WO2019187873A1 - Sheet glass production method - Google Patents

Sheet glass production method Download PDF

Info

Publication number
WO2019187873A1
WO2019187873A1 PCT/JP2019/007046 JP2019007046W WO2019187873A1 WO 2019187873 A1 WO2019187873 A1 WO 2019187873A1 JP 2019007046 W JP2019007046 W JP 2019007046W WO 2019187873 A1 WO2019187873 A1 WO 2019187873A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
processing tool
plate glass
correction
reference position
Prior art date
Application number
PCT/JP2019/007046
Other languages
French (fr)
Japanese (ja)
Inventor
愛信 星野
隼人 奥
晃 粟津
久博 竹内
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980007233.5A priority Critical patent/CN111542414B/en
Priority to KR1020207010620A priority patent/KR102638516B1/en
Publication of WO2019187873A1 publication Critical patent/WO2019187873A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/22Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a method for manufacturing plate glass, which includes a step of processing an end face of the plate glass.
  • the size of the plate glass used therein tends to increase. If the size of the plate glass is increased, the number of glass substrates that can be taken from one plate glass increases, and it becomes possible to efficiently manufacture a glass substrate corresponding to a large display. Further, in order to increase the processing quantity per hour and lower the manufacturing cost, increasing the processing speed (processing speed) of the plate glass is being studied.
  • Plate glass end face processing apparatuses include a constant pressure type that keeps the pressing force of a processing tool constant, and a fixed type that performs processing by fixing the processing tool.
  • the grinding and polishing allowance of the plate glass In order to process the shape of the plate glass cut in the upstream process so that the end surface of the plate glass becomes uniform using a fixed end surface processing device, the grinding and polishing allowance of the plate glass must be set large. Therefore, the processing time becomes long, and it is difficult to further increase the conveyance speed (processing speed) of the plate glass.
  • Patent Document 1 includes a processing tool for processing the end surface of the plate glass, and a pressing force generating element that urges the processing tool toward the end surface of the plate glass to generate a pressing force
  • a plate glass processing apparatus including a measuring unit that measures the position of a processing tool.
  • the processing tool includes a grindstone and an arm member that supports the grindstone.
  • the pressing force generating element applies a couple of force to the arm member of the processing tool, and urges the processing tool against the end surface of the plate glass to generate a pressing force.
  • the plate glass processing apparatus processes the end face of the plate glass at high speed and with high accuracy by controlling the pressing force generating element so that the pressing force is constant.
  • This plate glass processing apparatus controls the processing tool to move to a reference position as an initial position at the start of processing and a standby position where the processing tool is separated from the plate glass and waits after processing.
  • the plate glass processing apparatus moves the processing tool from the standby position to the reference position and starts controlling the pressing force by the pressing force generating element.
  • the pressing force generating element moves the processing tool so as to contact the end surface of the plate glass.
  • a grindstone is used as a processing tool for processing an end face of a plate glass, and the grindstone has a groove portion for receiving the end portion of the plate glass.
  • the groove portion of the processing tool gradually wears and its depth increases.
  • it is conceivable to change the reference position for each sheet glass for example, to correct by moving the reference position by a certain distance in the direction approaching the end surface of the sheet glass.
  • the correction (movement) of the reference position may be insufficient or excessive.
  • the processing tool needs to move from the reference position in a direction approaching the end surface of the plate glass at the start of processing.
  • the processing tool comes into contact with the end surface of the plate glass in a state where the pressing force is insufficient in the initial stage of processing, which may cause a problem that part of the end surface of the plate glass is unprocessed or processing is insufficient. There is. Further, when the correction of the reference position is excessive, the processing tool contacts the plate glass with an excessive pressing force at the start of processing and moves in a direction away from the end surface of the plate glass. If the amount of movement of the processing tool increases, there is a risk of causing a problem such as burning of the groove due to an impact at the time of contact.
  • the present invention has been made in view of the above circumstances, and in the case of processing the end face of a plate glass with a constant pressure type processing tool, the production of a plate glass capable of suitably controlling the position of the processing tool at the start of processing. It aims to provide a method.
  • the present invention is for solving the above-described problems, and in the method for manufacturing a sheet glass including an end surface processing step for processing the end surface of the sheet glass with the processing tool, the processing tool is in an approaching direction or a separation direction with respect to the end surface.
  • a constant pressure type processing tool that contacts the end face at a constant pressure
  • the end face processing step includes a position control step for controlling the position of the processing tool by a control device
  • the position control step includes a preparation step of placing the processing tool at a reference position before starting the processing and before the processing tool contacts the end surface, and the processing tool on the end surface when starting the processing.
  • the processing tool is set to the reference position under the control of the control device in the preparation process.
  • the reference position is a position in the cutting direction of the processing tool at the start of processing in the end surface processing step.
  • the reference position is set (adjusted) so that the end surface of the plate glass can be processed with a desired pressure.
  • the reference position is also used as an initial position for measuring the position of the processing tool in the cutting direction.
  • the working tool moves from the reference position in the direction approaching the glass sheet (approaching direction) or in the separation direction opposite to the approaching direction.
  • the movement amount is measured by the control device in the measurement process, and the reference position for the next processing is set based on the movement amount in the correction process.
  • the reference position which is the initial position of the processing tool at the start of processing, can be suitably controlled in accordance with the change in the positional relationship between the processing tool and the glass sheet due to the influence of wear on the processing tool. For this reason, while preventing the process defect with respect to the end surface of plate glass, it can prolong the lifetime of a processing tool.
  • the amount of movement when the processing tool comes into contact with the end face of the glass sheet means the approaching or separating direction from the reference position until the processing tool comes into contact with the end face of the glass sheet with a desired pressure. It means the distance moved.
  • the position control step further includes a determination step of determining whether or not the movement amount exceeds a threshold value, and the correction step is executed when it is determined in the determination step that the movement amount exceeds the threshold value. May be.
  • the threshold value for the movement amount it is possible to absorb the variation in the movement amount due to the alignment positioning accuracy. Therefore, even when the alignment positioning accuracy is low, the reference position that is the initial position of the processing tool at the start of processing can be suitably controlled according to the change in the positional relationship between the processing tool and the plate glass due to the influence of the wear of the processing tool. .
  • a correction value for setting the reference position of the processing tool in the next processing is calculated based on the movement amount, and the correction value can be calculated by the following equation (1).
  • CV CF ⁇ X (1)
  • CV is a correction value
  • CF is a correction factor
  • X is a movement amount
  • the reference position can be more suitably controlled by setting the reference position according to the correction value calculated by the equation (1).
  • the correction rate when the movement amount indicates the movement of the processing tool in the separation direction is smaller than the correction rate when the movement amount indicates the movement of the processing tool in the approaching direction. It is desirable to set.
  • the processing tool When the processing tool tends to be separated from the end surface of the glass sheet at the start of processing, the processing tool is brought as close as possible to the end surface of the glass sheet by setting a large correction factor and determining the next reference position. Processing can be started in the state. On the other hand, if the processing tool tends to move away from the workpiece at the start of machining, set the reference position so that the machining tool is far away from the end face in the next machining operation. Without processing, there is a possibility that an unprocessed portion may remain on the plate glass. As described above, by setting the correction rate of the processing tool in the separation direction smaller than the correction rate of the processing tool in the approaching direction, it is possible to prevent the unprocessed portion from remaining.
  • the movement amount is measured for each plate glass, and in the correction step, an average value of the movement amounts of the plurality of plate glasses is used as the movement amount. desirable.
  • the reference position for the next processing can be set with high accuracy so as to adapt to the past processing tendency of the plate glass by referring to the average value of the movement amount measured in the processing of the plurality of plate glasses. .
  • the processing tool is a grindstone having a plurality of grooves that process the end face, and the control device sets the reference position for each of the grooves. According to this configuration, for example, even when the degree of wear of each groove portion is different, the reference position of the processing tool in the next processing can be suitably set for each groove portion by the correction process.
  • the position of the processing tool at the start of processing can be suitably controlled.
  • or FIG. 12 shows one Embodiment of the manufacturing method of the plate glass which concerns on this invention.
  • the plate glass G manufactured by this method has a rectangular plate shape, but is not limited to this shape.
  • the plate thickness of the plate glass G is, for example, 0.05 mm to 10 mm, but is not limited to this range, and is set as appropriate according to conditions such as the material and size of the plate glass G.
  • the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having a weight ratio of the alkali component of 3000 ppm or less. is there.
  • the weight ratio of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • FIG. 1 illustrates a plate glass processing apparatus used in the present method.
  • the plate glass processing apparatus 1 includes a processing tool 2, a pressing force generating element 3, a measuring unit 4, and a control device 5.
  • the processing tool 2 is a rotary tool that processes the end surface ES of the glass sheet G from the processing start end C1 that is one end to the processing end C2 that is the other end.
  • the processing tool 2 performs grinding and / or polishing on the end surface ES of the plate glass G.
  • the processing tool 2 may perform a chamfering process on the end surface ES of the glass sheet G.
  • the processing tool 2 is provided so as to be movable relative to the plate glass G along the end surface ES of the plate glass G.
  • an example in which the processing tool 2 performs processing while moving along the moving direction F with respect to the end surface ES of the plate glass G that is stopped is not limited thereto, but is opposite to the moving direction F.
  • the processing tool 2 at a fixed position may process the end surface ES of the glass sheet G that moves in the direction.
  • the processing tool 2 includes a grindstone 6 and an arm member 7 that supports the grindstone 6.
  • the grindstone 6 is a circular or truncated cone disk member that grinds the end surface ES of the glass sheet G while rotating.
  • the grindstone 6 is supported by the arm member 7 so that its disk surface 6A is parallel to the main surface Ga of the plate glass G.
  • the grindstone 6 is rotationally driven by a drive motor.
  • the drive motor is connected to the control device 5.
  • As the grindstone for grinding for example, an electrodeposited grindstone in which diamond abrasive grains are hardened with a metal electrodeposition bond, or a metal bond grindstone in which abrasive grains are hardened with a metallic binder is preferably used.
  • a grindstone for polishing for example, a resin bond grindstone obtained by mixing SiC abrasive grains with a binder such as a resin bond mainly composed of a curable resin and firing the mixture is suitably used.
  • the grindstone 6 has a plurality of grooves 6a for processing the end surface ES of the plate glass G.
  • the depth of each groove 6a is equal.
  • Each groove part 6a may be comprised by the same particle size and the same kind of bond, and may be comprised by a different particle size and a different kind of bond.
  • the arm member 7 is pivotally supported at one end so as to be rotatable, and supports the grindstone 6 at the other end so as to be rotationally driven.
  • the arm member 7 has a bent shape in which the ends of the two members 7a and 7b are connected.
  • the present invention is not limited to this, and the arm member 7 may be formed of an integral member and have a linear shape.
  • the arm member 7 causes the grindstone 6 to approach the end surface ES of the plate glass G or to move away from the end surface ES by the rotating operation.
  • the grindstone 6 is comprised so that a movement in the approach direction CDa approaching the end surface ES of the plate glass G and the separation direction CDb moving away from the plate glass G is possible.
  • the approach direction CDa and the separation direction CDb of the plate glass G are collectively referred to as a cutting direction CD.
  • the processing tool 2 is controlled to move to two locations, the reference position RP and the standby position SP.
  • the reference position RP is an initial position set for measuring the position of the processing tool 2 in the cutting direction CD in the end face processing step.
  • the standby position SP is a position where the processing tool 2 that has finished processing leaves the glass sheet G and waits.
  • the glass sheet processing apparatus 1 may further include an arm position control unit 8.
  • the arm position control unit 8 controls the position of the arm member 7 so that the processing tool 2 moves to two positions of the standby position SP and the reference position RP. While the processing tool 2 moves from the standby position SP to the reference position RP, when the processing tool 2 moves from the reference position RP to the standby position SP, and when positioned at the standby position SP, the arm member 7 is controlled by the arm position control unit 8. It is locked and cannot move freely. On the other hand, when the processing tool 2 is positioned at the reference position RP, the control by the arm position control unit 8 does not work and the lock is released, and the arm member 7 is arm-free.
  • the pressing force generating element 3 urges the processing tool 2 toward the end surface ES of the glass sheet G to generate a pressing force.
  • the pressing force generating element 3 applies a couple to the arm member 7 to urge the processing tool 2 toward the end surface ES of the glass sheet G.
  • the pressing force generating element 3 applies a couple force to the arm member 7 at the timing when the end surface ES of the glass sheet G and the grindstone 6 of the processing tool 2 moved to the reference position RP come into contact with each other. Since the arm member 7 is arm-free at the reference position RP, the processing tool 2 is biased toward the end surface ES by a couple.
  • the pressing force generating element 3 can be a low sliding resistance air cylinder.
  • a diaphragm cylinder can be used as a low sliding resistance air cylinder in consideration of high-speed response due to low slidability and long life due to pistonlessness.
  • the pressing force generating element 3 is not limited to an air cylinder, and may be a hydraulic cylinder, other known driving device, or a member capable of generating a pressing force such as a spring or a weight.
  • the processing tool 2 is a constant pressure processing tool that is feedback-controlled by the pressing force generating element 3 so that the pressing force against the glass sheet G is constant. Since such a constant pressure type processing tool follows the undulation of the end surface ES of the plate glass G, the end surface ES of the plate glass G can be processed with a substantially constant cut amount.
  • the above processing tool 2 is integrated with the pressing force generating element 3, the measuring unit 4, and the arm position control unit 8 to constitute a processing unit U.
  • the processing unit U is configured to be movable by a moving mechanism. That is, the processing unit U moves the processing tool 2 along the moving direction F or moves in the cutting direction CD via the moving mechanism.
  • the measuring unit 4 measures the distance between the processing tool 2 and the measuring unit 4.
  • the measurement unit 4 is a displacement sensor such as an optical type, an eddy current type, or an ultrasonic type. In the present embodiment, an eddy current displacement sensor is used as the measurement unit 4.
  • the measuring unit 4 is disposed on the same side of the arm member 7 as the pressing force generating element 3 and the arm position control unit 8 and at a predetermined distance from the arm member 7. Then, the measuring unit 4 measures the distance from the measuring unit 4 to the arm member 7 as position information of the processing tool 2.
