JP2006078146A - Heat pump, floor heating device, and air conditioner - Google Patents

Heat pump, floor heating device, and air conditioner Download PDF

Info

Publication number
JP2006078146A
JP2006078146A JP2004265858A JP2004265858A JP2006078146A JP 2006078146 A JP2006078146 A JP 2006078146A JP 2004265858 A JP2004265858 A JP 2004265858A JP 2004265858 A JP2004265858 A JP 2004265858A JP 2006078146 A JP2006078146 A JP 2006078146A
Authority
JP
Japan
Prior art keywords
refrigerant
inverter
driven compressor
expansion valve
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004265858A
Other languages
Japanese (ja)
Inventor
Eiji Harada
英司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chofu Seisakusho Co Ltd
Original Assignee
Chofu Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chofu Seisakusho Co Ltd filed Critical Chofu Seisakusho Co Ltd
Priority to JP2004265858A priority Critical patent/JP2006078146A/en
Publication of JP2006078146A publication Critical patent/JP2006078146A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate delivery pressure of a compressor and to keep the delivery pressure of the compressor to be a reference value or lower, using only hardware originally disposed in a heat pump without using an expensive component such as a pressure switch. <P>SOLUTION: A current detector 29 for detecting magnitude of a driving current of the compressor is provided. A current control section 28 stores the limit of the driving current in a form of a function varied by rotation speed of the compressor, and, when the driving current exceeds the limit, issues a frequency limit command for restricting the rotation speed of the inverter driving type compressor to a compressor operation frequency determining means 25. Alternatively it issues an opening correcting command for adjusting the opening of the expansion valve in the opening direction to an expansion valve opening determining means 27. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートポンプおよびヒートポンプを備えた床暖房装置、空調装置に関するものであり、特にヒートポンプの圧縮機の高負荷運転を防止するとともに、圧縮機出口冷媒温度を効率のよい温度に制御する制御手段に関するものである。   The present invention relates to a heat pump and a floor heating device provided with a heat pump, and an air conditioner, and in particular, control means for preventing a high-load operation of a compressor of the heat pump and controlling the compressor outlet refrigerant temperature to an efficient temperature. It is about.

ヒートポンプは冷媒回路中の冷媒に圧縮・凝縮・減圧および蒸発の操作を加えることによって、低温の熱源から熱を取り出す装置である。一般にヒートポンプが取り出す熱量はヒートポンプを駆動するための熱量(主として圧縮機の動力)より大きいから、ヒートポンプを給湯機器や暖房機器に利用すると、小さな熱量消費で大きな熱量を取り出すことができる。したがって、灯油をボイラで燃やして湯を沸かすより、灯油でヒートポンプを駆動して、低熱源(通常は外気を低熱源とする)から熱を得て湯を沸かす方が灯油の消費が少なくてすむ。   A heat pump is a device that extracts heat from a low-temperature heat source by applying compression, condensation, decompression, and evaporation operations to the refrigerant in the refrigerant circuit. In general, the amount of heat taken out by the heat pump is larger than the amount of heat for driving the heat pump (mainly the power of the compressor). Therefore, when the heat pump is used for hot water supply equipment or heating equipment, a large amount of heat can be taken out with a small amount of heat consumption. Therefore, it is less consumption of kerosene than boiling kerosene with a boiler and driving the heat pump with kerosene to obtain heat from a low heat source (usually using outside air as a low heat source) to boil hot water. .

そのため、今日、ヒートポンプを利用した給湯器が各種、提案されている。例えば、特許文献1には、圧縮機と室外熱交換器、室内熱交換器、蓄冷熱槽および給湯熱交換器を接続した冷媒回路中の冷媒の流れを切り替えることにより、冷暖房・給湯・蓄熱・蓄冷を行う多機能ヒートポンプシステムが開示されている。   For this reason, various types of water heaters using heat pumps have been proposed today. For example, Patent Document 1 discloses a method of switching between a refrigerant flow in a refrigerant circuit connected to a compressor and an outdoor heat exchanger, an indoor heat exchanger, a regenerative heat storage tank, and a hot water supply heat exchanger. A multi-function heat pump system that performs cold storage is disclosed.

ヒートポンプでは、低熱源から加熱対象に運ぶ熱量を、ヒートポンプを駆動する動力で割った比率(COP:Coefficient of performance 、成績係数という)を最大にすることが求められるので、COPが最大になるような圧縮機出口での冷媒温度(最適圧縮機出口温度)が選ばれ、膨張弁の開度を調整して圧縮機出口における冷媒の温度を最適圧縮機出口温度に保つように制御されている。   In heat pumps, it is required to maximize the ratio (COP: Coefficient of performance) obtained by dividing the amount of heat carried from a low heat source to the object to be heated by the power that drives the heat pump. The refrigerant temperature at the compressor outlet (optimum compressor outlet temperature) is selected, and the temperature of the refrigerant at the compressor outlet is controlled to be kept at the optimum compressor outlet temperature by adjusting the opening of the expansion valve.

ところで、一般にヒートポンプは外気を低熱源としているが、外気温度は季節によって大きく変動する。外気温度が高くなると、圧縮機入口での冷媒温度が上昇し、圧縮機出口温度を一定に保つためには、圧縮機出口での冷媒蒸気の圧力すなわち、圧縮機の吐出圧力を大きくしなければならない。しかしながら、圧縮機の吐出圧力は圧縮機の機械強度によって制限されるから、単純に圧縮機出口での冷媒温度を最適圧縮機出口温度に保つだけの制御を行えば、圧縮機の損傷を招いてしまう。   In general, heat pumps use outside air as a low heat source, but the outside air temperature varies greatly depending on the season. As the outside air temperature rises, the refrigerant temperature at the compressor inlet rises, and in order to keep the compressor outlet temperature constant, the refrigerant vapor pressure at the compressor outlet, i.e., the discharge pressure of the compressor, must be increased. Don't be. However, since the discharge pressure of the compressor is limited by the mechanical strength of the compressor, simply controlling the refrigerant temperature at the compressor outlet to the optimum compressor outlet temperature may cause damage to the compressor. End up.

また、特許文献2には、圧縮機の出口に圧力スイッチを備えて、圧縮機の吐出圧力を検出し、吐出圧力が基準圧力を超えると、圧縮機出口温度の制御目標を低下させるヒートポンプ式給湯装置が開示されている。   Patent Document 2 discloses a heat pump type hot water supply that includes a pressure switch at the outlet of the compressor, detects the discharge pressure of the compressor, and lowers the control target of the compressor outlet temperature when the discharge pressure exceeds the reference pressure. An apparatus is disclosed.

