WO2019186674A1 - Heat exchanger, heat exchange module, and refrigeration cycle - Google Patents

Heat exchanger, heat exchange module, and refrigeration cycle Download PDF

Info

Publication number
WO2019186674A1
WO2019186674A1 PCT/JP2018/012297 JP2018012297W WO2019186674A1 WO 2019186674 A1 WO2019186674 A1 WO 2019186674A1 JP 2018012297 W JP2018012297 W JP 2018012297W WO 2019186674 A1 WO2019186674 A1 WO 2019186674A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
joint
upstream
header pipe
Prior art date
Application number
PCT/JP2018/012297
Other languages
French (fr)
Japanese (ja)
Inventor
亜由美 小野寺
崇史 畠田
司 高山
亮輔 是澤
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2020510218A priority Critical patent/JP6963098B2/en
Priority to PCT/JP2018/012297 priority patent/WO2019186674A1/en
Priority to CN201880089054.6A priority patent/CN111699351A/en
Publication of WO2019186674A1 publication Critical patent/WO2019186674A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • Embodiments according to the present invention relate to a heat exchanger, a heat exchange module, and a refrigeration cycle apparatus.
  • a heat exchanger including a pair of header pipes and a plurality of parallel heat exchange tubes connected to both header pipes is known.
  • the joint that connects one header pipe and the refrigerant inflow pipe is provided by being inserted on the opposite side of the header pipe to the side to which the heat exchange tube is connected.
  • the tip of the joint is closed.
  • a plurality of refrigerant flow holes opened in a direction orthogonal to the refrigerant flow direction are provided at the tip of the joint.
  • Conventional heat exchangers are provided with coolant circulation holes only in the circumferential direction of the joint inserted into the header pipe.
  • the refrigerant circulation hole distributes the refrigerant to the plurality of heat exchange tubes.
  • the amount of refrigerant distributed to the heat exchange tube far from the joint insertion point is small, while the refrigerant distribution amount to the heat exchange tube close to the joint insertion point is large.
  • the conventional heat exchanger there is still room for improvement in the uniform distribution amount of the refrigerant to the plurality of heat exchange tubes.
  • the present invention proposes a heat exchanger, a heat exchange module, and a refrigeration cycle apparatus that can distribute refrigerant more evenly to a plurality of parallel heat exchange tubes.
  • a heat exchanger includes a pair of header pipes arranged substantially in parallel, arranged in the extending direction of the pair of header pipes, and the pair of header pipes.
  • a plurality of heat exchange pipes installed between the one header pipe and the other header pipe, and provided on a side surface of the one header pipe.
  • a joint for letting out the refrigerant from the one header pipe extends toward the heat exchange pipe and is provided at a tip opening provided at a tip of the joint; at least one side opening provided on a side surface of the joint and facing an inner wall surface of the one header pipe; have.
  • the angle formed by the extending direction of the line passing through the center of the side opening and the line perpendicular to the header pipe with respect to the center line in the extending direction of the joint is less than 45 degrees.
  • the opening area of the side opening is larger than the opening area of the tip opening.
  • a heat exchanger module includes a plurality of the heat exchangers and a relay pipe that connects the plurality of heat exchangers in series.
  • the total opening area of the side opening and the tip opening of the heat exchanger on the downstream side is larger than the total opening area of the side opening and the tip opening of the heat exchanger on the upstream side.
  • a refrigeration cycle apparatus includes a compressor, a condenser, an expansion device, the heat exchanger, an evaporator having the module, and the compressor. , The condenser, the expansion device, and a refrigerant pipe for connecting the evaporator and circulating the refrigerant.
  • the refrigeration cycle figure of the air conditioner which concerns on embodiment of this invention.
  • the top view of the heat exchanger of the air conditioner which concerns on embodiment of this invention.
  • the partial perspective view of the heat exchanger of the air conditioner concerning the embodiment of the present invention.
  • the partial sectional view of the heat exchanger concerning the embodiment of the present invention.
  • the partial cross section perspective view of the heat exchanger which concerns on embodiment of this invention.
  • Sectional drawing which represents typically the mode of distribution of the refrigerant
  • FIG. 1 is a refrigeration cycle diagram of an air conditioner that is a refrigeration cycle apparatus according to an embodiment of the present invention.
  • the air conditioner 1 includes an indoor unit 2 and an outdoor unit 3.
  • the indoor unit 2 generates an indoor unit housing 11, an indoor heat exchanger 12 accommodated in the indoor unit housing 11, and an air flow accommodated in the indoor unit housing 11 and passing through the indoor heat exchanger 12. And an indoor blower 13 to be operated.
  • the indoor blower 13 includes a fan 13a and a power source that drives the fan 13a, for example, an electric motor 13b.
  • a fan 13a When the fan 13a is driven, indoor air is sucked into the indoor unit 2, passes through the indoor heat exchanger 12, and blows out from the indoor unit 2.
  • the outdoor unit 3 includes an outdoor unit housing 15, a compressor 16 housed in the outdoor unit housing 15, a four-way valve 17 housed in the outdoor unit housing 15, and an outdoor unit housed in the outdoor unit housing 15.
  • a heat exchanger 18, an expansion mechanism 19 as an expansion device, and an outdoor blower 21 that is accommodated in the outdoor unit housing 15 and generates an air flow passing through the outdoor heat exchanger 18 are provided.
  • the throttle mechanism 19 is, for example, an electronic expansion valve (Pulse Motor Valve, PMV) or a capillary tube.
  • PMV Pulse Motor Valve
  • the outdoor blower 21 includes a propeller fan 21a and a power source that drives the propeller fan 21a, for example, an electric motor 21b.
  • a propeller fan 21a When the propeller fan 21 a is driven, outdoor air is sucked into the outdoor unit 3, passes through the outdoor heat exchanger 18, and blows out from the outdoor unit 3.
  • the air conditioner 1 also includes a refrigerant pipe 23 that connects the compressor 16, the four-way valve 17, the outdoor heat exchanger 18, the throttle mechanism 19, and the indoor heat exchanger 12 to distribute the refrigerant.
  • the refrigerant pipe 23 sequentially connects the compressor 16, the four-way valve 17, the outdoor heat exchanger 18, the throttle mechanism 19, and the indoor heat exchanger 12.
  • the refrigerant pipe 23 includes a first refrigerant pipe 23 a that connects the discharge port 16 a of the compressor 16 and the four-way valve 17, a second refrigerant pipe 23 b that connects the four-way valve 17 and the suction port 16 b of the compressor 16, and the four-way valve 17.
  • a third refrigerant pipe 23c that connects the outdoor heat exchanger 18 and the fourth refrigerant pipe 23d that connects the outdoor heat exchanger 18 and the throttle mechanism 19, a first pipe connection portion 25a of the throttle mechanism 19 and the outdoor unit 3, and
  • a fifth refrigerant pipe 23e that connects the first pipe connection part 25a of the outdoor unit 3 and a second pipe connection part 25b of the indoor unit 2, and a second pipe connection part 25b of the indoor unit 2.
  • a pipe 23i includes a tenth refrigerant pipe 23j for connecting the fourth pipe connecting portion 25d and the four-way valve 17 of the outdoor unit 3, a.
  • the sixth refrigerant pipe 23f and the ninth refrigerant pipe 23i allow the refrigerant to pass between the outdoor unit 3 and the indoor unit 2.
  • Each of the first pipe connection part 25a and the fourth pipe connection part 25d is a refrigerant pipe 23 on the outdoor unit 3 side, that is, a first refrigerant pipe 23a, a second refrigerant pipe 23b, a third refrigerant pipe 23c, and a fourth refrigerant pipe 23d. Also, it serves as a joint corresponding to the entrance and exit of the fifth refrigerant pipe 23e and the tenth refrigerant pipe 23j.
  • Each of the 2nd piping connection part 25b and the 3rd piping connection part 25c serves also as the coupling corresponded to the refrigerant
  • the air conditioner 1 also includes a control unit 27 that is electrically connected to the four-way valve 17 via a signal line (not shown).
  • the control unit 27 includes a central processing unit (not shown), a storage device (not shown) for storing various arithmetic programs executed by the central processing unit, parameters, and the like.
  • the control unit 27 reads various control programs from the auxiliary storage device into the main storage device, and executes the various control programs read into the main storage device by the central processing unit.
  • the control unit 27 controls the four-way valve 17 based on an operation input to a remote controller (not shown), and performs a cooling operation of the air conditioner 1 (a refrigerant flow indicated by a broken line in FIG. 1) and a heating operation ( In FIG. 1, the refrigerant flow (shown by a solid line) is switched.
  • the air conditioner 1 discharges the high-temperature and high-pressure gas refrigerant compressed from the compressor 16 and sends this refrigerant to the outdoor heat exchanger 18 via the four-way valve 17.
  • the outdoor heat exchanger 18 exchanges heat between the outdoor air and the refrigerant, and cools the refrigerant into a high-pressure liquid state. That is, the outdoor heat exchanger 18 functions as a condenser.
  • the refrigerant that has passed through the outdoor heat exchanger 18 passes through the throttle mechanism 19 and is reduced in pressure to become a low-pressure liquid refrigerant and reaches the indoor heat exchanger 12.
  • the indoor heat exchanger 12 exchanges heat between the indoor air and the liquid refrigerant, cools the air blown into the indoor space, and evaporates the refrigerant to make a transition from the gas-liquid two-phase state to the gas state. That is, the indoor heat exchanger 12 functions as an evaporator. The refrigerant that has passed through the indoor heat exchanger 12 is sucked back into the compressor 16.
  • the air conditioner 1 inverts the four-way valve 17 to cause the refrigerant flow in the opposite direction to the refrigerant flow during the cooling operation in the refrigeration cycle. That is, the indoor heat exchanger 12 functions as a condenser, and the outdoor heat exchanger 18 functions as an evaporator.
  • the air conditioner 1 may not be provided with the four-way valve 17 and may be dedicated to cooling.
  • the discharge port 16a of the compressor 16 is directly connected to the outdoor heat exchanger 18 via the refrigerant pipe 23, and the suction port 16b of the compressor 16 is directly connected to the indoor heat exchanger 12 via the refrigerant pipe 23.
  • the indoor heat exchanger 12 always functions as an evaporator.
  • the indoor heat exchanger 12 and the outdoor heat exchanger 18 that function as an evaporator are hereinafter simply referred to as a heat exchanger 31. Thereafter, the heat exchanger 31 functioning as an evaporator will be described unless otherwise specified.
  • the heat exchanger 31 according to this embodiment has a rectangular plate-like appearance.
  • the air heat-exchanged by the heat exchanger 31 circulates in the front and back direction of the paper surface in FIG. 2 and in the direction of the solid arrow FL in FIG. In other words, the air exchanged by the heat exchanger 31 flows in a direction penetrating the front and back of the plate-shaped heat exchanger 31.
  • the direction in which the air that is heat-exchanged by the heat exchanger 31 flows is referred to as the air flow direction FL of the heat exchanger 31 or the ventilation direction FL of the heat exchanger 31.
  • the heat exchanger 31 is arranged in a pair of header pipes 32 and 33 that are substantially parallel to each other and in the extending direction of the pair of header pipes 32 and 33 (in the direction indicated by the solid arrow X in FIG. 2).
  • the flat tubes 35 as a plurality of heat exchange tubes that are installed between the upstream header pipe 32 and the downstream header pipe 33 and circulate between the upstream header pipe 32 and the downstream header pipe 33, and the adjacent flat tubes 35.
  • a corrugated fin 36, an upstream joint 37 that allows the refrigerant to flow into the upstream header pipe 32, and a downstream joint 38 that allows the refrigerant to flow out from the downstream header pipe 33 are provided.
  • the heat exchanger 31 divides the refrigerant that has flowed from the upstream joint 37 into the upstream header pipe 32 into a plurality of flat tubes 35, and the refrigerant that has passed through the flat tubes 35 and has undergone heat exchange joins in the downstream header pipe 33.
  • the refrigerant is caused to flow out from the downstream header pipe 33 to the downstream joint 38.
  • the distinction between the upstream side of the refrigerant flow and the downstream side of the refrigerant flow in the heat exchanger 31 is based on the refrigerant flow when the heat exchanger 31 functions as an evaporator. Accordingly, according to the refrigerant flow when the heat exchanger 31 functions as a condenser, the distinction between the upstream side of the refrigerant flow and the downstream side of the refrigerant flow in the heat exchanger 31 is reversed. Therefore, the upstream header pipe 32 is referred to as “one header pipe 32”, the downstream header pipe 33 is referred to as “the other header pipe 33”, and the upstream joint 37 is simply referred to as “joint 37”, “first joint 37”. ”Or“ one joint 37 ”, and the downstream joint 38 may be referred to as“ second joint 38 ”or“ the other joint 38 ”.
  • the header pipes 32 and 33, the flat tubes 35, the corrugated fins 36, the upstream joint 37, and the downstream joint 38 are made of aluminum or an aluminum alloy.
  • the header pipes 32 and 33, the flat tubes 35, the corrugated fins 36, and the downstream side joints 38 are integrated by brazing.
  • the header pipes 32 and 33, the flat tubes 35, the corrugated fins 36, and the downstream side joints 38 may be joined by a method other than brazing.
  • Each of the header pipes 32 and 33 is a straight pipe having a circular cross section (annular cross section).
  • the upstream header pipe 32 is disposed at a portion corresponding to one side of the four sides of the heat exchanger 31.
  • the downstream header pipe 33 is disposed at a portion corresponding to the side facing the side where the upstream header pipe 32 is disposed, among the four sides of the heat exchanger 31.
  • End caps 39 made of aluminum or aluminum alloy are provided at the end portions 32a, 32b, 33a, 33b of the header pipes 32, 33, respectively. The end cap 39 closes each end of the header pipes 32 and 33. Each end cap 39 is brazed to the header pipes 32 and 33.
  • the heat exchanger 31 includes the second end 32b of the upstream header pipe 32 and the second end 33b of the downstream header pipe 33 as the first end 32a of the upstream header pipe 32 and the downstream header pipe. It is preferable that the first end portion 33a of 33 is disposed above the first end portion 33a.
  • the plurality of flat tubes 35 are straight tubes having a flat rounded rectangular cross-sectional shape.
  • the plurality of flat tubes 35 are arranged at substantially equal intervals in the extending direction X of the header pipes 32 and 33.
  • the plurality of flat tubes 35 are substantially orthogonal to the header pipes 32 and 33. Each end of the plurality of flat tubes 35 is inserted into the header pipes 32 and 33 and fixed.
  • Each flat tube 35 has a flat rounded rectangular cross section extending in the air flow direction FL of the heat exchanger 31.