  • the measuring unit 4 is connected to the control device 5 and transmits the measured data to the control device 5.
  • the control device 5 includes a computer (for example, a PC) on which various hardware such as a CPU, a ROM, a RAM, an HDD, and an input / output interface are mounted.
  • the control device 5 includes an arithmetic processing unit 9 that executes various calculations and a storage unit 10 that stores data and various programs necessary for processing the glass sheet G.
  • the control device 5 is connected to the display device 11 and causes the display device 11 to display information relating to the processing of the plate glass G.
  • the control apparatus 5 is connected to the drive motor which rotates the grindstone 6 of the processing tool 2, and performs control of the said drive motor.
  • the control device 5 executes various data and various programs stored in the storage unit 10 by the arithmetic processing unit 9, and executes a program necessary for controlling the pressing force generating element 3 and the machining unit U.
  • the control device 5 causes the display device 11 to display the position information (numerical value) of the processing tool 2 received from the measurement unit 4.
  • the arithmetic processing unit 9 can calculate the movement amount D of the processing tool 2 at the start of processing from the position information of the processing tool 2.
  • the arithmetic processing unit 9 includes a determination unit 12 that compares the movement amount D with threshold values TH1 and TH2.
  • the storage unit 10 stores various programs for controlling the pressing force generating element 3, the arm position control unit 8, the moving mechanism of the processing unit U, etc., in addition to the position information of the processing tool 2 acquired by the measuring unit 4. ing.
  • the storage unit 10 stores a program (software) related to the correction of the reference position RP.
  • the storage unit 10 stores threshold values TH1 and TH2 related to the movement amount D of the processing tool 2.
  • the values of the thresholds TH1 and TH2 can be arbitrarily set in the control device 5.
  • the manufacturing method of the plate glass G mainly includes a cutting step and an end face processing step. If necessary, a cleaning process is provided as a subsequent process of the end face processing process.
  • a plate glass obtained by cutting a glass ribbon formed by various known forming methods can be used.
  • various known forming methods for example, a float method, a rollout method, an overflow downdraw method, a slot downdraw method, a redraw method and the like can be employed.
  • the overflow down draw method for example, molten glass is poured into an overflow groove provided on the upper part of a substantially wedge-shaped cross section, and the molten glass overflowing on both sides of the overflow groove is placed on both sides of the molded body.
  • the glass ribbon is continuously formed by fusing and integrating at the lower end of the molded body while flowing down along the side wall.
  • the formed glass ribbon is gradually cooled in a slow cooling furnace to remove the distortion, and then the glass ribbon is cooled.
  • the cooled glass ribbon is cut at a predetermined length, and both ends in the width direction are removed by cutting. Thereby, plate glass MG is obtained.
  • the plate glass MG supplied to the cutting step is cut into a plate glass having a desired size by cutting.
  • one or a plurality of plate glasses are cut out from the plate glass MG.
  • the plate glass G used as the process target of the plate glass processing apparatus 1 is obtained.
  • the plate glass MG is cut by, for example, scribe cutting.
  • the scribe wheel SH is caused to travel along the planned cutting line CL of the large plate glass MG.
  • a scribe line having a predetermined depth is engraved on the plate glass MG along the planned cutting line CL.
  • a bending moment is applied to the periphery of the scribe line, and the plate glass MG is broken along the scribe line.
  • a plurality of plate glasses G are obtained by this folding.
  • the end surface processing step includes a step of grinding the end surface ES of the plate glass G (grinding step) and a step of polishing the end surface ES after the grinding step (polishing step).
  • grinding step a step of grinding the end surface ES of the plate glass G
  • polishing step a step of polishing the end surface ES after the grinding step
  • the plate glass G configured through the cutting process is conveyed to a processing position in the end surface processing process by a conveyor (conveying device) (not shown). After the plate glass G is disposed at the processing position, the conveyor temporarily stops until the end face processing is completed. Moreover, the plate glass G arrange
  • the processing unit U starts to move along the moving direction F.
  • the grindstone 6 of the processing tool 2 moves from the standby position SP to the reference position RP under the control of the arm position control unit 8.
  • the pressing force generating element 3 biases the arm member 7 at the timing when the grindstone 6 of the processing tool 2 comes into contact with the processing start end portion C1. By this urging, the grindstone 6 comes into contact with the end surface ES of the plate glass G with a constant pressing force.
  • the processing tool 2 performs the grinding process etc. with respect to the end surface ES from the process start end part C1 to the process end part C2.
  • the pressing force generating element 3 continues to urge the arm member 7.
  • the processing unit U is controlled by the control device 5 so that the grinding stone 6 of the processing tool 2 is brought into contact with the end surface ES of the plate glass G, and the processing start end portion C1 on the long side of the plate glass G is changed to the processing end portion C2. Move across.
  • the pressing force generating element 3 stops urging, and the processing tool 2 returns to the standby position SP by the control of the arm position control unit 8.
  • the processing tool 2 may move so as to process a part of the end surface ES of the plate glass G.
  • the surface plate releases the holding of the plate glass G, and the conveyor conveys the plate glass G to the next step.
  • the position control step includes a preparation step S ⁇ b> 1 for arranging the processing tool 2 at the reference position RP before the processing tool 2 comes into contact with the end surface ES of the glass sheet G before the processing starts, and the measuring unit 4.
  • the measurement process S2 by the control apparatus 5, the determination process S3 by the determination part 12, and the correction process S4 by the control apparatus 5 are mainly provided.
  • 5 to 8 show control modes when the processing tool 2 installed at the reference position RP moves in the approaching direction CDa.
  • the standby position SP (FIG. 5) is controlled by the arm position control unit 8.
  • the position of the processing tool 2 at the position indicated by the alternate long and short dash line in FIG. thereby, the processing tool 2 is installed in the reference position RP (the position indicated by the solid line in FIGS. 5 and 6).
  • the pressing force generating element 3 starts constant pressure control of the processing tool 2 as described above.
  • the pressing force generating element 3 detects this contact and adjusts the pressure on the arm member 7 so that the pressing force of the processing tool 2 is constant.
  • the control device 5 stores the position information of the grindstone 6 in the storage unit 10 and causes the display device 11 to display a temporal change related to the position information of the grindstone 6 as a graph.
  • FIG. 7 shows a graph showing position information of the grindstone 6 at the start of machining.
  • the reference position RP is displayed as 0.
  • this position is displayed as a positive (+) value.
  • this position is displayed as a negative ( ⁇ ) value.
  • the position of the processing tool 2 located closer to the approaching direction CDa than the reference position RP is set to a positive (+) value, and the processing tool 2 located closer to the separation direction CDb than the reference position RP is used.
  • the position is a negative ( ⁇ ) value, this positive / negative is set to simply distinguish the movement in the approach direction CDa and the movement in the separation direction CDb related to the grindstone 6. Therefore, contrary to the above, the position information on the separation direction CDb side can be set to positive (+), and the position information on the approach direction CDa side can be set to negative ( ⁇ ).
  • the measuring unit 4 measures the position of the processing tool 2 (distance between the processing tool 2 and the measuring unit 4) and transmits the position information to the control device 5. Based on the position information of the processing tool 2 received from the measurement unit 4, the arithmetic processing unit 9 of the control device 5 determines the distance until the processing tool 2 comes into contact with the end surface ES of the glass sheet G from the reference position RP, that is, positive (+ ) Is calculated. *
  • the determination unit 12 of the arithmetic processing unit 9 compares the calculated movement amount D of the processing tool 2 with a positive (+) threshold value TH1. When the movement amount D exceeds the threshold value TH1, the arithmetic processing unit 9 updates the reference position RP of the processing tool 2 related to the next processing. That is, the arithmetic processing unit 9 determines the reference position RP of the processing tool 2 in the next processing based on the movement amount D of the processing tool 2 obtained by the calculation.
  • the reference position RP of the processing tool 2 related to the next processing is determined based on the following formula (1).
  • CV CF ⁇ X (1)
  • CV is a correction value related to the reference position RP
  • CF is a correction rate related to the reference position RP
  • X is a measured movement amount D (mm) of the processing tool 2.
  • the correction value CV is a positive or negative numerical value (mm) added to the reference position RP set before the next machining.
  • the correction factor CF is a numerical value (%) arbitrarily set between 0 and 1, for example.
  • the processing tool 2 When the processing tool 2 tends to move away from the end surface ES of the glass sheet G at the start of processing, it is desirable to calculate the correction value CV by setting the correction factor CF large. Thereby, the processing tool 2 installed at the reference position RP in the next processing is in a state as close as possible to the end surface ES of the plate glass G.
  • the processing tool 2 has a tendency to move in the separation direction CDb at the start of processing, in the next processing, if the reference position RP is set so that the processing tool 2 is far away from the end surface ES, the processing tool 2 is There is a possibility that an unprocessed portion remains on the glass sheet G without contacting the end surface ES. In order to prevent such a situation, it is desirable that the correction rate CF of the processing tool 2 related to the separation direction CDb is set smaller than the correction rate CF of the processing tool 2 related to the approaching direction CDa.
  • the correction factor CF for correcting the reference position RP toward the approaching direction CDa is preferably set to 50 to 100%, for example.
  • the correction factor CF when correcting the reference position RP in the separation direction CDb side is preferably set to 10 to 50%, for example.
  • FIG. 8 illustrates a part of the processing history data created by the arithmetic processing unit 9 when processing a plurality of plate glasses G included in one lot.
  • This history data indicates a case where ten sheets of glass sheets G1 to G10 have been processed and the next sheet glass G11 is processed.
  • the history data includes the value of the movement amount D of the processing tool 2 corresponding to each of the glass sheets G1 to G10.
  • the determination step S3 and the correction step S4 when the correction rate CF is set to 80% and the threshold value TH1 is set to +0.040 mm will be described.
  • the determination step S3 is executed every time.
  • the determination part 12 of the arithmetic processing part 9 compares the data of the movement amount D of the processing tool 2 corresponding to the plate glass G10 processed prior to the plate glass G11 with the threshold value TH1. In this example, since the movement amount D (+0.060 mm) corresponding to the plate glass G10 exceeds the threshold value TH1 (+0.040 mm), the correction step S4 is executed. In the correction step S4, the arithmetic processing unit 9 multiplies the data of the movement amount D corresponding to the glass sheet G10 by the correction factor CF (80%) based on the above formula (1), and sets the correction value CV as 0. 048 mm is obtained.
  • the reference position RP related to the next processing of the plate glass G11 is not performed without performing the correction step S4. It becomes the same as the reference position RP related to the processing of G10.
  • the control device 5 adds the correction value CV to the value of the reference position RP set at the time of the most recent processing of the plate glass G10, and sets a new reference position RP related to the next processing of the plate glass G11. To do.
  • the control device 5 transmits control data related to the updated reference position RP to the arm position control unit 8.
  • the arm position control unit 8 installs the grindstone 6 at a new reference position RP.
  • the reference position RP in the preparation step S1 of the plate glass G11 moves by the correction value CV from the reference position RP in the preparation step S1 of the previous plate glass G10.
  • the determination step S3 and the correction step S4 when using the average value in this way will be described.
  • the values of the threshold TH1 and the correction factor CF are the same as in the above example.
  • the average value of the movement amount D of the processing tool 2 related to the last three processings that is, the average value of the movement amount D of the processing tool 2 related to the plate glasses G8 to G10. Is used to calculate the correction value CV.
  • the determination unit 12 of the arithmetic processing unit 9 compares the data of the movement amount D of the processing tool 2 corresponding to the plate glass G10 processed prior to the plate glass G11 with the threshold value TH1.
  • the correction step S4 is executed.
  • the processing unit 9 of the control device 5 refers to the history data, and sets the reference position RP of the processing tool 2 related to the next glass sheet G11, so that the processing tool 2 related to the glass sheets G8 to G10.
  • the average value (0.040 + 0.050 + 0.060) / 3 of the movement amount D is calculated.
  • the arithmetic processing unit 9 multiplies the calculated average value (+0.050 mm) by the correction factor CF (80%) to obtain +0.040 mm as the correction value CV.
  • the arithmetic processing unit 9 adds the correction value CV to the value of the reference position RP set at the time of the most recent processing of the glass sheet G10, and a new processing related to the processing of the next glass sheet G11.
  • a reference position RP is set. Then, the control device 5 transmits a control signal related to the new reference position RP to the arm position control unit 8.
  • the arm position control unit 8 moves the grindstone 6 at the standby position SP (the position indicated by the alternate long and short dash line) to the reference position. It is moved to RP (position indicated by a solid line in FIGS. 9 and 10).
  • the pressing force generating element 3 starts constant pressure control of the grindstone 6.
  • the pressing force generating element 3 detects an excessive pressing force acting on the grindstone 6. Since the grindstone 6 is urged with a constant pressing force by the pressing force generating element 3, it moves in the separation direction CDb from the reference position RP.
  • the control device 5 makes a negative ( ⁇ ) movement amount D (FIG. 10) related to the separation direction CDb of the grindstone 6 based on the position information of the processing tool 2 (grindstone 6) received from the measuring unit 4. And FIG. 11).
  • the control device 5 compares the calculated movement amount D of the grindstone 6 with the negative ( ⁇ ) threshold value TH2 by the determination unit 12 of the arithmetic processing unit 9. When the movement amount D exceeds the threshold value TH2, the arithmetic processing unit 9 updates the reference position RP of the processing tool 2 (grinding stone 6) for the next processing based on the above formula (1). The control device 5 transmits a control signal related to the updated new reference position RP to the arm position control unit 8.
  • the some groove part 6a is used in order, for example for end surface processing. More specifically, after end face processing is performed using the groove portion 6a positioned at the uppermost stage, end face processing is performed using the groove section 6a positioned at the second stage from the top, and then the third stage from the top. End face processing is performed using the groove 6a.
  • all the groove parts 6a are dressed, and again, the plurality of groove parts 6a are sequentially used for end face processing.
  • each groove 6a of the grindstone 6 is gradually worn, and the degree of wear differs for each groove 6a. For this reason, as shown in FIG.
  • the plate glass processing apparatus 1 can set the processing tool 2 at the reference position RP corresponding to each groove 6a at the start of processing by setting the reference position RP for each groove 6a having different depths.
  • the movement amount D of the processing tool 2 when the processing tool 2 contacts the end surface of the plate glass G in measurement process S2 is measured, In correction
  • the reference position RP of the processing tool 2 related to the next processing can be optimized. Therefore, it is possible to prevent a processing defect from occurring on the end surface ES of the glass sheet G and to prolong the life of the processing tool 2.
  • this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the present invention is not limited to this configuration.
  • a link mechanism and a servo motor are connected to the arm member 7, and the rotational force of the drive shaft of the servo motor is converted into a couple force of the arm member 7 via the link mechanism. It is good.
  • the position information of the processing tool 2 may be detected based on the rotation angle of the servo motor.
  • the correction step S4 may be executed every time.
  • the example in which the determination is performed using the movement amount D in the determination step S3 when the plurality of plate glasses G are sequentially processed is not limited thereto, but the movement amount D in the determination step S3 is a plurality of movement amounts D. You may use the average value of the moving amount