特開平11−270920号公報JP 11-270920 A 特開2001−263801号公報JP 2001-263801 A

しかしながら、圧縮機出口冷媒温度の制御目標を低く設定すると、COPが悪くなるという問題があった。また、圧力スイッチは高価なので、圧力スイッチをヒートポンプに備えることはコストの上昇につながるという問題があった。また、信頼性向上の見地からも、構成部品を増やすことは好ましくなかった。   However, when the control target of the compressor outlet refrigerant temperature is set low, there is a problem that COP deteriorates. Moreover, since the pressure switch is expensive, there is a problem that providing the pressure switch in the heat pump leads to an increase in cost. Further, from the viewpoint of improving reliability, it is not preferable to increase the number of components.

そこで、本発明の目的は、圧力スイッチ等の高価な部品を用いることなく、ヒートポンプが本来備えているハードウェアのみを利用して、圧縮機の吐出圧力を推定して、圧縮機の吐出圧力を基準値以下に保ち、圧縮機出口冷媒温度を効率のよい温度に制御することにより、安価で信頼性が高く、また、COPの良いヒートポンプ、およびヒートポンプを備えた床暖房装置、空気調和装置を実現することにある。   Therefore, an object of the present invention is to estimate the discharge pressure of the compressor by using only the hardware originally provided in the heat pump without using expensive parts such as a pressure switch, and to reduce the discharge pressure of the compressor. By maintaining the temperature below the reference value and controlling the refrigerant temperature at the compressor outlet to an efficient temperature, a heat pump that is inexpensive and highly reliable, has a good COP, and a floor heating device and an air conditioner equipped with the heat pump are realized. There is to do.

本発明に係るヒートポンプの構成は、インバータ駆動式圧縮機と、前記インバータ駆動式圧縮機から吐出する冷媒を冷却する温水冷媒熱交換器と、前記熱交換器を出た前記冷媒を減圧させる膨張弁と、前記膨張弁を出た前記冷媒を加熱して前記インバータ駆動式圧縮機に戻す空気冷媒熱交換器と、前記インバータ駆動式圧縮機の出口における前記冷媒の温度が一定になるように前記膨張弁の開度を調整する制御手段を有するヒートポンプにおいて、前記インバータ駆動式圧縮機の駆動電流の大きさを検出する電流検出部を備え、前記制御手段は、前記駆動電流の制限を前記インバータ駆動式圧縮機の回転数によって変化する関数の形で記憶し、前記駆動電流が前記制限を超えると、前記インバータ駆動式圧縮機の回転数を制限、または前記膨張弁の開度を開く方向に調節することを特徴とする。   The configuration of the heat pump according to the present invention includes an inverter-driven compressor, a hot water refrigerant heat exchanger that cools refrigerant discharged from the inverter-driven compressor, and an expansion valve that depressurizes the refrigerant that has exited the heat exchanger. And an air refrigerant heat exchanger for heating the refrigerant that has exited the expansion valve and returning it to the inverter-driven compressor, and the expansion so that the temperature of the refrigerant at the outlet of the inverter-driven compressor is constant. In the heat pump having a control means for adjusting the opening of the valve, the heat pump includes a current detection unit that detects the magnitude of the drive current of the inverter-driven compressor, and the control means limits the drive current to the inverter-driven type. It is stored in the form of a function that changes according to the rotational speed of the compressor, and when the drive current exceeds the limit, the rotational speed of the inverter-driven compressor is limited or the expansion And adjusting the direction of opening the opening of the valve.

この構成によれば、インバータ駆動式圧縮機の回転数および駆動電流に基づいて、吐出圧力を推定して、吐出圧力が制限を超えないように、前記回転数の制限または膨張弁の開度を開く方向に調節するので、安価で信頼性の高いヒートポンプを提供することができる。 According to this configuration, the discharge pressure is estimated based on the rotation speed and drive current of the inverter-driven compressor, and the rotation speed limit or the expansion valve opening is set so that the discharge pressure does not exceed the limit. Since the opening direction is adjusted, an inexpensive and highly reliable heat pump can be provided.

本発明に係る床暖房装置の構成は、インバータ駆動式圧縮機と、前記インバータ駆動式圧縮機から吐出する冷媒を給湯用温水で冷却する温水冷媒熱交換器と、前記温水冷媒熱交換器を出た前記冷媒を減圧させる膨張弁と、前記膨張弁を出た前記冷媒を外気で加熱して前記インバータ駆動式圧縮機に戻す空気冷媒熱交換器と、前記インバータ駆動式圧縮機の出口における前記冷媒の温度が一定になるように前記膨張弁の開度を調整する制御手段と、前記温水冷媒熱交換器との間で前記給湯用温水を循環させる床暖房パネルを有する床暖房装置において、前記インバータ駆動式圧縮機の駆動電流の大きさを検出する電流検出部を備え、前記制御手段は、前記駆動電流の制限を前記インバータ駆動式圧縮機の回転数によって変化する関数の形で記憶し、前記駆動電流が前記制限を超えると、前記インバータ駆動式圧縮機の回転数を制限、または前記膨張弁の開度を開く方向に調節することを特徴とする。 The floor heating apparatus according to the present invention includes an inverter driven compressor, a hot water refrigerant heat exchanger that cools the refrigerant discharged from the inverter driven compressor with hot water for hot water supply, and the hot water refrigerant heat exchanger. An expansion valve that depressurizes the refrigerant, an air refrigerant heat exchanger that heats the refrigerant exiting the expansion valve with outside air and returns the refrigerant to the inverter-driven compressor, and the refrigerant at the outlet of the inverter-driven compressor In the floor heating apparatus having a floor heating panel that circulates the hot water for hot water supply between the control means for adjusting the opening of the expansion valve so that the temperature of the hot water becomes constant, and the hot water refrigerant heat exchanger, the inverter A current detector for detecting the magnitude of the drive current of the drive compressor, wherein the control means stores the limit of the drive current in the form of a function that changes according to the rotational speed of the inverter drive compressor; , When the drive current exceeds the limit, and adjusting the rotational speed of the inverter-driven compressor limits, or in the direction of opening the opening degree of the expansion valve.