  • the short side in the cross-sectional shape of the flat tube 35 extends in the direction in which the flat tubes 35 are arranged, that is, in the extending direction X of the header pipes 32 and 33.
  • the long side in the cross-sectional shape of the flat tube 35 extends in a direction penetrating the front and back of the heat exchanger 31.
  • a pair of adjacent flat tubes 35 faces a wide surface corresponding to the long side in the cross-sectional shape.
  • Each flat tube 35 has a plurality of refrigerant flow passages 35a arranged in a direction penetrating the front and back of the heat exchanger 31, that is, in an air flow direction FL of the heat exchanger 31.
  • the plurality of refrigerant flow passages 35a extend substantially in parallel.
  • the flat tube 35 is generally manufactured by extrusion molding of aluminum.
  • Each corrugated fin 36 is a thin aluminum plate having alternating folds and valleys. Each corrugated fin 36 is a thin plate that moves back and forth in a continuous V-shape with a separation distance between a pair of adjacent flat tubes 35. Each corrugated fin 36 is sandwiched between adjacent flat tubes 35. That is, each fold line of each corrugated fin 36 is in contact with the wide surface of the flat tube 35.
  • the heat exchanger 31 includes a pair of side plates 41.
  • the pair of side plates 41 are made of aluminum or aluminum alloy.
  • the pair of side plates 41 is arranged at a portion corresponding to two opposing sides, which is different from the sides of the four sides of the heat exchanger 31 that the pair of header pipes 32 and 33 bear. That is, the heat exchanger 31 has a rectangular plate shape drawn by a pair of opposed header pipes 32 and 33 and a pair of opposed side plates 41.
  • Each side plate 41 is brazed to a corrugated fin 36 disposed on the outer edge of the heat exchanger 31.
  • the upstream joint 37 is a straight pipe having a circular cross section (annular cross section).
  • the upstream joint 37 is connected to the side surface of the upstream header pipe 32 from the opposite side of the flat tube 35. That is, the upstream side joint 37 is connected to the upstream side header pipe 32 from the opposite side of the side where the flat tube 35 is disposed.
  • the upstream side joint 37 is connected to the refrigerant pipe 23 of the air conditioner 1.
  • the downstream joint 38 is a straight pipe having a circular cross section (annular cross section).
  • the downstream side joint 38 is connected to the downstream side header pipe 33 from the opposite side of the flat tube 35.
  • the downstream joint 38 is connected to the downstream header pipe 33 from the opposite side of the side where the flat tube 35 is disposed.
  • the downstream joint 38 is connected to the refrigerant pipe 23 of the air conditioner 1.
  • the inner diameter dimension of the downstream side joint 38 is equal to or larger than the inner diameter dimension of the upstream side joint 37.
  • the upstream joint 37 is connected in the vicinity of the first end 32 a of the upstream header pipe 32, and the downstream joint 38 is connected in the vicinity of the second end 33 b of the downstream header pipe 33. That is, the upstream side joint 37 and the downstream side joint 38 are arranged in the vicinity of two diagonal corners of the four corners of the rectangular heat exchanger 31. In other words, the flat tube 35 close to the upstream side joint 37 is far from the downstream side joint 38, and the flat tube 35 far from the upstream side joint 37 is close to the downstream side joint 38.
  • the upstream side joint 37 is connected to the upstream header pipe 32 toward a region between the side plate 41 and the flat tube 35 or a region between a pair of adjacent flat tubes 35, that is, a region where the corrugated fins 36 are disposed. Is plugged into.
  • the upstream joint 37 may be inserted into the upstream header pipe 32 toward the side plate 41 or the flat tube 35.
  • the heat exchanger 31 may include a plurality of upstream side joints 37 as indicated by a two-dot chain line in FIG.
  • the plurality of upstream joints 37 may be provided in a region between the side plate 41 and the flat tube 35 and a region between a pair of adjacent flat tubes 35. The plurality of upstream joints 37 easily and uniformly distribute the refrigerant to the flat tubes 35.
  • the downstream side joint 38 is located downstream of the header pipe 33 toward a region between the side plate 41 and the flat tube 35 or a region between a pair of adjacent flat tubes 35, that is, a region where the corrugated fins 36 are disposed. Is plugged into.
  • the downstream joint 38 may be inserted into the downstream header pipe 33 toward the side plate 41 or the flat tube 35.
  • FIG. 4 is a cross-sectional view orthogonal to the center line of the upstream header pipe 32 and passing through the center line of the upstream joint 37.
  • the upstream joint 37 of the heat exchanger 31 extends toward the flat tube 35 when viewed from the X direction that is the extending direction of the upstream header pipe 32. ing.
  • the outer diameter and inner diameter of the upstream joint 37 are smaller than the width of the flat tube 35.
  • the tip of the upstream joint 37 is a protruding end that protrudes inside the upstream header pipe 32.
  • a gap G is provided between the flat tube 35 and the upstream joint 37 when viewed from the extending direction of the upstream header pipe 32.
  • the upstream joint 37 is provided at the distal end of the upstream joint 37 and faces the extending direction Y of the upstream joint 37, and the inner wall surface of the upstream header pipe 32 provided on the side surface of the upstream joint 37. And a side opening 46 facing 32c. One or more side openings 46 may be provided.
  • the tip opening 45 and the side opening 46 allow the refrigerant to flow into the upstream header pipe 32 when the heat exchanger 31 functions as an evaporator (solid arrow f in FIG. 4).
  • the refrigerant flowing in the upstream joint 37 is divided into the tip opening 45 and the side opening 46 and flows into the upstream header pipe 32.
  • the tip opening 45 causes the refrigerant flowing in the upstream side joint 37 to travel substantially straight.
  • the opening diameter of the tip opening 45 is smaller than the inner diameter of the upstream side joint 37.
  • the tip opening 45 restricts the refrigerant flowing out from the upstream side joint 37.
  • the tip opening 45 may be, for example, a hole (so-called orifice) that is made in a plate that closes the tip of the upstream joint 37, or a hole that is made in a cap that closes the tip of the upstream joint 37. good.
  • the tip opening 45 may be an open end of the upstream side joint 37 whose diameter is reduced by plastic deformation by a processing method such as drawing.
  • the center of the tip opening 45 is preferably coincident with the center line of the upstream joint 37.
  • the side opening 46 is provided on the side surface of the portion disposed in the upstream header pipe 32 of the upstream joint 37.
  • the side opening 46 faces the direction orthogonal to the flow direction of the refrigerant in the upstream joint 37.
  • An extension line of a line passing through the center of the side opening 46 reaches the inner wall surface 32 c of the upstream header pipe 32.
  • the side opening 46 changes the traveling direction of the refrigerant flowing in the upstream joint 37 and causes the refrigerant to flow substantially outward in the radial direction of the upstream joint 37.
  • the opening area of the side opening 46 is larger than the opening area of the tip opening 45.
  • the opening shape of the side opening 46 and the opening shape of the tip opening 45 are circular, but may be non-circular such as a triangle or a quadrangle.
  • the side opening 46 and the tip opening 45 are holes having a uniform diameter, but may be conical holes.
  • the non-circular hole has a refrigerant spray effect, promotes mixing of the liquid refrigerant and the gas refrigerant, and equalizes the distribution amount of the refrigerant supplied to the plurality of flat tubes.
  • the conical hole increases the flow rate of the refrigerant to promote the mixing of the liquid refrigerant and the gas refrigerant, and equalizes the distribution amount of the refrigerant supplied to the plurality of flat tubes.
  • FIG. 6 is a cross-sectional view passing through the center line of the upstream header pipe 32 and the center line of the upstream joint 37.
  • the extending directions of the flat tube 35, the side plate 41, and the upstream side joint 37 of the heat exchanger 31 according to the present embodiment are substantially parallel.
  • the outer diameter and inner diameter of the upstream joint 37 are larger than the height of the flat tube 35.
  • the upstream joint 37 extends toward the inner wall surface 32 c of the upstream header pipe 32 between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35. Therefore, the tip opening 45 faces the inner wall surface 32 c of the upstream header pipe 32 between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35.
  • the upstream side joint 37 preferably extends toward an intermediate position between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35. Therefore, it is preferable that the tip opening 45 faces an intermediate position between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35.
  • the separation distance between the upstream joint 37 and the side plate 41 and the separation distance between the upstream joint 37 and the flat tube 35 are substantially equal. That is, it is preferable that the separation distance between the tip opening 45 and the side plate 41 and the separation distance between the tip opening 45 and the flat tube 35 are substantially equal.
  • the upstream joint 37 may extend toward the side plate 41 or the flat tube 35. Therefore, the tip opening 45 may face the side plate 41 or the flat tube 35. In this case, the upstream joint 37 is disposed on the extension line in the extending direction of the side plate 41 or the flat tube 35.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • the side opening 46 of the heat exchanger 31 allows the refrigerant in the upstream joint 37 to flow out in a direction perpendicular to the center line of the upstream header pipe 32, for example.
  • the side openings 46 are provided substantially symmetrically with respect to the center line of the upstream header pipe 32.
  • the center line Z1 in the extending direction of the upstream side joint 37 and the extending direction Z2 of the line segment passing through the center of the side opening 46 are the center of the upstream header pipe 32.
  • the opening direction Z ⁇ b> 2 of the side surface opening 46 may be inclined within a range smaller than ⁇ 45 degrees with respect to the line segment L orthogonal to the center line H of the upstream header pipe 32.
  • the angle ⁇ formed by the opening direction Z2 of the side opening 46 and the line segment L orthogonal to the center line H of the upstream header pipe 32 with respect to the center line Z1 in the extending direction of the upstream joint 37 is 45 degrees. A smaller range is sufficient.
  • FIG. 7 shows a case where the angle ⁇ is 0 degree.
  • the opening direction Z2 of the side surface opening 46 passes through the center line Z1 of the upstream side joint 37 and is perpendicular to the center line H of the upstream side header pipe 32.
  • Two ends 32b that is, the case facing toward the end far from the upstream side joint 37 is positive, and the first end 32a of the upstream header pipe 32, ie, the end closer to the upstream side joint 37 is directed toward. If it is negative.
  • the opening direction of the side opening 46 is preferably directed in the positive direction.
  • the upstream joint 37 has a plurality of side openings 46
  • the plurality of side openings 46 are arranged in a range of an angle ⁇ ⁇ 45 degrees.
  • the upstream joint 37 may have a second side opening having an opening area smaller than that of the side opening 46.
  • the angle ⁇ may be smaller than 45 degrees, or the angle ⁇ may be larger than 45 degrees.
  • FIG. 8 is a cross-sectional view schematically representing the state of refrigerant distribution in the heat exchanger according to the embodiment of the present invention.
  • the heat exchanger 31 shown in FIG. 8 has eight flat tubes 35.
  • the heat exchanger 31 shown in FIG. The eight flat tubes 35 are connected to the first-stage flat tube 35a, the second-stage flat tube 35b, the third-stage flat tube 35c, the fourth-stage flat tube 35d, and the fifth-stage from the side closer to the upstream side joint 37. These are called a flat tube 35e, a sixth flat tube 35f, a seventh flat tube 35g, and an eighth flat tube 35h.
  • the heat exchanger 31 shown in FIG. 8 includes an upstream joint 37 that is inserted into the upstream header pipe 32 toward the space between the first-stage flat tube 35a and the second-stage flat tube 35b.
  • the front-end opening 45 of the upstream side joint 37 distribute
  • the side opening 46 of the upstream joint 37 allows the refrigerant to flow in a direction perpendicular to the center line of the upstream header pipe 32.
  • the refrigerant that has flowed out of the tip opening 45 and the side opening 46 and collided with the inner wall surface 32c of the upstream header pipe 32 is in a state where the gas component and the liquid component are mixed, and is directed in the direction of the center line of the upstream header pipe 32 (Solid arrow F2 in the figure).
  • the liquid refrigerant having a large mass falls below the upstream header pipe 32 (first end portion 32a) due to the influence of gravity. Further, when the side opening 46 faces the range of the angle ⁇ ⁇ 45 degrees, the separation distance from the side opening 46 to the inner wall surface 32c of the upstream header pipe 32 is longer than the range of the angle ⁇ ⁇ 45 degrees. The amount of refrigerant distributed to the flat tubes 35 (for example, the fifth flat tube 35e to the eighth flat tube 35h) decreases.
  • the heat exchanger 31 causes the refrigerant flowing into the upstream header pipe 32 from the tip opening 45 and the side opening 46 to collide with the inner wall surface 32c of the upstream header pipe 32 at an early stage, thereby causing liquid refrigerant and gas Mixing with the refrigerant is promoted, and a larger amount of the refrigerant reaches the upper flat tube 35 by the surface tension at the inner wall surface 32c of the upstream header pipe 32 to increase the distribution amount of the refrigerant.
  • the state of distribution of the refrigerant distributed to the eight flat tubes 35 is expressed by a difference in length of solid arrows extending from the flat tubes 35.
  • This solid line arrow is an example of refrigerant distribution in the heat exchanger 31 including the upstream joint 37 having one side opening 46 facing the upwind direction of the heat exchanger 31 and one tip opening 45. Is shown.
  • the broken-line arrows extending from the respective flat tubes 35 are refrigerants in a conventional heat exchanger having only one side opening 46 facing the upwind direction of the heat exchanger 31 and having an upstream joint without the tip opening 45. This is a comparative example.
  • the heat exchanger 31 causes the refrigerant flowing into the upstream header pipe 32 from the front end opening 45 to collide with the inner wall surface 32c of the upstream header pipe 32 at an early stage, so that the flatness in the vicinity of the upstream joint 37 is obtained. It is possible to prevent the refrigerant from staying on the upper surface of the pipe 35 or the side plate 41 (portion in the upstream header pipe 32). Since the retention of the refrigerant reduces the distribution amount of the refrigerant to the flat tube 35, the prevention of the retention improves the distribution amount of the refrigerant to the flat tube 35.
  • heat exchanger 31A and 31B demonstrated in each example the same code
  • FIG. 9 is a partial cross-sectional view of another example of the heat exchanger according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view orthogonal to the center line of the upstream header pipe 32 and passing through the center line of the upstream joint 37.
  • One region A is preferably the windward side in the air flow direction FL of the heat exchanger 31 (upstream side, the start end side of the solid line arrow FL).
  • FIG. 10 is a partial cross-sectional view of another example of the heat exchanger according to the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view orthogonal to the center line of the upstream header pipe 32 and passing through the center line of the upstream joint 37.
  • the heat exchanger 31 ⁇ / b> B includes protrusions 49 provided on the inner wall surface 32 c of the upstream header pipe 32 and projecting toward the side opening 46 and the tip opening 45. ing.
  • the protrusion 49 may be formed by plastically deforming the upstream header pipe 32, or may be a part in which another part is fixed to the upstream header pipe 32.
