WO2019186683A1 - Storage-type water heater - Google Patents

Storage-type water heater Download PDF

Info

Publication number
WO2019186683A1
WO2019186683A1 PCT/JP2018/012347 JP2018012347W WO2019186683A1 WO 2019186683 A1 WO2019186683 A1 WO 2019186683A1 JP 2018012347 W JP2018012347 W JP 2018012347W WO 2019186683 A1 WO2019186683 A1 WO 2019186683A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
heat
water storage
storage tank
temperature
Prior art date
Application number
PCT/JP2018/012347
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 柴崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020510227A priority Critical patent/JP6819815B2/en
Priority to PCT/JP2018/012347 priority patent/WO2019186683A1/en
Publication of WO2019186683A1 publication Critical patent/WO2019186683A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters

Definitions

  • This invention relates to a hot water storage type water heater.
  • Patent Document 1 discloses a hot water storage type water heater.
  • the hot water storage type hot water heater collects the hot water until the temperature of the hot water remaining in the heat source machine becomes lower than the temperature at the lower part of the hot water storage tank.
  • An object of the present invention is to provide a hot water storage type water heater that can efficiently recover the heat inside the heat source machine.
  • a hot water storage type water heater includes a hot water storage tank for storing hot water, a heat source machine including a heat pump cycle in which a water refrigerant heat exchanger, a compressor, an air heat exchanger, and an expansion valve are connected by a refrigerant circuit, A water circuit that connects the upper and lower parts of the hot water tank and the heat source unit, a bypass circuit that branches in the middle of the water circuit and connects the heat source unit and the lower part of the hot water tank, a circulation pump that circulates hot water in the water circuit, and a heat source After the boiling operation to store the hot water heated by the machine in the hot water storage tank is completed and the compressor stops, the heat source pump continues to be driven, and the heat inside the heat source machine is returned to the lower part of the hot water storage tank through the bypass circuit After the operation is completed and the heat recovery operation is completed, a reheat recovery operation is performed to return the heat inside the heat source unit to the lower part of the hot water storage tank through the bypass circuit when a preset start condition
  • the heat inside the heat source machine can be efficiently recovered.
  • FIG. 1 is a configuration diagram of a hot water storage type water heater in Embodiment 1.
  • FIG. 1 is a configuration diagram of a hot water storage type water heater in Embodiment 1.
  • FIG. 1 is a configuration diagram of a hot water storage type water heater in Embodiment 1.
  • FIG. FIG. 1 and FIG. 2 are block diagrams of a hot water storage type water heater in the first embodiment.
  • the HP unit 1 uses a heat pump cycle as a heat source machine. Specifically, in the HP unit 1, the air heat exchanger 2, the compressor 3, the primary side of the water-refrigerant heat exchanger 4, and the expansion valve 5 are annularly connected via a refrigerant pipe 6 serving as a refrigerant circuit. Is done. The inlet side of the secondary side of the water-refrigerant heat exchanger 4 is connected to the outlet side of the HP outgoing pipe 7 as a part of the water circuit.
  • the outlet side of the secondary side of the water refrigerant heat exchanger 4 is connected to the inlet side of the HP return pipe 8 as a part of the water circuit.
  • the tapping temperature thermistor 9 is provided on the outlet side of the secondary side of the water refrigerant heat exchanger 4 as a tapping temperature detector.
  • the air heat exchanger 2 is provided so that heat can be exchanged between the refrigerant in the refrigerant pipe 6 and the atmosphere.
  • the compressor 3 is provided so as to increase the temperature of the refrigerant by compressing the refrigerant.
  • the water-refrigerant heat exchanger 4 is provided so that heat can be exchanged between the refrigerant flowing on the primary side and the low-temperature water flowing on the secondary side. In the water-refrigerant heat exchanger 4, heat may be exchanged between the refrigerant flowing on the primary side and low-temperature water directly supplied from a water source such as water.
  • the expansion valve 5 is provided so that the temperature of the refrigerant can be lowered by expanding the refrigerant.
  • the hot water temperature thermistor 9 is provided so as to detect the temperature of the hot water after heat exchange.
  • the lower part of the hot water storage tank 11 is provided so that low-temperature water can flow in.
  • the upper part of the hot water storage tank 11 is provided so that high temperature water can flow in.
  • the upper part and the lower part of the hot water storage tank 11 are provided so that hot water having a temperature difference can be stored.
  • the lower part of the hot water storage tank 11 is connected to the inlet side of the HP outgoing pipe 7.
  • the hot water storage temperature sensor 12 and the hot water storage temperature sensor 13 are attached to the surface of the hot water storage tank 11 at different heights.
  • the hot water storage temperature sensor 13 is provided as a lower temperature detection device at a position where the volume from the lowermost portion of the hot water storage tank 11 is 40L.
  • the inlet side of the first water supply pipe 14a is connected to a water source such as a water supply.
  • the 1st water supply piping 14a is provided so that supply of water can be received from water sources, such as a water supply.
  • the inlet side of the second water supply pipe 14b is connected to the outlet side of the first water supply pipe 14a.
  • the inlet side of the third water supply pipe 14c is connected to the outlet side of the first water supply pipe 14a.
  • the outlet side of the third water supply pipe 14 c is connected to the lower part of the hot water storage tank 11.
  • the third water supply pipe 14 c is provided so that the water supplied from the first water supply pipe 14 a can flow into the hot water storage tank 11.
  • the pressure reducing valve 15 is provided on the outlet side of the first water supply pipe 14a.
  • the pressure reducing valve 15 is provided so that the pressure of the water supplied from the 1st water supply piping 14a can be adjusted.
  • the three-way valve 16 includes an a port, a b port, and a c port.
  • the three-way valve 16 is provided so that the flow path connecting the a port and the b port and the flow path connecting the a port and the c port can be switched.
  • the a port is connected to the outlet side of the HP return pipe 8.
  • the a port is provided so that hot water can flow from the HP return pipe 8.
  • the b port is provided so that hot water can flow out.
  • the c port is provided so that hot water can flow out.
  • the first bypass pipe 17 is provided as a bypass circuit that branches in the middle of the water circuit.
  • the inlet side of the first bypass pipe 17 is connected to the b port of the three-way valve 16.
  • the outlet side of the first bypass pipe 17 is connected to the lower part of the hot water storage tank 11.
  • the outlet side of the first bypass pipe 17 is provided at a position where the volume from the lowermost part of the hot water storage tank 11 is 20 L.
  • the hot water supply pipe 18 is provided as a part of the water circuit.
  • the inlet side of the hot water supply pipe 18 is connected to the c port of the three-way valve 16.
  • the outlet side of the hot water supply pipe 18 is connected to the upper part of the hot water storage tank 11.
  • the inlet side of the hot water supply pipe 19 is connected to the upper part of the hot water storage tank 11.
  • the hot water supply pipe 19 is provided so that hot water stored in the hot water storage tank 11 can be supplied to the outside of the hot water storage type hot water supply machine.
  • the hot water mixing valve 20 is connected to the outlet side of the second water supply pipe 14b.
  • the hot water supply mixing valve 20 is connected to the outlet side of the hot water supply pipe 19.
  • the hot water supply mixing valve 20 is provided so as to be able to generate hot water having a set temperature by adjusting the flow rate ratio between the hot water supplied from the hot water supply pipe 19 and the low temperature water supplied from the second water supply pipe 14b. It is done.
  • the inlet side of the first hot water supply pipe 21 is connected to the hot water mixing valve 20.
  • the first hot water supply pipe 21 is provided as a hot water supply circuit so as to be able to supply hot water supplied from the hot water supply mixing valve 20 to a faucet such as a shower or a currant (not shown).
  • the hot water supply flow sensor 22 is provided in the middle of the first hot water supply pipe 21.
  • the hot water flow rate sensor 22 is provided so as to detect the flow rate of hot water passing through the first hot water supply pipe 21.
  • the heat source pump 23 is provided in the middle of the HP outgoing pipe 7 as a circulation pump.
  • the heat source pump 23 is provided so that hot water can be circulated through various pipes of the tank unit 10.
  • the control unit 24 is electrically connected to the HP unit 1 and various devices of the tank unit 10.
  • the control part 24 is provided so that operation
  • control unit 24 detects the temperature distribution of the hot water in the hot water storage tank 11 based on the detection results of the hot water storage temperature sensor 12 and the hot water storage temperature sensor 13.