この構成によれば、インバータ駆動式圧縮機の回転数および駆動電流に基づいて、吐出圧力を推定して、吐出圧力が制限を超えないように、前記回転数の制限または膨張弁の開度を開く方向に調節するので、安価で信頼性の高い床暖房装置を提供することができる。 According to this configuration, the discharge pressure is estimated based on the rotation speed and drive current of the inverter-driven compressor, and the rotation speed limit or the expansion valve opening is set so that the discharge pressure does not exceed the limit. Since the opening direction is adjusted, an inexpensive and highly reliable floor heating apparatus can be provided.

本発明に係る空気調和装置の構成は、インバータ駆動式圧縮機と、前記インバータ駆動式圧縮機から吐出する冷媒を給湯用温水で冷却する温水冷媒熱交換器と、前記熱交換器を出た前記冷媒を減圧させる第1の膨張弁と、前記膨張弁を出た前記冷媒を外気で加熱して前記インバータ駆動式圧縮機に戻す空気冷媒熱交換器と、前記温水冷媒熱交換器との間で前記給湯用温水を循環させる床暖房パネルと、前記インバータ駆動式圧縮機から吐出する前記冷媒を分岐する分岐配管と、前記分岐配管から流れる前記冷媒と室内の空気との間で熱交換する室内熱交換器と、前記室内熱交換器を出た前記冷媒を減圧させる第2の膨張弁と、前記第2の膨張弁から流出した前記冷媒を前記空気冷媒熱交換器に流す配管と、前記インバータ駆動式圧縮機の出口における前記冷媒の温度が一定になるように前記膨張弁の開度を調整する制御手段を有する空気調和装置において、前記インバータ駆動式圧縮機の駆動電流の大きさを検出する電流検出部を備え、前記制御手段は、前記駆動電流の制限を前記インバータ駆動式圧縮機の回転数によって変化する関数の形で記憶し、前記駆動電流が前記制限を超えると、前記インバータ駆動式圧縮機の回転数を制限、または前記膨張弁の開度を開く方向に調節することを特徴とする。 The configuration of the air conditioner according to the present invention includes an inverter-driven compressor, a hot water refrigerant heat exchanger that cools a refrigerant discharged from the inverter-driven compressor with hot water for hot water supply, and the heat exchanger that exits the heat exchanger. Between the first expansion valve that decompresses the refrigerant, the air refrigerant heat exchanger that heats the refrigerant that exits the expansion valve with outside air and returns the refrigerant to the inverter-driven compressor, and the hot water refrigerant heat exchanger Floor heating panel that circulates the hot water for hot water supply, branch piping that branches the refrigerant discharged from the inverter-driven compressor, and indoor heat that exchanges heat between the refrigerant flowing from the branch piping and indoor air An exchanger, a second expansion valve for depressurizing the refrigerant exiting the indoor heat exchanger, a pipe for flowing the refrigerant flowing out of the second expansion valve to the air refrigerant heat exchanger, and the inverter drive Compressor outlet In the air conditioner having a control means for adjusting the opening of the expansion valve so that the temperature of the refrigerant in the chamber is constant, the air conditioner includes a current detection unit that detects the magnitude of the drive current of the inverter-driven compressor, The control means stores the limit of the drive current in the form of a function that changes according to the rotation speed of the inverter-driven compressor, and when the drive current exceeds the limit, the rotation speed of the inverter-driven compressor is stored. The restriction or the opening degree of the expansion valve is adjusted in the opening direction.

この構成によれば、吐出圧力を推定して、吐出圧力が制限を超えないように、前記回転数の制限または膨張弁の開度を開く方向に調節するので、安価で信頼性の高い空気調和装置を提供することができるとともに、圧縮機出口冷媒温度も一定であるため、常に効率の良い暖房運転が可能になる。 According to this configuration, since the discharge pressure is estimated and the rotation speed limit or the opening degree of the expansion valve is adjusted to open so that the discharge pressure does not exceed the limit, the air conditioning is inexpensive and reliable. Since the apparatus can be provided and the compressor outlet refrigerant temperature is also constant, efficient heating operation is always possible.

以上のように、本発明によれば圧縮機の回転数と駆動電流から、吐出圧力を推定して、吐出圧力が制限を超えないように、前記回転数の制限または膨張弁の開度を開く方向に調節するので、外気温が高い場合や、設定暖房温度が高い高負荷な状況であっても、圧縮機の損傷を避けることができる。また、圧力スイッチ等の高価な部品を用いることなく、ヒートポンプが本来備えているハードウェアのみを利用するので、信頼性の高いヒートポンプ、およびヒートポンプを備えた床暖房装置、空気調和装置を安価に実現することができる。 As described above, according to the present invention, the discharge pressure is estimated from the rotation speed of the compressor and the drive current, and the rotation speed limit or the expansion valve opening is opened so that the discharge pressure does not exceed the limit. Since the adjustment is made in the direction, damage to the compressor can be avoided even when the outside air temperature is high or in a high load situation where the set heating temperature is high. In addition, since only the hardware that the heat pump originally has is used without using expensive parts such as pressure switches, a highly reliable heat pump, a floor heating device equipped with a heat pump, and an air conditioner can be realized at low cost. can do.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の実施例に係る空気調和装置の回路図である。   FIG. 1 is a circuit diagram of an air conditioner according to an embodiment of the present invention.

図1において、1は空気調和装置である。空気調和装置1は四方弁2によって冷媒の流れる方向を切り替えて、冷房モードと暖房モードを切り替えることができ、図は暖房モード、つまり空気調和装置1を暖房機として使用する状態を示している。また、空気調和装置1は冷媒の熱で加熱した温水が循環する床暖房パネル3と、冷媒の熱で直接室内の空気を暖める室内機ユニット4を備えている。なお、図1では、説明の便宜のために、冷媒の流れを破線で示し、温水の流れを1点鎖線で示している。   In FIG. 1, 1 is an air conditioner. The air conditioner 1 can switch the cooling mode and the heating mode by switching the flow direction of the refrigerant by the four-way valve 2, and the figure shows the heating mode, that is, the state in which the air conditioner 1 is used as a heater. The air conditioner 1 also includes a floor heating panel 3 through which hot water heated by the heat of the refrigerant circulates, and an indoor unit 4 that directly warms indoor air using the heat of the refrigerant. In FIG. 1, for convenience of explanation, the refrigerant flow is indicated by a broken line, and the hot water flow is indicated by a one-dot chain line.

