WO2019186802A1 - Transfer film, cured film and method for forming same, and electronic component - Google Patents

Transfer film, cured film and method for forming same, and electronic component Download PDF

Info

Publication number
WO2019186802A1
WO2019186802A1 PCT/JP2018/012895 JP2018012895W WO2019186802A1 WO 2019186802 A1 WO2019186802 A1 WO 2019186802A1 JP 2018012895 W JP2018012895 W JP 2018012895W WO 2019186802 A1 WO2019186802 A1 WO 2019186802A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
film
meth
component
thickness
Prior art date
Application number
PCT/JP2018/012895
Other languages
French (fr)
Japanese (ja)
Inventor
征志 南
雅彦 海老原
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/012895 priority Critical patent/WO2019186802A1/en
Publication of WO2019186802A1 publication Critical patent/WO2019186802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a transfer film, a cured film, a method for forming the same, and an electronic component.
  • a projected capacitive touch panel In general, in a projected capacitive touch panel, a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes. Forming. As a material for these electrodes, ITO (Indium-Tin-Oxide) is the mainstream.
  • the frame area of the touch panel is an area where the touch position cannot be detected, reducing the area of the frame area is an important factor for improving the product value.
  • a metal wiring such as copper is formed in the frame region in order to transmit a touch position detection signal.
  • a corrosive component such as moisture or salt may enter the inside from the sensing region.
  • the metal wiring corrodes, and there is a risk of an increase in electrical resistance between the electrode and the drive circuit, or disconnection.
  • a photosensitive resin composition layer containing a di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure is provided on a touch panel substrate, and the photosensitive resin composition layer
  • a method of forming a cured film of the photosensitive resin composition that covers a part or all of the base material after removing a predetermined part of the substrate by actinic ray irradiation and removing the part other than the predetermined part is known. (See Patent Document 1 below). According to this method, a cured film having a sufficiently low moisture permeability can be formed on the touch panel substrate.
  • the projected capacitive touch panel has a problem of so-called “bone appearance phenomenon” in which the electrode pattern is reflected on the screen in the sensing region.
  • the first curable transparent resin layer having a low refractive index adjusted to a specific refractive index range and the second curable transparent resin layer having a high refractive index are adjacent to each other.
  • a transfer film is disclosed (see Patent Document 2 below).
  • the present invention provides a transfer film capable of obtaining a cured film having excellent adhesion between resin layers, a cured film obtained using the transfer film, a method for forming the same, and an electronic component including the cured film.
  • a transfer film capable of obtaining a cured film having excellent adhesion between resin layers, a cured film obtained using the transfer film, a method for forming the same, and an electronic component including the cured film.
  • One aspect of the present invention relates to a transfer film comprising a support film and a laminate provided on the support film.
  • the laminate includes a first resin layer provided on the support film and a second resin layer provided on the first resin layer, and the first resin layer comprises: It is a photosensitive resin composition layer, the second resin layer contains an organic component and a metal oxide, and a surface perpendicular to the thickness direction of the second resin layer is measured by X-ray photoelectron spectroscopy.
  • the resulting ratio M / C (M represents the amount of metal atoms constituting the metal oxide, C represents the amount of carbon atoms constituting the organic component) is less than 0.2,
  • the portion includes the surface of the second resin layer on the first resin layer side and has a thickness of 40 to 60 nm.
  • the laminate is cured to form a cured film.
  • the second resin layer and the first resin layer side layer (for example, the first resin layer) adjacent to the second resin layer are easily bonded via the carbon atom C. Therefore, according to the transfer film, it is possible to obtain a cured film having excellent adhesion between the resin layers (between the second resin layer and the first resin layer side adjacent to the second resin layer). it can.
  • the cured film obtained by this transfer film can achieve both excellent adhesion between the resins and suppression of the bone appearance phenomenon.
  • the metal oxide may contain at least one selected from the group consisting of zirconium oxide, titanium oxide, tin oxide, zinc oxide, indium tin oxide, indium oxide, aluminum oxide, silicon oxide, and yttrium oxide.
  • zirconium oxide titanium oxide, tin oxide, zinc oxide, indium tin oxide, indium oxide, aluminum oxide, silicon oxide, and yttrium oxide.
  • the refractive index of the second resin layer at a wavelength of 633 nm can be easily controlled, and the effect of improving the adhesion can be easily obtained.
  • the refractive index of the second resin layer at a wavelength of 633 nm may be 1.50 to 1.90. In this case, the pattern hiding property of the cured film obtained is excellent.
  • the thickness of the second resin layer may be 50 to 500 nm. In this case, the reflected light intensity of the entire touch screen on the touch panel can be further reduced.
  • Organic components are (meth) acrylic acid, (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, styrene, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl
  • a polymer having a structural unit derived from at least one compound selected from the group consisting of ester, (meth) acrylic acid cyclohexyl ester and (meth) acrylic acid-2-ethylhexyl ester may be included.
  • the alkali developability of the second resin layer is excellent, and the adhesion between the resin layers in the cured film is more excellent.
  • the thickness of the laminate may be 30 ⁇ m or less. In this case, the followability at the time of laminating the first resin layer and the second resin layer to the base material can be improved.
  • the minimum value of the transmittance at a wavelength of 400 to 700 nm of the cured laminate may be 90% or more. In this case, when protecting the transparent electrode in the sensing area of the touch panel, it is possible to sufficiently suppress the image display quality, hue, and luminance in the sensing area from being lowered.
  • One aspect of the present invention is a step of laminating a laminate of the transfer film on a substrate so that the second resin layer is in close contact with the substrate, and exposing a predetermined portion of the laminate on the substrate.
  • the present invention relates to a method for forming a cured film comprising: a step and a step of removing a portion other than the exposed predetermined portion to form a patterned cured film. According to this method, a patterned cured film having excellent adhesion between resin layers can be obtained.
  • One aspect of the present invention relates to a cured film formed by curing the first resin layer and the second resin layer of the laminate in the transfer film.
  • This cured film is excellent in adhesion between resin layers.
  • the cured film may be patterned.
  • One aspect of the present invention relates to an electronic component including the above cured film.
  • peeling between the resin layers in the cured film hardly occurs and the durability is excellent.
  • a transfer film capable of obtaining a cured film having excellent adhesion between resin layers, a cured film obtained by using the transfer film, a method for forming the same, and an electronic component including the cured film. be able to.
  • FIG. 1 It is a schematic cross section which shows the transfer film of one Embodiment of this invention. It is an enlarged view of the area
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or a corresponding methacrylate.
  • a or B only needs to include one of A and B, or may include both.
  • process is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended action of the process is achieved. included.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value and lower limit value individually described as numerical ranges can be arbitrarily combined.
  • each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
  • thickness means the length of each layer in the stacking direction.
  • the transfer film includes a support film and a laminate provided on the support film, and the laminate is provided on the first resin layer provided on the support film and on the first resin layer.
  • a second resin layer In this transfer film, the first resin layer is a photosensitive resin composition layer, and the second resin layer is a layer containing an organic component and a metal oxide.
  • the second resin layer has a ratio M / C (M (M) obtained by measuring a plane perpendicular to the thickness direction of the second resin layer by X-ray photoelectron spectroscopy (XPS). Represents the amount of metal atoms constituting the metal oxide, and C represents the amount of carbon atoms constituting the organic component) having a portion of less than 0.2.
  • the resin layer includes a surface on the first resin layer side and has a thickness of 40 to 60 nm.
  • FIG. 1 is a schematic cross-sectional view showing a transfer film of one embodiment
  • FIG. 2 is an enlarged view of a region A shown in FIG. 1 includes a support film 10, a first resin layer 20 provided on the support film 10, and a second resin layer 30 provided on the first resin layer 20.
  • It is a photosensitive refractive index adjustment film provided with the laminated body 40 containing, and the protective film 15 provided in the opposite side to the 1st resin layer 20 of the 2nd resin layer 30.
  • the second resin layer 30 includes the metal oxide 5, and the metal oxide 5 is unevenly distributed on the second resin layer 30 side of the laminate 40.
  • the transfer film may not include a protective film.
  • a polymer film can be used as the support film 10.
  • the polymer film include films of polyethylene terephthalate, polycarbonate, polyethylene, polypropylene, polyethersulfone, cycloolefin polymer, and the like.
  • the thickness of the support film 10 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 15 ⁇ m or more from the viewpoint of ensuring coverage.
  • the thickness of the support film 10 is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 40 ⁇ m or less, and even more preferably 35 ⁇ m or less from the viewpoint of suppressing a reduction in resolution when irradiating active light through the support film 10. Particularly preferred. From these viewpoints, the thickness of the support film 10 is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, still more preferably 15 to 40 ⁇ m, and particularly preferably 15 to 35 ⁇ m.
  • the first resin layer 20 is formed of a curable resin composition.
  • the first resin layer 20 is a photosensitive resin composition layer from the viewpoint of easily forming a cured film having a desired shape.
  • the refractive index of the first resin layer after curing at a wavelength of 633 nm is usually 1.40 or more and 1.49 or less.
  • the refractive index at a wavelength of 633 nm of the first resin layer 20 may be appropriately set so that the refractive index at a wavelength of 633 nm of the cured first resin layer falls within the above range.
  • the refractive index of the first resin layer 20 at a wavelength of 633 nm may be 1.40 to 1.49.
  • the thickness of the first resin layer 20 is preferably 15 ⁇ m or less from the viewpoint of sufficiently providing a protective film and sufficiently embedding a step on the surface of the substrate with a transparent electrode pattern. The following is more preferable, and 8 ⁇ m or less is more preferable.
  • the thickness of the first resin layer 20 (thickness after drying) is preferably 2 ⁇ m or more from the viewpoint of sufficiently providing a protective film and sufficiently embedding a step on the surface of the substrate with a transparent electrode pattern. The above is more preferable. That is, the thickness of the first resin layer 20 (thickness after drying) is preferably 2 to 15 ⁇ m, more preferably 2 to 10 ⁇ m, still more preferably 3 to 8 ⁇ m.
  • the second resin layer 30 is formed of a resin composition containing an organic component and the metal oxide 5.
  • the refractive index at 633 nm of the second resin layer 30 is, for example, 1.50 or more. In this case, the pattern concealability of the cured film is excellent, and the reflected light intensity of the entire screen can be reduced, and a decrease in transmittance on the screen can be suppressed.
  • a cured product (cured film) of the laminate 40 is formed in a transparent electrode pattern such as ITO, and various members (for example, a cover glass used for modularization and the transparent electrode pattern are bonded onto the cured film.
  • a transparent adhesive film OCA, Optical Clear Adhesive
  • the refractive index at 633 nm of the second resin layer 30 is 1.50 or more
  • the refractive index of the cured film obtained by curing the laminate is It becomes an intermediate value between the refractive index (for example, 1.80 to 2.10) of the transparent electrode pattern such as ITO and the refractive index (for example, 1.45 to 1.55) of various members used on the cured film.
  • the transparent electrode pattern can be sufficiently concealed (the bone appearance phenomenon can be sufficiently suppressed).
  • the refractive index at 633 nm of the second resin layer 30 may be 1.55 or more or 1.60 or more, and 1.90 or less, from the viewpoint of being excellent in pattern hiding property (the effect of suppressing the bone appearance phenomenon). It may be 1.85 or less or 1.75 or less. That is, the refractive index of the second resin layer 30 at a wavelength of 633 nm may be, for example, 1.50 to 1.90, 1.55 to 1.85, or 1.60 to 1.75.
  • the refractive index can be measured with reference to the examples in this specification.
  • the thickness of the second resin layer 30 may be, for example, 50 to 500 nm. When the thickness of the second resin layer 30 after drying is 50 to 500 nm, the reflected light intensity of the entire screen can be further reduced.
  • the thickness (thickness after drying) of the second resin layer 30 is preferably 50 nm or more, and more preferably 55 nm or more.
  • the thickness of the second resin layer (thickness after drying) may be 60 nm or more or 80 nm or more.
  • the thickness of the second resin layer 30 (thickness after drying) is preferably 500 nm or less, more preferably 180 nm or less, still more preferably 100 nm or less, and particularly preferably 80 nm or less.
  • a surface perpendicular to the thickness direction of the second resin layer 30 is measured by X-ray photoelectron spectroscopy on the first resin layer 20 side of the second resin layer 30.
  • the ratio M / C (M represents the amount of metal atoms constituting the metal oxide, and C represents the amount of carbon atoms constituting the organic component) is less than 0.2 (hereinafter referred to as “No. Part of the second resin layer 30 opposite to the first resin layer 20 (protective film 15 side) is perpendicular to the thickness direction of the second resin layer.
  • Ratio M / C obtained by measuring the surface by X-ray photoelectron spectroscopy (M represents the amount of metal atoms constituting the metal oxide, and C represents the amount of carbon atoms constituting the organic component)
  • a portion having a thickness of 0.2 or more (hereinafter also referred to as “second portion P2”) is formed.
  • the first portion P ⁇ b> 1 includes the surface of the second resin layer 30 on the first resin layer 20 side, and has a thickness in the stacking direction of the stacked body 40.
  • all cross sections perpendicular to the thickness direction satisfy 0 ⁇ M / C ⁇ 0.2.
  • the thickness of the first part P1 is 40 to 60 nm.
  • the thickness of the first portion P1 is 40 nm or more, the adhesion between the cured first resin layer and the second resin layer is strengthened, and peeling between the resin layers (interfacial peeling) is suppressed.
  • the thickness of the first portion P1 is 60 nm or less, the thickness of the first portion P1 in the second resin layer does not become too thick, and the pattern concealability is excellent.
  • the thickness of the first portion P1 may be 42 nm or more, 44 nm or more, 46 nm or more, 48 nm or more, or 50 nm or more from the viewpoint of further improving the adhesion between the resin layers in the cured film.
  • the thickness of the first part P1 may be 50 nm or less or 44 nm or less from the viewpoint of better pattern concealment. From these viewpoints, the thickness of the first portion P1 is 40 to 60 nm, 42 to 60 nm, 44 to 60 nm, 46 to 60 nm, 48 to 60 nm, 50 to 60 nm, 40 to 50 nm, 42 to 50 nm, 44 to 50 nm, 46 It may be ⁇ 50 nm, 48 ⁇ 50 nm, 40 ⁇ 44 nm or 42 ⁇ 44 nm.
  • the ratio of the thickness of the first portion P1 to the thickness of the second resin layer 30 (the thickness of the first portion P1 / the thickness of the second resin layer 30) further improves the adhesion between the resin layers in the cured film. From the point of view, it may be 0.3 or more, 0.5 or more, 0.6 or more, or 0.7 or more. The ratio of the thickness of the first portion P1 to the thickness of the second resin layer 30 may be less than 1.0, 0.9 or less, or 0.8 or less from the viewpoint of better pattern concealment.
  • the second portion P2 is adjacent to the first portion P1 and has a thickness in the stacking direction of the stacked body 40. In the second portion P2, all cross sections perpendicular to the thickness direction satisfy 0.2 ⁇ M / C.
  • the second portion P2 includes a surface of the second resin layer 30 on the side opposite to the first resin layer 20 (surface on the protective film 15 side). That is, the 2nd resin layer 30 consists of the 1st part P1 and the 2nd part P2.
  • the second portion P2 may not include the surface on the protective film 15 side. That is, the second resin layer 30 may have a third portion having a ratio M / C of less than 0.2 on the opposite side of the second portion P2 from the first portion P1.
  • the thickness of the second portion P2 may be 10 nm or more, 30 nm or more, or 50 nm or more from the viewpoint of better pattern concealing property, and may be 50 nm or less or 44 nm or less from the viewpoint of improving developability.
  • the analysis of the ratio M / C in the thickness direction can be performed, for example, by the Ar + sputtering / XPS method. Specifically, under the following conditions, from the surface of the second resin layer 30 (the surface on the first resin layer 20 side or the surface on the protective film 15 side), sputtering by Ar + ion beam and spectrum of XPS Acquisition is repeated alternately to obtain a profile in the thickness direction with a ratio M / C. By analyzing the obtained profile, the ratio M / C in the thickness direction of the second resin layer, the portion where the ratio M / C is less than 0.2 (first portion P1), and the ratio M / C are The thickness of the portion (second portion P2) that is 0.2 or more can be obtained.
  • the thickness of the laminate 40 including the first resin layer 20 and the second resin layer 30 is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less, from the viewpoint of improving the followability during lamination. . Furthermore, from the viewpoint of rust prevention, taking into account the possibility of pinholes due to protrusions on the substrate, it is preferably 1 ⁇ m or more, preferably 2 ⁇ m or more, and more preferably 2 ⁇ m or more. If it is 3 micrometers or more, it will become possible to suppress the influence by the protrusion of a base material, and to maintain rust prevention property.
  • Examples of the protective film 15 include polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, a polyethylene-vinyl acetate copolymer, a polyethylene-vinyl acetate copolymer film, and a laminated film of these films and polyethylene.
  • the thickness of the protective film 15 may be 5 ⁇ m or more, and may be 100 ⁇ m or less.
  • the thickness of the protective film 15 is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 40 ⁇ m or less, from the viewpoint of storing in a roll.
  • first resin composition a resin composition for forming the first resin layer
  • second resin composition a resin composition for forming the second resin layer
  • the first resin composition preferably comprises a binder polymer (hereinafter also referred to as “component (A)”), a photopolymerizable compound (hereinafter also referred to as component (B)), and a photopolymerization initiator (hereinafter referred to as “component”).
  • component (C) a binder polymer
  • component (C) a photopolymerizable compound
  • component (C) a photopolymerization initiator
  • a binder polymer having a carboxyl group is preferably used as the component (A) from the viewpoint of enabling patterning by alkali development.
  • a copolymer having a structural unit derived from (meth) acrylic acid and (meth) acrylic acid alkyl ester is preferable.
  • the copolymer may contain in the structural unit other monomers that can be copolymerized with the (meth) acrylic acid or the (meth) acrylic acid alkyl ester.
  • Specific examples include (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, and styrene.
  • the component may have an ethylenically unsaturated group.
  • the (A) component which has an ethylenically unsaturated group shall not be contained in (B) component in this specification.
  • Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid cyclohexyl ester, and (meth) acrylic acid-2. -Ethylhexyl ester, (meth) acrylic acid hydroxyl ethyl ester and the like.
  • (A) component is (meth) acrylic acid, (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl from viewpoints of alkali developability (especially alkali developability with respect to inorganic alkali aqueous solution), patternability, transparency, etc.
  • a binder polymer having a structural unit derived from at least one kind of compound.
  • the weight average molecular weight of the component (A) is preferably 10,000 or more, more preferably 15,000 or more, still more preferably 30,000 or more, and particularly preferably 40,000 or more from the viewpoint of resolution.
  • the weight average molecular weight of the component (A) is preferably 200,000 or less, more preferably 150,000 or less, and particularly preferably 100,000 or less from the viewpoint of resolution. From these viewpoints, the weight average molecular weight of the component (A) is preferably 10,000 to 200,000, more preferably 15,000 to 150,000, still more preferably 30,000 to 150,000, and 30,000. To 100,000 is particularly preferred, and 40,000 to 100,000 is very particularly preferred.
  • a weight average molecular weight can be measured by the gel permeation chromatography method with reference to the Example of this specification.
  • the acid value of the component (A) is preferably 75 mgKOH / g or more from the viewpoint of easily forming a cured film having a desired shape by alkali development.
  • the acid value of the component (A) is preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, and 120 mgKOH / g or less from the viewpoint of achieving both controllability of the cured film shape and rust prevention of the cured film. Is more preferable.
  • the acid value of the component (A) is preferably 75 to 200 mgKOH / g, more preferably 75 to 150 mgKOH / g, and still more preferably 75 to 120 mgKOH / g.
  • an acid value can be measured with reference to the Example of this specification.
  • the hydroxyl value of the component (A) is preferably 50 mgKOH / g or less, more preferably 45 mgKOH / g or less, from the viewpoint of further improving rust prevention.
  • the hydroxyl value is measured by a neutralization titration method based on JIS K0070 as shown below.
  • the binder polymer solution is heated at 130 ° C. for 1 hour to remove volatile components to obtain a solid component.
  • the binder polymer solution is heated at 130 ° C. for 1 hour to remove volatile components to obtain a solid component.
  • the binder polymer After precisely weighing 1 g of the above-mentioned solid binder polymer, put the binder polymer into an Erlenmeyer flask, add 10 mL of 10% by mass acetic anhydride pyridine solution to uniformly dissolve the binder polymer, and heat at 100 ° C. for 1 hour. . After heating, 10 mL of water and 10 mL of pyridine were added and heated at 100 ° C. for 10 minutes.
  • Hydroxyl value (AB) ⁇ f 2 ⁇ 28.05 / S + D
  • A is the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for the blank test
  • B is the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for titration
  • f 2 is a factor (concentration conversion factor) of 0.5 mol / L potassium hydroxide ethanol solution
  • S is the mass (g) of the binder polymer
  • D is the acid value
  • the blank test is the above step without adding the binder polymer. .
  • the content of the component (A) is preferably 35 parts by mass or more with respect to 100 parts by mass of the total amount of the component (A) and the component (B), from the viewpoint of maintaining pattern formability and rust prevention of the cured film. 40 parts by mass or more is more preferable, 50 parts by mass or more is further preferable, and 55 parts by mass or more is particularly preferable.
  • the content of the component (A) is preferably 85 parts by mass or less, and 80 parts by mass or less with respect to 100 parts by mass of the total amount of the component (A) and the component (B), from the viewpoints of film formability and substrate followability. Is more preferable, 70 mass parts or less are still more preferable, and 65 mass parts or less are especially preferable.
  • the content of the component (A) is preferably 35 to 85 parts by weight, more preferably 40 to 80 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B), Is more preferably 70 parts by mass, and particularly preferably 55-65 parts by mass.
  • (B) component: photopolymerizable compound As the component (B), a photopolymerizable compound having an ethylenically unsaturated group can be used.
  • the photopolymerizable compound having an ethylenically unsaturated group include a monofunctional vinyl monomer, a bifunctional vinyl monomer, or a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups.
  • Examples of the monofunctional vinyl monomer include those exemplified as monomers used for the synthesis of a copolymer which is a suitable example of the component (A).
  • bifunctional vinyl monomer examples include polyethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxypolypropoxy Phenyl) propane, bisphenol A diglycidyl ether di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, and the like.
  • the polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups conventionally known ones can be used without particular limitation.
  • the polyfunctional vinyl monomer includes a (meth) acrylate compound having a skeleton derived from trimethylolpropane such as trimethylolpropane tri (meth) acrylate; tetramethylolmethane (Meth) acrylate compounds having a skeleton derived from tetramethylolmethane such as tri (meth) acrylate and tetramethylolmethanetetra (meth) acrylate; derived from pentaerythritol such as pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate (Meth) acrylate compounds having the following skeleton: bones derived from dipentaerythritol such
  • the polyfunctional vinyl monomer preferably includes a di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure from the viewpoint of inhibiting corrosion of the metal wiring and the transparent electrode, and is preferably a di (meth) acrylate compound having a dicyclopentane structure. More preferably, it contains an acrylate compound.
  • the component (B) preferably contains a compound represented by the following general formula (1) as a di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure from the viewpoint of inhibiting corrosion of the metal wiring and the transparent electrode. .
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • X represents a divalent group having a dicyclopentane structure or a dicyclopentene structure
  • R 3 and R 2 4 independently represents an alkylene group having 1 to 4 carbon atoms
  • n and m each independently represents an integer of 0 to 2
  • p and q each independently represents an integer of 0 or more
  • p + q 0 Is selected to be ⁇ 10.
  • R 3 and R 4 are each independently preferably an ethylene group or a propylene group, and more preferably an ethylene group.
  • the propylene group may be either an n-isopropylene group or an isopropylene group.
  • n and m indicate how much a methylene group is added in the molecule.
  • p and q indicate how much an alkoxy group having 1 to 4 carbon atoms is added to the molecule.
  • p + q is 2 or more, two or more R 3 and R 4 may be the same or different.
  • the compound represented by the general formula (1) realizes low moisture permeability of the film because the divalent group having a dicyclopentane structure or dicyclopentene structure contained in X has a bulky structure, It is considered that the corrosion resistance of the metal wiring and the transparent electrode is improved.
  • the dicyclopentane structure and the dicyclopentene structure can also be referred to as a tricyclodecane skeleton and a tricyclodecene skeleton, respectively.
  • the “tricyclodecane skeleton” and the “tricyclodecene skeleton” refer to the following structures (where each bond is an arbitrary position).
  • Examples of the compound represented by the general formula (1) include tricyclodecane dimethanol diacrylate represented by the following formula (2). This is available as A-DCP (manufactured by Shin-Nakamura Chemical Co., Ltd., product name).
  • the content of the di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure is 50 parts by mass with respect to 100 parts by mass of the total amount of the component (B) from the viewpoint of inhibiting corrosion of the metal wiring and the transparent electrode.
  • the above is preferable, 70 parts by mass or more is more preferable, and 80 parts by mass or more is more preferable.
  • the content of the di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure may be 100 parts by mass with respect to 100 parts by mass of the total amount of the component (B).
  • the ratio to be used is not particularly limited, but photocurability and electrode corrosion
  • the proportion of the monomer having at least three polymerizable ethylenically unsaturated groups in the molecule is the total amount of the photopolymerizable compound contained in the photosensitive resin composition (first resin composition). Of 100 parts by mass, it may be 30 parts by mass or more, 50 parts by mass or more, and 75 parts by mass or more.
  • the component (C) component photopolymerization initiator
  • any conventionally known photopolymerization initiator can be used without particular limitation, but a highly transparent photopolymerization initiator is preferred.
  • the component (C) is at least one selected from the group consisting of oxime ester compounds and phosphine oxide compounds. It is preferable that an oxime ester compound is included.
  • Examples of the phosphine oxide compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • the oxime ester compound is preferably at least one selected from the group consisting of a compound represented by the following formula (3), a compound represented by the following formula (4), and a compound represented by the following formula (5). Used.
  • R 11 and R 12 each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a phenyl group, or a tolyl group.
  • Preferred is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or tolyl
  • a group is more preferable, and a methyl group, a cyclopentyl group, a phenyl group, or a tolyl group is still more preferable.
  • R 13 represents —H, —OH, —COOH, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH.
  • —H, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH, or —COO (CH 2 ) 2 OH are preferred, —H, —O (CH 2 ) 2 More preferred is OH or —COO (CH 2 ) 2 OH.
  • each R 14 represents an alkyl group having 1 to 6 carbon atoms, and is preferably a propyl group.
  • the plurality of R 14 may be the same or different.
  • R 15 represents NO 2 or ArCO (wherein Ar represents a substituted or unsubstituted aryl group), and Ar is preferably a tolyl group.
  • Examples of the substituent in the case of having a substituent include an alkyl group having 1 to 6 carbon atoms.
  • R 16 and R 17 each independently represent an alkyl group having 1 to 12 carbon atoms, a phenyl group, or a tolyl group, preferably a methyl group, a phenyl group, or a tolyl group.
  • R 18 represents an alkyl group having 1 to 6 carbon atoms, preferably an ethyl group.
  • R 19 is an organic group having an acetal bond, and a substituent corresponding to R 19 in a compound represented by the formula (5-1) described later is preferable.
  • R 20 and R 21 each independently represents an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, preferably a methyl group, a phenyl group or a tolyl group, and more preferably a methyl group.
  • R 22 represents an alkyl group having 1 to 6 carbon atoms.
  • n represents an integer of 0 to 4.
  • Examples of the compound represented by the above formula (3) include a compound represented by the following formula (3-1) and a compound represented by the following formula (3-2).
  • a compound represented by the following formula (3-1) is available as IRGACURE OXE01 (manufactured by BASF Japan Ltd., product name).
  • Examples of the compound represented by the above formula (4) include a compound represented by the following formula (4-1).
  • a compound represented by the following formula (4-1) is available as DFI-091 (product name, manufactured by Daito Chemix Co., Ltd.).
  • Examples of the compound represented by the above formula (5) include a compound represented by the following formula (5-1).
  • a compound represented by the following formula (5-1) is available as Adekaoptomer N-1919 (manufactured by ADEKA, product name).
  • oxime ester compounds it is preferable to use a compound represented by the following formula (6), a compound represented by the following formula (7), or the like.
  • the compound represented by the above formula (3-1) is very preferable. Whether the compound represented by the above formula (3-1) is contained in the cured film can be confirmed by pyrolysis gas chromatograph mass spectrometry of the cured film described in International Publication No. 2013/084875.
  • the content of the component (C) is preferably 0.1 parts by mass or more, and preferably 1 part by mass or more with respect to 100 parts by mass of the total amount of the components (A) and (B), from the viewpoint of excellent photosensitivity and resolution. More preferred.
  • the content of the component (C) is preferably 10 parts by mass or less and more preferably 5 parts by mass or less with respect to 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint of excellent photosensitivity and resolution. 3 parts by mass or less is more preferable, and 2 parts by mass or less is particularly preferable.
  • the content of the component (C) is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). 1 to 3 parts by mass is more preferable, and 1 to 2 parts by mass is particularly preferable.
  • the photosensitive resin composition (first resin composition) is ethylene as an additive from the viewpoint of further improving the adhesion between the resin layers in the cured film and improving the adhesion to the substrate with the ITO electrode pattern. It is preferable to contain a phosphoric ester having a polymerizable unsaturated group (hereinafter also referred to as component (D)).
  • component (D) a phosphoric ester having a polymerizable unsaturated group
  • the phosphate ester having an ethylenically unsaturated group may overlap with the component (B), but in this specification, the component (E) is not included in the component (B).
  • the adhesiveness between the resin layers in the cured film and the adhesion to the substrate with the ITO electrode pattern are ensured while sufficiently ensuring the rust prevention of the cured film to be formed.
  • the KAYAMER series (PM21, PM-2, etc.) manufactured by Kayaku Co., Ltd. is preferable.
  • component (D) is preferably 0.01 to 10 parts by weight, and 0.05 to 5 parts by weight with respect to 100 parts by weight as the total of (A) binder polymer and (B) polymerizable compound. More preferred is 0.1 to 3 parts by mass.
  • an adhesiveness imparting agent such as a silane coupling agent, a rust preventive agent, a leveling agent, a plasticizer, and a filler as necessary.
  • Antifoaming agents, flame retardants, stabilizers, antioxidants, fragrances, thermal cross-linking agents, polymerization inhibitors, etc. are each 0.01 to 20 parts per 100 parts by mass of the total amount of component (A) and component (B) About part by mass can be contained. These can be used alone or in combination of two or more.
  • the content of the metal oxide in the photosensitive resin composition (first resin composition) is 10% by mass or less and 5% by mass based on the total mass of the photosensitive resin composition (first resin composition). Or 1% by mass or less, or 0% by mass.
  • the second resin composition may be a curable resin composition (for example, photocurable or thermosetting), and is preferably photocurable.
  • the second resin composition does not necessarily contain a photopolymerization component such as a photopolymerizable compound or a photopolymerization initiator, and is a resin that is photocured due to a photopolymerization component that migrates from an adjacent resin layer. It may be a composition.
  • organic component examples of the organic component contained in the second resin composition include the components (A) to (D) and other additives that can be contained in the first resin composition.
  • the possible range of the content of each component in the second resin composition may be the same as the possible range of the content of each component in the first resin composition described above.
  • said "second resin composition” means the composition of the state which does not contain the solvent mentioned later, and content of each component mentioned later is content with respect to component whole quantity other than the solvent mentioned later.
  • the second resin layer contains a metal oxide (hereinafter also referred to as component (E))
  • the second resin layer is excellent in transparency and has a high refractive index at a wavelength of 633 nm. Moreover, shrinkage
  • a metal oxide having a refractive index at a wavelength of 633 nm of 1.50 or more is preferable from the viewpoint of easy control of the refractive index at a wavelength of 633 nm of the second resin layer.
  • the component (E) may be metal oxide particles or metal oxide fine particles.
  • one type of particle can be used alone, or two or more types of particles can be used in combination.
  • the metal oxide includes a group consisting of zirconium oxide, titanium oxide, tin oxide, zinc oxide, indium tin oxide, indium oxide, aluminum oxide, silicon oxide and yttrium oxide from the viewpoint of improving the refractive index of the second resin layer. It is preferable to include at least one selected from the group consisting of zirconium oxide and titanium oxide, and it is more preferable to include at least one selected from the group consisting of zirconium oxide and titanium oxide.
  • zirconium oxide particles when the material of the transparent electrode is ITO, it is preferable to use zirconium oxide nanoparticles from the viewpoint of improving the refractive index and adhesion between the ITO and the transparent substrate.
  • the particle size distribution Dmax of the zirconium oxide nanoparticles is preferably 40 nm or less.
  • Zirconium oxide nanoparticles are OZ-S30K (product name, manufactured by Nissan Chemical Industries, Ltd.), OZ-S40K-AC (product name, manufactured by Nissan Chemical Industries, Ltd.), SZR-K (dispersion of zirconium oxide methyl ethyl ketone, Sakai Chemical). Kogyo Co., Ltd., product name) and SZR-M (zirconium oxide methanol dispersion, Sakai Chemical Industry Co., Ltd., product name) are commercially available.
  • the particle size distribution Dmax of the titanium oxide nanoparticles is preferably 50 nm or less, and more preferably 10 nm or more. That is, the particle size distribution Dmax of the titanium oxide nanoparticles is preferably 10 to 50 nm.
  • the content of the component (E) is preferably 20 parts by mass or more and more preferably 40 parts by mass or more with respect to 100 parts by mass of the second resin composition from the viewpoint of improving the refractive index and adhesion of the second resin layer.
  • 90 mass parts or less are preferable with respect to 100 mass parts of 2nd resin compositions from a viewpoint of developability improvement, and, as for content of (E) component, 86 mass parts or less are more preferable.
  • the content of the component (E) is preferably 20 to 90 parts by weight, more preferably 40 to 90 parts by weight, with respect to 100 parts by weight of the resin composition forming the second resin layer 30. More preferred is ⁇ 86 parts by mass.
  • the content of the component (E) is preferably 50 parts by mass or more with respect to 100 parts by mass of the organic component in the second resin composition, from the viewpoint of improving the refractive index and adhesion of the second resin layer. Part or more is more preferable, and 200 parts by mass or more is further preferable.
  • the content of the component (E) is preferably 750 parts by mass or less, more preferably 600 parts by mass or less, and 500 parts by mass with respect to 100 parts by mass of the organic component in the second resin composition from the viewpoint of improving developability. The following is more preferable.
  • the content of the component (E) is 50 to 750 parts by mass, 100 to 600 parts by mass, 100 to 500 parts by mass with respect to 100 parts by mass of the resin composition forming the second resin layer 30. It may be 200 to 500 parts by mass.
  • a metal sulfide containing atoms such as Mg, Al, Si, Ca, Cr, Cu, Zn, and Ba can be used as a component other than the component (E).
  • the second resin composition includes a resin composition that forms the first part P1 in the second resin layer, a resin composition that forms the second part P2 (and a resin composition that forms the third part P3), and the like. It may be a combination of a plurality of resin compositions.
  • the types of components in the resin composition forming the first part P1 and the resin composition forming the second part P2 (and also the resin composition forming the third part P3) are the same or different from each other. Also good.
  • the content of the component (E) in the resin composition forming the first part P1 is based on 100 parts by mass of the organic component in the resin composition forming the first part P1, from the viewpoint of easily making the ratio M / C less than 0.2. On the other hand, it may be 350 parts by mass or less, 300 parts by mass or less, or 250 parts by mass or less, and may be 100 parts by mass or more from the viewpoint of easily obtaining the effect of suppressing the bone appearance phenomenon.
  • the content of the component (E) in the resin composition forming the second part P2 is an organic component in the resin composition forming the second part P2 from the viewpoint of improving the refractive index and adhesion of the second resin layer. It may be 360 parts by mass or more or 480 parts by mass or more with respect to 100 parts by mass, and may be 720 parts by mass or less from the viewpoint of improving developability.
  • transfer film 1 is used after being transferred to a substrate or the like. That is, this invention provides the application to the transcription
  • the film described above (transfer film 1), a cured film having excellent adhesion between resin layers can be obtained. That is, the cured product (cured film) of the laminate obtained using the transfer film 1 has excellent adhesion between the cured first resin layer and the cured second resin layer.
  • a cured film satisfying both functions of protecting a transparent electrode in a touch panel or metal wiring in a frame region and suppressing the visualization of a transparent electrode pattern or improving the visibility of a sensing region can be collectively displayed.
  • the cured film obtained using the transfer film 1 includes, for example, an electrode protective film for a touch panel; a planarizing film and an interlayer insulating film for display elements such as liquid crystal and organic EL; a protective film for a color filter; a solder resist for a printed wiring board It can be used for membranes.
  • the transfer film may include other layers appropriately selected as long as the effects of the present invention are obtained.
  • a cushion layer, an oxygen shielding layer, a release layer, an adhesive layer, and the like can be given.
  • the transfer film may have these layers individually by 1 type, and may have 2 or more types. Moreover, you may have 2 or more of the same kind of layers.
  • the first resin layer and the second resin layer are preferably adjacent to each other, but the other layers are present between the first resin layer and the second resin layer. May be. In this case, the adhesiveness between the second resin layer and the other layer in the obtained cured film is excellent.
  • the 1st resin layer and a support film are adjacent, the said other layer may exist between a 1st resin layer and a support film.
  • the transfer film 1 forms a layer constituting the first portion P1 in the second resin layer on the first resin layer after forming a layer constituted by the first resin composition on the support film 10; Subsequently, it can obtain by the method of forming the layer which comprises the 2nd part P2 in a 2nd resin layer on the layer which comprises the 1st part P1.
  • a coating solution containing the first resin composition is coated on a support film and dried.
  • a coating liquid containing a resin composition for forming the first part P1 is applied on the obtained layer and dried, and then the resin composition for forming the second part P2 is contained on the obtained layer.
  • the coating liquid to be applied is applied and dried to obtain a laminate including the first resin layer and the second resin layer.
  • the transfer film 1 can be obtained by sticking the protective film 15 on the obtained laminate.
  • the layer obtained by applying a coating solution containing the first resin composition on the support film and drying it is the first resin layer 20. It may be.
  • coating the coating liquid containing the resin composition which forms the 1st part P1 you may dissolve a part of layer comprised by said 1st resin composition. In this case, a part of the layer constituted by the dissolved first resin composition may constitute the first part P1.
  • a coating liquid containing a resin composition that forms the second portion P2 is applied, a part of the layer that is formed of the resin composition that forms the first portion P1 may be dissolved.
  • the coating liquid can be obtained by uniformly dissolving or dispersing each component constituting the first resin composition and the second resin composition described above in a solvent.
  • a solvent there is no restriction
  • Solvents used as coating solutions are, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, methanol, ethanol, propanol, butanol, methylene glycol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol Examples include ethyl methyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, chloroform, and methylene chloride.
  • Application methods include, for example, doctor blade coating method, Meyer bar coating method, roll coating method, screen coating method, spinner coating method, inkjet coating method, spray coating method, dip coating method, gravure coating method, curtain coating method, die coating method. Law.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 60 to 130 ° C., and the drying time is preferably 0.5 to 30 minutes.
  • the transfer film 1 is, for example, coated with a coating solution containing the first resin composition and a coating solution containing the second resin composition on the support film 10 or the protective film 15, respectively, and dried. It can also be obtained by bonding.
  • the first portion P1 can be formed by adjusting the pressure at the time of pasting, the pasting temperature, the content of the metal oxide in the second resin composition, and the like.
  • the transfer film 1 is coated with a coating solution containing a resin composition for forming the first resin layer 20 on the support film 10 and dried, and then the second resin is formed on the first resin layer 20. It can also form by apply
  • FIG. 3 is a schematic cross-sectional view showing an embodiment in which the transfer film of one embodiment is used for a substrate with a transparent electrode pattern.
  • a cured product (second cured resin layer) 32 of the second resin layer is provided on the base material 50 with a transparent electrode pattern 50a such as ITO so as to cover the pattern 50a, and the first resin is formed thereon.
  • a cured product (first cured resin layer) 22 of the resin layer is provided, and the transparent laminate 100 is configured. That is, the transparent laminate 100 shown in FIG. 3 is formed by using a patterned cured film (cured film pattern, cured laminate, cured product of the laminate) 60 formed using the transfer film of one embodiment as a transparent electrode pattern.
  • metal wiring is provided on the base material, and a patterned cured film (cured film pattern, cured product of laminate) 60 is also formed on the metal wiring. It is provided so as to cover the wiring.
  • Examples of the substrate 50 include glass, plastic, ceramic, resin-made substrates used for touch panels, for example.
  • Examples of the resin base material include a polyester resin, a polystyrene resin, an olefin resin, a polybutylene terephthalate resin, a polycarbonate resin, and an acrylic resin base material. These substrates are preferably transparent.
  • the transparent electrode constituting the transparent electrode pattern 50a can be formed using a conductive metal oxide film such as ITO and IZO (Indium Zinc Oxide, Indium Zinc Oxide).
  • the transparent electrode can also be formed using a photosensitive film having a photocurable resin layer using conductive fibers such as silver fibers and carbon nanotubes.
  • the refractive index of the transparent electrode such as ITO is preferably 1.80 or more, more preferably 1.85 or more, and further preferably 1.90 or more, from the viewpoint of easily obtaining the effect of suppressing the bone appearance phenomenon by the second resin layer. It is preferably 2.10 or less, more preferably 2.05 or less, and still more preferably 2.00 or less.
  • Metal wiring may be formed on the base material 50.
  • the metal wiring can be formed by a method such as screen printing or vapor deposition using a conductive material such as Au, Ag, Cu, Al, Mo, and C, for example.
  • a refractive index adjustment layer, an insulating layer, or the like may be provided between the base material 50, the transparent electrode, and the metal wiring.
  • the cured film 60 includes a first cured resin layer 22 and a second cured resin layer 32.
  • Moisture permeability of the cured film 60, from the viewpoint of corrosion inhibition of the metal wiring and the transparent electrode is preferably less 350g / m 2 ⁇ 24h, 300g / m or less, more preferably 2 ⁇ 24h, 250g / m 2 ⁇ 24h or less is more 200 g / m 2 ⁇ 24 h or less is particularly preferable.
  • the moisture permeability is measured by the method shown below.
  • the protective film of the transfer film is peeled off, and the roll temperature is 100 ° C. so that the second resin layer is in close contact with the filter paper (manufactured by Advantech, No.5C, ⁇ 90 mm circle, 130 ⁇ m thick).
  • Lamination is performed under conditions of a feed rate of 0.6 m / min and a pressure bonding pressure (cylinder pressure) of 0.5 MPa.
  • a parallel light exposure machine EXM1201 manufactured by Oak Manufacturing Co., Ltd.
  • a moisture permeability measurement sample in which a cured film (cured film obtained by curing the laminate) is formed on the filter paper is obtained.
  • moisture permeability is measured with reference to JIS standards (Z0208, cup method). Specifically, a circular sample in which a hygroscopic agent (20 g of calcium chloride (anhydrous)) is placed in a measuring cup ( ⁇ 60 mm, depth 15 mm), and the moisture permeability measurement sample is cut into a size of 70 mm in diameter with scissors. Cover the measuring cup with a piece.
  • the sample is left in a constant temperature and humidity chamber for 24 hours under conditions of 60 ° C. and 90% RH, and the moisture permeability is calculated from the change in the total mass of the measurement cup, the hygroscopic agent, and the circular sample piece before and after being left.
  • the minimum value of the transmittance of the cured film 60 at a wavelength of 400 to 700 nm is preferably 90% or more. More specifically, it is preferably 90.00% or more, more preferably 90.50% or more, and still more preferably 90.70% or more. If the transmittance at a wavelength of 400 to 700 nm, which is a general visible light wavelength range, is 90% or more, the image display quality, color tone, and luminance in the sensing area are reduced when the transparent electrode in the sensing area of the touch panel is protected. Can be sufficiently suppressed. The maximum value of the transmittance is usually 100% or less.
  • the visible light transmittance is measured by the following method.
  • the protective film of the transfer film is peeled off, and a laminator (manufactured by Hitachi Chemical Co., Ltd., product name: so that the second resin layer is in close contact with a glass substrate having a thickness of 0.7 mm and a length of 10 cm ⁇ width of 10 cm. HLM-3000 type) under the conditions of a roll temperature of 120 ° C., a substrate feed speed of 1 m / min, and a pressure (cylinder pressure) of 4 ⁇ 10 5 Pa (linear pressure is 9.8 ⁇ 10 3 N / m).
  • Lamination is performed to produce a laminated sample in which the glass substrate, the second resin layer, the first resin layer, and the support film are laminated in this order.
  • the obtained laminated sample was exposed to 5 ⁇ 10 2 J from the upper side of the first resin layer (photosensitive resin composition layer) side using a parallel light exposure machine (EXM1201 manufactured by Oak Manufacturing Co., Ltd.). / M 2 (measured value at a wavelength of 365 nm), after irradiation with ultraviolet rays, the support film was removed and heated in a box-type dryer (model number: NV50-CA, manufactured by Mitsubishi Electric Corporation) for 30 minutes. Allow to stand to obtain a transmittance measurement sample.
  • a parallel light exposure machine EXM1201 manufactured by Oak Manufacturing Co., Ltd.
  • M 2 measured value at a wavelength of 365 nm
  • the visible light transmittance of the obtained transmittance measurement sample is measured in a measurement wavelength range of 400 to 700 nm using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., product name: NDH 7000).
  • the cured film 60 can be formed by the following method. That is, the method of forming the cured film 60 includes a step of laminating the laminate 40 of the transfer film 1 on the base material 50 so that the second resin layer 30 is in close contact with the base material 50, A step of exposing a predetermined portion of the laminate 40 and a step of removing a portion other than the exposed predetermined portion to form a patterned cured film 60. According to this method, the cured film 60 obtained by curing the laminate 40 in the transfer film is obtained. Details of the method of forming the cured film 60 will be described below.
  • the laminate 40 of the transfer film 1 is placed on the surface of the substrate 50 (substrate with a transparent electrode pattern), and the second resin layer 30 is placed on the surface.
  • Lamination is performed by pressure bonding from the support film 10 side so as to be in close contact.
  • the pressing means include a pressing roll.
  • the pressure roll may be provided with a heating means so that it can be heat-pressure bonded.
  • the heating temperature for thermocompression bonding is such that the adhesiveness between the second resin layer 30 and the substrate 50 and the components of the first resin layer 20 and the second resin layer 30 are not easily cured or thermally decomposed. In view of the above, it is preferably 25 to 160 ° C, more preferably 25 to 150 ° C, and further preferably 30 to 150 ° C.
  • the pressure during the thermocompression bonding is 50 to 1 ⁇ 10 5 N / m, preferably 2.5 ⁇ 10 2 to 5 ⁇ 10 4 N / m, more preferably 5 ⁇ 10 2 to 4 ⁇ 10 4 N / m.
  • the preheating of the substrate 50 is not necessarily required, but the substrate 50 is preliminarily used in order to further improve the adhesion between the second resin layer and the substrate. You may heat-process.
  • the treatment temperature at this time is preferably 30 to 150 ° C.
  • actinic rays are radiated in a pattern on the predetermined portions of the second resin layer 30 and the first resin layer 20 after transfer, for example, via a photomask.
  • the support film 10 on the first resin layer 20 is transparent when irradiating the actinic light, the actinic light can be irradiated as it is.
  • the support film 10 is opaque, the actinic light is removed after the support film 10 is removed. Irradiate.
  • a known active light source can be used as the active light source.
  • the pattern in this specification is not limited to the shape of the fine wiring that forms the circuit, but also includes the shape in which only the connection portion with the other base material is removed in a rectangular shape and the shape in which only the frame portion of the base material is removed. It is.
  • the irradiation amount of actinic rays is 1 ⁇ 10 2 to 1 ⁇ 10 4 J / m 2 , and heating can be accompanied during irradiation. If the irradiation amount of this actinic ray is 1 ⁇ 10 2 J / m 2 or more, photocuring can sufficiently proceed, and if it is 1 ⁇ 10 4 J / m 2 or less, the first resin There is a tendency that discoloration of the layer and the second resin layer can be suppressed.
  • the development step is preferably performed by a known method such as spraying, showering, rocking dipping, brushing, or scrubbing using an aqueous alkaline solution as a developing solution.
  • spray development is preferably performed using an alkaline aqueous solution from the viewpoint of environment and safety.
  • the development temperature and time can be adjusted within a conventionally known range.
  • a transparent adhesive film (OCA, Optical Clear Adhesive) or the like may be provided on the cured film 60 (on the surface on the first cured resin layer 22 side) of the transparent laminate 100 described above.
  • the refractive index of a member such as OCA is preferably 1.45 or more, more preferably 1.47 or more, and even more preferably 1.48 or more, from the viewpoint of easily obtaining the effect of suppressing the bone appearance phenomenon by the second resin layer.
  • 1.55 or less is preferable, 1.53 or less is more preferable, and 1.51 or less is still more preferable.
  • the electronic component of one embodiment includes a cured film formed using the transfer film 1 described above. This cured film is preferably formed in a pattern. Examples of the electronic component include a touch panel, a liquid crystal display, an organic electroluminescence, a solar cell module, a printed wiring board, and electronic paper.
  • FIG. 4 is a schematic top view showing an example of a capacitive touch panel.
  • the touch panel shown in FIG. 4 has a sensing area 102 for detecting a touch position coordinate on one side of a transparent substrate 101, and the transparent electrode 103 and the transparent electrode 104 for detecting a capacitance change in this area are transparent. It is provided on the base material 101.
  • the transparent electrode 103 and the transparent electrode 104 detect the X position coordinate and the Y position coordinate of the touch position, respectively.
  • a metal wiring 105 for transmitting a touch position detection signal from the transparent electrode 103 and the transparent electrode 104 to an external circuit is provided on the transparent substrate 101. Further, the metal wiring 105 and the transparent electrode 103 and the transparent electrode 104 are connected by a connection electrode 106 provided on the transparent electrode 103 and the transparent electrode 104. In addition, a connection terminal 107 for connection to an external circuit is provided at the end of the metal wiring 105 opposite to the connection portion between the transparent electrode 103 and the transparent electrode 104.
  • the transparent electrode 103 As shown in FIG. 4, by forming the cured film pattern 123, the transparent electrode 103, the transparent electrode 104, the metal wiring 105, the connection electrode 106, the function of the protective film of the connection terminal 107, and the transparent electrode pattern are formed. It simultaneously performs a bone appearance suppression function (for example, a refractive index adjustment function) of the sensing region 102.
  • a bone appearance suppression function for example, a refractive index adjustment function
  • propylene glycol monomethyl ether manufactured by Daicel Corporation
  • the addition amount was adjusted so that the molar ratio (x: l: y: z) of cyclohexyl methacrylate, methyl methacrylate, methacrylic acid, and glycidyl methacrylate was 24 mol%: 8 mol%: 48 mol%: 20 mol%. did.
  • the unit of the amount of each component is part by mass.
  • the acid value was measured by a neutralization titration method based on JIS K0070 as shown below.
  • the binder polymer solution was heated at 130 ° C. for 1 hour to remove volatile matter, thereby obtaining a solid content.
  • 30 g of acetone was added to the binder polymer, and this was uniformly dissolved to obtain a resin solution.
  • an appropriate amount of an indicator, phenolphthalein was added to the resin solution, and neutralization titration was performed using a 0.1 mol / L potassium hydroxide aqueous solution.
  • the acid value was computed by following Formula.
  • Acid value 0.1 ⁇ V ⁇ f 1 ⁇ 56.1 / (Wp ⁇ I / 100)
  • V is a titration amount (mL) of 0.1 mol / L potassium hydroxide aqueous solution used for titration
  • f 1 is a factor (concentration conversion factor) of 0.1 mol / L potassium hydroxide aqueous solution
  • Wp is measured.
  • the mass (g) of the resin solution, I represents the ratio (mass%) of the non-volatile content in the measured resin solution.)
  • ⁇ Preparation of first coating solution> Each component shown in Table 2 and methyl ethyl ketone (solvent) were mixed with a stirrer for 15 minutes to prepare a first coating solution (coating solution 1).
  • the unit of the amount of each component is part by mass.
  • the compounding quantity of (A) component is a solid content. Methyl ethyl ketone was added in such an amount that the solid content concentration was 30% by mass.
  • component A1 Binder polymer solution A1 -Component (B) A-DCP: Tricyclodecane dimethanol diacrylate (made by Shin-Nakamura Chemical Co., Ltd., product name) Component (C) OXE01: 1,2-octanedione, 1-[(4-phenylthio) phenyl-, 2- (O-benzoyloxime)] (product name, manufactured by BASF Japan Ltd.) -Component (D) P-1M: 2-methacryloylethyl acid phosphate, manufactured by Kyoeisha Chemical Co., Ltd.
  • ⁇ Preparation of second coating solution> Each component shown in Table 3 and methylpropylene glycol (solvent) were mixed for 15 minutes using a stirrer to prepare a second coating solution (coating solution IM-1a).
  • the unit of the amount of each component is part by mass.
  • the compounding quantity of (A) component and (E) component is a solid content.
  • methylpropylene glycol was added in an amount such that the solid content concentration was 1% by mass.
  • ⁇ Preparation of third coating solution> Each component shown in Table 4 and methylpropylene glycol (solvent) were mixed for 15 minutes using a stirrer to prepare a third coating solution (coating solution IM-1b).
  • the unit of the amount of each component is part by mass.
  • the compounding quantity of (A) component and (E) component is a solid content.
  • methylpropylene glycol was added in an amount such that the solid content concentration was 1% by mass.
  • Example 1 ⁇ Preparation of single layer film A> On a polyethylene terephthalate film (support film, manufactured by Toray Industries, Inc., product name: FB40) having a thickness of 16 ⁇ m, uniformly apply the first coating solution (coating solution 1) using a comma coater, and hot air convection at 100 ° C. The solvent was removed by drying for 5 minutes with a type dryer, and a single layer film A provided with the resin layer A was obtained. The coating was performed by adjusting the amount of the coating solution so that the thickness of the resin layer A after drying was 8 ⁇ m.
  • a second coating solution (coating solution IM-1a) was uniformly applied using a die coater on a 30 ⁇ m-thick polypropylene film (protective film, product name: ES-201 manufactured by Oji F-Tex Co., Ltd.)
  • the solvent was removed by drying with a hot air convection dryer to obtain a single layer film B having a resin layer B.
  • the coating was performed by adjusting the amount of the coating solution so that the thickness of the resin layer B after drying was 16 nm.
  • a third coating solution (coating solution IM-1b) was uniformly applied using a die coater on a 30 ⁇ m-thick polypropylene film (protective film, product name: ES-201 manufactured by Oji F-Tex Co., Ltd.) The solvent was removed by drying with a hot air convection dryer, and a single layer film C provided with a resin layer C was obtained. The coating was performed by adjusting the amount of the coating solution so that the thickness of the resin layer C after drying was 44 nm.
  • the thickness of the resin layer A in the single-layer film A produced as described above was measured with a digital thickness gauge (manufactured by Nikon Corporation, product name: DIGIMICROSTAND MS-5C). Moreover, the thickness of the resin layer B in the single layer film B produced above and the thickness of the resin layer C in the single layer film C were measured by F20 (manufactured by Filmetrics Co., Ltd., product name). The thickness of the resin layer A was 8 ⁇ m, the thickness of the resin layer B was 16 nm, and the thickness of the resin layer C was 44 nm.
  • the measurement conditions were set as follows, and the thickness of the first portion P1 was calculated based on the Ar + sputtering rate and Ar + sputtering time. It confirmed that the 2nd resin layer consisted of the 1st part P1 and the 2nd part P2 in order from the 1st resin layer side.
  • the coating solution IM-1a was uniformly coated on a glass substrate having a thickness of 0.7 mm, 10 cm long ⁇ 10 cm wide with a spin coater, and dried with a hot air convection dryer at 100 ° C. for 3 minutes to remove the solvent. A first layer was formed.
  • the coating solution IM-1b was uniformly coated on the first layer with a spin coater and dried for 3 minutes with a hot air convection dryer at 100 ° C. to remove the solvent, thereby forming a second layer. Thereby, the 2nd resin layer was formed on the glass base material, and the sample for refractive index measurement which has a 2nd resin layer was obtained.
  • the refractive index at a wavelength of 633 nm of the sample for refractive index measurement obtained by ETA-TCM was measured.
  • the results are shown in Table 5.
  • the film thicknesses of the first layer and the second layer in the second resin layer used for the measurement were the same as the film thickness of the resin layer B (16 nm) and the film thickness of the resin layer C (44 nm) in the transfer film.
  • the ratio M / C in the second resin layer used for the measurement was measured, and the thickness of the first portion P1 and the thickness of the second portion P2, the thickness of the resin layer B, and the resin layer It was confirmed that the thickness of C was the same (the same applies to Experimental Examples 2 to 12).
  • the support film was removed, and light was irradiated with an exposure dose of 400 mJ / cm 2 using a conveyor exposure machine (product name: QRM-2288-WC0-04, manufactured by Oak Manufacturing Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • the obtained laminate was heat-treated at 140 ° C. for 30 minutes with an explosion-proof dryer to cure the laminate. This produced the sample for adhesiveness measurement.
  • a cross cut test of 100 squares was performed twice with reference to the JIS standard (JIS K5400). Specifically, 100 squares of 1 mm ⁇ 1 mm square grid cuts were put into the protective film of the obtained sample for measuring adhesion using a cutter knife. Thereafter, mending tape # 810 (manufactured by 3M Japan Co., Ltd.) was strongly pressure-bonded to the cross section, and after 90 seconds, it was quickly peeled off from the end of the tape in the direction of an angle of about 180 °. Thereafter, the state of the grid was observed with a microscope, and the adhesion (cross-cut adhesion) was evaluated according to the following scores. Evaluation was performed using the average value of two tests.
  • A The area of the adhesion part in the interface (interface between the resin layer A and the resin layer B) between the first resin layer and the second resin layer is 85% or more of the total area of the interface.
  • B The area of the adhesion part in the interface (interface between the resin layer A and the resin layer B) between the first resin layer and the second resin layer is 65% or more and less than 85% of the total area of the interface.
  • C The area of the adhesion portion at the interface between the first resin layer and the second resin layer (interface between the resin layer A and the resin layer B) is 0% or more and less than 65% of the total area of the interface.
  • ITO / IM / COP base material (a base material in which an ITO layer, an IM layer, and a COP layer were laminated in this order) was etched from the ITO side to form a 500 ⁇ m square lattice pattern in a space of 30 ⁇ m. While peeling the protective film of the transfer film on the ITO side surface of this substrate, the second resin layer was opposed to the substrate and laminated under the conditions of 100 ° C., 0.6 m / min, 0.4 MPa. .
  • the substrate After laminating, the substrate is cooled, and when the temperature of the substrate reaches 23 ° C., using an exposure machine having a high-pressure mercury lamp from the support film side (manufactured by Oak Manufacturing Co., Ltd., product name: EXM-1201), The entire surface of the transfer film was irradiated with light at an exposure amount of 100 mJ / cm 2 .
  • the support film was removed, and light was irradiated with an exposure dose of 400 mJ / cm 2 using a conveyor exposure machine (product name: QRM-2288-WC0-04, manufactured by Oak Manufacturing Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • annealing was performed by heating at 140 ° C. for 30 minutes.
  • sample for pattern hiding property layer structure: SiO 2 glass / OCA / second cured resin layer (cured product of second resin layer) / first cured resin layer (first resin layer) Cured product) / ITO / IM / COP / OCA / black board.
  • sample for pattern hiding property layer structure: SiO 2 glass / OCA / second cured resin layer (cured product of second resin layer) / first cured resin layer (first resin layer) Cured product) / ITO / IM / COP / OCA / black board.
  • pattern concealment property was evaluated based on the following reference

