WO2019186693A1 - Method of cutting glass substrate - Google Patents

Method of cutting glass substrate Download PDF

Info

Publication number
WO2019186693A1
WO2019186693A1 PCT/JP2018/012416 JP2018012416W WO2019186693A1 WO 2019186693 A1 WO2019186693 A1 WO 2019186693A1 JP 2018012416 W JP2018012416 W JP 2018012416W WO 2019186693 A1 WO2019186693 A1 WO 2019186693A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
cutting
substrate
fixed
fixed substrate
Prior art date
Application number
PCT/JP2018/012416
Other languages
French (fr)
Japanese (ja)
Inventor
菊池芳郎
柴田宏之
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/012416 priority Critical patent/WO2019186693A1/en
Priority to JP2020510236A priority patent/JPWO2019186693A1/en
Publication of WO2019186693A1 publication Critical patent/WO2019186693A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/03Glass cutting tables; Apparatus for transporting or handling sheet glass during the cutting or breaking operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass

Definitions

  • the present invention relates to a method for cutting a glass substrate used for manufacturing optical components such as LEDs (light emitting diodes) and LDs (laser diodes).
  • optical components such as LEDs (light emitting diodes) and LDs (laser diodes).
  • optical components including optical elements (such as LEDs and LDs) that emit ultraviolet light have attracted attention because of their potential application in sterilization and purification applications.
  • a transparent sealing member is used to protect the optical element from outside air and moisture.
  • ultraviolet light transmissive glass, quartz glass, or the like is desirable from the viewpoint of ultraviolet light permeability and durability.
  • Japanese Unexamined Patent Application Publication No. 2014-216532 discloses a semiconductor optical element package having a non-transparent substrate having a semiconductor element mounted on the upper surface and a translucent protective material having a cavity opened below.
  • a glass substrate formed by collectively forming the transparent sealing member in an array and to cut the glass substrate.
  • a general cutting method can be used in which the glass substrate is bonded to a pressure-sensitive adhesive sheet, the pressure-sensitive adhesive sheet is fixed to a vacuum chuck, and cut by a dicing apparatus.
  • chipping or scratches also referred to as chipping
  • Such chippings and scratches are the starting point of cracks, so that there is a problem that cracks are likely to occur in the transparent sealing member during long-term use, leading to a decrease in durability.
  • One aspect of the present invention relates to a method for cutting a glass substrate in which a plurality of cavities are formed on one surface, and a fixed substrate made of a material having a Young's modulus equivalent to or higher than that of the glass substrate.
  • the bonding area between the glass substrate and the pressure-sensitive adhesive sheet is reduced by the area of the cavity, and the fixing becomes unstable. Furthermore, the adhesive sheet having a low Young's modulus vibrates due to the cutting resistance during processing. As a result, chipping and scratches (chipping) frequently occur on the cut surface of the glass substrate.
  • the glass substrate is attached to a fixed substrate made of a material having a Young's modulus equal to or higher than that of glass to perform cutting. Thereby, the vibration of the glass substrate at the time of a cutting
  • the entire lower surface of the fixed substrate may be fixed to the base.
  • ⁇ Vibration of the fixed substrate is suppressed when the entire lower surface of the fixed substrate is in close contact with the adhesive sheet. As a result, the vibration of the fixed substrate and the glass substrate is suppressed, which is effective for preventing chipping.
  • the fixed substrate may be a material having a Young's modulus of 50 GPa to 500 GPa.
  • the Young's modulus of glass is 50 GPa to 100 GPa, it is preferable to use a material having a Young's modulus larger than 50 GPa for the fixed substrate.
  • the Young's modulus of the fixed substrate is preferably 500 GPa or less.
  • the glass substrate may be made of quartz glass
  • the fixed substrate may be a material having a Young's modulus of 70 GPa to 340 GPa.
  • the fixed substrate may be any of a silicon substrate, a glass substrate, an alumina substrate, and an aluminum nitride substrate.
  • the thickness of the fixed substrate may be equal to or less than the thickness of the cutting region of the glass substrate.
  • the effect of preventing chipping can be obtained even if the thickness of the fixed substrate is made thinner than the thickness of the cutting region of the glass substrate. It turned out to be obtained.
  • the cutting resistance when cutting the fixed substrate together with the glass substrate is reduced, and the time required for cutting can be shortened.
  • the thickness of the cutting region of the glass substrate may be 0.2 mm to 3.0 mm.
  • the thickness of the fixed substrate may be 0.2 mm to 2.0 mm.
  • the ratio of the area occupied by the cavity of the glass substrate in the glass substrate may be 10% to 60%.
  • the area of the glass substrate may be 400mm 2 ⁇ 3600mm 2.
  • the inventor of the present application has found that chipping tends to occur as the area of the glass substrate increases. When the area of the glass substrate is 400 mm 2 or more, chipping is likely to occur. Further, if the area of the glass substrate is in the range of up to 3600 mm 2 , the warp is small and the adhesion with the fixed substrate is good, which is preferable.
  • the glass substrate may be bonded to the fixed substrate with an adhesive.
  • the glass substrate By fixing with an adhesive, the glass substrate can be fixed to the fixed substrate more firmly than the adhesive sheet.
  • the fixed substrate may be fixed to the base via an adhesive sheet.
  • the fixed substrate may be fixed to the base via the adhesive sheet in this way.
  • the fixed substrate in the step of cutting the cavity, may be cut together with the glass substrate.
  • an optical element may be mounted on an upper surface of the fixed substrate at a portion facing the cavity.
  • the transparent sealing member and the mounting substrate on which the optical element is mounted are cut together. Thereby, the package of an optical element can be manufactured easily. Further, by separating the transparent sealing member and the mounting substrate in a lump, positioning of the plurality of transparent sealing members and the mounting substrate can be performed only once, and generation of defective products due to misalignment can be suppressed.
  • an optical element for example, LED or LD
  • a concave portion may be formed on the upper surface of the fixed substrate other than a portion bonded to the glass substrate.
  • chipping such as chipping or scratching can be prevented at the cut portion of the glass substrate during cutting.
  • FIG. 3A is a cross-sectional view illustrating a glass substrate cutting method according to Modification 1 of the first embodiment
  • FIG. 5B is a perspective view of a transparent sealing member obtained by the glass substrate cutting method of FIG. 5A. .
  • FIG. 6A is a bottom view of a glass substrate according to Modification 2 of the first embodiment
  • FIG. 6B is a perspective view showing a state where the glass substrate of FIG. 6A is attached to a fixed substrate
  • FIG. It is sectional drawing which shows the cutting method of the glass substrate which concerns on embodiment. It is sectional drawing which shows the glass substrate and fixed substrate which concern on the modification 3 of the 1st Embodiment of this invention.
  • FIG. 8A is a cross-sectional view showing the glass substrate cutting step (first cutting step) in FIG. 7, and
  • FIG. 8B is a cross-sectional view showing the fixed substrate cutting step (second cutting step) in FIG.
  • 9A is a cross-sectional view of an optical component obtained by the cutting process of FIGS.
  • FIG. 9B is an enlarged cross-sectional view of a region T surrounded by a broken line in FIG. 9A.
  • 3 is a table showing glass substrates according to Examples 1 to 8, Comparative Examples, and Reference Examples.
  • 6 is a table showing adhesives and fixed substrates according to Examples 1 to 8, Comparative Examples, and Reference Examples. 6 is a table showing evaluation results of cutting conditions and chipping occurrence rates according to Examples 1 to 8, Comparative Examples, and Reference Examples.
  • FIG. 14A is a perspective view of a glass substrate according to the second embodiment of the present invention
  • FIG. 14B is a plan view of the glass substrate of FIG. 14A.
  • FIG. 14B is an enlarged perspective view showing the lens in the vicinity of the second mark in FIG. 14A by cutting.
  • the glass substrate 10 shown in FIG. 1 is cut.
  • the glass substrate 10 has a plurality of lenses 56 arranged in a matrix on the upper surface thereof.
  • a plurality of cavities 60 are formed on the lower surface of the glass substrate 10. These cavities 60 are provided corresponding to the respective lenses 56, and the positions of the cavities 60 in the plane of the glass substrate 10 coincide with the positions of the lenses 56. That is, the cavities 60 are arranged in a matrix like the lens 56.
  • the ratio of the area occupied by the cavity 60 in the lower surface 58 of the glass substrate 10 can be set in the range of 10% to 60%, for example.
  • the planar shape of the cavity 60 is not limited to a rectangle, and may be a circle or a polygon.
  • a flat pedestal portion 54 is formed between the lens 56 and the cavity 60, and a part of the pedestal portion 54 becomes a cutting region 54a.
  • the thickness of the pedestal portion 54 (cutting region 54a) is referred to as the thickness of the glass substrate 10.
  • the glass substrate 10 is formed of a hard material such as quartz glass, and is cut by a dicing apparatus 100 as shown in FIG.
  • a transparent sealing member 50 as shown in FIG. 3A is obtained.
  • the transparent sealing member 50 includes a rectangular pedestal 54, and a lens 56 protruding in a hemispherical or bun-shaped dome shape is formed at the center of the upper surface 57 of the pedestal 54.
  • a cavity 60 is formed in the central portion of the lower surface 58 of the pedestal portion 54.
  • Such a transparent sealing member 50 is used by bonding the lower surface 58 to a mounting substrate on which optical elements such as LEDs and LDs are mounted. Optical elements such as LEDs and LDs are sealed in the cavity 60 of the transparent sealing member 50 and are protected from the outside air and moisture.
  • the length of one piece of the transparent sealing member 50 can be about 3.5 mm, for example.
  • the area of the cavity 60 is, for example, 2 mm 2 to 10 mm 2 .
  • the glass substrate 10 used for manufacturing the transparent sealing member 50 is not particularly limited, but can be a square having a side length of about 20 mm to 60 mm.
  • the shape of the glass substrate 10 is not limited to a square shape, and may be a rectangular shape or a polygonal shape. In the glass substrate 10, several tens to hundreds of lenses 56 and cavities 60 are formed according to the area.
  • Area of the glass substrate 10 can be, for example, a 400mm 2 ⁇ 3600mm 2. As the area of the glass substrate 10 is smaller, chipping is less likely to occur, but the number of transparent sealing members 50 obtained from one glass substrate 10 is reduced. On the other hand, as the area of the glass substrate 10 increases, the occurrence rate of chipping increases. When the area of the glass substrate 10 is 400 mm 2 or more, the chipping occurrence rate increases. Therefore, it is preferable to use the cutting method of the present embodiment for the glass substrate 10 larger than the area. On the other hand, if the glass substrate 10 is too large, the warpage of the glass substrate 10 and the fixed substrate 14 tends to increase, and the adhesion between the fixed substrate 14 and the glass substrate 10 decreases and chipping is likely to occur.
  • the thickness of the pedestal 54 (and the cutting region 54a) of the glass substrate 10 is substantially the same value as the depth of the cavity 60, and can be, for example, in the range of 0.2 mm to 2 mm.
  • the thickness is preferably 0.2 mm or more.
  • the value of the warp (in-plane height difference) of the glass substrate 10 is preferably set to 0.25 mm or less from the viewpoint of ensuring adhesion with the fixed substrate 14 described later.
  • Such a glass substrate 10 can be formed by a powder sintering method.
  • a powder sintering method a molding slurry containing silica powder, a dispersant, and an organic compound as a curing agent is cast into a mold and solidified by a chemical reaction of the curing agent. Then, it can produce by releasing from a shaping
  • silica powder used for the molding slurry of the glass substrate 10 for example, one having an average particle diameter of 0.5 ⁇ m can be used.
  • a dispersing agent a carboxylic acid copolymer can be used, for example.
  • the solvent dimethyl malonate and ethylene glycol can be used, and as the curing agent, diphenylmethane diisocyanate can be used. Further, triethylamine may be added as a catalyst.
  • the above slurry is poured into a mold at room temperature, allowed to solidify for a certain time, and then released.
  • the released molded body is left in an atmosphere of about 100 ° C. for a certain period of time to remove the solvent, and then calcined at 500 ° C. in the air.
  • the glass substrate 10 is obtained by densification and transparency by baking at 1600 ° C. to 1700 ° C. in a hydrogen atmosphere.
  • the glass substrate 10 is cut using a dicing apparatus 100 shown in FIG.
  • the glass substrate 10 is attached to the fixed substrate 14 and then fixed to the adhesive sheet 16 and cut in order to prevent chipping. That is, prior to cutting by the dicing apparatus 100, first, the glass substrate 10 is bonded to the upper surface 14 a of the fixed substrate 14.
  • the glass substrate 10 is attached to the fixed substrate 14, for example, by applying the adhesive 12 to the upper surface 14 a of the fixed substrate 14 and applying the lower surface 58 of the glass substrate 10 on the adhesive 12. This is done by pasting. Further, instead of applying the adhesive 12 to the upper surface 14 a of the fixed substrate 14, the adhesive 12 is applied to the lower surface 58 of the glass substrate 10, and the lower surface 58 of the glass substrate 10 is bonded to the upper surface 14 a of the fixed substrate 14. Also good.
  • the adhesive 12 can be an epoxy adhesive or wax, and can be applied to the upper surface 14a of the fixed substrate 14 or the lower surface 58 of the glass substrate 10 by a method such as a coating method, a printing method, a spin coating method, or a spray method. Good.
  • the fixed substrate 14 is preferably made of a material having a Young's modulus equal to or higher than the Young's modulus of the glass substrate 10, for example, a material having a Young's modulus of 50 GPa to 500 GPa.
  • a material having a Young's modulus of 50 GPa to 500 GPa can be used for the fixed substrate 14.
  • a glass substrate (Young's modulus: 70 GPa), a silicon substrate (Young's modulus: 180 GPa), an aluminum nitride substrate (Young's modulus: 320 GPa), or an alumina substrate (Young's modulus: 340 GPa) is used as the fixed substrate 14.
  • a glass substrate Young's modulus: 70 GPa
  • a silicon substrate Young's modulus: 180 GPa
  • an aluminum nitride substrate Young's modulus: 320 GPa
  • an alumina substrate Young's modulus: 340 GPa
  • the thickness of the fixed substrate 14 can be appropriately set according to the Young's modulus of the material. The higher the Young's modulus, the thinner the fixed substrate 14 can be made. If the material has a sufficiently high Young's modulus, the fixed substrate 14 may be thinner than the glass substrate 10. When the thickness of the cutting region 54a of the glass substrate 10 is 0.2 mm to 3.0 mm, the thickness of the fixed substrate 14 can be set to, for example, about 0.2 mm to 2.0 mm. When the fixed substrate 14 is cut together with the glass substrate 10, the thinner the fixed substrate 14, the lower the cutting resistance and the easier the cutting. Therefore, the thinner fixed substrate 14 is preferable.
  • the area of the fixed substrate 14 may be equal to or larger than the area of the glass substrate 10 so as to cover the entire area of the glass substrate 10. Specifically, it may be 400 mm 2 or more, for example.
  • the lower limit 400 mm 2 of the area of the fixed substrate 14 is based on the lower limit of the area of the glass substrate 10.
  • the upper limit value of the area of the fixed substrate 14 can be appropriately set according to the size of the mounting surface of the vacuum chuck 20 (see FIG. 1) to be used.
  • the lower surface 14b of the fixed substrate 14 is preferably a flat surface. As a result, the entire lower surface 14b of the fixed substrate 14 is bonded to the adhesive sheet 16, and the fixing by the adhesive sheet 16 is ensured. In addition, it is preferable to use the fixed substrate 14 having a warp of 0.25 mm or less in order to ensure adhesion with the adhesive sheet 16.
  • the warpage of the fixed substrate 14 is a value obtained by the difference between the highest portion and the lowest portion on the line segment drawn diagonally of the fixed substrate. That is, the height difference of the lower surface 14b of the fixed substrate 14 is preferably 0.25 mm or less.
  • the warpage of the fixed substrate 14 is small. That is, by using the fixed substrate 14 with less warpage, the glass substrate 10 can be reliably fixed to the fixed substrate 14 and is suitable for preventing chipping.
  • the adhesive sheet 16 (also referred to as a dicing sheet or dicing tape) has an adhesive layer on the upper surface, and the entire lower surface 14b of the fixed substrate 14 is in close contact with the adhesive layer. As described above, the fixed substrate 14 is bonded and fixed to the adhesive sheet 16 on the entire surface of the lower surface 14b.
  • the pressure-sensitive adhesive sheet 16 is formed in a disk shape, for example, and is attached to the vacuum chuck 20 (base) of the dicing apparatus 100 with its peripheral edge pressed by a stainless steel frame 18. Adsorbed and fixed.
  • a polyethylene terephthalate resin (PET) film having an upper surface coated with an acrylic adhesive that loses its tackiness when irradiated with ultraviolet rays can be used.
  • the method for fixing the fixed substrate 14 to the base of the dicing apparatus 100 is not limited to the method using the adhesive sheet 16.
  • the fixed substrate 14 may be fixed to the base using wax that melts by heat between the fixed substrate 14 and the base.
  • the fixed substrate 14 may be fixed to the base of the dicing apparatus 100 using an adhesive that loses adhesive force due to irradiation of electromagnetic waves or heat. If the fixed substrate 14 is not completely cut, the fixed substrate 14 may be directly placed and sucked using a vacuum chuck or an electrostatic chuck as a base.
  • the dicing apparatus 100 includes a vacuum chuck 20 (base), a blade 24, and a blade driving unit 22.
  • the glass substrate 10 to be cut is fixed to the vacuum chuck 20 via the fixed substrate 14 and the adhesive sheet 16.
  • the cutting region 54 a of the glass substrate 10 is cut by the blade 24 driven by the blade driving unit 22.
  • the cutting of the glass substrate 10 by the blade 24 is performed by inserting the blade 24 to a depth that penetrates the pedestal 54 of the glass substrate 10 as shown in FIG. Thereby, the chipping of the cut surface 52 (refer FIG. 3A) of the glass substrate 10 can be prevented.
  • the width of the cutting region 54 a is determined according to the width of the blade 24.
  • the width of the cutting region 54a can be set to 0.01 mm to 0.5 mm, for example.
  • the moving speed of the blade 24 can be set to 1 mm / second to 10 mm / second, for example.
  • the fixed substrate 14 may be cut together with the glass substrate 10.
  • a first cutting process is performed in which the blade 24 is inserted and cut to a depth that penetrates the pedestal 54 of the glass substrate 10 and does not penetrate the fixed substrate 14.
  • disconnection of the glass substrate 10 generation
  • a second cutting process is performed on the same portion to cut the fixed substrate 14 by inserting the blade 24 to a depth penetrating the fixed substrate 14.
  • the fixed substrate 14 is cut.
  • the lower surface 14b of the fixed substrate 14 is a flat adhesive surface, vibration is unlikely to occur and chipping does not occur.
  • the second cutting step may be performed a plurality of times depending on the hardness and thickness of the fixed substrate 14.
  • substrate 14 harder than the glass substrate 10 can be cut
  • the glass substrate 10 and the fixed substrate 14 may be cut in a single cutting process. Even in this case, the entire lower surface 14 b of the fixed substrate 14 is in close contact with the adhesive sheet 16, so that chipping can be suppressed.
  • the fixed substrate 14 is securely fixed by the adhesive sheet 16. . Therefore, the vibration at the time of cutting of the fixed substrate 14 and the glass substrate 10 can be suppressed, and chipping can be prevented from occurring in the glass substrate 10.