  • the control unit 24 grasps the amount of remaining hot water inside the hot water storage tank 11 based on the detection result of the temperature distribution of the hot water inside the hot water storage tank 11.
  • the control unit 24 controls the start and stop of the boiling operation for storing the hot water heated by the HP unit 1 in the hot water storage tank 11 based on the remaining hot water amount in the hot water storage tank 11.
  • the remote control device 25 is provided so as to be able to communicate with the control unit 24.
  • the remote control device 25 is provided so as to be able to accept an operation operation command from the outside, for example, an operation corresponding to a change in the set temperature.
  • the control unit 24 stops the compressor 3. Thereafter, the control unit 24 performs a heat recovery operation. Specifically, the control unit 24 continues to drive the heat source pump 23 and returns hot water to a position lower than the position of the hot water storage temperature sensor 13 in the hot water storage tank 11 through the first bypass pipe 17. As a result, the heat remaining in the compressor 3, the water refrigerant heat exchanger 4 and the like is recovered.
  • the control unit 24 temporarily stops the heat recovery operation. For example, when the temperature of the hot water inside the HP return pipe 8 and the temperature of the lower portion of the hot water storage tank 11 reach 30 ° C., the control unit 24 temporarily stops the heat recovery operation.
  • the temperature of the hot water remaining in the compressor 3, the water refrigerant heat exchanger 4 and the like gradually decreases.
  • the temperature of hot water remaining in the water-refrigerant heat exchanger 4 or the like decreases to 25 ° C.
  • the temperature of the lower part of the hot water storage tank 11 falls.
  • the temperature of the lower part of the hot water storage tank 11 is lowered to 9 ° C.
  • the temperature of the lower part of the hot water storage tank 11 becomes lower than the temperature of the hot water remaining in the compressor 3, the water refrigerant heat exchanger 4, and the like.
  • the control unit 24 performs the reheat recovery operation when a preset start condition is satisfied.
  • the reheat recovery operation is performed when the temperature detected by the hot water temperature thermistor 9 becomes higher than the temperature detected by the hot water storage temperature sensor 13.
  • the control unit 24 drives the heat source pump 23 again to return hot water to a position lower than the position of the hot water storage temperature sensor 13 in the hot water storage tank 11 through the first bypass pipe 17. Similar to the first heat recovery operation, when the temperature of the hot water inside the HP return pipe 8 and the temperature of the lower part of the hot water storage tank 11 become the same temperature, the control unit 24 stops the reheat recovery operation.
  • the control unit 24 performs the reheat recovery operation when a preset start condition is satisfied.
  • the reheat recovery operation is performed when the temperature detected by the hot water temperature thermistor 9 becomes higher than the temperature detected by the hot water storage temperature sensor 13. For this reason, the heat inside the HP unit 1 can be efficiently recovered.
  • the temperature detected by the hot water temperature thermistor 9 is a temperature obtained by adding a preset adjustment temperature ⁇ to the temperature detected by the hot water storage temperature sensor 13 or the outside air temperature detected by an outside air temperature detector (not shown). It is good also as a start condition of the reheat recovery operation. At this time, if the temperature detected by the hot water temperature thermistor 9 or the outside air temperature is a temperature obtained by adding a preset adjustment temperature ⁇ to the temperature detected by the hot water storage temperature sensor 13, the control unit 24 reheats. Do not perform recovery operation. Also in this case, the heat inside the HP unit 1 can be efficiently recovered.
  • the first bypass pipe 17 is connected to the lower part of the hot water storage tank 11 below the hot water storage temperature sensor 13. For this reason, the heat inside the HP unit 1 can be efficiently recovered.
  • the reheat recovery operation start condition may be set when the integrated value of the flow rate detected by the hot water supply flow rate sensor 22 after the boiling operation is completed reaches a preset value.
  • the amount of hot water in the hot water storage tank 11 is 30 L so that the integrated value of the flow rate detected by the hot water supply flow sensor 22 is larger than the volume value corresponding to the bottom of the hot water storage tank 11 and the outlet side of the first bypass pipe 17. It is good also as a start condition of a reheat recovery driving
  • the reheat recovery operation start condition may be set when the integrated value of the amount of heat calculated based on the flow rate of hot water detected by the hot water supply flow rate sensor 22 after the boiling operation is completed reaches a preset value. For example, when the hot water storage temperature is 80 ° C. and the water temperature is 9 ° C., the reheat recovery operation start condition is when the integrated value of heat reaches 9 MJ, which is the heat amount when the amount of hot water in the hot water storage tank 11 is reduced by 30 L It is good. Also in this case, the heat inside the HP unit 1 can be efficiently recovered.
  • the reheat recovery operation may not be performed. For example, when 1 hour has passed since the completion of boiling, the reheat recovery operation may not be performed. In this case, it is possible to prevent the reheat recovery operation from being performed unnecessarily.
  • the heat recovery operation or the reheat recovery operation may be stopped.
  • the heat recovery operation or the reheat recovery operation may be stopped when 8 minutes, which is a time required for recovering up to 40 L, which is the height of the hot water storage temperature sensor 13, when the circulation flow rate is 5 L / min. In this case, it is possible to prevent the heat recovery operation or the reheat recovery operation from being continued unnecessarily.
  • the heat recovery heat quantity may be calculated based on the temperature detected by the hot water temperature thermistor 9, the temperature detected by the hot water storage temperature sensor 13, and the amount of hot recoverable hot water in the lower part of the hot water storage tank 11.
  • the heat recovery efficiency may be calculated by dividing the heat recovery heat amount by the power consumption of the heat source pump 23 that is consumed in the heat recovery operation. For example, (temperature detected by hot water temperature thermistor 9 ⁇ temperature detected by hot water storage temperature sensor 13) ⁇ 40 L ⁇ specific heat of water / (predetermined power consumption of heat source pump 23 ⁇ 3 kW ⁇ 40 L / circulation flow rate 5 L / min) may be the heat recovery efficiency.
  • the heat recovery operation or the reheat recovery operation may not be performed.
  • the heat recovery efficiency does not exceed 3.0 of the rated efficiency of the HP unit 1
  • the heat recovery operation or the reheat recovery operation may not be performed. In this case, it is possible to prevent the heat recovery operation or the reheat recovery operation from being performed in an inefficient state.
  • the heat recovery operation or the reheat recovery operation may not be performed.
  • the heat recovery operation or the reheat recovery operation may not be performed. In this case, freezing of each pipe can be prevented by maintaining the remaining heat.
  • the rotation speed of the heat source pump 23 during the heat recovery operation or the reheat recovery operation may be set to a lower rotation speed than the rotation speed during the boiling operation. In this case, the stirring of the lower part of the hot water storage tank 11 can be suppressed.
  • the hot water storage type water heater according to the present invention can be used in a system that efficiently recovers the heat inside the heat source unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Provided is a storage-type water heater with which heat inside a heat source device can be recovered efficiently. This storage-type water heater comprises: a hot water storage tank for storing hot water; a heat source device equipped with a heat pump cycle wherein a water-refrigerant heat exchanger, a compressor, an air heat exchanger, and an expansion valve are connected in a refrigerant circuit; a water circuit connecting an upper part and a lower part of the hot water storage tank and the heat source device; a bypass circuit branching from partway along the water circuit and connecting the heat source device to the lower part of the hot water storage tank; a circulation pump for circulating hot water in the water circuit; and a control unit for carrying out a heat recovery operation wherein, after a boiling operation wherein hot water heated by the heat source device is stored in the hot water storage tank is completed and the compressor is stopped, driving of a heat source pump is continued and heat inside the heat source device is returned to the lower part of the hot water storage tank through the bypass circuit, and a secondary heat recovery operation wherein, when the heat recovery operation has been completed and a preset start condition has been satisfied, the heat inside the heat source device is returned to the lower part of the hot water storage tank through the bypass circuit.