Abstract

A transfer film 1 which is provided with a support film 10 and a laminate 40 provided upon the support film 10, and in which: the laminate 40 includes a first resin layer 20 provided upon the support film 10 and a second resin layer 30 provided upon the first resin layer 20; the first resin layer 20 is a photosensitive resin composition layer; the second resin layer 30 includes an organic component and a metal oxide, and has a portion in which the ratio M/C (M indicating the amount of metal atoms forming the metal oxide, and C indicating the amount of carbon atoms forming the organic component), which is obtained by measuring a plane perpendicular to the thickness direction of the second resin layer 30 using X-ray photoelectron spectroscopy, is less than 0.2; and said portion comprises the surface of the second resin layer 30 on the first resin layer 20 side and has a thickness of 40–60 nm.

Description

転写フィルム、硬化膜及びその形成方法、並びに、電子部品Transfer film, cured film, method for forming the same, and electronic component
 本発明は、転写フィルム、硬化膜及びその形成方法、並びに、電子部品に関する。 The present invention relates to a transfer film, a cured film, a method for forming the same, and an electronic component.
 パソコン、テレビ等の大型電子機器、カーナビゲーション、携帯電話、スマートフォン、電子辞書等の小型電子機器、OA(Office Automation、オフィスオートメーション)・FA(Factory Automation、ファクトリーオートメーション)機器等の表示機器などには液晶表示素子及びタッチパネル(タッチセンサー)が用いられている。 For large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones, smartphones, and electronic dictionaries, and display devices such as OA (Office Automation, Office Automation) and FA (Factory Automation, Factory Automation) devices Liquid crystal display elements and touch panels (touch sensors) are used.
 タッチパネルには各種の方式が採用されているが、近年、投影型静電容量方式のタッチパネルの利用が進んでいる。一般に、投影型静電容量方式のタッチパネルでは、X軸とY軸による2次元座標を表現するために、複数のX電極と、該X電極に直交する複数のY電極とが、2層構造を形成している。これらの電極の材料として、ITO(Indium-Tin-Oxide、酸化インジウムスズ)が主流である。 Various types of touch panels have been adopted, but in recent years, the use of projected capacitive touch panels has progressed. In general, in a projected capacitive touch panel, a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes. Forming. As a material for these electrodes, ITO (Indium-Tin-Oxide) is the mainstream.
 タッチパネルの額縁領域はタッチ位置を検出できない領域であるから、その額縁領域の面積を狭くすることが製品価値を向上させるための重要な要素である。一般的に額縁領域には、タッチ位置の検出信号を伝えるために銅等の金属配線が形成されている。 Since the frame area of the touch panel is an area where the touch position cannot be detected, reducing the area of the frame area is an important factor for improving the product value. In general, a metal wiring such as copper is formed in the frame region in order to transmit a touch position detection signal.
 ところで、タッチパネルでは、指先が接触した際に、水分又は塩分等の腐食成分がセンシング領域から内部に侵入することがある。タッチパネルの内部に腐食成分が侵入すると、上記金属配線が腐食し、電極と駆動用回路との間の電気抵抗の増加、又は断線の恐れがある。 By the way, in the touch panel, when a fingertip comes into contact, a corrosive component such as moisture or salt may enter the inside from the sensing region. When a corrosive component enters the inside of the touch panel, the metal wiring corrodes, and there is a risk of an increase in electrical resistance between the electrode and the drive circuit, or disconnection.
 金属配線の腐食を防ぐために、タッチパネル用基材上に、ジシクロペンタン構造又はジシクロペンテン構造を有するジ(メタ)アクリレート化合物を含有する感光性樹脂組成物層を設け、前記感光性樹脂組成物層の所定部分を活性光線の照射により硬化させた後に、前記所定部分以外を除去し、前記基材の一部又は全部を被覆する前記感光性樹脂組成物の硬化膜を形成する方法が知られている(下記特許文献1を参照)。この手法によれば、タッチパネル用基材上に充分な低透湿性を有する硬化膜を形成することができる。 In order to prevent corrosion of metal wiring, a photosensitive resin composition layer containing a di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure is provided on a touch panel substrate, and the photosensitive resin composition layer A method of forming a cured film of the photosensitive resin composition that covers a part or all of the base material after removing a predetermined part of the substrate by actinic ray irradiation and removing the part other than the predetermined part is known. (See Patent Document 1 below). According to this method, a cured film having a sufficiently low moisture permeability can be formed on the touch panel substrate.
 他方で、投影型静電容量方式のタッチパネルでは、センシング領域において電極パターンが画面上に映りこむ、いわゆる「骨見え現象」の問題がある。 On the other hand, the projected capacitive touch panel has a problem of so-called “bone appearance phenomenon” in which the electrode pattern is reflected on the screen in the sensing region.
 骨見え現象を抑制する手法として、特定の屈折率の範囲に調整された低屈折率の第一の硬化性透明樹脂層及び高屈折率の第二の硬化性透明樹脂層とを隣接して有する転写フィルムが開示されている(下記特許文献2を参照)。 As a method for suppressing the bone appearance phenomenon, the first curable transparent resin layer having a low refractive index adjusted to a specific refractive index range and the second curable transparent resin layer having a high refractive index are adjacent to each other. A transfer film is disclosed (see Patent Document 2 below).
特開2015-121929JP2015-121929A 国際公開第2014/084112号パンフレットInternational Publication No. 2014/084112 Pamphlet
 しかしながら、上記特許文献2に記載の転写フィルム等の従来の転写フィルムを用いた場合、第一の硬化性透明樹脂層及び第二の硬化性透明樹脂層の硬化後、電子部品の組み立て工程において樹脂層間での剥離が生じる場合があった。 However, when a conventional transfer film such as the transfer film described in Patent Document 2 is used, after the first curable transparent resin layer and the second curable transparent resin layer are cured, a resin is used in the assembly process of the electronic component. Separation between layers sometimes occurred.
 そこで、本発明は、樹脂層間の密着性に優れる硬化膜を得ることができる転写フィルム、該転写フィルムを用いて得られる硬化膜及びその形成方法、並びに、該硬化膜を備える電子部品を提供することを目的とする。 Accordingly, the present invention provides a transfer film capable of obtaining a cured film having excellent adhesion between resin layers, a cured film obtained using the transfer film, a method for forming the same, and an electronic component including the cured film. For the purpose.
 本発明の一側面は、支持フィルムと、該支持フィルム上に設けられた積層体と、を備える転写フィルムに関する。この転写フィルムにおいて、積層体は、支持フィルム上に設けられた第一の樹脂層と、該第一の樹脂層上に設けられた第二の樹脂層と、を含み、第一の樹脂層は感光性樹脂組成物層であり、第二の樹脂層は有機成分及び金属酸化物を含み、かつ、第二の樹脂層の厚さ方向に垂直な面をX線光電子分光分析法により測定して得られる比M/C(Mは、金属酸化物を構成する金属原子の量を示し、Cは、有機成分を構成する炭素原子の量を示す)が0.2未満である部分を有し、該部分は、第二の樹脂層における第一の樹脂層側の面を含み、かつ、40~60nmの厚さを有する。 One aspect of the present invention relates to a transfer film comprising a support film and a laminate provided on the support film. In this transfer film, the laminate includes a first resin layer provided on the support film and a second resin layer provided on the first resin layer, and the first resin layer comprises: It is a photosensitive resin composition layer, the second resin layer contains an organic component and a metal oxide, and a surface perpendicular to the thickness direction of the second resin layer is measured by X-ray photoelectron spectroscopy. The resulting ratio M / C (M represents the amount of metal atoms constituting the metal oxide, C represents the amount of carbon atoms constituting the organic component) is less than 0.2, The portion includes the surface of the second resin layer on the first resin layer side and has a thickness of 40 to 60 nm.
 上記転写フィルムでは、第二の樹脂層が、比M/Cが0.2未満である部分を第一の樹脂層側に所定の厚さで有するため、積層体を硬化させて硬化膜とした場合に、第二の樹脂層と、第二の樹脂層に隣接する第一の樹脂層側の層(例えば第一の樹脂層)とが、炭素原子Cを介して結合されやすくなる。そのため、上記転写フィルムによれば、樹脂層間(第二の樹脂層と、第二の樹脂層に隣接する第一の樹脂層側の層との間)の密着性に優れる硬化膜を得ることができる。この転写フィルムにより得られる硬化膜は、樹脂間の優れた密着性と骨見え現象の抑制とを両立できる。 In the transfer film, since the second resin layer has a portion having a ratio M / C of less than 0.2 on the first resin layer side with a predetermined thickness, the laminate is cured to form a cured film. In this case, the second resin layer and the first resin layer side layer (for example, the first resin layer) adjacent to the second resin layer are easily bonded via the carbon atom C. Therefore, according to the transfer film, it is possible to obtain a cured film having excellent adhesion between the resin layers (between the second resin layer and the first resin layer side adjacent to the second resin layer). it can. The cured film obtained by this transfer film can achieve both excellent adhesion between the resins and suppression of the bone appearance phenomenon.
 金属酸化物は、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛、酸化インジウムスズ、酸化インジウム、酸化アルミニウム、酸化ケイ素及び酸化イットリウムからなる群より選択される少なくとも一種を含んでいてよい。この場合、第二の樹脂層の波長633nmにおける屈折率の制御が容易となるとともに、上記密着性の向上効果が得られやすい。 The metal oxide may contain at least one selected from the group consisting of zirconium oxide, titanium oxide, tin oxide, zinc oxide, indium tin oxide, indium oxide, aluminum oxide, silicon oxide, and yttrium oxide. In this case, the refractive index of the second resin layer at a wavelength of 633 nm can be easily controlled, and the effect of improving the adhesion can be easily obtained.
 第二の樹脂層の波長633nmにおける屈折率は1.50~1.90であってよい。この場合、得られる硬化膜のパターン隠蔽性が優れたものとなる。 The refractive index of the second resin layer at a wavelength of 633 nm may be 1.50 to 1.90. In this case, the pattern hiding property of the cured film obtained is excellent.
 第二の樹脂層の厚さは50~500nmであってよい。この場合、タッチパネルにおけるタッチ画面全体の反射光強度をより低減することが可能となる。 The thickness of the second resin layer may be 50 to 500 nm. In this case, the reflected light intensity of the entire touch screen on the touch panel can be further reduced.
 有機成分は、(メタ)アクリル酸、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、スチレン、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸シクロヘキシルエステル及び(メタ)アクリル酸-2-エチルヘキシルエステルからなる群より選択される少なくとも一種の化合物に由来する構造単位を有するポリマーを含んでいてよい。この場合、第二の樹脂層のアルカリ現像性に優れると共に、硬化膜における樹脂層間の密着性がより優れたものとなる。 Organic components are (meth) acrylic acid, (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, styrene, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl A polymer having a structural unit derived from at least one compound selected from the group consisting of ester, (meth) acrylic acid cyclohexyl ester and (meth) acrylic acid-2-ethylhexyl ester may be included. In this case, the alkali developability of the second resin layer is excellent, and the adhesion between the resin layers in the cured film is more excellent.
 積層体の厚さは30μm以下であってよい。この場合、上記第一の樹脂層及び第二の樹脂層の基材へのラミネート時の追従性を向上させることができる。 The thickness of the laminate may be 30 μm or less. In this case, the followability at the time of laminating the first resin layer and the second resin layer to the base material can be improved.
 硬化後の積層体の、波長400~700nmにおける透過率の最小値は90%以上であってよい。この場合、タッチパネルのセンシング領域の透明電極を保護する場合において、センシング領域での画像表示品質、色合い、輝度が低下することを充分抑制することができる。 The minimum value of the transmittance at a wavelength of 400 to 700 nm of the cured laminate may be 90% or more. In this case, when protecting the transparent electrode in the sensing area of the touch panel, it is possible to sufficiently suppress the image display quality, hue, and luminance in the sensing area from being lowered.
 本発明の一側面は、基材上に、上記転写フィルムの積層体を、第二の樹脂層が基材に密着するようにラミネートする工程と、基材上の積層体の所定部分を露光する工程と、露光された所定部分以外を除去し、パターン状の硬化膜を形成する工程と、を備える硬化膜の形成方法に関する。この方法によれば、樹脂層間の密着性に優れるパターン状の硬化膜が得られる。 One aspect of the present invention is a step of laminating a laminate of the transfer film on a substrate so that the second resin layer is in close contact with the substrate, and exposing a predetermined portion of the laminate on the substrate. The present invention relates to a method for forming a cured film comprising: a step and a step of removing a portion other than the exposed predetermined portion to form a patterned cured film. According to this method, a patterned cured film having excellent adhesion between resin layers can be obtained.
 本発明の一側面は、上記転写フィルムにおける積層体の、第一の樹脂層及び第二の樹脂層を硬化してなる、硬化膜に関する。この硬化膜は、樹脂層間の密着性に優れる。硬化膜はパターン状であってもよい。 One aspect of the present invention relates to a cured film formed by curing the first resin layer and the second resin layer of the laminate in the transfer film. This cured film is excellent in adhesion between resin layers. The cured film may be patterned.
 本発明の一側面は、上記硬化膜を備える、電子部品に関する。この電子部品においては、硬化膜における樹脂層間の剥離が生じ難く、耐久性に優れる。 One aspect of the present invention relates to an electronic component including the above cured film. In this electronic component, peeling between the resin layers in the cured film hardly occurs and the durability is excellent.
 本発明によれば、樹脂層間の密着性に優れる硬化膜を得ることができる転写フィルム、該転写フィルムを用いて得られる硬化膜及びその形成方法、並びに、該硬化膜を備える電子部品を提供することができる。 According to the present invention, there are provided a transfer film capable of obtaining a cured film having excellent adhesion between resin layers, a cured film obtained by using the transfer film, a method for forming the same, and an electronic component including the cured film. be able to.
本発明の一実施形態の転写フィルムを示す模式断面図である。It is a schematic cross section which shows the transfer film of one Embodiment of this invention. 図1に示される領域Aの拡大図である。It is an enlarged view of the area | region A shown by FIG. 本発明の一実施形態の転写フィルムを用いて形成した硬化膜パターンを透明電極パターン付き基材上に備える透明積層体を示す模式断面図である。It is a schematic cross section which shows a transparent laminated body provided with the cured film pattern formed using the transfer film of one Embodiment of this invention on a base material with a transparent electrode pattern. 本発明の一実施形態の電子部品を示す模式平面図である。It is a schematic plan view which shows the electronic component of one Embodiment of this invention.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acrylate” means acrylate or a corresponding methacrylate. “A or B” only needs to include one of A and B, or may include both.
 また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、数値範囲として個別に記載された上限値及び下限値は、任意に組み合わせることができる。 In addition, in this specification, the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended action of the process is achieved. included. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Moreover, the upper limit value and lower limit value individually described as numerical ranges can be arbitrarily combined.
 さらに、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、二種以上を組み合わせて用いてもよい。 Furthermore, in the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity. In addition, the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
 また、本明細書において「厚さ」とは、各層の積層方向における長さを意味する。 In addition, in this specification, “thickness” means the length of each layer in the stacking direction.
<転写フィルム>
 転写フィルムは、支持フィルムと、該支持フィルム上に設けられた積層体と、を備え、積層体は、支持フィルム上に設けられた第一の樹脂層と、該第一の樹脂層上に設けられた第二の樹脂層と、を含む。この転写フィルムにおいて、第一の樹脂層は感光性樹脂組成物層であり、第二の樹脂層は有機成分及び金属酸化物を含む層である。また、第二の樹脂層は、第二の樹脂層の厚さ方向に垂直な面をX線光電子分光分析法(XPS:X-ray Photoelectron Spectroscopy)により測定して得られる比M/C(Mは、金属酸化物を構成する金属原子の量を示し、Cは、有機成分を構成する炭素原子の量を示す)が0.2未満である部分を有しており、該部分は、第二の樹脂層における第一の樹脂層側の面を含み、かつ、40~60nmの厚さを有する。
<Transfer film>
The transfer film includes a support film and a laminate provided on the support film, and the laminate is provided on the first resin layer provided on the support film and on the first resin layer. A second resin layer. In this transfer film, the first resin layer is a photosensitive resin composition layer, and the second resin layer is a layer containing an organic component and a metal oxide. In addition, the second resin layer has a ratio M / C (M (M) obtained by measuring a plane perpendicular to the thickness direction of the second resin layer by X-ray photoelectron spectroscopy (XPS). Represents the amount of metal atoms constituting the metal oxide, and C represents the amount of carbon atoms constituting the organic component) having a portion of less than 0.2. The resin layer includes a surface on the first resin layer side and has a thickness of 40 to 60 nm.
 以下、一実施形態の転写フィルムの好ましい態様について説明する。 Hereinafter, a preferable aspect of the transfer film of one embodiment will be described.
 図1は、一実施形態の転写フィルムを示す模式断面図であり、図2は、図1に示される領域Aの拡大図である。図1に示される転写フィルム1は、支持フィルム10と、該支持フィルム10上に設けられた第一の樹脂層20及び該第一の樹脂層20上に設けられた第二の樹脂層30を含む積層体40と、第二の樹脂層30の第一の樹脂層20とは反対側に設けられた保護フィルム15と、を備える、感光性の屈折率調整フィルムである。上記転写フィルム1では、第二の樹脂層30が金属酸化物5を含んでおり、金属酸化物5が積層体40の第二の樹脂層30側に偏在している。他の一実施形態では、転写フィルムが保護フィルムを備えていなくてもよい。 FIG. 1 is a schematic cross-sectional view showing a transfer film of one embodiment, and FIG. 2 is an enlarged view of a region A shown in FIG. 1 includes a support film 10, a first resin layer 20 provided on the support film 10, and a second resin layer 30 provided on the first resin layer 20. It is a photosensitive refractive index adjustment film provided with the laminated body 40 containing, and the protective film 15 provided in the opposite side to the 1st resin layer 20 of the 2nd resin layer 30. FIG. In the transfer film 1, the second resin layer 30 includes the metal oxide 5, and the metal oxide 5 is unevenly distributed on the second resin layer 30 side of the laminate 40. In another embodiment, the transfer film may not include a protective film.
 支持フィルム10としては、例えば重合体フィルムを用いることができる。重合体フィルムとしては、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリエーテルサルフォン、シクロオレフィンポリマー等のフィルムが挙げられる。 As the support film 10, for example, a polymer film can be used. Examples of the polymer film include films of polyethylene terephthalate, polycarbonate, polyethylene, polypropylene, polyethersulfone, cycloolefin polymer, and the like.
 支持フィルム10の厚さは、被覆性の確保の観点から、5μm以上が好ましく、10μm以上がより好ましく、15μm以上が更に好ましい。支持フィルム10の厚さは、支持フィルム10を介して活性光線を照射する際の解像度の低下を抑制する観点から、100μm以下が好ましく、70μm以下がより好ましく、40μm以下が更に好ましく、35μm以下が特に好ましい。これらの観点から、支持フィルム10の厚さは、5~100μmが好ましく、10~70μmがより好ましく、15~40μmが更に好ましく、15~35μmが特に好ましい。 The thickness of the support film 10 is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 15 μm or more from the viewpoint of ensuring coverage. The thickness of the support film 10 is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 40 μm or less, and even more preferably 35 μm or less from the viewpoint of suppressing a reduction in resolution when irradiating active light through the support film 10. Particularly preferred. From these viewpoints, the thickness of the support film 10 is preferably 5 to 100 μm, more preferably 10 to 70 μm, still more preferably 15 to 40 μm, and particularly preferably 15 to 35 μm.
 第一の樹脂層20は、硬化性の樹脂組成物によって形成されている。第一の樹脂層20は、所望の形状を有する硬化膜を容易に形成する観点から、感光性樹脂組成物層である。硬化後の第一の樹脂層の波長633nmにおける屈折率は、通常1.40以上であり、また、1.49以下である。第一の樹脂層20の波長633nmにおける屈折率は、硬化後の第一の樹脂層の波長633nmにおける屈折率が上記範囲となるように適宜設定してよい。例えば、第一の樹脂層20の波長633nmにおける屈折率は、1.40~1.49であってよい。 The first resin layer 20 is formed of a curable resin composition. The first resin layer 20 is a photosensitive resin composition layer from the viewpoint of easily forming a cured film having a desired shape. The refractive index of the first resin layer after curing at a wavelength of 633 nm is usually 1.40 or more and 1.49 or less. The refractive index at a wavelength of 633 nm of the first resin layer 20 may be appropriately set so that the refractive index at a wavelength of 633 nm of the cured first resin layer falls within the above range. For example, the refractive index of the first resin layer 20 at a wavelength of 633 nm may be 1.40 to 1.49.
 第一の樹脂層20の厚さ(乾燥後の厚さ)は、保護膜として充分に効果を奏し、かつ透明電極パターン付き基材表面の段差を充分に埋め込む観点から、15μm以下が好ましく、10μm以下がより好ましく、8μm以下がより好ましい。第一の樹脂層20の厚さ(乾燥後の厚さ)は、保護膜として充分に効果を奏し、かつ透明電極パターン付き基材表面の段差を充分に埋め込む観点から、2μm以上が好ましく、3μm以上がより好ましい。すなわち、第一の樹脂層20の厚さ(乾燥後の厚さ)は、2~15μmが好ましく、2~10μmがより好ましく、3~8μmが更に好ましい。 The thickness of the first resin layer 20 (thickness after drying) is preferably 15 μm or less from the viewpoint of sufficiently providing a protective film and sufficiently embedding a step on the surface of the substrate with a transparent electrode pattern. The following is more preferable, and 8 μm or less is more preferable. The thickness of the first resin layer 20 (thickness after drying) is preferably 2 μm or more from the viewpoint of sufficiently providing a protective film and sufficiently embedding a step on the surface of the substrate with a transparent electrode pattern. The above is more preferable. That is, the thickness of the first resin layer 20 (thickness after drying) is preferably 2 to 15 μm, more preferably 2 to 10 μm, still more preferably 3 to 8 μm.
 第二の樹脂層30は、有機成分及び金属酸化物5を含有する樹脂組成物によって形成されている。第二の樹脂層30の633nmにおける屈折率は、例えば1.50以上である。この場合、硬化膜のパターン隠蔽性に優れるとともに、画面全体の反射光強度を低減することが可能となり、画面上の透過率低下を抑制することができる。 The second resin layer 30 is formed of a resin composition containing an organic component and the metal oxide 5. The refractive index at 633 nm of the second resin layer 30 is, for example, 1.50 or more. In this case, the pattern concealability of the cured film is excellent, and the reflected light intensity of the entire screen can be reduced, and a decrease in transmittance on the screen can be suppressed.
 例えば、ITO等の透明電極パターン状に積層体40の硬化物(硬化膜)を形成し、硬化膜上に各種部材(例えば、モジュール化する際に使用するカバーガラスと透明電極パターンとを接着する透明粘着フィルム(OCA、Optical Clear Adhesive))を設けた場合、第二の樹脂層30の633nmにおける屈折率が1.50以上であると、積層体を硬化してなる硬化膜の屈折率が、ITO等の透明電極パターンの屈折率(例えば1.80~2.10)と、硬化膜の上に使用される各種部材の屈折率(例えば1.45~1.55)の中間値となり、ITO等の透明電極パターンが形成されている部分と形成されていない部分での光学的な反射による色差を小さくすることが可能となる。これにより、透明電極パターンを充分に隠蔽する(骨見え現象を充分に抑制する)ことができる。 For example, a cured product (cured film) of the laminate 40 is formed in a transparent electrode pattern such as ITO, and various members (for example, a cover glass used for modularization and the transparent electrode pattern are bonded onto the cured film. When a transparent adhesive film (OCA, Optical Clear Adhesive) is provided, if the refractive index at 633 nm of the second resin layer 30 is 1.50 or more, the refractive index of the cured film obtained by curing the laminate is It becomes an intermediate value between the refractive index (for example, 1.80 to 2.10) of the transparent electrode pattern such as ITO and the refractive index (for example, 1.45 to 1.55) of various members used on the cured film. Thus, it is possible to reduce the color difference due to optical reflection between the portion where the transparent electrode pattern is formed and the portion where the transparent electrode pattern is not formed. As a result, the transparent electrode pattern can be sufficiently concealed (the bone appearance phenomenon can be sufficiently suppressed).
 第二の樹脂層30の633nmにおける屈折率は、パターン隠蔽性(骨見え現象の抑制効果)により優れる観点から、1.55以上又は1.60以上であってよく、また、1.90以下、1.85以下又は1.75以下であってよい。すなわち、第二の樹脂層30の波長633nmにおける屈折率は、例えば、1.50~1.90、1.55~1.85又は1.60~1.75であってよい。なお、屈折率は、本明細書の実施例を参考に測定することができる。 The refractive index at 633 nm of the second resin layer 30 may be 1.55 or more or 1.60 or more, and 1.90 or less, from the viewpoint of being excellent in pattern hiding property (the effect of suppressing the bone appearance phenomenon). It may be 1.85 or less or 1.75 or less. That is, the refractive index of the second resin layer 30 at a wavelength of 633 nm may be, for example, 1.50 to 1.90, 1.55 to 1.85, or 1.60 to 1.75. The refractive index can be measured with reference to the examples in this specification.
 第二の樹脂層30の厚さ(乾燥後の厚さ)は、例えば、50~500nmであってよい。第二の樹脂層30の乾燥後の厚さが50~500nmであることにより、上述の画面全体の反射光強度をより低減することが可能となる。第二の樹脂層30の厚さ(乾燥後の厚さ)は、50nm以上が好ましく、55nm以上がより好ましい。第二の樹脂層の厚さ(乾燥後の厚さ)は、60nm以上又は80nm以上であってもよい。第二の樹脂層30の厚さ(乾燥後の厚さ)は、500nm以下が好ましく、180nm以下がより好ましく、100nm以下が更に好ましく、80nm以下が特に好ましい。 The thickness of the second resin layer 30 (thickness after drying) may be, for example, 50 to 500 nm. When the thickness of the second resin layer 30 after drying is 50 to 500 nm, the reflected light intensity of the entire screen can be further reduced. The thickness (thickness after drying) of the second resin layer 30 is preferably 50 nm or more, and more preferably 55 nm or more. The thickness of the second resin layer (thickness after drying) may be 60 nm or more or 80 nm or more. The thickness of the second resin layer 30 (thickness after drying) is preferably 500 nm or less, more preferably 180 nm or less, still more preferably 100 nm or less, and particularly preferably 80 nm or less.
 図2に示すように、第二の樹脂層30における第一の樹脂層20側には、第二の樹脂層30の厚さ方向に垂直な面をX線光電子分光分析法により測定して得られる比M/C(Mは、金属酸化物を構成する金属原子の量を示し、Cは、有機成分を構成する炭素原子の量を示す)が0.2未満である部分(以下、「第一部分P1」ともいう)が形成されており、第二の樹脂層30における第一の樹脂層20とは反対側(保護フィルム15側)には、第二の樹脂層の厚さ方向に垂直な面をX線光電子分光分析法により測定して得られる比M/C(Mは、金属酸化物を構成する金属原子の量を示し、Cは、有機成分を構成する炭素原子の量を示す)が0.2以上である部分(以下、「第二部分P2」ともいう)が形成されている。 As shown in FIG. 2, a surface perpendicular to the thickness direction of the second resin layer 30 is measured by X-ray photoelectron spectroscopy on the first resin layer 20 side of the second resin layer 30. The ratio M / C (M represents the amount of metal atoms constituting the metal oxide, and C represents the amount of carbon atoms constituting the organic component) is less than 0.2 (hereinafter referred to as “No. Part of the second resin layer 30 opposite to the first resin layer 20 (protective film 15 side) is perpendicular to the thickness direction of the second resin layer. Ratio M / C obtained by measuring the surface by X-ray photoelectron spectroscopy (M represents the amount of metal atoms constituting the metal oxide, and C represents the amount of carbon atoms constituting the organic component) A portion having a thickness of 0.2 or more (hereinafter also referred to as “second portion P2”) is formed.