まず、床暖房パネル3に係る回路について説明する。5はインバータモータ6で駆動されて冷媒蒸気を圧縮する圧縮機であり、その吐出口には冷媒の温度を検出する第1のサーミスタ7が備えられている。圧縮機5を出た高温の冷媒の流れは分岐管8で、室内機ユニット4に行く流れと、温水−冷媒熱交換器9に行く流れに分かれる。   First, a circuit related to the floor heating panel 3 will be described. Reference numeral 5 denotes a compressor that is driven by an inverter motor 6 to compress refrigerant vapor, and has a first thermistor 7 that detects the temperature of the refrigerant at its discharge port. The flow of the high-temperature refrigerant exiting the compressor 5 is divided into a flow going to the indoor unit 4 and a flow going to the hot water-refrigerant heat exchanger 9 at the branch pipe 8.

温水−冷媒熱交換器9は冷媒と温水の間で熱交換を行う装置であり、冷媒の熱で加熱されて温水−冷媒熱交換器9を出た温水は、給水タンク10に蓄えられ、循環ポンプ11によって床暖房パネル3に送られ、床暖房パネル3内を循環し、温水−冷媒熱交換器9に戻って来る。本実施例では、温水の温度は温水−冷媒熱交換器9の出口で40℃、床暖房パネル3内で35℃、温水−冷媒熱交換器9に戻ってきた時は30℃になるように設計されている。また、冷媒の温度は、圧縮機5の吐出口で70℃、温水−冷媒熱交換器9の入口で65℃、出口で50℃で設計されている。圧縮機5の吐出口での冷媒温度70℃は、圧縮機5および温水−冷媒熱交換器9の効率の組み合わせが最適になるように決められた温度である。なお、12は床暖房パネル3から温水−冷媒熱交換器8に戻ってきた温水の温度を検出する第2のサーミスタである。 The hot water-refrigerant heat exchanger 9 is a device for exchanging heat between the refrigerant and hot water. The hot water heated by the heat of the refrigerant and exiting the hot water-refrigerant heat exchanger 9 is stored in the water supply tank 10 and circulated. It is sent to the floor heating panel 3 by the pump 11, circulates in the floor heating panel 3, and returns to the hot water-refrigerant heat exchanger 9. In this embodiment, the temperature of the hot water is 40 ° C. at the outlet of the hot water-refrigerant heat exchanger 9, 35 ° C. in the floor heating panel 3, and 30 ° C. when returning to the hot water-refrigerant heat exchanger 9. Designed. The temperature of the refrigerant is designed to be 70 ° C. at the discharge port of the compressor 5, 65 ° C. at the inlet of the hot water-refrigerant heat exchanger 9, and 50 ° C. at the outlet. The refrigerant temperature 70 ° C. at the discharge port of the compressor 5 is a temperature determined so that the combination of the efficiency of the compressor 5 and the hot water-refrigerant heat exchanger 9 is optimized. Reference numeral 12 denotes a second thermistor that detects the temperature of the hot water returned from the floor heating panel 3 to the hot water-refrigerant heat exchanger 8.

温水−冷媒熱交換器9を出た冷媒は第1の電子膨張弁13を通って減圧され低温の液体になり、合流管14で室内機ユニット4から戻ってきた冷媒と合流して室外機ユニット15に流れる。室外機ユニット15は冷媒と室外の空気の間で熱交換を行う熱交換器である。第1の電子膨張弁13は電子制御により開度を自在に調整可能な膨張弁であり、その開度によって、圧縮機5の吐出圧力が増減する。   The refrigerant that has exited the hot water-refrigerant heat exchanger 9 is reduced in pressure through the first electronic expansion valve 13 to become a low-temperature liquid, and merges with the refrigerant that has returned from the indoor unit 4 through the merge pipe 14 to the outdoor unit. 15 flows. The outdoor unit 15 is a heat exchanger that performs heat exchange between the refrigerant and outdoor air. The first electronic expansion valve 13 is an expansion valve whose opening degree can be freely adjusted by electronic control, and the discharge pressure of the compressor 5 increases or decreases depending on the opening degree.

室外機ユニット15に入った低温の液体冷媒は外気で加熱されて蒸気になり、四方弁2を通って、圧縮機5に戻る。   The low-temperature liquid refrigerant that has entered the outdoor unit 15 is heated by the outside air to become vapor, passes through the four-way valve 2, and returns to the compressor 5.

次に、室内機ユニット4に係る回路について説明する。室内機ユニット4は前記冷媒と室内の空気の間で熱交換する室内熱交換器であり、分岐管8から室内機ユニット4に流れる高温の冷媒は、室内の空気と熱交換して冷やされて液化し、第2の電子膨張弁16を通って減圧されて低温になり、合流管14で温水−冷媒熱交換器9から戻ってきた冷媒と合流して室外機ユニット15に流れる。   Next, a circuit related to the indoor unit 4 will be described. The indoor unit 4 is an indoor heat exchanger that exchanges heat between the refrigerant and indoor air, and the high-temperature refrigerant flowing from the branch pipe 8 to the indoor unit 4 is cooled by exchanging heat with the indoor air. The refrigerant is liquefied, depressurized through the second electronic expansion valve 16, becomes low temperature, merges with the refrigerant returned from the hot water-refrigerant heat exchanger 9 through the merge pipe 14, and flows to the outdoor unit 15.

ここで、空気調和装置1の制御装置について説明する。図2は空気調和装置1の制御ブロック図である。図2において、21は空気調和装置1の制御装置である。制御装置21は、ユーザが所望する暖房温度、床暖房パネル3から戻った温水の温度、圧縮機5の吐出口における冷媒の温度、および圧縮機5駆動用のインバータモータ6の駆動電流を入力して、インバータモータ6の運転周波数、第1および第2の電子膨張弁13,16の開度を出力して、空気調和装置1の運転を制御する制御装置である。   Here, the control apparatus of the air conditioning apparatus 1 is demonstrated. FIG. 2 is a control block diagram of the air conditioner 1. In FIG. 2, reference numeral 21 denotes a control device for the air conditioner 1. The control device 21 inputs the heating temperature desired by the user, the temperature of the hot water returned from the floor heating panel 3, the temperature of the refrigerant at the discharge port of the compressor 5, and the drive current of the inverter motor 6 for driving the compressor 5. The control device controls the operation of the air conditioner 1 by outputting the operating frequency of the inverter motor 6 and the opening degrees of the first and second electronic expansion valves 13 and 16.