Description

貯湯式給湯機Hot water storage water heater
 この発明は、貯湯式給湯機に関する。 This invention relates to a hot water storage type water heater.
 特許文献1は、貯湯式給湯機を開示する。貯湯式給湯機は、熱源機の内部に残った湯水の温度が貯湯タンクの下部の温度よりも低くなるまで当該湯水を回収する。 Patent Document 1 discloses a hot water storage type water heater. The hot water storage type hot water heater collects the hot water until the temperature of the hot water remaining in the heat source machine becomes lower than the temperature at the lower part of the hot water storage tank.
日本特開2008-249247号公報Japanese Unexamined Patent Publication No. 2008-249247
 しかしながら、特許文献1に記載の貯湯式給湯機においては、熱源機の内部に残った湯の回収が完了すると、残熱が回収しきれず大気に放熱される。このため、熱を回収する効率が下がる。 However, in the hot water storage type water heater described in Patent Document 1, when the recovery of the hot water remaining in the heat source device is completed, the residual heat cannot be recovered and is radiated to the atmosphere. For this reason, the efficiency which collect | recovers heat falls.
 この発明は、上述の課題を解決するためになされた。この発明の目的は、熱源機の内部の熱を効率的に回収することができる貯湯式給湯機を提供することである。 This invention has been made to solve the above-mentioned problems. An object of the present invention is to provide a hot water storage type water heater that can efficiently recover the heat inside the heat source machine.
 この発明に係る貯湯式給湯機は、湯水を貯留する貯湯タンクと、水冷媒熱交換器と圧縮機と空気熱交換器と膨張弁とが冷媒回路で接続されたヒートポンプサイクルを備える熱源機と、貯湯タンクの上部および下部と熱源機とをつなぐ水回路と、水回路の途中で分岐して熱源機と貯湯タンクの下部とをつなぐバイパス回路と、水回路の湯水を循環させる循環ポンプと、熱源機で加熱された湯を貯湯タンクに貯める沸き上げ運転が完了し、圧縮機が停止した後に熱源ポンプの駆動を継続させ、熱源機の内部の熱をバイパス回路を通じて貯湯タンクの下部に戻す熱回収運転を実施し、当該熱回収運転が完了した後、予め設定された開始条件が成立した場合に、熱源機の内部の熱をバイパス回路を通じて貯湯タンクの下部に戻す再熱回収運転を実施する制御部と、を備えた。 A hot water storage type water heater according to the present invention includes a hot water storage tank for storing hot water, a heat source machine including a heat pump cycle in which a water refrigerant heat exchanger, a compressor, an air heat exchanger, and an expansion valve are connected by a refrigerant circuit, A water circuit that connects the upper and lower parts of the hot water tank and the heat source unit, a bypass circuit that branches in the middle of the water circuit and connects the heat source unit and the lower part of the hot water tank, a circulation pump that circulates hot water in the water circuit, and a heat source After the boiling operation to store the hot water heated by the machine in the hot water storage tank is completed and the compressor stops, the heat source pump continues to be driven, and the heat inside the heat source machine is returned to the lower part of the hot water storage tank through the bypass circuit After the operation is completed and the heat recovery operation is completed, a reheat recovery operation is performed to return the heat inside the heat source unit to the lower part of the hot water storage tank through the bypass circuit when a preset start condition is satisfied. A control unit that, with a.
 この発明によれば、熱源機の内部の熱を効率的に回収することができる。 According to this invention, the heat inside the heat source machine can be efficiently recovered.
実施の形態1における貯湯式給湯機の構成図である。1 is a configuration diagram of a hot water storage type water heater in Embodiment 1. FIG. 実施の形態1における貯湯式給湯機の構成図である。1 is a configuration diagram of a hot water storage type water heater in Embodiment 1. FIG.
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。 DETAILED DESCRIPTION Embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the part which is the same or it corresponds in each figure. The overlapping explanation of the part is appropriately simplified or omitted.
実施の形態1.
 図1と図2とは実施の形態1における貯湯式給湯機の構成図である。HPユニット1は、熱源機として、ヒートポンプサイクルを利用する。具体的には、HPユニット1において、空気熱交換器2と圧縮機3と水冷媒熱交換器4の1次側と膨張弁5とは、冷媒回路としての冷媒配管6を介して環状に接続される。水冷媒熱交換器4の2次側の入側は、水回路の一部としてのHP往き配管7の出側に接続される。水冷媒熱交換器4の2次側の出側は、水回路の一部としてのHP戻り配管8の入側に接続される。HPユニット1において、出湯温度サーミスタ9は、出湯温度検出装置として、水冷媒熱交換器4の2次側の出側に設けられる。
Embodiment 1 FIG.
FIG. 1 and FIG. 2 are block diagrams of a hot water storage type water heater in the first embodiment. The HP unit 1 uses a heat pump cycle as a heat source machine. Specifically, in the HP unit 1, the air heat exchanger 2, the compressor 3, the primary side of the water-refrigerant heat exchanger 4, and the expansion valve 5 are annularly connected via a refrigerant pipe 6 serving as a refrigerant circuit. Is done. The inlet side of the secondary side of the water-refrigerant heat exchanger 4 is connected to the outlet side of the HP outgoing pipe 7 as a part of the water circuit. The outlet side of the secondary side of the water refrigerant heat exchanger 4 is connected to the inlet side of the HP return pipe 8 as a part of the water circuit. In the HP unit 1, the tapping temperature thermistor 9 is provided on the outlet side of the secondary side of the water refrigerant heat exchanger 4 as a tapping temperature detector.
 空気熱交換器2は、冷媒配管6の冷媒と大気中との間で熱交換を行い得るように設けられる。圧縮機3は、冷媒を圧縮することにより冷媒の温度を上げ得るように設けられる。水冷媒熱交換器4は、1次側に流れる冷媒と2次側に流れる低温水との間で熱交換を行い得るように設けられる。水冷媒熱交換器4において、1次側に流れる冷媒と水道等の水源から直接供給される低温水との間で熱交換してもよい。膨張弁5は、冷媒を膨張させることにより冷媒の温度を下げ得るように設けられる。出湯温度サーミスタ9は、熱交換後の湯の温度を検出し得るように設けられる。 The air heat exchanger 2 is provided so that heat can be exchanged between the refrigerant in the refrigerant pipe 6 and the atmosphere. The compressor 3 is provided so as to increase the temperature of the refrigerant by compressing the refrigerant. The water-refrigerant heat exchanger 4 is provided so that heat can be exchanged between the refrigerant flowing on the primary side and the low-temperature water flowing on the secondary side. In the water-refrigerant heat exchanger 4, heat may be exchanged between the refrigerant flowing on the primary side and low-temperature water directly supplied from a water source such as water. The expansion valve 5 is provided so that the temperature of the refrigerant can be lowered by expanding the refrigerant. The hot water temperature thermistor 9 is provided so as to detect the temperature of the hot water after heat exchange.
 タンクユニット10において、貯湯タンク11の下部は、低温水が流入され得るように設けられる。貯湯タンク11の上部は、高温水が流入され得るように設けられる。貯湯タンク11の上部と下部とは、温度差が生じた湯水を貯留し得るように設けられる。貯湯タンク11の下部は、HP往き配管7の入側に接続される。貯湯温度センサ12と貯湯温度センサ13とは、貯湯タンク11の表面に高さを変えて取り付けられる。例えば、貯湯温度センサ13は、下部温度検出装置として、貯湯タンク11の最下部からの容積が40Lとなる位置に設けられる。 In the tank unit 10, the lower part of the hot water storage tank 11 is provided so that low-temperature water can flow in. The upper part of the hot water storage tank 11 is provided so that high temperature water can flow in. The upper part and the lower part of the hot water storage tank 11 are provided so that hot water having a temperature difference can be stored. The lower part of the hot water storage tank 11 is connected to the inlet side of the HP outgoing pipe 7. The hot water storage temperature sensor 12 and the hot water storage temperature sensor 13 are attached to the surface of the hot water storage tank 11 at different heights. For example, the hot water storage temperature sensor 13 is provided as a lower temperature detection device at a position where the volume from the lowermost portion of the hot water storage tank 11 is 40L.