 第一部分P1は第二の樹脂層30における第一の樹脂層20側の面を含み、積層体40の積層方向に厚さを有している。この第一部分P1では、厚さ方向に垂直な全ての断面が0<M/C<0.2を満たす。 The first portion P <b> 1 includes the surface of the second resin layer 30 on the first resin layer 20 side, and has a thickness in the stacking direction of the stacked body 40. In the first portion P1, all cross sections perpendicular to the thickness direction satisfy 0 <M / C <0.2.
 第一部分P1の厚さは40~60nmである。第一部分P1の厚さが40nm以上であることにより、硬化後の第一の樹脂層と第二の樹脂層との密着が強固となり、樹脂層間での剥離(界面剥離)が抑制される。一方、第一部分P1の厚さが60nm以下であることにより、第二の樹脂層に占める第一部分P1の厚さが厚くなりすぎず、パターン隠蔽性に優れる。第一部分P1の厚さは、硬化膜における樹脂層間の密着性をより向上させる観点から、42nm以上、44nm以上、46nm以上、48nm以上又は50nm以上であってもよい。第一部分P1の厚さは、パターン隠蔽性により優れる観点から、50nm以下又は44nm以下であってもよい。これらの観点から、第一部分P1の厚さは、40~60nm、42~60nm、44~60nm、46~60nm、48~60nm、50~60nm、40~50nm、42~50nm、44~50nm、46~50nm、48~50nm、40~44nm又は42~44nmであってよい。 The thickness of the first part P1 is 40 to 60 nm. When the thickness of the first portion P1 is 40 nm or more, the adhesion between the cured first resin layer and the second resin layer is strengthened, and peeling between the resin layers (interfacial peeling) is suppressed. On the other hand, when the thickness of the first portion P1 is 60 nm or less, the thickness of the first portion P1 in the second resin layer does not become too thick, and the pattern concealability is excellent. The thickness of the first portion P1 may be 42 nm or more, 44 nm or more, 46 nm or more, 48 nm or more, or 50 nm or more from the viewpoint of further improving the adhesion between the resin layers in the cured film. The thickness of the first part P1 may be 50 nm or less or 44 nm or less from the viewpoint of better pattern concealment. From these viewpoints, the thickness of the first portion P1 is 40 to 60 nm, 42 to 60 nm, 44 to 60 nm, 46 to 60 nm, 48 to 60 nm, 50 to 60 nm, 40 to 50 nm, 42 to 50 nm, 44 to 50 nm, 46 It may be ˜50 nm, 48˜50 nm, 40˜44 nm or 42˜44 nm.
 第一部分P1の厚さの、第二の樹脂層30の厚さに対する比(第一部分P1の厚さ/第二の樹脂層30の厚さ)は、硬化膜における樹脂層間の密着性をより向上させる観点から、0.3以上、0.5以上、0.6以上又は0.7以上であってよい。第一部分P1の厚さの、第二の樹脂層30の厚さに対する比は、パターン隠蔽性により優れる観点から、1.0未満、0.9以下又は0.8以下であってよい。 The ratio of the thickness of the first portion P1 to the thickness of the second resin layer 30 (the thickness of the first portion P1 / the thickness of the second resin layer 30) further improves the adhesion between the resin layers in the cured film. From the point of view, it may be 0.3 or more, 0.5 or more, 0.6 or more, or 0.7 or more. The ratio of the thickness of the first portion P1 to the thickness of the second resin layer 30 may be less than 1.0, 0.9 or less, or 0.8 or less from the viewpoint of better pattern concealment.
 第二部分P2は第一部分P1と隣接しており、積層体40の積層方向に厚さを有している。この第二部分P2では、厚さ方向に垂直な全ての断面が0.2≦M/Cを満たす。第二部分P2は、第二の樹脂層30における第一の樹脂層20とは反対側の面(保護フィルム15側の面)を含む。すなわち、第二の樹脂層30は、第一部分P1と第二部分P2とからなる。他の一実施形態では、第二部分P2が保護フィルム15側の面を含んでいなくてもよい。すなわち、第二の樹脂層30は、第二部分P2の第一部分P1とは反対側に、比M/Cが0.2未満である第三部分を有していてよい。 The second portion P2 is adjacent to the first portion P1 and has a thickness in the stacking direction of the stacked body 40. In the second portion P2, all cross sections perpendicular to the thickness direction satisfy 0.2 ≦ M / C. The second portion P2 includes a surface of the second resin layer 30 on the side opposite to the first resin layer 20 (surface on the protective film 15 side). That is, the 2nd resin layer 30 consists of the 1st part P1 and the 2nd part P2. In another embodiment, the second portion P2 may not include the surface on the protective film 15 side. That is, the second resin layer 30 may have a third portion having a ratio M / C of less than 0.2 on the opposite side of the second portion P2 from the first portion P1.
 第二部分P2の厚さは、パターン隠蔽性により優れる観点から、10nm以上、30nm以上又は50nm以上であってよく、現像性向上の観点から、50nm以下又は44nm以下であってもよい。 The thickness of the second portion P2 may be 10 nm or more, 30 nm or more, or 50 nm or more from the viewpoint of better pattern concealing property, and may be 50 nm or less or 44 nm or less from the viewpoint of improving developability.
 厚さ方向における比M/Cの分析は、例えば、Arスパッタ/XPS法により行うことができる。具体的には、以下の条件で、第二の樹脂層30の表面(第一の樹脂層20側の面又は保護フィルム15側の面)から、Arイオンビームによるスパッタリングと、XPSによるスペクトルの取得を交互に繰り返し、比M/Cの厚さ方向のプロファイルを得る。得られたプロファイルを分析することで、第二の樹脂層の厚さ方向における比M/C、並びに、比M/Cが0.2未満である部分(第一部分P1)及び比M/Cが0.2以上である部分(第二部分P2)の厚さを求めることができる。
[XPS条件]
・X線:Al-Kα線(100μm、25W、15kV)、測定面積:300μm□(μmスクエア、μm四方)
・光電子取出し角:45°
・Pass Energy:112eV、Step Energy:0.1eV
[Arスパッタ条件]
・加速電圧:2kV
・照射範囲:2mm□(mmスクエア、mm四方)
・Arスパッタ速度:3nm/分
The analysis of the ratio M / C in the thickness direction can be performed, for example, by the Ar + sputtering / XPS method. Specifically, under the following conditions, from the surface of the second resin layer 30 (the surface on the first resin layer 20 side or the surface on the protective film 15 side), sputtering by Ar + ion beam and spectrum of XPS Acquisition is repeated alternately to obtain a profile in the thickness direction with a ratio M / C. By analyzing the obtained profile, the ratio M / C in the thickness direction of the second resin layer, the portion where the ratio M / C is less than 0.2 (first portion P1), and the ratio M / C are The thickness of the portion (second portion P2) that is 0.2 or more can be obtained.
[XPS conditions]
X-ray: Al-Kα ray (100 μm, 25 W, 15 kV), measurement area: 300 μm □ (μm square, μm square)
-Photoelectron extraction angle: 45 °
・ Pass Energy: 112eV, Step Energy: 0.1eV
[Ar + sputtering conditions]
・ Acceleration voltage: 2 kV
・ Irradiation range: 2mm □ (mm square, mm square)
Ar + sputter rate: 3 nm / min
 上記第一の樹脂層20及び第二の樹脂層30を含む積層体40の厚さは、ラミネート時の追従性向上の観点から、30μm以下が好ましく、20μm以下がより好ましく、10μm以下が更に好ましい。さらに、防錆性の観点から、基材の突起物によるピンホールが発生する可能性を加味すると、1μm以上が好ましく、2μm以上が好ましく、2μm以上が更に好ましい。3μm以上であれば、基材の突起物による影響を抑制し、防錆性を保つことが可能となる。 The thickness of the laminate 40 including the first resin layer 20 and the second resin layer 30 is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less, from the viewpoint of improving the followability during lamination. . Furthermore, from the viewpoint of rust prevention, taking into account the possibility of pinholes due to protrusions on the substrate, it is preferably 1 μm or more, preferably 2 μm or more, and more preferably 2 μm or more. If it is 3 micrometers or more, it will become possible to suppress the influence by the protrusion of a base material, and to maintain rust prevention property.
 保護フィルム15としては、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン-酢酸ビニル共重合体、ポリエチレン-酢酸ビニル共重合体のフィルム、及びこれらのフィルムとポリエチレンの積層フィルム等が挙げられる。 Examples of the protective film 15 include polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, a polyethylene-vinyl acetate copolymer, a polyethylene-vinyl acetate copolymer film, and a laminated film of these films and polyethylene.
 保護フィルム15の厚さは、5μm以上であってよく、また、100μm以下であってよい。保護フィルム15の厚さは、ロール状に巻いて保管する観点から、70μm以下が好ましく、60μm以下がより好ましく、50μm以下が更に好ましく、40μm以下が特に好ましい。 The thickness of the protective film 15 may be 5 μm or more, and may be 100 μm or less. The thickness of the protective film 15 is preferably 70 μm or less, more preferably 60 μm or less, still more preferably 50 μm or less, and particularly preferably 40 μm or less, from the viewpoint of storing in a roll.
 次に、第一の樹脂層を形成する樹脂組成物(以下、「第一の樹脂組成物」ともいう)及び第二の樹脂層を形成する樹脂組成物(以下、「第二の樹脂組成物」ともいう)について説明する。 Next, a resin composition for forming the first resin layer (hereinafter also referred to as “first resin composition”) and a resin composition for forming the second resin layer (hereinafter referred to as “second resin composition”). ").
[第一の樹脂組成物]
 第一の樹脂組成物は、好ましくは、バインダーポリマー(以下、「(A)成分」ともいう)と、光重合性化合物(以下、(B)成分ともいう)と、光重合開始剤(以下、(C)成分ともいう)とを含有する感光性樹脂組成物である。なお、上記の「感光性樹脂組成物」とは、後述する溶剤を含まない状態の組成物をいい、後述する各成分の含有量は、後述する溶剤以外の成分全量に対する含有量である。
[First resin composition]
The first resin composition preferably comprises a binder polymer (hereinafter also referred to as “component (A)”), a photopolymerizable compound (hereinafter also referred to as component (B)), and a photopolymerization initiator (hereinafter referred to as “component”). (Also referred to as component (C)). In addition, said "photosensitive resin composition" means the composition of the state which does not contain the solvent mentioned later, and content of each component mentioned later is content with respect to component whole quantity other than the solvent mentioned later.
((A)成分)
 (A)成分としては、アルカリ現像によりパターニングを可能とする観点から、カルボキシル基を有するバインダーポリマーを用いることが好ましい。
((A) component)
As the component (A), a binder polymer having a carboxyl group is preferably used from the viewpoint of enabling patterning by alkali development.
 (A)成分としては、(メタ)アクリル酸、及び(メタ)アクリル酸アルキルエステルに由来する構造単位を有する共重合体が好適である。上記共重合体は、上記(メタ)アクリル酸又は(メタ)アクリル酸アルキルエステルと共重合し得るその他のモノマーを構造単位に含有していてもよい。具体的には、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、スチレン等が挙げられる。 As the component (A), a copolymer having a structural unit derived from (meth) acrylic acid and (meth) acrylic acid alkyl ester is preferable. The copolymer may contain in the structural unit other monomers that can be copolymerized with the (meth) acrylic acid or the (meth) acrylic acid alkyl ester. Specific examples include (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, and styrene.
 (A)成分は、エチレン性不飽和基を有してもよい。なお、エチレン性不飽和基を有する(A)成分は、本明細書においては(B)成分に含まれないものとする。 (A) The component may have an ethylenically unsaturated group. In addition, the (A) component which has an ethylenically unsaturated group shall not be contained in (B) component in this specification.
 上記(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸シクロヘキシルエステル、(メタ)アクリル酸-2-エチルヘキシルエステル、(メタ)アクリル酸ヒドロキシルエチルエステル等が挙げられる。 Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid cyclohexyl ester, and (meth) acrylic acid-2. -Ethylhexyl ester, (meth) acrylic acid hydroxyl ethyl ester and the like.
 (A)成分は、アルカリ現像性(特に無機アルカリ水溶液に対するアルカリ現像性)、パターニング性、透明性等の観点から、(メタ)アクリル酸、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、スチレン、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸シクロヘキシルエステル及び(メタ)アクリル酸2-エチルヘキシルエステルからなる群より選択される少なくとも一種の化合物由来の構造単位を有するバインダーポリマーを含むことが好ましい。 (A) component is (meth) acrylic acid, (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl from viewpoints of alkali developability (especially alkali developability with respect to inorganic alkali aqueous solution), patternability, transparency, etc. Ester, styrene, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid cyclohexyl ester and (meth) acrylic acid 2-ethylhexyl ester It is preferable to include a binder polymer having a structural unit derived from at least one kind of compound.
 (A)成分の重量平均分子量は、解像度の観点から、10,000以上が好ましく、15,000以上がより好ましく、30,000以上が更に好ましく、40,000以上が特に好ましい。(A)成分の重量平均分子量は、解像度の観点から、200,000以下が好ましく、150,000以下がより好ましく、100,000以下が特に好ましい。これらの観点から、(A)成分の重量平均分子量は、10,000~200,000が好ましく、15,000~150,000がより好ましく、30,000~150,000が更に好ましく、30,000~100,000が特に好ましく、40,000~100,000が極めて好ましい。なお、重量平均分子量は、本明細書の実施例を参考にゲルパーミエーションクロマトグラフィー法により測定することができる。 The weight average molecular weight of the component (A) is preferably 10,000 or more, more preferably 15,000 or more, still more preferably 30,000 or more, and particularly preferably 40,000 or more from the viewpoint of resolution. The weight average molecular weight of the component (A) is preferably 200,000 or less, more preferably 150,000 or less, and particularly preferably 100,000 or less from the viewpoint of resolution. From these viewpoints, the weight average molecular weight of the component (A) is preferably 10,000 to 200,000, more preferably 15,000 to 150,000, still more preferably 30,000 to 150,000, and 30,000. To 100,000 is particularly preferred, and 40,000 to 100,000 is very particularly preferred. In addition, a weight average molecular weight can be measured by the gel permeation chromatography method with reference to the Example of this specification.
 (A)成分の酸価は、所望の形状を有する硬化膜をアルカリ現像で容易に形成する観点から、75mgKOH/g以上とすることが好ましい。(A)成分の酸価は、硬化膜形状の制御容易性と硬化膜の防錆性との両立を図る観点から、200mgKOH/g以下が好ましく、150mgKOH/g以下がより好ましく、120mgKOH/g以下が更に好ましい。これらの観点から、(A)成分の酸価は、75~200mgKOH/gが好ましく、75~150mgKOH/gがより好ましく、75~120mgKOH/gが更に好ましい。なお、酸価は、本明細書の実施例を参考に測定することができる。 The acid value of the component (A) is preferably 75 mgKOH / g or more from the viewpoint of easily forming a cured film having a desired shape by alkali development. The acid value of the component (A) is preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, and 120 mgKOH / g or less from the viewpoint of achieving both controllability of the cured film shape and rust prevention of the cured film. Is more preferable. From these viewpoints, the acid value of the component (A) is preferably 75 to 200 mgKOH / g, more preferably 75 to 150 mgKOH / g, and still more preferably 75 to 120 mgKOH / g. In addition, an acid value can be measured with reference to the Example of this specification.
 (A)成分の水酸基価は、防錆性をより向上させる観点から、50mgKOH/g以下が好ましく、45mgKOH/g以下がより好ましい。なお、水酸基価は、下記に示すような、JIS K0070に基づいた中和滴定法により測定される。 The hydroxyl value of the component (A) is preferably 50 mgKOH / g or less, more preferably 45 mgKOH / g or less, from the viewpoint of further improving rust prevention. The hydroxyl value is measured by a neutralization titration method based on JIS K0070 as shown below.
 まず、バインダーポリマーの溶液を130℃で1時間加熱し、揮発分を除去して、固形分を得る。次いで、上記固形分のバインダーポリマー1gを精秤した後、バインダーポリマーを三角フラスコに入れ、10質量%の無水酢酸ピリジン溶液を10mL加えてバインダーポリマーを均一に溶解し、100℃で1時間加熱する。加熱後、水10mLとピリジン10mLを加えて100℃で10分間加熱後、自動滴定機(平沼産業株式会社製、製品名:COM-1700)を用いて、0.5mol/Lの水酸化カリウムのエタノール溶液により中和滴定を行う。そして、次式により水酸基価を算出する。
  水酸基価=(A-B)×f×28.05/S+D
(式中、Aは空試験に用いた0.5mol/L水酸化カリウムエタノール溶液の量(mL)、Bは滴定に用いた0.5mol/L水酸化カリウムエタノール溶液の量(mL)、fは0.5mol/L水酸化カリウムエタノール溶液のファクター(濃度換算係数)、Sはバインダーポリマーの質量(g)、Dは酸価を示す。なお、空試験はバインダーポリマーを入れることなく上記工程を行なう。)
First, the binder polymer solution is heated at 130 ° C. for 1 hour to remove volatile components to obtain a solid component. Next, after precisely weighing 1 g of the above-mentioned solid binder polymer, put the binder polymer into an Erlenmeyer flask, add 10 mL of 10% by mass acetic anhydride pyridine solution to uniformly dissolve the binder polymer, and heat at 100 ° C. for 1 hour. . After heating, 10 mL of water and 10 mL of pyridine were added and heated at 100 ° C. for 10 minutes. Then, using an automatic titrator (product name: COM-1700, manufactured by Hiranuma Sangyo Co., Ltd.), 0.5 mol / L of potassium hydroxide was added. Perform neutralization titration with ethanol solution. Then, the hydroxyl value is calculated by the following formula.
Hydroxyl value = (AB) × f 2 × 28.05 / S + D
(In the formula, A is the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for the blank test, B is the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for titration, f 2 is a factor (concentration conversion factor) of 0.5 mol / L potassium hydroxide ethanol solution, S is the mass (g) of the binder polymer, D is the acid value, and the blank test is the above step without adding the binder polymer. .)
 (A)成分の含有量は、パターン形成性及び硬化膜の防錆性を維持する観点から、(A)成分及び(B)成分の合計量100質量部に対し、35質量部以上が好ましく、40質量部以上がより好ましく、50質量部以上が更に好ましく、55質量部以上が特に好ましい。(A)成分の含有量は、製膜性と基材追従性の観点から、(A)成分及び(B)成分の合計量100質量部に対し、85質量部以下が好ましく、80質量部以下がより好ましく、70質量部以下が更に好ましく、65質量部以下が特に好ましい。これらの観点から、(A)成分の含有量は、(A)成分及び(B)成分の合計量100質量部に対し、35~85質量部が好ましく、40~80質量部がより好ましく、50~70質量部が更に好ましく、55~65質量部が特に好ましい。 The content of the component (A) is preferably 35 parts by mass or more with respect to 100 parts by mass of the total amount of the component (A) and the component (B), from the viewpoint of maintaining pattern formability and rust prevention of the cured film. 40 parts by mass or more is more preferable, 50 parts by mass or more is further preferable, and 55 parts by mass or more is particularly preferable. The content of the component (A) is preferably 85 parts by mass or less, and 80 parts by mass or less with respect to 100 parts by mass of the total amount of the component (A) and the component (B), from the viewpoints of film formability and substrate followability. Is more preferable, 70 mass parts or less are still more preferable, and 65 mass parts or less are especially preferable. From these viewpoints, the content of the component (A) is preferably 35 to 85 parts by weight, more preferably 40 to 80 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B), Is more preferably 70 parts by mass, and particularly preferably 55-65 parts by mass.
((B)成分:光重合性化合物)
 (B)成分としては、エチレン性不飽和基を有する光重合性化合物を用いることができる。エチレン性不飽和基を有する光重合性化合物としては、一官能ビニルモノマー、二官能ビニルモノマー、又は少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーが挙げられる。
((B) component: photopolymerizable compound)
As the component (B), a photopolymerizable compound having an ethylenically unsaturated group can be used. Examples of the photopolymerizable compound having an ethylenically unsaturated group include a monofunctional vinyl monomer, a bifunctional vinyl monomer, or a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups.
 上記一官能ビニルモノマーとしては、例えば、上記(A)成分の好適な例である共重合体の合成に用いられるモノマーとして例示したものが挙げられる。 Examples of the monofunctional vinyl monomer include those exemplified as monomers used for the synthesis of a copolymer which is a suitable example of the component (A).
 上記二官能ビニルモノマーとしては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシポリプロポキシフェニル)プロパン、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional vinyl monomer include polyethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxypolypropoxy Phenyl) propane, bisphenol A diglycidyl ether di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, and the like.
 上記少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーとしては、従来公知のものを特に制限無く用いることができる。金属配線又は透明電極の腐食防止及び現像性の観点から、上記多官能ビニルモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート等のトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等のテトラメチロールメタン由来の骨格を有する(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジトリメチロールプロパンテトラ(メタ)アクリレート等のジトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;又はジグリセリン由来の骨格を有する(メタ)アクリレート化合物;シアヌル酸由来の骨格を有する(メタ)アクリレート化合物を用いることが好ましい。 As the polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups, conventionally known ones can be used without particular limitation. From the viewpoint of corrosion prevention and developability of metal wiring or transparent electrode, the polyfunctional vinyl monomer includes a (meth) acrylate compound having a skeleton derived from trimethylolpropane such as trimethylolpropane tri (meth) acrylate; tetramethylolmethane (Meth) acrylate compounds having a skeleton derived from tetramethylolmethane such as tri (meth) acrylate and tetramethylolmethanetetra (meth) acrylate; derived from pentaerythritol such as pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate (Meth) acrylate compounds having the following skeleton: bones derived from dipentaerythritol such as dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate A (meth) acrylate compound having a skeleton derived from ditrimethylolpropane such as ditrimethylolpropane tetra (meth) acrylate; or a (meth) acrylate compound having a skeleton derived from diglycerin; derived from cyanuric acid It is preferable to use a (meth) acrylate compound having a skeleton.
 上記多官能ビニルモノマーは、金属配線及び透明電極の腐食抑制の観点では、ジシクロペンタン構造又はジシクロペンテン構造を有するジ(メタ)アクリレート化合物を含むことが好ましく、ジシクロペンタン構造を有するジ(メタ)アクリレート化合物を含むことがより好ましい。 The polyfunctional vinyl monomer preferably includes a di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure from the viewpoint of inhibiting corrosion of the metal wiring and the transparent electrode, and is preferably a di (meth) acrylate compound having a dicyclopentane structure. More preferably, it contains an acrylate compound.
 (B)成分は、金属配線及び透明電極の腐食抑制の観点から、ジシクロペンタン構造又はジシクロペンテン構造を有するジ(メタ)アクリレート化合物として、下記一般式(1)である化合物を含むことが好ましい。 The component (B) preferably contains a compound represented by the following general formula (1) as a di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure from the viewpoint of inhibiting corrosion of the metal wiring and the transparent electrode. .
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、Xは、ジシクロペンタン構造又はジシクロペンテン構造を有する2価の基を示し、R及びRは、それぞれ独立に炭素数1~4のアルキレン基を示し、n及びmは、それぞれ独立に0~2の整数を示し、p及びqはそれぞれ独立に0以上の整数を示し、p+q=0~10となるように選択される。]
Figure JPOXMLDOC01-appb-C000001
[In General Formula (1), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, X represents a divalent group having a dicyclopentane structure or a dicyclopentene structure, and R 3 and R 2 4 independently represents an alkylene group having 1 to 4 carbon atoms, n and m each independently represents an integer of 0 to 2, p and q each independently represents an integer of 0 or more, and p + q = 0 Is selected to be ~ 10. ]
 上記一般式(1)において、R及びRは、それぞれ独立にエチレン基又はプロピレン基が好ましく、エチレン基がより好ましい。また、プロピレン基はn-イソプロピレン基及びイソプロピレン基のいずれであってもよい。 In the general formula (1), R 3 and R 4 are each independently preferably an ethylene group or a propylene group, and more preferably an ethylene group. The propylene group may be either an n-isopropylene group or an isopropylene group.
 上記一般式(1)において、n及びmは、メチレン基が、分子中にどの程度付加されているかを示すものである。p及びqは炭素数1~4のアルコキシ基が、分子中にどの程度付加されているかを示すものである。p+qが2以上の場合、2つ以上のR及びRは、同一であっても、異なっていてもよい。 In the above general formula (1), n and m indicate how much a methylene group is added in the molecule. p and q indicate how much an alkoxy group having 1 to 4 carbon atoms is added to the molecule. When p + q is 2 or more, two or more R 3 and R 4 may be the same or different.
 上記一般式(1)で表される化合物は、Xに含まれるジシクロペンタン構造又はジシクロペンテン構造を有する2価の基が、嵩高い構造を有することで、フィルムの低透湿性を実現し、金属配線及び透明電極の腐食抑制性が向上すると考えられる。 The compound represented by the general formula (1) realizes low moisture permeability of the film because the divalent group having a dicyclopentane structure or dicyclopentene structure contained in X has a bulky structure, It is considered that the corrosion resistance of the metal wiring and the transparent electrode is improved.
 ジシクロペンタン構造及びジシクロペンテン構造は、それぞれトリシクロデカン骨格及びトリシクロデセン骨格ということもできる。「トリシクロデカン骨格」及び「トリシクロデセン骨格」とは、それぞれ以下の構造(それぞれ、結合手は任意の箇所である)をいう。 The dicyclopentane structure and the dicyclopentene structure can also be referred to as a tricyclodecane skeleton and a tricyclodecene skeleton, respectively. The “tricyclodecane skeleton” and the “tricyclodecene skeleton” refer to the following structures (where each bond is an arbitrary position).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)で表される化合物としては、例えば、下記式(2)で表される、トリシクロデカンジメタノールジアクリレートが挙げられる。これは、A-DCP(新中村化学工業株式会社製、製品名)として入手可能である。 Examples of the compound represented by the general formula (1) include tricyclodecane dimethanol diacrylate represented by the following formula (2). This is available as A-DCP (manufactured by Shin-Nakamura Chemical Co., Ltd., product name).
Figure JPOXMLDOC01-appb-C000003
[上記一般式(1)において、Xがジシクロペンタン構造を有する2価の基、m=n=1、p=q=0である化合物]
Figure JPOXMLDOC01-appb-C000003
[In the general formula (1), X is a divalent group having a dicyclopentane structure, m = n = 1, p = q = 0]
 ジシクロペンタン構造又はジシクロペンテン構造を有するジ(メタ)アクリレート化合物の含有量は、金属配線及び透明電極の腐食抑制の観点から、(B)成分の合計量100質量部に対して、50質量部以上が好ましく、70質量部以上がより好ましく、80質量部以上が更に好ましい。ジシクロペンタン構造又はジシクロペンテン構造を有するジ(メタ)アクリレート化合物の含有量は、(B)成分の合計量100質量部に対して、100質量部であってもよい。 The content of the di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure is 50 parts by mass with respect to 100 parts by mass of the total amount of the component (B) from the viewpoint of inhibiting corrosion of the metal wiring and the transparent electrode. The above is preferable, 70 parts by mass or more is more preferable, and 80 parts by mass or more is more preferable. The content of the di (meth) acrylate compound having a dicyclopentane structure or a dicyclopentene structure may be 100 parts by mass with respect to 100 parts by mass of the total amount of the component (B).