  • the glass substrate 10 and the fixed substrate 14 are cut, ultraviolet light is irradiated from the lower surface side of the adhesive sheet 16. Thereby, the adhesiveness of the adhesive layer of the adhesive sheet 16 is lost, and the glass substrate 10 and the fixed substrate 14 can be easily detached from the adhesive sheet 16. Further, the glass substrate 10 and the fixed substrate 14 can be separated by removing the adhesive 12 with a solvent or the like. Thus, the cutting of the glass substrate 10 is completed.
  • the glass substrate 30 according to Modification 1 has an upper surface 37 that is a flat surface, and no lens is provided on the upper surface 37 of the glass substrate 30.
  • a plurality of cavities 34 are formed in a matrix on the lower surface 38 side of the glass substrate 30.
  • the cutting area 35 of the glass substrate 30 is formed between cavities 34 arranged in a matrix.
  • the thickness of the glass substrate 30 of Modification 1 is thicker than the thickness of the glass substrate 10 (pedestal portion 54) in FIG. Other portions are the same as those of the glass substrate 10 of FIG.
  • the glass substrate 30 is bonded to the upper surface 14 a of the fixed substrate 14 using the adhesive 12, and the lower surface 14 b of the fixed substrate 14 is bonded to the adhesive sheet 16.
  • the material and thickness of the fixed substrate 14 can be the same as those described with reference to FIG. Thereafter, the glass substrate 30 is cut using the dicing apparatus 100 of FIG. 1 to obtain a transparent sealing member 36 having no lens as shown in FIG. 5B.
  • the cavity 60 is formed in the lower surface 58 at the array form.
  • a plurality of grooves 42 extending in the vertical direction and the horizontal direction are formed in the lower surface 58.
  • the grooves extending in the vertical direction and the grooves extending in the horizontal direction intersect each other.
  • These grooves 42 are composed of a first groove 42a and a second groove 42b.
  • the first groove 42 a communicates with the cavity 60.
  • the second groove 42 b is formed in an intermediate region of the cavity 60.
  • These first and second grooves 42 a and 42 b constitute a discharge path for excess refractive index matching agent when the cavity 60 is filled with the refractive index matching agent. Thereby, bubbles of the refractive index matching agent in the cavity 60 can be removed.
  • the area of the lower surface 58 of the glass substrate 40 of the modified example 2 is narrower than that of the glass substrate 10 shown in FIG. Therefore, since it is difficult to fix, chipping is likely to occur during cutting. Even with such a glass substrate 40, chipping can be suppressed by attaching and cutting to the fixed substrate 14 as shown in FIG. 6C. Note that the fixed substrate 14 of Modification 3 is the same as the fixed substrate 14 of FIG.
  • the occurrence rate of chipping can be suppressed by being attached to the fixed substrate 14 and cutting. .
  • Modification 3 In Modification 3, as shown in FIG. 7, the glass substrate 10 is cut using a fixed substrate 14A (mounting substrate) on which an optical element 62 such as an LED or LD is mounted on the upper surface.
  • the optical element 62 is an element that emits ultraviolet light.
  • a GaN crystal layer having a quantum well structure is stacked on a sapphire substrate.
  • face-up mounting is adopted in which the light emitting surface 62a is mounted facing the glass substrate 10. Terminals derived from the optical element 62 and circuit wiring (not shown) formed on the fixed substrate 14A are electrically connected by bonding wires.
  • alumina Young's modulus: 340 GPa
  • aluminum nitride Young's modulus: 320 GPa
  • these materials have a higher Young's modulus than the quartz glass (Young's modulus: 72 GPa) constituting the glass substrate 10, they can be used in the same manner as the fixed substrate 14 of FIG.
  • the cavities 60 of the glass substrate 10 are arranged at the same pitch as the optical elements 62, and each cavity 60 is provided at a position corresponding to the optical element 62.
  • the adhesive 12 is applied to the lower surface 58 of the glass substrate 10. Thereafter, the glass substrate 10 is positioned so that the cavity 60 covers the optical element 62 and is attached to the fixed substrate 14A.
  • an epoxy adhesive having excellent adhesive strength and strength as the adhesive 12.
  • the fixed substrate 14A is bonded to the adhesive sheet 16, and further fixed to the upper surface of the vacuum chuck 20 via the adhesive sheet 16.
  • the glass substrate 10 and the fixed substrate 14A are cut using the dicing apparatus 100 shown in FIG.
  • the blade 24 of the dicing apparatus 100 is inserted to a depth penetrating the glass substrate 10 to cut the glass substrate 10 (first cutting). Process). Thereby, the vibration of the glass substrate 10 can be prevented and the chipping occurrence rate of the cut surface of the glass substrate 10 can be suppressed.
  • the blade 24 is inserted at a depth penetrating the fixed substrate 14A at the same position as in the first cutting step, and the fixed substrate 14A is completely cut (second cutting step). Since the lower surface of the fixed substrate 14A is flat, the fixing substrate 14A is securely fixed by the adhesive sheet 16, so that the vibration of cutting is small and cutting can be performed without causing chipping.
  • the glass substrate 10 and the fixed substrate 14A may be cut in a single cutting process.
  • the fixed substrate 14A when cutting the fixed substrate 14A, another fixed substrate that is not completely cut may be arranged below the fixed substrate 14A for cutting.
  • the fixed substrate 14A may be cut by a so-called chocolate break method in which the fixed substrate 14A is cut to a predetermined depth without being cut completely, and then the bending is applied to the cut.
  • the optical component 70 having the cross-sectional structure of FIG. 9A is obtained.
  • the optical component 70 has circuit wiring formed on the upper surface, a fixed substrate 14S on which the optical element 62 is mounted, and a transparent sealing member 50 that seals the optical element 62.
  • 9B the end surface 52a of the transparent sealing member 50 and the end surface 14c of the fixed substrate 14S are formed flush with each other.
  • the end surface 52a of the transparent sealing member 50 is a smooth surface having almost no chipping or scratches and having a smaller surface roughness than the end surface 14c of the fixed substrate 14S.
  • the fixing substrate 14A on which the optical element 62 is mounted together with the glass substrate 10 is cut, so that the transparent sealing member 50 and the transparent sealing member 50 simultaneously seal it.
  • the fixed substrate 14S having the optical element 62 thus obtained is obtained.
  • the package of the optical component 70 can be easily manufactured.
  • the transparent sealing member 50 and the fixed substrate 14A are cut together, positioning of the individual transparent sealing member 50 and the fixed substrate 14S becomes unnecessary.
  • the end surface 52a of the transparent sealing member 50 and the end surface 14c of the fixed substrate 14S are formed flush with each other, the possibility that the transparent sealing member 50 is detached from the fixed substrate 14S is reduced even when an impact is applied from the outside. In addition, it is possible to prevent the stress from concentrating on the transparent sealing member 50 and generating cracks.
  • Modification 4 In the modification 4, as shown in FIG. 10, the glass substrate 10 is cut
  • the bottom surface 15 of the fixed substrate 14B of Modification 4 is formed flat, and the entire bottom surface 15 is fixed in close contact with the adhesive sheet 16. Therefore, when the glass substrate 10 is cut by the blade 24 of the dicing apparatus 100, vibration due to cutting resistance can be suppressed by the fixed substrate 14B, and chipping can be prevented from occurring in the cutting region 54a.
  • the method of cutting the glass substrate 10 according to the modified example 4 can easily manufacture an optical component package, and can suppress displacement between the transparent sealing member 50 and the fixed substrate 14B.
  • Examples 1 to 8, Comparative Examples, and Reference Examples a glass substrate made of quartz glass was used. These glass substrates were produced by a powder sintering method. The Young's modulus of these glass substrates is 72 GPa.
  • Example 1 As shown in FIG. 11, the glass substrate of Example 1 had a square shape with an area of 2025 mm 2 , a side length of 45 mm, and a warpage of 0.05 mm. In addition, the warp measured the height of a board
  • 100 square cavities having an area of 4.0 mm 2 are formed on the lower surface of the glass substrate. The ratio of the area of the cavity to the glass substrate is 20%. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.5 mm.
  • Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG.
  • AlN aluminum nitride
  • the warpage of the fixed substrate in this example was 0.10 mm.
  • the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.35 mm at 6 mm / second as shown in FIG.
  • This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
  • Example 1 the chipping occurrence rate was 1%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • Example 2 In Example 2, the area and thickness were made smaller than the glass substrate of Example 1. That is, as shown in FIG. 11, the glass substrate of Example 2 had a square shape with an area of 625 mm 2 , a side length of 25 mm, and a warpage of 0.02 mm. Twenty-five square cavities having an area of 4.0 mm 2 are formed on the lower surface of the glass substrate. The ratio of the cavity area to the glass substrate is 16%. Twenty-five hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (thickness of the glass substrate) is 0.3 mm.
  • Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG.
  • AlN aluminum nitride
  • the warpage of the fixed substrate in this example was 0.05 mm.
  • the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.40 mm at 6 mm / second as shown in FIG.
  • This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
  • Example 2 the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate.
  • the chipping occurrence rate was 0%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • Example 3 In Example 3, the thickness was made larger than that of the glass substrate of Example 1, the lens was removed, and the cavity was enlarged. That is, as shown in FIG. 11, the glass substrate of Example 3 had a square shape with an area of 1600 mm 2 , a side length of 40 mm, and a warpage of 0.04 mm. On the lower surface of the glass substrate, 100 square cavities having an area of 6.8 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 42%. A lens is not formed on the upper surface of the glass substrate and is flat. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.90 mm.
  • Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG.
  • AlN aluminum nitride
  • the warpage of the fixed substrate in this example was 0.08 mm.
  • the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.20 mm at 3 mm / second as shown in FIG.
  • This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
  • Example 3 the chipping occurrence rate was 4%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • Example 4 In Example 4, the area and thickness were made larger than those of the glass substrate of Example 1, the cavity was enlarged, and chipping was more likely to occur. That is, as shown in FIG. 11, the glass substrate of Example 4 had a square shape with an area of 3025 mm 2 , a side length of 55 mm, and a warpage of 0.10 mm. On the lower surface of the glass substrate, 121 circular cavities having an area of 7.1 mm 2 are formed. The ratio of the cavity area in the glass substrate is 28%. 121 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 2.00 mm.
  • Such a glass substrate was joined with an epoxy adhesive to a substrate made of alumina (Al 2 O 3 ) having a thickness of 0.3 mm as shown in FIG.
  • the warpage of the fixed substrate in this example was 0.12 mm.
  • the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.20 mm at 6 mm / second as shown in FIG.
  • This cutting was performed in three cutting steps including two cutting steps for cutting the glass substrate and one cutting step for cutting the fixed substrate.
  • Example 4 the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate.
  • the chipping occurrence rate was 6%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • Example 5 the larger cavity was cut from the glass substrate of Example 1. That is, as shown in FIG. 11, the glass substrate of Example 5 was a square shape with an area of 1600 mm 2 , the length of one side was 40 mm, and the warpage was 0.04 mm. On the lower surface of the glass substrate, 121 square cavities having an area of 6.8 mm 2 are formed. The ratio of the cavity area in the glass substrate is 51%. 121 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
  • Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG.
  • AlN aluminum nitride
  • the warpage of the fixed substrate in this example was 0.08 mm.
  • the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.05 mm at 6 mm / second as shown in FIG.
  • This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
  • Example 5 the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate.
  • the chipping occurrence rate was 3%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • Example 6 In Example 6, what formed the groove
  • Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG.
  • AlN aluminum nitride
  • the warpage of the fixed substrate in this example was 0.08 mm.
  • the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.05 mm at 6 mm / second as shown in FIG.
  • This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
  • Example 6 the chipping occurrence rate was 3%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • Example 7 the glass substrate equivalent to Example 1 was cut using a silicon substrate (silicon single crystal substrate) as a fixed substrate. That is, as shown in FIG. 11, the glass substrate of Example 7 was a square shape with an area of 2025 mm 2 , the length of one side was 45 mm, and the warpage was 0.05 mm. On the lower surface of the glass substrate, 100 square cavities having an area of 4.0 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 20%. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
  • Such a glass substrate was bonded to a substrate made of silicon single crystal (Si) having a thickness of 0.5 mm using wax as shown in FIG.
  • the warpage of the fixed substrate in this example was 0.00 mm.
  • the glass substrate was cut
  • Example 7 the chipping occurrence rate was 2%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • Example 8 the glass substrate equivalent to that of Example 1 was cut using glass as a fixed substrate. That is, as shown in FIG. 11, the glass substrate of Example 8 was a square shape with an area of 2025 mm 2 , the length of one side was 45 mm, and the warpage was 0.05 mm. On the lower surface of the glass substrate, 100 square cavities having an area of 4.0 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 20%. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
  • Such a glass substrate was bonded to a substrate having a thickness of 1.00 mm made of glass (Young's modulus: 70 GPa) using wax as shown in FIG.
  • the warpage of the fixed substrate in this example was 0.00 mm.
  • the glass substrate was cut
  • Example 8 the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate.
  • the chipping occurrence rate was 2%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
  • the glass substrate of the comparative example was a square shape with an area of 2025 mm 2 , the length of one side was 45 mm, and the warpage was 0.05 mm.
  • the glass substrate of the comparative example was a square shape with an area of 2025 mm 2 , the length of one side was 45 mm, and the warpage was 0.05 mm.
  • 100 square cavities having an area of 4.0 mm 2 are formed on the lower surface of the glass substrate.
  • the ratio of the area of the cavity to the glass substrate is 20%.
  • 100 hemispherical lenses are formed on the upper surface of the glass substrate.
  • the thickness of the cutting area between the cavities is 0.50 mm.
  • Such a glass substrate was attached and fixed to an adhesive sheet as shown in FIG.
  • This pressure-sensitive adhesive sheet is obtained by forming a pressure-sensitive adhesive layer made of an acrylic adhesive on a PET resin (Young's modulus: 4 GPa).
  • the adhesive sheet was fixed to a vacuum chuck, and the glass substrate was cut while moving a blade having a width of 0.35 mm at 6 mm / second as shown in FIG. This cutting was performed in a single cutting step in which the blade was inserted to a depth that penetrates the glass substrate and does not penetrate the adhesive sheet.
  • the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate.
  • the chipping occurrence rate is 60%, and it can be seen that chipping frequently occurs when a fixed substrate is not used.
  • a glass substrate having no cavity formed on the lower surface is cut without using a fixed substrate. That is, as shown in FIG. 11, the glass substrate of the reference example had a square shape with an area of 2025 mm 2 , a side length of 45 mm, and a warpage of 0.05 mm. No cavity is formed on the lower surface of the glass substrate, which is a flat surface. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting region (the thickness of the glass substrate) is 0.50 mm.
  • Such a glass substrate was attached and fixed to an adhesive sheet as shown in FIG.
  • This pressure-sensitive adhesive sheet is obtained by forming a pressure-sensitive adhesive layer made of an acrylic adhesive on a PET resin (Young's modulus: 4 GPa).
  • the adhesive sheet was fixed to a vacuum chuck, and the glass substrate was cut while moving a blade having a width of 0.35 mm at 6 mm / second as shown in FIG. This cutting was performed in a single cutting step in which the blade was inserted to a depth that penetrates the glass substrate and does not penetrate the adhesive sheet.
  • the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate.
  • the chipping occurrence rate remains at 3%, and it can be seen that the chipping occurrence rate decreases when the cavity is eliminated. From this result, it can be seen that chipping occurs by providing a cavity in the glass substrate.
  • the glass substrate 10A shown in FIG. 14A is cut.
  • the glass substrate 10A has a plurality of lenses 56 arranged in a matrix on the upper surface thereof.
  • a plurality of mark patterns 80 are formed on the surface of the flat base portion 54 of the glass substrate 10A.
  • the mark pattern 80 includes a relatively small first mark 82 and a relatively large second mark 84.
  • the first marks 82 are arranged in a matrix between the lenses 56 of the glass substrate 10A at the same arrangement interval as the lenses 56. These first marks 82 are arranged on the cutting area of the glass substrate 10A.
  • the width of the first mark 82 in the X direction and the Y direction is smaller than the cutting area, and is removed together with the cutting area of the glass substrate 10 when the plurality of lenses 56 are cut.
  • the width of the first mark 82 in the X direction and the Y direction can be set to, for example, about 0.1 mm to 0.5 mm.
  • the first mark 82 can be formed as a rectangular recess, for example.
  • the first mark 82 is not limited to the concave portion, and may be a convex portion. Further, the first mark 82 may be formed by applying a pigment by a printing method or the like.
  • the shape of the first mark 82 is not limited to a rectangle, and may be a polygonal shape such as a cross, a circle, an ellipse, or a triangle.
  • the installation position of the first mark 82 is not limited to the upper surface 57 of the glass substrate 10A, but may be formed on the lower surface 58 of the glass substrate 10A, or may be formed on both the upper surface 57 and the lower surface 58. Also good.
  • the above-mentioned first mark 82 can be used for cutting position alignment when the glass substrate 10A is placed on the dicing apparatus 100 (see FIG. 1). That is, the glass substrate 10 ⁇ / b> A is arranged so that the first mark 82 is positioned on the planned cutting line of the dicing apparatus 100, so that the alignment can be easily performed.
  • the second mark 84 is provided only in one corner at the corner of the rectangular glass substrate 10A.
  • the second mark 84 can be formed as a rectangular recess.
  • the second mark 84 is not limited to the concave portion, and may be a convex portion or may be formed by applying a pigment.
  • the shape of the second mark 84 is not limited to a rectangular shape, and may be formed in a cross shape, a circular shape, an elliptical shape, a polygonal shape, or the like.
  • the second mark 84 can be formed on one or both of the upper surface 57 and the lower surface 58 of the glass substrate 10A.
  • the width in the X direction and the Y direction of the second mark 84 can be set to, for example, 0.3 mm to 3 mm.
  • the second mark 84 can be easily distinguished from the first mark 82 because the width in the X direction and the Y direction is larger than that of the first mark 82.
  • the orientation of the glass substrate 10A can be easily specified.
  • the specific lens 56 can be identified by detecting the distance to each lens 56 with the position of the second mark 84 as a reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Led Device Packages (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