 第1給水配管14aの入側は、水道等の水源に接続される。第1給水配管14aは、水道等の水源から水の供給を受け得るように設けられる。第2給水配管14bの入側は、第1給水配管14aの出側に接続される。第3給水配管14cの入側は、第1給水配管14aの出側に接続される。第3給水配管14cの出側は、貯湯タンク11の下部に接続される。第3給水配管14cは、第1給水配管14aから供給された水を貯湯タンク11の内部に流入させ得るように設けられる。 The inlet side of the first water supply pipe 14a is connected to a water source such as a water supply. The 1st water supply piping 14a is provided so that supply of water can be received from water sources, such as a water supply. The inlet side of the second water supply pipe 14b is connected to the outlet side of the first water supply pipe 14a. The inlet side of the third water supply pipe 14c is connected to the outlet side of the first water supply pipe 14a. The outlet side of the third water supply pipe 14 c is connected to the lower part of the hot water storage tank 11. The third water supply pipe 14 c is provided so that the water supplied from the first water supply pipe 14 a can flow into the hot water storage tank 11.
 減圧弁15は、第1給水配管14aの出側に設けられる。減圧弁15は、第1給水配管14aから供給された水の圧力を調整し得るように設けられる。 The pressure reducing valve 15 is provided on the outlet side of the first water supply pipe 14a. The pressure reducing valve 15 is provided so that the pressure of the water supplied from the 1st water supply piping 14a can be adjusted.
 三方弁16は、aポートとbポートとcポートとを備える。三方弁16は、aポートとbポートをつなぐ流路とaポートとcポートをつなぐ流路とを切り替え得るように設けられる。aポートは、HP戻り配管8の出側に接続される。aポートは、湯水がHP戻り配管8から流入し得るように設けられる。bポートは、湯水が流出し得るように設けられる。cポートは、湯水が流出し得るように設けられる。 The three-way valve 16 includes an a port, a b port, and a c port. The three-way valve 16 is provided so that the flow path connecting the a port and the b port and the flow path connecting the a port and the c port can be switched. The a port is connected to the outlet side of the HP return pipe 8. The a port is provided so that hot water can flow from the HP return pipe 8. The b port is provided so that hot water can flow out. The c port is provided so that hot water can flow out.
 第1バイパス配管17は、水回路の途中で分岐するバイパス回路として設けられる。第1バイパス配管17の入側は、三方弁16のbポートに接続される。第1バイパス配管17の出側は、貯湯タンク11の下部に接続される。例えば、第1バイパス配管17の出側は、貯湯タンク11の最下部からの容積が20Lの容積となる位置に設けられる。送湯配管18は、水回路の一部として設けられる。送湯配管18の入側は、三方弁16のcポートに接続される。送湯配管18の出側は、貯湯タンク11の上部に接続される。給湯配管19の入側は、貯湯タンク11の上部に接続される。給湯配管19は、貯湯タンク11の内部に貯留された湯を貯湯式給湯機の外部へ供給し得るように設けられる。 The first bypass pipe 17 is provided as a bypass circuit that branches in the middle of the water circuit. The inlet side of the first bypass pipe 17 is connected to the b port of the three-way valve 16. The outlet side of the first bypass pipe 17 is connected to the lower part of the hot water storage tank 11. For example, the outlet side of the first bypass pipe 17 is provided at a position where the volume from the lowermost part of the hot water storage tank 11 is 20 L. The hot water supply pipe 18 is provided as a part of the water circuit. The inlet side of the hot water supply pipe 18 is connected to the c port of the three-way valve 16. The outlet side of the hot water supply pipe 18 is connected to the upper part of the hot water storage tank 11. The inlet side of the hot water supply pipe 19 is connected to the upper part of the hot water storage tank 11. The hot water supply pipe 19 is provided so that hot water stored in the hot water storage tank 11 can be supplied to the outside of the hot water storage type hot water supply machine.
 給湯用混合弁20は、第2給水配管14bの出側に接続される。給湯用混合弁20は、給湯配管19の出側に接続される。給湯用混合弁20は、給湯配管19から供給される高温湯と第2給水配管14bから供給される低温水との流量比を調整することにより設定された温度の湯を生成し得るように設けられる。 The hot water mixing valve 20 is connected to the outlet side of the second water supply pipe 14b. The hot water supply mixing valve 20 is connected to the outlet side of the hot water supply pipe 19. The hot water supply mixing valve 20 is provided so as to be able to generate hot water having a set temperature by adjusting the flow rate ratio between the hot water supplied from the hot water supply pipe 19 and the low temperature water supplied from the second water supply pipe 14b. It is done.
 第1給湯配管21の入側は、給湯用混合弁20に接続される。第1給湯配管21は、給湯回路として、給湯用混合弁20から供給される湯水を図示されないシャワー、カラン等の蛇口に供給し得るように設けられる。給湯用流量センサ22は、第1給湯配管21の途中に設けられる。給湯用流量センサ22は、第1給湯配管21を通過する湯水の流量を検出し得るように設けられる。 The inlet side of the first hot water supply pipe 21 is connected to the hot water mixing valve 20. The first hot water supply pipe 21 is provided as a hot water supply circuit so as to be able to supply hot water supplied from the hot water supply mixing valve 20 to a faucet such as a shower or a currant (not shown). The hot water supply flow sensor 22 is provided in the middle of the first hot water supply pipe 21. The hot water flow rate sensor 22 is provided so as to detect the flow rate of hot water passing through the first hot water supply pipe 21.
 熱源ポンプ23は、循環ポンプとして、HP往き配管7の途中に設けられる。熱源ポンプ23は、タンクユニット10の各種配管に湯水を循環させ得るように設けられる。 The heat source pump 23 is provided in the middle of the HP outgoing pipe 7 as a circulation pump. The heat source pump 23 is provided so that hot water can be circulated through various pipes of the tank unit 10.
 制御部24は、HPユニット1および、タンクユニット10の各種機器と電気的に接続される。制御部24は、これらの機器の動作を制御し得るように設けられる。 The control unit 24 is electrically connected to the HP unit 1 and various devices of the tank unit 10. The control part 24 is provided so that operation | movement of these apparatuses can be controlled.
 例えば、制御部24は、貯湯温度センサ12と貯湯温度センサ13との検出結果に基づいて貯湯タンク11の内部の湯水の温度分布を検出する。制御部24は、貯湯タンク11の内部の湯水の温度分布の検出結果に基づいて貯湯タンク11の内部の残湯量を把握する。制御部24は、貯湯タンク11の内部の残湯量に基づいてHPユニット1で加熱された湯を貯湯タンク11の内部に貯める沸き上げ運転の開始および停止を制御する。 For example, the control unit 24 detects the temperature distribution of the hot water in the hot water storage tank 11 based on the detection results of the hot water storage temperature sensor 12 and the hot water storage temperature sensor 13. The control unit 24 grasps the amount of remaining hot water inside the hot water storage tank 11 based on the detection result of the temperature distribution of the hot water inside the hot water storage tank 11. The control unit 24 controls the start and stop of the boiling operation for storing the hot water heated by the HP unit 1 in the hot water storage tank 11 based on the remaining hot water amount in the hot water storage tank 11.