22はリモコンである。ユーザが所望の暖房温度をリモコン22に入力すると、前記暖房温度は設定温度決定手段23に伝えられる。設定温度決定手段23は前記暖房温度に応じた戻り温水温度(床暖房パネル3から温水−冷媒熱交換器9に戻ってきた温水の温度)の目標値(設定温度)を設定して、温調制御部24に伝える。また、第2のサーミスタ12で計測した前記戻り温水温度の計測値も温調制御部24に入力される。温調制御部24は前記目標値(設定温度)と前記計測値を比較して、インバータモータ6に指示する周波数(運転周波数)を、圧縮機運転周波数決定手段25に伝える。 Reference numeral 22 denotes a remote controller. When the user inputs a desired heating temperature to the remote controller 22, the heating temperature is transmitted to the set temperature determination means 23. The set temperature determination means 23 sets a target value (set temperature) of the return hot water temperature (the temperature of the hot water returned from the floor heating panel 3 to the hot water-refrigerant heat exchanger 9) according to the heating temperature, and adjusts the temperature. Tell the control unit 24. The measured value of the return hot water temperature measured by the second thermistor 12 is also input to the temperature control unit 24. The temperature control unit 24 compares the target value (set temperature) with the measured value, and transmits the frequency (operating frequency) instructed to the inverter motor 6 to the compressor operating frequency determining means 25.

26は圧縮機5の吐出口での冷媒の温度(吐出温度)を制御する吐出温度制御部である。前述したように圧縮機5の吐出口での冷媒の温度(吐出温度)は70℃が最適だから、吐出温度制御部26は第1のサーミスタ7で計測された前記吐出温度が70℃になるように、第1および第2の電子膨張弁13,16の開度を増減する。つまり、前記吐出温度が70℃より高ければ開度を大きくし、70℃より低ければ開度を小さくする指令を膨張弁開度決定手段27に与える。 Reference numeral 26 denotes a discharge temperature control unit that controls the temperature (discharge temperature) of the refrigerant at the discharge port of the compressor 5. As described above, since the optimum temperature (discharge temperature) of the refrigerant at the discharge port of the compressor 5 is 70 ° C., the discharge temperature control unit 26 causes the discharge temperature measured by the first thermistor 7 to be 70 ° C. In addition, the opening degree of the first and second electronic expansion valves 13 and 16 is increased or decreased. That is, an instruction is given to the expansion valve opening determining means 27 to increase the opening when the discharge temperature is higher than 70 ° C. and to decrease the opening when the discharge temperature is lower than 70 ° C.

28は電流制御部である。電流制御部28は、インバータモータ6の駆動電流の制限値を運転周波数の関数の形で記憶し、インバータモータ6の駆動電流が前記制限値を超えると、第1および第2の電子膨張弁13,16を開くか、インバータモータ6の運転周波数を下げて、インバータモータ6の駆動電流を低減する制御装置である。電流制御部28には、インバータモータ6に流れる駆動電流(実電流)を計測する電流検出部29から電流値が、第1のサーミスタ7から圧縮機5の吐出口での冷媒の温度(吐出温度)が、膨張弁開度決定手段27から第1および第2の電子膨張弁13,16の開度が、圧縮機運転周波数決定手段25からインバータモータ6の運転周波数がそれぞれ入力される。これらの入力を受けて、電流制御部28は、インバータモータ6の運転周波数を制限する周波数制限指令を圧縮機運転周波数決定手段25に、第1および第2の電子膨張弁13,16を開く開度補正指令を膨張弁開度決定手段27にそれぞれ出力する。なお、電流制御部28が実行する制御の詳細は後述する。   Reference numeral 28 denotes a current control unit. The current control unit 28 stores the limit value of the drive current of the inverter motor 6 in the form of a function of the operation frequency, and when the drive current of the inverter motor 6 exceeds the limit value, the first and second electronic expansion valves 13 are stored. , 16 is opened or the operating frequency of the inverter motor 6 is lowered to reduce the drive current of the inverter motor 6. The current control unit 28 includes a current value from a current detection unit 29 that measures a drive current (actual current) flowing through the inverter motor 6, and a refrigerant temperature (discharge temperature) from the first thermistor 7 to the discharge port of the compressor 5. ), The opening degree of the first and second electronic expansion valves 13 and 16 is input from the expansion valve opening degree determining means 27, and the operating frequency of the inverter motor 6 is input from the compressor operating frequency determining means 25, respectively. Upon receiving these inputs, the current control unit 28 opens a frequency limit command for limiting the operating frequency of the inverter motor 6 to the compressor operating frequency determining means 25 and opens the first and second electronic expansion valves 13 and 16. A degree correction command is output to the expansion valve opening determination means 27, respectively. Details of the control executed by the current control unit 28 will be described later.

30は圧縮機制御部である。圧縮機制御部30は圧縮機運転周波数決定手段25から運転周波数の指令を受けて、前記運転周波数になるようにインバータモータ6に電流を供給するインバータである。   Reference numeral 30 denotes a compressor control unit. The compressor control unit 30 is an inverter that receives an operation frequency command from the compressor operation frequency determining means 25 and supplies current to the inverter motor 6 so as to reach the operation frequency.

31は膨張弁制御部である。膨張弁制御部31は膨張弁開度決定手段27から膨張弁開度指令を受けて、第1および第2の電子膨張弁13,16を開閉する制御装置である。   Reference numeral 31 denotes an expansion valve control unit. The expansion valve control unit 31 is a control device that opens and closes the first and second electronic expansion valves 13 and 16 in response to an expansion valve opening command from the expansion valve opening determining means 27.

図3は、電流制御部28で実行される電流制御を説明するフローチャートである。以下、図に付したステップ番号を引用して電流制御の詳細を説明する。 FIG. 3 is a flowchart illustrating the current control executed by the current control unit 28. Hereinafter, the details of the current control will be described with reference to the step numbers attached to the drawings.

(STEP1)電流検出部29で検出したインバータモータ6の駆動電流(実電流値)と制限電流値を比較して、実電流値が制限電流値を超えていれば、STEP2に進み、実電流値が制限電流値以下であれば、STEP9に進む。
ここで、制限電流値はインバータモータ6の運転周波数の大小によって変化する関数である。具体的に言えば、電流制御部28内に、12段階の運転周波数とそれに対応する制限電流値の対応表が予め記憶されていて、電流制御部28は圧縮機運転周波数決定手段25から入力されるインバータモータ6の運転周波数を前記対応表に当てはめて制限電流値を決定する。
(STEP 1) The drive current (actual current value) of the inverter motor 6 detected by the current detector 29 is compared with the limit current value, and if the actual current value exceeds the limit current value, the process proceeds to STEP 2 and the actual current value If NO is less than the limit current value, the process proceeds to STEP9.
Here, the limit current value is a function that varies depending on the operating frequency of the inverter motor 6. Specifically, the current control unit 28 stores in advance a correspondence table of 12 stages of operation frequencies and the corresponding limit current values, and the current control unit 28 is input from the compressor operation frequency determining means 25. The limiting current value is determined by applying the operation frequency of the inverter motor 6 to the correspondence table.