The present invention relates to a method of cutting a glass substrate (10) which has a plurality of cavities (60) formed on one surface thereof. A lower surface (58) on which the cavities (60) are formed of the glass substrate (10) which is to be cut is bonded to an upper surface (14a) of a fixed substrate (14) that is formed from a material having a Young's modulus that is equal to or higher than the Young's modulus of the glass substrate (10), and the glass substrate (10) is cut using a dicing device (100).

Description

ガラス基板の切断方法Glass substrate cutting method
 本発明は、例えばLED(発光ダイオード)やLD(レーザダイオード)等の光学部品の製造に用いるガラス基板の切断方法に関する。 The present invention relates to a method for cutting a glass substrate used for manufacturing optical components such as LEDs (light emitting diodes) and LDs (laser diodes).
 近年、紫外光を出射する光学素子(例え、LEDやLD等)を含む光学部品が、殺菌や浄化用途への応用の可能性から注目されている。このような光学部品には、光学素子を外気や水分から保護するために、透明封止部材が用いられている。この透明封止部材には、紫外線に対する透過性や耐久性の観点から紫外光透過性ガラスや石英ガラス等が望ましい。 In recent years, optical components including optical elements (such as LEDs and LDs) that emit ultraviolet light have attracted attention because of their potential application in sterilization and purification applications. In such an optical component, a transparent sealing member is used to protect the optical element from outside air and moisture. For the transparent sealing member, ultraviolet light transmissive glass, quartz glass, or the like is desirable from the viewpoint of ultraviolet light permeability and durability.
 特開2014-216532号公報には、上面に半導体素子が実装された非透光性基板と、下に開口したキャビティを有する透光性保護材とを有する半導体光学素子パッケージが開示されている。 Japanese Unexamined Patent Application Publication No. 2014-216532 discloses a semiconductor optical element package having a non-transparent substrate having a semiconductor element mounted on the upper surface and a translucent protective material having a cavity opened below.
 ところで、透明封止部材を効率よく生産する場合には、透明封止部材をアレイ状に一括して形成してなるガラス基板を作製し、そのガラス基板を切り分けることが考えられる。このようなガラス基板の切断は、ガラス基板を粘着シートに接着し、その粘着シートを真空チャックに固定して、ダイシング装置で切り分けるといった、一般的な切断方法を利用できる。 Incidentally, in order to efficiently produce a transparent sealing member, it is conceivable to produce a glass substrate formed by collectively forming the transparent sealing member in an array and to cut the glass substrate. For such cutting of the glass substrate, a general cutting method can be used in which the glass substrate is bonded to a pressure-sensitive adhesive sheet, the pressure-sensitive adhesive sheet is fixed to a vacuum chuck, and cut by a dicing apparatus.
 ところが、下に開口したキャビティを有するガラス基板を上記の方法で切断すると、切断部の端面に欠けや傷等(チッピングともいう)が発生しやすいことが判明した。このような欠けや傷は、クラックの起点となるため、長期間使用している間に透明封止部材にクラックが入りやすくなり、耐久性の低下につながるといった問題がある。 However, it has been found that when a glass substrate having a cavity opened below is cut by the above method, chipping or scratches (also referred to as chipping) are likely to occur on the end face of the cut portion. Such chippings and scratches are the starting point of cracks, so that there is a problem that cracks are likely to occur in the transparent sealing member during long-term use, leading to a decrease in durability.
 また、透明封止部材の生産性を向上させるためには、より多くの透明封止部材を一括して形成できる大面積のガラス基板を利用することが好ましいが、上記の欠けや傷の発生は、ガラス基板の面積が大きくなるほど発生しやすくなることが明らかとなった。 Moreover, in order to improve the productivity of the transparent sealing member, it is preferable to use a large-area glass substrate that can form a larger number of transparent sealing members at one time. It has been clarified that the larger the area of the glass substrate, the more easily it occurs.
 そのため、切断部の端面に欠けや傷等が発生しにくいガラス基板の切断方法が望まれる。 Therefore, a method for cutting a glass substrate that is unlikely to cause chipping or scratches on the end face of the cut portion is desired.
[1] 本発明の一観点は、一方の面に複数のキャビティが形成されたガラス基板の切断方法に関し、前記ガラス基板と同等のヤング率またはそれ以上のヤング率を有する材料よりなる固定基板の上面に、前記ガラス基板のキャビティが形成された面を向い合せて貼り合わせる工程と、前記固定基板の下面を基台に固定する工程と、ダイシング装置を用いて前記ガラス基板に形成された複数のキャビティ間の切断領域を切断することにより、前記複数のキャビティを切り分ける工程と、を有することを特徴とする。 [1] One aspect of the present invention relates to a method for cutting a glass substrate in which a plurality of cavities are formed on one surface, and a fixed substrate made of a material having a Young's modulus equivalent to or higher than that of the glass substrate. A plurality of steps formed on the glass substrate using a dicing device, a step of bonding the surface of the glass substrate facing the surface on which the cavity is formed, and affixing the lower surface of the fixed substrate to a base; And cutting the plurality of cavities by cutting a cutting region between the cavities.
 従来の方法でキャビティを有するガラス基板を切断する場合には、キャビティの面積分だけ、ガラス基板と粘着シートとの接着面積が低下し、固定が不安定となる。更に、加工時の切削抵抗によってヤング率の低い粘着シートが振動する。その結果、ガラス基板の切断面に、欠けや傷(チッピング)が多発する。これに対し、上記観点のガラス基板の切断方法では、ガラス基板を、ガラスと同等のヤング率またはそれ以上のヤング率を有する材料よりなる固定基板に貼り付けて切断を行う。これにより、切断時のガラス基板の振動が抑制され、チッピングの発生を大幅に抑制することができる。 When a glass substrate having a cavity is cut by a conventional method, the bonding area between the glass substrate and the pressure-sensitive adhesive sheet is reduced by the area of the cavity, and the fixing becomes unstable. Furthermore, the adhesive sheet having a low Young's modulus vibrates due to the cutting resistance during processing. As a result, chipping and scratches (chipping) frequently occur on the cut surface of the glass substrate. In contrast, in the method for cutting a glass substrate according to the above aspect, the glass substrate is attached to a fixed substrate made of a material having a Young's modulus equal to or higher than that of glass to perform cutting. Thereby, the vibration of the glass substrate at the time of a cutting | disconnection is suppressed and generation | occurrence | production of chipping can be suppressed significantly.
[2] 上記観点のガラス基板の切断方法において、前記固定基板の下面全面が前記基台に固定されていてもよい。 [2] In the glass substrate cutting method according to the above aspect, the entire lower surface of the fixed substrate may be fixed to the base.
 固定基板の下面全面が粘着シートに密着することで、固定基板の振動が抑制される。その結果、固定基板及びガラス基板の振動が抑制され、チッピングの防止に効果的である。 ¡Vibration of the fixed substrate is suppressed when the entire lower surface of the fixed substrate is in close contact with the adhesive sheet. As a result, the vibration of the fixed substrate and the glass substrate is suppressed, which is effective for preventing chipping.
[3] 上記観点のガラス基板の切断方法において、前記固定基板は、ヤング率が50GPa~500GPaの材料であってもよい。 [3] In the glass substrate cutting method according to the above aspect, the fixed substrate may be a material having a Young's modulus of 50 GPa to 500 GPa.
 ガラスのヤング率は、50GPa~100GPaであるため、固定基板はヤング率が50GPaよりも大きい材料を用いることが好ましい。また、ヤング率が500GPaを超える材料は切断が困難となるため、固定基板のヤング率は500GPa以下とすることが好ましい。 Since the Young's modulus of glass is 50 GPa to 100 GPa, it is preferable to use a material having a Young's modulus larger than 50 GPa for the fixed substrate. In addition, since a material having a Young's modulus exceeding 500 GPa is difficult to cut, the Young's modulus of the fixed substrate is preferably 500 GPa or less.
[4] 上記観点のガラス基板の切断方法において、前記ガラス基板は石英ガラスよりなり、前記固定基板はヤング率が70GPa~340GPaの材料であってもよい。 [4] In the glass substrate cutting method according to the above aspect, the glass substrate may be made of quartz glass, and the fixed substrate may be a material having a Young's modulus of 70 GPa to 340 GPa.
[5] 上記観点のガラス基板の切断方法において、前記固定基板は、シリコン基板、ガラス基板、アルミナ基板及び窒化アルミニウム基板のいずれかであってもよい。 [5] In the glass substrate cutting method according to the above aspect, the fixed substrate may be any of a silicon substrate, a glass substrate, an alumina substrate, and an aluminum nitride substrate.
[6] 上記観点のガラス基板の切断方法において、前記固定基板の厚さは前記ガラス基板の切断領域の厚さと同等又はこれよりも薄くてもよい。 [6] In the glass substrate cutting method according to the above aspect, the thickness of the fixed substrate may be equal to or less than the thickness of the cutting region of the glass substrate.
 切断対象となるガラス基板のヤング率よりも高いヤング率を有する固定基板を用いる場合には、固定基板の厚さをガラス基板の切断領域の厚さよりも薄くしても、チッピングを防止する効果が得られることが判明した。このように、ガラス基板よりも薄い固定基板を用いると、ガラス基板とともに固定基板を切断する際の切削抵抗が減り、切断に要する時間を短縮できる。 When using a fixed substrate having a Young's modulus higher than the Young's modulus of the glass substrate to be cut, the effect of preventing chipping can be obtained even if the thickness of the fixed substrate is made thinner than the thickness of the cutting region of the glass substrate. It turned out to be obtained. Thus, when a fixed substrate thinner than the glass substrate is used, the cutting resistance when cutting the fixed substrate together with the glass substrate is reduced, and the time required for cutting can be shortened.
[7] 上記観点のガラス基板の切断方法において、前記ガラス基板の切断領域の厚さが0.2mm~3.0mmであってもよい。 [7] In the glass substrate cutting method according to the above aspect, the thickness of the cutting region of the glass substrate may be 0.2 mm to 3.0 mm.
[8] 上記観点のガラス基板の切断方法において、前記固定基板の厚さが0.2mm~2.0mmであってもよい。 [8] In the glass substrate cutting method according to the above aspect, the thickness of the fixed substrate may be 0.2 mm to 2.0 mm.
[9] 上記観点のガラス基板の切断方法において、前記ガラス基板のキャビティが前記ガラス基板に占める面積の割合が10%~60%であってもよい。 [9] In the glass substrate cutting method according to the above aspect, the ratio of the area occupied by the cavity of the glass substrate in the glass substrate may be 10% to 60%.
[10] 上記観点のガラス基板の切断方法において、前記ガラス基板の面積が400mm2~3600mm2であってもよい。 [10] In the cutting method of a glass substrate of the aspect, the area of the glass substrate may be 400mm 2 ~ 3600mm 2.
 本願発明者は、ガラス基板の面積が大きくなるほどチッピングが発生しやすくなる傾向があることを見出した。ガラス基板の面積が400mm2以上になると、チッピングを起こしやすくなる。また、ガラス基板の面積が3600mm2までの範囲であれば反りが少なく、固定基板との密着性が良好となり好適である。 The inventor of the present application has found that chipping tends to occur as the area of the glass substrate increases. When the area of the glass substrate is 400 mm 2 or more, chipping is likely to occur. Further, if the area of the glass substrate is in the range of up to 3600 mm 2 , the warp is small and the adhesion with the fixed substrate is good, which is preferable.
[11] 上記観点のガラス基板の切断方法において、前記ガラス基板は、接着剤により前記固定基板に接合されていてもよい。 [11] In the glass substrate cutting method according to the above aspect, the glass substrate may be bonded to the fixed substrate with an adhesive.
 接着剤で固定することにより、粘着シートよりも強固にガラス基板を固定基板に固定できる。 By fixing with an adhesive, the glass substrate can be fixed to the fixed substrate more firmly than the adhesive sheet.
[12] 上記観点のガラス基板の切断方法であって、前記固定基板は、粘着シートを介して前記基台に固定されていてもよい。 [12] In the glass substrate cutting method according to the above aspect, the fixed substrate may be fixed to the base via an adhesive sheet.
 固定基板を完全に切り分けずに切断する場合には、このように粘着シートを介して固定基板を基台に固定してもよい。 In the case of cutting without completely cutting the fixed substrate, the fixed substrate may be fixed to the base via the adhesive sheet in this way.
[13] 上記観点のガラス基板の切断方法において、前記キャビティを切り分ける工程において、前記ガラス基板とともに前記固定基板も切り分けてもよい。 [13] In the method for cutting a glass substrate according to the above aspect, in the step of cutting the cavity, the fixed substrate may be cut together with the glass substrate.
 固定基板の下面にはキャビティが形成されていないため、固定基板を切り分けても固定基板及びガラス基板の振動を抑制できる。そのため、ガラス基板とともに固定基板を切り分ける場合であっても、チッピングを防止する効果が得られる。 Since no cavity is formed on the lower surface of the fixed substrate, vibrations of the fixed substrate and the glass substrate can be suppressed even if the fixed substrate is separated. Therefore, even when the fixed substrate is cut together with the glass substrate, the effect of preventing chipping can be obtained.
[14] 上記観点のガラス基板の切断方法において、前記キャビティに対向する部分の前記固定基板の上面には光学素子が実装されていてもよい。 [14] In the glass substrate cutting method according to the above aspect, an optical element may be mounted on an upper surface of the fixed substrate at a portion facing the cavity.
 ガラス基板とともに光学素子(例えばLEDやLD等)を実装した固定基板を切り分けることで、透明封止部材と光学素子を実装した実装基板とが一括して切断される。これにより、光学素子のパッケージを容易に製造することができる。また、透明封止部材と実装基板とを一括して切り分けることにより、複数の透明封止部材と実装基板との位置決めが1回で済み、位置ずれによる不良品発生を抑制できる。 By cutting a fixed substrate on which an optical element (for example, LED or LD) is mounted together with a glass substrate, the transparent sealing member and the mounting substrate on which the optical element is mounted are cut together. Thereby, the package of an optical element can be manufactured easily. Further, by separating the transparent sealing member and the mounting substrate in a lump, positioning of the plurality of transparent sealing members and the mounting substrate can be performed only once, and generation of defective products due to misalignment can be suppressed.
[15] 上記観点のガラス基板の切断方法において、前記ガラス基板との接着部分以外の前記固定基板の上面に凹部が形成されていてもよい。 [15] In the glass substrate cutting method according to the above aspect, a concave portion may be formed on the upper surface of the fixed substrate other than a portion bonded to the glass substrate.
 本発明に係るガラス基板の切断方法によれば、切断の際にガラス基板の切断部に欠けや傷等のチッピングが発生するのを防止できる。 According to the method for cutting a glass substrate according to the present invention, chipping such as chipping or scratching can be prevented at the cut portion of the glass substrate during cutting.
本発明の第1の実施形態に係るダイシング装置を使用したガラス基板の切断方法を示す模式図である。It is a schematic diagram which shows the cutting method of the glass substrate which uses the dicing apparatus which concerns on the 1st Embodiment of this invention. 図1のガラス基板の下面側の斜視図である。It is a perspective view of the lower surface side of the glass substrate of FIG. 図3Aは図1のガラス基板の切断により得られる透明封止部材の上面側の斜視図であり、図3Bは同じく下面側の斜視図である。3A is a perspective view of the upper surface side of the transparent sealing member obtained by cutting the glass substrate of FIG. 1, and FIG. 3B is a perspective view of the lower surface side. 本発明の第1の実施形態に係るガラス基板の切断方法を示す断面図である。It is sectional drawing which shows the cutting method of the glass substrate which concerns on the 1st Embodiment of this invention. 図5Aは、第1の実施形態の変形例1に係るガラス基板の切断方法を示す断面図であり、図5Bは図5Aのガラス基板の切断方法によって得られる透明封止部材の斜視図である。5A is a cross-sectional view illustrating a glass substrate cutting method according to Modification 1 of the first embodiment, and FIG. 5B is a perspective view of a transparent sealing member obtained by the glass substrate cutting method of FIG. 5A. . 図6Aは、第1の実施形態の変形例2に係るガラス基板の下面図であり、図6Bは図6Aのガラス基板を固定基板に貼り付けた状態を示す斜視図であり、図6Cは本実施形態に係るガラス基板の切断方法を示す断面図である。6A is a bottom view of a glass substrate according to Modification 2 of the first embodiment, FIG. 6B is a perspective view showing a state where the glass substrate of FIG. 6A is attached to a fixed substrate, and FIG. It is sectional drawing which shows the cutting method of the glass substrate which concerns on embodiment. 本発明の第1の実施形態の変形例3に係るガラス基板及び固定基板を示す断面図である。It is sectional drawing which shows the glass substrate and fixed substrate which concern on the modification 3 of the 1st Embodiment of this invention. 図8Aは、図7のガラス基板の切断工程(第1の切断工程)を示す断面図であり、図8Bは図7の固定基板の切断工程(第2の切断工程)を示す断面図である。FIG. 8A is a cross-sectional view showing the glass substrate cutting step (first cutting step) in FIG. 7, and FIG. 8B is a cross-sectional view showing the fixed substrate cutting step (second cutting step) in FIG. . 図9Aは、図8A及び図8Bの切断工程によって得られる光学部品の断面図であり、図9Bは図9Aの破線で囲った領域Tの拡大断面図である。9A is a cross-sectional view of an optical component obtained by the cutting process of FIGS. 8A and 8B, and FIG. 9B is an enlarged cross-sectional view of a region T surrounded by a broken line in FIG. 9A. 本発明の第1の実施形態の変形例4に係るガラス基板の切断方法を示す断面図である。It is sectional drawing which shows the cutting method of the glass substrate which concerns on the modification 4 of the 1st Embodiment of this invention. 実施例1~8、比較例及び参考例に係るガラス基板を示す表である。3 is a table showing glass substrates according to Examples 1 to 8, Comparative Examples, and Reference Examples. 実施例1~8、比較例及び参考例に係る接着剤及び固定基板を示す表である。6 is a table showing adhesives and fixed substrates according to Examples 1 to 8, Comparative Examples, and Reference Examples. 実施例1~8、比較例及び参考例に係る切断条件及びチッピング発生率の評価結果を示す表である。6 is a table showing evaluation results of cutting conditions and chipping occurrence rates according to Examples 1 to 8, Comparative Examples, and Reference Examples. 図14Aは、本発明の第2の実施形態に係るガラス基板の斜視図であり、図14Bは図14Aのガラス基板の平面図である。FIG. 14A is a perspective view of a glass substrate according to the second embodiment of the present invention, and FIG. 14B is a plan view of the glass substrate of FIG. 14A. 図14Aの第2のマークの近傍のレンズを切断して示す拡大斜視図である。FIG. 14B is an enlarged perspective view showing the lens in the vicinity of the second mark in FIG. 14A by cutting.
 以下、本発明の好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。また、以下の説明において、固定基板からガラス基板に向かう向きを「上側」又は上方とよび、その逆向きを「下側」又は下方と呼ぶ。また、各部材において、上側に現れる面を上面と呼び下側に現れる面を下面と呼ぶ。 Hereinafter, preferred embodiments of the present invention will be given and described in detail with reference to the accompanying drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio. In the following description, the direction from the fixed substrate toward the glass substrate is referred to as “upper side” or upper side, and the opposite direction is referred to as “lower side” or lower side. In each member, a surface appearing on the upper side is called an upper surface, and a surface appearing on the lower side is called a lower surface.
(第1の実施形態)
 本発明の第1の実施形態に係るガラス基板の切断方法では、図1に示すガラス基板10を切断する。ガラス基板10は、その上面に複数のレンズ56が、マトリクス状に配置されている。そのガラス基板10の下面には、図2に示すように、複数のキャビティ60が形成されている。これらのキャビティ60はレンズ56の各々に対応して設けられており、キャビティ60のガラス基板10の平面内の位置はレンズ56の位置と一致している。すなわち、キャビティ60は、レンズ56と同様にマトリクス状に配置されている。
(First embodiment)
In the glass substrate cutting method according to the first embodiment of the present invention, the glass substrate 10 shown in FIG. 1 is cut. The glass substrate 10 has a plurality of lenses 56 arranged in a matrix on the upper surface thereof. As shown in FIG. 2, a plurality of cavities 60 are formed on the lower surface of the glass substrate 10. These cavities 60 are provided corresponding to the respective lenses 56, and the positions of the cavities 60 in the plane of the glass substrate 10 coincide with the positions of the lenses 56. That is, the cavities 60 are arranged in a matrix like the lens 56.
 ガラス基板10の下面58においてキャビティ60が占める面積の割合は、例えば10%~60%の範囲とすることができる。キャビティ60の平面形状は矩形に限定されるものではなく、円形または多角形状であってもよい。 The ratio of the area occupied by the cavity 60 in the lower surface 58 of the glass substrate 10 can be set in the range of 10% to 60%, for example. The planar shape of the cavity 60 is not limited to a rectangle, and may be a circle or a polygon.