 リモコン装置25は、制御部24と相互通信し得るように設けられる。リモコン装置25は、外部からの運転動作指令、例えば、設定温度の変更に対応した操作を受け付け得るように設けられる。 The remote control device 25 is provided so as to be able to communicate with the control unit 24. The remote control device 25 is provided so as to be able to accept an operation operation command from the outside, for example, an operation corresponding to a change in the set temperature.
 沸き上げ運転が完了すると、制御部24は、圧縮機3を停止させる。その後、制御部24は、熱回収運転を実施する。具体的には、制御部24は、熱源ポンプ23の駆動を継続させ、第1バイパス配管17を通じて貯湯タンク11において貯湯温度センサ13の位置よりも低い位置に湯を戻す。その結果、圧縮機3、水冷媒熱交換器4等に残った熱が回収される。 When the boiling operation is completed, the control unit 24 stops the compressor 3. Thereafter, the control unit 24 performs a heat recovery operation. Specifically, the control unit 24 continues to drive the heat source pump 23 and returns hot water to a position lower than the position of the hot water storage temperature sensor 13 in the hot water storage tank 11 through the first bypass pipe 17. As a result, the heat remaining in the compressor 3, the water refrigerant heat exchanger 4 and the like is recovered.
 この際、図1に示されるように、HP戻り配管8の内部の湯の温度と貯湯タンク11の下部の温度とが同じ温度になると、制御部24は、熱回収運転を一旦停止する。例えば、HP戻り配管8の内部の湯の温度と貯湯タンク11の下部の温度とが30℃になると、制御部24は、熱回収運転を一旦停止する。 At this time, as shown in FIG. 1, when the temperature of the hot water inside the HP return pipe 8 and the temperature of the lower portion of the hot water storage tank 11 become the same temperature, the control unit 24 temporarily stops the heat recovery operation. For example, when the temperature of the hot water inside the HP return pipe 8 and the temperature of the lower portion of the hot water storage tank 11 reach 30 ° C., the control unit 24 temporarily stops the heat recovery operation.
 この後、圧縮機3、水冷媒熱交換器4等に残った湯の温度は、徐々に下がっていく。例えば、水冷媒熱交換器4等に残った湯の温度は、25℃まで下がっていく。この状態において、給湯が行われると、水が貯湯タンク11の下部に流入する。このため、図2に示されるように、貯湯タンク11の下部の温度が下がる。例えば、貯湯タンク11の下部の温度が9℃まで下がる。その結果、貯湯タンク11の下部の温度は、圧縮機3、水冷媒熱交換器4等に残った湯の温度よりも低くなる。 Thereafter, the temperature of the hot water remaining in the compressor 3, the water refrigerant heat exchanger 4 and the like gradually decreases. For example, the temperature of hot water remaining in the water-refrigerant heat exchanger 4 or the like decreases to 25 ° C. In this state, when hot water is supplied, water flows into the lower part of the hot water storage tank 11. For this reason, as FIG. 2 shows, the temperature of the lower part of the hot water storage tank 11 falls. For example, the temperature of the lower part of the hot water storage tank 11 is lowered to 9 ° C. As a result, the temperature of the lower part of the hot water storage tank 11 becomes lower than the temperature of the hot water remaining in the compressor 3, the water refrigerant heat exchanger 4, and the like.
 そこで、制御部24は、予め設定された開始条件が成立した場合に再熱回収運転を実施する。例えば、出湯温度サーミスタ9の検出温度が貯湯温度センサ13の検出温度よりも高くなった際に再熱回収運転を実施する。具体的には、制御部24は、熱源ポンプ23を再び駆動させ、第1バイパス配管17を通じて貯湯タンク11において貯湯温度センサ13の位置よりも低い位置に湯を戻す。最初の熱回収運転と同様に、HP戻り配管8の内部の湯の温度と貯湯タンク11の下部の温度とが同じ温度になると、制御部24は、再熱回収運転を停止する。 Therefore, the control unit 24 performs the reheat recovery operation when a preset start condition is satisfied. For example, the reheat recovery operation is performed when the temperature detected by the hot water temperature thermistor 9 becomes higher than the temperature detected by the hot water storage temperature sensor 13. Specifically, the control unit 24 drives the heat source pump 23 again to return hot water to a position lower than the position of the hot water storage temperature sensor 13 in the hot water storage tank 11 through the first bypass pipe 17. Similar to the first heat recovery operation, when the temperature of the hot water inside the HP return pipe 8 and the temperature of the lower part of the hot water storage tank 11 become the same temperature, the control unit 24 stops the reheat recovery operation.
 以上で説明した実施の形態1によれば、制御部24は、予め設定された開始条件が成立した場合に再熱回収運転を実施する。例えば、出湯温度サーミスタ9により検出された温度が貯湯温度センサ13により検出された温度よりも高くなった際に再熱回収運転を実施する。このため、HPユニット1の内部の熱を効率的に回収することができる。 According to the first embodiment described above, the control unit 24 performs the reheat recovery operation when a preset start condition is satisfied. For example, the reheat recovery operation is performed when the temperature detected by the hot water temperature thermistor 9 becomes higher than the temperature detected by the hot water storage temperature sensor 13. For this reason, the heat inside the HP unit 1 can be efficiently recovered.
 なお、出湯温度サーミスタ9により検出された温度が貯湯温度センサ13により検出された温度または図示されない外気温検出装置等に検出された外気温度に対して予め設定された調整温度αを加えた温度となったときを再熱回収運転の開始条件としてもよい。この際、出湯温度サーミスタ9により検出された温度または外気温度が貯湯温度センサ13により検出された温度に対して予め設定された調整温度αを加えた温度であれば、制御部24は、再熱回収運転を実施しない。この場合も、HPユニット1の内部の熱を効率的に回収することができる。 Note that the temperature detected by the hot water temperature thermistor 9 is a temperature obtained by adding a preset adjustment temperature α to the temperature detected by the hot water storage temperature sensor 13 or the outside air temperature detected by an outside air temperature detector (not shown). It is good also as a start condition of the reheat recovery operation. At this time, if the temperature detected by the hot water temperature thermistor 9 or the outside air temperature is a temperature obtained by adding a preset adjustment temperature α to the temperature detected by the hot water storage temperature sensor 13, the control unit 24 reheats. Do not perform recovery operation. Also in this case, the heat inside the HP unit 1 can be efficiently recovered.
 また、第1バイパス配管17は、貯湯温度センサ13よりも下方において貯湯タンク11の下部に接続される。このため、HPユニット1の内部の熱を効率的に回収することができる。 The first bypass pipe 17 is connected to the lower part of the hot water storage tank 11 below the hot water storage temperature sensor 13. For this reason, the heat inside the HP unit 1 can be efficiently recovered.
 なお、沸き上げ運転完了後に給湯用流量センサ22により検出した流量の積算値が予め設定された値に達したときを再熱回収運転の開始条件としてもよい。例えば、給湯用流量センサ22により検出した流量の積算値が貯湯タンク11の最下部から第1バイパス配管17の出側までに対応した容積の値よりも大きくなるように貯湯タンク11の湯量が30L減ったときを再熱回収運転の開始条件としてもよい。この場合も、HPユニット1の内部の熱を効率的に回収することができる。 It should be noted that the reheat recovery operation start condition may be set when the integrated value of the flow rate detected by the hot water supply flow rate sensor 22 after the boiling operation is completed reaches a preset value. For example, the amount of hot water in the hot water storage tank 11 is 30 L so that the integrated value of the flow rate detected by the hot water supply flow sensor 22 is larger than the volume value corresponding to the bottom of the hot water storage tank 11 and the outlet side of the first bypass pipe 17. It is good also as a start condition of a reheat recovery driving | operation when it reduces. Also in this case, the heat inside the HP unit 1 can be efficiently recovered.