前記対応表は運転周波数毎に圧縮機5の吐出圧力が一定値以下になるような駆動電流の値を、実験または計算で求めて作成する。   The correspondence table is created by experimentally or calculating a drive current value that causes the discharge pressure of the compressor 5 to be a certain value or less for each operating frequency.

(STEP2)演算周期がタイムアップしていれば、STEP3に進み、タイムアップしていなければ、何もしないで終了する。 (STEP 2) If the calculation cycle has timed up, proceed to STEP 3, and if it has not timed up, end without doing anything.

(STEP3)演算周期を20秒にセットして、STEP4に進む。 (STEP 3) The calculation cycle is set to 20 seconds, and the process proceeds to STEP 4.

(STEP4)第1および第2の電子膨張弁13,16の開度が上限に達していれば(これ以上、第1および第2の電子膨張弁13,16を開けられないので)、STEP5に進み、前記開度が前記上限に達していなければ、STEP6に進む。 (STEP 4) If the opening degree of the first and second electronic expansion valves 13 and 16 has reached the upper limit (because the first and second electronic expansion valves 13 and 16 cannot be opened any more), STEP 5 If the opening does not reach the upper limit, the process proceeds to STEP6.

(STEP5)インバータモータ6の制限周波数を3.3Hz下げる周波数制限指令を圧縮機運転周波数決定手段25に与えて終了する(これを受けて、圧縮機運転周波数決定手段25は、インバータモータの運転周波数を3.3Hz減ずる指令を圧縮機制御部30に与える)。 (STEP 5) A frequency limit command for lowering the limit frequency of the inverter motor 6 by 3.3 Hz is given to the compressor operating frequency determining means 25 and the process is terminated (in response to this, the compressor operating frequency determining means 25 determines the operating frequency of the inverter motor). Is given to the compressor control unit 30).

(STEP6)第1のサーミスタ7で計測した圧縮機5の出口での冷媒の温度(吐出温度)と最適圧縮機出口温度(目標温度=70℃)を比較して、前記吐出温度が前記目標温度に達していなければ、STEP7に進み、前記吐出温度が前記目標温度以上ならば、STEP8に進む。 (STEP 6) The refrigerant temperature (discharge temperature) at the outlet of the compressor 5 measured by the first thermistor 7 and the optimum compressor outlet temperature (target temperature = 70 ° C.) are compared, and the discharge temperature is the target temperature. If not, the process proceeds to STEP7, and if the discharge temperature is equal to or higher than the target temperature, the process proceeds to STEP8.

(STEP7)インバータモータ6の運転周波数が下限周波数を超えていれば、STEP5に進み、前記運転周波数が下限周波数以下ならば、STEP8に進む。 (STEP 7) If the operating frequency of the inverter motor 6 exceeds the lower limit frequency, proceed to STEP 5, and if the operating frequency is equal to or lower than the lower limit frequency, proceed to STEP 8.

(STEP8)第1および第2の電子膨張弁13,16を4パルス分開く開度補正指令を膨張弁開度決定手段27に出力して、終了する。 (STEP 8) An opening correction command for opening the first and second electronic expansion valves 13 and 16 by 4 pulses is output to the expansion valve opening determining means 27, and the process ends.

(STEP9)第1および第2の電子膨張弁13,16の開度を開く開度補正指令をクリアして(STEP8で出力した開度補正指令を0にする)、STEP10に進む。 (STEP 9) The opening correction command for opening the opening of the first and second electronic expansion valves 13 and 16 is cleared (the opening correction command output in STEP 8 is set to 0), and the process proceeds to STEP 10.

(STEP10)演算周期がタイムアップしていれば、STEP11に進み、タイムアップしていなければ、何もしないで終了する。 (STEP 10) If the calculation cycle has timed up, proceed to STEP 11, and if it has not timed up, end without doing anything.

(STEP11)電流検出部29で検出したインバータモータ6の駆動電流(実電流)と制限電流値から0.1Aを減じた値を比較して、前記実電流が(制限電流値−0.1A)以上ならば、STEP12に進み、前記実電流が(制限電流値−0.1A)未満であれば、STEP13に進む。 (STEP 11) The drive current (actual current) of the inverter motor 6 detected by the current detector 29 is compared with a value obtained by subtracting 0.1 A from the limit current value, and the actual current is (limit current value−0.1 A). If it is above, proceed to STEP12, and if the actual current is less than (limit current value−0.1 A), proceed to STEP13.

(STEP12)演算周期を20秒にセットして終了する。 (STEP 12) The calculation cycle is set to 20 seconds and the process ends.

(STEP13)前記インバータモータの制限周波数を2Hz上げる周波数制限指令を圧縮機運転周波数決定手段25に与えて、STEP14に進む。 (STEP 13) A frequency limit command for raising the limit frequency of the inverter motor by 2 Hz is given to the compressor operating frequency determination means 25, and the process proceeds to STEP 14.

(STEP14)演算周期を60秒にセットして終了する。 (STEP 14) The calculation cycle is set to 60 seconds and the process ends.

本発明の本発明の実施例に係る空気調和装置の回路図である。It is a circuit diagram of the air harmony device concerning the example of the present invention of the present invention. 本発明の実施例に係る空気調和装置の制御ブロック図である。It is a control block diagram of the air conditioning apparatus which concerns on the Example of this invention. 電流制御部28で実行される電流制御を説明するフローチャートである。4 is a flowchart illustrating current control executed by a current control unit 28.