 レンズ56及びキャビティ60の間には、図1に示すように、平坦な台座部54が形成されており、その台座部54の一部が切断領域54aとなる。以下の説明では、台座部54(切断領域54a)の厚みをガラス基板10の厚みと呼ぶ。 As shown in FIG. 1, a flat pedestal portion 54 is formed between the lens 56 and the cavity 60, and a part of the pedestal portion 54 becomes a cutting region 54a. In the following description, the thickness of the pedestal portion 54 (cutting region 54a) is referred to as the thickness of the glass substrate 10.
 ガラス基板10は、例えば石英ガラスのような硬質な材料で形成されており、図1に示すようなダイシング装置100で切り分けられる。ダイシング装置100で、ガラス基板10の切断領域54aを格子状に切り分けると、図3Aに示すような透明封止部材50が得られる。その透明封止部材50は、矩形状の台座部54を備え、台座部54の上面57の中央部には、半球状又は饅頭形状(bun-shaped)のドーム状に突出したレンズ56が形成される。また、図3Bに示すように、台座部54の下面58の中央部には、キャビティ60が形成される。 The glass substrate 10 is formed of a hard material such as quartz glass, and is cut by a dicing apparatus 100 as shown in FIG. When the cutting region 54a of the glass substrate 10 is cut into a lattice shape by the dicing apparatus 100, a transparent sealing member 50 as shown in FIG. 3A is obtained. The transparent sealing member 50 includes a rectangular pedestal 54, and a lens 56 protruding in a hemispherical or bun-shaped dome shape is formed at the center of the upper surface 57 of the pedestal 54. The Further, as shown in FIG. 3B, a cavity 60 is formed in the central portion of the lower surface 58 of the pedestal portion 54.
 このような透明封止部材50は、下面58をLEDやLDなどの光学素子を実装した実装基板に接合して用いられる。LEDやLD等の光学素子は、透明封止部材50のキャビティ60内に封入されて外気や水分などから保護される。透明封止部材50の一片の長さは、例えば3.5mm程度とすることができる。なお、キャビティ60の面積は、例えば、2mm2~10mm2である。 Such a transparent sealing member 50 is used by bonding the lower surface 58 to a mounting substrate on which optical elements such as LEDs and LDs are mounted. Optical elements such as LEDs and LDs are sealed in the cavity 60 of the transparent sealing member 50 and are protected from the outside air and moisture. The length of one piece of the transparent sealing member 50 can be about 3.5 mm, for example. The area of the cavity 60 is, for example, 2 mm 2 to 10 mm 2 .
 上記の透明封止部材50の製造に用いられるガラス基板10(図1参照)は、特に限定されないが、一辺の長さが20mm~60mm程度の正方形状とすることができる。なお、ガラス基板10の形状は正方形状に限定されるものではなく、矩形状又は多角形状であってもよい。そのガラス基板10には、その面積に応じて数十~百数十個のレンズ56及びキャビティ60が形成される。 The glass substrate 10 (see FIG. 1) used for manufacturing the transparent sealing member 50 is not particularly limited, but can be a square having a side length of about 20 mm to 60 mm. The shape of the glass substrate 10 is not limited to a square shape, and may be a rectangular shape or a polygonal shape. In the glass substrate 10, several tens to hundreds of lenses 56 and cavities 60 are formed according to the area.
 ガラス基板10の面積は、例えば、400mm2~3600mm2とすることができる。ガラス基板10の面積が小さいほど、チッピングが発生しにくくなるが、1枚のガラス基板10から得られる透明封止部材50の数が少なくなってしまう。一方で、ガラス基板10の面積が大きくなると、チッピングの発生率が増加する。ガラス基板10の面積が400mm2以上になると、チッピング発生率が大きくなる。そのため、その面積よりも大きいガラス基板10では、本実施形態の切断方法を用いると好適である。また、ガラス基板10が大きすぎると、ガラス基板10及び固定基板14の反りが大きくなる傾向があり、固定基板14とガラス基板10との密着性が低下してチッピングが発生しやすくなる。 Area of the glass substrate 10 can be, for example, a 400mm 2 ~ 3600mm 2. As the area of the glass substrate 10 is smaller, chipping is less likely to occur, but the number of transparent sealing members 50 obtained from one glass substrate 10 is reduced. On the other hand, as the area of the glass substrate 10 increases, the occurrence rate of chipping increases. When the area of the glass substrate 10 is 400 mm 2 or more, the chipping occurrence rate increases. Therefore, it is preferable to use the cutting method of the present embodiment for the glass substrate 10 larger than the area. On the other hand, if the glass substrate 10 is too large, the warpage of the glass substrate 10 and the fixed substrate 14 tends to increase, and the adhesion between the fixed substrate 14 and the glass substrate 10 decreases and chipping is likely to occur.
 ガラス基板10の台座部54(及び切断領域54a)の厚さは、キャビティ60の深さと略同じ値であり、例えば0.2mm~2mmの範囲とすることができる。ガラス基板10の切断領域54aの厚みが薄いほど切削抵抗が低くなり、切断が容易となるが、キャビティ60の深さを確保する観点から、0.2mm以上とすることが好ましい。またガラス基板10の反り(面内の高低差)の値は、後述する固定基板14との密着性を確保する観点から、0.25mm以下とすることが好ましい。 The thickness of the pedestal 54 (and the cutting region 54a) of the glass substrate 10 is substantially the same value as the depth of the cavity 60, and can be, for example, in the range of 0.2 mm to 2 mm. The thinner the cutting region 54 a of the glass substrate 10 is, the lower the cutting resistance is and the easier it is to cut. However, from the viewpoint of securing the depth of the cavity 60, the thickness is preferably 0.2 mm or more. Further, the value of the warp (in-plane height difference) of the glass substrate 10 is preferably set to 0.25 mm or less from the viewpoint of ensuring adhesion with the fixed substrate 14 described later.
 このようなガラス基板10は、粉末焼結法により形成できる。粉末焼結法では、成形型にシリカ粉末と分散剤及び硬化剤としての有機化合物を含む成形スラリーを鋳込み、硬化剤の化学反応により固化させる。その後、成形型から離型して、焼成することにより作製できる。 Such a glass substrate 10 can be formed by a powder sintering method. In the powder sintering method, a molding slurry containing silica powder, a dispersant, and an organic compound as a curing agent is cast into a mold and solidified by a chemical reaction of the curing agent. Then, it can produce by releasing from a shaping | molding die and baking.
 ここで、ガラス基板10の成形スラリーに用いるシリカ粉末には、例えば、平均粒径0.5μmのものを用いることができる。また、分散剤としては、例えば、カルボン酸共重合体を用いることができる。溶媒として、マロン酸ジメチル及びエチレングリコールをもしいることができ、硬化剤としては、ジフェニルメタンジイソシアネートを用いることができる。さらに、触媒としてトリエチルアミンを添加してもよい。 Here, as the silica powder used for the molding slurry of the glass substrate 10, for example, one having an average particle diameter of 0.5 μm can be used. Moreover, as a dispersing agent, a carboxylic acid copolymer can be used, for example. As the solvent, dimethyl malonate and ethylene glycol can be used, and as the curing agent, diphenylmethane diisocyanate can be used. Further, triethylamine may be added as a catalyst.
 上記のスラリーを金型内に室温で流し込み、一定時間放置して固化させ、その後、離型する。離型した成形体を、100℃程度の雰囲気中に一定時間放置することで溶媒を除去し、その後、大気中で500℃で仮焼する。さらに、水素雰囲気中で1600℃~1700℃で焼成することで、緻密化及び透明化させることにより、ガラス基板10が得られる。 The above slurry is poured into a mold at room temperature, allowed to solidify for a certain time, and then released. The released molded body is left in an atmosphere of about 100 ° C. for a certain period of time to remove the solvent, and then calcined at 500 ° C. in the air. Further, the glass substrate 10 is obtained by densification and transparency by baking at 1600 ° C. to 1700 ° C. in a hydrogen atmosphere.
 ガラス基板10は、図1に示すダイシング装置100を用いて切断する。 The glass substrate 10 is cut using a dicing apparatus 100 shown in FIG.
 本実施形態のガラス基板10の切断方法では、チッピングを防ぐために、ガラス基板10を固定基板14に貼り付けた上で、粘着シート16に固定して切断する。すなわち、ダイシング装置100による切断に先立って、まず、ガラス基板10を固定基板14の上面14aに貼り合わせる。 In the method for cutting the glass substrate 10 of the present embodiment, the glass substrate 10 is attached to the fixed substrate 14 and then fixed to the adhesive sheet 16 and cut in order to prevent chipping. That is, prior to cutting by the dicing apparatus 100, first, the glass substrate 10 is bonded to the upper surface 14 a of the fixed substrate 14.
 図4に示すように、固定基板14へのガラス基板10の貼着は、例えば、固定基板14の上面14aに接着剤12を塗布し、その接着剤12の上にガラス基板10の下面58を貼り付けることで行われる。また、固定基板14の上面14aに接着剤12を塗布する代わりに、ガラス基板10の下面58に接着剤12を塗布し、そのガラス基板10の下面58を固定基板14の上面14aに貼り合わせてもよい。接着剤12は、エポキシ接着剤や、ワックスを用いることができ、塗布法、印刷法、スピンコート法又はスプレー法等の方法で固定基板14の上面14a又はガラス基板10の下面58に塗布すればよい。 As shown in FIG. 4, the glass substrate 10 is attached to the fixed substrate 14, for example, by applying the adhesive 12 to the upper surface 14 a of the fixed substrate 14 and applying the lower surface 58 of the glass substrate 10 on the adhesive 12. This is done by pasting. Further, instead of applying the adhesive 12 to the upper surface 14 a of the fixed substrate 14, the adhesive 12 is applied to the lower surface 58 of the glass substrate 10, and the lower surface 58 of the glass substrate 10 is bonded to the upper surface 14 a of the fixed substrate 14. Also good. The adhesive 12 can be an epoxy adhesive or wax, and can be applied to the upper surface 14a of the fixed substrate 14 or the lower surface 58 of the glass substrate 10 by a method such as a coating method, a printing method, a spin coating method, or a spray method. Good.
 固定基板14は、ガラス基板10のヤング率と同等又はこれよりもヤング率の高い材料を用いることが好ましく、例えば、ヤング率が50GPa~500GPaの材料を用いることができる。ガラス基板10が石英ガラス(ヤング率:72GPa)よりなる場合には、固定基板14は、ヤング率が70GPa~340GPaの材料を用いることができる。この場合には、固定基板14として、例えば、ガラス基板(ヤング率:70GPa)、シリコン基板(ヤング率:180GPa)、窒化アルミニウム基板(ヤング率:320GPa)、アルミナ基板(ヤング率:340GPa)を用いることができる。 The fixed substrate 14 is preferably made of a material having a Young's modulus equal to or higher than the Young's modulus of the glass substrate 10, for example, a material having a Young's modulus of 50 GPa to 500 GPa. When the glass substrate 10 is made of quartz glass (Young's modulus: 72 GPa), a material having a Young's modulus of 70 GPa to 340 GPa can be used for the fixed substrate 14. In this case, for example, a glass substrate (Young's modulus: 70 GPa), a silicon substrate (Young's modulus: 180 GPa), an aluminum nitride substrate (Young's modulus: 320 GPa), or an alumina substrate (Young's modulus: 340 GPa) is used as the fixed substrate 14. be able to.
 また、固定基板14の厚さは、その材料のヤング率に応じて適宜設定することができる。ヤング率が高い材料ほど、固定基板14を薄くすることができる。十分にヤング率が高い材料であれば、固定基板14の厚さはガラス基板10よりも薄くてもよい。ガラス基板10の切断領域54aの厚みが0.2mm~3.0mmである場合には、固定基板14の厚みは、例えば0.2mm~2.0mm程度とすることができる。なお、固定基板14をガラス基板10とともに切り分ける場合には、固定基板14が薄いほど切削抵抗が低くなり切断が容易となるため、固定基板14は薄い方が好ましい。 Further, the thickness of the fixed substrate 14 can be appropriately set according to the Young's modulus of the material. The higher the Young's modulus, the thinner the fixed substrate 14 can be made. If the material has a sufficiently high Young's modulus, the fixed substrate 14 may be thinner than the glass substrate 10. When the thickness of the cutting region 54a of the glass substrate 10 is 0.2 mm to 3.0 mm, the thickness of the fixed substrate 14 can be set to, for example, about 0.2 mm to 2.0 mm. When the fixed substrate 14 is cut together with the glass substrate 10, the thinner the fixed substrate 14, the lower the cutting resistance and the easier the cutting. Therefore, the thinner fixed substrate 14 is preferable.
 固定基板14の面積は、ガラス基板10の全域をカバーするべく、ガラス基板10の面積と同等又はこれよりも大きな面積とすればよい。具体的には、例えば400mm2以上とすればよい。この固定基板14の面積の下限値400mm2は、ガラス基板10の面積の下限値に基づく。固定基板14の面積の上限値は、使用する真空チャック20(図1参照)の載置面のサイズに応じて適宜設定され得る。 The area of the fixed substrate 14 may be equal to or larger than the area of the glass substrate 10 so as to cover the entire area of the glass substrate 10. Specifically, it may be 400 mm 2 or more, for example. The lower limit 400 mm 2 of the area of the fixed substrate 14 is based on the lower limit of the area of the glass substrate 10. The upper limit value of the area of the fixed substrate 14 can be appropriately set according to the size of the mounting surface of the vacuum chuck 20 (see FIG. 1) to be used.
 なお、固定基板14の下面14bは、平坦面とすることが好ましい。これにより、固定基板14の下面14b全面が粘着シート16と接着し、粘着シート16による固定が確実となる。また、固定基板14は、粘着シート16との密着性を確保するべく、反りが0.25mm以下のものを用いることが好ましい。固定基板14の反りは、固定基板の対角に引いた線分上において最も高い部分と、最も低い部分との差分により求まる値である。すなわち、固定基板14の下面14bの高低差は0.25mm以下とすることが好ましい。さらに、固定基板14とガラス基板10との密着性を確保する観点からも、固定基板14のその反りは少ない方がよい。すなわち、反りの少ない固定基板14を用いることで、ガラス基板10を固定基板14に確実に固定することができ、チッピングの防止に好適である。 Note that the lower surface 14b of the fixed substrate 14 is preferably a flat surface. As a result, the entire lower surface 14b of the fixed substrate 14 is bonded to the adhesive sheet 16, and the fixing by the adhesive sheet 16 is ensured. In addition, it is preferable to use the fixed substrate 14 having a warp of 0.25 mm or less in order to ensure adhesion with the adhesive sheet 16. The warpage of the fixed substrate 14 is a value obtained by the difference between the highest portion and the lowest portion on the line segment drawn diagonally of the fixed substrate. That is, the height difference of the lower surface 14b of the fixed substrate 14 is preferably 0.25 mm or less. Further, from the viewpoint of securing the adhesion between the fixed substrate 14 and the glass substrate 10, it is preferable that the warpage of the fixed substrate 14 is small. That is, by using the fixed substrate 14 with less warpage, the glass substrate 10 can be reliably fixed to the fixed substrate 14 and is suitable for preventing chipping.
 次に、ガラス基板10を貼り付けた固定基板14の下面14bを、粘着シート16の上面に貼り付ける。粘着シート16(ダイシングシート又はダイシングテープともいう)は、上面に粘着層が設けられており、その粘着層に固定基板14の下面14b全面が密着する。このように、固定基板14は、下面14bの全面で粘着シート16に接着されて固定される。 Next, the lower surface 14 b of the fixed substrate 14 to which the glass substrate 10 is bonded is bonded to the upper surface of the adhesive sheet 16. The adhesive sheet 16 (also referred to as a dicing sheet or dicing tape) has an adhesive layer on the upper surface, and the entire lower surface 14b of the fixed substrate 14 is in close contact with the adhesive layer. As described above, the fixed substrate 14 is bonded and fixed to the adhesive sheet 16 on the entire surface of the lower surface 14b.
 図1に示すように、粘着シート16は、例えば円盤状に形成されており、その周縁部をステンレス製の枠部18で押さえられた状態で、ダイシング装置100の真空チャック20(基台)に吸着されて固定される。粘着シート16は、ポリエチレンテレフタラート樹脂(PET)フィルムの上面に、紫外線を照射すると粘着性を失うアクリル系の接着剤が塗布されたものを用いることができる。 As shown in FIG. 1, the pressure-sensitive adhesive sheet 16 is formed in a disk shape, for example, and is attached to the vacuum chuck 20 (base) of the dicing apparatus 100 with its peripheral edge pressed by a stainless steel frame 18. Adsorbed and fixed. As the pressure-sensitive adhesive sheet 16, a polyethylene terephthalate resin (PET) film having an upper surface coated with an acrylic adhesive that loses its tackiness when irradiated with ultraviolet rays can be used.
 なお、固定基板14をダイシング装置100の基台に固定する方法は、粘着シート16による方法に限定されるものではない。例えば、固定基板14と基台との間に、熱によって融解するワックスを用いて固定基板14を基台に固定してもよい。また、電磁波の照射又は熱によって粘着力を失う接着剤を用いて固定基板14をダイシング装置100の基台に固定してもよい。固定基板14を完全に切断しないのであれば、基台として真空チャックや静電チャックを用いて固定基板14を直接載置して吸着させてもよい。 The method for fixing the fixed substrate 14 to the base of the dicing apparatus 100 is not limited to the method using the adhesive sheet 16. For example, the fixed substrate 14 may be fixed to the base using wax that melts by heat between the fixed substrate 14 and the base. Alternatively, the fixed substrate 14 may be fixed to the base of the dicing apparatus 100 using an adhesive that loses adhesive force due to irradiation of electromagnetic waves or heat. If the fixed substrate 14 is not completely cut, the fixed substrate 14 may be directly placed and sucked using a vacuum chuck or an electrostatic chuck as a base.
 ダイシング装置100は、真空チャック20(基台)と、ブレード24と、ブレード駆動部22とを備えてなる。切断対象となるガラス基板10は、固定基板14及び粘着シート16を介して真空チャック20に固定される。 The dicing apparatus 100 includes a vacuum chuck 20 (base), a blade 24, and a blade driving unit 22. The glass substrate 10 to be cut is fixed to the vacuum chuck 20 via the fixed substrate 14 and the adhesive sheet 16.
 その後、ブレード駆動部22によって駆動されたブレード24でガラス基板10の切断領域54aを切断してゆく。ブレード24によるガラス基板10の切断は、図4に示すように、ガラス基板10の台座部54を貫通する深さまでブレード24を入れて切断して行う。これにより、ガラス基板10の切断面52(図3A参照)のチッピングを防止することができる。 Thereafter, the cutting region 54 a of the glass substrate 10 is cut by the blade 24 driven by the blade driving unit 22. The cutting of the glass substrate 10 by the blade 24 is performed by inserting the blade 24 to a depth that penetrates the pedestal 54 of the glass substrate 10 as shown in FIG. Thereby, the chipping of the cut surface 52 (refer FIG. 3A) of the glass substrate 10 can be prevented.
 なお、切断領域54aの幅は、ブレード24の幅に応じて決まる。切断領域54aの幅は、例えば、0.01mm~0.5mmとすることができる。また、ブレード24の移動速度は、例えば、1mm/秒~10mm/秒とすることができる。 Note that the width of the cutting region 54 a is determined according to the width of the blade 24. The width of the cutting region 54a can be set to 0.01 mm to 0.5 mm, for example. The moving speed of the blade 24 can be set to 1 mm / second to 10 mm / second, for example.
 ガラス基板10とともに、固定基板14を切り分けてもよい。この場合には、ガラス基板10の台座部54を貫通し、かつ固定基板14を貫通しない深さにブレード24を入れて切断を行う第1の切断工程を行う。これにより、ガラス基板10の切断時には、切断されていない硬い固定基板上にガラス基板10が固定されているため、チッピングの発生を防ぐことができる。その後、同じ部分について、固定基板14を貫通する深さにブレード24を入れて固定基板14を切り分ける第2の切断工程を行う。第2の切断工程では、固定基板14が切断されるが、固定基板14の下面14bは平坦な接着面であるため、振動が発生しにくくなっており、チッピングを起こすことはない。なお、第2の切断工程は、固定基板14の硬さ及び厚みに応じて複数回行ってもよい。このように複数回に分けて切断することで、ガラス基板10よりも硬い固定基板14を切断できる。 The fixed substrate 14 may be cut together with the glass substrate 10. In this case, a first cutting process is performed in which the blade 24 is inserted and cut to a depth that penetrates the pedestal 54 of the glass substrate 10 and does not penetrate the fixed substrate 14. Thereby, since the glass substrate 10 is being fixed on the hard fixed board | substrate which is not cut | disconnected at the time of the cutting | disconnection of the glass substrate 10, generation | occurrence | production of chipping can be prevented. Thereafter, a second cutting process is performed on the same portion to cut the fixed substrate 14 by inserting the blade 24 to a depth penetrating the fixed substrate 14. In the second cutting step, the fixed substrate 14 is cut. However, since the lower surface 14b of the fixed substrate 14 is a flat adhesive surface, vibration is unlikely to occur and chipping does not occur. Note that the second cutting step may be performed a plurality of times depending on the hardness and thickness of the fixed substrate 14. Thus, the fixed board | substrate 14 harder than the glass substrate 10 can be cut | disconnected by dividing | segmenting into multiple times.
 なお、ガラス基板10及び固定基板14の切断は1回の切断工程で行ってもよい。この場合であっても、固定基板14の下面14bの全面が粘着シート16に密着していることにより、チッピングを抑制できる。 The glass substrate 10 and the fixed substrate 14 may be cut in a single cutting process. Even in this case, the entire lower surface 14 b of the fixed substrate 14 is in close contact with the adhesive sheet 16, so that chipping can be suppressed.
 上記のように、固定基板14を完全に切断する場合であっても、固定基板14の下面14b全面が粘着シート16に密着しているため、固定基板14が粘着シート16によって確実に固定される。そのため、固定基板14及びガラス基板10の切断時の振動を抑制することができ、ガラス基板10にチッピングが発生するのを防止できる。 As described above, even when the fixed substrate 14 is completely cut, since the entire lower surface 14b of the fixed substrate 14 is in close contact with the adhesive sheet 16, the fixed substrate 14 is securely fixed by the adhesive sheet 16. . Therefore, the vibration at the time of cutting of the fixed substrate 14 and the glass substrate 10 can be suppressed, and chipping can be prevented from occurring in the glass substrate 10.