 また、沸き上げ運転完了後に給湯用流量センサ22により検出した湯水の流量に基づいて算出された熱量の積算値が予め設定された値に達したときを再熱回収運転の開始条件としてもよい。例えば、貯湯温度が80℃であり、水温が9℃の場合に、熱量の積算値が貯湯タンク11の湯量が30L減った場合の熱量である9MJに達したときを再熱回収運転の開始条件としてもよい。この場合も、HPユニット1の内部の熱を効率的に回収することができる。 Also, the reheat recovery operation start condition may be set when the integrated value of the amount of heat calculated based on the flow rate of hot water detected by the hot water supply flow rate sensor 22 after the boiling operation is completed reaches a preset value. For example, when the hot water storage temperature is 80 ° C. and the water temperature is 9 ° C., the reheat recovery operation start condition is when the integrated value of heat reaches 9 MJ, which is the heat amount when the amount of hot water in the hot water storage tank 11 is reduced by 30 L It is good. Also in this case, the heat inside the HP unit 1 can be efficiently recovered.
 また、出湯温度サーミスタ9により検出された温度が予め設定されたときまたは沸き上げ完了後から予め設定された時間が経過したときに、再熱回収運転を実施しなくてもよい。例えば、沸き上げ完了後から1時間が経過した場合、再熱回収運転を実施しなくてもよい。この場合、再熱回収運転が無用に実施されることを防止できる。 Further, when the temperature detected by the tapping temperature thermistor 9 is set in advance or when a preset time has elapsed after the completion of boiling, the reheat recovery operation may not be performed. For example, when 1 hour has passed since the completion of boiling, the reheat recovery operation may not be performed. In this case, it is possible to prevent the reheat recovery operation from being performed unnecessarily.
 また、HP戻り配管8の内部の湯の温度と貯湯タンク11の下部の温度とが同じ温度にならずに最大回収時間が経過した場合、熱回収運転または再熱回収運転を停止してもよい。例えば、循環流量が5L/minで貯湯温度センサ13の高さの40Lまで回収するためにかかる時間である8分が経過した場合、熱回収運転または再熱回収運転を停止してもよい。この場合、熱回収運転または再熱回収運転が無用に継続されることを防止できる。 Further, when the maximum recovery time has elapsed without the temperature of the hot water inside the HP return pipe 8 and the temperature of the lower part of the hot water storage tank 11 being the same, the heat recovery operation or the reheat recovery operation may be stopped. . For example, the heat recovery operation or the reheat recovery operation may be stopped when 8 minutes, which is a time required for recovering up to 40 L, which is the height of the hot water storage temperature sensor 13, when the circulation flow rate is 5 L / min. In this case, it is possible to prevent the heat recovery operation or the reheat recovery operation from being continued unnecessarily.
 なお、出湯温度サーミスタ9により検出された温度と貯湯温度センサ13により検出された温度と貯湯タンク11の下部の熱回収可能湯量とに基づいて熱回収熱量を算出してもよい。当該熱回収熱量を熱回収運転で消費する熱源ポンプ23の消費電力量で除した熱回収効率を算出してもよい。例えば、(出湯温度サーミスタ9の検出された温度-貯湯温度センサ13により検出された温度)×40L×水の比熱/(熱源ポンプ23の予め決めた消費電力0.03kW×40L/循環流量5L/min)を熱回収効率とすればよい。当該熱回収効率が予め設定された効率を超えない場合、熱回収運転または再熱回収運転を実施しなくてもよい。例えば、当該熱回収効率がHPユニット1の定格効率の3.0を超えない場合、熱回収運転または再熱回収運転を実施しなくてもよい。この場合、熱回収運転または再熱回収運転が効率の悪い状態で実施されることを防止できる。 The heat recovery heat quantity may be calculated based on the temperature detected by the hot water temperature thermistor 9, the temperature detected by the hot water storage temperature sensor 13, and the amount of hot recoverable hot water in the lower part of the hot water storage tank 11. The heat recovery efficiency may be calculated by dividing the heat recovery heat amount by the power consumption of the heat source pump 23 that is consumed in the heat recovery operation. For example, (temperature detected by hot water temperature thermistor 9−temperature detected by hot water storage temperature sensor 13) × 40 L × specific heat of water / (predetermined power consumption of heat source pump 23 × 3 kW × 40 L / circulation flow rate 5 L / min) may be the heat recovery efficiency. When the heat recovery efficiency does not exceed a preset efficiency, the heat recovery operation or the reheat recovery operation may not be performed. For example, when the heat recovery efficiency does not exceed 3.0 of the rated efficiency of the HP unit 1, the heat recovery operation or the reheat recovery operation may not be performed. In this case, it is possible to prevent the heat recovery operation or the reheat recovery operation from being performed in an inefficient state.
 また、外気温度が予め設定された温度を超えない場合、熱回収運転または再熱回収運転を実施しなくてもよい。例えば、外気温度が0℃を超えない場合、熱回収運転または再熱回収運転を実施しなくてもよい。この場合、残った熱を維持することにより各配管の凍結を防止することができる。 In addition, when the outside air temperature does not exceed a preset temperature, the heat recovery operation or the reheat recovery operation may not be performed. For example, when the outside air temperature does not exceed 0 ° C., the heat recovery operation or the reheat recovery operation may not be performed. In this case, freezing of each pipe can be prevented by maintaining the remaining heat.
 また、熱回収運転時または再熱回収運転時の熱源ポンプ23の回転数を、沸き上げ運転時の回転数よりも低い回転数としてもよい。この場合、貯湯タンク11の下部の撹拌を抑制することができる。 Further, the rotation speed of the heat source pump 23 during the heat recovery operation or the reheat recovery operation may be set to a lower rotation speed than the rotation speed during the boiling operation. In this case, the stirring of the lower part of the hot water storage tank 11 can be suppressed.
 以上のように、この発明に係る貯湯式給湯機は、熱源機の内部の熱を効率的に回収するシステムに利用できる。 As described above, the hot water storage type water heater according to the present invention can be used in a system that efficiently recovers the heat inside the heat source unit.
 1 HPユニット、 2 空気熱交換器、 3 圧縮機、 4 水冷媒熱交換器、 5 膨張弁、 6 冷媒配管、 7 HP往き配管、 8 HP戻り配管、 9 出湯温度サーミスタ、 10 タンクユニット、 11 貯湯タンク、 12 貯湯温度センサ、 13 貯湯温度センサ、 14a 第1給水配管、 14b 第2給水配管、 14c 第3給水配管、 15 減圧弁、 16 三方弁、 17 第1バイパス配管、 18 送湯配管、 19 給湯配管、 20 給湯用混合弁、 21 第1給湯配管、 22 給湯用流量センサ、 23 熱源ポンプ、 24 制御部、 25 リモコン装置 1 HP unit, 2 air heat exchanger, 3 compressor, 4 water refrigerant heat exchanger, 5 expansion valve, 6 refrigerant piping, 7 HP forward piping, 8 HP return piping, 9 hot water temperature thermistor, 10 tank unit, 11 hot water storage Tank, 12 hot water storage temperature sensor, 13 hot water storage temperature sensor, 14a first water supply piping, 14b second water supply piping, 14c third water supply piping, 15 pressure reducing valve, 16 three-way valve, 17 first bypass piping, 18 hot water supply piping, 19 Hot water supply pipe, 20 hot water supply mixing valve, 21 first hot water supply pipe, 22 hot water flow sensor, 23 heat source pump, 24 control unit, 25 remote control device