符号の説明Explanation of symbols

1 空気調和装置
2 四方弁
3 床暖房パネル
4 室内機ユニット
5 圧縮機
6 インバータモータ
7 第1のサーミスタ
8 分岐管
9 温水−冷媒熱交換器
10 給水タンク
11 循環ポンプ
12 第2のサーミスタ
13 第1の電子膨張弁
14 合流管
15 室外機ユニット
16 第2の電子膨張弁
21 制御装置
22 リモコン
23 設定温度決定手段
24 温調制御部
25 圧縮機運転周波数決定手段
26 吐出温度制御部
27 膨張弁開度決定手段
28 電流制御部
29 電流検出部
30 圧縮機制御部
31 膨張弁制御部




DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Four-way valve 3 Floor heating panel 4 Indoor unit 5 Compressor 6 Inverter motor 7 1st thermistor 8 Branch pipe 9 Hot water-refrigerant heat exchanger 10 Water supply tank 11 Circulation pump 12 2nd thermistor 13 1st Electronic expansion valve 14 merging pipe 15 outdoor unit 16 second electronic expansion valve 21 controller 22 remote controller 23 set temperature determining means 24 temperature control section 25 compressor operating frequency determining means 26 discharge temperature control section 27 expansion valve opening Determining means 28 Current controller 29 Current detector 30 Compressor controller 31 Expansion valve controller




Claims (3)

インバータ駆動式圧縮機と、前記インバータ駆動式圧縮機から吐出する冷媒を冷却する温水冷媒熱交換器と、前記熱交換器を出た前記冷媒を減圧させる膨張弁と、前記膨張弁を出た前記冷媒を加熱して前記インバータ駆動式圧縮機に戻す空気冷媒熱交換器と、前記インバータ駆動式圧縮機の出口における前記冷媒の温度が一定になるように前記膨張弁の開度を調整する制御手段を有するヒートポンプにおいて、
前記インバータ駆動式圧縮機の駆動電流の大きさを検出する電流検出部を備え、前記制御手段は、前記駆動電流の制限を前記インバータ駆動式圧縮機の回転数によって変化する関数の形で記憶し、前記駆動電流が前記制限を超えると、前記インバータ駆動式圧縮機の回転数を制限、または前記膨張弁の開度を開く方向に調節することを特徴とするヒートポンプ。
An inverter-driven compressor, a hot water refrigerant heat exchanger that cools the refrigerant discharged from the inverter-driven compressor, an expansion valve that depressurizes the refrigerant that has exited the heat exchanger, and the expansion valve that has exited the expansion valve An air refrigerant heat exchanger for heating the refrigerant and returning it to the inverter-driven compressor, and a control means for adjusting the opening of the expansion valve so that the temperature of the refrigerant at the outlet of the inverter-driven compressor is constant In a heat pump having
A current detector for detecting the magnitude of the drive current of the inverter-driven compressor; and the control means stores the limit of the drive current in the form of a function that varies depending on the rotational speed of the inverter-driven compressor. When the drive current exceeds the limit, the rotation speed of the inverter-driven compressor is limited or the opening degree of the expansion valve is adjusted to open.
インバータ駆動式圧縮機と、前記インバータ駆動式圧縮機から吐出する冷媒を給湯用温水で冷却する温水冷媒熱交換器と、前記温水冷媒熱交換器を出た前記冷媒を減圧させる膨張弁と、前記膨張弁を出た前記冷媒を外気で加熱して前記インバータ駆動式圧縮機に戻す空気冷媒熱交換器と、前記インバータ駆動式圧縮機の出口における前記冷媒の温度が一定になるように前記膨張弁の開度を調整する制御手段と、前記温水冷媒熱交換器との間で前記給湯用温水を循環させる床暖房パネルを有する床暖房装置において、
前記インバータ駆動式圧縮機の駆動電流の大きさを検出する電流検出部を備え、前記制御手段は、前記駆動電流の制限を前記インバータ駆動式圧縮機の回転数によって変化する関数の形で記憶し、前記駆動電流が前記制限を超えると、前記インバータ駆動式圧縮機の回転数を制限、または前記膨張弁の開度を開く方向に調節することを特徴とする床暖房装置。
An inverter-driven compressor, a hot-water refrigerant heat exchanger that cools the refrigerant discharged from the inverter-driven compressor with hot water for hot water supply, an expansion valve that depressurizes the refrigerant that exits the hot water refrigerant heat exchanger, and An air refrigerant heat exchanger that heats the refrigerant that has exited the expansion valve with outside air and returns the refrigerant to the inverter-driven compressor, and the expansion valve so that the temperature of the refrigerant at the outlet of the inverter-driven compressor is constant In the floor heating apparatus having a floor heating panel for circulating the hot water for hot water supply between the control means for adjusting the opening degree of the hot water refrigerant heat exchanger,
A current detector for detecting the magnitude of the drive current of the inverter-driven compressor; and the control means stores the limit of the drive current in the form of a function that varies depending on the rotational speed of the inverter-driven compressor. When the drive current exceeds the limit, the number of revolutions of the inverter-driven compressor is limited or the opening degree of the expansion valve is adjusted to open.
インバータ駆動式圧縮機と、前記インバータ駆動式圧縮機から吐出する冷媒を給湯用温水で冷却する温水冷媒熱交換器と、前記熱交換器を出た前記冷媒を減圧させる第1の膨張弁と、前記膨張弁を出た前記冷媒を外気で加熱して前記インバータ駆動式圧縮機に戻す空気冷媒熱交換器と、前記温水冷媒熱交換器との間で前記給湯用温水を循環させる床暖房パネルと、前記インバータ駆動式圧縮機から吐出する前記冷媒を分岐する分岐配管と、前記分岐配管から流れる前記冷媒と室内の空気との間で熱交換する室内熱交換器と、前記室内熱交換器を出た前記冷媒を減圧させる第2の膨張弁と、前記第2の膨張弁から流出した前記冷媒を前記空気冷媒熱交換器に流す配管と、前記インバータ駆動式圧縮機の出口における前記冷媒の温度が一定になるように前記膨張弁の開度を調整する制御手段を有する空気調和装置において、
前記インバータ駆動式圧縮機の駆動電流の大きさを検出する電流検出部を備え、前記制御手段は、前記駆動電流の制限を前記インバータ駆動式圧縮機の回転数によって変化する関数の形で記憶し、前記駆動電流が前記制限を超えると、前記インバータ駆動式圧縮機の回転数を制限、または前記膨張弁の開度を開く方向に調節することを特徴とする空気調和装置。