Abstract

The end-face processing step of this method comprises a position control step for controlling, by means of a control device 5, the position of a processing tool 2. The position control step includes: a preparation step S1 for placing the processing tool 2 at a reference position RP before the processing tool 2 is brought into contact with an end surface ES prior to the initiation of processing; a measurement step S2 for measuring the amount of displacement D of the processing tool 2 in an approaching direction CDa, or in a separation direction CDb, as the processing tool 2 is brought into contact with the end surface ES when initiating the processing; and a correction step S4 for setting, on the basis of the displacement amount D, the reference position RP of the processing tool 2 for the next round of processing.

Description

板ガラスの製造方法Sheet glass manufacturing method
 本発明は、板ガラスの端面を加工する工程を有する、板ガラスの製造方法に関する。 The present invention relates to a method for manufacturing plate glass, which includes a step of processing an end face of the plate glass.
 近年、液晶ディスプレイ、有機ELディスプレイ等の製造効率の向上や大型化の要請に応じるべく、これに使用される板ガラスのサイズは大型化する傾向にある。板ガラスのサイズを大きくすれば、一枚の板ガラスから取れるガラス基板の枚数が多くなり、大型ディスプレイに対応したガラス基板を効率良く製作することが可能になる。また、時間当たりの処理数量を増やし製造コストを下げるために、板ガラスの処理速度(加工速度)の高速化が検討されている。 In recent years, in order to meet demands for improving the manufacturing efficiency and increasing the size of liquid crystal displays, organic EL displays, etc., the size of the plate glass used therein tends to increase. If the size of the plate glass is increased, the number of glass substrates that can be taken from one plate glass increases, and it becomes possible to efficiently manufacture a glass substrate corresponding to a large display. Further, in order to increase the processing quantity per hour and lower the manufacturing cost, increasing the processing speed (processing speed) of the plate glass is being studied.
 板ガラスの端面に傷が存在すると、その傷から割れ等が発生するため、これを防止するために板ガラスの端面に対して研削・研磨加工が施される。板ガラスの端面加工装置には、加工具の押圧力を一定に維持する定圧式と呼ばれるものと、加工具を固定して加工を行う固定式のものとがある。上流工程で切断された板ガラスが有する形状に対して、固定式端面加工装置を使用して板ガラスの端面が均一になるように加工するには、板ガラスの研削・研磨代を大きめに設定しなければならないため、加工時間が長くなり、板ガラスの搬送速度(加工速度)を更に上げることが困難である。 If there is a scratch on the end surface of the plate glass, a crack or the like is generated from the scratch. Therefore, the end surface of the plate glass is ground and polished to prevent this. Plate glass end face processing apparatuses include a constant pressure type that keeps the pressing force of a processing tool constant, and a fixed type that performs processing by fixing the processing tool. In order to process the shape of the plate glass cut in the upstream process so that the end surface of the plate glass becomes uniform using a fixed end surface processing device, the grinding and polishing allowance of the plate glass must be set large. Therefore, the processing time becomes long, and it is difficult to further increase the conveyance speed (processing speed) of the plate glass.
 定圧式で板ガラスの端面を加工する技術として、特許文献1には、板ガラスの端面を加工する加工具と、加工具を板ガラスの端面へ付勢して押圧力を発生する押圧力発生要素と、加工具の位置を測定する測定手段とを備える板ガラス加工装置が開示される。加工具は、砥石と、この砥石を支持するアーム部材とを備える。押圧力発生要素は、加工具のアーム部材に偶力を与え、加工具を板ガラスの端面に付勢して押圧力を発生させる。板ガラス加工装置は、この押圧力が一定となるように押圧力発生要素を制御することにより、板ガラスの端面を高速で、しかも精度良く加工する。 As a technique for processing the end surface of the plate glass with a constant pressure type, Patent Document 1 includes a processing tool for processing the end surface of the plate glass, and a pressing force generating element that urges the processing tool toward the end surface of the plate glass to generate a pressing force, Disclosed is a plate glass processing apparatus including a measuring unit that measures the position of a processing tool. The processing tool includes a grindstone and an arm member that supports the grindstone. The pressing force generating element applies a couple of force to the arm member of the processing tool, and urges the processing tool against the end surface of the plate glass to generate a pressing force. The plate glass processing apparatus processes the end face of the plate glass at high speed and with high accuracy by controlling the pressing force generating element so that the pressing force is constant.
 この板ガラス加工装置は、加工具を、加工開始時における初期位置としての基準位置と、加工終了後に加工具を板ガラスから離れて待機する待機位置とに移動するように制御する。加工開始時において、板ガラス加工装置は、加工具を待機位置から基準位置へと移動させるとともに、押圧力発生要素による押圧力の制御を開始する。このとき、押圧力発生要素は、加工具が板ガラスから離れている場合には、当該加工具を板ガラスの端面に接触するように移動させる。 This plate glass processing apparatus controls the processing tool to move to a reference position as an initial position at the start of processing and a standby position where the processing tool is separated from the plate glass and waits after processing. At the start of processing, the plate glass processing apparatus moves the processing tool from the standby position to the reference position and starts controlling the pressing force by the pressing force generating element. At this time, when the processing tool is separated from the plate glass, the pressing force generating element moves the processing tool so as to contact the end surface of the plate glass.
 板ガラスの端面を加工する加工具としては、砥石が使用され、その砥石は、板ガラスの端部を受け入れる溝部を有する。 A grindstone is used as a processing tool for processing an end face of a plate glass, and the grindstone has a groove portion for receiving the end portion of the plate glass.
特開2014-161981号公報JP 2014-161981 A
 複数の板ガラスを加工するにつれ、加工具の溝部は徐々に摩耗し、その深さが増大する。この加工具の溝部の摩耗に対応するために基準位置を板ガラスごとに変更すること、例えば、基準位置を板ガラスの端面に接近する方向に一定距離だけ移動させて補正することが考えられる。しかしながら、加工具の溝部の摩耗の度合いはばらつきを有するため、基準位置の補正(移動)が不足又は過度となる場合が発生する。基準位置の補正が不足する場合、加工開始時に加工具は基準位置から板ガラスの端面に接近する方向に移動する必要がある。この加工具の移動量が大きくなると、加工初期に押圧力が不足した状態で加工具が板ガラスの端面と接触することから、板ガラスの端面の一部が未加工又は加工不足となる不具合を生じるおそれがある。また、基準位置の補正が過度である場合、加工開始時に加工具は、過大な押圧力で板ガラスと接触し、板ガラスの端面から離反する方向に移動する。この加工具の移動量が大きくなると、接触時の衝撃によって溝部の焼けといった不具合を生じるおそれがある。 ¡As a plurality of plate glasses are processed, the groove portion of the processing tool gradually wears and its depth increases. In order to cope with the wear of the groove portion of the processing tool, it is conceivable to change the reference position for each sheet glass, for example, to correct by moving the reference position by a certain distance in the direction approaching the end surface of the sheet glass. However, since the degree of wear of the groove portion of the processing tool varies, the correction (movement) of the reference position may be insufficient or excessive. When the correction of the reference position is insufficient, the processing tool needs to move from the reference position in a direction approaching the end surface of the plate glass at the start of processing. If the amount of movement of the processing tool increases, the processing tool comes into contact with the end surface of the plate glass in a state where the pressing force is insufficient in the initial stage of processing, which may cause a problem that part of the end surface of the plate glass is unprocessed or processing is insufficient. There is. Further, when the correction of the reference position is excessive, the processing tool contacts the plate glass with an excessive pressing force at the start of processing and moves in a direction away from the end surface of the plate glass. If the amount of movement of the processing tool increases, there is a risk of causing a problem such as burning of the groove due to an impact at the time of contact.
 本発明は上記の事情に鑑みてなされたものであり、定圧式の加工具によって板ガラスの端面を加工する場合に、加工開始時における加工具の位置を好適に制御することが可能な板ガラスの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in the case of processing the end face of a plate glass with a constant pressure type processing tool, the production of a plate glass capable of suitably controlling the position of the processing tool at the start of processing. It aims to provide a method.
 本発明は上記の課題を解決するためのものであり、板ガラスの端面を加工具で加工する端面加工工程を備える板ガラスの製造方法において、前記加工具は、前記端面に対して接近方向又は離反方向に移動可能に構成されるとともに、前記端面に対して一定の圧力で接触する定圧式加工具であり、前記端面加工工程は、制御装置により前記加工具の位置を制御する位置制御工程を備え、前記位置制御工程は、加工開始前であって前記加工具が前記端面に接触する前に、前記加工具を基準位置に配置する準備工程と、加工を開始する際に前記加工具が前記端面に接触するときの前記接近方向又は前記離反方向における前記加工具の移動量を測定する測定工程と、前記移動量に基づいて次回の加工に係る前記加工具の前記基準位置を設定する補正工程と、を備えることを特徴とする。 The present invention is for solving the above-described problems, and in the method for manufacturing a sheet glass including an end surface processing step for processing the end surface of the sheet glass with the processing tool, the processing tool is in an approaching direction or a separation direction with respect to the end surface. And a constant pressure type processing tool that contacts the end face at a constant pressure, and the end face processing step includes a position control step for controlling the position of the processing tool by a control device, The position control step includes a preparation step of placing the processing tool at a reference position before starting the processing and before the processing tool contacts the end surface, and the processing tool on the end surface when starting the processing. A measuring step for measuring the movement amount of the processing tool in the approaching direction or the separation direction when contacting, and a correction for setting the reference position of the processing tool related to the next processing based on the movement amount Characterized in that it comprises a degree, the.
 上記のように、加工具は準備工程において、制御装置の制御により基準位置に設定される。基準位置とは、端面加工工程において、加工開始時の加工具の切込み方向の位置であり、例えば、板ガラスの端面を所望の圧力で加工可能となるように設定(調整)される。本発明では、基準位置を切り込み方向の加工具の位置を測定するための初期位置としても利用する。 As described above, the processing tool is set to the reference position under the control of the control device in the preparation process. The reference position is a position in the cutting direction of the processing tool at the start of processing in the end surface processing step. For example, the reference position is set (adjusted) so that the end surface of the plate glass can be processed with a desired pressure. In the present invention, the reference position is also used as an initial position for measuring the position of the processing tool in the cutting direction.
 加工開始時、溝部の摩耗度合いにより、加工具が基準位置から板ガラスに接近する方向(接近方向)又は接近方向とは反対の離反方向に移動する。本発明では、測定工程で制御装置により、その移動量を測定し、補正工程で、その移動量に基づいて次回の加工に係る基準位置を設定する。これにより、加工具の摩耗の影響による加工具と板ガラスとの位置関係の変化に応じて、加工開始時の加工具の初期位置である基準位置を好適に制御できる。このため、板ガラスの端面に対する加工不良の発生を防止するとともに、加工具を長寿命化できる。 At the start of machining, depending on the degree of wear of the groove, the working tool moves from the reference position in the direction approaching the glass sheet (approaching direction) or in the separation direction opposite to the approaching direction. In the present invention, the movement amount is measured by the control device in the measurement process, and the reference position for the next processing is set based on the movement amount in the correction process. As a result, the reference position, which is the initial position of the processing tool at the start of processing, can be suitably controlled in accordance with the change in the positional relationship between the processing tool and the glass sheet due to the influence of wear on the processing tool. For this reason, while preventing the process defect with respect to the end surface of plate glass, it can prolong the lifetime of a processing tool.
 なお、本発明において、「加工具が板ガラスの端面に接触するときの移動量」とは、加工具が基準位置から板ガラスの端面に所望の圧力で接触するまでの間に接近方向又は離反方向に移動した距離を意味する。 In the present invention, “the amount of movement when the processing tool comes into contact with the end face of the glass sheet” means the approaching or separating direction from the reference position until the processing tool comes into contact with the end face of the glass sheet with a desired pressure. It means the distance moved.
 前記位置制御工程は、前記移動量が閾値を超えたか否かを判定する判定工程をさらに備え、前記補正工程は、前記判定工程で前記移動量が前記閾値を超えたと判定された場合に実行されてもよい。このように、移動量に閾値を設定することで、アライメントの位置決め精度による移動量のばらつきを吸収することができる。したがって、アライメントの位置決め精度が低い場合でも、加工具の摩耗の影響による加工具と板ガラスとの位置関係の変化に応じて、加工開始時の加工具の初期位置である基準位置を好適に制御できる。 The position control step further includes a determination step of determining whether or not the movement amount exceeds a threshold value, and the correction step is executed when it is determined in the determination step that the movement amount exceeds the threshold value. May be. In this way, by setting the threshold value for the movement amount, it is possible to absorb the variation in the movement amount due to the alignment positioning accuracy. Therefore, even when the alignment positioning accuracy is low, the reference position that is the initial position of the processing tool at the start of processing can be suitably controlled according to the change in the positional relationship between the processing tool and the plate glass due to the influence of the wear of the processing tool. .
 前記補正工程では、前記移動量に基づいて前記次回の加工における前記加工具の前記基準位置を設定するための補正値を算出し、前記補正値は、以下の式(1)により算出され得る。
  CV=CF×X   ・・・(1)
In the correction step, a correction value for setting the reference position of the processing tool in the next processing is calculated based on the movement amount, and the correction value can be calculated by the following equation (1).
CV = CF × X (1)
 ここで、CVは補正値、CFは補正率、Xは移動量である。 Here, CV is a correction value, CF is a correction factor, and X is a movement amount.
 このように式(1)により算出された補正値に応じて基準位置を設定することにより、基準位置をより好適に制御できる。 As described above, the reference position can be more suitably controlled by setting the reference position according to the correction value calculated by the equation (1).
 前記補正工程では、前記移動量が前記加工具の前記離反方向の移動を示す場合の前記補正率は、前記移動量が前記加工具の前記接近方向の移動を示す場合の前記補正率よりも小さく設定されることが望ましい。 In the correction step, the correction rate when the movement amount indicates the movement of the processing tool in the separation direction is smaller than the correction rate when the movement amount indicates the movement of the processing tool in the approaching direction. It is desirable to set.
 加工開始時に加工具が板ガラスの端面から離れている傾向がある場合、補正率を大きく設定して次回の基準位置を決定することで、当該加工具を板ガラスの端面に可及的に接近させた状態で加工を開始できる。これに対し、加工開始時に加工具が離反方向に移動する傾向がある場合、次回の加工において、加工具を端面から大きく離れるように基準位置を設定すると、加工開始時に、加工具が端面に接触せず、板ガラスに未加工部分が残存するおそれがある。上記のように、離反方向に係る加工具の補正率を、接近方向に係る加工具の補正率よりも小さく設定することで、未加工部分が残存することを防止できる。 When the processing tool tends to be separated from the end surface of the glass sheet at the start of processing, the processing tool is brought as close as possible to the end surface of the glass sheet by setting a large correction factor and determining the next reference position. Processing can be started in the state. On the other hand, if the processing tool tends to move away from the workpiece at the start of machining, set the reference position so that the machining tool is far away from the end face in the next machining operation. Without processing, there is a possibility that an unprocessed portion may remain on the plate glass. As described above, by setting the correction rate of the processing tool in the separation direction smaller than the correction rate of the processing tool in the approaching direction, it is possible to prevent the unprocessed portion from remaining.