 ガラス基板10及び固定基板14の切断後は、粘着シート16の下面側から紫外光を照射する。これにより粘着シート16の粘着層の粘着性が失われ、ガラス基板10及び固定基板14を粘着シート16から容易に取り外すことができる。また、ガラス基板10と固定基板14とは、溶剤などにより接着剤12を除去することで分離できる。以上により、ガラス基板10の切断が完了する。 After the glass substrate 10 and the fixed substrate 14 are cut, ultraviolet light is irradiated from the lower surface side of the adhesive sheet 16. Thereby, the adhesiveness of the adhesive layer of the adhesive sheet 16 is lost, and the glass substrate 10 and the fixed substrate 14 can be easily detached from the adhesive sheet 16. Further, the glass substrate 10 and the fixed substrate 14 can be separated by removing the adhesive 12 with a solvent or the like. Thus, the cutting of the glass substrate 10 is completed.
 以下、本実施形態の種々の変形例について説明する。
(変形例1)
 変形例1に係るガラス基板30は、図5Aに示すように、上面37が平坦面によって構成されており、ガラス基板30の上面37にはレンズが設けられていない。ガラス基板30の下面38側には、複数のキャビティ34がマトリクス状に形成されている。ガラス基板30の切断領域35は、マトリクス状に配置されたキャビティ34の間に形成されている。変形例1のガラス基板30の厚みは、図4のガラス基板10(台座部54)の厚みよりも厚くなっている。その他の部分は図4のガラス基板10と同様である。
Hereinafter, various modifications of the present embodiment will be described.
(Modification 1)
As shown in FIG. 5A, the glass substrate 30 according to Modification 1 has an upper surface 37 that is a flat surface, and no lens is provided on the upper surface 37 of the glass substrate 30. A plurality of cavities 34 are formed in a matrix on the lower surface 38 side of the glass substrate 30. The cutting area 35 of the glass substrate 30 is formed between cavities 34 arranged in a matrix. The thickness of the glass substrate 30 of Modification 1 is thicker than the thickness of the glass substrate 10 (pedestal portion 54) in FIG. Other portions are the same as those of the glass substrate 10 of FIG.
 変形例1においても、ガラス基板30を固定基板14の上面14aに接着剤12を用いて貼り合わせ、その固定基板14の下面14bを粘着シート16に接着させる。固定基板14の材料及び厚みは図4を参照しつつ説明したものと同様とすることができる。その後、図1のダイシング装置100を用いてガラス基板30を切断することにより、図5Bに示すような、レンズのない透明封止部材36が得られる。 Also in Modification 1, the glass substrate 30 is bonded to the upper surface 14 a of the fixed substrate 14 using the adhesive 12, and the lower surface 14 b of the fixed substrate 14 is bonded to the adhesive sheet 16. The material and thickness of the fixed substrate 14 can be the same as those described with reference to FIG. Thereafter, the glass substrate 30 is cut using the dicing apparatus 100 of FIG. 1 to obtain a transparent sealing member 36 having no lens as shown in FIG. 5B.
 変形例1においても、ガラス基板30を固定基板14に貼り付けて切断するので、チッピングの発生率を抑制することができる。 Also in Modification 1, since the glass substrate 30 is attached to the fixed substrate 14 and cut, the occurrence rate of chipping can be suppressed.
(変形例2)
 変形例2に係るガラス基板40は、図6A及び図6Bに示すように下面58には、キャビティ60がアレイ状に形成されている。また、下面58には、縦方向及び横方向に伸びる複数の溝42が形成されている。縦方向に伸びる溝と横方向に伸びる溝は互いに交差している。これらの溝42は、第1の溝42aと第2の溝42bとで構成される。第1の溝42aは、キャビティ60と連通している。また、第2の溝42bは、キャビティ60の中間の領域に形成されている。これらの第1、第2の溝42a、42bは、キャビティ60内に屈折率整合剤を充填する際に、余分な屈折率整合剤の排出路を構成する。これにより、キャビティ60内の屈折率整合剤の気泡を除去することができる。
(Modification 2)
As for the glass substrate 40 which concerns on the modification 2, as shown to FIG. 6A and 6B, the cavity 60 is formed in the lower surface 58 at the array form. A plurality of grooves 42 extending in the vertical direction and the horizontal direction are formed in the lower surface 58. The grooves extending in the vertical direction and the grooves extending in the horizontal direction intersect each other. These grooves 42 are composed of a first groove 42a and a second groove 42b. The first groove 42 a communicates with the cavity 60. Further, the second groove 42 b is formed in an intermediate region of the cavity 60. These first and second grooves 42 a and 42 b constitute a discharge path for excess refractive index matching agent when the cavity 60 is filled with the refractive index matching agent. Thereby, bubbles of the refractive index matching agent in the cavity 60 can be removed.
 変形例2のガラス基板40は、溝42が形成されていることにより、図1に示すガラス基板10よりも更に下面58の面積が狭くなっている。そのため、固定が困難なことから切断時にチッピングを起こしやすい。このようなガラス基板40であっても、図6Cに示すように固定基板14に貼り付けて切断を行うことでチッピングを抑制することができる。なお、変形例3の固定基板14は、図4の固定基板14と同様である。 The area of the lower surface 58 of the glass substrate 40 of the modified example 2 is narrower than that of the glass substrate 10 shown in FIG. Therefore, since it is difficult to fix, chipping is likely to occur during cutting. Even with such a glass substrate 40, chipping can be suppressed by attaching and cutting to the fixed substrate 14 as shown in FIG. 6C. Note that the fixed substrate 14 of Modification 3 is the same as the fixed substrate 14 of FIG.
 このように、変形例2のガラス基板40のように下面に複数の溝42が形成されている場合であっても、固定基板14に貼り付けて切断することにより、チッピングの発生率を抑制できる。 As described above, even when the plurality of grooves 42 are formed on the lower surface as in the glass substrate 40 of Modification 2, the occurrence rate of chipping can be suppressed by being attached to the fixed substrate 14 and cutting. .
(変形例3)
 変形例3は、図7に示すように、上面に、LEDやLD等の光学素子62が実装された固定基板14A(実装基板)を用いてガラス基板10を切断する。光学素子62は、紫外光を出射する素子であり、例えばサファイヤ基板の上に、量子井戸構造を具備したGaN系結晶層が積層されて構成されている。光学素子62の実装方法としては、光出射面62aをガラス基板10に対向させて実装させる、いわゆるフェイスアップ実装を採用している。光学素子62から導出された端子と、固定基板14A上に形成された回路配線(図示せず)とはボンディングワイヤで電気的に接続されている。
(Modification 3)
In Modification 3, as shown in FIG. 7, the glass substrate 10 is cut using a fixed substrate 14A (mounting substrate) on which an optical element 62 such as an LED or LD is mounted on the upper surface. The optical element 62 is an element that emits ultraviolet light. For example, a GaN crystal layer having a quantum well structure is stacked on a sapphire substrate. As a mounting method of the optical element 62, so-called face-up mounting is adopted in which the light emitting surface 62a is mounted facing the glass substrate 10. Terminals derived from the optical element 62 and circuit wiring (not shown) formed on the fixed substrate 14A are electrically connected by bonding wires.
 固定基板14Aは、アルミナ(ヤング率:340GPa)又は窒化アルミニウム(ヤング率:320GPa)を用いることができる。これらの材料は、ガラス基板10を構成する石英ガラス(ヤング率:72GPa)よりも高いヤング率を有するため、図4の固定基板14と同様に使用できる。 For the fixed substrate 14A, alumina (Young's modulus: 340 GPa) or aluminum nitride (Young's modulus: 320 GPa) can be used. Since these materials have a higher Young's modulus than the quartz glass (Young's modulus: 72 GPa) constituting the glass substrate 10, they can be used in the same manner as the fixed substrate 14 of FIG.
 ガラス基板10のキャビティ60は、光学素子62と同じピッチで配置されており、各々のキャビティ60は、光学素子62に対応する位置に設けられている。ガラス基板10の下面58には接着剤12が塗布される。その後、ガラス基板10は、キャビティ60が光学素子62を覆うように位置決めされて固定基板14Aに貼り付けられる。変形例3では、接着剤12として、接着力及び強度に優れるエポキシ接着剤を用いることが好ましい。 The cavities 60 of the glass substrate 10 are arranged at the same pitch as the optical elements 62, and each cavity 60 is provided at a position corresponding to the optical element 62. The adhesive 12 is applied to the lower surface 58 of the glass substrate 10. Thereafter, the glass substrate 10 is positioned so that the cavity 60 covers the optical element 62 and is attached to the fixed substrate 14A. In Modification 3, it is preferable to use an epoxy adhesive having excellent adhesive strength and strength as the adhesive 12.
 その後、図8Aに示すように、固定基板14Aを粘着シート16に接着し、さらに粘着シート16を介して真空チャック20の上面に固定する。次に、図1に示すダイシング装置100を用いてガラス基板10及び固定基板14Aを切断する。ガラス基板10及び固定基板14Aの切断は、まず、図8Aに示すように、ガラス基板10を貫通する深さにダイシング装置100のブレード24を入れて、ガラス基板10を切断する(第1の切断工程)。これにより、ガラス基板10の振動を防ぐことができ、ガラス基板10の切断面のチッピング発生率を抑制できる。 Thereafter, as shown in FIG. 8A, the fixed substrate 14A is bonded to the adhesive sheet 16, and further fixed to the upper surface of the vacuum chuck 20 via the adhesive sheet 16. Next, the glass substrate 10 and the fixed substrate 14A are cut using the dicing apparatus 100 shown in FIG. For cutting the glass substrate 10 and the fixed substrate 14A, first, as shown in FIG. 8A, the blade 24 of the dicing apparatus 100 is inserted to a depth penetrating the glass substrate 10 to cut the glass substrate 10 (first cutting). Process). Thereby, the vibration of the glass substrate 10 can be prevented and the chipping occurrence rate of the cut surface of the glass substrate 10 can be suppressed.
 その後、図8Bに示すように、第1の切断工程と同じ箇所について、固定基板14Aを貫通する深さにブレード24を入れて、固定基板14Aを完全に切断する(第2の切断工程)。固定基板14Aの下面は、平坦なので、粘着シート16によって確実に固定されるため、切断の振動が少なく、チッピングを発生することなく切断できる。なお、ガラス基板10及び固定基板14Aの切断は1回の切断工程で行ってもよい。 Thereafter, as shown in FIG. 8B, the blade 24 is inserted at a depth penetrating the fixed substrate 14A at the same position as in the first cutting step, and the fixed substrate 14A is completely cut (second cutting step). Since the lower surface of the fixed substrate 14A is flat, the fixing substrate 14A is securely fixed by the adhesive sheet 16, so that the vibration of cutting is small and cutting can be performed without causing chipping. The glass substrate 10 and the fixed substrate 14A may be cut in a single cutting process.
 また、固定基板14Aを切断する場合には、固定基板14Aの下にさらに、完全に切断されない別の固定基板を配置して切断を行ってもよい。また、固定基板14Aを完全に切断せずに所定の深さまで切断しておき、その後、その切れ込みに曲げ応力を加えることで切断する、いわゆるチョコレートブレーク法で切断してもよい。 Further, when cutting the fixed substrate 14A, another fixed substrate that is not completely cut may be arranged below the fixed substrate 14A for cutting. Alternatively, the fixed substrate 14A may be cut by a so-called chocolate break method in which the fixed substrate 14A is cut to a predetermined depth without being cut completely, and then the bending is applied to the cut.
 上記の方法でガラス基板10及び固定基板14Aを切断すると、図9Aの断面構造を有する光学部品70が得られる。この光学部品70は、上面に回路配線が形成されるとともに、光学素子62が実装された固定基板14Sと、その光学素子62を封止する透明封止部材50とを有している。そして、図9Bに示すように、透明封止部材50の端面52aと、固定基板14Sの端面14cとが面一に形成されている。透明封止部材50の端面52aは、欠けや傷が殆どなく、固定基板14Sの端面14cよりも面粗さが小さな平滑な面となる。 When the glass substrate 10 and the fixed substrate 14A are cut by the above method, the optical component 70 having the cross-sectional structure of FIG. 9A is obtained. The optical component 70 has circuit wiring formed on the upper surface, a fixed substrate 14S on which the optical element 62 is mounted, and a transparent sealing member 50 that seals the optical element 62. 9B, the end surface 52a of the transparent sealing member 50 and the end surface 14c of the fixed substrate 14S are formed flush with each other. The end surface 52a of the transparent sealing member 50 is a smooth surface having almost no chipping or scratches and having a smaller surface roughness than the end surface 14c of the fixed substrate 14S.
 以上のような変形例3のガラス基板の切断方法によれば、ガラス基板10とともに光学素子62を実装した固定基板14Aを切り分けることで、透明封止部材50と同時に透明封止部材50によって封止された光学素子62を有する固定基板14Sが得られる。その結果、光学部品70のパッケージを容易に製造することができる。また、透明封止部材50と固定基板14Aとを一括して切り分けるため、個別の透明封止部材50と固定基板14Sとの位置決めが不要となる。また、透明封止部材50の端面52aと固定基板14Sの端面14cとが面一に形成されるため、外部から衝撃が加わっても透明封止部材50が固定基板14Sから外れる可能性が低くなるとともに、透明封止部材50に応力が集中してクラックが発生するのを防止できる。 According to the method for cutting a glass substrate of Modification 3 as described above, the fixing substrate 14A on which the optical element 62 is mounted together with the glass substrate 10 is cut, so that the transparent sealing member 50 and the transparent sealing member 50 simultaneously seal it. The fixed substrate 14S having the optical element 62 thus obtained is obtained. As a result, the package of the optical component 70 can be easily manufactured. In addition, since the transparent sealing member 50 and the fixed substrate 14A are cut together, positioning of the individual transparent sealing member 50 and the fixed substrate 14S becomes unnecessary. Further, since the end surface 52a of the transparent sealing member 50 and the end surface 14c of the fixed substrate 14S are formed flush with each other, the possibility that the transparent sealing member 50 is detached from the fixed substrate 14S is reduced even when an impact is applied from the outside. In addition, it is possible to prevent the stress from concentrating on the transparent sealing member 50 and generating cracks.
(変形例4)
 変形例4では、図10に示すように、上面に凹部64が形成された固定基板14Bを用いてガラス基板10の切断を行う。固定基板14Bには、ガラス基板10のキャビティ60に対応する部分に凹部64が形成されている。その凹部64には、紫外光を出射する光学素子62が実装されている。固定基板14Bの、凹部64以外の上面14aは、平坦に形成されており、接着剤12を介してガラス基板10の下面58と接合されている。
(Modification 4)
In the modification 4, as shown in FIG. 10, the glass substrate 10 is cut | disconnected using the fixed board | substrate 14B in which the recessed part 64 was formed in the upper surface. A concave portion 64 is formed in the fixed substrate 14B at a portion corresponding to the cavity 60 of the glass substrate 10. An optical element 62 that emits ultraviolet light is mounted in the recess 64. The upper surface 14a of the fixed substrate 14B other than the concave portion 64 is formed flat and joined to the lower surface 58 of the glass substrate 10 with the adhesive 12 interposed therebetween.
 変形例4の固定基板14Bは、下面15が平坦に形成されており、その下面15の全面が粘着シート16と密着して固定される。したがって、ダイシング装置100のブレード24で、ガラス基板10を切断する際に、切削抵抗による振動を、固定基板14Bで抑制することができ、切断領域54aでチッピングが発生するのを防止できる。 The bottom surface 15 of the fixed substrate 14B of Modification 4 is formed flat, and the entire bottom surface 15 is fixed in close contact with the adhesive sheet 16. Therefore, when the glass substrate 10 is cut by the blade 24 of the dicing apparatus 100, vibration due to cutting resistance can be suppressed by the fixed substrate 14B, and chipping can be prevented from occurring in the cutting region 54a.
 また、変形例4のガラス基板10の切断方法によっても、光学部品のパッケージを容易に製造できるとともに、透明封止部材50と固定基板14Bとの位置ずれを抑制できる。 Also, the method of cutting the glass substrate 10 according to the modified example 4 can easily manufacture an optical component package, and can suppress displacement between the transparent sealing member 50 and the fixed substrate 14B.
 以下、実施例1~8、比較例及び参考例を参照しつつ、種々の固定基板を用いてガラス基板を切断して、チッピング発生率を評価した結果について説明する。なお、実施例1~8、比較例及び参考例では、いずれも石英ガラスよりなるガラス基板を用いた。これらのガラス基板は、粉末焼結法により作製した。これらのガラス基板のヤング率は、いずれも72GPaである。 Hereinafter, the results of evaluating the chipping occurrence rate by cutting glass substrates using various fixed substrates will be described with reference to Examples 1 to 8, Comparative Examples, and Reference Examples. In Examples 1 to 8, Comparative Example, and Reference Example, a glass substrate made of quartz glass was used. These glass substrates were produced by a powder sintering method. The Young's modulus of these glass substrates is 72 GPa.
(実施例1)
 実施例1のガラス基板は、図11に示すように、面積が2025mm2の正方形状であり、一辺の長さが45mmであり、その反りは0.05mmであった。なお、反りは共焦点レーザ顕微鏡を用いて、基板角部と基板中心部の高さを測定し、その差を反りとした。このガラス基板の下面には、面積4.0mm2の正方形状のキャビティが100個形成されている。ガラス基板に占めるキャビティの面積の比率は20%である。ガラス基板の上面には半球状のレンズが100個形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.5mmである。
Example 1
As shown in FIG. 11, the glass substrate of Example 1 had a square shape with an area of 2025 mm 2 , a side length of 45 mm, and a warpage of 0.05 mm. In addition, the warp measured the height of a board | substrate corner | angular part and a board | substrate center part using the confocal laser microscope, and made the difference the curvature. On the lower surface of the glass substrate, 100 square cavities having an area of 4.0 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 20%. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.5 mm.
 このようなガラス基板を、図12に示すように窒化アルミニウム(AlN)よりなる厚さが0.3mmの基板にエポキシ接着剤で接合した。本実施例の固定基板の反りは0.10mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.35mmのブレードを6mm/秒で移動させながらガラス基板及び固定基板の切断を行った。この切断は、ガラス基板を切断する切断工程と、固定基板を切断する切断工程との2回の切断工程で行った。 Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG. The warpage of the fixed substrate in this example was 0.10 mm. Thereafter, the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.35 mm at 6 mm / second as shown in FIG. This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例1では、チッピング発生率は1%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 1, the chipping occurrence rate was 1%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(実施例2)
 実施例2では、実施例1のガラス基板よりも面積及び厚みを小さくした。すなわち、実施例2のガラス基板は、図11に示すように、面積が625mm2の正方形状であり、一辺の長さが25mmであり、その反りは0.02mmであった。このガラス基板の下面には、面積4.0mm2の正方形状のキャビティが25個形成されている。ガラス基板に占めるキャビティの面積の比率は16%である。ガラス基板の上面には半球状のレンズが25個形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.3mmである。
(Example 2)
In Example 2, the area and thickness were made smaller than the glass substrate of Example 1. That is, as shown in FIG. 11, the glass substrate of Example 2 had a square shape with an area of 625 mm 2 , a side length of 25 mm, and a warpage of 0.02 mm. Twenty-five square cavities having an area of 4.0 mm 2 are formed on the lower surface of the glass substrate. The ratio of the cavity area to the glass substrate is 16%. Twenty-five hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (thickness of the glass substrate) is 0.3 mm.
 このようなガラス基板を、図12に示すように窒化アルミニウム(AlN)よりなる厚さが0.3mmの基板にエポキシ接着剤で接合した。本実施例の固定基板の反りは0.05mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.40mmのブレードを6mm/秒で移動させながらガラス基板及び固定基板の切断を行った。この切断は、ガラス基板を切断する切断工程と、固定基板を切断する切断工程との2回の切断工程で行った。 Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG. The warpage of the fixed substrate in this example was 0.05 mm. Thereafter, the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.40 mm at 6 mm / second as shown in FIG. This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例2では、チッピング発生率は0%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 2, the chipping occurrence rate was 0%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(実施例3)
 実施例3では、実施例1のガラス基板よりも厚みを大きくするとともに、レンズを無くし、キャビティを大型化した。すなわち、実施例3のガラス基板は、図11に示すように、面積が1600mm2の正方形状であり、一辺の長さが40mmであり、その反りは0.04mmであった。このガラス基板の下面には、面積6.8mm2の正方形状のキャビティが100個形成されている。ガラス基板に占めるキャビティの面積の比率は42%である。ガラス基板の上面にはレンズが形成されておらず、平坦となっている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.90mmである。
Example 3
In Example 3, the thickness was made larger than that of the glass substrate of Example 1, the lens was removed, and the cavity was enlarged. That is, as shown in FIG. 11, the glass substrate of Example 3 had a square shape with an area of 1600 mm 2 , a side length of 40 mm, and a warpage of 0.04 mm. On the lower surface of the glass substrate, 100 square cavities having an area of 6.8 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 42%. A lens is not formed on the upper surface of the glass substrate and is flat. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.90 mm.
 このようなガラス基板を、図12に示すように窒化アルミニウム(AlN)よりなる厚さが0.3mmの基板にエポキシ接着剤で接合した。本実施例の固定基板の反りは0.08mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.20mmのブレードを3mm/秒で移動させながらガラス基板及び固定基板の切断を行った。この切断は、ガラス基板を切断する切断工程と、固定基板を切断する切断工程との2回の切断工程で行った。 Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG. The warpage of the fixed substrate in this example was 0.08 mm. Thereafter, the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.20 mm at 3 mm / second as shown in FIG. This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例3では、チッピング発生率は4%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 3, the chipping occurrence rate was 4%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(実施例4)