 分子内に少なくとも3つの重合可能なエチレン性不飽和基を有するモノマーと、一官能ビニルモノマー又は二官能ビニルモノマーを組み合わせて用いる場合、使用する割合に特に制限は無いが、光硬化性及び電極腐食を防止する観点から、分子内に少なくとも3つの重合可能なエチレン性不飽和基を有するモノマーの割合が、感光性樹脂組成物(第一の樹脂組成物)に含まれる光重合性化合物の合計量100質量部のうち、30質量部以上であってよく、50質量部以上であってよく、75質量部以上であってよい。 When a monomer having at least three polymerizable ethylenically unsaturated groups in the molecule is used in combination with a monofunctional vinyl monomer or a bifunctional vinyl monomer, the ratio to be used is not particularly limited, but photocurability and electrode corrosion From the viewpoint of preventing photopolymerization, the proportion of the monomer having at least three polymerizable ethylenically unsaturated groups in the molecule is the total amount of the photopolymerizable compound contained in the photosensitive resin composition (first resin composition). Of 100 parts by mass, it may be 30 parts by mass or more, 50 parts by mass or more, and 75 parts by mass or more.
((C)成分:光重合開始剤)
 (C)成分としては、光重合開始剤であれば、従来公知のものを特に制限無く用いることができるが、透明性の高い光重合開始剤が好ましい。基材上に、厚さが10μm以下の薄膜であっても充分な解像度で硬化膜パターンを形成する観点では、(C)成分はオキシムエステル化合物及びホスフィンオキサイド化合物からなる群より選択される少なくとも一種を含むことが好ましく、オキシムエステル化合物を含むことがより好ましい。
((C) component: photopolymerization initiator)
As the component (C), any conventionally known photopolymerization initiator can be used without particular limitation, but a highly transparent photopolymerization initiator is preferred. From the viewpoint of forming a cured film pattern with sufficient resolution even on a substrate having a thickness of 10 μm or less, the component (C) is at least one selected from the group consisting of oxime ester compounds and phosphine oxide compounds. It is preferable that an oxime ester compound is included.
 ホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等が挙げられる。 Examples of the phosphine oxide compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
 オキシムエステル化合物としては、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群より選択される少なくとも一種が好ましく用いられる。 The oxime ester compound is preferably at least one selected from the group consisting of a compound represented by the following formula (3), a compound represented by the following formula (4), and a compound represented by the following formula (5). Used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)中、R11及びR12は、それぞれ独立に炭素数1~12のアルキル基、炭素数4~10のシクロアルキル基、フェニル基又はトリル基を示す。炭素数1~8のアルキル基、炭素数4~6のシクロアルキル基、フェニル基又はトリル基が好ましく、炭素数1~4のアルキル基、炭素数4~6のシクロアルキル基、フェニル基又はトリル基がより好ましく、メチル基、シクロペンチル基、フェニル基又はトリル基が更に好ましい。R13は、-H、-OH、-COOH、-O(CH)OH、-O(CHOH、-COO(CH)OH又は-COO(CHOHを示す。-H、-O(CH)OH、-O(CHOH、-COO(CH)OH、又は-COO(CHOHが好ましく、-H、-O(CHOH、又は-COO(CHOHがより好ましい。 In the formula (3), R 11 and R 12 each independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a phenyl group, or a tolyl group. Preferred is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or tolyl A group is more preferable, and a methyl group, a cyclopentyl group, a phenyl group, or a tolyl group is still more preferable. R 13 represents —H, —OH, —COOH, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH. —H, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH, or —COO (CH 2 ) 2 OH are preferred, —H, —O (CH 2 ) 2 More preferred is OH or —COO (CH 2 ) 2 OH.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(4)中、R14は、それぞれ炭素数1~6のアルキル基を示し、プロピル基が好ましい。複数のR14は同一であっても、異なっていてもよい。R15は、NO又はArCO(ここで、Arは置換もしくは無置換のアリール基を示す。)を示し、Arとしては、トリル基が好ましい。置換基を有する場合の置換基としては、炭素数1~6のアルキル基が挙げられる。R16及びR17は、それぞれ独立に炭素数1~12のアルキル基、フェニル基、又はトリル基を示し、メチル基、フェニル基又はトリル基が好ましい。 In the formula (4), each R 14 represents an alkyl group having 1 to 6 carbon atoms, and is preferably a propyl group. The plurality of R 14 may be the same or different. R 15 represents NO 2 or ArCO (wherein Ar represents a substituted or unsubstituted aryl group), and Ar is preferably a tolyl group. Examples of the substituent in the case of having a substituent include an alkyl group having 1 to 6 carbon atoms. R 16 and R 17 each independently represent an alkyl group having 1 to 12 carbon atoms, a phenyl group, or a tolyl group, preferably a methyl group, a phenyl group, or a tolyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(5)中、R18は、炭素数1~6のアルキル基を示し、エチル基が好ましい。R19はアセタール結合を有する有機基であり、後述する式(5-1)に示す化合物が有するR19に対応する置換基が好ましい。R20及びR21は、それぞれ独立に炭素数1~12のアルキル基、フェニル基又はトリル基を示し、メチル基、フェニル基又はトリル基が好ましく、メチル基がより好ましい。R22は、炭素数1~6のアルキル基を示す。nは0~4の整数を示す。 In the formula (5), R 18 represents an alkyl group having 1 to 6 carbon atoms, preferably an ethyl group. R 19 is an organic group having an acetal bond, and a substituent corresponding to R 19 in a compound represented by the formula (5-1) described later is preferable. R 20 and R 21 each independently represents an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, preferably a methyl group, a phenyl group or a tolyl group, and more preferably a methyl group. R 22 represents an alkyl group having 1 to 6 carbon atoms. n represents an integer of 0 to 4.
 上記式(3)で表される化合物としては、例えば、下記式(3-1)で表される化合物及び下記式(3-2)で表される化合物が挙げられる。下記式(3-1)で表される化合物はIRGACURE OXE01(BASFジャパン株式会社製、製品名)として入手可能である。 Examples of the compound represented by the above formula (3) include a compound represented by the following formula (3-1) and a compound represented by the following formula (3-2). A compound represented by the following formula (3-1) is available as IRGACURE OXE01 (manufactured by BASF Japan Ltd., product name).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(4)で表される化合物としては、例えば、下記式(4-1)で表される化合物が挙げられる。下記式(4-1)で表される化合物は、DFI-091(ダイトーケミックス株式会社製、製品名)として入手可能である。 Examples of the compound represented by the above formula (4) include a compound represented by the following formula (4-1). A compound represented by the following formula (4-1) is available as DFI-091 (product name, manufactured by Daito Chemix Co., Ltd.).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(5)で表される化合物としては、例えば、下記式(5-1)で表される化合物が挙げられる。下記式(5-1)で表される化合物は、アデカオプトマーN-1919(株式会社ADEKA製、製品名)として入手可能である。 Examples of the compound represented by the above formula (5) include a compound represented by the following formula (5-1). A compound represented by the following formula (5-1) is available as Adekaoptomer N-1919 (manufactured by ADEKA, product name).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 その他のオキシムエステル化合物としては、下記式(6)で表される化合物、下記式(7)で表される化合物等を用いることが好ましい。 As other oxime ester compounds, it is preferable to use a compound represented by the following formula (6), a compound represented by the following formula (7), or the like.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記の中でも、上記式(3-1)で表される化合物が極めて好ましい。なお、上記式(3-1)で表される化合物が硬化膜に含まれているかどうかは、国際公開第2013/084875号パンフレット記載の硬化膜の熱分解ガスクロマトグラフ質量分析により確認できる。 Among the above, the compound represented by the above formula (3-1) is very preferable. Whether the compound represented by the above formula (3-1) is contained in the cured film can be confirmed by pyrolysis gas chromatograph mass spectrometry of the cured film described in International Publication No. 2013/084875.
 (C)成分の含有量は、光感度及び解像度に優れる観点から、(A)成分及び(B)成分の合計量100質量部に対し、0.1質量部以上が好ましく、1質量部以上がより好ましい。(C)成分の含有量は、光感度及び解像度に優れる観点から、(A)成分及び(B)成分の合計量100質量部に対し、10質量部以下が好ましく、5質量部以下がより好ましく、3質量部以下が更に好ましく、2質量部以下が特に好ましい。これらの観点から、(C)成分の含有量は、(A)成分及び(B)成分の合計量100質量部に対し、0.1~10質量部が好ましく、1~5質量部がより好ましく、1~3質量部が更に好ましく、1~2質量部が特に好ましい。 The content of the component (C) is preferably 0.1 parts by mass or more, and preferably 1 part by mass or more with respect to 100 parts by mass of the total amount of the components (A) and (B), from the viewpoint of excellent photosensitivity and resolution. More preferred. The content of the component (C) is preferably 10 parts by mass or less and more preferably 5 parts by mass or less with respect to 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint of excellent photosensitivity and resolution. 3 parts by mass or less is more preferable, and 2 parts by mass or less is particularly preferable. From these viewpoints, the content of the component (C) is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). 1 to 3 parts by mass is more preferable, and 1 to 2 parts by mass is particularly preferable.
(添加剤)
 感光性樹脂組成物(第一の樹脂組成物)は、硬化膜における樹脂層間の密着性をより向上させる観点及び、ITO電極パターン付き基材に対する密着性を向上させる観点から、添加剤として、エチレン性不飽和基を有するリン酸エステル(以下、(D)成分ともいう)を含有することが好ましい。エチレン性不飽和基を有するリン酸エステルは、(B)成分と重複する場合があるが、本明細書においては(E)成分は(B)成分に含まれないものとする。
(Additive)
The photosensitive resin composition (first resin composition) is ethylene as an additive from the viewpoint of further improving the adhesion between the resin layers in the cured film and improving the adhesion to the substrate with the ITO electrode pattern. It is preferable to contain a phosphoric ester having a polymerizable unsaturated group (hereinafter also referred to as component (D)). The phosphate ester having an ethylenically unsaturated group may overlap with the component (B), but in this specification, the component (E) is not included in the component (B).
 (D)成分であるエチレン性不飽和基を有するリン酸エステルとしては、形成する硬化膜の防錆性を充分確保しつつ、硬化膜における樹脂層間の密着性及びITO電極パターン付き基材に対する密着性を向上させる観点から、共栄社化学株式会社製のP-1M、ユニケミカル株式会社製のPhosmerシリーズ(Phosmer-M、Phosmer-CL、Phosmer-PE、Phosmer-MH、Phosmer-PP等)、又は日本化薬株式会社製のKAYAMERシリーズ(PM21、PM-2等)が好ましい。 As the phosphate ester having an ethylenically unsaturated group as component (D), the adhesiveness between the resin layers in the cured film and the adhesion to the substrate with the ITO electrode pattern are ensured while sufficiently ensuring the rust prevention of the cured film to be formed. From the viewpoint of improving the properties, Kyoeisha Chemical Co., Ltd. P-1M, Unichemical Co., Ltd. Phosmer series (Phosmer-M, Phosmer-CL, Phosmer-PE, Phosmer-MH, Phosmer-PP, etc.), or Japan The KAYAMER series (PM21, PM-2, etc.) manufactured by Kayaku Co., Ltd. is preferable.
 (D)成分の含有量は、(A)バインダーポリマー及び(B)重合性化合物の総量100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、0.1~3質量部であることが更に好ましい。 The content of component (D) is preferably 0.01 to 10 parts by weight, and 0.05 to 5 parts by weight with respect to 100 parts by weight as the total of (A) binder polymer and (B) polymerizable compound. More preferred is 0.1 to 3 parts by mass.
 感光性樹脂組成物(第一の樹脂組成物)には、その他の添加剤として、必要に応じて、シランカップリング剤等の密着性付与剤、防錆剤、レベリング剤、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、香料、熱架橋剤、重合禁止剤などを(A)成分及び(B)成分の合計量100質量部に対し、各々0.01~20質量部程度含有させることができる。これらは、単独で又は二種以上を組み合わせて使用できる。 In the photosensitive resin composition (first resin composition), as other additives, an adhesiveness imparting agent such as a silane coupling agent, a rust preventive agent, a leveling agent, a plasticizer, and a filler as necessary. , Antifoaming agents, flame retardants, stabilizers, antioxidants, fragrances, thermal cross-linking agents, polymerization inhibitors, etc. are each 0.01 to 20 parts per 100 parts by mass of the total amount of component (A) and component (B) About part by mass can be contained. These can be used alone or in combination of two or more.
 感光性樹脂組成物(第一の樹脂組成物)における金属酸化物の含有量は、感光性樹脂組成物(第一の樹脂組成物)の全質量を基準として、10質量%以下、5質量%以下又は1質量%以下であってよく、0質量%であってもよい。 The content of the metal oxide in the photosensitive resin composition (first resin composition) is 10% by mass or less and 5% by mass based on the total mass of the photosensitive resin composition (first resin composition). Or 1% by mass or less, or 0% by mass.
[第二の樹脂組成物]
 第二の樹脂組成物は、硬化性(例えば光硬化性又は熱硬化性)の樹脂組成物であってよく、光硬化性であることが好ましい。ただし、第二の樹脂組成物は、光重合性化合物、光重合開始剤等の光重合成分を必ずしも含有する必要はなく、隣接する樹脂層から移行する光重合成分に起因して光硬化する樹脂組成物であってよい。
[Second resin composition]
The second resin composition may be a curable resin composition (for example, photocurable or thermosetting), and is preferably photocurable. However, the second resin composition does not necessarily contain a photopolymerization component such as a photopolymerizable compound or a photopolymerization initiator, and is a resin that is photocured due to a photopolymerization component that migrates from an adjacent resin layer. It may be a composition.
(有機成分)
 第二の樹脂組成物に含有される有機成分としては、第一の樹脂組成物が含有し得る(A)~(D)成分及びその他の添加剤が挙げられる。第二の樹脂組成物における各成分の含有量の取り得る範囲は、上述した第一の樹脂組成物における各成分の含有量の取り得る範囲と同じであってよい。なお、上記の「第二の樹脂組成物」とは後述する溶剤を含まない状態の組成物をいい、後述する各成分の含有量は、後述する溶剤以外の成分全量に対する含有量である。
(Organic component)
Examples of the organic component contained in the second resin composition include the components (A) to (D) and other additives that can be contained in the first resin composition. The possible range of the content of each component in the second resin composition may be the same as the possible range of the content of each component in the first resin composition described above. In addition, said "second resin composition" means the composition of the state which does not contain the solvent mentioned later, and content of each component mentioned later is content with respect to component whole quantity other than the solvent mentioned later.
(金属酸化物)
 第二の樹脂層が金属酸化物(以下、(E)成分ともいう)を含有することにより、第二の樹脂層は、透明性に優れるとともに、波長633nmにおいて高い屈折率を有する。また、第二の樹脂層に(E)成分を含有させることで、硬化時の収縮が抑制され、樹脂層間の密着性を向上させることができる。
(Metal oxide)
When the second resin layer contains a metal oxide (hereinafter also referred to as component (E)), the second resin layer is excellent in transparency and has a high refractive index at a wavelength of 633 nm. Moreover, shrinkage | contraction at the time of hardening can be suppressed by making a 2nd resin layer contain (E) component, and the adhesiveness between resin layers can be improved.
 (E)成分としては、第二の樹脂層の波長633nmにおける屈折率を制御することが容易となる観点から、波長633nmにおける屈折率が1.50以上である金属酸化物が好ましい。(E)成分は金属酸化物粒子であってよく、金属酸化物微粒子であってよい。(E)成分は、一種の粒子を単独で又は二種以上の粒子を組み合わせて使用できる。 As the component (E), a metal oxide having a refractive index at a wavelength of 633 nm of 1.50 or more is preferable from the viewpoint of easy control of the refractive index at a wavelength of 633 nm of the second resin layer. The component (E) may be metal oxide particles or metal oxide fine particles. As the component (E), one type of particle can be used alone, or two or more types of particles can be used in combination.
 金属酸化物としては、第二の樹脂層の屈折率の向上の観点から、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛、酸化インジウムスズ、酸化インジウム、酸化アルミニウム、酸化ケイ素及び酸化イットリウムからなる群より選択される少なくとも一種を含むことが好ましく、酸化ジルコニウム及び酸化チタンからなる群より選択される少なくとも一種を含むことがより好ましい。 The metal oxide includes a group consisting of zirconium oxide, titanium oxide, tin oxide, zinc oxide, indium tin oxide, indium oxide, aluminum oxide, silicon oxide and yttrium oxide from the viewpoint of improving the refractive index of the second resin layer. It is preferable to include at least one selected from the group consisting of zirconium oxide and titanium oxide, and it is more preferable to include at least one selected from the group consisting of zirconium oxide and titanium oxide.
 酸化ジルコニウム粒子としては、透明電極の材料がITOの場合、屈折率向上と、ITO及び透明基材との密着性の観点から、酸化ジルコニウムナノ粒子を用いることが好ましい。酸化ジルコニウムナノ粒子の粒度分布Dmaxは40nm以下が好ましい。 As the zirconium oxide particles, when the material of the transparent electrode is ITO, it is preferable to use zirconium oxide nanoparticles from the viewpoint of improving the refractive index and adhesion between the ITO and the transparent substrate. The particle size distribution Dmax of the zirconium oxide nanoparticles is preferably 40 nm or less.
 酸化ジルコニウムナノ粒子は、OZ-S30K(日産化学工業株式会社製、製品名)、OZ-S40K-AC(日産化学工業株式会社製、製品名)、SZR-K(酸化ジルコニウムメチルエチルケトン分散液、堺化学工業株式会社製、製品名)、SZR-M(酸化ジルコニウムメタノール分散液、堺化学工業株式会社製、製品名)として商業的に入手可能である。 Zirconium oxide nanoparticles are OZ-S30K (product name, manufactured by Nissan Chemical Industries, Ltd.), OZ-S40K-AC (product name, manufactured by Nissan Chemical Industries, Ltd.), SZR-K (dispersion of zirconium oxide methyl ethyl ketone, Sakai Chemical). Kogyo Co., Ltd., product name) and SZR-M (zirconium oxide methanol dispersion, Sakai Chemical Industry Co., Ltd., product name) are commercially available.
 (E)成分として酸化チタンナノ粒子を用いることも可能である。酸化チタンナノ粒子の粒度分布Dmaxは50nm以下が好ましく、また、10nm以上が好ましい。すなわち、酸化チタンナノ粒子の粒度分布Dmaxは10~50nmが好ましい。 It is also possible to use titanium oxide nanoparticles as the component (E). The particle size distribution Dmax of the titanium oxide nanoparticles is preferably 50 nm or less, and more preferably 10 nm or more. That is, the particle size distribution Dmax of the titanium oxide nanoparticles is preferably 10 to 50 nm.
 (E)成分の含有量は、第二の樹脂層の屈折率及び密着性向上の観点から、第二の樹脂組成物100質量部に対し、20質量部以上が好ましく、40質量部以上がより好ましく、70質量部以上が更に好ましい。(E)成分の含有量は、現像性向上の観点から、第二の樹脂組成物100質量部に対し、90質量部以下が好ましく、86質量部以下がより好ましい。これらの観点から、(E)成分の含有量は、第二の樹脂層30を形成する樹脂組成物100質量部に対し、20~90質量部が好ましく、40~90質量部がより好ましく、70~86質量部が更に好ましい。 The content of the component (E) is preferably 20 parts by mass or more and more preferably 40 parts by mass or more with respect to 100 parts by mass of the second resin composition from the viewpoint of improving the refractive index and adhesion of the second resin layer. Preferably, 70 parts by mass or more is more preferable. 90 mass parts or less are preferable with respect to 100 mass parts of 2nd resin compositions from a viewpoint of developability improvement, and, as for content of (E) component, 86 mass parts or less are more preferable. From these viewpoints, the content of the component (E) is preferably 20 to 90 parts by weight, more preferably 40 to 90 parts by weight, with respect to 100 parts by weight of the resin composition forming the second resin layer 30. More preferred is ~ 86 parts by mass.
 (E)成分の含有量は、第二の樹脂層の屈折率及び密着性向上の観点から、第二の樹脂組成物中の有機成分100質量部に対し、50質量部以上が好ましく、100質量部以上がより好ましく、200質量部以上が更に好ましい。(E)成分の含有量は、現像性向上の観点から、第二の樹脂組成物中の有機成分100質量部に対し、750質量部以下が好ましく、600質量部以下がより好ましく、500質量部以下が更に好ましい。これらの観点から、(E)成分の含有量は、第二の樹脂層30を形成する樹脂組成物100質量部に対し、50~750質量部、100~600質量部、100~500質量部、200~500質量部等であってよい。 The content of the component (E) is preferably 50 parts by mass or more with respect to 100 parts by mass of the organic component in the second resin composition, from the viewpoint of improving the refractive index and adhesion of the second resin layer. Part or more is more preferable, and 200 parts by mass or more is further preferable. The content of the component (E) is preferably 750 parts by mass or less, more preferably 600 parts by mass or less, and 500 parts by mass with respect to 100 parts by mass of the organic component in the second resin composition from the viewpoint of improving developability. The following is more preferable. From these viewpoints, the content of the component (E) is 50 to 750 parts by mass, 100 to 600 parts by mass, 100 to 500 parts by mass with respect to 100 parts by mass of the resin composition forming the second resin layer 30. It may be 200 to 500 parts by mass.
 第二の樹脂組成物は、(E)成分以外の成分として、例えばMg、Al、Si、Ca、Cr、Cu、Zn、Ba等の原子を含む金属硫化物を用いることもできる。 In the second resin composition, a metal sulfide containing atoms such as Mg, Al, Si, Ca, Cr, Cu, Zn, and Ba can be used as a component other than the component (E).
 上記第二の樹脂組成物は、第二の樹脂層における第一部分P1を形成する樹脂組成物及び第二部分P2を形成する樹脂組成物(さらには第三部分P3を形成する樹脂組成物)等の複数の樹脂組成物の組み合わせであってよい。第一部分P1を形成する樹脂組成物及び第二部分P2を形成する樹脂組成物(さらには第三部分P3を形成する樹脂組成物)における各成分の種類は、互いに同一であっても異なっていてもよい。 The second resin composition includes a resin composition that forms the first part P1 in the second resin layer, a resin composition that forms the second part P2 (and a resin composition that forms the third part P3), and the like. It may be a combination of a plurality of resin compositions. The types of components in the resin composition forming the first part P1 and the resin composition forming the second part P2 (and also the resin composition forming the third part P3) are the same or different from each other. Also good.
 第一部分P1を形成する樹脂組成物における(E)成分の含有量は、比M/Cを0.2未満にしやすい観点から、第一部分P1を形成する樹脂組成物中の有機成分100質量部に対し、350質量部以下、300質量部以下又は250質量部以下であってよく、骨見え現象の抑制効果が得られやすい観点から、100質量部以上であってよい。 The content of the component (E) in the resin composition forming the first part P1 is based on 100 parts by mass of the organic component in the resin composition forming the first part P1, from the viewpoint of easily making the ratio M / C less than 0.2. On the other hand, it may be 350 parts by mass or less, 300 parts by mass or less, or 250 parts by mass or less, and may be 100 parts by mass or more from the viewpoint of easily obtaining the effect of suppressing the bone appearance phenomenon.
 第二部分P2を形成する樹脂組成物における(E)成分の含有量は、第二の樹脂層の屈折率及び密着性向上の観点から、第二部分P2を形成する樹脂組成物中の有機成分100質量部に対し、360質量部以上、又は480質量部以上であってよく、現像性向上の観点から、720質量部以下であってよい。 The content of the component (E) in the resin composition forming the second part P2 is an organic component in the resin composition forming the second part P2 from the viewpoint of improving the refractive index and adhesion of the second resin layer. It may be 360 parts by mass or more or 480 parts by mass or more with respect to 100 parts by mass, and may be 720 parts by mass or less from the viewpoint of improving developability.
 以上説明したフィルム(転写フィルム1)は基材等に転写して用いられる。すなわち、本発明は、支持フィルムと、該支持フィルム上に設けられた積層体と、を備える上記フィルムの、積層体の転写への応用を提供する。 The film described above (transfer film 1) is used after being transferred to a substrate or the like. That is, this invention provides the application to the transcription | transfer of a laminated body of the said film provided with a support film and the laminated body provided on this support film.
 以上説明したフィルム(転写フィルム1)によれば、樹脂層間の密着性に優れる硬化膜を得ることができる。すなわち、上記転写フィルム1を用いて得られる積層体の硬化物(硬化膜)は、硬化後の第一の樹脂層と、硬化後の第二の樹脂層との間の密着性に優れる。 According to the film described above (transfer film 1), a cured film having excellent adhesion between resin layers can be obtained. That is, the cured product (cured film) of the laminate obtained using the transfer film 1 has excellent adhesion between the cured first resin layer and the cured second resin layer.
 また、上記転写フィルム1を用いることで、例えばタッチパネルにおける透明電極又は額縁領域にある金属配線の保護機能と、透明電極パターンの可視化抑制又はセンシング領域の視認性向上の両機能を満たす硬化膜を一括で形成することができる。上記転写フィルム1を用いて得られる硬化膜は、例えばタッチパネル用電極保護膜;液晶、有機EL等の表示素子用の平坦化膜及び層間絶縁膜;カラーフィルター用保護膜;プリント配線板用ソルダーレジスト膜に用いることが可能である。 In addition, by using the transfer film 1, for example, a cured film satisfying both functions of protecting a transparent electrode in a touch panel or metal wiring in a frame region and suppressing the visualization of a transparent electrode pattern or improving the visibility of a sensing region can be collectively displayed. Can be formed. The cured film obtained using the transfer film 1 includes, for example, an electrode protective film for a touch panel; a planarizing film and an interlayer insulating film for display elements such as liquid crystal and organic EL; a protective film for a color filter; a solder resist for a printed wiring board It can be used for membranes.
 他の一実施形態では、転写フィルムは、本発明の効果が得られる範囲で、適宜選択した他の層を備えていてもよい。他の層としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、クッション層、酸素遮蔽層、剥離層、接着層等が挙げられる。転写フィルムは、これらの層を一種単独で有していてもよく、二種以上を有してもよい。また、同種の層を2以上有していてもよい。転写フィルムにおいて、第一の樹脂層と第二の樹脂層とは隣接していることが好ましいが、第一の樹脂層と第二の樹脂層との間に、上記他の層が存在していてもよい。この場合、得られる硬化膜における第二の樹脂層と他の層との間の密着性が優れたものとなる。また、第一の樹脂層と支持フィルムとは隣接していることが好ましいが、第一の樹脂層と支持フィルムとの間に、上記他の層が存在していてもよい。 In another embodiment, the transfer film may include other layers appropriately selected as long as the effects of the present invention are obtained. There is no restriction | limiting in particular as another layer, According to the objective, it can select suitably. For example, a cushion layer, an oxygen shielding layer, a release layer, an adhesive layer, and the like can be given. The transfer film may have these layers individually by 1 type, and may have 2 or more types. Moreover, you may have 2 or more of the same kind of layers. In the transfer film, the first resin layer and the second resin layer are preferably adjacent to each other, but the other layers are present between the first resin layer and the second resin layer. May be. In this case, the adhesiveness between the second resin layer and the other layer in the obtained cured film is excellent. Moreover, although it is preferable that the 1st resin layer and a support film are adjacent, the said other layer may exist between a 1st resin layer and a support film.
<転写フィルムの製造方法>
 転写フィルム1は、支持フィルム10上に第一の樹脂組成物により構成される層を形成した後、第一の樹脂層上に第二の樹脂層における第一部分P1を構成する層を形成し、次いで、第一部分P1を構成する層上に第二の樹脂層における第二部分P2を構成する層を形成する方法により得ることができる。上記方法では、例えば、第一の樹脂組成物を含有する塗布液を支持フィルム上に塗布し、乾燥する。次いで、得られた層上に、第一部分P1を形成する樹脂組成物を含有する塗布液を塗布し、乾燥した後、得られた層上に、第二部分P2を形成する樹脂組成物を含有する塗布液を塗布し、乾燥し、第一の樹脂層及び第二の樹脂層を含む積層体を得る。次いで、得られた積層体上に保護フィルム15を貼り付けることにより、転写フィルム1を得ることができる。
<Production method of transfer film>
The transfer film 1 forms a layer constituting the first portion P1 in the second resin layer on the first resin layer after forming a layer constituted by the first resin composition on the support film 10; Subsequently, it can obtain by the method of forming the layer which comprises the 2nd part P2 in a 2nd resin layer on the layer which comprises the 1st part P1. In the above method, for example, a coating solution containing the first resin composition is coated on a support film and dried. Next, a coating liquid containing a resin composition for forming the first part P1 is applied on the obtained layer and dried, and then the resin composition for forming the second part P2 is contained on the obtained layer. The coating liquid to be applied is applied and dried to obtain a laminate including the first resin layer and the second resin layer. Subsequently, the transfer film 1 can be obtained by sticking the protective film 15 on the obtained laminate.