 前記測定工程では、複数の前記板ガラスを加工した場合に前記板ガラスごとに前記移動量を測定し、前記補正工程では、前記移動量として、複数の前記板ガラスの前記移動量の平均値を用いることが望ましい。このように、複数の板ガラスの加工で測定された移動量の平均値を参照することで、次回の加工に係る基準位置を、過去の板ガラスの加工の傾向に適応するように高精度で設定できる。 In the measurement step, when the plurality of plate glasses are processed, the movement amount is measured for each plate glass, and in the correction step, an average value of the movement amounts of the plurality of plate glasses is used as the movement amount. desirable. As described above, the reference position for the next processing can be set with high accuracy so as to adapt to the past processing tendency of the plate glass by referring to the average value of the movement amount measured in the processing of the plurality of plate glasses. .
 また、前記加工具は、前記端面を加工する複数の溝部を有する砥石であり、前記制御装置は、前記溝部ごとに前記基準位置を設定することが望ましい。かかる構成によれば、例えば各溝部の摩耗の程度が異なる場合であっても、補正工程により、次回の加工における加工具の基準位置を溝部ごとに好適に設定できる。 Further, it is desirable that the processing tool is a grindstone having a plurality of grooves that process the end face, and the control device sets the reference position for each of the grooves. According to this configuration, for example, even when the degree of wear of each groove portion is different, the reference position of the processing tool in the next processing can be suitably set for each groove portion by the correction process.
 本発明によれば、定圧式の加工具によって板ガラスの端面を加工する場合に、加工開始時における加工具の位置を好適に制御できる。 According to the present invention, when processing the end surface of a plate glass with a constant pressure type processing tool, the position of the processing tool at the start of processing can be suitably controlled.
板ガラスの製造装置を示す概略平面図である。It is a schematic plan view which shows the manufacturing apparatus of plate glass. 未使用の加工具の側面図である。It is a side view of an unused processing tool. 切断工程を示す平面図である。It is a top view which shows a cutting process. 位置制御工程のフローチャートである。It is a flowchart of a position control process. 端面加工工程を示す平面図である。It is a top view which shows an end surface processing process. 図5の要部を示す拡大平面図である。It is an enlarged plan view which shows the principal part of FIG. 図6に係る加工開始時における加工具の位置を示すグラフである。It is a graph which shows the position of the processing tool at the time of the processing start which concerns on FIG. 加工具の移動量に係る履歴データを示す表である。It is a table | surface which shows the historical data which concern on the movement amount of a processing tool. 端面加工工程を示す平面図である。It is a top view which shows an end surface processing process. 図9の要部を示す拡大平面図である。It is an enlarged plan view which shows the principal part of FIG. 図10に係る加工開始時における加工具の位置を示すグラフである。It is a graph which shows the position of the processing tool at the time of the processing start which concerns on FIG. 溝部の摩耗が進行した状態の加工具を示す側面図である。It is a side view which shows the processing tool of the state which the abrasion of the groove part advanced.
 以下、本発明を実施するための形態について図面を参照しながら説明する。図1乃至図12は、本発明に係る板ガラスの製造方法の一実施形態を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 thru | or FIG. 12 shows one Embodiment of the manufacturing method of the plate glass which concerns on this invention.
 本方法により製造される板ガラスGは、矩形の板形状を有しているが、この形状に限定されない。板ガラスGの板厚は例えば0.05mm~10mmであるが、この範囲に限定されず、当該板ガラスGの材質や大きさ等の条件に応じて適宜設定される。 The plate glass G manufactured by this method has a rectangular plate shape, but is not limited to this shape. The plate thickness of the plate glass G is, for example, 0.05 mm to 10 mm, but is not limited to this range, and is set as appropriate according to conditions such as the material and size of the plate glass G.
 板ガラスGの材質としては、ケイ酸塩ガラス、シリカガラスが用いられ、好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラス、化学強化ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 As the material of the plate glass G, silicate glass and silica glass are used, preferably borosilicate glass, soda lime glass, aluminosilicate glass, and chemically strengthened glass, and most preferably non-alkali glass is used. Here, the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having a weight ratio of the alkali component of 3000 ppm or less. is there. The weight ratio of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
 図1は、本方法に使用される板ガラス加工装置を例示する。板ガラス加工装置1は、加工具2と、押圧力発生要素3と、測定部4と、制御装置5とを備える。 FIG. 1 illustrates a plate glass processing apparatus used in the present method. The plate glass processing apparatus 1 includes a processing tool 2, a pressing force generating element 3, a measuring unit 4, and a control device 5.
 加工具2は、板ガラスGの端面ESを、一方端部である加工始端部C1から、他方端部である加工終端部C2まで加工する回転工具である。加工具2は、板ガラスGの端面ESに研削加工及び/又は研磨加工を行う。併せて、加工具2は、板ガラスGの端面ESの面取り加工を行うものであってもよい。 The processing tool 2 is a rotary tool that processes the end surface ES of the glass sheet G from the processing start end C1 that is one end to the processing end C2 that is the other end. The processing tool 2 performs grinding and / or polishing on the end surface ES of the plate glass G. In addition, the processing tool 2 may perform a chamfering process on the end surface ES of the glass sheet G.
 加工具2は、板ガラスGの端面ESに沿って板ガラスGと相対移動可能に設けられている。本実施形態では、停止している板ガラスGの端面ESに対して、加工具2が移動方向Fに沿って移動しながら加工を行う例を示すが、これに限らず、移動方向Fとは逆方向に移動する板ガラスGの端面ESに対して、定位置にある加工具2が加工を行ってもよい。 The processing tool 2 is provided so as to be movable relative to the plate glass G along the end surface ES of the plate glass G. In the present embodiment, an example in which the processing tool 2 performs processing while moving along the moving direction F with respect to the end surface ES of the plate glass G that is stopped is not limited thereto, but is opposite to the moving direction F. The processing tool 2 at a fixed position may process the end surface ES of the glass sheet G that moves in the direction.
 加工具2は、砥石6と、砥石6を支持するアーム部材7とを有する。砥石6は、回転しながら板ガラスGの端面ESを研削加工等する円柱形状又は円錐台形状の円盤部材である。砥石6は、その円盤面6Aが板ガラスGの主面Gaと平行になるようにアーム部材7に支持される。砥石6は、駆動モータにより回転駆動される。駆動モータは、制御装置5に接続されている。研削加工用の砥石としては、例えばダイヤモンド砥粒を金属の電着ボンドで固めてなる電着砥石や、砥粒を金属質結合剤で固めてなるメタルボンド砥石が好適に使用される。研磨加工用の砥石としては、例えばSiC砥粒を、硬化性樹脂を主成分とするレジンボンド等の結合剤と混合し、この混合物を焼成してなるレジンボンド砥石が好適に使用される。 The processing tool 2 includes a grindstone 6 and an arm member 7 that supports the grindstone 6. The grindstone 6 is a circular or truncated cone disk member that grinds the end surface ES of the glass sheet G while rotating. The grindstone 6 is supported by the arm member 7 so that its disk surface 6A is parallel to the main surface Ga of the plate glass G. The grindstone 6 is rotationally driven by a drive motor. The drive motor is connected to the control device 5. As the grindstone for grinding, for example, an electrodeposited grindstone in which diamond abrasive grains are hardened with a metal electrodeposition bond, or a metal bond grindstone in which abrasive grains are hardened with a metallic binder is preferably used. As a grindstone for polishing, for example, a resin bond grindstone obtained by mixing SiC abrasive grains with a binder such as a resin bond mainly composed of a curable resin and firing the mixture is suitably used.
 図2に示すように、砥石6は、板ガラスGの端面ESを加工するための複数の溝部6aを有する。未使用状態の砥石6の場合、各溝部6aの深さは等しくなっている。各溝部6aは、同一の粒度及び同種のボンドにより構成されてもよく、異なる粒度及び異種のボンドにより構成されてもよい。 As shown in FIG. 2, the grindstone 6 has a plurality of grooves 6a for processing the end surface ES of the plate glass G. In the case of the grindstone 6 in an unused state, the depth of each groove 6a is equal. Each groove part 6a may be comprised by the same particle size and the same kind of bond, and may be comprised by a different particle size and a different kind of bond.
 アーム部材7は、一方端部が回動可能に枢支され、他方端部において砥石6を回転駆動可能に支持している。アーム部材7は、2つの部材7a,7bの端部を接続した屈曲形状を有している。しかしながら、本発明はこれに限定されず、アーム部材7は、一体の部材で構成されて直線形状を有してもよい。 The arm member 7 is pivotally supported at one end so as to be rotatable, and supports the grindstone 6 at the other end so as to be rotationally driven. The arm member 7 has a bent shape in which the ends of the two members 7a and 7b are connected. However, the present invention is not limited to this, and the arm member 7 may be formed of an integral member and have a linear shape.
 アーム部材7は、その回動動作により、砥石6を板ガラスGの端面ESに接近させ、または端面ESから離反させる。これにより、砥石6は、板ガラスGの端面ESに近づく接近方向CDaと、板ガラスGから遠ざかる離反方向CDbとに移動可能に構成される。以下、板ガラスGの接近方向CDaと離反方向CDbとを総称して、切り込み方向CDという。 The arm member 7 causes the grindstone 6 to approach the end surface ES of the plate glass G or to move away from the end surface ES by the rotating operation. Thereby, the grindstone 6 is comprised so that a movement in the approach direction CDa approaching the end surface ES of the plate glass G and the separation direction CDb moving away from the plate glass G is possible. Hereinafter, the approach direction CDa and the separation direction CDb of the plate glass G are collectively referred to as a cutting direction CD.
 加工具2は、基準位置RP、待機位置SPの2か所に移動するように制御される。基準位置RPとは、端面加工工程において、切り込み方向CDにおける加工具2の位置を測定するために設定される初期位置である。待機位置SPとは、加工を終えた加工具2が板ガラスGから離れて待機する位置である。 The processing tool 2 is controlled to move to two locations, the reference position RP and the standby position SP. The reference position RP is an initial position set for measuring the position of the processing tool 2 in the cutting direction CD in the end face processing step. The standby position SP is a position where the processing tool 2 that has finished processing leaves the glass sheet G and waits.
 板ガラス加工装置1はアーム位置制御部8を更に備え得る。アーム位置制御部8は、加工具2が待機位置SP、基準位置RPの2か所に移動するように、当該アーム部材7の位置を制御する。加工具2が待機位置SPから基準位置RPに移動する間、基準位置RPから待機位置SPに移動する間、そして待機位置SPに位置する際、アーム部材7は、アーム位置制御部8の制御によってロック状態にあって自由に動かない。一方、加工具2が基準位置RPに位置する際、アーム位置制御部8による制御が働かずロックが外されており、アーム部材7はアームフリーになっている。 The glass sheet processing apparatus 1 may further include an arm position control unit 8. The arm position control unit 8 controls the position of the arm member 7 so that the processing tool 2 moves to two positions of the standby position SP and the reference position RP. While the processing tool 2 moves from the standby position SP to the reference position RP, when the processing tool 2 moves from the reference position RP to the standby position SP, and when positioned at the standby position SP, the arm member 7 is controlled by the arm position control unit 8. It is locked and cannot move freely. On the other hand, when the processing tool 2 is positioned at the reference position RP, the control by the arm position control unit 8 does not work and the lock is released, and the arm member 7 is arm-free.
 押圧力発生要素3は、加工具2を板ガラスGの端面ESへ付勢して押圧力を発生させる。例えば、押圧力発生要素3はアーム部材7に偶力を与えることにより加工具2を板ガラスGの端面ESへ付勢する。本実施形態では、押圧力発生要素3は、板ガラスGの端面ESと、基準位置RPに移動した加工具2の砥石6とが接触するタイミングで、アーム部材7に偶力を与える。基準位置RPでは、アーム部材7はアームフリーになっているため、偶力によって加工具2は端面ESへ付勢される。 The pressing force generating element 3 urges the processing tool 2 toward the end surface ES of the glass sheet G to generate a pressing force. For example, the pressing force generating element 3 applies a couple to the arm member 7 to urge the processing tool 2 toward the end surface ES of the glass sheet G. In the present embodiment, the pressing force generating element 3 applies a couple force to the arm member 7 at the timing when the end surface ES of the glass sheet G and the grindstone 6 of the processing tool 2 moved to the reference position RP come into contact with each other. Since the arm member 7 is arm-free at the reference position RP, the processing tool 2 is biased toward the end surface ES by a couple.
 押圧力発生要素3は低摺動抵抗エアシリンダであり得る。本実施形態においては、低摺動性による高速応答性及びピストンレスによる長寿命等を考慮して、低摺動抵抗エアシリンダとしてダイヤフラムシリンダを使用し得る。押圧力発生要素3は、エアシリンダに限らず、油圧シリンダやその他周知の駆動装置、又はばねや重りなど押圧力を発生できる部材を用いてよい。加工具2は、押圧力発生要素3により、板ガラスGに対する押圧力が一定となるようにフィードバック制御される定圧式加工具である。このような定圧式加工具は、板ガラスGの端面ESが有するうねりに倣うので、板ガラスGの端面ESを略一定の切り込み量で加工できる。 The pressing force generating element 3 can be a low sliding resistance air cylinder. In the present embodiment, a diaphragm cylinder can be used as a low sliding resistance air cylinder in consideration of high-speed response due to low slidability and long life due to pistonlessness. The pressing force generating element 3 is not limited to an air cylinder, and may be a hydraulic cylinder, other known driving device, or a member capable of generating a pressing force such as a spring or a weight. The processing tool 2 is a constant pressure processing tool that is feedback-controlled by the pressing force generating element 3 so that the pressing force against the glass sheet G is constant. Since such a constant pressure type processing tool follows the undulation of the end surface ES of the plate glass G, the end surface ES of the plate glass G can be processed with a substantially constant cut amount.
 上記の加工具2は、押圧力発生要素3、測定部4、及びアーム位置制御部8とともに一体化され、加工ユニットUを構成する。加工ユニットUは、移動機構によって移動可能に構成される。すなわち、加工ユニットUは、移動機構を介して、加工具2を移動方向Fに沿って移動させ、又は切り込み方向CDに移動させる。 The above processing tool 2 is integrated with the pressing force generating element 3, the measuring unit 4, and the arm position control unit 8 to constitute a processing unit U. The processing unit U is configured to be movable by a moving mechanism. That is, the processing unit U moves the processing tool 2 along the moving direction F or moves in the cutting direction CD via the moving mechanism.
 測定部4は、加工具2と測定部4との距離を測定する。測定部4は、例えば光学式、渦電流式、超音波式などの変位センサである。本実施形態では、測定部4として渦電流式変位センサを使用する。図1に示すように、測定部4はアーム部材7に対して押圧力発生要素3、アーム位置制御部8と同じ側であってアーム部材7から所定距離離間した位置に配置される。そして、測定部4は、この測定部4からアーム部材7までの距離を加工具2の位置情報として測定する。測定部4は、制御装置5に接続されており、測定したデータを制御装置5に送信する。 The measuring unit 4 measures the distance between the processing tool 2 and the measuring unit 4. The measurement unit 4 is a displacement sensor such as an optical type, an eddy current type, or an ultrasonic type. In the present embodiment, an eddy current displacement sensor is used as the measurement unit 4. As shown in FIG. 1, the measuring unit 4 is disposed on the same side of the arm member 7 as the pressing force generating element 3 and the arm position control unit 8 and at a predetermined distance from the arm member 7. Then, the measuring unit 4 measures the distance from the measuring unit 4 to the arm member 7 as position information of the processing tool 2. The measuring unit 4 is connected to the control device 5 and transmits the measured data to the control device 5.
 制御装置5は、例えばCPU、ROM、RAM、HDD、入出力インターフェース等の各種ハードウェアを実装するコンピュータ(例えばPC)を含む。制御装置5は、各種の演算を実行する演算処理部9と、板ガラスGの加工に必要なデータや各種プログラムを記憶する記憶部10と、を備える。制御装置5は、表示装置11に接続されており、板ガラスGの加工に係る情報を、この表示装置11に表示させる。また、制御装置5は、加工具2の砥石6を回転させる駆動モータに接続され、当該駆動モータの制御を実行する。 The control device 5 includes a computer (for example, a PC) on which various hardware such as a CPU, a ROM, a RAM, an HDD, and an input / output interface are mounted. The control device 5 includes an arithmetic processing unit 9 that executes various calculations and a storage unit 10 that stores data and various programs necessary for processing the glass sheet G. The control device 5 is connected to the display device 11 and causes the display device 11 to display information relating to the processing of the plate glass G. Moreover, the control apparatus 5 is connected to the drive motor which rotates the grindstone 6 of the processing tool 2, and performs control of the said drive motor.
 制御装置5は、記憶部10に記憶される各種データ及び各種プログラムを演算処理部9によって実行し、押圧力発生要素3、加工ユニットUの制御に必要なプログラムを実行する。制御装置5は、測定部4から受信した加工具2の位置情報(数値)を、表示装置11に表示させる。 The control device 5 executes various data and various programs stored in the storage unit 10 by the arithmetic processing unit 9, and executes a program necessary for controlling the pressing force generating element 3 and the machining unit U. The control device 5 causes the display device 11 to display the position information (numerical value) of the processing tool 2 received from the measurement unit 4.
 演算処理部9は、加工具2の位置情報から加工開始時における加工具2の移動量Dを算出できる。演算処理部9は、移動量Dを閾値TH1,TH2と比較する判定部12を備える。 The arithmetic processing unit 9 can calculate the movement amount D of the processing tool 2 at the start of processing from the position information of the processing tool 2. The arithmetic processing unit 9 includes a determination unit 12 that compares the movement amount D with threshold values TH1 and TH2.