 実施例4では、実施例1のガラス基板よりも面積及び厚みを大きくするとともに、キャビティを大型化し、よりチッピングが発生しやすい条件とした。すなわち、実施例4のガラス基板は、図11に示すように、面積が3025mm2の正方形状であり、一辺の長さが55mmであり、その反りは0.10mmであった。このガラス基板の下面には、面積7.1mm2の円形のキャビティが121個形成されている。ガラス基板に占めるキャビティの面積の比率は28%である。ガラス基板の上面には121個の半球形のレンズが形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、2.00mmである。
Example 4
In Example 4, the area and thickness were made larger than those of the glass substrate of Example 1, the cavity was enlarged, and chipping was more likely to occur. That is, as shown in FIG. 11, the glass substrate of Example 4 had a square shape with an area of 3025 mm 2 , a side length of 55 mm, and a warpage of 0.10 mm. On the lower surface of the glass substrate, 121 circular cavities having an area of 7.1 mm 2 are formed. The ratio of the cavity area in the glass substrate is 28%. 121 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 2.00 mm.
 このようなガラス基板を、図12に示すようにアルミナ(Al23)よりなる厚さが0.3mmの基板にエポキシ接着剤で接合した。本実施例の固定基板の反りは0.12mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.20mmのブレードを6mm/秒で移動させながらガラス基板及び固定基板の切断を行った。この切断は、ガラス基板を切断する2回の切断工程と、固定基板を切断する1回の切断工程との3回の切断工程で行った。 Such a glass substrate was joined with an epoxy adhesive to a substrate made of alumina (Al 2 O 3 ) having a thickness of 0.3 mm as shown in FIG. The warpage of the fixed substrate in this example was 0.12 mm. Thereafter, the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.20 mm at 6 mm / second as shown in FIG. This cutting was performed in three cutting steps including two cutting steps for cutting the glass substrate and one cutting step for cutting the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例4では、チッピング発生率は6%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 4, the chipping occurrence rate was 6%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(実施例5)
 実施例5では、実施例1のガラス基板よりも、キャビティを大型化したものを切断した。すなわち、実施例5のガラス基板は、図11に示すように、面積が1600mm2の正方形状であり、一辺の長さが40mmであり、その反りは0.04mmであった。このガラス基板の下面には、面積6.8mm2の正方形状のキャビティが121個形成されている。ガラス基板に占めるキャビティの面積の比率は51%である。ガラス基板の上面には121個の半球形のレンズが形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.50mmである。
(Example 5)
In Example 5, the larger cavity was cut from the glass substrate of Example 1. That is, as shown in FIG. 11, the glass substrate of Example 5 was a square shape with an area of 1600 mm 2 , the length of one side was 40 mm, and the warpage was 0.04 mm. On the lower surface of the glass substrate, 121 square cavities having an area of 6.8 mm 2 are formed. The ratio of the cavity area in the glass substrate is 51%. 121 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
 このようなガラス基板を、図12に示すように窒化アルミニウム(AlN)よりなる厚さが0.3mmの基板にエポキシ接着剤で接合した。本実施例の固定基板の反りは0.08mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.05mmのブレードを6mm/秒で移動させながらガラス基板及び固定基板の切断を行った。この切断は、ガラス基板を切断する切断工程と、固定基板を切断する切断工程との2回の切断工程で行った。 Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG. The warpage of the fixed substrate in this example was 0.08 mm. Thereafter, the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.05 mm at 6 mm / second as shown in FIG. This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例5では、チッピング発生率は3%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 5, the chipping occurrence rate was 3%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(実施例6)
 実施例6では、実施例5のガラス基板の下面に溝を形成したものを切断した。すなわち、実施例6のガラス基板は、図11に示すように、面積が1600mm2の正方形状であり、一辺の長さが40mmであり、その反りは0.04mmであった。このガラス基板の下面には、面積6.8mm2の正方形状のキャビティが121個形成されている。また、ガラス基板の下面には、図6Aに示す形状の複数の溝が形成されている。これらの溝の幅は、0.6mmである。ガラス基板に占めるキャビティ及び溝の面積の比率は57%である。ガラス基板の上面には121個の半球形のレンズが形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.50mmである。
(Example 6)
In Example 6, what formed the groove | channel in the lower surface of the glass substrate of Example 5 was cut | disconnected. That is, as shown in FIG. 11, the glass substrate of Example 6 had a square shape with an area of 1600 mm 2 , a side length of 40 mm, and a warpage of 0.04 mm. On the lower surface of the glass substrate, 121 square cavities having an area of 6.8 mm 2 are formed. A plurality of grooves having the shape shown in FIG. 6A is formed on the lower surface of the glass substrate. The width of these grooves is 0.6 mm. The ratio of the area of the cavity and groove in the glass substrate is 57%. 121 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
 このようなガラス基板を、図12に示すように窒化アルミニウム(AlN)よりなる厚さが0.3mmの基板にエポキシ接着剤で接合した。本実施例の固定基板の反りは0.08mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.05mmのブレードを6mm/秒で移動させながらガラス基板及び固定基板の切断を行った。この切断は、ガラス基板を切断する切断工程と、固定基板を切断する切断工程との2回の切断工程で行った。 Such a glass substrate was bonded with an epoxy adhesive to a substrate made of aluminum nitride (AlN) having a thickness of 0.3 mm as shown in FIG. The warpage of the fixed substrate in this example was 0.08 mm. Thereafter, the glass substrate and the fixed substrate were cut while being fixed to a vacuum chuck via an adhesive sheet and moving a blade having a width of 0.05 mm at 6 mm / second as shown in FIG. This cutting was performed in two cutting steps, a cutting step for cutting the glass substrate and a cutting step for cutting the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例6では、チッピング発生率は3%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 6, the chipping occurrence rate was 3%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(実施例7)
 実施例7では、実施例1のガラス基板と同等のものを、固定基板としてシリコン基板(シリコン単結晶基板)を用いて切断した。すなわち、実施例7のガラス基板は、図11に示すように、面積が2025mm2の正方形状であり、一辺の長さが45mmであり、その反りは0.05mmであった。このガラス基板の下面には、面積4.0mm2の正方形状のキャビティが100個形成されている。ガラス基板に占めるキャビティの面積の比率は20%である。ガラス基板の上面には半球状のレンズが100個形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.50mmである。
(Example 7)
In Example 7, the glass substrate equivalent to Example 1 was cut using a silicon substrate (silicon single crystal substrate) as a fixed substrate. That is, as shown in FIG. 11, the glass substrate of Example 7 was a square shape with an area of 2025 mm 2 , the length of one side was 45 mm, and the warpage was 0.05 mm. On the lower surface of the glass substrate, 100 square cavities having an area of 4.0 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 20%. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
 このようなガラス基板を、図12に示すようにシリコン単結晶(Si)よりなる厚さが0.5mmの基板にワックスを用いて接着した。本実施例の固定基板の反りは0.00mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.35mmのブレードを6mm/秒で移動させながらガラス基板の切断を行った。この切断は、ブレードをガラス基板を貫通し、かつ固定基板を貫通しない深さに入れた1回の切断工程で行った。 Such a glass substrate was bonded to a substrate made of silicon single crystal (Si) having a thickness of 0.5 mm using wax as shown in FIG. The warpage of the fixed substrate in this example was 0.00 mm. Then, it fixed to the vacuum chuck via the adhesive sheet, and as shown in FIG. 13, the glass substrate was cut | disconnected, moving a 0.35 mm-wide blade | blade at 6 mm / sec. This cutting was performed in a single cutting process in which the blade was inserted to a depth that penetrates the glass substrate and does not penetrate the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例7では、チッピング発生率は2%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 7, the chipping occurrence rate was 2%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(実施例8)
 実施例8では、実施例1のガラス基板と同等のものを、固定基板としてガラスを用いて切断した。すなわち、実施例8のガラス基板は、図11に示すように、面積が2025mm2の正方形状であり、一辺の長さが45mmであり、その反りは0.05mmであった。このガラス基板の下面には、面積4.0mm2の正方形状のキャビティが100個形成されている。ガラス基板に占めるキャビティの面積の比率は20%である。ガラス基板の上面には半球状のレンズが100個形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.50mmである。
(Example 8)
In Example 8, the glass substrate equivalent to that of Example 1 was cut using glass as a fixed substrate. That is, as shown in FIG. 11, the glass substrate of Example 8 was a square shape with an area of 2025 mm 2 , the length of one side was 45 mm, and the warpage was 0.05 mm. On the lower surface of the glass substrate, 100 square cavities having an area of 4.0 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 20%. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
 このようなガラス基板を、図12に示すようにガラス(ヤング率:70GPa)よりなる厚さが1.00mmの基板にワックスを用いて接着した。本実施例の固定基板の反りは0.00mmであった。その後、粘着シートを介して真空チャックに固定して図13に示すように、幅0.35mmのブレードを6mm/秒で移動させながらガラス基板の切断を行った。この切断は、ブレードをガラス基板を貫通し、かつ固定基板を貫通しない深さに入れた1回の切断工程で行った。 Such a glass substrate was bonded to a substrate having a thickness of 1.00 mm made of glass (Young's modulus: 70 GPa) using wax as shown in FIG. The warpage of the fixed substrate in this example was 0.00 mm. Then, it fixed to the vacuum chuck via the adhesive sheet, and as shown in FIG. 13, the glass substrate was cut | disconnected, moving a 0.35 mm-wide blade | blade at 6 mm / sec. This cutting was performed in a single cutting process in which the blade was inserted to a depth that penetrates the glass substrate and does not penetrate the fixed substrate.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。実施例8では、チッピング発生率は2%であり、固定基板によるチッピング発生率の抑制効果が確認できた。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In Example 8, the chipping occurrence rate was 2%, and the effect of suppressing the chipping occurrence rate by the fixed substrate was confirmed.
(比較例)
 比較例では、実施例1のガラス基板と同等のガラス基板を固定基板を用いないで切断した。すなわち、比較例のガラス基板は、図11に示すように、面積が2025mm2の正方形状であり、一辺の長さが45mmであり、その反りは0.05mmであった。このガラス基板の下面には、面積4.0mm2の正方形状のキャビティが100個形成されている。ガラス基板に占めるキャビティの面積の比率は20%である。ガラス基板の上面には半球状のレンズが100個形成されている。また、キャビティ間の切断領域の厚み(ガラス基板の厚み)は、0.50mmである。
(Comparative example)
In the comparative example, a glass substrate equivalent to the glass substrate of Example 1 was cut without using a fixed substrate. That is, as shown in FIG. 11, the glass substrate of the comparative example was a square shape with an area of 2025 mm 2 , the length of one side was 45 mm, and the warpage was 0.05 mm. On the lower surface of the glass substrate, 100 square cavities having an area of 4.0 mm 2 are formed. The ratio of the area of the cavity to the glass substrate is 20%. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting area between the cavities (the thickness of the glass substrate) is 0.50 mm.
 このようなガラス基板を、図12に示すように粘着シートに貼り付けて固定した。この粘着シートはPET樹脂(ヤング率:4GPa)にアクリル接着剤よりなる粘着層が形成されたものである。粘着シートを真空チャックに固定して図13に示すように、幅0.35mmのブレードを6mm/秒で移動させながらガラス基板の切断を行った。この切断は、ブレードをガラス基板を貫通し、かつ粘着シートを貫通しない深さに入れた1回の切断工程で行った。 Such a glass substrate was attached and fixed to an adhesive sheet as shown in FIG. This pressure-sensitive adhesive sheet is obtained by forming a pressure-sensitive adhesive layer made of an acrylic adhesive on a PET resin (Young's modulus: 4 GPa). The adhesive sheet was fixed to a vacuum chuck, and the glass substrate was cut while moving a blade having a width of 0.35 mm at 6 mm / second as shown in FIG. This cutting was performed in a single cutting step in which the blade was inserted to a depth that penetrates the glass substrate and does not penetrate the adhesive sheet.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。比較例では、チッピング発生率は60%であり、固定基板を用いない場合には、チッピングが多発してしまうことがわかる。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In the comparative example, the chipping occurrence rate is 60%, and it can be seen that chipping frequently occurs when a fixed substrate is not used.
(参考例)
 参考例は、下面にキャビティが形成されていないガラス基板を用いて固定基板を使用せずに切断したものである。すなわち、参考例のガラス基板は、図11に示すように、面積が2025mm2の正方形状であり、一辺の長さが45mmであり、その反りは0.05mmであった。このガラス基板の下面にはキャビティが形成されておらず、平坦面となっている。ガラス基板の上面には半球状のレンズが100個形成されている。また、切断領域の厚み(ガラス基板の厚み)は、0.50mmである。
(Reference example)
In the reference example, a glass substrate having no cavity formed on the lower surface is cut without using a fixed substrate. That is, as shown in FIG. 11, the glass substrate of the reference example had a square shape with an area of 2025 mm 2 , a side length of 45 mm, and a warpage of 0.05 mm. No cavity is formed on the lower surface of the glass substrate, which is a flat surface. 100 hemispherical lenses are formed on the upper surface of the glass substrate. The thickness of the cutting region (the thickness of the glass substrate) is 0.50 mm.
 このようなガラス基板を、図12に示すように粘着シートに貼り付けて固定した。この粘着シートはPET樹脂(ヤング率:4GPa)にアクリル接着剤よりなる粘着層が形成されたものである。粘着シートを真空チャックに固定して図13に示すように、幅0.35mmのブレードを6mm/秒で移動させながらガラス基板の切断を行った。この切断は、ブレードをガラス基板を貫通し、かつ粘着シートを貫通しない深さに入れた1回の切断工程で行った。 Such a glass substrate was attached and fixed to an adhesive sheet as shown in FIG. This pressure-sensitive adhesive sheet is obtained by forming a pressure-sensitive adhesive layer made of an acrylic adhesive on a PET resin (Young's modulus: 4 GPa). The adhesive sheet was fixed to a vacuum chuck, and the glass substrate was cut while moving a blade having a width of 0.35 mm at 6 mm / second as shown in FIG. This cutting was performed in a single cutting step in which the blade was inserted to a depth that penetrates the glass substrate and does not penetrate the adhesive sheet.
 その後、切断して得られた透明封止部材について、光学顕微鏡(倍率50倍)により観察し、目視によりチッピングが発生している透明封止部材の個数をカウントし、チッピング発生率を求めた。参考例では、チッピング発生率は3%に留まり、キャビティを無くすとチッピング発生率が減少することがわかる。この結果から、チッピングは、ガラス基板にキャビティを設けることにより発生することがわかる。 Thereafter, the transparent sealing member obtained by cutting was observed with an optical microscope (50 times magnification), and the number of transparent sealing members on which chipping occurred was counted visually to determine the chipping occurrence rate. In the reference example, the chipping occurrence rate remains at 3%, and it can be seen that the chipping occurrence rate decreases when the cavity is eliminated. From this result, it can be seen that chipping occurs by providing a cavity in the glass substrate.
(第2の実施形態)
 本実施形態では、図14Aに示すガラス基板10Aの切断を行う。このガラス基板10Aは、その上面に複数のレンズ56が、マトリクス状に配置されている。そのガラス基板10Aの平坦な台座部54の表面には、複数のマークパターン80が形成されている。このマークパターン80は、図14Bに示すように、相対的に小さな第1のマーク82と、相対的に大きな第2のマーク84とを有している。
(Second Embodiment)
In the present embodiment, the glass substrate 10A shown in FIG. 14A is cut. The glass substrate 10A has a plurality of lenses 56 arranged in a matrix on the upper surface thereof. A plurality of mark patterns 80 are formed on the surface of the flat base portion 54 of the glass substrate 10A. As shown in FIG. 14B, the mark pattern 80 includes a relatively small first mark 82 and a relatively large second mark 84.
 第1のマーク82は、ガラス基板10Aのレンズ56の間にレンズ56と同じ配置間隔でマトリクス状に配置されている。これらの第1のマーク82は、ガラス基板10Aの切断領域の上に配置されている。第1のマーク82のX方及びY方向の幅は、切断領域よりも小さく形成されており、複数のレンズ56を切り分ける際にガラス基板10の切断領域とともに除去される。第1のマーク82のX方向及びY方向の幅は、例えば0.1mm~0.5mm程度とすることができる。 The first marks 82 are arranged in a matrix between the lenses 56 of the glass substrate 10A at the same arrangement interval as the lenses 56. These first marks 82 are arranged on the cutting area of the glass substrate 10A. The width of the first mark 82 in the X direction and the Y direction is smaller than the cutting area, and is removed together with the cutting area of the glass substrate 10 when the plurality of lenses 56 are cut. The width of the first mark 82 in the X direction and the Y direction can be set to, for example, about 0.1 mm to 0.5 mm.
 図15に示すように、第1のマーク82は、例えば矩形状の凹部として形成することができる。なお、第1のマーク82は、凹部に限定されるものではなく、凸部であってもよい。また、第1のマーク82は、印刷法などで顔料を塗布して形成したものであってもよい。第1のマーク82の形状は矩形に限定されるものではなく、例えば十字型、円形、楕円形、三角形等の多角形状であってもよい。さらに、第1のマーク82の設置位置は、ガラス基板10Aの上面57に限定されるものではなく、ガラス基板10Aの下面58に形成してもよく、上面57及び下面58の両面に形成してもよい。 As shown in FIG. 15, the first mark 82 can be formed as a rectangular recess, for example. The first mark 82 is not limited to the concave portion, and may be a convex portion. Further, the first mark 82 may be formed by applying a pigment by a printing method or the like. The shape of the first mark 82 is not limited to a rectangle, and may be a polygonal shape such as a cross, a circle, an ellipse, or a triangle. Furthermore, the installation position of the first mark 82 is not limited to the upper surface 57 of the glass substrate 10A, but may be formed on the lower surface 58 of the glass substrate 10A, or may be formed on both the upper surface 57 and the lower surface 58. Also good.
 上記の第1のマーク82は、ダイシング装置100(図1参照)にガラス基板10Aを載置した際に、切断位置合わせに利用することができる。すなわち、ダイシング装置100の切断予定ラインの上に第1のマーク82が位置するようにガラス基板10Aを配置することで、容易に位置合わせを行える。 The above-mentioned first mark 82 can be used for cutting position alignment when the glass substrate 10A is placed on the dicing apparatus 100 (see FIG. 1). That is, the glass substrate 10 </ b> A is arranged so that the first mark 82 is positioned on the planned cutting line of the dicing apparatus 100, so that the alignment can be easily performed.
 一方、第2のマーク84は、図14A及び図14Bに示すように、矩形状のガラス基板10Aの角部に一カ所だけ設けられている。この第2のマーク84は、図15に示すように、矩形状の凹部として形成することができる。なお、第2のマーク84は、凹部に限定されるものではなく、凸部であってもよく、顔料を塗布して形成したものであってもよい。また、第2のマーク84の形状は矩形状に限定されるものではなく、十字型、円形、楕円形、多角形状などに形成してもよい。第2のマーク84は、ガラス基板10Aの上面57及び下面58のいずれか一方又は両方に形成され得る。第2のマーク84のX方向及びY方向の幅は、例えば0.3mm~3mmとすることができる。 On the other hand, as shown in FIG. 14A and FIG. 14B, the second mark 84 is provided only in one corner at the corner of the rectangular glass substrate 10A. As shown in FIG. 15, the second mark 84 can be formed as a rectangular recess. Note that the second mark 84 is not limited to the concave portion, and may be a convex portion or may be formed by applying a pigment. The shape of the second mark 84 is not limited to a rectangular shape, and may be formed in a cross shape, a circular shape, an elliptical shape, a polygonal shape, or the like. The second mark 84 can be formed on one or both of the upper surface 57 and the lower surface 58 of the glass substrate 10A. The width in the X direction and the Y direction of the second mark 84 can be set to, for example, 0.3 mm to 3 mm.
 第2のマーク84は、第1のマーク82よりもX方向及びY方向の幅が大きいことから、第1のマーク82と容易に区別することができる。この第2のマーク84の位置を基準にとることで、ガラス基板10Aの向きを容易に特定することができる。また、第2のマーク84の位置を基準として、各レンズ56までの距離を検出することで、特定のレンズ56を識別できる。 The second mark 84 can be easily distinguished from the first mark 82 because the width in the X direction and the Y direction is larger than that of the first mark 82. By taking the position of the second mark 84 as a reference, the orientation of the glass substrate 10A can be easily specified. Further, the specific lens 56 can be identified by detecting the distance to each lens 56 with the position of the second mark 84 as a reference.
 上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。 In the above description, the present invention has been described with reference to preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Yes.