 上記方法では、第一の樹脂組成物を含有する塗布液を支持フィルム上に塗布し、乾燥することで得られる層(第一の樹脂組成物により構成される層)が第一の樹脂層20であってよい。また、上記方法では、第一部分P1を形成する樹脂組成物を含有する塗布液を塗布した際に、上記第一の樹脂組成物により構成される層の一部を溶解させてよい。この場合、溶解した上記第一の樹脂組成物により構成される層の一部は、第一部分P1を構成してよい。同様に、第二部分P2を形成する樹脂組成物を含有する塗布液を塗布した際に、第一部分P1を形成する樹脂組成物により構成される層の一部を溶解させてよい。 In the above method, the layer obtained by applying a coating solution containing the first resin composition on the support film and drying it (the layer constituted by the first resin composition) is the first resin layer 20. It may be. Moreover, in the said method, when apply | coating the coating liquid containing the resin composition which forms the 1st part P1, you may dissolve a part of layer comprised by said 1st resin composition. In this case, a part of the layer constituted by the dissolved first resin composition may constitute the first part P1. Similarly, when a coating liquid containing a resin composition that forms the second portion P2 is applied, a part of the layer that is formed of the resin composition that forms the first portion P1 may be dissolved.
 塗布液は、上述した第一の樹脂組成物及び第二の樹脂組成物を構成する各成分を溶剤に均一に溶解又は分散することにより得ることができる。塗布液として用いる溶剤は、特に制限は無く、公知のものが使用できる。塗布液として用いる溶剤は、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、メタノール、エタノール、プロパノール、ブタノール、メチレングリコール、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、クロロホルム、塩化メチレン等が挙げられる。 The coating liquid can be obtained by uniformly dissolving or dispersing each component constituting the first resin composition and the second resin composition described above in a solvent. There is no restriction | limiting in particular in the solvent used as a coating liquid, A well-known thing can be used. Solvents used as coating solutions are, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, methanol, ethanol, propanol, butanol, methylene glycol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol Examples include ethyl methyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, chloroform, and methylene chloride.
 塗布方法としては、例えばドクターブレードコーティング法、マイヤーバーコーティング法、ロールコーティング法、スクリーンコーティング法、スピナーコーティング法、インクジェットコーティング法、スプレーコーティング法、ディップコーティング法、グラビアコーティング法、カーテンコーティング法、ダイコーティング法等が挙げられる。 Application methods include, for example, doctor blade coating method, Meyer bar coating method, roll coating method, screen coating method, spinner coating method, inkjet coating method, spray coating method, dip coating method, gravure coating method, curtain coating method, die coating method. Law.
 乾燥条件に特に制限は無いが、乾燥温度は、60~130℃とすることが好ましく、乾燥時間は、0.5~30分とすることが好ましい。 The drying conditions are not particularly limited, but the drying temperature is preferably 60 to 130 ° C., and the drying time is preferably 0.5 to 30 minutes.
 転写フィルム1は、例えば、第一の樹脂組成物を含有する塗布液、及び、第二の樹脂組成物を含有する塗布液を各々支持フィルム10又は保護フィルム15上に塗布し、乾燥した後、貼り合わせることにより得ることもできる。この方法では、貼り付け時の圧力、貼り合わせ温度、第二の樹脂組成物における金属酸化物の含有量等を調整することで、第一部分P1を形成することができる。また、転写フィルム1は、支持フィルム10上に第一の樹脂層20を形成する樹脂組成物を含有する塗布液を塗布し、乾燥した後、第一の樹脂層20上に、第二の樹脂層30を形成する樹脂組成物を含有する塗布液を塗布し、乾燥し、保護フィルム15を貼り付けることにより形成することもできる。 The transfer film 1 is, for example, coated with a coating solution containing the first resin composition and a coating solution containing the second resin composition on the support film 10 or the protective film 15, respectively, and dried. It can also be obtained by bonding. In this method, the first portion P1 can be formed by adjusting the pressure at the time of pasting, the pasting temperature, the content of the metal oxide in the second resin composition, and the like. The transfer film 1 is coated with a coating solution containing a resin composition for forming the first resin layer 20 on the support film 10 and dried, and then the second resin is formed on the first resin layer 20. It can also form by apply | coating the coating liquid containing the resin composition which forms the layer 30, drying, and sticking the protective film 15. FIG.
<透明積層体>
 図3は、一実施形態の転写フィルムを透明電極パターン付き基材へ用いた一実施形態を示す模式断面図である。図3において、ITO等の透明電極パターン50a付き基材50上に、パターン50aを覆うように第二の樹脂層の硬化物(第二の硬化樹脂層)32が設けられ、その上に第一の樹脂層の硬化物(第一の硬化樹脂層)22が設けられて、透明積層体100が構成されている。すなわち、図3に示す透明積層体100は、一実施形態の転写フィルムを用いて形成したパターン状の硬化膜(硬化膜パターン、硬化後の積層体、積層体の硬化物)60を透明電極パターン50a付き基材50上に備える。なお、図3には示していないが、基材上には金属配線が設けられており、該金属配線上にも、パターン状の硬化膜(硬化膜パターン、積層体の硬化物)60が金属配線を覆うように設けられている。
<Transparent laminate>
FIG. 3 is a schematic cross-sectional view showing an embodiment in which the transfer film of one embodiment is used for a substrate with a transparent electrode pattern. In FIG. 3, a cured product (second cured resin layer) 32 of the second resin layer is provided on the base material 50 with a transparent electrode pattern 50a such as ITO so as to cover the pattern 50a, and the first resin is formed thereon. A cured product (first cured resin layer) 22 of the resin layer is provided, and the transparent laminate 100 is configured. That is, the transparent laminate 100 shown in FIG. 3 is formed by using a patterned cured film (cured film pattern, cured laminate, cured product of the laminate) 60 formed using the transfer film of one embodiment as a transparent electrode pattern. Provided on the substrate 50 with 50a. Although not shown in FIG. 3, metal wiring is provided on the base material, and a patterned cured film (cured film pattern, cured product of laminate) 60 is also formed on the metal wiring. It is provided so as to cover the wiring.
 基材50(透明電極パターン付き基材)としては、例えばタッチパネルに用いられる、ガラス、プラスチック、セラミック、樹脂製の基材等が挙げられる。樹脂製の基材として、例えばポリエステル系樹脂、ポリスチレン系樹脂、オレフィン系樹脂、ポリブチレンテレフタレート系樹脂、ポリカーボネート系樹脂、アクリル系樹脂製の基材等が挙げられる。これらの基材は透明であることが好ましい。 Examples of the substrate 50 (substrate with a transparent electrode pattern) include glass, plastic, ceramic, resin-made substrates used for touch panels, for example. Examples of the resin base material include a polyester resin, a polystyrene resin, an olefin resin, a polybutylene terephthalate resin, a polycarbonate resin, and an acrylic resin base material. These substrates are preferably transparent.
 透明電極パターン50aを構成する透明電極は、例えばITO及びIZO(Indium Zinc Oxide、酸化インジウム-酸化亜鉛)等の導電性金属酸化膜を用いて、形成することができる。また透明電極は、銀繊維、カーボンナノチューブ等の導電性繊維を用いた光硬化性樹脂層を有する感光性フィルムを用いて、形成することもできる。ITO等の透明電極の屈折率は、第二の樹脂層による骨見え現象の抑制効果が得られやすい観点から、1.80以上が好ましく、1.85以上がより好ましく、1.90以上が更に好ましく、また、2.10以下が好ましく、2.05以下がより好ましく、2.00以下が更に好ましい。 The transparent electrode constituting the transparent electrode pattern 50a can be formed using a conductive metal oxide film such as ITO and IZO (Indium Zinc Oxide, Indium Zinc Oxide). The transparent electrode can also be formed using a photosensitive film having a photocurable resin layer using conductive fibers such as silver fibers and carbon nanotubes. The refractive index of the transparent electrode such as ITO is preferably 1.80 or more, more preferably 1.85 or more, and further preferably 1.90 or more, from the viewpoint of easily obtaining the effect of suppressing the bone appearance phenomenon by the second resin layer. It is preferably 2.10 or less, more preferably 2.05 or less, and still more preferably 2.00 or less.
 基材50上には、金属配線が形成されていてよい。金属配線は、例えば、Au、Ag、Cu、Al、Mo、C等の導電性材料を用いて、スクリーン印刷、蒸着等の方法により形成することができる。基材50と、透明電極及び金属配線との間には、例えば屈折率調整層、絶縁層等が設けられていてもよい。 Metal wiring may be formed on the base material 50. The metal wiring can be formed by a method such as screen printing or vapor deposition using a conductive material such as Au, Ag, Cu, Al, Mo, and C, for example. Between the base material 50, the transparent electrode, and the metal wiring, for example, a refractive index adjustment layer, an insulating layer, or the like may be provided.
 硬化膜60は、第一の硬化樹脂層22と、第二の硬化樹脂層32とを含む。硬化膜60の透湿度は、金属配線及び透明電極の腐食抑制の観点から、350g/m・24h以下が好ましく、300g/m・24h以下がより好ましく、250g/m・24h以下が更に好ましく、200g/m・24h以下が特に好ましい。なお、透湿度は、下記に示す方法で測定される。 The cured film 60 includes a first cured resin layer 22 and a second cured resin layer 32. Moisture permeability of the cured film 60, from the viewpoint of corrosion inhibition of the metal wiring and the transparent electrode is preferably less 350g / m 2 · 24h, 300g / m or less, more preferably 2 · 24h, 250g / m 2 · 24h or less is more 200 g / m 2 · 24 h or less is particularly preferable. The moisture permeability is measured by the method shown below.
 まず、転写フィルムの保護フィルムを剥離し、これをろ紙(アドバンテック製、No.5C、φ90mmの円形、厚さ130μm)上に、第二の樹脂層が密着するようにロール温度100℃、基材送り速度0.6m/分、圧着圧力(シリンダ圧力)0.5MPaの条件でラミネートする。次いで、上記積層体に対し、平行光線露光機(株式会社オーク製作所製、EXM1201)を使用して支持フィルム面垂直上より露光量0.6J/mで紫外線を照射した後、支持フィルムを剥離して除去し、さらに、積層体の垂直上より露光量1×10J/mで紫外線を照射する。これにより、ろ紙上に硬化膜(積層体を硬化して得られる硬化膜)が形成された透湿度測定用サンプルを得る。次いで、JIS規格(Z0208、カップ法)を参考に、透湿度測定を実施する。具体的には、測定カップ(φ60mm、深さ15mm)内に、吸湿剤(20gの塩化カルシウム(無水))を入れ、上記透湿度測定用サンプルから直径70mmの大きさにはさみで切り取った円形試料片を用いて、上記測定カップに蓋をする。次いで、恒温恒湿槽内にて60℃、90%RHの条件で24時間放置し、放置前後の測定カップ、吸湿剤及び円形試料片の合計質量の変化から透湿度を算出する。 First, the protective film of the transfer film is peeled off, and the roll temperature is 100 ° C. so that the second resin layer is in close contact with the filter paper (manufactured by Advantech, No.5C, φ90 mm circle, 130 μm thick). Lamination is performed under conditions of a feed rate of 0.6 m / min and a pressure bonding pressure (cylinder pressure) of 0.5 MPa. Next, after irradiating the laminated body with ultraviolet rays at an exposure amount of 0.6 J / m 2 from above the support film surface using a parallel light exposure machine (EXM1201 manufactured by Oak Manufacturing Co., Ltd.), the support film is peeled off. Then, ultraviolet rays are irradiated at an exposure amount of 1 × 10 4 J / m 2 from above the laminated body. Thus, a moisture permeability measurement sample in which a cured film (cured film obtained by curing the laminate) is formed on the filter paper is obtained. Next, moisture permeability is measured with reference to JIS standards (Z0208, cup method). Specifically, a circular sample in which a hygroscopic agent (20 g of calcium chloride (anhydrous)) is placed in a measuring cup (φ60 mm, depth 15 mm), and the moisture permeability measurement sample is cut into a size of 70 mm in diameter with scissors. Cover the measuring cup with a piece. Next, the sample is left in a constant temperature and humidity chamber for 24 hours under conditions of 60 ° C. and 90% RH, and the moisture permeability is calculated from the change in the total mass of the measurement cup, the hygroscopic agent, and the circular sample piece before and after being left.
 硬化膜60の、波長400~700nmにおける透過率の最小値は90%以上が好ましい。より詳しくは、90.00%以上が好ましく、90.50%以上がより好ましく、90.70%以上が更に好ましい。一般的な可視光波長域である波長400~700nmにおける透過率が90%以上であれば、タッチパネルのセンシング領域の透明電極を保護する場合において、センシング領域での画像表示品質、色合い、輝度が低下することを充分抑制することができる。透過率の最大値は、通常100%以下である。なお、可視光線透過率は、下記に示す方法で測定される。 The minimum value of the transmittance of the cured film 60 at a wavelength of 400 to 700 nm is preferably 90% or more. More specifically, it is preferably 90.00% or more, more preferably 90.50% or more, and still more preferably 90.70% or more. If the transmittance at a wavelength of 400 to 700 nm, which is a general visible light wavelength range, is 90% or more, the image display quality, color tone, and luminance in the sensing area are reduced when the transparent electrode in the sensing area of the touch panel is protected. Can be sufficiently suppressed. The maximum value of the transmittance is usually 100% or less. The visible light transmittance is measured by the following method.
 まず、転写フィルムの保護フィルムを剥離し、厚さ0.7mm、縦10cm×横10cmのガラス基材上に、第二の樹脂層が密着するようにラミネータ(日立化成株式会社製、製品名:HLM-3000型)を用いて、ロール温度120℃、基材送り速度1m/分、圧着圧力(シリンダ圧力)4×10Pa(線圧は9.8×10N/m)の条件でラミネートして、ガラス基材、第二の樹脂層、第一の樹脂層及び支持フィルムがこの順で積層された積層サンプルを作製する。次いで、得られた積層サンプルに、平行光線露光機(株式会社オーク製作所製、EXM1201)を使用して、第一の樹脂層(感光性樹脂組成物層)側上方より露光量5×10J/m(波長365nmにおける測定値)で、紫外線を照射した後、支持フィルムを除去し、140℃に加熱した箱型乾燥機(三菱電機株式会社製、型番:NV50-CA)内に30分間静置し、透過率測定用サンプルを得る。次いで、得られた透過率測定用サンプルをヘーズメーター(日本電色工業株式会社製、製品名:NDH 7000)を使用して、測定波長域400~700nmで可視光線透過率を測定する。 First, the protective film of the transfer film is peeled off, and a laminator (manufactured by Hitachi Chemical Co., Ltd., product name: so that the second resin layer is in close contact with a glass substrate having a thickness of 0.7 mm and a length of 10 cm × width of 10 cm. HLM-3000 type) under the conditions of a roll temperature of 120 ° C., a substrate feed speed of 1 m / min, and a pressure (cylinder pressure) of 4 × 10 5 Pa (linear pressure is 9.8 × 10 3 N / m). Lamination is performed to produce a laminated sample in which the glass substrate, the second resin layer, the first resin layer, and the support film are laminated in this order. Next, the obtained laminated sample was exposed to 5 × 10 2 J from the upper side of the first resin layer (photosensitive resin composition layer) side using a parallel light exposure machine (EXM1201 manufactured by Oak Manufacturing Co., Ltd.). / M 2 (measured value at a wavelength of 365 nm), after irradiation with ultraviolet rays, the support film was removed and heated in a box-type dryer (model number: NV50-CA, manufactured by Mitsubishi Electric Corporation) for 30 minutes. Allow to stand to obtain a transmittance measurement sample. Next, the visible light transmittance of the obtained transmittance measurement sample is measured in a measurement wavelength range of 400 to 700 nm using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., product name: NDH 7000).
 硬化膜60は、以下の方法で形成することができる。すなわち、硬化膜60の形成方法は、基材50上に、上記転写フィルム1の積層体40を、第二の樹脂層30が基材50に密着するようにラミネートする工程と、基材50上の積層体40の所定部分を露光する工程と、露光された所定部分以外を除去し、パターン状の硬化膜60を形成する工程と、を備える。この方法によれば、転写フィルムにおける上記積層体40を硬化してなる、硬化膜60が得られる。硬化膜60の形成方法の詳細を以下に説明する。 The cured film 60 can be formed by the following method. That is, the method of forming the cured film 60 includes a step of laminating the laminate 40 of the transfer film 1 on the base material 50 so that the second resin layer 30 is in close contact with the base material 50, A step of exposing a predetermined portion of the laminate 40 and a step of removing a portion other than the exposed predetermined portion to form a patterned cured film 60. According to this method, the cured film 60 obtained by curing the laminate 40 in the transfer film is obtained. Details of the method of forming the cured film 60 will be described below.
-ラミネート工程-
 まず、転写フィルム1の必要に応じて存在する保護フィルム15を除去した後、転写フィルム1の積層体40を基材50(透明電極パターン付き基材)の表面に、第二の樹脂層30が密着するよう支持フィルム10側から圧着することにより、ラミネートする。圧着手段としては、圧着ロールが挙げられる。圧着ロールは、加熱圧着できるように加熱手段を備えたものであってもよい。
-Lamination process-
First, after removing the protective film 15 that is present as required of the transfer film 1, the laminate 40 of the transfer film 1 is placed on the surface of the substrate 50 (substrate with a transparent electrode pattern), and the second resin layer 30 is placed on the surface. Lamination is performed by pressure bonding from the support film 10 side so as to be in close contact. Examples of the pressing means include a pressing roll. The pressure roll may be provided with a heating means so that it can be heat-pressure bonded.
 加熱圧着する場合の加熱温度は、第二の樹脂層30と基材50との密着性と、第一の樹脂層20及び第二の樹脂層30の構成成分が熱硬化又は熱分解されにくいようにする観点から、25~160℃とすることが好ましく、25~150℃とすることがより好ましく、30~150℃とすることが更に好ましい。 The heating temperature for thermocompression bonding is such that the adhesiveness between the second resin layer 30 and the substrate 50 and the components of the first resin layer 20 and the second resin layer 30 are not easily cured or thermally decomposed. In view of the above, it is preferably 25 to 160 ° C, more preferably 25 to 150 ° C, and further preferably 30 to 150 ° C.
 加熱圧着時の圧着圧力は、第二の樹脂層30と基材50との密着性を充分確保しながら、基材50の変形を抑制する観点から、線圧で50~1×10N/mとすることが好ましく、2.5×10~5×10N/mとすることがより好ましく、5×10~4×10N/mとすることが更に好ましい。 From the viewpoint of suppressing deformation of the base material 50 while ensuring sufficient adhesion between the second resin layer 30 and the base material 50, the pressure during the thermocompression bonding is 50 to 1 × 10 5 N / m, preferably 2.5 × 10 2 to 5 × 10 4 N / m, more preferably 5 × 10 2 to 4 × 10 4 N / m.
 転写フィルム1を上記のように加熱圧着すれば、基材50の予熱処理は必ずしも必要ではないが、第二の樹脂層と基材との密着性を更に向上させる点から、基材50を予熱処理してもよい。このときの処理温度は、30~150℃とすることが好ましい。 If the transfer film 1 is thermocompression bonded as described above, the preheating of the substrate 50 is not necessarily required, but the substrate 50 is preliminarily used in order to further improve the adhesion between the second resin layer and the substrate. You may heat-process. The treatment temperature at this time is preferably 30 to 150 ° C.
-露光工程-
 次に、転写後の第二の樹脂層30及び第一の樹脂層20の所定部分に、例えばフォトマスクを介して、活性光線をパターン状に照射する。活性光線を照射する際、第一の樹脂層20上の支持フィルム10が透明の場合には、そのまま活性光線を照射することができ、不透明の場合には支持フィルム10を除去してから活性光線を照射する。活性光線の光源としては、公知の活性光源を用いることができる。なお、本明細書においてパターンとは、回路を形成する微細配線の形状にとどまらず、他基材との接続部のみを矩形に除去した形状及び基材の額縁部のみを除去した形状等も含まれる。
-Exposure process-
Next, actinic rays are radiated in a pattern on the predetermined portions of the second resin layer 30 and the first resin layer 20 after transfer, for example, via a photomask. When the support film 10 on the first resin layer 20 is transparent when irradiating the actinic light, the actinic light can be irradiated as it is. When the support film 10 is opaque, the actinic light is removed after the support film 10 is removed. Irradiate. A known active light source can be used as the active light source. The pattern in this specification is not limited to the shape of the fine wiring that forms the circuit, but also includes the shape in which only the connection portion with the other base material is removed in a rectangular shape and the shape in which only the frame portion of the base material is removed. It is.
 活性光線の照射量は、1×10~1×10J/mであり、照射の際に、加熱を伴うこともできる。この活性光線の照射量が、1×10J/m以上であれば、光硬化を充分に進行させることが可能となり、1×10J/m以下であれば、第一の樹脂層及び第二の樹脂層の変色を抑制することができる傾向がある。 The irradiation amount of actinic rays is 1 × 10 2 to 1 × 10 4 J / m 2 , and heating can be accompanied during irradiation. If the irradiation amount of this actinic ray is 1 × 10 2 J / m 2 or more, photocuring can sufficiently proceed, and if it is 1 × 10 4 J / m 2 or less, the first resin There is a tendency that discoloration of the layer and the second resin layer can be suppressed.
-現像工程-
 続いて、活性光線照射後の第一の樹脂層20及び第二の樹脂層30の未露光部を現像液で除去して、透明電極の一部又は全部を被覆する硬化膜パターンを形成する。なお、活性光線の照射後、第一の樹脂層20上に支持フィルム10が積層されている場合にはそれを除去した後、現像工程が行われる。
-Development process-
Subsequently, the unexposed portions of the first resin layer 20 and the second resin layer 30 after irradiation with actinic rays are removed with a developer to form a cured film pattern that covers part or all of the transparent electrode. In addition, after irradiation of actinic rays, when the support film 10 is laminated | stacked on the 1st resin layer 20, after developing it, a image development process is performed.
 現像工程は、アルカリ水溶液を現像液として、スプレー、シャワー、揺動浸漬、ブラッシング、スクラッビング等の公知の方法により行うことが好ましい。中でも、環境、安全性の観点からアルカリ水溶液を用いて、スプレー現像することが好ましい。なお、現像温度及び時間は従来公知の範囲で調整することができる。 The development step is preferably performed by a known method such as spraying, showering, rocking dipping, brushing, or scrubbing using an aqueous alkaline solution as a developing solution. Of these, spray development is preferably performed using an alkaline aqueous solution from the viewpoint of environment and safety. The development temperature and time can be adjusted within a conventionally known range.
 以上説明した透明積層体100の硬化膜60上(第一の硬化樹脂層22側の面上)には透明粘着フィルム(OCA、Optical Clear Adhesive)等が設けられていてもよい。OCA等の部材の屈折率は、第二の樹脂層による骨見え現象の抑制効果が得られやすい観点では、1.45以上が好ましく、1.47以上がより好ましく、1.48以上が更に好ましく、また、1.55以下が好ましく、1.53以下がより好ましく、1.51以下が更に好ましい。 A transparent adhesive film (OCA, Optical Clear Adhesive) or the like may be provided on the cured film 60 (on the surface on the first cured resin layer 22 side) of the transparent laminate 100 described above. The refractive index of a member such as OCA is preferably 1.45 or more, more preferably 1.47 or more, and even more preferably 1.48 or more, from the viewpoint of easily obtaining the effect of suppressing the bone appearance phenomenon by the second resin layer. Moreover, 1.55 or less is preferable, 1.53 or less is more preferable, and 1.51 or less is still more preferable.
<電子部品>
 一実施形態の電子部品は、上述した転写フィルム1を用いて形成した硬化膜を備えている。この硬化膜はパターン状に形成されていることが好ましい。電子部品としては、タッチパネル、液晶ディスプレイ、有機エレクトロルミネッサンス、太陽電池モジュール、プリント配線板、電子ペーパ等が挙げられる。
<Electronic parts>
The electronic component of one embodiment includes a cured film formed using the transfer film 1 described above. This cured film is preferably formed in a pattern. Examples of the electronic component include a touch panel, a liquid crystal display, an organic electroluminescence, a solar cell module, a printed wiring board, and electronic paper.
 図4は、静電容量式のタッチパネルの一例を示す模式上面図である。図4に示されるタッチパネルは、透明基材101の片面にタッチ位置座標を検出するためのセンシング領域102があり、この領域の静電容量変化を検出するための透明電極103及び透明電極104が透明基材101上に設けられている。 FIG. 4 is a schematic top view showing an example of a capacitive touch panel. The touch panel shown in FIG. 4 has a sensing area 102 for detecting a touch position coordinate on one side of a transparent substrate 101, and the transparent electrode 103 and the transparent electrode 104 for detecting a capacitance change in this area are transparent. It is provided on the base material 101.
 透明電極103及び透明電極104はそれぞれタッチ位置のX位置座標及びY位置座標を検出する。 The transparent electrode 103 and the transparent electrode 104 detect the X position coordinate and the Y position coordinate of the touch position, respectively.
 透明基材101上には、透明電極103及び透明電極104からタッチ位置の検出信号を外部回路に伝えるための金属配線105が設けられている。また、金属配線105と、透明電極103及び透明電極104とは、透明電極103及び透明電極104上に設けられた接続電極106により接続されている。また、金属配線105の透明電極103及び透明電極104との接続部と反対側の端部には、外部回路との接続端子107が設けられている。 On the transparent substrate 101, a metal wiring 105 for transmitting a touch position detection signal from the transparent electrode 103 and the transparent electrode 104 to an external circuit is provided. Further, the metal wiring 105 and the transparent electrode 103 and the transparent electrode 104 are connected by a connection electrode 106 provided on the transparent electrode 103 and the transparent electrode 104. In addition, a connection terminal 107 for connection to an external circuit is provided at the end of the metal wiring 105 opposite to the connection portion between the transparent electrode 103 and the transparent electrode 104.
 図4に示すように、硬化膜パターン123を形成することによって、透明電極103、透明電極104、金属配線105、接続電極106及び接続端子107の保護膜の機能と、透明電極パターンから形成されるセンシング領域102の骨見え抑制機能(例えば屈折率調整機能)を同時に奏する。 As shown in FIG. 4, by forming the cured film pattern 123, the transparent electrode 103, the transparent electrode 104, the metal wiring 105, the connection electrode 106, the function of the protective film of the connection terminal 107, and the transparent electrode pattern are formed. It simultaneously performs a bone appearance suppression function (for example, a refractive index adjustment function) of the sensing region 102.
 以下、実験例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実験例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to experimental examples. However, the present invention is not limited to the following experimental examples.
<バインダーポリマー溶液A1の作製>
 反応容器中にプロピレングリコールモノメチルエーテル(株式会社ダイセル製)85.7質量部を加え80℃に昇温した。他方で、メタクリル酸シクロヘキシル46質量部、メタクリル酸メチル2質量部、メタクリル酸52質量部、及び2,2’-アゾビス(2-メチルプロピオン酸)ジメチル(和光純薬工業株式会社製、V-601)1質量部を混合し、混合溶液を得た。この混合溶液を、窒素ガス雰囲気下、80℃の上記反応容器中に2時間かけて滴下した。滴下後4時間反応させて、アクリル樹脂溶液を得た。
<Preparation of binder polymer solution A1>
85.7 parts by mass of propylene glycol monomethyl ether (manufactured by Daicel Corporation) was added to the reaction vessel, and the temperature was raised to 80 ° C. On the other hand, 46 parts by mass of cyclohexyl methacrylate, 2 parts by mass of methyl methacrylate, 52 parts by mass of methacrylic acid, and 2,2′-azobis (2-methylpropionic acid) dimethyl (manufactured by Wako Pure Chemical Industries, Ltd., V-601) ) 1 part by mass was mixed to obtain a mixed solution. This mixed solution was dropped into the reaction vessel at 80 ° C. over 2 hours under a nitrogen gas atmosphere. Reaction was performed for 4 hours after the dropwise addition to obtain an acrylic resin solution.