Claims (9)

  1.  湯水を貯留する貯湯タンクと、
     水冷媒熱交換器と圧縮機と空気熱交換器と膨張弁とが冷媒回路で接続されたヒートポンプサイクルを備える熱源機と、
     前記貯湯タンクの上部および下部と前記熱源機とをつなぐ水回路と、
     前記水回路の途中で分岐して前記熱源機と前記貯湯タンクの下部とをつなぐバイパス回路と、
     前記水回路の湯水を循環させる循環ポンプと、
     前記熱源機で加熱された湯を前記貯湯タンクに貯める沸き上げ運転が完了し、前記圧縮機が停止した後に前記循環ポンプの駆動を継続させ、前記熱源機の内部の熱を前記バイパス回路を通じて前記貯湯タンクの下部に戻す熱回収運転を実施し、当該熱回収運転が完了した後、予め設定された開始条件が成立した場合に、前記熱源機の内部の熱を前記バイパス回路を通じて前記貯湯タンクの下部に戻す再熱回収運転を実施する制御部と、
    を備えた貯湯式給湯機。
    A hot water storage tank for storing hot water,
    A heat source machine comprising a heat pump cycle in which a water refrigerant heat exchanger, a compressor, an air heat exchanger, and an expansion valve are connected by a refrigerant circuit;
    A water circuit connecting the upper and lower parts of the hot water storage tank and the heat source unit;
    A bypass circuit that branches in the middle of the water circuit and connects the heat source machine and the lower part of the hot water storage tank;
    A circulation pump for circulating hot water in the water circuit;
    After the boiling operation for storing the hot water heated by the heat source device in the hot water storage tank is completed and the compressor is stopped, the driving of the circulation pump is continued, and the heat inside the heat source device is transmitted through the bypass circuit. When the heat recovery operation is performed to return to the lower part of the hot water storage tank and the preset start condition is satisfied after the heat recovery operation is completed, the heat inside the heat source unit is transferred to the hot water storage tank through the bypass circuit. A control unit for performing the reheat recovery operation to return to the lower part;
    Hot water storage water heater equipped with.
  2.  前記貯湯タンクの下部に設けられ、前記貯湯タンクの下部の温度を検出する下部温度検出装置と、
     前記熱源機に設けられ、前記水冷媒熱交換器の湯水の出側の温度を検出する出湯温度検出装置と、
    を備え、
     前記制御部は、前記出湯温度検出装置により検出された温度が前記下部温度検出装置により検出された温度に対して予め設定された調整温度を加えた温度となったときを前記開始条件とする請求項1に記載の貯湯式給湯機。
    A lower temperature detecting device that is provided at a lower portion of the hot water storage tank and detects a temperature of the lower portion of the hot water storage tank;
    A hot water temperature detection device that is provided in the heat source device and detects the temperature of the hot water outlet of the water-refrigerant heat exchanger;
    With
    The said control part makes it a said start condition when the temperature detected by the said tapping temperature detection apparatus turns into the temperature which added preset adjustment temperature with respect to the temperature detected by the said lower temperature detection apparatus. Item 2. A hot-water storage water heater according to item 1.
  3.  前記バイパス回路は、前記下部温度検出装置よりも下方において前記貯湯タンクの下部に接続された請求項2に記載の貯湯式給湯機。 The hot water storage type water heater according to claim 2, wherein the bypass circuit is connected to a lower part of the hot water storage tank below the lower temperature detecting device.
  4.  前記貯湯タンクの湯水を外部へ供給する給湯回路と、
     前記給湯回路を通過する湯水の流量を検出する流量センサと、
    を備え、
     前記制御部は、前記沸き上げ運転完了後から前記流量センサにより検出された湯水の流量の積算値が予め設定された値に達したときまたは当該湯水の流量に基づいて算出された熱量の積算値が予め設定された値に達したときを前記開始条件とする請求項1に記載の貯湯式給湯機。
    A hot water supply circuit for supplying hot water from the hot water storage tank to the outside;
    A flow rate sensor for detecting a flow rate of hot water passing through the hot water supply circuit;
    With
    The controller is configured such that when the integrated value of the flow rate of hot water detected by the flow sensor after the completion of the boiling operation reaches a preset value or based on the flow rate of the hot water, The hot water storage type hot water supply device according to claim 1, wherein the start condition is when the value reaches a preset value.
  5.  前記制御部は、前記出湯温度検出装置により検出された温度が予め設定された温度以下のときまたは前記沸き上げ運転完了後から予め設定された時間が経過したときには、前記開始条件となっても再熱回収運転を実施しない請求項2または請求項3に記載の貯湯式給湯機。 When the temperature detected by the tapping temperature detection device is equal to or lower than a preset temperature or when a preset time has elapsed after the completion of the boiling operation, the control unit re-starts even if the start condition is met. The hot water storage type hot water supply device according to claim 2 or 3, wherein the heat recovery operation is not performed.
  6.  前記制御部は、予め設定された最大回収時間が経過した場合に前記熱回収運転または前記再熱回収運転を停止する請求項1から請求項5のいずれか1項に記載の貯湯式給湯機。 The hot water storage type water heater according to any one of claims 1 to 5, wherein the control unit stops the heat recovery operation or the reheat recovery operation when a preset maximum recovery time has elapsed.
  7.  前記制御部は、前記出湯温度検出装置により検出された温度と前記下部温度検出装置により検出された温度と前記貯湯タンクの下部の熱回収可能湯量とに基づいて熱回収熱量を算出し、当該熱回収熱量を熱回収運転で消費する前記循環ポンプの消費電力量で除した熱回収効率を算出し、当該熱回収効率が予め設定された効率を超えない場合は、前記開始条件となっても、熱回収運転または再熱回収運転を実施しない請求項2または請求項3に記載の貯湯式給湯機。 The control unit calculates a heat recovery heat amount based on a temperature detected by the tapping temperature detection device, a temperature detected by the lower temperature detection device, and a heat recoverable hot water amount at a lower portion of the hot water storage tank, and the heat Calculate the heat recovery efficiency by dividing the recovered heat amount by the power consumption of the circulation pump that is consumed in the heat recovery operation, and if the heat recovery efficiency does not exceed the preset efficiency, The hot water storage type water heater according to claim 2 or 3, wherein the heat recovery operation or the reheat recovery operation is not performed.
  8.  前記制御部は、外気温度が予め設定された温度を超えない場合は、前記開始条件となっても、前記熱回収運転または前記再熱回収運転を実施しない請求項1から請求項7のいずれか1項に記載の貯湯式給湯機。 8. The controller according to claim 1, wherein the controller does not perform the heat recovery operation or the reheat recovery operation even if the start condition is satisfied when the outside air temperature does not exceed a preset temperature. The hot water storage type water heater according to item 1.
  9.  前記制御部は、前記熱回収運転時または前記再熱回収運転時の前記循環ポンプの回転数を、前記沸き上げ運転時の回転数よりも低い回転数とする請求項1から請求項8のいずれか1項に記載の貯湯式給湯機。 The said control part makes any rotation speed of the said circulation pump at the time of the said heat recovery operation or the said reheat recovery operation into a rotation speed lower than the rotation speed at the said boiling operation. The hot water storage type water heater according to claim 1.
PCT/JP2018/012347 2018-03-27 2018-03-27 Storage-type water heater WO2019186683A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510227A JP6819815B2 (en) 2018-03-27 2018-03-27 Hot water storage type water heater
PCT/JP2018/012347 WO2019186683A1 (en) 2018-03-27 2018-03-27 Storage-type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012347 WO2019186683A1 (en) 2018-03-27 2018-03-27 Storage-type water heater