Claims (15)

  1.  一方の面に複数のキャビティ(60)が形成されたガラス基板(10)の切断方法であって、
     前記ガラス基板(10)と同等のヤング率またはそれ以上のヤング率を有する材料よりなる固定基板(14)の上面に、前記ガラス基板(10)のキャビティ(60)が形成された面を向い合せて貼り合わせる工程と、
     前記固定基板(14)の下面を基台(20)に固定する工程と、
     ダイシング装置(100)を用いて前記ガラス基板(10)に形成された複数のキャビティ(60)間の切断領域(54a)を切断することにより、前記複数のキャビティ(60)を切り分ける工程と、を有することを特徴とするガラス基板(10)の切断方法。
    A method of cutting a glass substrate (10) having a plurality of cavities (60) formed on one side,
    The upper surface of the fixed substrate (14) made of a material having a Young's modulus equal to or higher than that of the glass substrate (10) faces the surface of the glass substrate (10) where the cavity (60) is formed. And pasting together,
    Fixing the lower surface of the fixed substrate (14) to a base (20);
    Cutting the plurality of cavities (60) by cutting a cutting region (54a) between the plurality of cavities (60) formed in the glass substrate (10) using a dicing apparatus (100). A method for cutting a glass substrate (10), comprising:
  2.  請求項1記載のガラス基板(10)の切断方法において、前記固定基板(14)の下面全面が前記基台(20)に固定されていることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to claim 1, wherein the entire lower surface of the fixed substrate (14) is fixed to the base (20).
  3.  請求項1又は2記載のガラス基板(10)の切断方法であって、前記固定基板(14)は、ヤング率が50GPa~500GPaの材料よりなることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to claim 1 or 2, wherein the fixed substrate (14) is made of a material having a Young's modulus of 50 GPa to 500 GPa. .
  4.  請求項3記載のガラス基板(10)の切断方法であって、前記ガラス基板(10)は石英ガラスよりなり、前記固定基板(14)はヤング率が70GPa~340GPaの材料よりなることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to claim 3, wherein the glass substrate (10) is made of quartz glass, and the fixed substrate (14) is made of a material having a Young's modulus of 70 GPa to 340 GPa. A method for cutting the glass substrate (10).
  5.  請求項1~4のいずれか1項に記載のガラス基板(10)の切断方法であって、前記固定基板(14)は、シリコン基板、ガラス基板、アルミナ基板及び窒化アルミニウム基板であることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 4, wherein the fixed substrate (14) is a silicon substrate, a glass substrate, an alumina substrate, and an aluminum nitride substrate. A method for cutting the glass substrate (10).
  6.  請求項1~5のいずれか1項に記載のガラス基板(10)の切断方法であって、前記固定基板(14)の厚さは前記ガラス基板(10)の切断領域(54a)の厚さと同等又はこれよりも薄いことを特徴とするガラス基板(10)の切断方法。 The glass substrate (10) cutting method according to any one of claims 1 to 5, wherein the thickness of the fixed substrate (14) is equal to the thickness of the cutting region (54a) of the glass substrate (10). A method for cutting a glass substrate (10), which is equivalent or thinner than the above.
  7.  請求項1~6のいずれか1項に記載のガラス基板(10)の切断方法であって、前記ガラス基板(10)の切断領域(54a)の厚さが0.2mm~3.0mmであることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 6, wherein the thickness of the cutting region (54a) of the glass substrate (10) is 0.2 mm to 3.0 mm. A method for cutting a glass substrate (10), comprising:
  8.  請求項7記載のガラス基板(10)の切断方法であって、前記固定基板(14)の厚さが0.2mm~2.0mmであることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to claim 7, wherein the thickness of the fixed substrate (14) is 0.2 mm to 2.0 mm.
  9.  請求項1~8のいずれか1項に記載のガラス基板(10)の切断方法であって、前記ガラス基板(10)のキャビティ(60)が前記ガラス基板(10)に占める面積の割合が10%~60%であることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 8, wherein the area ratio of the cavity (60) of the glass substrate (10) to the glass substrate (10) is 10%. A method for cutting a glass substrate (10), characterized in that the percentage is from 60% to 60%.
  10.  請求項1~9のいずれか1項に記載のガラス基板(10)の切断方法であって、前記ガラス基板(10)の面積が400mm2~3600mm2であることを特徴とするガラス基板(10)の切断方法。 A method for cutting a glass substrate (10) according to any one of claims 1 to 9, a glass substrate (10, wherein the area of the glass substrate (10) is 400mm 2 ~ 3600mm 2 ) Cutting method.
  11.  請求項1~10のいずれか1項に記載のガラス基板(10)の切断方法であって、前記ガラス基板(10)は、接着剤により前記固定基板(14)に接合されていることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 10, wherein the glass substrate (10) is bonded to the fixed substrate (14) with an adhesive. A method for cutting the glass substrate (10).
  12.  請求項1~11のいずれか1項に記載のガラス基板(10)の切断方法であって、前記固定基板(14)は、粘着シート(16)を介して前記基台(20)に固定されることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 11, wherein the fixed substrate (14) is fixed to the base (20) via an adhesive sheet (16). A method for cutting a glass substrate (10), wherein:
  13.  請求項1~12のいずれか1項に記載のガラス基板(10)の切断方法であって、前記キャビティ(60)を切り分ける工程において、前記ガラス基板(10)とともに前記固定基板(14)も切り分けることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 12, wherein in the step of cutting the cavity (60), the fixed substrate (14) is cut together with the glass substrate (10). A method for cutting a glass substrate (10), comprising:
  14.  請求項1~13のいずれか1項に記載のガラス基板(10)の切断方法であって、前記キャビティ(60)に対向する部分の前記固定基板(14)の上面には光学素子(62)が実装されていることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 13, wherein an optical element (62) is provided on an upper surface of the fixed substrate (14) in a portion facing the cavity (60). Is mounted, A method for cutting a glass substrate (10).
  15.  請求項1~14のいずれか1項に記載のガラス基板(10)の切断方法であって、前記ガラス基板(10)との接着部分以外の前記固定基板(14)の上面に凹部(64)が形成されることを特徴とするガラス基板(10)の切断方法。 The method for cutting a glass substrate (10) according to any one of claims 1 to 14, wherein a concave portion (64) is formed on an upper surface of the fixed substrate (14) other than an adhesive portion with the glass substrate (10). A method for cutting a glass substrate (10), wherein:
PCT/JP2018/012416 2018-03-27 2018-03-27 Method of cutting glass substrate WO2019186693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/012416 WO2019186693A1 (en) 2018-03-27 2018-03-27 Method of cutting glass substrate
JP2020510236A JPWO2019186693A1 (en) 2018-03-27 2018-03-27 How to cut a glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012416 WO2019186693A1 (en) 2018-03-27 2018-03-27 Method of cutting glass substrate