 次いで、上記アクリル樹脂溶液に、ハイドロキノンモノメチルエーテル2.5質量部、及びテトエチルアンモニウムブロマイド8.4質量部を加えた後、メタクリル酸グリシジル32質量部を2時間かけて滴下した。滴下後、空気を吹き込みながら80℃で4時間反応させ後、固形分濃度が30質量%になるように溶媒としてプロピレングリコールモノメチルエーテルを添加し、重量平均分子量が60,000、酸価が130.0mgKOH/gのバインダーポリマー溶液A1を得た。なお、メタクリル酸シクロヘキシル、メタクリル酸メチル、メタクリル酸、及びメタクリル酸グリシジルのモル比(x:l:y:z)が24mol%:8mol%:48mol%:20mol%になるように、添加量を調整した。なお表1において、各成分の配合量の単位は質量部である。 Next, 2.5 parts by mass of hydroquinone monomethyl ether and 8.4 parts by mass of tetoethylammonium bromide were added to the acrylic resin solution, and then 32 parts by mass of glycidyl methacrylate was added dropwise over 2 hours. After dripping, after reacting at 80 ° C. for 4 hours while blowing air, propylene glycol monomethyl ether was added as a solvent so that the solid concentration was 30% by mass, the weight average molecular weight was 60,000, and the acid value was 130.%. A binder polymer solution A1 of 0 mg KOH / g was obtained. The addition amount was adjusted so that the molar ratio (x: l: y: z) of cyclohexyl methacrylate, methyl methacrylate, methacrylic acid, and glycidyl methacrylate was 24 mol%: 8 mol%: 48 mol%: 20 mol%. did. In Table 1, the unit of the amount of each component is part by mass.
<バインダーポリマー溶液A2の作製>
 反応容器中にプロピレングリコールモノメチルエーテル(株式会社ダイセル製)65質量部を加え80℃に昇温した。他方で、メタクリル酸ブチル17.3質量部、アクリル酸ブチル15.2質量部、メタクリル酸メチル43.5質量部、メタクリル酸24質量部、及び2,2’-アゾビス(2-メチルプロピオン酸)ジメチル(和光純薬工業株式会社製、V-601)1.3質量部を混合し、混合溶液を得た。この混合溶液を、窒素ガス雰囲気下、80℃の上記反応容器中に2時間かけて滴下した。滴下後4時間反応させた後、固形分濃度が50質量%になるように溶媒としてプロピレングリコールモノメチルエーテルを添加し、重量平均分子量が30,000、酸価が156.6mgKOH/gのバインダーポリマー溶液A2を得た。
<Preparation of binder polymer solution A2>
65 parts by mass of propylene glycol monomethyl ether (manufactured by Daicel Corporation) was added to the reaction vessel, and the temperature was raised to 80 ° C. On the other hand, 17.3 parts by weight of butyl methacrylate, 15.2 parts by weight of butyl acrylate, 43.5 parts by weight of methyl methacrylate, 24 parts by weight of methacrylic acid, and 2,2′-azobis (2-methylpropionic acid) 1.3 parts by mass of dimethyl (manufactured by Wako Pure Chemical Industries, Ltd., V-601) was mixed to obtain a mixed solution. This mixed solution was dropped into the reaction vessel at 80 ° C. over 2 hours under a nitrogen gas atmosphere. After reacting for 4 hours after the dropping, propylene glycol monomethyl ether was added as a solvent so that the solid content concentration was 50% by mass, and a binder polymer solution having a weight average molecular weight of 30,000 and an acid value of 156.6 mgKOH / g. A2 was obtained.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<重量平均分子量の測定方法>
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC)によって測定し、標準ポリスチレンの検量線を用いて換算することにより導出した。GPCの条件を以下に示す。
[GPC条件]
 ポンプ:L-6000(株式会社日立製作所製、製品名)
 カラム:Gelpack GL-R420、Gelpack GL-R430、Gelpack GL-R440(以上、日立化成株式会社製、製品名)
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:2.05mL/分
 検出器:L-3300(RI検出器、株式会社日立製作所製、製品名)
<Measurement method of weight average molecular weight>
The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and was derived by conversion using a standard polystyrene calibration curve. The GPC conditions are shown below.
[GPC conditions]
Pump: L-6000 (product name, manufactured by Hitachi, Ltd.)
Column: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (product name, manufactured by Hitachi Chemical Co., Ltd.)
Eluent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 2.05 mL / min Detector: L-3300 (RI detector, manufactured by Hitachi, Ltd., product name)
<酸価の測定方法>
 酸価は下記に示すような、JIS K0070に基づいた中和滴定法により測定した。まず、バインダーポリマーの溶液を130℃で1時間加熱し、揮発分を除去して、固形分を得た。そして、上記固形分のバインダーポリマー1gを精秤した後、このバインダーポリマーにアセトンを30g添加し、これを均一に溶解し、樹脂溶液を得た。次いで、指示薬であるフェノールフタレインをその樹脂溶液に適量添加して、0.1mol/Lの水酸化カリウム水溶液を用いて中和滴定を行った。そして、次式により酸価を算出した。
 酸価=0.1×V×f×56.1/(Wp×I/100)
(式中、Vは滴定に用いた0.1mol/L水酸化カリウム水溶液の滴定量(mL)、fは0.1mol/L水酸化カリウム水溶液のファクター(濃度換算係数)、Wpは測定した樹脂溶液の質量(g)、Iは測定した上記樹脂溶液中の不揮発分の割合(質量%)を示す。)
<Method for measuring acid value>
The acid value was measured by a neutralization titration method based on JIS K0070 as shown below. First, the binder polymer solution was heated at 130 ° C. for 1 hour to remove volatile matter, thereby obtaining a solid content. Then, after accurately weighing 1 g of the solid binder polymer, 30 g of acetone was added to the binder polymer, and this was uniformly dissolved to obtain a resin solution. Next, an appropriate amount of an indicator, phenolphthalein, was added to the resin solution, and neutralization titration was performed using a 0.1 mol / L potassium hydroxide aqueous solution. And the acid value was computed by following Formula.
Acid value = 0.1 × V × f 1 × 56.1 / (Wp × I / 100)
(In the formula, V is a titration amount (mL) of 0.1 mol / L potassium hydroxide aqueous solution used for titration, f 1 is a factor (concentration conversion factor) of 0.1 mol / L potassium hydroxide aqueous solution, and Wp is measured. (The mass (g) of the resin solution, I represents the ratio (mass%) of the non-volatile content in the measured resin solution.)
<第一の塗布液の作製>
 表2に示す各成分とメチルエチルケトン(溶剤)とを撹拌機によって15分間混合し、第一の塗布液(塗布液1)を調製した。表2において、各成分の配合量の単位は質量部である。また、(A)成分の配合量は固形分量である。なお、メチルエチルケトンは、固形分濃度が30質量%となる量を添加した。
<Preparation of first coating solution>
Each component shown in Table 2 and methyl ethyl ketone (solvent) were mixed with a stirrer for 15 minutes to prepare a first coating solution (coating solution 1). In Table 2, the unit of the amount of each component is part by mass. Moreover, the compounding quantity of (A) component is a solid content. Methyl ethyl ketone was added in such an amount that the solid content concentration was 30% by mass.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表2中の成分の記号は以下の意味を示す。
・(A)成分
 A1:バインダーポリマー溶液A1
・(B)成分
 A-DCP:トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製、製品名)
・(C)成分
 OXE01:1,2-オクタンジオン,1-[(4-フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)](BASFジャパン株式会社製、製品名)
・(D)成分
 P-1M:2-メタクロイロキシエチルアシッドホスフェート、共栄社化学株式会社製
The symbol of the component in Table 2 has the following meaning.
-(A) component A1: Binder polymer solution A1
-Component (B) A-DCP: Tricyclodecane dimethanol diacrylate (made by Shin-Nakamura Chemical Co., Ltd., product name)
Component (C) OXE01: 1,2-octanedione, 1-[(4-phenylthio) phenyl-, 2- (O-benzoyloxime)] (product name, manufactured by BASF Japan Ltd.)
-Component (D) P-1M: 2-methacryloylethyl acid phosphate, manufactured by Kyoeisha Chemical Co., Ltd.
<第二の塗布液の作製>
 表3に示す各成分と、メチルプロピレングリコール(溶剤)を、撹拌機を用いて15分間混合し、第二の塗布液(塗布液IM-1a)を作製した。表3において、各成分の配合量の単位は質量部である。また、(A)成分及び(E)成分の配合量は固形分量である。なお、メチルプロピレングリコールは、固形分濃度が1質量%となる量を添加した。
<Preparation of second coating solution>
Each component shown in Table 3 and methylpropylene glycol (solvent) were mixed for 15 minutes using a stirrer to prepare a second coating solution (coating solution IM-1a). In Table 3, the unit of the amount of each component is part by mass. Moreover, the compounding quantity of (A) component and (E) component is a solid content. In addition, methylpropylene glycol was added in an amount such that the solid content concentration was 1% by mass.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3中の成分の記号は以下の意味を示す。なお、表2と重複する記号の説明は省略する。
・(A)成分
 A2:バインダーポリマー溶液A2
・(E)成分
 E1:ジルコニア分散液(日産化学工業株式会社製、製品名:OZ-S30K、MEK溶媒、固形分量:30質量%)
The symbols of the components in Table 3 have the following meanings. In addition, description of the symbol which overlaps with Table 2 is abbreviate | omitted.
-(A) component A2: Binder polymer solution A2
Component (E) E1: Zirconia dispersion (manufactured by Nissan Chemical Industries, product name: OZ-S30K, MEK solvent, solid content: 30% by mass)
<第三の塗布液の作製>
 表4に示す各成分と、メチルプロピレングリコール(溶剤)を、撹拌機を用いて15分間混合し、第三の塗布液(塗布液IM-1b)を作製した。表4において、各成分の配合量の単位は質量部である。また、(A)成分及び(E)成分の配合量は固形分量である。なお、メチルプロピレングリコールは、固形分濃度が1質量%となる量を添加した。
<Preparation of third coating solution>
Each component shown in Table 4 and methylpropylene glycol (solvent) were mixed for 15 minutes using a stirrer to prepare a third coating solution (coating solution IM-1b). In Table 4, the unit of the amount of each component is part by mass. Moreover, the compounding quantity of (A) component and (E) component is a solid content. In addition, methylpropylene glycol was added in an amount such that the solid content concentration was 1% by mass.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(実験例1)
<単層フィルムAの作製>
 厚さ16μmのポリエチレンテレフタレートフィルム(支持フィルム、東レ株式会社製、製品名:FB40)上に、コンマコーターを用いて第一の塗布液(塗布液1)を均一に塗布し、100℃の熱風対流式乾燥機で5分間乾燥して溶剤を除去し、樹脂層Aを備える単層フィルムAを得た。塗布は、樹脂層Aの乾燥後の厚さが8μmになるよう、塗布液の量を調整して行った。
(Experimental example 1)
<Preparation of single layer film A>
On a polyethylene terephthalate film (support film, manufactured by Toray Industries, Inc., product name: FB40) having a thickness of 16 μm, uniformly apply the first coating solution (coating solution 1) using a comma coater, and hot air convection at 100 ° C. The solvent was removed by drying for 5 minutes with a type dryer, and a single layer film A provided with the resin layer A was obtained. The coating was performed by adjusting the amount of the coating solution so that the thickness of the resin layer A after drying was 8 μm.
<単層フィルムBの作製>
 厚さ30μmのポリプロピレンフィルム(保護フィルム、王子エフテックス株式会社製、製品名:ES-201)上に、ダイコーターを用いて第二の塗布液(塗布液IM-1a)を均一に塗布し、熱風対流式乾燥機で乾燥して溶剤を除去し、樹脂層Bを備える単層フィルムBを得た。塗布は、樹脂層Bの乾燥後の厚さが16nmになるよう、塗布液の量を調整して行った。
<Preparation of single layer film B>
A second coating solution (coating solution IM-1a) was uniformly applied using a die coater on a 30 μm-thick polypropylene film (protective film, product name: ES-201 manufactured by Oji F-Tex Co., Ltd.) The solvent was removed by drying with a hot air convection dryer to obtain a single layer film B having a resin layer B. The coating was performed by adjusting the amount of the coating solution so that the thickness of the resin layer B after drying was 16 nm.
<単層フィルムCの作製>
 厚さ30μmのポリプロピレンフィルム(保護フィルム、王子エフテックス株式会社製、製品名:ES-201)上に、ダイコーターを用いて第三の塗布液(塗布液IM-1b)を均一に塗布し、熱風対流式乾燥機で乾燥して溶剤を除去し、樹脂層Cを備える単層フィルムCを得た。塗布は、樹脂層Cの乾燥後の厚さが44nmになるよう、塗布液の量を調整して行った。
<Preparation of single layer film C>
A third coating solution (coating solution IM-1b) was uniformly applied using a die coater on a 30 μm-thick polypropylene film (protective film, product name: ES-201 manufactured by Oji F-Tex Co., Ltd.) The solvent was removed by drying with a hot air convection dryer, and a single layer film C provided with a resin layer C was obtained. The coating was performed by adjusting the amount of the coating solution so that the thickness of the resin layer C after drying was 44 nm.
<樹脂層の厚さの測定>
 上記で作製した単層フィルムAにおける樹脂層Aの厚さを、デジタルシックネスゲージ(株式会社ニコン製、製品名:DIGIMICROSTAND MS-5C)で測定した。また、上記で作製した単層フィルムBにおける樹脂層Bの厚さ及び単層フィルムCにおける樹脂層Cの厚さをF20(フィルメトリクス株式会社製、製品名)で測定した。樹脂層Aの厚さは8μmであり、樹脂層Bの厚さは16nmであり、樹脂層Cの厚さは44nmであった。
<Measurement of resin layer thickness>
The thickness of the resin layer A in the single-layer film A produced as described above was measured with a digital thickness gauge (manufactured by Nikon Corporation, product name: DIGIMICROSTAND MS-5C). Moreover, the thickness of the resin layer B in the single layer film B produced above and the thickness of the resin layer C in the single layer film C were measured by F20 (manufactured by Filmetrics Co., Ltd., product name). The thickness of the resin layer A was 8 μm, the thickness of the resin layer B was 16 nm, and the thickness of the resin layer C was 44 nm.
<転写フィルムの作製>
 得られた単層フィルムAと、単層フィルムBと、をラミネータ(日立化成株式会社製、製品名HLM-3000型)を用いて、樹脂層Aと樹脂層Bとが密着するように、23℃で張り合わせた。次いで、得られた積層体のポリプロピレンフィルムを剥離した後、上記と同様にして、得られた積層体と単層フィルムCとを樹脂層Bと樹脂層Cとが密着するように、23℃で張り合わせた。これにより、支持フィルム(ポリエチレンテレフタレートフィルム)上に、樹脂層A(第一の樹脂層)と、樹脂層B及び樹脂層C(第二の樹脂層)と、からなる積層体を備える、実験例1の転写フィルムを得た。
<Production of transfer film>
Using a laminator (product name: HLM-3000 type, manufactured by Hitachi Chemical Co., Ltd.), the obtained single layer film A and single layer film B were placed so that the resin layer A and the resin layer B were in close contact with each other. Laminated at ℃. Next, after peeling off the polypropylene film of the obtained laminate, in the same manner as described above, the obtained laminate and the single-layer film C were adhered at 23 ° C. so that the resin layer B and the resin layer C were in close contact with each other. Laminated. Thus, an experimental example including a laminate including a resin layer A (first resin layer), a resin layer B, and a resin layer C (second resin layer) on a support film (polyethylene terephthalate film). 1 transfer film was obtained.
<比M/Cの測定>
 Quantera SXM型XPS(ULVAC-PHI社製)を用いて、Arスパッタ/XPS法にて、上記転写フィルムの第二の樹脂層の厚さ方向に垂直な面における、有機成分を構成する炭素原子の量に対する金属酸化物粒子を構成する金属原子M(Zr)の量の比M/C(Zr/C)の厚さ方向分布のプロファイルを得た。得られたプロファイルを分析し、比M/Cが0.2未満である部分(第一部分P1)の厚さ及び比M/Cが0.2以上である部分(第二部分P2)の厚さを求めた。結果を表5に示す。なお、測定条件は以下のとおり設定し、第一部分P1の厚さは、Arスパッタ速度とArスパッタ時間に基づいて算出した。第二の樹脂層が、第一の樹脂層側から順に、第一部分P1及び第二部分P2からなることを確認した。
[XPS条件]
・X線:Al-Kα線(100μm、25W、15kV)、測定面積:300μm□(μmスクエア、μm四方)
・光電子取出し角:45°
・Pass Energy:112eV、Step Energy:0.1eV
[Arスパッタ条件]
・加速電圧:2kV
・照射範囲:2mm□(mmスクエア、mm四方)
・Arスパッタ速度:3nm/分
<Measurement of ratio M / C>
Carbon atoms constituting the organic component on the surface perpendicular to the thickness direction of the second resin layer of the transfer film by Ar + sputtering / XPS method using Quantera SXM type XPS (manufactured by ULVAC-PHI) A profile of the thickness direction distribution of the ratio M / C (Zr / C) of the amount of metal atoms M (Zr) constituting the metal oxide particles to the amount of was obtained. The obtained profile is analyzed, and the thickness of the portion (first portion P1) where the ratio M / C is less than 0.2 and the thickness of the portion (second portion P2) where the ratio M / C is 0.2 or more. Asked. The results are shown in Table 5. The measurement conditions were set as follows, and the thickness of the first portion P1 was calculated based on the Ar + sputtering rate and Ar + sputtering time. It confirmed that the 2nd resin layer consisted of the 1st part P1 and the 2nd part P2 in order from the 1st resin layer side.
[XPS conditions]
X-ray: Al-Kα ray (100 μm, 25 W, 15 kV), measurement area: 300 μm □ (μm square, μm square)
-Photoelectron extraction angle: 45 °
・ Pass Energy: 112eV, Step Energy: 0.1eV
[Ar + sputtering conditions]
・ Acceleration voltage: 2 kV
・ Irradiation range: 2mm □ (mm square, mm square)
Ar + sputter rate: 3 nm / min
<屈折率の測定>
 塗布液IM-1aを、厚さ0.7mm、縦10cm×横10cmのガラス基材上にスピンコーターで均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶剤を除去し、第一層を形成した。次いで、塗布液IM-1bを、上記第一層上にスピンコーターで均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶剤を除去し、第二層を形成した。これにより、ガラス基材上に第二の樹脂層を形成し、第二の樹脂層を有する屈折率測定用サンプルを得た。次いで、ETA-TCM(AudioDev GmbH社製、製品名)にて得られた屈折率測定用サンプルの波長633nmにおける屈折率を測定した。結果を表5に示す。測定に使用した第二の樹脂層における第一層及び第二層の膜厚は、上記転写フィルムにおける樹脂層Bの膜厚(16nm)及び樹脂層Cの膜厚(44nm)と同じとした。なお、上記と同様にして、測定に使用した第二の樹脂層における比M/Cを測定し、第一部分P1の厚さ及び第二部分P2の厚さと、樹脂層Bの厚さ及び樹脂層Cの厚さとが同じであることを確認した(実験例2~12についても同様。)。
<Measurement of refractive index>
The coating solution IM-1a was uniformly coated on a glass substrate having a thickness of 0.7 mm, 10 cm long × 10 cm wide with a spin coater, and dried with a hot air convection dryer at 100 ° C. for 3 minutes to remove the solvent. A first layer was formed. Next, the coating solution IM-1b was uniformly coated on the first layer with a spin coater and dried for 3 minutes with a hot air convection dryer at 100 ° C. to remove the solvent, thereby forming a second layer. Thereby, the 2nd resin layer was formed on the glass base material, and the sample for refractive index measurement which has a 2nd resin layer was obtained. Next, the refractive index at a wavelength of 633 nm of the sample for refractive index measurement obtained by ETA-TCM (product name, manufactured by AudioDev GmbH) was measured. The results are shown in Table 5. The film thicknesses of the first layer and the second layer in the second resin layer used for the measurement were the same as the film thickness of the resin layer B (16 nm) and the film thickness of the resin layer C (44 nm) in the transfer film. In the same manner as described above, the ratio M / C in the second resin layer used for the measurement was measured, and the thickness of the first portion P1 and the thickness of the second portion P2, the thickness of the resin layer B, and the resin layer It was confirmed that the thickness of C was the same (the same applies to Experimental Examples 2 to 12).
(実験例2~12)
 単層フィルムBの作製において、樹脂層Bの厚さを表5に示す厚さに変更したこと、及び、単層フィルムCの作製において、樹脂層Cの厚さを表5に示す厚さに変更したこと以外は、実験例1と同様にして、実験例2~12の転写フィルムを作製した。また、実験例1と同様にして、比M/Cの測定(第一部分P1及び第二部分P2の厚さの測定)及び屈折率の測定を行った。結果を表5に示す。
(Experimental Examples 2 to 12)
In the production of the single layer film B, the thickness of the resin layer B was changed to the thickness shown in Table 5, and in the production of the single layer film C, the thickness of the resin layer C was changed to the thickness shown in Table 5. Except for the changes, the transfer films of Experimental Examples 2 to 12 were produced in the same manner as Experimental Example 1. Further, in the same manner as in Experimental Example 1, measurement of the ratio M / C (measurement of the thickness of the first part P1 and second part P2) and measurement of the refractive index were performed. The results are shown in Table 5.
<評価>
 実験例1~12の転写フィルムを用いて以下の手順で密着性評価及びパターン見え評価を行った。結果を表5に示す。
<Evaluation>
Using the transfer films of Experimental Examples 1 to 12, adhesion evaluation and pattern appearance evaluation were performed according to the following procedure. The results are shown in Table 5.
[密着性評価]
 まず、ITO基材に転写フィルムを、ラミネータ(日立化成株式会社製、製品名:HLM-3000型)を用いて、樹脂層Cと基材が密着するように、100℃で張り合わせた。次いで、得られた積層体の支持フィルム側から高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、100mJ/cmの露光量で、転写フィルムの全面に光照射した。次に、支持フィルムを除去し、超高圧水銀灯を有するコンベア露光機(株式会社オーク製作所製、製品名:QRM-2288-WC0-04)で400mJ/cmの露光量で光照射した。得られた積層体を防爆乾燥機にて、140℃で30分間熱処理することにより積層体を硬化させた。これにより、密着性測定用サンプルを作製した。
[Adhesion evaluation]
First, a transfer film was bonded to an ITO base material at 100 ° C. using a laminator (manufactured by Hitachi Chemical Co., Ltd., product name: HLM-3000 type) so that the resin layer C and the base material were in close contact with each other. Next, using an exposure machine (product name: EXM-1201, manufactured by Oak Manufacturing Co., Ltd.) having a high-pressure mercury lamp from the support film side of the obtained laminate, the entire surface of the transfer film was exposed at an exposure amount of 100 mJ / cm 2. Irradiated with light. Next, the support film was removed, and light was irradiated with an exposure dose of 400 mJ / cm 2 using a conveyor exposure machine (product name: QRM-2288-WC0-04, manufactured by Oak Manufacturing Co., Ltd.) having an ultrahigh pressure mercury lamp. The obtained laminate was heat-treated at 140 ° C. for 30 minutes with an explosion-proof dryer to cure the laminate. This produced the sample for adhesiveness measurement.
 次に、得られた密着性測定用サンプルについて、JIS規格(JIS K5400)を参考に、100マスのクロスカット試験をそれぞれ2回実施した。具体的には、得られた密着性測定用サンプルの保護膜に、カッターナイフを用いて、1mm×1mm四方の碁盤目切れ込みを100マス入れた。その後、碁盤目部分にメンディングテープ#810(スリーエムジャパン株式会社製)を強く圧着させ、90秒後にテープの端からほぼ180°の角度の方向に素早く引き剥がした。その後、碁盤目の状態を顕微鏡にて観察し、以下の評点に従って密着性(クロスカット密着性)を評価した。評価は2回の試験の平均値を用いて行った。
A:第一の樹脂層と第二の樹脂層との界面(樹脂層Aと樹脂層Bとの界面)における密着部分の面積が、界面の全面積の85%以上である。
B:第一の樹脂層と第二の樹脂層との界面(樹脂層Aと樹脂層Bとの界面)における密着部分の面積が、界面の全面積の65%以上85%未満である。
C:第一の樹脂層と第二の樹脂層との界面(樹脂層Aと樹脂層Bとの界面)における密着部分の面積が、界面の全面積の0%以上65%未満である。
Next, with respect to the obtained sample for measuring adhesion, a cross cut test of 100 squares was performed twice with reference to the JIS standard (JIS K5400). Specifically, 100 squares of 1 mm × 1 mm square grid cuts were put into the protective film of the obtained sample for measuring adhesion using a cutter knife. Thereafter, mending tape # 810 (manufactured by 3M Japan Co., Ltd.) was strongly pressure-bonded to the cross section, and after 90 seconds, it was quickly peeled off from the end of the tape in the direction of an angle of about 180 °. Thereafter, the state of the grid was observed with a microscope, and the adhesion (cross-cut adhesion) was evaluated according to the following scores. Evaluation was performed using the average value of two tests.
A: The area of the adhesion part in the interface (interface between the resin layer A and the resin layer B) between the first resin layer and the second resin layer is 85% or more of the total area of the interface.
B: The area of the adhesion part in the interface (interface between the resin layer A and the resin layer B) between the first resin layer and the second resin layer is 65% or more and less than 85% of the total area of the interface.
C: The area of the adhesion portion at the interface between the first resin layer and the second resin layer (interface between the resin layer A and the resin layer B) is 0% or more and less than 65% of the total area of the interface.
[パターン隠蔽性評価]
 ITO/IM/COP基材(ITO層、IM層及びCOP層がこの順で積層された基材)を、ITO側からエッチング処理し、スペース30umで500um角の格子状パターンを形成した。この基材のITO側の面上に、転写フィルムの保護フィルムを剥離しながら、第二の樹脂層を基材に対向させ、100℃、0.6m/min、0.4MPaの条件でラミネートした。ラミネート後、基材を冷却し、基材の温度が23℃になった時点で、支持フィルム側から高圧水銀灯を有する露光機(株式会社オーク製作所製、製品名:EXM-1201)を用いて、100mJ/cmの露光量で、転写フィルムの全面に光照射した。次に、支持フィルムを除去し、超高圧水銀灯を有するコンベア露光機(株式会社オーク製作所製、製品名:QRM-2288-WC0-04)で400mJ/cmの露光量で光照射した。次に、140℃で30分間加熱するアニーリングを行った。続いて、SiOガラス/OCAの積層体(SiOガラス基材上にOCAが積層された積層体)及びOCA/ブラックボードの積層体(ブラックボード上にOCAが積層された積層体)に貼合せすることにより、パターン隠蔽性評価用サンプル(層構成:SiOガラス/OCA/第二の硬化樹脂層(第二の樹脂層の硬化物)/第一の硬化樹脂層(第一の樹脂層の硬化物)/ITO/IM/COP/OCA/ブラックボード)を作製した。作製したサンプルについて、パターン隠蔽性を下記の基準に基づき評価した。
A:基材のパターンを視認できない
B:基材のパターンを僅かに視認できる
C:基材のパターンを完全に視認できる
[Pattern concealment evaluation]
An ITO / IM / COP base material (a base material in which an ITO layer, an IM layer, and a COP layer were laminated in this order) was etched from the ITO side to form a 500 μm square lattice pattern in a space of 30 μm. While peeling the protective film of the transfer film on the ITO side surface of this substrate, the second resin layer was opposed to the substrate and laminated under the conditions of 100 ° C., 0.6 m / min, 0.4 MPa. . After laminating, the substrate is cooled, and when the temperature of the substrate reaches 23 ° C., using an exposure machine having a high-pressure mercury lamp from the support film side (manufactured by Oak Manufacturing Co., Ltd., product name: EXM-1201), The entire surface of the transfer film was irradiated with light at an exposure amount of 100 mJ / cm 2 . Next, the support film was removed, and light was irradiated with an exposure dose of 400 mJ / cm 2 using a conveyor exposure machine (product name: QRM-2288-WC0-04, manufactured by Oak Manufacturing Co., Ltd.) having an ultrahigh pressure mercury lamp. Next, annealing was performed by heating at 140 ° C. for 30 minutes. Subsequently, it is affixed to a SiO 2 glass / OCA laminate (a laminate in which OCA is laminated on a SiO 2 glass substrate) and an OCA / black board laminate (a laminate in which OCA is laminated on a black board). By combining, sample for pattern hiding property (layer structure: SiO 2 glass / OCA / second cured resin layer (cured product of second resin layer) / first cured resin layer (first resin layer) Cured product) / ITO / IM / COP / OCA / black board). About the produced sample, pattern concealment property was evaluated based on the following reference | standard.
A: The pattern of the substrate cannot be visually recognized B: The pattern of the substrate can be slightly visually recognized C: The pattern of the substrate can be completely visually recognized
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
1…転写フィルム、5…金属酸化物、10…支持フィルム、15…保護フィルム、20…第一の樹脂層、30…第二の樹脂層、22…第一の硬化樹脂層、32…第二の硬化樹脂層、40…積層体、50…透明電極パターン付き基材、50a…透明電極パターン、60…積層体の硬化物(硬化膜)、100…透明積層体、101…透明基材、102…センシング領域、103、104…透明電極、105…金属配線、106…接続電極、107…接続端子、123…硬化膜パターン、P1…第一部分、P2…第二部分。 DESCRIPTION OF SYMBOLS 1 ... Transfer film, 5 ... Metal oxide, 10 ... Support film, 15 ... Protective film, 20 ... 1st resin layer, 30 ... 2nd resin layer, 22 ... 1st cured resin layer, 32 ... 2nd Cured resin layer, 40 ... laminate, 50 ... substrate with transparent electrode pattern, 50a ... transparent electrode pattern, 60 ... cured product (cured film) of laminate, 100 ... transparent laminate, 101 ... transparent substrate, 102 ... Sensing region, 103, 104 ... Transparent electrode, 105 ... Metal wiring, 106 ... Connection electrode, 107 ... Connection terminal, 123 ... Cured film pattern, P1 ... First part, P2 ... Second part.