 記憶部10は、測定部4によって取得された加工具2の位置情報の他、押圧力発生要素3、アーム位置制御部8、加工ユニットUの移動機構等を制御するための各種プログラムを記憶している。記憶部10は、基準位置RPの補正に係るプログラム(ソフトウェア)を記憶している。また、記憶部10は、加工具2の移動量Dに係る閾値TH1,TH2を記憶している。閾値TH1,TH2の値は、制御装置5において任意に設定できる。 The storage unit 10 stores various programs for controlling the pressing force generating element 3, the arm position control unit 8, the moving mechanism of the processing unit U, etc., in addition to the position information of the processing tool 2 acquired by the measuring unit 4. ing. The storage unit 10 stores a program (software) related to the correction of the reference position RP. Further, the storage unit 10 stores threshold values TH1 and TH2 related to the movement amount D of the processing tool 2. The values of the thresholds TH1 and TH2 can be arbitrarily set in the control device 5.
 以下、上記構成の板ガラス加工装置1を使用して板ガラスGを製造する方法について説明する。板ガラスGの製造方法は、切断工程と、端面加工工程とを主に備える。必要に応じ、端面加工工程の後工程として、洗浄工程が設けられる。 Hereinafter, a method for producing the plate glass G using the plate glass processing apparatus 1 having the above-described configuration will be described. The manufacturing method of the plate glass G mainly includes a cutting step and an end face processing step. If necessary, a cleaning process is provided as a subsequent process of the end face processing process.
 切断工程に供給される板ガラスMGには、公知の各種成形法によって成形されたガラスリボンを切断することによって得られた板ガラスを使用できる。公知の各種成形法として、例えば、フロート法、ロールアウト法、オーバーフローダウンドロー法、スロットダウンドロー法、リドロー法等を採用できる。オーバーフローダウンドロー法を採用する場合、例えば、断面が略くさび形の成形体の上部に設けられたオーバーフロー溝に溶融ガラスを流し込み、このオーバーフロー溝から両側に溢れ出た溶融ガラスを成形体の両側の側壁部に沿って流下させながら、成形体の下端部で融合一体化し、ガラスリボンを連続成形する。 As the plate glass MG supplied to the cutting step, a plate glass obtained by cutting a glass ribbon formed by various known forming methods can be used. As various known forming methods, for example, a float method, a rollout method, an overflow downdraw method, a slot downdraw method, a redraw method and the like can be employed. When the overflow down draw method is adopted, for example, molten glass is poured into an overflow groove provided on the upper part of a substantially wedge-shaped cross section, and the molten glass overflowing on both sides of the overflow groove is placed on both sides of the molded body. The glass ribbon is continuously formed by fusing and integrating at the lower end of the molded body while flowing down along the side wall.
 成形されたガラスリボンを徐冷炉により徐冷することで、その歪を除去した後、ガラスリボンを冷却する。冷却されたガラスリボンは、所定の長さで切断すると共に、幅方向の両端部を切断によって除去する。これにより、板ガラスMGが得られる。 The formed glass ribbon is gradually cooled in a slow cooling furnace to remove the distortion, and then the glass ribbon is cooled. The cooled glass ribbon is cut at a predetermined length, and both ends in the width direction are removed by cutting. Thereby, plate glass MG is obtained.
 切断工程に供給された板ガラスMGは、切断によって所望の寸法の板ガラスに切り出される。切断工程では、板ガラスMGから一枚又は複数枚の板ガラスが切り出される。これにより、板ガラス加工装置1の加工対象となる板ガラスGが得られる。この板ガラスMGの切断は、例えばスクライブ切断によって行われる。 The plate glass MG supplied to the cutting step is cut into a plate glass having a desired size by cutting. In the cutting step, one or a plurality of plate glasses are cut out from the plate glass MG. Thereby, the plate glass G used as the process target of the plate glass processing apparatus 1 is obtained. The plate glass MG is cut by, for example, scribe cutting.
 以下、スクライブ切断について図3を参照しながら説明する。まず、大型の板ガラスMGの切断予定線CLに沿ってスクライブホイールSHを走行させる。これにより、板ガラスMGには、切断予定線CLに沿って所定深さを有するスクライブ線が刻設される。その後、このスクライブ線の周辺に曲げモーメントを作用させ、板ガラスMGをこのスクライブ線に沿って折り割る。この折割りによって複数の板ガラスGが得られる。 Hereinafter, scribe cutting will be described with reference to FIG. First, the scribe wheel SH is caused to travel along the planned cutting line CL of the large plate glass MG. Thereby, a scribe line having a predetermined depth is engraved on the plate glass MG along the planned cutting line CL. Thereafter, a bending moment is applied to the periphery of the scribe line, and the plate glass MG is broken along the scribe line. A plurality of plate glasses G are obtained by this folding.
 その後、板ガラスGに対して、図1に示す板ガラス加工装置1による端面加工工程が実施される。端面加工工程は、板ガラスGの端面ESを研削する工程(研削工程)と、研削工程後に当該端面ESを研磨する工程(研磨工程)とを含む。研削工程及び研磨工程では、押圧力発生要素3、測定部4、制御装置5、及びアーム位置制御部8による砥石6の位置制御工程が実行される。 Thereafter, an end face processing step is performed on the plate glass G by the plate glass processing apparatus 1 shown in FIG. The end surface processing step includes a step of grinding the end surface ES of the plate glass G (grinding step) and a step of polishing the end surface ES after the grinding step (polishing step). In the grinding process and the polishing process, the position control process of the grindstone 6 by the pressing force generating element 3, the measurement unit 4, the control device 5, and the arm position control unit 8 is executed.
 以下、端面加工工程の概要について説明する。切断工程を経て構成される板ガラスGは、図示しないコンベア(搬送装置)によって、端面加工工程における加工位置に搬送される。コンベアは板ガラスGを加工位置に配置した後、端面加工が終了するまで一時停止する。また、加工位置に配置された板ガラスGは、図示しない定盤に保持される。 Hereinafter, the outline of the end face machining process will be described. The plate glass G configured through the cutting process is conveyed to a processing position in the end surface processing process by a conveyor (conveying device) (not shown). After the plate glass G is disposed at the processing position, the conveyor temporarily stops until the end face processing is completed. Moreover, the plate glass G arrange | positioned in a process position is hold | maintained at the surface plate which is not shown in figure.
 板ガラスGが設置されると、加工ユニットUは、移動方向Fに沿って移動を開始する。板ガラスGに近づくと、加工具2の砥石6は、アーム位置制御部8の制御によって待機位置SPから基準位置RPまで移動する。押圧力発生要素3は、加工具2の砥石6が加工始端部C1に接触するタイミングで、アーム部材7を付勢する。この付勢により、砥石6は、一定の押圧力で板ガラスGの端面ESに接触する。 When the plate glass G is installed, the processing unit U starts to move along the moving direction F. When approaching the plate glass G, the grindstone 6 of the processing tool 2 moves from the standby position SP to the reference position RP under the control of the arm position control unit 8. The pressing force generating element 3 biases the arm member 7 at the timing when the grindstone 6 of the processing tool 2 comes into contact with the processing start end portion C1. By this urging, the grindstone 6 comes into contact with the end surface ES of the plate glass G with a constant pressing force.
 そして、加工具2は、加工始端部C1から、加工終端部C2まで、端面ESに対する研削加工等を行う。この間、押圧力発生要素3は、アーム部材7を付勢し続ける。本例では、制御装置5による加工ユニットUの制御により、加工具2の砥石6を板ガラスGの端面ESに接触させた状態で、板ガラスGの長辺における加工始端部C1から加工終端部C2に亘って移動させる。 And the processing tool 2 performs the grinding process etc. with respect to the end surface ES from the process start end part C1 to the process end part C2. During this time, the pressing force generating element 3 continues to urge the arm member 7. In this example, the processing unit U is controlled by the control device 5 so that the grinding stone 6 of the processing tool 2 is brought into contact with the end surface ES of the plate glass G, and the processing start end portion C1 on the long side of the plate glass G is changed to the processing end portion C2. Move across.
 その後、砥石6が板ガラスGの端面ESから離間するタイミングで押圧力発生要素3は付勢を停止し、加工具2は、アーム位置制御部8の制御によって待機位置SPに戻る。なお、加工具2は、板ガラスGの端面ESの一部を加工するように移動しても良い。端面ESの加工が終了すると、定盤は、板ガラスGの保持を解除し、コンベアは、板ガラスGを次工程へと搬送する。 Thereafter, at the timing when the grindstone 6 is separated from the end surface ES of the glass sheet G, the pressing force generating element 3 stops urging, and the processing tool 2 returns to the standby position SP by the control of the arm position control unit 8. The processing tool 2 may move so as to process a part of the end surface ES of the plate glass G. When the processing of the end surface ES is finished, the surface plate releases the holding of the plate glass G, and the conveyor conveys the plate glass G to the next step.
 次に、図4乃至図11を参照しながら、端面加工工程の加工開始時における位置制御工程の詳細について説明する。図4に示すように、位置制御工程は、加工開始前において加工具2が板ガラスGの端面ESに接触する前に、当該加工具2を基準位置RPに配置する準備工程S1と、測定部4及び制御装置5による測定工程S2と、判定部12による判定工程S3と、制御装置5による補正工程S4とを主に備える。 Next, details of the position control process at the time of starting the end face machining process will be described with reference to FIGS. 4 to 11. As shown in FIG. 4, the position control step includes a preparation step S <b> 1 for arranging the processing tool 2 at the reference position RP before the processing tool 2 comes into contact with the end surface ES of the glass sheet G before the processing starts, and the measuring unit 4. And the measurement process S2 by the control apparatus 5, the determination process S3 by the determination part 12, and the correction process S4 by the control apparatus 5 are mainly provided.
 図5乃至図8は、基準位置RPに設置された加工具2が接近方向CDaに移動する場合における制御態様を示す。 5 to 8 show control modes when the processing tool 2 installed at the reference position RP moves in the approaching direction CDa.
 図5及び図6に示すように、準備工程S1では、移動方向Fに沿って移動する加工具2が板ガラスGに近傍に到達すると、アーム位置制御部8の制御により、待機位置SP(図5において一点鎖線で示す位置)にある加工具2を接近方向CDaに移動させる。これにより、加工具2は、基準位置RP(図5及び図6において実線で示す位置)に設置される。加工具2が基準位置RPに設置されると、押圧力発生要素3は、上記のように加工具2の定圧制御を開始する。 As shown in FIGS. 5 and 6, in the preparation step S <b> 1, when the processing tool 2 moving in the movement direction F reaches the vicinity of the glass sheet G, the standby position SP (FIG. 5) is controlled by the arm position control unit 8. The position of the processing tool 2 at the position indicated by the alternate long and short dash line in FIG. Thereby, the processing tool 2 is installed in the reference position RP (the position indicated by the solid line in FIGS. 5 and 6). When the processing tool 2 is installed at the reference position RP, the pressing force generating element 3 starts constant pressure control of the processing tool 2 as described above.
 図5乃至図7に示すように、基準位置RPに配置された加工具2の溝部6aが板ガラスGの端面ESから離れている場合、押圧力発生要素3は、アーム部材7を押して加工具2を接近方向CDaに移動させる。 As shown in FIGS. 5 to 7, when the groove 6 a of the processing tool 2 arranged at the reference position RP is separated from the end surface ES of the plate glass G, the pressing force generating element 3 pushes the arm member 7 to press the processing tool 2. Is moved in the approach direction CDa.
 加工具2が板ガラスGの端面ESに接触すると、板ガラスGの加工が開始する。押圧力発生要素3は、この接触を検出し、加工具2の押圧力が一定となるようにアーム部材7に対する圧力を調整する。 When the processing tool 2 comes into contact with the end surface ES of the plate glass G, the processing of the plate glass G starts. The pressing force generating element 3 detects this contact and adjusts the pressure on the arm member 7 so that the pressing force of the processing tool 2 is constant.
 制御装置5は、砥石6の位置情報を記憶部10に保存するとともに、砥石6の位置情報に係る時間的変化をグラフとして表示装置11に表示させる。図7は、加工開始時における砥石6の位置情報を示すグラフを示す。図7において、基準位置RPは、0として表示される。また、砥石6が基準位置RPよりも接近方向CDa側に位置する場合、この位置は、正(+)の値として表示される。一方、砥石6が基準位置RPから離反方向CDb側にある場合、この位置は、負(-)の値として表示される。 The control device 5 stores the position information of the grindstone 6 in the storage unit 10 and causes the display device 11 to display a temporal change related to the position information of the grindstone 6 as a graph. FIG. 7 shows a graph showing position information of the grindstone 6 at the start of machining. In FIG. 7, the reference position RP is displayed as 0. Further, when the grindstone 6 is positioned closer to the approaching direction CDa than the reference position RP, this position is displayed as a positive (+) value. On the other hand, when the grindstone 6 is on the side away from the reference position RP in the CDb direction, this position is displayed as a negative (−) value.
 本実施形態では、上記のように、基準位置RPよりも接近方向CDa側にある加工具2の位置を正(+)の値とし、基準位置RPよりも離反方向CDb側にある加工具2の位置を負(-)の値としているが、この正負は、砥石6に係る接近方向CDaの移動と離反方向CDbの移動とを単に区別するために設定される。したがって、上記とは逆に、離反方向CDb側の位置情報を正(+)とし、接近方向CDa側の位置情報を負(-)に設定することも可能である。 In the present embodiment, as described above, the position of the processing tool 2 located closer to the approaching direction CDa than the reference position RP is set to a positive (+) value, and the processing tool 2 located closer to the separation direction CDb than the reference position RP is used. Although the position is a negative (−) value, this positive / negative is set to simply distinguish the movement in the approach direction CDa and the movement in the separation direction CDb related to the grindstone 6. Therefore, contrary to the above, the position information on the separation direction CDb side can be set to positive (+), and the position information on the approach direction CDa side can be set to negative (−).
 測定工程S2において、測定部4は、加工具2の位置(加工具2と測定部4との距離)を測定するとともに、その位置情報を制御装置5に送信する。制御装置5の演算処理部9は、測定部4から受信した加工具2の位置情報に基づいて、加工具2が基準位置RPから板ガラスGの端面ESに接触するまでの距離、すなわち正(+)の移動量Dを算出する。  In the measurement step S2, the measuring unit 4 measures the position of the processing tool 2 (distance between the processing tool 2 and the measuring unit 4) and transmits the position information to the control device 5. Based on the position information of the processing tool 2 received from the measurement unit 4, the arithmetic processing unit 9 of the control device 5 determines the distance until the processing tool 2 comes into contact with the end surface ES of the glass sheet G from the reference position RP, that is, positive (+ ) Is calculated. *
 判定工程S3において、演算処理部9の判定部12は、算出された加工具2の移動量Dを正(+)の閾値TH1と比較する。移動量Dが閾値TH1を超えている場合、演算処理部9は、次回の加工に係る加工具2の基準位置RPを更新する。すなわち、演算処理部9は、演算により求めた加工具2の移動量Dに基づいて、次回の加工における加工具2の基準位置RPを決定する。 In the determination step S3, the determination unit 12 of the arithmetic processing unit 9 compares the calculated movement amount D of the processing tool 2 with a positive (+) threshold value TH1. When the movement amount D exceeds the threshold value TH1, the arithmetic processing unit 9 updates the reference position RP of the processing tool 2 related to the next processing. That is, the arithmetic processing unit 9 determines the reference position RP of the processing tool 2 in the next processing based on the movement amount D of the processing tool 2 obtained by the calculation.
 次回の加工に係る加工具2の基準位置RPは、以下の式(1)に基づいて決定される。
  CV=CF×X   ・・・(1)
The reference position RP of the processing tool 2 related to the next processing is determined based on the following formula (1).
CV = CF × X (1)
 ここで、CVは、基準位置RPに係る補正値であり、CFは、基準位置RPに係る補正率であり、Xは、測定された加工具2の移動量D(mm)である。 Here, CV is a correction value related to the reference position RP, CF is a correction rate related to the reference position RP, and X is a measured movement amount D (mm) of the processing tool 2.
 補正値CVは、次回の加工前に設定されている基準位置RPに加算される正又は負の数値(mm)である。補正率CFは、例えば0から1の間で任意に設定される数値(%)である。 The correction value CV is a positive or negative numerical value (mm) added to the reference position RP set before the next machining. The correction factor CF is a numerical value (%) arbitrarily set between 0 and 1, for example.
 加工開始時に加工具2が板ガラスGの端面ESから離れる傾向がある場合、補正率CFを大きく設定して補正値CVを算出することが望ましい。これにより、次回の加工において基準位置RPに設置された加工具2は、板ガラスGの端面ESに可及的に接近した状態となる。 When the processing tool 2 tends to move away from the end surface ES of the glass sheet G at the start of processing, it is desirable to calculate the correction value CV by setting the correction factor CF large. Thereby, the processing tool 2 installed at the reference position RP in the next processing is in a state as close as possible to the end surface ES of the plate glass G.