Publications (1)

Publication Number Publication Date
WO2019186693A1 true WO2019186693A1 (en) 2019-10-03

Family

ID=68062621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012416 WO2019186693A1 (en) 2018-03-27 2018-03-27 Method of cutting glass substrate

Country Status (2)

Country Link
JP (1) JPWO2019186693A1 (en)
WO (1) WO2019186693A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022007642A (en) * 2020-06-26 2022-01-13 クアーズテック株式会社 Method for manufacturing silica glass cap, and silica glass cap
CN114188463A (en) * 2020-09-15 2022-03-15 丰田合成株式会社 Light emitting device
WO2022107571A1 (en) * 2020-11-20 2022-05-27 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and manufacturing method therefor
JP2023522535A (en) * 2021-01-14 2023-05-31 泉州三安半導体科技有限公司 LED light emitting device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019033A (en) * 2009-07-08 2011-01-27 Samsung Electronics Co Ltd Imaging device unit and electronic apparatus
JP2011087272A (en) * 2009-04-13 2011-04-28 Nippon Dempa Kogyo Co Ltd Method for manufacturing piezoelectric device, and the piezoelectric device
JP2011121817A (en) * 2009-12-10 2011-06-23 Seiko Instruments Inc Method for cutting joined glass, method for manufacturing package, package, piezoelectric vibrator, oscillator, electronic equipment and radio-controlled clock
JP2011137896A (en) * 2009-12-26 2011-07-14 Asahi Rubber Inc Lens array sheet and dicing method for the same
JP2012209617A (en) * 2011-03-29 2012-10-25 Seiko Instruments Inc Method of manufacturing piezoelectric vibrator, piezoelectric vibrator produced by the manufacturing method, and oscillator, electronic apparatus and electric wave clock having the piezoelectric vibrator
JP2015027671A (en) * 2014-09-04 2015-02-12 キヤノン株式会社 Vibration device, driving device with vibration device, dust removal device, and optical equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087272A (en) * 2009-04-13 2011-04-28 Nippon Dempa Kogyo Co Ltd Method for manufacturing piezoelectric device, and the piezoelectric device
JP2011019033A (en) * 2009-07-08 2011-01-27 Samsung Electronics Co Ltd Imaging device unit and electronic apparatus
JP2011121817A (en) * 2009-12-10 2011-06-23 Seiko Instruments Inc Method for cutting joined glass, method for manufacturing package, package, piezoelectric vibrator, oscillator, electronic equipment and radio-controlled clock
JP2011137896A (en) * 2009-12-26 2011-07-14 Asahi Rubber Inc Lens array sheet and dicing method for the same
JP2012209617A (en) * 2011-03-29 2012-10-25 Seiko Instruments Inc Method of manufacturing piezoelectric vibrator, piezoelectric vibrator produced by the manufacturing method, and oscillator, electronic apparatus and electric wave clock having the piezoelectric vibrator
JP2015027671A (en) * 2014-09-04 2015-02-12 キヤノン株式会社 Vibration device, driving device with vibration device, dust removal device, and optical equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022007642A (en) * 2020-06-26 2022-01-13 クアーズテック株式会社 Method for manufacturing silica glass cap, and silica glass cap
JP7379287B2 (en) 2020-06-26 2023-11-14 クアーズテック株式会社 Silica glass cap manufacturing method and silica glass cap
CN114188463A (en) * 2020-09-15 2022-03-15 丰田合成株式会社 Light emitting device
JP2022048933A (en) * 2020-09-15 2022-03-28 豊田合成株式会社 Light-emitting device
JP7400675B2 (en) 2020-09-15 2023-12-19 豊田合成株式会社 light emitting device
CN114188463B (en) * 2020-09-15 2024-04-16 丰田合成株式会社 Light emitting device
WO2022107571A1 (en) * 2020-11-20 2022-05-27 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and manufacturing method therefor
JP2023522535A (en) * 2021-01-14 2023-05-31 泉州三安半導体科技有限公司 LED light emitting device and manufacturing method thereof
JP7480313B2 (en) 2021-01-14 2024-05-09 泉州三安半導体科技有限公司 LED light emitting device and its manufacturing method

Also Published As

Publication number Publication date
JPWO2019186693A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2019186693A1 (en) Method of cutting glass substrate
TWI724985B (en) Method for producing a light emitting device
US8222120B2 (en) Method of dicing wafer using plasma
US8759123B2 (en) Method of manufacturing LED lamp
JP6504221B2 (en) Method of manufacturing light emitting device
CN101593932B (en) Light emitting device and method of manufacturing light emitting device
JP2007207921A (en) Method for manufacturing surface-mounting optical semiconductor device
JP6519221B2 (en) Glass substrate and laminate using the same
KR20090115803A (en) Led devices having lenses and methods of making same
WO2007061638A1 (en) Arrays of optical elements and method of manufacturing same
US9780275B2 (en) Method for manufacturing light emitting device
JP6776764B2 (en) Manufacturing method of light emitting device
KR20140002538A (en) Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
JP5599397B2 (en) Optoelectronic semiconductor device and manufacturing method thereof
US11404398B2 (en) Method of mounting semiconductor elements and method of manufacturing semiconductor device using a stretched film
US11145515B2 (en) Manufacturing method of semiconductor device with attached film
TWI542041B (en) A base for an optical semiconductor device and a method for manufacturing the same, and an optical semiconductor device
JP5350970B2 (en) Method for manufacturing light emitting device
US7470565B2 (en) Method of wafer level packaging and cutting
JP6349953B2 (en) Method for manufacturing light emitting device
JP7422526B2 (en) How to cut a laminate containing a silicone layer
JP3948992B2 (en) Micro optical element manufacturing method, micro optical element, optical pickup, and optical communication module
TWI852655B (en) Lamination apparatus and lamination method
JP2018101702A (en) Method for manufacturing light-emitting device
KR101071233B1 (en) Light-emitting diode and fabrication method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912931

Country of ref document: EP

Kind code of ref document: A1