An inverter-driven compressor, a hot water refrigerant heat exchanger that cools the refrigerant discharged from the inverter-driven compressor with hot water for hot water supply, and a first expansion valve that depressurizes the refrigerant that has exited the heat exchanger, An air refrigerant heat exchanger that heats the refrigerant that has exited the expansion valve with outside air and returns the refrigerant to the inverter-driven compressor, and a floor heating panel that circulates the hot water for hot water supply between the hot water refrigerant heat exchanger and A branch pipe for branching the refrigerant discharged from the inverter-driven compressor, an indoor heat exchanger for exchanging heat between the refrigerant flowing from the branch pipe and indoor air, and an outlet from the indoor heat exchanger. A second expansion valve for depressurizing the refrigerant, a pipe for flowing the refrigerant flowing out of the second expansion valve to the air refrigerant heat exchanger, and a temperature of the refrigerant at an outlet of the inverter-driven compressor. Become constant In the air conditioning apparatus having a control means for adjusting the opening of sea urchin said expansion valve,
A current detector for detecting the magnitude of the drive current of the inverter-driven compressor; and the control means stores the limit of the drive current in the form of a function that varies depending on the rotational speed of the inverter-driven compressor. When the drive current exceeds the limit, the rotation speed of the inverter-driven compressor is limited or the opening degree of the expansion valve is adjusted to open.







JP2004265858A 2004-09-13 2004-09-13 Heat pump, floor heating device, and air conditioner Pending JP2006078146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265858A JP2006078146A (en) 2004-09-13 2004-09-13 Heat pump, floor heating device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265858A JP2006078146A (en) 2004-09-13 2004-09-13 Heat pump, floor heating device, and air conditioner

Publications (1)

Publication Number Publication Date
JP2006078146A true JP2006078146A (en) 2006-03-23

Family

ID=36157745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265858A Pending JP2006078146A (en) 2004-09-13 2004-09-13 Heat pump, floor heating device, and air conditioner

Country Status (1)

Country Link
JP (1) JP2006078146A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091209A (en) * 2008-10-09 2010-04-22 Panasonic Corp Air conditioner
JP2010127495A (en) * 2008-11-26 2010-06-10 Panasonic Corp Heat pump device
CN105135619A (en) * 2015-09-10 2015-12-09 深圳创维空调科技有限公司 Frequency increasing method and system for variable frequency air conditioner
CN105135618A (en) * 2015-09-10 2015-12-09 深圳创维空调科技有限公司 Frequency increasing method and system for variable frequency air conditioner
CN105387570A (en) * 2015-11-30 2016-03-09 珠海格力电器股份有限公司 Executive capability adjustment method and device of water chilling unit
CN112665246A (en) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 Method and device for regulating and controlling electronic expansion valve and heat pump equipment
CN112696730A (en) * 2020-12-25 2021-04-23 宁波奥克斯电气股份有限公司 Floor heating air conditioner and control method and control device thereof
CN114543327A (en) * 2022-01-17 2022-05-27 青岛海尔空调器有限总公司 Method and device for determining opening degree of expansion valve, air conditioner and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288412A (en) * 1992-04-03 1993-11-02 Daikin Ind Ltd Driving device for compressor for air conditioner
JPH06241542A (en) * 1993-02-16 1994-08-30 Toshiba Corp Control device of air conditioner
JPH07332736A (en) * 1994-06-10 1995-12-22 Hitachi Ltd Air conditioner
JPH1089782A (en) * 1996-09-19 1998-04-10 Daikin Ind Ltd Air conditioner
JP2001194017A (en) * 1999-10-28 2001-07-17 Denso Corp Supercritical vapor compressor type freezing cycle
JP2001336807A (en) * 2000-05-31 2001-12-07 Daikin Ind Ltd Operation controlling device of temperature controlling equipment
JP2003222415A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288412A (en) * 1992-04-03 1993-11-02 Daikin Ind Ltd Driving device for compressor for air conditioner
JPH06241542A (en) * 1993-02-16 1994-08-30 Toshiba Corp Control device of air conditioner
JPH07332736A (en) * 1994-06-10 1995-12-22 Hitachi Ltd Air conditioner
JPH1089782A (en) * 1996-09-19 1998-04-10 Daikin Ind Ltd Air conditioner
JP2001194017A (en) * 1999-10-28 2001-07-17 Denso Corp Supercritical vapor compressor type freezing cycle
JP2001336807A (en) * 2000-05-31 2001-12-07 Daikin Ind Ltd Operation controlling device of temperature controlling equipment
JP2003222415A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091209A (en) * 2008-10-09 2010-04-22 Panasonic Corp Air conditioner
JP2010127495A (en) * 2008-11-26 2010-06-10 Panasonic Corp Heat pump device
CN105135619A (en) * 2015-09-10 2015-12-09 深圳创维空调科技有限公司 Frequency increasing method and system for variable frequency air conditioner
CN105135618A (en) * 2015-09-10 2015-12-09 深圳创维空调科技有限公司 Frequency increasing method and system for variable frequency air conditioner
CN105387570A (en) * 2015-11-30 2016-03-09 珠海格力电器股份有限公司 Executive capability adjustment method and device of water chilling unit
CN112665246A (en) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 Method and device for regulating and controlling electronic expansion valve and heat pump equipment
CN112696730A (en) * 2020-12-25 2021-04-23 宁波奥克斯电气股份有限公司 Floor heating air conditioner and control method and control device thereof
CN114543327A (en) * 2022-01-17 2022-05-27 青岛海尔空调器有限总公司 Method and device for determining opening degree of expansion valve, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
US7856835B2 (en) Hot water supply apparatus
JP5524571B2 (en) Heat pump equipment
JP3918807B2 (en) Hot water storage type electric water heater
JP5920251B2 (en) Heating and hot water supply equipment
JP5109300B2 (en) Hot water storage hot water heater
KR20060050501A (en) Heat pumped water heating and heating apparaturs
JP5245217B2 (en) Hot water storage hot water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
WO2015194038A1 (en) Heat pump heating system
JP2006078146A (en) Heat pump, floor heating device, and air conditioner
JP2009264717A (en) Heat pump hot water system
JP6438765B2 (en) Thermal equipment
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP5176474B2 (en) Heat pump water heater
JP5575049B2 (en) Heat pump water heater
JP2009287898A (en) Heat pump type hot water heat utilizing system
JP6399113B2 (en) Heat supply system
JP5528365B2 (en) Heat pump water heater
JP5248437B2 (en) Hot water storage heater
JP2009264714A (en) Heat pump hot water system
JP4790538B2 (en) Hot water storage hot water heater
JP2009264716A (en) Heat pump hot water system
JP3906857B2 (en) Heat pump water heater
JP6423651B2 (en) Water heater
JP2010054145A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100610