 一方、加工開始時に加工具2が離反方向CDbに移動する傾向がある場合、次回の加工において、加工具2を端面ESから大きく離れるように基準位置RPを設定すると、加工開始時に加工具2が端面ESに接触せず、板ガラスGに未加工部分が残存するおそれがある。このような事態を防止するために、離反方向CDbに係る加工具2の補正率CFは、接近方向CDaに係る加工具2の補正率CFよりも小さく設定されることが望ましい。 On the other hand, when the processing tool 2 has a tendency to move in the separation direction CDb at the start of processing, in the next processing, if the reference position RP is set so that the processing tool 2 is far away from the end surface ES, the processing tool 2 is There is a possibility that an unprocessed portion remains on the glass sheet G without contacting the end surface ES. In order to prevent such a situation, it is desirable that the correction rate CF of the processing tool 2 related to the separation direction CDb is set smaller than the correction rate CF of the processing tool 2 related to the approaching direction CDa.
 接近方向CDa側に基準位置RPを補正する場合の補正率CFは、例えば50~100%に設定することが望ましい。離反方向CDb側に基準位置RPを補正する場合の補正率CFは、例えば10~50%に設定することが望ましい。 The correction factor CF for correcting the reference position RP toward the approaching direction CDa is preferably set to 50 to 100%, for example. The correction factor CF when correcting the reference position RP in the separation direction CDb side is preferably set to 10 to 50%, for example.
 以下、図8を参照しながら、制御装置5による判定工程S3及び補正工程S4について詳細に説明する。図8は、一ロットに含まれる複数の板ガラスGを加工する場合に、演算処理部9によって作成される加工履歴データの一部を例示する。 Hereinafter, the determination step S3 and the correction step S4 by the control device 5 will be described in detail with reference to FIG. FIG. 8 illustrates a part of the processing history data created by the arithmetic processing unit 9 when processing a plurality of plate glasses G included in one lot.
 この履歴データは、十枚の板ガラスG1~G10の加工が完了し、次回の板ガラスG11を加工する場合を示す。履歴データには、各板ガラスG1~G10に対応する加工具2の移動量Dの値が含まれる。以下では、補正率CFが80%、閾値TH1が+0.040mmに設定されている場合における判定工程S3及び補正工程S4を説明する。 This history data indicates a case where ten sheets of glass sheets G1 to G10 have been processed and the next sheet glass G11 is processed. The history data includes the value of the movement amount D of the processing tool 2 corresponding to each of the glass sheets G1 to G10. Hereinafter, the determination step S3 and the correction step S4 when the correction rate CF is set to 80% and the threshold value TH1 is set to +0.040 mm will be described.
 制御装置5の演算処理部9は、直近で測定した一枚の板ガラスGに対応する加工具2の移動量Dに基づいて基準位置RPを更新するため、一枚の板ガラスGの加工が終了する度に、判定工程S3を毎回実行する。 Since the arithmetic processing unit 9 of the control device 5 updates the reference position RP based on the movement amount D of the processing tool 2 corresponding to the one sheet glass G measured most recently, the processing of one sheet glass G is completed. The determination step S3 is executed every time.
 演算処理部9の判定部12は、板ガラスG11に先立って加工された板ガラスG10に対応する加工具2の移動量Dのデータを閾値TH1と比較する。本例では、板ガラスG10に対応する移動量D(+0.060mm)が閾値TH1(+0.040mm)を超えていることから、補正工程S4が実行される。補正工程S4では、演算処理部9が、上記の式(1)に基づいて、板ガラスG10に対応する移動量Dのデータに、補正率CF(80%)を乗じ、補正値CVとして、0.048mmを得る。なお、本例と異なり、板ガラスG10に対応する移動量Dが閾値TH1を超えていない場合、補正工程S4が実行されることなく、次回の板ガラスG11の加工に係る基準位置RPは、前回の板ガラスG10の加工に係る基準位置RPと同じになる。 The determination part 12 of the arithmetic processing part 9 compares the data of the movement amount D of the processing tool 2 corresponding to the plate glass G10 processed prior to the plate glass G11 with the threshold value TH1. In this example, since the movement amount D (+0.060 mm) corresponding to the plate glass G10 exceeds the threshold value TH1 (+0.040 mm), the correction step S4 is executed. In the correction step S4, the arithmetic processing unit 9 multiplies the data of the movement amount D corresponding to the glass sheet G10 by the correction factor CF (80%) based on the above formula (1), and sets the correction value CV as 0. 048 mm is obtained. Unlike the present example, when the movement amount D corresponding to the plate glass G10 does not exceed the threshold value TH1, the reference position RP related to the next processing of the plate glass G11 is not performed without performing the correction step S4. It becomes the same as the reference position RP related to the processing of G10.
 制御装置5は、直近に行われた板ガラスG10の加工時に設定された基準位置RPの値に、上記の補正値CVを加算して、次回の板ガラスG11の加工に係る新たな基準位置RPを設定する。制御装置5は、更新された基準位置RPに係る制御データをアーム位置制御部8に送信する。板ガラスG11の準備工程S1において、アーム位置制御部8は、砥石6を新たな基準位置RPに設置する。その結果、板ガラスG11の準備工程S1の基準位置RPは、前回の板ガラスG10の準備工程S1の基準位置RPから補正値CVだけ移動する。 The control device 5 adds the correction value CV to the value of the reference position RP set at the time of the most recent processing of the plate glass G10, and sets a new reference position RP related to the next processing of the plate glass G11. To do. The control device 5 transmits control data related to the updated reference position RP to the arm position control unit 8. In the preparation step S1 of the plate glass G11, the arm position control unit 8 installs the grindstone 6 at a new reference position RP. As a result, the reference position RP in the preparation step S1 of the plate glass G11 moves by the correction value CV from the reference position RP in the preparation step S1 of the previous plate glass G10.
 複数の板ガラスGを順に加工する場合、補正工程S4の移動量Dとして、複数の板ガラスに係る加工具2の移動量Dの平均値を用いることが望ましい。このように平均値を用いる場合の判定工程S3及び補正工程S4について説明する。閾値TH1、補正率CFの値は、上記の例と同じである。本例では、次回の板ガラスG11の加工に対して、直近三回の加工に係る加工具2の移動量Dの平均値、すなわち、板ガラスG8~G10に係る加工具2の移動量Dの平均値が補正値CVの演算に使用される。 When processing a plurality of plate glasses G in order, it is desirable to use an average value of the movement amount D of the processing tool 2 related to the plurality of plate glasses as the movement amount D of the correction step S4. The determination step S3 and the correction step S4 when using the average value in this way will be described. The values of the threshold TH1 and the correction factor CF are the same as in the above example. In this example, with respect to the next processing of the plate glass G11, the average value of the movement amount D of the processing tool 2 related to the last three processings, that is, the average value of the movement amount D of the processing tool 2 related to the plate glasses G8 to G10. Is used to calculate the correction value CV.
 判定工程S3では、演算処理部9の判定部12が、板ガラスG11に先立って加工された板ガラスG10に対応する加工具2の移動量Dのデータを閾値TH1と比較する。本例では、板ガラスG10に対応する加工具2の移動量D(+0.060mm)が閾値TH1(+0.040mm)を超えていることから、補正工程S4が実行される。補正工程S4では、制御装置5の演算処理部9が、履歴データを参照して、次回の板ガラスG11に係る加工具2の基準位置RPを設定するために、板ガラスG8~G10に係る加工具2の移動量Dの平均値(0.040+0.050+0.060)/3を算出する。 In the determination step S3, the determination unit 12 of the arithmetic processing unit 9 compares the data of the movement amount D of the processing tool 2 corresponding to the plate glass G10 processed prior to the plate glass G11 with the threshold value TH1. In this example, since the moving amount D (+0.060 mm) of the processing tool 2 corresponding to the plate glass G10 exceeds the threshold value TH1 (+0.040 mm), the correction step S4 is executed. In the correction step S4, the processing unit 9 of the control device 5 refers to the history data, and sets the reference position RP of the processing tool 2 related to the next glass sheet G11, so that the processing tool 2 related to the glass sheets G8 to G10. The average value (0.040 + 0.050 + 0.060) / 3 of the movement amount D is calculated.
 演算処理部9は、算出した平均値(+0.050mm)に補正率CF(80%)を乗じ、補正値CVとして、+0.040mmを得る。演算処理部9は、上記と同様に、直近に行われた板ガラスG10の加工時に設定された基準位置RPの値に、上記の補正値CVを加算し、次回の板ガラスG11の加工に係る新たな基準位置RPを設定する。そして、制御装置5は、新たな基準位置RPに係る制御信号をアーム位置制御部8に送信する。 The arithmetic processing unit 9 multiplies the calculated average value (+0.050 mm) by the correction factor CF (80%) to obtain +0.040 mm as the correction value CV. In the same manner as described above, the arithmetic processing unit 9 adds the correction value CV to the value of the reference position RP set at the time of the most recent processing of the glass sheet G10, and a new processing related to the processing of the next glass sheet G11. A reference position RP is set. Then, the control device 5 transmits a control signal related to the new reference position RP to the arm position control unit 8.
 図9乃至図11は、基準位置RPに設置された加工具2が離反方向CDbに移動する場合における制御態様を示す。 9 to 11 show a control mode when the processing tool 2 installed at the reference position RP moves in the separation direction CDb.
 図9に示すように、準備工程S1において、加工具2は移動方向Fに沿って移動しながら、アーム位置制御部8により、待機位置SP(一点鎖線で示す位置)にある砥石6を基準位置RP(図9及び図10において実線で示す位置)に移動させる。 As shown in FIG. 9, in the preparation step S <b> 1, while the processing tool 2 moves along the movement direction F, the arm position control unit 8 moves the grindstone 6 at the standby position SP (the position indicated by the alternate long and short dash line) to the reference position. It is moved to RP (position indicated by a solid line in FIGS. 9 and 10).
 砥石6が基準位置RPに設置されると、押圧力発生要素3は、当該砥石6の定圧制御を開始する。この例では、砥石6が基準位置RPに設置された直後に板ガラスGの加工始端部C1に接触する。このとき、押圧力発生要素3は、砥石6に作用する過大な押圧力を検出する。砥石6は、押圧力発生要素3によって一定の押圧力で付勢されていることから、基準位置RPから離反方向CDbに移動する。 When the grindstone 6 is installed at the reference position RP, the pressing force generating element 3 starts constant pressure control of the grindstone 6. In this example, immediately after the grindstone 6 is installed at the reference position RP, it contacts the processing start end portion C1 of the plate glass G. At this time, the pressing force generating element 3 detects an excessive pressing force acting on the grindstone 6. Since the grindstone 6 is urged with a constant pressing force by the pressing force generating element 3, it moves in the separation direction CDb from the reference position RP.
 測定工程S2において、制御装置5は、測定部4から受信した加工具2(砥石6)の位置情報に基づいて、当該砥石6の離反方向CDbに係る負(-)の移動量D(図10及び図11参照)を算出する。 In the measuring step S2, the control device 5 makes a negative (−) movement amount D (FIG. 10) related to the separation direction CDb of the grindstone 6 based on the position information of the processing tool 2 (grindstone 6) received from the measuring unit 4. And FIG. 11).
 判定工程S3において、制御装置5は、演算処理部9の判定部12により、算出した砥石6の移動量Dを負(-)の閾値TH2と比較する。移動量Dが閾値TH2を超えている場合、演算処理部9は、上記の式(1)に基づいて、次回の加工に係る加工具2(砥石6)の基準位置RPを更新する。制御装置5は、更新した新たな基準位置RPに係る制御信号をアーム位置制御部8に送信する。 In the determination step S3, the control device 5 compares the calculated movement amount D of the grindstone 6 with the negative (−) threshold value TH2 by the determination unit 12 of the arithmetic processing unit 9. When the movement amount D exceeds the threshold value TH2, the arithmetic processing unit 9 updates the reference position RP of the processing tool 2 (grinding stone 6) for the next processing based on the above formula (1). The control device 5 transmits a control signal related to the updated new reference position RP to the arm position control unit 8.
 なお、砥石6が複数の溝部6aを有する場合、例えば端面加工には複数の溝部6aが順に用いられる。より具体的には、最も上段に位置する溝部6aを用いて端面加工を行った後、上から二段目に位置する溝部6aを用いて端面加工を行い、その後、上から三段目に位置する溝部6aを用いて端面加工を行う。このようにして全ての溝部6aを使用した後、必要に応じて全ての溝部6aにドレッシングを施し、再び、複数の溝部6aを順に端面加工に用いる。このような使用形態では、端面加工を繰り返すうちに、砥石6の各溝部6aは徐々に摩耗し、摩耗の程度は、溝部6aごとに異なることとなる。このため、図12に示すように、加工の進捗に応じて各溝部6aの深さは異なってくる。したがって、板ガラス加工装置1は、深さの異なる溝部6aごとに基準位置RPを設定すれば、加工開始時において、各溝部6aに応じた基準位置RPに加工具2を設置できる。 In addition, when the grindstone 6 has the some groove part 6a, the some groove part 6a is used in order, for example for end surface processing. More specifically, after end face processing is performed using the groove portion 6a positioned at the uppermost stage, end face processing is performed using the groove section 6a positioned at the second stage from the top, and then the third stage from the top. End face processing is performed using the groove 6a. Thus, after using all the groove parts 6a, if necessary, all the groove parts 6a are dressed, and again, the plurality of groove parts 6a are sequentially used for end face processing. In such a usage pattern, as the end face processing is repeated, each groove 6a of the grindstone 6 is gradually worn, and the degree of wear differs for each groove 6a. For this reason, as shown in FIG. 12, the depth of each groove part 6a changes with progress of a process. Accordingly, the plate glass processing apparatus 1 can set the processing tool 2 at the reference position RP corresponding to each groove 6a at the start of processing by setting the reference position RP for each groove 6a having different depths.
 以上説明した本実施形態に係る板ガラスGの製造方法によれば、測定工程S2において加工具2が板ガラスGの端面に接触するときの加工具2の移動量Dを測定し、補正工程S4において、この移動量Dに基づいて次回の加工に係る加工具2の基準位置RPを設定する。これにより、加工具2の摩耗の影響による加工具2と板ガラスGとの位置関係の変化に応じて、次回の加工に係る加工具2の基準位置RPを最適化できる。したがって、板ガラスGの端面ESに対する加工不良の発生を防止するとともに、加工具2の長寿命化を実現できる。 According to the manufacturing method of the plate glass G which concerns on this embodiment demonstrated above, the movement amount D of the processing tool 2 when the processing tool 2 contacts the end surface of the plate glass G in measurement process S2 is measured, In correction | amendment process S4, Based on this movement amount D, the reference position RP of the processing tool 2 related to the next processing is set. Thereby, according to the change of the positional relationship between the processing tool 2 and the plate glass G due to the influence of the wear of the processing tool 2, the reference position RP of the processing tool 2 related to the next processing can be optimized. Therefore, it is possible to prevent a processing defect from occurring on the end surface ES of the glass sheet G and to prolong the life of the processing tool 2.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In addition, this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect. The present invention can be variously modified without departing from the gist of the present invention.
 上記の実施形態では、押圧力発生要素3をエアシリンダにより構成した例を示したが、本発明はこの構成に限定されない。例えば、アーム部材7にリンク機構及びサーボモータを接続し、サーボモータの駆動軸の回転力を、リンク機構を介してアーム部材7の偶力へと変換し、この力を加工具2の押圧力としてもよい。この場合、加工具2の位置情報を、サーボモータの回転角度に基づいて検出してもよい。 In the above embodiment, an example in which the pressing force generating element 3 is configured by an air cylinder has been described, but the present invention is not limited to this configuration. For example, a link mechanism and a servo motor are connected to the arm member 7, and the rotational force of the drive shaft of the servo motor is converted into a couple force of the arm member 7 via the link mechanism. It is good. In this case, the position information of the processing tool 2 may be detected based on the rotation angle of the servo motor.
 上記の実施形態では、判定工程S3において、加工具2の移動量Dが閾値TH1,TH2を超えた場合に、補正工程S4を実行する例を示したが、これに限らず、閾値を設定することなく、毎回、補正工程S4を実行してもよい。 In the above-described embodiment, the example in which the correction step S4 is executed when the movement amount D of the processing tool 2 exceeds the threshold values TH1 and TH2 in the determination step S3 has been described. Instead, the correction step S4 may be executed every time.
 上記の実施形態では、複数の板ガラスGを順に加工する場合に判定工程S3で移動量Dを用いて判定する例を示したが、これに限らず、判定工程S3の移動量Dとして、複数の板ガラスGに係る加工具2の移動量の平均値を用いてもよい。 In the above-described embodiment, the example in which the determination is performed using the movement amount D in the determination step S3 when the plurality of plate glasses G are sequentially processed is not limited thereto, but the movement amount D in the determination step S3 is a plurality of movement amounts D. You may use the average value of the moving amount | distance of the processing tool 2 which concerns on the plate glass G. FIG.
 2      加工具
 5      制御装置
 6a     溝部
 CDa    接近方向
 CDb    離反方向
 D      移動量
 ES     板ガラスの端面
 G      板ガラス
 RP     基準位置
 S1     準備工程
 S2     測定工程
 S3     判定工程
 S4     補正工程
2 Processing tool 5 Control device 6a Groove part CDa Approach direction CDb Separation direction D Movement amount ES End face of plate glass G Plate glass RP Reference position S1 Preparation step S2 Measurement step S3 Determination step S4 Correction step