Claims (11)

  1.  支持フィルムと、該支持フィルム上に設けられた積層体と、を備え、
     前記積層体は、前記支持フィルム上に設けられた第一の樹脂層と、該第一の樹脂層上に設けられた第二の樹脂層と、を含み、
     前記第一の樹脂層は感光性樹脂組成物層であり、
     前記第二の樹脂層は有機成分及び金属酸化物を含み、かつ、前記第二の樹脂層の厚さ方向に垂直な面をX線光電子分光分析法により測定して得られる比M/C(Mは、金属酸化物を構成する金属原子の量を示し、Cは、有機成分を構成する炭素原子の量を示す)が0.2未満である部分を有し、
     前記部分は、前記第二の樹脂層における前記第一の樹脂層側の面を含み、かつ、40~60nmの厚さを有する、転写フィルム。
    A support film, and a laminate provided on the support film,
    The laminate includes a first resin layer provided on the support film, and a second resin layer provided on the first resin layer,
    The first resin layer is a photosensitive resin composition layer,
    The second resin layer contains an organic component and a metal oxide, and the ratio M / C (obtained by measuring the surface perpendicular to the thickness direction of the second resin layer by X-ray photoelectron spectroscopy) M represents the amount of metal atoms constituting the metal oxide, C represents the amount of carbon atoms constituting the organic component) and has a portion of less than 0.2,
    The transfer film includes a surface of the second resin layer on the first resin layer side and has a thickness of 40 to 60 nm.
  2.  前記金属酸化物が、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛、酸化インジウムスズ、酸化インジウム、酸化アルミニウム、酸化ケイ素及び酸化イットリウムからなる群より選択される少なくとも一種を含む、請求項1に記載の転写フィルム。 The metal oxide includes at least one selected from the group consisting of zirconium oxide, titanium oxide, tin oxide, zinc oxide, indium tin oxide, indium oxide, aluminum oxide, silicon oxide, and yttrium oxide. Transfer film.
  3.  前記第二の樹脂層の波長633nmにおける屈折率が1.50~1.90である、請求項1又は2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the second resin layer has a refractive index of 1.50 to 1.90 at a wavelength of 633 nm.
  4.  前記第二の樹脂層の厚さが50~500nmである、請求項1~3のいずれか一項に記載の転写フィルム。 The transfer film according to any one of claims 1 to 3, wherein the thickness of the second resin layer is 50 to 500 nm.
  5.  前記有機成分が、(メタ)アクリル酸、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、スチレン、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸シクロヘキシルエステル及び(メタ)アクリル酸-2-エチルヘキシルエステルからなる群より選択される少なくとも一種の化合物に由来する構造単位を有するポリマーを含む、請求項1~4のいずれか一項に記載の転写フィルム。 The organic component is (meth) acrylic acid, (meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, styrene, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid The polymer according to any one of claims 1 to 4, comprising a polymer having a structural unit derived from at least one compound selected from the group consisting of butyl ester, (meth) acrylic acid cyclohexyl ester and (meth) acrylic acid-2-ethylhexyl ester. The transfer film according to claim 1.
  6.  前記積層体の厚さが30μm以下である、請求項1~5のいずれか一項に記載の転写フィルム。 The transfer film according to any one of claims 1 to 5, wherein the thickness of the laminate is 30 μm or less.
  7.  硬化後の前記積層体の、波長400~700nmにおける透過率の最小値が90%以上である、請求項1~6のいずれか一項に記載の転写フィルム。 The transfer film according to any one of claims 1 to 6, wherein a minimum value of transmittance at a wavelength of 400 to 700 nm of the laminated body after curing is 90% or more.
  8.  基材上に、請求項1~7のいずれか一項に記載の転写フィルムの前記積層体を、前記第二の樹脂層が前記基材に密着するようにラミネートする工程と、
     前記基材上の前記積層体の所定部分を露光する工程と、
     露光された前記所定部分以外を除去し、パターン状の硬化膜を形成する工程と、を備える硬化膜の形成方法。
    Laminating the laminate of the transfer film according to any one of claims 1 to 7 on a substrate so that the second resin layer is in close contact with the substrate;
    Exposing a predetermined portion of the laminate on the substrate;
    Removing a portion other than the exposed predetermined portion to form a patterned cured film, and forming a cured film.
  9.  請求項1~7のいずれか一項に記載の転写フィルムにおける前記積層体の、前記第一の樹脂層及び前記第二の樹脂層を硬化してなる、硬化膜。 A cured film obtained by curing the first resin layer and the second resin layer of the laminate in the transfer film according to any one of claims 1 to 7.
  10.  パターン状に形成してなる、請求項9に記載の硬化膜。 The cured film according to claim 9, which is formed in a pattern.
  11.  請求項9又は10に記載の硬化膜を備える、電子部品。 An electronic component comprising the cured film according to claim 9 or 10.
PCT/JP2018/012895 2018-03-28 2018-03-28 Transfer film, cured film and method for forming same, and electronic component WO2019186802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012895 WO2019186802A1 (en) 2018-03-28 2018-03-28 Transfer film, cured film and method for forming same, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012895 WO2019186802A1 (en) 2018-03-28 2018-03-28 Transfer film, cured film and method for forming same, and electronic component