Publications (1)

Publication Number Publication Date
WO2019186683A1 true WO2019186683A1 (en) 2019-10-03

Family

ID=68062381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012347 WO2019186683A1 (en) 2018-03-27 2018-03-27 Storage-type water heater

Country Status (2)

Country Link
JP (1) JP6819815B2 (en)
WO (1) WO2019186683A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266135A (en) * 2009-05-15 2010-11-25 Panasonic Corp Heat pump type water heater
JP2015190631A (en) * 2014-03-27 2015-11-02 株式会社デンソー Heat pump type hot water heater and method for controlling heat pump type hot water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266135A (en) * 2009-05-15 2010-11-25 Panasonic Corp Heat pump type water heater
JP2015190631A (en) * 2014-03-27 2015-11-02 株式会社デンソー Heat pump type hot water heater and method for controlling heat pump type hot water heater

Also Published As

Publication number Publication date
JPWO2019186683A1 (en) 2020-08-27
JP6819815B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP5087484B2 (en) Hot water storage hot water heater
JP4937052B2 (en) Hot water storage water heater
JP4839141B2 (en) Heat pump water heater
JP3887781B2 (en) Heat pump water heater
JP5575049B2 (en) Heat pump water heater
WO2019186683A1 (en) Storage-type water heater
JP6390903B2 (en) Hot water storage hot water system
JP2006003077A (en) Heat pump type hot water supply apparatus
JP2008045841A (en) Hot water storage type hot water supply system and cogeneration system
JP4277836B2 (en) Heat pump water heater
JP5423558B2 (en) Hot water storage water heater
JP4962104B2 (en) Hot water storage water heater
JP2015078773A (en) Hot water storage type water heater
JP2006078146A (en) Heat pump, floor heating device, and air conditioner
JP5178142B2 (en) Hot water storage water heater
JP5021385B2 (en) Heat pump water heater and operating method thereof
JP2004150650A (en) Heat pump type hot water supply device
JP4222714B2 (en) Hot water storage hot water source
JP4148909B2 (en) Heat pump water heater / heater
JP2005076932A (en) Storage type hot water supply system
JP4354389B2 (en) Hot water storage water heater
JP6398075B2 (en) Heat pump water heater
JP6006063B2 (en) Hot water storage water heater
JP5741256B2 (en) Hot water storage water heater
JP2009097799A (en) Heat pump water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912458

Country of ref document: EP

Kind code of ref document: A1