Claims (6)

  1.  板ガラスの端面を加工具で加工する端面加工工程を備える板ガラスの製造方法において、
     前記加工具は、前記端面に対して接近方向又は離反方向に移動可能に構成されるとともに、前記端面に対して一定の圧力で接触する定圧式加工具であり、
     前記端面加工工程は、制御装置により前記加工具の位置を制御する位置制御工程を備え、
     前記位置制御工程は、
     加工開始前であって前記加工具が前記端面に接触する前に、前記加工具を基準位置に配置する準備工程と、
     加工を開始する際に前記加工具が前記端面に接触するときの前記接近方向又は前記離反方向における前記加工具の移動量を測定する測定工程と、
     前記移動量に基づいて次回の加工に係る前記加工具の前記基準位置を設定する補正工程と、を備えることを特徴とする板ガラスの製造方法。
    In the manufacturing method of plate glass provided with the end surface processing process which processes the end surface of plate glass with a processing tool,
    The processing tool is configured to be movable in an approaching direction or a separation direction with respect to the end surface, and is a constant pressure processing tool that contacts the end surface with a constant pressure,
    The end face processing step includes a position control step of controlling the position of the processing tool by a control device,
    The position control step includes
    A preparatory step of placing the processing tool at a reference position before starting the processing and before the processing tool contacts the end face;
    A measurement step of measuring the amount of movement of the processing tool in the approaching direction or the separation direction when the processing tool contacts the end surface when starting processing;
    A correction step of setting the reference position of the processing tool related to the next processing based on the amount of movement.
  2.  前記位置制御工程は、前記移動量が閾値を超えたか否かを判定する判定工程をさらに備え、
     前記補正工程は、前記判定工程で前記移動量が前記閾値を超えたと判定された場合に実行される請求項1に記載の板ガラスの製造方法。
    The position control step further includes a determination step of determining whether the movement amount exceeds a threshold value,
    The said correction process is a manufacturing method of the plate glass of Claim 1 performed when it determines with the said moving amount having exceeded the said threshold value by the said determination process.
  3.  前記補正工程では、前記移動量に基づいて前記次回の加工における前記加工具の前記基準位置を設定するための補正値を算出し、
     前記補正値は、以下の式(1)により算出される請求項1又は2に記載の板ガラスの製造方法。
      CV=CF×X   ・・・(1)
    (ただし、CVは補正値、CFは補正率、Xは移動量である。)
    In the correction step, a correction value for setting the reference position of the processing tool in the next processing based on the movement amount is calculated,
    The said correction value is a manufacturing method of the plate glass of Claim 1 or 2 calculated by the following formula | equation (1).
    CV = CF × X (1)
    (However, CV is a correction value, CF is a correction factor, and X is a movement amount.)
  4.  前記補正工程では、前記移動量が前記加工具の前記離反方向の移動を示す場合の前記補正率は、前記移動量が前記加工具の前記接近方向の移動を示す場合の前記補正率よりも小さく設定される請求項3に記載の板ガラスの製造方法。 In the correction step, the correction rate when the movement amount indicates the movement of the processing tool in the separation direction is smaller than the correction rate when the movement amount indicates the movement of the processing tool in the approaching direction. The manufacturing method of the plate glass of Claim 3 set.
  5.  前記測定工程では、複数の前記板ガラスを加工した場合に前記板ガラスごとに前記移動量を測定し、
     前記補正工程では、前記移動量として、複数の前記板ガラスの前記移動量の平均値を用いる請求項1から4のいずれか一項に記載の板ガラスの製造方法。
    In the measuring step, when the plurality of plate glasses are processed, the amount of movement is measured for each plate glass,
    The said correction process is a manufacturing method of the plate glass as described in any one of Claim 1 to 4 which uses the average value of the said moving amount of the said some plate glass as the said moving amount.
  6.  前記加工具は、前記端面を加工する複数の溝部を有する砥石であり、
     前記制御装置は、前記溝部ごとに前記基準位置を設定する請求項1から5のいずれか一項に記載の板ガラスの製造方法。
    The processing tool is a grindstone having a plurality of grooves for processing the end face,
    The said control apparatus is a manufacturing method of the plate glass as described in any one of Claim 1 to 5 which sets the said reference position for every said groove part.
PCT/JP2019/007046 2018-03-29 2019-02-25 Sheet glass production method WO2019187873A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980007233.5A CN111542414B (en) 2018-03-29 2019-02-25 Method for manufacturing plate-shaped glass
KR1020207010620A KR102638516B1 (en) 2018-03-29 2019-02-25 Manufacturing method of plate glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064684 2018-03-29
JP2018064684A JP6973237B2 (en) 2018-03-29 2018-03-29 How to manufacture flat glass

Publications (1)

Publication Number Publication Date
WO2019187873A1 true WO2019187873A1 (en) 2019-10-03

Family

ID=68061332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007046 WO2019187873A1 (en) 2018-03-29 2019-02-25 Sheet glass production method

Country Status (5)

Country Link
JP (1) JP6973237B2 (en)
KR (1) KR102638516B1 (en)
CN (1) CN111542414B (en)
TW (1) TWI785219B (en)
WO (1) WO2019187873A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4519879B1 (en) * 1965-11-18 1970-07-07
JPS4960090A (en) * 1972-10-13 1974-06-11
JPS51107594A (en) * 1975-03-19 1976-09-24 Nippon Seiko Kk KENSAKUBANNOKIRIKOMISURAIDODAIOKURIRYONO SETSUTONOZUREO JIDOHOSEISURUHOHO
JPS5760925Y2 (en) * 1977-09-30 1982-12-25
JPS6138866A (en) * 1984-07-31 1986-02-24 Nippon Sheet Glass Co Ltd Machining
JP2003236748A (en) * 2002-02-14 2003-08-26 Sumitomo Heavy Ind Ltd Grinder
WO2004039538A1 (en) * 2002-10-30 2004-05-13 Bando Kiko Co., Ltd. Glass pane machining device
JP2004243470A (en) * 2003-02-14 2004-09-02 Optrex Corp Chamfering device of work
WO2010131610A1 (en) * 2009-05-15 2010-11-18 旭硝子株式会社 Method for setting working position of grindstone for grinding glass end face
WO2012073626A1 (en) * 2010-12-01 2012-06-07 旭硝子株式会社 Grinding method and grinding device
JP2015006697A (en) * 2011-10-31 2015-01-15 旭硝子株式会社 Processing device and processing method of plate-like object
CN108161638A (en) * 2017-12-26 2018-06-15 佛山市禾才科技服务有限公司 A kind of glass edge-grinding machine intelligent bistrique and its opposite side compensation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969505B2 (en) * 1997-12-04 2007-09-05 株式会社クリスタル光学 Chamfering method and apparatus
TW200948536A (en) * 2008-03-26 2009-12-01 Asahi Glass Co Ltd Method and apparatus for machining glass substrate
CN102039547B (en) * 2009-10-15 2012-11-21 哈里斯股份有限公司 Grinding device, grinding method, and manufacturing method of thin-plate like member
JP5031087B2 (en) * 2010-12-29 2012-09-19 AvanStrate株式会社 Manufacturing method of glass substrate
JPWO2013172307A1 (en) * 2012-05-16 2016-01-12 旭硝子株式会社 Sheet glass manufacturing method
JP6023598B2 (en) * 2013-01-30 2016-11-09 コマツNtc株式会社 Grinding method
JP6032061B2 (en) * 2013-02-27 2016-11-24 日本電気硝子株式会社 Sheet glass processing apparatus and sheet glass processing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4519879B1 (en) * 1965-11-18 1970-07-07
JPS4960090A (en) * 1972-10-13 1974-06-11
JPS51107594A (en) * 1975-03-19 1976-09-24 Nippon Seiko Kk KENSAKUBANNOKIRIKOMISURAIDODAIOKURIRYONO SETSUTONOZUREO JIDOHOSEISURUHOHO
JPS5760925Y2 (en) * 1977-09-30 1982-12-25
JPS6138866A (en) * 1984-07-31 1986-02-24 Nippon Sheet Glass Co Ltd Machining
JP2003236748A (en) * 2002-02-14 2003-08-26 Sumitomo Heavy Ind Ltd Grinder
WO2004039538A1 (en) * 2002-10-30 2004-05-13 Bando Kiko Co., Ltd. Glass pane machining device
JP2004243470A (en) * 2003-02-14 2004-09-02 Optrex Corp Chamfering device of work
WO2010131610A1 (en) * 2009-05-15 2010-11-18 旭硝子株式会社 Method for setting working position of grindstone for grinding glass end face
WO2012073626A1 (en) * 2010-12-01 2012-06-07 旭硝子株式会社 Grinding method and grinding device
JP2015006697A (en) * 2011-10-31 2015-01-15 旭硝子株式会社 Processing device and processing method of plate-like object
CN108161638A (en) * 2017-12-26 2018-06-15 佛山市禾才科技服务有限公司 A kind of glass edge-grinding machine intelligent bistrique and its opposite side compensation method

Also Published As

Publication number Publication date
KR102638516B1 (en) 2024-02-20
CN111542414A (en) 2020-08-14
TW201942083A (en) 2019-11-01
JP2019171536A (en) 2019-10-10
TWI785219B (en) 2022-12-01
JP6973237B2 (en) 2021-11-24
CN111542414B (en) 2022-06-17
KR20200138144A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US7975589B2 (en) Scribing wheel for brittle material and manufacturing method for same, as well as scribing method, scribing apparatus and scribing tool using the same
WO2017022389A1 (en) Plate-glass processing apparatus and glass substrate
TWI480127B (en) Glass substrate and its production method
KR102059203B1 (en) The polishing apparatus and the polishing methdo for polishing the peripheral edge of the work, etc by the polishing tape
WO2011074615A1 (en) Method and apparatus for polishing plate-like material
JP6978724B2 (en) How to manufacture flat glass
JP6624461B2 (en) Glass sheet chamfering apparatus, glass sheet chamfering method, and glass sheet manufacturing method
WO2010131610A1 (en) Method for setting working position of grindstone for grinding glass end face
TWI648232B (en) Glass plate manufacturing method and glass plate manufacturing device
WO2019187873A1 (en) Sheet glass production method
JP5370913B2 (en) Glass substrate end surface polishing apparatus and end surface polishing method thereof
JP2020029377A (en) Method for cutting cover glass
JPWO2014002447A1 (en) Substrate edge grinding method and substrate edge grinding apparatus
JP2003311612A (en) Grinding method and grinding device of peripheral edge of plate-like body
JP2006167876A (en) In-process dressing method in grinding process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775942

Country of ref document: EP

Kind code of ref document: A1