Publications (1)

Publication Number Publication Date
WO2019186802A1 true WO2019186802A1 (en) 2019-10-03

Family

ID=68059794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012895 WO2019186802A1 (en) 2018-03-28 2018-03-28 Transfer film, cured film and method for forming same, and electronic component

Country Status (1)

Country Link
WO (1) WO2019186802A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175642A1 (en) * 2016-04-04 2017-10-12 日立化成株式会社 Photosensitive refractive index modulation film, method for forming cured film pattern, cured film and electronic component
JP2017201352A (en) * 2016-05-02 2017-11-09 日立化成株式会社 Transfer type photosensitive refractive index adjusting film, method for forming refractive index adjusting pattern, and electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175642A1 (en) * 2016-04-04 2017-10-12 日立化成株式会社 Photosensitive refractive index modulation film, method for forming cured film pattern, cured film and electronic component
JP2017201352A (en) * 2016-05-02 2017-11-09 日立化成株式会社 Transfer type photosensitive refractive index adjusting film, method for forming refractive index adjusting pattern, and electronic component

Similar Documents

Publication Publication Date Title
JP2017223994A (en) Photosensitive element
JP6400289B2 (en) Base material for touch panel with cured film and method for producing the same, photosensitive element and touch panel
WO2016181422A1 (en) Transfer-type photosensitive refractive index adjustment film, method for forming refractive index adjustment pattern, and electronic component
JP2016157451A (en) Production method of touch panel substrate with cured film, photosensitive resin composition used for the method, photosensitive element, and touch panel
WO2016001955A1 (en) Transfer type photosensitive refractive index-regulating film
JP2019175226A (en) Photosensitive film for forming protective film for touch sensor, photosensitive refractive index adjusting film for forming protective film for touch sensor, method for forming protective film for touch sensor, and touch panel
JP2017201352A (en) Transfer type photosensitive refractive index adjusting film, method for forming refractive index adjusting pattern, and electronic component
WO2017175642A1 (en) Photosensitive refractive index modulation film, method for forming cured film pattern, cured film and electronic component
JP2017116774A (en) Transfer type photosensitive refractive index control film
WO2016132401A1 (en) Transfer-type photosensitive refractive index adjustment film, method for forming refractive index adjustment pattern, and electronic component
JP2018165788A (en) Transfer photosensitive film, curable resin patterning method, and touch panel
JP2017181541A (en) Photosensitive film, photosensitive refractive index adjusting film, method for forming refractive index adjusting pattern, cured film and electronic component
WO2017056131A1 (en) Transfer-type photosensitive film for refractive-index modulation
WO2019186802A1 (en) Transfer film, cured film and method for forming same, and electronic component
WO2019207648A1 (en) Photosensitive resin composition, transfer-type photosensitive film, substrate having cured film attached thereto, and sensing device
JP6943279B2 (en) Transfer-type photosensitive film, cured film pattern forming method and touch panel
JP2019035801A (en) Transfer photosensitive film, method of forming cured film pattern, cured film and electronic component
JP2019215395A (en) Transfer type photosensitive film, method for forming cured film pattern, laminate and touch panel
JP2019219631A (en) Transfer film, cured film and method for forming the same, and electronic component
WO2019186781A1 (en) Transfer film, cured film and method for forming same, and electrical component
JP7210091B2 (en) Transfer type photosensitive film, method for forming cured film pattern, cured film and touch panel
JP2018045126A (en) Photosensitive film for vacuum lamination, transfer type photosensitive refractive index adjusting film, and method for forming cured resin pattern
WO2018179102A1 (en) Transfer-type photosensitive refractive index adjustment film, method for forming refractive index adjustment pattern, cured film, and touch panel
WO2019224887A1 (en) Transfer type photosensitive film, electrode substrate with resin cured film, and touch panel
JP2019174604A (en) Transfer film, cured film and method for forming the same, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP