物。
  6.  流動性有機物質が、炭化水素油、エーテル、ハロゲン化炭化水素、石油成分、動植物油、シリコーン油、エステル、芳香族カルボン酸、ピリジン、及びアルコールから選択される少なくとも1種である、請求項5に記載の電子デバイス製造用溶剤組成物。
  7.  下記式(1)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R1は炭素数10~25の1価の直鎖状脂肪族炭化水素基、R2、R3は同一又は異なって、炭素数2、4、6、若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は2価の芳香族炭化水素基を示し、R4は炭素数1~8の2価の脂肪族炭化水素基を示し、R5、R6は同一又は異なって、炭素数1~3の1価の脂肪族炭化水素基、又はヒドロキシアルキルエーテル基を示す。L1~L3はアミド結合を示し、L1とL3が-CONH-である場合、L2は-NHCO-であり、L1とL3が-NHCO-である場合、L2は-CONH-である)
    で表される化合物と流動性有機物質とを相溶させる工程を経て、請求項5又は6に記載の電子デバイス製造用溶剤組成物を得る、電子デバイス製造用溶剤組成物の製造方法。
PCT/JP2019/011207 2018-03-30 2019-03-18 増粘安定剤、及びそれを用いた電子デバイス製造用溶剤組成物 WO2019188508A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980023728.7A CN111936462B (zh) 2018-03-30 2019-03-18 增粘稳定剂、及使用了该增粘稳定剂的电子设备制造用溶剂组合物
JP2020510702A JP7270935B2 (ja) 2018-03-30 2019-03-18 増粘安定剤、及びそれを用いた電子デバイス製造用溶剤組成物
EP19777518.2A EP3778564A4 (en) 2018-03-30 2019-03-18 THICKENING AND STABILIZING AGENT AND SOLVENT COMPOSITION USING IT FOR THE PRODUCTION OF AN ELECTRONIC DEVICE
US17/043,416 US20210017124A1 (en) 2018-03-30 2019-03-18 Thickening stabilizer and solvent composition using same for producing electronic device
KR1020207030928A KR20200138315A (ko) 2018-03-30 2019-03-18 증점 안정제 및 그것을 사용한 전자 디바이스 제조용 용제 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069615 2018-03-30
JP2018-069615 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188508A1 true WO2019188508A1 (ja) 2019-10-03

Family

ID=68058860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011207 WO2019188508A1 (ja) 2018-03-30 2019-03-18 増粘安定剤、及びそれを用いた電子デバイス製造用溶剤組成物

Country Status (7)

Country Link
US (1) US20210017124A1 (ja)
EP (1) EP3778564A4 (ja)
JP (1) JP7270935B2 (ja)
KR (1) KR20200138315A (ja)
CN (1) CN111936462B (ja)
TW (1) TWI802671B (ja)
WO (1) WO2019188508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149502A1 (ja) * 2020-01-22 2021-07-29 株式会社ダイセル 組成物及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7190484B2 (ja) * 2018-03-30 2022-12-15 株式会社ダイセル 電子デバイス製造用インク

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163111A (ja) 1987-12-21 1989-06-27 Shiseido Co Ltd 透明性基剤及びそれを用いた化粧料
JPH10218994A (ja) * 1997-02-10 1998-08-18 Tomoegawa Paper Co Ltd 新規なポリイミド及びその製造方法
JP2016030765A (ja) * 2014-07-25 2016-03-07 シーシーアイ株式会社 ヒドロゲル化剤
WO2016158969A1 (ja) * 2015-04-02 2016-10-06 株式会社ダイセル 電気デバイス製造用溶剤組成物
JP2017008199A (ja) * 2015-06-22 2017-01-12 Dic株式会社 インクジェットプリンター用インク組成物
JP2018069615A (ja) 2016-10-31 2018-05-10 株式会社エム・シー・ケー ラミネータ及びラミネート方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760294B (zh) * 2015-09-16 2022-04-11 日商大賽璐股份有限公司 增黏安定劑、及使用其之增黏安定化組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163111A (ja) 1987-12-21 1989-06-27 Shiseido Co Ltd 透明性基剤及びそれを用いた化粧料
JPH10218994A (ja) * 1997-02-10 1998-08-18 Tomoegawa Paper Co Ltd 新規なポリイミド及びその製造方法
JP2016030765A (ja) * 2014-07-25 2016-03-07 シーシーアイ株式会社 ヒドロゲル化剤
WO2016158969A1 (ja) * 2015-04-02 2016-10-06 株式会社ダイセル 電気デバイス製造用溶剤組成物
JP2017008199A (ja) * 2015-06-22 2017-01-12 Dic株式会社 インクジェットプリンター用インク組成物
JP2018069615A (ja) 2016-10-31 2018-05-10 株式会社エム・シー・ケー ラミネータ及びラミネート方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAKEHASHI, RIE ET AL.: "Effects of the spacer length on the aggregate formation and the gelation of alkylamide amine oxides", COLLOID AND POLYMER SCIENCE, vol. 293, no. 11, 2015, pages 3157 - 3165, XP035878329, ISSN: 0303-402X, doi:10.1007/s00396-015-3634-4 *
KAKEHASHI, RIE ET AL.: "Solution behavior of long-alkyl-chain amide amine oxide surfactants having multiple hydrogen-bonding sites", CHEMISTRY LETTERS, vol. 41, no. 10, 2012, pages 1050 - 1051, XP055638925, ISSN: 0366-7022 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149502A1 (ja) * 2020-01-22 2021-07-29 株式会社ダイセル 組成物及びその製造方法
CN115038689A (zh) * 2020-01-22 2022-09-09 株式会社大赛璐 组合物及其制造方法

Also Published As

Publication number Publication date
CN111936462B (zh) 2023-11-03
CN111936462A (zh) 2020-11-13
KR20200138315A (ko) 2020-12-09
TWI802671B (zh) 2023-05-21
JP7270935B2 (ja) 2023-05-11
EP3778564A4 (en) 2022-03-09
US20210017124A1 (en) 2021-01-21
EP3778564A1 (en) 2021-02-17
JPWO2019188508A1 (ja) 2021-04-08
TW201942311A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
JP6588338B2 (ja) 増粘安定剤、及びそれを用いた増粘安定化組成物
WO2014208380A1 (ja) 増粘安定剤、及びそれを用いた増粘安定化組成物
WO2019188508A1 (ja) 増粘安定剤、及びそれを用いた電子デバイス製造用溶剤組成物
EP3594218B1 (en) Thickening stabilizer and thickening stabilizer composition including same
JP6464428B2 (ja) 増粘安定剤、及びそれを用いた増粘安定化組成物
JP7190484B2 (ja) 電子デバイス製造用インク
US11104638B2 (en) Thickening stabilizer
KR102672059B1 (ko) 전자 디바이스 제조용 잉크
EP3144294B1 (en) Thickening stabilizer and thickening stabilization composition using same
TWI760294B (zh) 增黏安定劑、及使用其之增黏安定化組成物
TWI658032B (zh) 增黏安定劑、及使用其之增黏安定化組成物
TWI662016B (zh) 增黏安定劑、及使用其之增黏安定化組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510702

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207030928

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019777518

Country of ref document: EP