  • the protrusion 49 is provided in front of the side opening 46, that is, at the intersection of the line segment connecting the center of the upstream joint 37 and the center of the side opening 46 and the inner wall surface 32 c of the upstream header pipe 32. Further, the protrusion 49 is provided in front of the tip opening 45, that is, at the intersection of the center line of the upstream joint 37 and the inner wall surface 32 c of the upstream header pipe 32.
  • the protrusion 49 preferably has a chevron-shaped curved surface so that the gas phase and the liquid phase of the refrigerant that flows out of the tip opening 45 or the side opening 46 and collides with the protrusion 49 can be efficiently mixed.
  • the protrusion 49 arranged on the extension line of the tip opening 45 of the upstream joint 37 is a flow of refrigerant (liquid refrigerant, gas refrigerant) from the tip opening 45 toward the inner wall surface 32c of the upstream header pipe 32 (solid arrow F1). Stir.
  • the protrusion 49 disposed on the extension line of the side opening 46 agitates the flow of refrigerant (liquid refrigerant, gas refrigerant) from the side opening 46 toward the inner wall surface 32c of the upstream header pipe 32 (solid arrow F1).
  • the stirred refrigerant is uniformly distributed by the respective flat tubes 35.
  • the upstream joint 37 extends toward the flat tube 35 when viewed from the X direction that is the extending direction of the upstream header pipe 32.
  • the present invention is not limited to this.
  • the upstream joint 37 may extend in a direction orthogonal to the flat tube 35 as viewed from the X direction, which is the extending direction of the upstream header pipe 32, or may face in any direction.
  • heat exchanger 31 is not limited to the corrugated fins 36 and may include plate-like fins.
  • FIG. 11 is a refrigeration cycle diagram of another example of the air conditioner according to the embodiment of the present invention.
  • the air conditioner 1 ⁇ / b> A includes a heat exchanger module 51 instead of the indoor heat exchanger 12 functioning as an evaporator or the heat exchanger 31 as an outdoor heat exchanger 18. ing.
  • FIG. 12 is a plan view of the heat exchanger module of the air conditioner according to the embodiment of the present invention.
  • a heat exchanger module 51 includes a plurality of, for example, two heat exchangers 31a and 31b connected in series and a plurality of heat exchangers 31a and 31b in series. And at least one relay pipe 53 connected to the.
  • the heat exchanger module 51 may include three or more heat exchangers 31 connected in series.
  • the relay pipe 53 is provided for each pair of adjacent heat exchangers 31.
  • the relay pipe 53 may be an extension of the downstream joint 38 of the upstream heat exchanger 31a, or may be an extension of the upstream joint 37 of the downstream heat exchanger 31b.
  • the upstream heat exchanger 31a when the heat exchanger module 51 functions as an evaporator diverts the refrigerant that has flowed from the upstream joint 37 into the upstream header pipe 32 into a plurality of flat tubes 35.
  • the refrigerant that has passed and exchanged heat is merged in the downstream header pipe 33, and the refrigerant flows out from the downstream header pipe 33 to the downstream joint 38.
  • the heat exchanger module 51 causes the refrigerant to flow from the downstream joint 38 of the upstream heat exchanger 31a through the relay pipe 53 to the upstream joint 37 of the downstream heat exchanger 31b.
  • the heat exchanger 31b on the downstream side of the heat exchanger module 51 diverts the refrigerant that has flowed from the upstream joint 37 into the upstream header pipe 32 into a plurality of flat tubes 35, and passes through the flat tubes 35 to exchange heat.
  • the resulting refrigerant is merged in the downstream header pipe 33, and the refrigerant flows out from the downstream header pipe 33 to the downstream joint 38.
  • the total opening area of the side opening 46 and the tip opening 45 of the downstream heat exchanger 31b is equal to the side opening 46 of the upstream heat exchanger 31a. It is larger than the total opening area of the tip opening 45.
  • the upstream joint 37 of the downstream heat exchanger 31b may have the same configuration as the upstream joint 37 of the upstream heat exchanger 31a, but either the side opening 46 or the tip opening 45 may be used. Only one of them may be provided, and the opening direction of the side opening 46 may be an arbitrary direction. However, even in that case, the total area of the openings is desirably larger than the total opening area of the side opening 46 and the tip opening 45 of the upstream heat exchanger 31a.
  • the inner diameter dimension of the upstream joint 37 of the downstream heat exchanger 31b is larger than the inner diameter dimension of the upstream joint 37 of the upstream heat exchanger 31a.
  • the inner diameter dimension of the downstream side joint 38 is equal to or larger than the inner diameter dimension of the upstream side joint 37 provided in the same heat exchanger 31.
  • the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A according to the present embodiment configured as described above are provided at the distal end of the upstream joint 37 and are extended from the upstream joint 37.
  • the line segment L perpendicular to the center line H of the upstream header pipe 32 is smaller than 45 degrees, and the opening area of the side opening 46 is larger than the opening area of the tip opening 45.
  • the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A collide and disperse the main flow of the refrigerant with the inner wall surface 32c of the upstream header pipe 32 by the side opening 46, Phase separation between the liquid refrigerant and the gas refrigerant in the upstream header pipe 32 can be suppressed, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made uniform.
  • the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A prevent liquid refrigerant from staying on the flat tube 35 near the upstream joint 37 by the refrigerant flowing out from the tip opening 45, Phase separation between the liquid refrigerant and the gas refrigerant in the upstream header pipe 32 can be suppressed, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made uniform.
  • the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A have the inner wall surface 32c of the upstream header pipe 32 between a pair of adjacent flat tubes 35.
  • a front end opening 45 is provided. Therefore, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A more reliably retain the liquid refrigerant on the flat tube 35 near the upstream joint 37 by the refrigerant flowing out from the tip opening 45. Therefore, the phase separation between the liquid refrigerant and the gas refrigerant in the upstream header pipe 32 can be suppressed, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made uniform.
  • the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A have a plurality of side openings 46. Therefore, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A reduce pressure loss in the refrigerant flow path, and effectively supply the refrigerant to the inner wall surface 32c of the upstream header pipe 32.
  • the refrigerant is dispersed by colliding, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made more uniform.
  • the heat exchanger 31 ⁇ / b> A, the heat exchanger module 51, and the air conditioners 1, 1 ⁇ / b> A have side openings 46 that allow the refrigerant to flow out to the upstream side area A of the upstream header pipe 32. Yes.
  • the heat exchanger 31A, the heat exchanger module 51, and the air conditioners 1 and 1A cause the refrigerant to collide with the inner wall surface 32c of the upstream-side header pipe 32 on the windward side where the heat source temperature difference is large.
  • the heat exchanger 31A, the heat exchanger module 51, and the air conditioners 1 and 1A positively flow the refrigerant into the refrigerant flow passage 35a that is located on the windward side of the flat tube 35 and has a large amount of heat transfer work.
  • the amount of heat exchange of the refrigerant can be increased.
  • the heat exchanger 31B, the heat exchanger module 51, and the air conditioners 1 and 1A according to the present embodiment are provided on the inner wall surface 32c of the upstream header pipe 32 to the side opening 46 and the tip opening 45, respectively.
  • a projection 49 is provided that protrudes toward the surface. Therefore, the heat exchanger 31B, the heat exchanger module 51, and the air conditioners 1 and 1A further promote the stirring of the liquid refrigerant and the gas refrigerant that collide with the inner wall surface 32c of the upstream header pipe 32, and the flat tube 35 The distribution amount of the refrigerant supplied to can be made even more uniform.
  • the total opening area of the upstream joint 37 of the downstream heat exchanger 31b is equal to the upstream joint 37 of the upstream heat exchanger 31a. It is larger than the total opening area of the side opening 46 and the tip opening 45. Therefore, the heat exchanger module 51 and the air conditioner 1A according to the present embodiment suppress an excessive increase in pressure loss in each of the heat exchangers 31a and 31b, and are flat tubes formed by the side opening 46 and the tip opening 45.
  • the refrigerant flow to 35 can be made uniform.
  • the inner diameter dimension of the downstream side joint 38 is equal to or larger than the inner diameter dimension of the upstream side joint 37 provided in the same heat exchanger 31.
  • the inner diameter dimension of the upstream joint 37 of the heat exchanger 31b is larger than the inner diameter dimension of the upstream joint 37 of the upstream heat exchanger 31a. Therefore, an excessive increase in pressure loss in each of the heat exchangers 31a and 31b can be suppressed, and the refrigerant flow to the flat tube 35 by the side opening 46 and the tip opening 45 can be made more uniform.
  • the refrigerant can be more evenly distributed to the plurality of parallel flat tubes 35. is there.
  • downstream header pipe 33a ... first end, 33b ... second end, 35 ... flat tube, 35a ... refrigerant flow passage, 36 ... corrugated fin, 37 ... upstream joint, 38 ... downstream joint, 39 ... End cap, 41 ... Side plate, 45 ... Tip opening, 46, 46A ... Side opening, 48 ... Second side opening, 49 ... Projection, 51 ... Heat exchanger module, 53 ... Relay piping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

The present invention provides: a heat exchanger in which a refrigerant can be more uniformly distributed to a plurality of heat exchange pipes; a heat exchange module; and an air conditioner. A heat exchanger (31) is provided with: a pair of header pipes (32), (33) arranged substantially in parallel; a plurality of flat pipes (35) which are arranged in the extension direction of the pair of header pipes (32), (33) and installed between the pair of header pipes (32), (33), and which circulate a refrigerant between the upstream-side header pipe (32) and the downstream-side header pipe (33); and an upstream-side connector (37) that delivers the refrigerant into the upstream-side header pipe (32). The upstream-side connector (37) has: a distal end opening (45) provided at the distal end thereof; and at least one lateral opening (46) provided on a side surface of the upstream-side connector (37) and facing an inner surface (32c) of the upstream-side header pipe (32). The angle θ formed between an opening direction (Z2) of the lateral opening (46) of the upstream-side connector (37) and a line segment L perpendicular to the header pipe is smaller than 45 degrees. The opening area of the lateral opening (46) is less than the opening area of the distal end opening (45).

Description

熱交換器、熱交換モジュール、および冷凍サイクル装置Heat exchanger, heat exchange module, and refrigeration cycle apparatus
 本発明に係る実施形態は、熱交換器、熱交換モジュール、および冷凍サイクル装置に関する。 Embodiments according to the present invention relate to a heat exchanger, a heat exchange module, and a refrigeration cycle apparatus.
 一対のヘッダーパイプと、両ヘッダーパイプに接続する互いに平行な複数の熱交換チューブと、を備える熱交換器が知られている。 A heat exchanger including a pair of header pipes and a plurality of parallel heat exchange tubes connected to both header pipes is known.
 一方のヘッダーパイプと冷媒流入管とを接続する継手は、ヘッダーパイプにおける熱交換チューブが接続される側と反対側に挿入して設けられる。継手の先端は、閉塞されている。継手の先端部には、冷媒の流れ方向に対して直交方向へ開口された複数の冷媒流通孔が設けられている。 The joint that connects one header pipe and the refrigerant inflow pipe is provided by being inserted on the opposite side of the header pipe to the side to which the heat exchange tube is connected. The tip of the joint is closed. A plurality of refrigerant flow holes opened in a direction orthogonal to the refrigerant flow direction are provided at the tip of the joint.
特開2016-183847号公報JP 2016-183847 A
 従来の熱交換器は、ヘッダーパイプに挿入される継手の円周方向のみに冷媒流通孔を設けている。この冷媒流通孔は、複数の熱交換チューブへ冷媒を分配する。 Conventional heat exchangers are provided with coolant circulation holes only in the circumferential direction of the joint inserted into the header pipe. The refrigerant circulation hole distributes the refrigerant to the plurality of heat exchange tubes.
 しかしながら、従来の熱交換器では、継手の挿入箇所から遠い熱交換チューブへの冷媒の分配量が少ない一方で、継手の挿入箇所に近い熱交換チューブへの冷媒の分配量が多くなる。換言すると、従来の熱交換器では、複数の熱交換チューブへの冷媒の分配量の均一化に、未だ改善の余地がある。 However, in the conventional heat exchanger, the amount of refrigerant distributed to the heat exchange tube far from the joint insertion point is small, while the refrigerant distribution amount to the heat exchange tube close to the joint insertion point is large. In other words, in the conventional heat exchanger, there is still room for improvement in the uniform distribution amount of the refrigerant to the plurality of heat exchange tubes.
 そこで、本発明は、並行する複数の熱交換管に、冷媒をより均等に分配可能な熱交換器、熱交換モジュール、および冷凍サイクル装置を提案する。 Therefore, the present invention proposes a heat exchanger, a heat exchange module, and a refrigeration cycle apparatus that can distribute refrigerant more evenly to a plurality of parallel heat exchange tubes.
 前記の課題を解決するため本発明の実施形態に係る熱交換器は、実質的に平行に並ぶ一対のヘッダーパイプと、前記一対のヘッダーパイプの延在方向に並び、かつ前記一対のヘッダーパイプの間に架設されて一方の前記ヘッダーパイプと他方の前記ヘッダーパイプとの間で冷媒を流通させる複数の熱交換管と、前記一方のヘッダーパイプの側面に設けられ、前記一方のヘッダーパイプへ前記冷媒を流入させ、または前記一方のヘッダーパイプから前記冷媒を流出させる継手と、を備えている。前記継手は、前記熱交換管へ向かって延び、かつ前記継手の先端に設けられる先端開口と、前記継手の側面に設けられて前記一方のヘッダーパイプの内壁面を臨む少なくとも1つの側面開口と、を有している。前記継手の延在方向の中心線に対して、前記側面開口の中心を通る線分の延在方向と前記ヘッダーパイプに直交する線分とがなす角は、45度より小さい。前記側面開口の開口面積は前記先端開口の開口面積より大きい。 In order to solve the above-described problems, a heat exchanger according to an embodiment of the present invention includes a pair of header pipes arranged substantially in parallel, arranged in the extending direction of the pair of header pipes, and the pair of header pipes. A plurality of heat exchange pipes installed between the one header pipe and the other header pipe, and provided on a side surface of the one header pipe. Or a joint for letting out the refrigerant from the one header pipe. The joint extends toward the heat exchange pipe and is provided at a tip opening provided at a tip of the joint; at least one side opening provided on a side surface of the joint and facing an inner wall surface of the one header pipe; have. The angle formed by the extending direction of the line passing through the center of the side opening and the line perpendicular to the header pipe with respect to the center line in the extending direction of the joint is less than 45 degrees. The opening area of the side opening is larger than the opening area of the tip opening.
 また、前記の課題を解決するため本発明の実施形態に係る熱交換器モジュールは、複数の前記熱交換器と、前記複数の熱交換器を直列に接続する中継配管と、を備えている。前記冷媒の流れ方向において、下流側の前記熱交換器の前記側面開口および前記先端開口の総開口面積は、上流側の前記熱交換器の前記側面開口および前記先端開口の総開口面積より大きい。 In order to solve the above-described problems, a heat exchanger module according to an embodiment of the present invention includes a plurality of the heat exchangers and a relay pipe that connects the plurality of heat exchangers in series. In the refrigerant flow direction, the total opening area of the side opening and the tip opening of the heat exchanger on the downstream side is larger than the total opening area of the side opening and the tip opening of the heat exchanger on the upstream side.
 さらに、前記の課題を解決するため本発明の実施形態に係る冷凍サイクル装置は、圧縮機と、凝縮器と、膨張装置と、前記熱交換器、または前記モジュールを有する蒸発器と、前記圧縮機、前記凝縮器、前記膨張装置、および前記蒸発器を接続して前記冷媒を流通させる冷媒配管と、を備えている。 Furthermore, in order to solve the above-described problems, a refrigeration cycle apparatus according to an embodiment of the present invention includes a compressor, a condenser, an expansion device, the heat exchanger, an evaporator having the module, and the compressor. , The condenser, the expansion device, and a refrigerant pipe for connecting the evaporator and circulating the refrigerant.
本発明の実施形態に係る空気調和機の冷凍サイクル図。The refrigeration cycle figure of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機の熱交換器の平面図。The top view of the heat exchanger of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機の熱交換器の部分的な斜視図。The partial perspective view of the heat exchanger of the air conditioner concerning the embodiment of the present invention. 本発明の実施形態に係る熱交換器の部分的な断面図。The partial sectional view of the heat exchanger concerning the embodiment of the present invention. 本発明の実施形態に係る熱交換器の部分的な断面斜視図。The partial cross section perspective view of the heat exchanger which concerns on embodiment of this invention. 本発明の実施形態に係る熱交換器の部分的な断面図。The partial sectional view of the heat exchanger concerning the embodiment of the present invention. 本発明の実施形態に係る熱交換器の部分的な断面図。The partial sectional view of the heat exchanger concerning the embodiment of the present invention. 本発明の実施形態に係る熱交換器における冷媒の分配の様子を模式的に表現する断面図。Sectional drawing which represents typically the mode of distribution of the refrigerant | coolant in the heat exchanger which concerns on embodiment of this invention. 本発明の実施形態に係る熱交換器の他の例における部分的な断面図。The fragmentary sectional view in other examples of the heat exchanger concerning the embodiment of the present invention. 本発明の実施形態に係る熱交換器の他の例における部分的な断面図。The fragmentary sectional view in other examples of the heat exchanger concerning the embodiment of the present invention. 本発明の実施形態に係る空気調和機の他の例の冷凍サイクル図。The refrigerating cycle figure of the other example of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機の熱交換器モジュールの平面図。The top view of the heat exchanger module of the air conditioner which concerns on embodiment of this invention.
 本発明に係る熱交換器、熱交換モジュール、および冷凍サイクル装置の実施形態について、図1から図12を参照して説明する。なお、複数の図面中、同一または相当する構成には同一の符号を付している。 Embodiments of a heat exchanger, a heat exchange module, and a refrigeration cycle apparatus according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same or equivalent structure in several drawing.
 図1は、本発明の実施形態に係る冷凍サイクル装置である空気調和機の冷凍サイクル図である。 FIG. 1 is a refrigeration cycle diagram of an air conditioner that is a refrigeration cycle apparatus according to an embodiment of the present invention.
 図1に示すように、本実施形態に係る空気調和機1は、室内機2と、室外機3と、を備えている。 As shown in FIG. 1, the air conditioner 1 according to the present embodiment includes an indoor unit 2 and an outdoor unit 3.
 室内機2は、室内機筐体11と、室内機筐体11に収容される室内熱交換器12と、室内機筐体11に収容されて室内熱交換器12を通過する空気の流れを発生させる室内送風機13と、を備えている。 The indoor unit 2 generates an indoor unit housing 11, an indoor heat exchanger 12 accommodated in the indoor unit housing 11, and an air flow accommodated in the indoor unit housing 11 and passing through the indoor heat exchanger 12. And an indoor blower 13 to be operated.
 室内送風機13は、ファン13aと、ファン13aを駆動させる動力源、例えば電動機13bと、を備えている。ファン13aを駆動させると、室内の空気は、室内機2に吸い込まれ、室内熱交換器12を通過して室内機2から吹き出す。 The indoor blower 13 includes a fan 13a and a power source that drives the fan 13a, for example, an electric motor 13b. When the fan 13a is driven, indoor air is sucked into the indoor unit 2, passes through the indoor heat exchanger 12, and blows out from the indoor unit 2.
 室外機3は、室外機筐体15と、室外機筐体15に収容される圧縮機16と、室外機筐体15に収容される四方弁17と、室外機筐体15に収容される室外熱交換器18と、膨張装置としての絞り機構19と、室外機筐体15に収容されて室外熱交換器18を通過する空気の流れを発生させる室外送風機21と、を備えている。 The outdoor unit 3 includes an outdoor unit housing 15, a compressor 16 housed in the outdoor unit housing 15, a four-way valve 17 housed in the outdoor unit housing 15, and an outdoor unit housed in the outdoor unit housing 15. A heat exchanger 18, an expansion mechanism 19 as an expansion device, and an outdoor blower 21 that is accommodated in the outdoor unit housing 15 and generates an air flow passing through the outdoor heat exchanger 18 are provided.
 絞り機構19は、例えば電子膨張弁(Pulse Motor Valve、PMV)やキャピラリーチューブである。 The throttle mechanism 19 is, for example, an electronic expansion valve (Pulse Motor Valve, PMV) or a capillary tube.
 室外送風機21は、プロペラファン21aと、プロペラファン21aを駆動させる動力源、例えば電動機21bと、を備えている。プロペラファン21aを駆動させると、室外の空気は、室外機3に吸い込まれ、室外熱交換器18を通過して室外機3から吹き出す。 The outdoor blower 21 includes a propeller fan 21a and a power source that drives the propeller fan 21a, for example, an electric motor 21b. When the propeller fan 21 a is driven, outdoor air is sucked into the outdoor unit 3, passes through the outdoor heat exchanger 18, and blows out from the outdoor unit 3.
 また、空気調和機1は、圧縮機16、四方弁17、室外熱交換器18、絞り機構19、および室内熱交換器12を接続して冷媒を流通させる冷媒配管23を備えている。 The air conditioner 1 also includes a refrigerant pipe 23 that connects the compressor 16, the four-way valve 17, the outdoor heat exchanger 18, the throttle mechanism 19, and the indoor heat exchanger 12 to distribute the refrigerant.
 冷媒配管23は、圧縮機16、四方弁17、室外熱交換器18、絞り機構19、および室内熱交換器12を順次に接続している。 The refrigerant pipe 23 sequentially connects the compressor 16, the four-way valve 17, the outdoor heat exchanger 18, the throttle mechanism 19, and the indoor heat exchanger 12.
 冷媒配管23は、圧縮機16の吐出口16aと四方弁17とを繋ぐ第一冷媒配管23aと、四方弁17と圧縮機16の吸込口16bとを繋ぐ第二冷媒配管23bと、四方弁17と室外熱交換器18とを繋ぐ第三冷媒配管23cと、室外熱交換器18と絞り機構19とを繋ぐ第四冷媒配管23dと、絞り機構19と室外機3の第一配管接続部25aとを繋ぐ第五冷媒配管23eと、室外機3の第一配管接続部25aと室内機2の第二配管接続部25bとを繋ぐ第六冷媒配管23fと、室内機2の第二配管接続部25bと室内熱交換器12とを繋ぐ第七冷媒配管23gと、室内熱交換器12と室内機2の第三配管接続部25cとを繋ぐ第八冷媒配管23hと、室内機2の第三配管接続部25cと室外機3の第四配管接続部25dとを繋ぐ第九冷媒配管23iと、室外機3の第四配管接続部25dと四方弁17とを繋ぐ第十冷媒配管23jと、を含んでいる。 The refrigerant pipe 23 includes a first refrigerant pipe 23 a that connects the discharge port 16 a of the compressor 16 and the four-way valve 17, a second refrigerant pipe 23 b that connects the four-way valve 17 and the suction port 16 b of the compressor 16, and the four-way valve 17. A third refrigerant pipe 23c that connects the outdoor heat exchanger 18 and the fourth refrigerant pipe 23d that connects the outdoor heat exchanger 18 and the throttle mechanism 19, a first pipe connection portion 25a of the throttle mechanism 19 and the outdoor unit 3, and A fifth refrigerant pipe 23e that connects the first pipe connection part 25a of the outdoor unit 3 and a second pipe connection part 25b of the indoor unit 2, and a second pipe connection part 25b of the indoor unit 2. A seventh refrigerant pipe 23g connecting the indoor heat exchanger 12 and the eighth refrigerant pipe 23h connecting the indoor heat exchanger 12 and the third pipe connecting portion 25c of the indoor unit 2, and a third pipe connection of the indoor unit 2. 9th cold which connects part 25c and the 4th piping connection part 25d of outdoor unit 3 A pipe 23i, includes a tenth refrigerant pipe 23j for connecting the fourth pipe connecting portion 25d and the four-way valve 17 of the outdoor unit 3, a.
 第六冷媒配管23fおよび第九冷媒配管23iは、室外機3と室内機2との間で冷媒を往来させる。 The sixth refrigerant pipe 23f and the ninth refrigerant pipe 23i allow the refrigerant to pass between the outdoor unit 3 and the indoor unit 2.
 第一配管接続部25aおよび第四配管接続部25dのそれぞれは、室外機3側の冷媒配管23、つまり第一冷媒配管23a、第二冷媒配管23b、第三冷媒配管23c、第四冷媒配管23d、第五冷媒配管23e、および第十冷媒配管23jの出入り口に相当する継手を兼ねている。 Each of the first pipe connection part 25a and the fourth pipe connection part 25d is a refrigerant pipe 23 on the outdoor unit 3 side, that is, a first refrigerant pipe 23a, a second refrigerant pipe 23b, a third refrigerant pipe 23c, and a fourth refrigerant pipe 23d. Also, it serves as a joint corresponding to the entrance and exit of the fifth refrigerant pipe 23e and the tenth refrigerant pipe 23j.
 第二配管接続部25bおよび第三配管接続部25cのそれぞれは、室内機2側の冷媒配管23、つまり第七冷媒配管23g、および第八冷媒配管23hの出入り口に相当する継手を兼ねている。 Each of the 2nd piping connection part 25b and the 3rd piping connection part 25c serves also as the coupling corresponded to the refrigerant | coolant piping 23 by the side of the indoor unit 2, ie, the 7th refrigerant | coolant piping 23g, and the 8th refrigerant | coolant piping 23h.
 また、空気調和機1は、四方弁17に信号線(図示省略)を介して電気的に接続される制御部27を備えている。 The air conditioner 1 also includes a control unit 27 that is electrically connected to the four-way valve 17 via a signal line (not shown).
 制御部27は、中央演算処理装置(図示省略)、中央演算処理装置が実行する各種演算プログラム、パラメータなどを記憶する記憶装置(図示省略)を備えている。制御部27は、各種制御プログラムを補助記憶装置から主記憶装置へ読み込み、主記憶装置に読み込まれた各種制御プログラムを中央演算処理装置で実行する。 The control unit 27 includes a central processing unit (not shown), a storage device (not shown) for storing various arithmetic programs executed by the central processing unit, parameters, and the like. The control unit 27 reads various control programs from the auxiliary storage device into the main storage device, and executes the various control programs read into the main storage device by the central processing unit.
 制御部27は、リモートコントローラ(図示省略)に入力される運転操作に基づいて四方弁17を制御し、空気調和機1の冷房運転(図1中、破線で示す冷媒の流れ)と暖房運転(図1中、実線で示す冷媒の流れ)とを切り替える。 The control unit 27 controls the four-way valve 17 based on an operation input to a remote controller (not shown), and performs a cooling operation of the air conditioner 1 (a refrigerant flow indicated by a broken line in FIG. 1) and a heating operation ( In FIG. 1, the refrigerant flow (shown by a solid line) is switched.
 冷房運転時、空気調和機1は、圧縮機16から圧縮された高温高圧のガス冷媒を吐出し、四方弁17を介してこの冷媒を室外熱交換器18へ送る。室外熱交換器18は、室外の空気と冷媒との間で熱交換を行い、冷媒を冷却して高圧の液状態にする。つまり、室外熱交換器18は、凝縮器として機能する。室外熱交換器18を通過した冷媒は、絞り機構19を通過して減圧され低圧の液冷媒になって室内熱交換器12に到達する。室内熱交換器12は、室内の空気と液冷媒との間で熱交換を行い、室内空間に吹き出す空気を冷却する一方で、冷媒を蒸発させて気液二相状態から気体状態に遷移させる。つまり、室内熱交換器12は、蒸発器として機能する。室内熱交換器12を通過した冷媒は、圧縮機16へ吸い込まれて戻る。 During the cooling operation, the air conditioner 1 discharges the high-temperature and high-pressure gas refrigerant compressed from the compressor 16 and sends this refrigerant to the outdoor heat exchanger 18 via the four-way valve 17. The outdoor heat exchanger 18 exchanges heat between the outdoor air and the refrigerant, and cools the refrigerant into a high-pressure liquid state. That is, the outdoor heat exchanger 18 functions as a condenser. The refrigerant that has passed through the outdoor heat exchanger 18 passes through the throttle mechanism 19 and is reduced in pressure to become a low-pressure liquid refrigerant and reaches the indoor heat exchanger 12. The indoor heat exchanger 12 exchanges heat between the indoor air and the liquid refrigerant, cools the air blown into the indoor space, and evaporates the refrigerant to make a transition from the gas-liquid two-phase state to the gas state. That is, the indoor heat exchanger 12 functions as an evaporator. The refrigerant that has passed through the indoor heat exchanger 12 is sucked back into the compressor 16.
 他方、暖房運転時、空気調和機1は、四方弁17を反転させて冷凍サイクルに冷房運転時の冷媒の流れと逆向きの冷媒の流れを生じさせる。つまり、室内熱交換器12は凝縮器として機能し、室外熱交換器18は蒸発器として機能する。 On the other hand, during the heating operation, the air conditioner 1 inverts the four-way valve 17 to cause the refrigerant flow in the opposite direction to the refrigerant flow during the cooling operation in the refrigeration cycle. That is, the indoor heat exchanger 12 functions as a condenser, and the outdoor heat exchanger 18 functions as an evaporator.
 なお、空気調和機1は、四方弁17を備えない、冷房専用であってもよい。この場合、圧縮機16の吐出口16aは冷媒配管23を介して室外熱交換器18に直接的に繋がれ、圧縮機16の吸込口16bは冷媒配管23を介して室内熱交換器12に直接的に繋がれる。室内熱交換器12は、常に蒸発器として機能する。 In addition, the air conditioner 1 may not be provided with the four-way valve 17 and may be dedicated to cooling. In this case, the discharge port 16a of the compressor 16 is directly connected to the outdoor heat exchanger 18 via the refrigerant pipe 23, and the suction port 16b of the compressor 16 is directly connected to the indoor heat exchanger 12 via the refrigerant pipe 23. Connected. The indoor heat exchanger 12 always functions as an evaporator.
 なお、冷暖房可能な空気調和機1の場合には、室内熱交換器12および室外熱交換器18内の冷媒の流れの方向は、冷房運転時と暖房運転時時との間で反転する(反対になる)。そこで、蒸発器として機能する室内熱交換器12、および室外熱交換器18を、以下、単に熱交換器31と呼ぶ。これより後、特別の断りがない限り、蒸発器として機能する熱交換器31について説明する。 In the case of the air conditioner 1 capable of cooling and heating, the direction of the refrigerant flow in the indoor heat exchanger 12 and the outdoor heat exchanger 18 is reversed between the cooling operation and the heating operation (opposite) become). Therefore, the indoor heat exchanger 12 and the outdoor heat exchanger 18 that function as an evaporator are hereinafter simply referred to as a heat exchanger 31. Thereafter, the heat exchanger 31 functioning as an evaporator will be described unless otherwise specified.
 図2および図3に示すように、本実施形態に係る熱交換器31は、矩形の板状の外観を有している。 2 and 3, the heat exchanger 31 according to this embodiment has a rectangular plate-like appearance.
 熱交換器31によって熱交換される空気は、図2における紙面の表裏方向、および図3の実線矢印FLの方向へ流通する。換言すると、熱交換器31によって熱交換される空気は、板状の熱交換器31の表裏を貫く方向へ流通する。なお、熱交換器31によって熱交換される空気が流れる方向を、熱交換器31の空気流通方向FL、または熱交換器31の通風方向FLと呼ぶ。 The air heat-exchanged by the heat exchanger 31 circulates in the front and back direction of the paper surface in FIG. 2 and in the direction of the solid arrow FL in FIG. In other words, the air exchanged by the heat exchanger 31 flows in a direction penetrating the front and back of the plate-shaped heat exchanger 31. The direction in which the air that is heat-exchanged by the heat exchanger 31 flows is referred to as the air flow direction FL of the heat exchanger 31 or the ventilation direction FL of the heat exchanger 31.
 熱交換器31は、実質的に平行に並ぶ一対のヘッダーパイプ32、33と、一対のヘッダーパイプ32、33の延在方向(図2中の実線矢印X方向)に並び、かつ一対のヘッダーパイプ32、33の間に架設されて上流側ヘッダーパイプ32と下流側ヘッダーパイプ33との間で冷媒を流通させる複数の熱交換管としての扁平管35と、隣接する扁平管35の間に設けられるコルゲートフィン36と、上流側ヘッダーパイプ32へ冷媒を流入させる上流側継手37と、下流側ヘッダーパイプ33から冷媒を流出させる下流側継手38と、を備えている。 The heat exchanger 31 is arranged in a pair of header pipes 32 and 33 that are substantially parallel to each other and in the extending direction of the pair of header pipes 32 and 33 (in the direction indicated by the solid arrow X in FIG. 2). The flat tubes 35 as a plurality of heat exchange tubes that are installed between the upstream header pipe 32 and the downstream header pipe 33 and circulate between the upstream header pipe 32 and the downstream header pipe 33, and the adjacent flat tubes 35. A corrugated fin 36, an upstream joint 37 that allows the refrigerant to flow into the upstream header pipe 32, and a downstream joint 38 that allows the refrigerant to flow out from the downstream header pipe 33 are provided.
 熱交換器31は、上流側継手37から上流側ヘッダーパイプ32へ流れ込んだ冷媒を複数の扁平管35へ分流させ、扁平管35を通過して熱交換された冷媒を下流側ヘッダーパイプ33で合流させ、下流側ヘッダーパイプ33から下流側継手38へ冷媒を流出させる。 The heat exchanger 31 divides the refrigerant that has flowed from the upstream joint 37 into the upstream header pipe 32 into a plurality of flat tubes 35, and the refrigerant that has passed through the flat tubes 35 and has undergone heat exchange joins in the downstream header pipe 33. The refrigerant is caused to flow out from the downstream header pipe 33 to the downstream joint 38.
 なお、熱交換器31における冷媒の流れの上流側、および冷媒の流れの下流側の区別は、熱交換器31が蒸発器として機能している際の冷媒の流れに則っている。したがって、熱交換器31が凝縮器として機能している際の冷媒の流れに則ると、熱交換器31における冷媒の流れの上流側、および冷媒の流れの下流側の区別は、反転する。そこで、上流側ヘッダーパイプ32を「一方のヘッダーパイプ32」と称し、下流側ヘッダーパイプ33を「他方のヘッダーパイプ33」と称し、上流側継手37を単に「継手37」、「第一継手37」または「一方の継手37」と称し、下流側継手38を「第二継手38」または「他方の継手38」と称しても良い。 The distinction between the upstream side of the refrigerant flow and the downstream side of the refrigerant flow in the heat exchanger 31 is based on the refrigerant flow when the heat exchanger 31 functions as an evaporator. Accordingly, according to the refrigerant flow when the heat exchanger 31 functions as a condenser, the distinction between the upstream side of the refrigerant flow and the downstream side of the refrigerant flow in the heat exchanger 31 is reversed. Therefore, the upstream header pipe 32 is referred to as “one header pipe 32”, the downstream header pipe 33 is referred to as “the other header pipe 33”, and the upstream joint 37 is simply referred to as “joint 37”, “first joint 37”. ”Or“ one joint 37 ”, and the downstream joint 38 may be referred to as“ second joint 38 ”or“ the other joint 38 ”.
 ヘッダーパイプ32、33、扁平管35、コルゲートフィン36、上流側継手37、および下流側継手38は、アルミニウム製またはアルミニウム合金製である。ヘッダーパイプ32、33、扁平管35、コルゲートフィン36、および下流側継手38は、ろう付けで一体化されている。なお、ヘッダーパイプ32、33、扁平管35、コルゲートフィン36、および下流側継手38は、ろう付け以外の方法で接合されていても良い。 The header pipes 32 and 33, the flat tubes 35, the corrugated fins 36, the upstream joint 37, and the downstream joint 38 are made of aluminum or an aluminum alloy. The header pipes 32 and 33, the flat tubes 35, the corrugated fins 36, and the downstream side joints 38 are integrated by brazing. The header pipes 32 and 33, the flat tubes 35, the corrugated fins 36, and the downstream side joints 38 may be joined by a method other than brazing.
 それぞれのヘッダーパイプ32、33は、円形断面(環形断面)を有する直管である。上流側ヘッダーパイプ32は、熱交換器31の4辺のうち、1つの辺に相当する部位に配置されている。下流側ヘッダーパイプ33は、熱交換器31の4辺のうち、上流側ヘッダーパイプ32が配置される辺に対向する辺に相当する部位に配置されている。それぞれのヘッダーパイプ32、33の端部32a、32b、33a、33bには、アルミニウム製またはアルミニウム合金製のエンドキャップ39が設けられている。エンドキャップ39は、ヘッダーパイプ32、33の各端部を塞いでいる。それぞれのエンドキャップ39は、ヘッダーパイプ32、33にろう付けされている。 Each of the header pipes 32 and 33 is a straight pipe having a circular cross section (annular cross section). The upstream header pipe 32 is disposed at a portion corresponding to one side of the four sides of the heat exchanger 31. The downstream header pipe 33 is disposed at a portion corresponding to the side facing the side where the upstream header pipe 32 is disposed, among the four sides of the heat exchanger 31. End caps 39 made of aluminum or aluminum alloy are provided at the end portions 32a, 32b, 33a, 33b of the header pipes 32, 33, respectively. The end cap 39 closes each end of the header pipes 32 and 33. Each end cap 39 is brazed to the header pipes 32 and 33.
 なお、熱交換器31は、上流側ヘッダーパイプ32の第二端部32b、および下流側ヘッダーパイプ33の第二端部33bを上流側ヘッダーパイプ32の第一端部32a、および下流側ヘッダーパイプ33の第一端部33aより上方に配置して使用されることが好ましい。 The heat exchanger 31 includes the second end 32b of the upstream header pipe 32 and the second end 33b of the downstream header pipe 33 as the first end 32a of the upstream header pipe 32 and the downstream header pipe. It is preferable that the first end portion 33a of 33 is disposed above the first end portion 33a.
 複数の扁平管35は、扁平な角丸長方形の断面形状を有する直管である。複数の扁平管35は、ヘッダーパイプ32、33の延在方向Xへ実質的に等間隔に並んでいる。複数の扁平管35は、ヘッダーパイプ32、33に実質的に直交している。複数の扁平管35のそれぞれの端部は、ヘッダーパイプ32、33に差し込まれて固定されている。 The plurality of flat tubes 35 are straight tubes having a flat rounded rectangular cross-sectional shape. The plurality of flat tubes 35 are arranged at substantially equal intervals in the extending direction X of the header pipes 32 and 33. The plurality of flat tubes 35 are substantially orthogonal to the header pipes 32 and 33. Each end of the plurality of flat tubes 35 is inserted into the header pipes 32 and 33 and fixed.
 それぞれの扁平管35は、熱交換器31の空気流通方向FLに延びる扁平な角丸長方形の断面形状を有している。扁平管35の断面形状における短辺は、複数の扁平管35が並んでいる方向、つまりヘッダーパイプ32、33の延在方向Xに延びている。扁平管35の断面形状における長辺は、熱交換器31の表裏を貫く方向に延びている。隣り合う一対の扁平管35は、断面形状における長辺にあたる幅広の面を対面させている。 Each flat tube 35 has a flat rounded rectangular cross section extending in the air flow direction FL of the heat exchanger 31. The short side in the cross-sectional shape of the flat tube 35 extends in the direction in which the flat tubes 35 are arranged, that is, in the extending direction X of the header pipes 32 and 33. The long side in the cross-sectional shape of the flat tube 35 extends in a direction penetrating the front and back of the heat exchanger 31. A pair of adjacent flat tubes 35 faces a wide surface corresponding to the long side in the cross-sectional shape.
 それぞれの扁平管35は、熱交換器31の表裏を貫く方向、つまり熱交換器31の空気流通方向FLに並ぶ複数の冷媒流通路35aを有している。複数の冷媒流通路35aは、実質的に平行に延びている。扁平管35は、一般的にアルミの押し出し成型で製造される。 Each flat tube 35 has a plurality of refrigerant flow passages 35a arranged in a direction penetrating the front and back of the heat exchanger 31, that is, in an air flow direction FL of the heat exchanger 31. The plurality of refrigerant flow passages 35a extend substantially in parallel. The flat tube 35 is generally manufactured by extrusion molding of aluminum.
 それぞれのコルゲートフィン36は、山折り部と谷折り部とを交互に有するアルミニウム製の薄板である。それぞれのコルゲートフィン36は、隣り合う一対の扁平管35の離間距離を連続するV字形で往来する薄板である。それぞれのコルゲートフィン36は、隣り合う扁平管35の間に挟み込まれている。つまり、それぞれのコルゲートフィン36のそれぞれの折り目は、扁平管35の幅広の面に接している。 Each corrugated fin 36 is a thin aluminum plate having alternating folds and valleys. Each corrugated fin 36 is a thin plate that moves back and forth in a continuous V-shape with a separation distance between a pair of adjacent flat tubes 35. Each corrugated fin 36 is sandwiched between adjacent flat tubes 35. That is, each fold line of each corrugated fin 36 is in contact with the wide surface of the flat tube 35.
 また、熱交換器31は一対のサイドプレート41を備えている。一対のサイドプレート41は、アルミニウム製またはアルミニウム合金製である。一対のサイドプレート41は、熱交換器31の4辺のうち、一対のヘッダーパイプ32、33が担う辺とは異なり、かつ対向する2つの辺に相当する部位に配置されている。つまり、熱交換器31は、対向する一対のヘッダーパイプ32、33と、対向する一対のサイドプレート41とで描かれる矩形の板形を有している。それぞれのサイドプレート41は、熱交換器31の外縁に配置されているコルゲートフィン36にろう付けされている。 Further, the heat exchanger 31 includes a pair of side plates 41. The pair of side plates 41 are made of aluminum or aluminum alloy. The pair of side plates 41 is arranged at a portion corresponding to two opposing sides, which is different from the sides of the four sides of the heat exchanger 31 that the pair of header pipes 32 and 33 bear. That is, the heat exchanger 31 has a rectangular plate shape drawn by a pair of opposed header pipes 32 and 33 and a pair of opposed side plates 41. Each side plate 41 is brazed to a corrugated fin 36 disposed on the outer edge of the heat exchanger 31.
 上流側継手37は、円形断面(環形断面)を有する直管である。上流側継手37は、扁平管35の逆側から上流側ヘッダーパイプ32の側面に接続されている。つまり、上流側継手37は、扁平管35が配置されている側の逆側から上流側ヘッダーパイプ32に接続されている。上流側継手37は、空気調和機1の冷媒配管23に接続されている。 The upstream joint 37 is a straight pipe having a circular cross section (annular cross section). The upstream joint 37 is connected to the side surface of the upstream header pipe 32 from the opposite side of the flat tube 35. That is, the upstream side joint 37 is connected to the upstream side header pipe 32 from the opposite side of the side where the flat tube 35 is disposed. The upstream side joint 37 is connected to the refrigerant pipe 23 of the air conditioner 1.
 下流側継手38は、円形断面(環形断面)を有する直管である。下流側継手38は、扁平管35の逆側から下流側ヘッダーパイプ33に接続されている。つまり、下流側継手38は、扁平管35が配置されている側の逆側から下流側ヘッダーパイプ33に接続されている。下流側継手38は、空気調和機1の冷媒配管23に接続されている。下流側継手38の内径寸法は、上流側継手37の内径寸法以上である。 The downstream joint 38 is a straight pipe having a circular cross section (annular cross section). The downstream side joint 38 is connected to the downstream side header pipe 33 from the opposite side of the flat tube 35. In other words, the downstream joint 38 is connected to the downstream header pipe 33 from the opposite side of the side where the flat tube 35 is disposed. The downstream joint 38 is connected to the refrigerant pipe 23 of the air conditioner 1. The inner diameter dimension of the downstream side joint 38 is equal to or larger than the inner diameter dimension of the upstream side joint 37.
 上流側継手37は、上流側ヘッダーパイプ32の第一端部32aの近傍に接続され、下流側継手38は、下流側ヘッダーパイプ33の第二端部33bの近傍に接続されている。つまり、上流側継手37および下流側継手38は、矩形の熱交換器31の4角のうち、対角する2つの角部の近傍に配置されている。換言すると、上流側継手37に近い扁平管35は、下流側継手38から遠く、上流側継手37から遠い扁平管35は、下流側継手38に近い。 The upstream joint 37 is connected in the vicinity of the first end 32 a of the upstream header pipe 32, and the downstream joint 38 is connected in the vicinity of the second end 33 b of the downstream header pipe 33. That is, the upstream side joint 37 and the downstream side joint 38 are arranged in the vicinity of two diagonal corners of the four corners of the rectangular heat exchanger 31. In other words, the flat tube 35 close to the upstream side joint 37 is far from the downstream side joint 38, and the flat tube 35 far from the upstream side joint 37 is close to the downstream side joint 38.
 上流側継手37は、サイドプレート41と扁平管35との間の領域、または隣り合う一対の扁平管35の間の領域、つまりコルゲートフィン36が配置されている領域へ向かって上流側ヘッダーパイプ32に差し込まれている。なお、上流側継手37は、サイドプレート41、または扁平管35へ向かって上流側ヘッダーパイプ32に差し込まれていても良い。また、熱交換器31は、図2に二点鎖線で示すように、複数の上流側継手37を備えていても良い。複数の上流側継手37は、サイドプレート41と扁平管35との間の領域、および隣り合う一対の扁平管35の間の領域に設けられていても良い。複数の上流側継手37は、各扁平管35へ冷媒を容易に均一に配分する。 The upstream side joint 37 is connected to the upstream header pipe 32 toward a region between the side plate 41 and the flat tube 35 or a region between a pair of adjacent flat tubes 35, that is, a region where the corrugated fins 36 are disposed. Is plugged into. The upstream joint 37 may be inserted into the upstream header pipe 32 toward the side plate 41 or the flat tube 35. Further, the heat exchanger 31 may include a plurality of upstream side joints 37 as indicated by a two-dot chain line in FIG. The plurality of upstream joints 37 may be provided in a region between the side plate 41 and the flat tube 35 and a region between a pair of adjacent flat tubes 35. The plurality of upstream joints 37 easily and uniformly distribute the refrigerant to the flat tubes 35.
 下流側継手38は、サイドプレート41と扁平管35との間の領域、または隣り合う一対の扁平管35の間の領域、つまりコルゲートフィン36が配置されている領域へ向かって下流側ヘッダーパイプ33に差し込まれている。なお、下流側継手38は、サイドプレート41、または扁平管35へ向かって下流側ヘッダーパイプ33に差し込まれていても良い。 The downstream side joint 38 is located downstream of the header pipe 33 toward a region between the side plate 41 and the flat tube 35 or a region between a pair of adjacent flat tubes 35, that is, a region where the corrugated fins 36 are disposed. Is plugged into. The downstream joint 38 may be inserted into the downstream header pipe 33 toward the side plate 41 or the flat tube 35.
 図4は、上流側ヘッダーパイプ32の中心線に直交し、かつ上流側継手37の中心線を通る断面図である。 FIG. 4 is a cross-sectional view orthogonal to the center line of the upstream header pipe 32 and passing through the center line of the upstream joint 37.
 図4および図5に示すように、本実施形態に係る熱交換器31の上流側継手37は、上流側ヘッダーパイプ32の延在方向であるX方向から見て、扁平管35へ向かって延びている。上流側継手37の外径寸法および内径寸法は、扁平管35の幅寸法より小さい。上流側継手37の先端は、上流側ヘッダーパイプ32の内側に突出する突出端である。上流側ヘッダーパイプ32の延在方向から見て、扁平管35と上流側継手37との間には隙間Gが設けられている。 As shown in FIGS. 4 and 5, the upstream joint 37 of the heat exchanger 31 according to the present embodiment extends toward the flat tube 35 when viewed from the X direction that is the extending direction of the upstream header pipe 32. ing. The outer diameter and inner diameter of the upstream joint 37 are smaller than the width of the flat tube 35. The tip of the upstream joint 37 is a protruding end that protrudes inside the upstream header pipe 32. A gap G is provided between the flat tube 35 and the upstream joint 37 when viewed from the extending direction of the upstream header pipe 32.
 上流側継手37は、上流側継手37の先端に設けられて上流側継手37の延在方向Yを向く先端開口45と、上流側継手37の側面に設けられて上流側ヘッダーパイプ32の内壁面32cを臨む側面開口46と、を有している。側面開口46は1つでも良いし、複数設けられていても良い。 The upstream joint 37 is provided at the distal end of the upstream joint 37 and faces the extending direction Y of the upstream joint 37, and the inner wall surface of the upstream header pipe 32 provided on the side surface of the upstream joint 37. And a side opening 46 facing 32c. One or more side openings 46 may be provided.
 先端開口45および側面開口46は、熱交換器31が蒸発器として機能する際に冷媒を上流側ヘッダーパイプ32内へ流入させる(図4中の実線矢印f)。換言すると、上流側継手37内を流れる冷媒は、先端開口45および側面開口46へ分流して上流側ヘッダーパイプ32内へ流れ込む。 The tip opening 45 and the side opening 46 allow the refrigerant to flow into the upstream header pipe 32 when the heat exchanger 31 functions as an evaporator (solid arrow f in FIG. 4). In other words, the refrigerant flowing in the upstream joint 37 is divided into the tip opening 45 and the side opening 46 and flows into the upstream header pipe 32.
 先端開口45は、上流側継手37内を流れる冷媒を実質的に直進させる。先端開口45の開口径は、上流側継手37の内径より小さい。換言すると、先端開口45は、上流側継手37から流出する冷媒を絞る。先端開口45は、例えば、上流側継手37の先端を塞ぐ板に穿たれる孔(所謂オリフィス)であっても良いし、上流側継手37の先端を塞ぐキャップに穿たれた孔であっても良い。また、先端開口45は、絞り加工などの加工方法で塑性変形させて直径を縮小された上流側継手37の開放端であっても良い。先端開口45の中心は、上流側継手37の中心線に一致していることが好ましい。 The tip opening 45 causes the refrigerant flowing in the upstream side joint 37 to travel substantially straight. The opening diameter of the tip opening 45 is smaller than the inner diameter of the upstream side joint 37. In other words, the tip opening 45 restricts the refrigerant flowing out from the upstream side joint 37. The tip opening 45 may be, for example, a hole (so-called orifice) that is made in a plate that closes the tip of the upstream joint 37, or a hole that is made in a cap that closes the tip of the upstream joint 37. good. Further, the tip opening 45 may be an open end of the upstream side joint 37 whose diameter is reduced by plastic deformation by a processing method such as drawing. The center of the tip opening 45 is preferably coincident with the center line of the upstream joint 37.
 側面開口46は、上流側継手37の上流側ヘッダーパイプ32内に配置される部分の側面に設けられている。側面開口46は、上流側継手37内の冷媒の流れ方向に直交する方向を向いている。側面開口46の中心を通る線分の延長線は、上流側ヘッダーパイプ32の内壁面32cに達する。側面開口46は、上流側継手37内を流れる冷媒の進行方向を変えて、実質的に上流側継手37の径方向外側へ向かって冷媒を流出させる。 The side opening 46 is provided on the side surface of the portion disposed in the upstream header pipe 32 of the upstream joint 37. The side opening 46 faces the direction orthogonal to the flow direction of the refrigerant in the upstream joint 37. An extension line of a line passing through the center of the side opening 46 reaches the inner wall surface 32 c of the upstream header pipe 32. The side opening 46 changes the traveling direction of the refrigerant flowing in the upstream joint 37 and causes the refrigerant to flow substantially outward in the radial direction of the upstream joint 37.
 側面開口46の開口面積は先端開口45の開口面積より大きい。側面開口46の開口形状および先端開口45の開口形状は、円形であるが、三角形や四角形などの非円形状であっても良い。また、側面開口46および先端開口45は、一様な直径の孔であるが、円錐形の孔であっても良い。非円形の孔は、冷媒の噴霧効果を有し、液冷媒とガス冷媒との混合を促進し、複数の扁平管へ供給される冷媒の分配量を均一化する。円錐形の孔は、冷媒の流速を上昇させて液冷媒とガス冷媒との混合を促進し、複数の扁平管へ供給される冷媒の分配量を均一化する。 The opening area of the side opening 46 is larger than the opening area of the tip opening 45. The opening shape of the side opening 46 and the opening shape of the tip opening 45 are circular, but may be non-circular such as a triangle or a quadrangle. The side opening 46 and the tip opening 45 are holes having a uniform diameter, but may be conical holes. The non-circular hole has a refrigerant spray effect, promotes mixing of the liquid refrigerant and the gas refrigerant, and equalizes the distribution amount of the refrigerant supplied to the plurality of flat tubes. The conical hole increases the flow rate of the refrigerant to promote the mixing of the liquid refrigerant and the gas refrigerant, and equalizes the distribution amount of the refrigerant supplied to the plurality of flat tubes.
 図6は、上流側ヘッダーパイプ32の中心線および上流側継手37の中心線を通る断面図である。 FIG. 6 is a cross-sectional view passing through the center line of the upstream header pipe 32 and the center line of the upstream joint 37.
 図6に示すように、本実施形態に係る熱交換器31の扁平管35、サイドプレート41、および上流側継手37の延在方向は、実質的に平行である。 As shown in FIG. 6, the extending directions of the flat tube 35, the side plate 41, and the upstream side joint 37 of the heat exchanger 31 according to the present embodiment are substantially parallel.
 上流側継手37の外径寸法および内径寸法は、扁平管35の高さ寸法より大きい。 The outer diameter and inner diameter of the upstream joint 37 are larger than the height of the flat tube 35.
 上流側継手37は、サイドプレート41と扁平管35との間、または隣り合う一対の扁平管35の間の、上流側ヘッダーパイプ32の内壁面32cへ向かって延びている。したがって、先端開口45は、サイドプレート41と扁平管35との間、または隣り合う一対の扁平管35の間の、上流側ヘッダーパイプ32の内壁面32cを臨んでいる。上流側継手37は、サイドプレート41と扁平管35との間、または隣り合う一対の扁平管35の間の、中間位置へ向かって延びていることが好ましい。したがって、先端開口45は、サイドプレート41と扁平管35との間、または隣り合う一対の扁平管35の間の、中間位置を臨んでいることが好ましい。換言すると、上流側継手37とサイドプレート41との離間距離、および上流側継手37と扁平管35との離間距離は、実質的に等しいことが好ましい。つまり、先端開口45とサイドプレート41との離間距離、および先端開口45と扁平管35との離間距離は、実質的に等しいことが好ましい。 The upstream joint 37 extends toward the inner wall surface 32 c of the upstream header pipe 32 between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35. Therefore, the tip opening 45 faces the inner wall surface 32 c of the upstream header pipe 32 between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35. The upstream side joint 37 preferably extends toward an intermediate position between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35. Therefore, it is preferable that the tip opening 45 faces an intermediate position between the side plate 41 and the flat tube 35 or between a pair of adjacent flat tubes 35. In other words, it is preferable that the separation distance between the upstream joint 37 and the side plate 41 and the separation distance between the upstream joint 37 and the flat tube 35 are substantially equal. That is, it is preferable that the separation distance between the tip opening 45 and the side plate 41 and the separation distance between the tip opening 45 and the flat tube 35 are substantially equal.
 なお、上流側継手37は、サイドプレート41、または扁平管35へ向かって延びていても良い。したがって、先端開口45は、サイドプレート41、または扁平管35を臨んでいても良い。この場合には、上流側継手37は、サイドプレート41、または扁平管35の延在方向の延長線上に配置される。 Note that the upstream joint 37 may extend toward the side plate 41 or the flat tube 35. Therefore, the tip opening 45 may face the side plate 41 or the flat tube 35. In this case, the upstream joint 37 is disposed on the extension line in the extending direction of the side plate 41 or the flat tube 35.
 図7は、図6のVII-VII線断面図である。 FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
 図7に示すように、本実施形態に係る熱交換器31の側面開口46は、例えば、上流側ヘッダーパイプ32の中心線に直交する方向へ上流側継手37内の冷媒を流出させる。側面開口46は、上流側ヘッダーパイプ32の中心線を基準に実質的に対称に設けられている。 7, the side opening 46 of the heat exchanger 31 according to the present embodiment allows the refrigerant in the upstream joint 37 to flow out in a direction perpendicular to the center line of the upstream header pipe 32, for example. The side openings 46 are provided substantially symmetrically with respect to the center line of the upstream header pipe 32.
 なお、上流側継手37の延在方向の中心線Z1と側面開口46の中心を通る線分の延在方向Z2(つまり、側面開口46の開口方向Z2)とは、上流側ヘッダーパイプ32の中心線Hに直交する方向に一致することが好ましいが、これに限らない。側面開口46の開口方向Z2は、上流側ヘッダーパイプ32の中心線Hに直交する線分Lに対して±45度より小さい範囲で傾いていても良い。したがって、上流側継手37の延在方向の中心線Z1に対して、側面開口46の開口方向Z2と上流側ヘッダーパイプ32の中心線Hに直交する線分Lとがなす角θは、45度より小さい範囲にあれば良い。図7は角θが0度の場合を示している。 The center line Z1 in the extending direction of the upstream side joint 37 and the extending direction Z2 of the line segment passing through the center of the side opening 46 (that is, the opening direction Z2 of the side opening 46) are the center of the upstream header pipe 32. Although it is preferable to correspond to the direction orthogonal to the line H, it is not limited to this. The opening direction Z <b> 2 of the side surface opening 46 may be inclined within a range smaller than ± 45 degrees with respect to the line segment L orthogonal to the center line H of the upstream header pipe 32. Therefore, the angle θ formed by the opening direction Z2 of the side opening 46 and the line segment L orthogonal to the center line H of the upstream header pipe 32 with respect to the center line Z1 in the extending direction of the upstream joint 37 is 45 degrees. A smaller range is sufficient. FIG. 7 shows a case where the angle θ is 0 degree.
 なお、側面開口46の開口方向Z2は、上流側継手37の中心線Z1を通り、かつ上流側ヘッダーパイプ32の中心線Hに直交する線分Lを基準にして、上流側ヘッダーパイプ32の第二端部32b、つまり上流側継手37から遠い方の端部へ向いている場合を正とし、上流側ヘッダーパイプ32の第一端部32a、つまり上流側継手37に近い方の端部へ向いている場合を負とする。側面開口46の開口方向は、正方向へ向いていることが好ましい。 In addition, the opening direction Z2 of the side surface opening 46 passes through the center line Z1 of the upstream side joint 37 and is perpendicular to the center line H of the upstream side header pipe 32. Two ends 32b, that is, the case facing toward the end far from the upstream side joint 37 is positive, and the first end 32a of the upstream header pipe 32, ie, the end closer to the upstream side joint 37 is directed toward. If it is negative. The opening direction of the side opening 46 is preferably directed in the positive direction.
 また、図7に示すように、上流側継手37が複数の側面開口46を有する場合、これら複数の側面開口46は、角θ<45度の範囲に配置されている。 As shown in FIG. 7, when the upstream joint 37 has a plurality of side openings 46, the plurality of side openings 46 are arranged in a range of an angle θ <45 degrees.
 さらに、上流側継手37は、側面開口46よりも小さい開口面積を有する第二側面開口を有していても良い。第二側面開口は、上記角θが45度より小さくても良いし、角θが45度より大きくともよい。 Furthermore, the upstream joint 37 may have a second side opening having an opening area smaller than that of the side opening 46. In the second side surface opening, the angle θ may be smaller than 45 degrees, or the angle θ may be larger than 45 degrees.
 図8は、本発明の実施形態に係る熱交換器における冷媒の分配の様子を模式的に表現する断面図である。 FIG. 8 is a cross-sectional view schematically representing the state of refrigerant distribution in the heat exchanger according to the embodiment of the present invention.
 図8に示す熱交換器31は、8つの扁平管35を有している。8つの扁平管35を、上流側継手37に近い方から1段目の扁平管35a、2段目の扁平管35b、3段目の扁平管35c、4段目の扁平管35d、5段目の扁平管35e、6段目の扁平管35f、7段目の扁平管35g、8段目の扁平管35hと呼ぶ。また、図8に示す熱交換器31は、1段目の扁平管35aと2段目の扁平管35bとの間へ向かって上流側ヘッダーパイプ32に差し込まれる上流側継手37を備えている。 8 has eight flat tubes 35. The heat exchanger 31 shown in FIG. The eight flat tubes 35 are connected to the first-stage flat tube 35a, the second-stage flat tube 35b, the third-stage flat tube 35c, the fourth-stage flat tube 35d, and the fifth-stage from the side closer to the upstream side joint 37. These are called a flat tube 35e, a sixth flat tube 35f, a seventh flat tube 35g, and an eighth flat tube 35h. Further, the heat exchanger 31 shown in FIG. 8 includes an upstream joint 37 that is inserted into the upstream header pipe 32 toward the space between the first-stage flat tube 35a and the second-stage flat tube 35b.
 そして、上流側継手37の先端開口45は、1段目の扁平管35aと2段目の扁平管35bとの間の、上流側ヘッダーパイプ32の内壁面32cへ向けて冷媒を流通させる(図中、実線矢印F1)。他方、上流側継手37の側面開口46は、上流側ヘッダーパイプ32の中心線に直行する方向へ向けて冷媒を流通させる。先端開口45および側面開口46から流出し、上流側ヘッダーパイプ32の内壁面32cに衝突した冷媒は、気体成分と液体成分が混ぜ合わされた状態になり、上流側ヘッダーパイプ32の中心線方向に方向を変えている(図中、実線矢印F2)。 And the front-end opening 45 of the upstream side joint 37 distribute | circulates a refrigerant | coolant toward the inner wall surface 32c of the upstream header pipe 32 between the 1st stage flat tube 35a and the 2nd stage flat tube 35b (FIG. Medium, solid arrow F1). On the other hand, the side opening 46 of the upstream joint 37 allows the refrigerant to flow in a direction perpendicular to the center line of the upstream header pipe 32. The refrigerant that has flowed out of the tip opening 45 and the side opening 46 and collided with the inner wall surface 32c of the upstream header pipe 32 is in a state where the gas component and the liquid component are mixed, and is directed in the direction of the center line of the upstream header pipe 32 (Solid arrow F2 in the figure).
 ところで、質量の大きい液冷媒は重力影響により上流側ヘッダーパイプ32の下方(第一端部32a)へと落ち込む。また、側面開口46が角θ≧45度の範囲を向くと、角θ<45度の範囲に比べて、側面開口46から上流側ヘッダーパイプ32の内壁面32cまでの離間距離が遠くなり、上段(例えば5段目の扁平管35eから8段目の扁平管35h)の扁平管35への冷媒の分配量が減少する。 Incidentally, the liquid refrigerant having a large mass falls below the upstream header pipe 32 (first end portion 32a) due to the influence of gravity. Further, when the side opening 46 faces the range of the angle θ ≧ 45 degrees, the separation distance from the side opening 46 to the inner wall surface 32c of the upstream header pipe 32 is longer than the range of the angle θ <45 degrees. The amount of refrigerant distributed to the flat tubes 35 (for example, the fifth flat tube 35e to the eighth flat tube 35h) decreases.
 しかしながら、本実施形態に係る熱交換器31は、先端開口45および側面開口46から上流側ヘッダーパイプ32へ流れ込む冷媒を、早期に上流側ヘッダーパイプ32の内壁面32cへ衝突させ、液冷媒とガス冷媒との混合を促進し、かつ上流側ヘッダーパイプ32の内壁面32cにおける表面張力で上段の扁平管35へ冷媒をより多量に到達させて冷媒の分配量を増加させる。図8中に8つの扁平管35に分配される冷媒の分配の様子を各扁平管35から延びる実線矢印の長さの差で表現している。この実線矢印の例は、熱交換器31の風上方向を向く1つの側面開口46と、1つの先端開口45と、を有する上流側継手37を備える熱交換器31における、冷媒の分配の様子を示している。なお、各扁平管35から延びる破線矢印は、熱交換器31の風上方向を向く1つの側面開口46のみを有し、先端開口45のない上流側継手を備える従来の熱交換器における、冷媒の分配の様子であり、比較例である。 However, the heat exchanger 31 according to the present embodiment causes the refrigerant flowing into the upstream header pipe 32 from the tip opening 45 and the side opening 46 to collide with the inner wall surface 32c of the upstream header pipe 32 at an early stage, thereby causing liquid refrigerant and gas Mixing with the refrigerant is promoted, and a larger amount of the refrigerant reaches the upper flat tube 35 by the surface tension at the inner wall surface 32c of the upstream header pipe 32 to increase the distribution amount of the refrigerant. In FIG. 8, the state of distribution of the refrigerant distributed to the eight flat tubes 35 is expressed by a difference in length of solid arrows extending from the flat tubes 35. This solid line arrow is an example of refrigerant distribution in the heat exchanger 31 including the upstream joint 37 having one side opening 46 facing the upwind direction of the heat exchanger 31 and one tip opening 45. Is shown. The broken-line arrows extending from the respective flat tubes 35 are refrigerants in a conventional heat exchanger having only one side opening 46 facing the upwind direction of the heat exchanger 31 and having an upstream joint without the tip opening 45. This is a comparative example.
 また、本実施形態に係る熱交換器31は、先端開口45から上流側ヘッダーパイプ32へ流れ込む冷媒を、早期に上流側ヘッダーパイプ32の内壁面32cへ衝突させ、上流側継手37の近傍の扁平管35、またはサイドプレート41の上面(上流側ヘッダーパイプ32内の部分)における冷媒の滞留を未然に防ぐことができる。冷媒の滞留は、扁平管35への冷媒の分配量を低下させるため、滞留の防止は、扁平管35への冷媒の分配量を改善する。 Further, the heat exchanger 31 according to the present embodiment causes the refrigerant flowing into the upstream header pipe 32 from the front end opening 45 to collide with the inner wall surface 32c of the upstream header pipe 32 at an early stage, so that the flatness in the vicinity of the upstream joint 37 is obtained. It is possible to prevent the refrigerant from staying on the upper surface of the pipe 35 or the side plate 41 (portion in the upstream header pipe 32). Since the retention of the refrigerant reduces the distribution amount of the refrigerant to the flat tube 35, the prevention of the retention improves the distribution amount of the refrigerant to the flat tube 35.
 次に、本実施形態に係る熱交換器31の他の例を説明する。なお、各例で説明する熱交換器31A、および31Bにおいて、図1から図8に示した熱交換器31と同じ構成には同一の符号を付し、重複する説明は省略する。 Next, another example of the heat exchanger 31 according to this embodiment will be described. In addition, in heat exchanger 31A and 31B demonstrated in each example, the same code | symbol is attached | subjected to the same structure as the heat exchanger 31 shown in FIGS. 1-8, and the overlapping description is abbreviate | omitted.
 図9は、本発明の実施形態に係る熱交換器の他の例における部分的な断面図である。図9は、上流側ヘッダーパイプ32の中心線に直交し、かつ上流側継手37の中心線を通る断面図である。 FIG. 9 is a partial cross-sectional view of another example of the heat exchanger according to the embodiment of the present invention. FIG. 9 is a cross-sectional view orthogonal to the center line of the upstream header pipe 32 and passing through the center line of the upstream joint 37.
 図9に示すように、本実施形態に係る熱交換器31Aの側面開口46Aは、1つのみ設けられ、上流側ヘッダーパイプ32の延在方向であるX方向から見て、上流側ヘッダーパイプ32の一方の領域Aへ冷媒を流出させる。 As shown in FIG. 9, only one side opening 46 </ b> A of the heat exchanger 31 </ b> A according to the present embodiment is provided, and the upstream header pipe 32 is viewed from the X direction that is the extending direction of the upstream header pipe 32. The refrigerant is caused to flow out into one region A.
 一方の領域Aは、熱交換器31の空気流通方向FLにおける風上側(上流側、実線矢印FLの始端側)であることが好ましい。 One region A is preferably the windward side in the air flow direction FL of the heat exchanger 31 (upstream side, the start end side of the solid line arrow FL).
 図10は、本発明の実施形態に係る熱交換器の他の例における部分的な断面図である。図10は、上流側ヘッダーパイプ32の中心線に直交し、かつ上流側継手37の中心線を通る断面図である。 FIG. 10 is a partial cross-sectional view of another example of the heat exchanger according to the embodiment of the present invention. FIG. 10 is a cross-sectional view orthogonal to the center line of the upstream header pipe 32 and passing through the center line of the upstream joint 37.
 図10に示すように、本実施形態に係る熱交換器31Bは、上流側ヘッダーパイプ32の内壁面32cに設けられて側面開口46および先端開口45のそれぞれへ向かって突出する突起部49を備えている。 As shown in FIG. 10, the heat exchanger 31 </ b> B according to this embodiment includes protrusions 49 provided on the inner wall surface 32 c of the upstream header pipe 32 and projecting toward the side opening 46 and the tip opening 45. ing.
 突起部49は、上流側ヘッダーパイプ32を塑性変形させて形成されるものであっても良いし、上流側ヘッダーパイプ32に別部品を固定したものであっても良い。突起部49は、側面開口46の真正面、つまり上流側継手37の中心と側面開口46の中心を結ぶ線分と上流側ヘッダーパイプ32の内壁面32cとの交点に設けられている。また、突起部49は、先端開口45の真正面、つまり上流側継手37の中心線と上流側ヘッダーパイプ32の内壁面32cとの交点に設けられている。 The protrusion 49 may be formed by plastically deforming the upstream header pipe 32, or may be a part in which another part is fixed to the upstream header pipe 32. The protrusion 49 is provided in front of the side opening 46, that is, at the intersection of the line segment connecting the center of the upstream joint 37 and the center of the side opening 46 and the inner wall surface 32 c of the upstream header pipe 32. Further, the protrusion 49 is provided in front of the tip opening 45, that is, at the intersection of the center line of the upstream joint 37 and the inner wall surface 32 c of the upstream header pipe 32.
 突起部49は、先端開口45または側面開口46から流出して突起部49に衝突する冷媒の気相と液相とを効率的に混合できるよう、山形の曲面を有していることが好ましい。 The protrusion 49 preferably has a chevron-shaped curved surface so that the gas phase and the liquid phase of the refrigerant that flows out of the tip opening 45 or the side opening 46 and collides with the protrusion 49 can be efficiently mixed.
 上流側継手37の先端開口45の延長線上に配置される突起部49は、先端開口45から上流側ヘッダーパイプ32の内壁面32cへ向かう冷媒(液冷媒、ガス冷媒)の流れ(実線矢印F1)を攪拌する。側面開口46の延長線上に配置される突起部49は、側面開口46から上流側ヘッダーパイプ32の内壁面32cへ向かう冷媒(液冷媒、ガス冷媒)の流れ(実線矢印F1)を攪拌する。攪拌された冷媒は、それぞれの扁平管35により均一に分配される。 The protrusion 49 arranged on the extension line of the tip opening 45 of the upstream joint 37 is a flow of refrigerant (liquid refrigerant, gas refrigerant) from the tip opening 45 toward the inner wall surface 32c of the upstream header pipe 32 (solid arrow F1). Stir. The protrusion 49 disposed on the extension line of the side opening 46 agitates the flow of refrigerant (liquid refrigerant, gas refrigerant) from the side opening 46 toward the inner wall surface 32c of the upstream header pipe 32 (solid arrow F1). The stirred refrigerant is uniformly distributed by the respective flat tubes 35.
 なお、上記各実施形態に係る熱交換器31においては、上流側継手37が上流側ヘッダーパイプ32の延在方向であるX方向から見て、扁平管35へ向かって延びているものについて説明したが、本発明はこれに限定されるものではない。例えば、上流側継手37は、上流側ヘッダーパイプ32の延在方向であるX方向から見て、扁平管35と直交する方向に延びていても良いし、任意の方向に向いていても良い。 In the heat exchanger 31 according to each of the above embodiments, the upstream joint 37 extends toward the flat tube 35 when viewed from the X direction that is the extending direction of the upstream header pipe 32. However, the present invention is not limited to this. For example, the upstream joint 37 may extend in a direction orthogonal to the flat tube 35 as viewed from the X direction, which is the extending direction of the upstream header pipe 32, or may face in any direction.
 また、熱交換器31は、コルゲートフィン36に限らず、板状フィンを備えていても良い。 Further, the heat exchanger 31 is not limited to the corrugated fins 36 and may include plate-like fins.
 次に、本実施形態に係る空気調和機1の他の例を説明する。なお、各例で説明する空気調和機1Aにおいて、図1から図9に示した熱交換器31、31A、および31Bと同じ構成には同一の符号を付し、重複する説明は省略する。 Next, another example of the air conditioner 1 according to this embodiment will be described. In the air conditioner 1A described in each example, the same components as those of the heat exchangers 31, 31A, and 31B illustrated in FIGS. 1 to 9 are denoted by the same reference numerals, and redundant description is omitted.
 図11は、本発明の実施形態に係る空気調和機の他の例の冷凍サイクル図である。 FIG. 11 is a refrigeration cycle diagram of another example of the air conditioner according to the embodiment of the present invention.
 図11に示すように、本実施形態に係る空気調和機1Aは、蒸発器として機能する室内熱交換器12または室外熱交換器18としての熱交換器31に代えて熱交換器モジュール51を備えている。 As shown in FIG. 11, the air conditioner 1 </ b> A according to the present embodiment includes a heat exchanger module 51 instead of the indoor heat exchanger 12 functioning as an evaporator or the heat exchanger 31 as an outdoor heat exchanger 18. ing.
 図12は、本発明の実施形態に係る空気調和機の熱交換器モジュールの平面図である。 FIG. 12 is a plan view of the heat exchanger module of the air conditioner according to the embodiment of the present invention.
 図11および図12に示すように、本実施形態に係る熱交換器モジュール51は、直列に接続される複数、例えば2つの熱交換器31a、31bと、複数の熱交換器31a、31bを直列に接続する少なくとも1つの中継配管53と、を備えている。 As shown in FIGS. 11 and 12, a heat exchanger module 51 according to this embodiment includes a plurality of, for example, two heat exchangers 31a and 31b connected in series and a plurality of heat exchangers 31a and 31b in series. And at least one relay pipe 53 connected to the.
 熱交換器モジュール51は、直列に接続される3つ以上の熱交換器31を備えていても良い。この場合には、中継配管53は、隣り合う一対の熱交換器31毎に設けられる。 The heat exchanger module 51 may include three or more heat exchangers 31 connected in series. In this case, the relay pipe 53 is provided for each pair of adjacent heat exchangers 31.
 中継配管53は、上流側の熱交換器31aの下流側継手38を延長したものであっても良いし、下流側の熱交換器31bの上流側継手37を延長したものであっても良い。 The relay pipe 53 may be an extension of the downstream joint 38 of the upstream heat exchanger 31a, or may be an extension of the upstream joint 37 of the downstream heat exchanger 31b.
 熱交換器モジュール51が蒸発器として機能するときの上流側の熱交換器31aは、上流側継手37から上流側ヘッダーパイプ32へ流れ込んだ冷媒を複数の扁平管35へ分流させ、扁平管35を通過して熱交換された冷媒を下流側ヘッダーパイプ33で合流させ、下流側ヘッダーパイプ33から下流側継手38へ冷媒を流出させる。次いで、熱交換器モジュール51は、中継配管53を通じて上流側の熱交換器31aの下流側継手38から下流側の熱交換器31bの上流側継手37へ冷媒を流通させる。そして、熱交換器モジュール51の下流側の熱交換器31bは、上流側継手37から上流側ヘッダーパイプ32へ流れ込んだ冷媒を複数の扁平管35へ分流させ、扁平管35を通過して熱交換された冷媒を下流側ヘッダーパイプ33で合流させ、下流側ヘッダーパイプ33から下流側継手38へ冷媒を流出させる。 The upstream heat exchanger 31a when the heat exchanger module 51 functions as an evaporator diverts the refrigerant that has flowed from the upstream joint 37 into the upstream header pipe 32 into a plurality of flat tubes 35. The refrigerant that has passed and exchanged heat is merged in the downstream header pipe 33, and the refrigerant flows out from the downstream header pipe 33 to the downstream joint 38. Next, the heat exchanger module 51 causes the refrigerant to flow from the downstream joint 38 of the upstream heat exchanger 31a through the relay pipe 53 to the upstream joint 37 of the downstream heat exchanger 31b. The heat exchanger 31b on the downstream side of the heat exchanger module 51 diverts the refrigerant that has flowed from the upstream joint 37 into the upstream header pipe 32 into a plurality of flat tubes 35, and passes through the flat tubes 35 to exchange heat. The resulting refrigerant is merged in the downstream header pipe 33, and the refrigerant flows out from the downstream header pipe 33 to the downstream joint 38.
 そして、冷媒の流れ方向(図12の実線矢印の方向)において、下流側の熱交換器31bの側面開口46および先端開口45の総開口面積は、上流側の熱交換器31aの側面開口46および先端開口45の総開口面積よりも大きい。なお、下流側の熱交換器31bの上流側継手37は、上流側の熱交換器31aの上流側継手37と同一の構成を有していても良いが、側面開口46および先端開口45のいずれか一方のみを有していても良いし、側面開口46の開口方向も任意の方向で良い。ただし、その場合でも、開口の合計面積は、上流側の熱交換器31aの側面開口46および先端開口45の総開口面積よりも大きいことが望ましい。 In the refrigerant flow direction (the direction of the solid arrow in FIG. 12), the total opening area of the side opening 46 and the tip opening 45 of the downstream heat exchanger 31b is equal to the side opening 46 of the upstream heat exchanger 31a. It is larger than the total opening area of the tip opening 45. The upstream joint 37 of the downstream heat exchanger 31b may have the same configuration as the upstream joint 37 of the upstream heat exchanger 31a, but either the side opening 46 or the tip opening 45 may be used. Only one of them may be provided, and the opening direction of the side opening 46 may be an arbitrary direction. However, even in that case, the total area of the openings is desirably larger than the total opening area of the side opening 46 and the tip opening 45 of the upstream heat exchanger 31a.
 また、冷媒の流れ方向において、下流側の熱交換器31bの上流側継手37の内径寸法は、上流側の熱交換器31aの上流側継手37の内径寸法より大きい。 In the refrigerant flow direction, the inner diameter dimension of the upstream joint 37 of the downstream heat exchanger 31b is larger than the inner diameter dimension of the upstream joint 37 of the upstream heat exchanger 31a.
 なお、それぞれの熱交換器31(熱交換器31a、31b)毎に、下流側継手38の内径寸法は、同じ熱交換器31に設けられる上流側継手37の内径寸法以上である。 Note that, for each heat exchanger 31 (heat exchangers 31 a and 31 b), the inner diameter dimension of the downstream side joint 38 is equal to or larger than the inner diameter dimension of the upstream side joint 37 provided in the same heat exchanger 31.
 上記のように構成される本実施形態に係る熱交換器31、31A、熱交換器モジュール51、および空気調和機1、1Aは、上流側継手37の先端に設けられて上流側継手37の延在方向Yを向く先端開口45と、上流側継手37の側面に設けられて上流側ヘッダーパイプ32の内壁面32cを臨む少なくとも1つの側面開口46と、を有し、側面開口46の開口方向Z2と上流側ヘッダーパイプ32の中心線Hに直交する線分Lとがなす角θは、45度より小さく、側面開口46の開口面積は先端開口45の開口面積よりも大きい。そのため、熱交換器31、31A、熱交換器モジュール51、および空気調和機1、1Aは、側面開口46によって冷媒の主流を上流側ヘッダーパイプ32の内壁面32cに衝突させ、かつ分散させて、上流側ヘッダーパイプ32での液冷媒とガス冷媒との相分離を抑制し、扁平管35に供給される冷媒の分配量を均一化できる。また、熱交換器31、31A、熱交換器モジュール51、および空気調和機1、1Aは、先端開口45から流れ出る冷媒によって上流側継手37の近傍の扁平管35上における液冷媒の滞留を防ぎ、上流側ヘッダーパイプ32での液冷媒とガス冷媒との相分離を抑制し、扁平管35に供給される冷媒の分配量を均一化できる。 The heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A according to the present embodiment configured as described above are provided at the distal end of the upstream joint 37 and are extended from the upstream joint 37. A front end opening 45 facing the existing direction Y, and at least one side opening 46 provided on a side surface of the upstream side joint 37 and facing the inner wall surface 32c of the upstream side header pipe 32, and the opening direction Z2 of the side opening 46 And the line segment L perpendicular to the center line H of the upstream header pipe 32 is smaller than 45 degrees, and the opening area of the side opening 46 is larger than the opening area of the tip opening 45. Therefore, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A collide and disperse the main flow of the refrigerant with the inner wall surface 32c of the upstream header pipe 32 by the side opening 46, Phase separation between the liquid refrigerant and the gas refrigerant in the upstream header pipe 32 can be suppressed, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made uniform. Further, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A prevent liquid refrigerant from staying on the flat tube 35 near the upstream joint 37 by the refrigerant flowing out from the tip opening 45, Phase separation between the liquid refrigerant and the gas refrigerant in the upstream header pipe 32 can be suppressed, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made uniform.
 また、本実施形態に係る熱交換器31、31A、熱交換器モジュール51、および空気調和機1、1Aは、隣り合う一対の扁平管35の間の、上流側ヘッダーパイプ32の内壁面32cを臨む先端開口45を有している。そのため、熱交換器31、31A、熱交換器モジュール51、および空気調和機1、1Aは、先端開口45から流れ出る冷媒によって上流側継手37の近傍の扁平管35上における液冷媒の滞留をより確実に防ぎ、上流側ヘッダーパイプ32での液冷媒とガス冷媒との相分離を抑制し、扁平管35に供給される冷媒の分配量を均一化できる。 Moreover, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A according to the present embodiment have the inner wall surface 32c of the upstream header pipe 32 between a pair of adjacent flat tubes 35. A front end opening 45 is provided. Therefore, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A more reliably retain the liquid refrigerant on the flat tube 35 near the upstream joint 37 by the refrigerant flowing out from the tip opening 45. Therefore, the phase separation between the liquid refrigerant and the gas refrigerant in the upstream header pipe 32 can be suppressed, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made uniform.
 さらに、本実施形態に係る熱交換器31、31A、熱交換器モジュール51、および空気調和機1、1Aは、複数の側面開口46を有している。そのため、熱交換器31、31A、熱交換器モジュール51、および空気調和機1、1Aは、冷媒の流通経路における圧力損失を低減させ、上流側ヘッダーパイプ32の内壁面32cに効果的に冷媒を衝突させて冷媒を分散し、扁平管35に供給される冷媒の分配量をより均一化できる。 Furthermore, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A according to the present embodiment have a plurality of side openings 46. Therefore, the heat exchangers 31 and 31A, the heat exchanger module 51, and the air conditioners 1 and 1A reduce pressure loss in the refrigerant flow path, and effectively supply the refrigerant to the inner wall surface 32c of the upstream header pipe 32. The refrigerant is dispersed by colliding, and the distribution amount of the refrigerant supplied to the flat tube 35 can be made more uniform.
 また、本実施形態に係る熱交換器31A、熱交換器モジュール51、および空気調和機1、1Aは、上流側ヘッダーパイプ32の風上側の領域Aへ冷媒を流出させる側面開口46を有している。換言すると、熱交換器31A、熱交換器モジュール51、および空気調和機1、1Aは、熱源温度差の大きい風上側の上流側ヘッダーパイプ32の内壁面32cに冷媒を衝突させる。そのため、熱交換器31A、熱交換器モジュール51、および空気調和機1、1Aは、扁平管35の風上側に位置し、かつ伝熱仕事量が多い冷媒流通路35aへ積極的に冷媒を流入させ、冷媒の熱交換量を増やすことができる。 Further, the heat exchanger 31 </ b> A, the heat exchanger module 51, and the air conditioners 1, 1 </ b> A according to the present embodiment have side openings 46 that allow the refrigerant to flow out to the upstream side area A of the upstream header pipe 32. Yes. In other words, the heat exchanger 31A, the heat exchanger module 51, and the air conditioners 1 and 1A cause the refrigerant to collide with the inner wall surface 32c of the upstream-side header pipe 32 on the windward side where the heat source temperature difference is large. Therefore, the heat exchanger 31A, the heat exchanger module 51, and the air conditioners 1 and 1A positively flow the refrigerant into the refrigerant flow passage 35a that is located on the windward side of the flat tube 35 and has a large amount of heat transfer work. The amount of heat exchange of the refrigerant can be increased.
 さらに、本実施形態に係る熱交換器31B、熱交換器モジュール51、および空気調和機1、1Aは、上流側ヘッダーパイプ32の内壁面32cに設けられて側面開口46および先端開口45のそれぞれへ向かって突出する突起部49を備えている。そのため、熱交換器31B、熱交換器モジュール51、および空気調和機1、1Aは、上流側ヘッダーパイプ32の内壁面32cに衝突する液冷媒とガス冷媒との攪拌をさらに促進し、扁平管35に供給される冷媒の分配量をより一層、均一化できる。 Furthermore, the heat exchanger 31B, the heat exchanger module 51, and the air conditioners 1 and 1A according to the present embodiment are provided on the inner wall surface 32c of the upstream header pipe 32 to the side opening 46 and the tip opening 45, respectively. A projection 49 is provided that protrudes toward the surface. Therefore, the heat exchanger 31B, the heat exchanger module 51, and the air conditioners 1 and 1A further promote the stirring of the liquid refrigerant and the gas refrigerant that collide with the inner wall surface 32c of the upstream header pipe 32, and the flat tube 35 The distribution amount of the refrigerant supplied to can be made even more uniform.
 また、本実施形態に係る熱交換器モジュール51、および空気調和機1Aでは、下流側の熱交換器31bの上流側継手37の総開口面積が、上流側の熱交換器31aの上流側継手37の側面開口46および先端開口45の総開口面積より大きい。そのため、本実施形態に係る熱交換器モジュール51、および空気調和機1Aは、各熱交換器31a、31bでの圧力損失の過度な上昇を抑制し、側面開口46と先端開口45とによる扁平管35への冷媒の分流を均一化できる。 In the heat exchanger module 51 and the air conditioner 1A according to the present embodiment, the total opening area of the upstream joint 37 of the downstream heat exchanger 31b is equal to the upstream joint 37 of the upstream heat exchanger 31a. It is larger than the total opening area of the side opening 46 and the tip opening 45. Therefore, the heat exchanger module 51 and the air conditioner 1A according to the present embodiment suppress an excessive increase in pressure loss in each of the heat exchangers 31a and 31b, and are flat tubes formed by the side opening 46 and the tip opening 45. The refrigerant flow to 35 can be made uniform.
 さらに、本実施形態に係る熱交換器モジュール51、および空気調和機1Aでは、下流側継手38の内径寸法は、同じ熱交換器31に設けられる上流側継手37の内径寸法以上であり、下流側の熱交換器31bの上流側継手37の内径寸法は、上流側の熱交換器31aの上流側継手37の内径寸法よりも大きい。そのため、各熱交換器31a、31bでの圧力損失の過度な上昇を抑制し、側面開口46と先端開口45とによる扁平管35への冷媒の分流をより均一化できる。 Furthermore, in the heat exchanger module 51 and the air conditioner 1A according to the present embodiment, the inner diameter dimension of the downstream side joint 38 is equal to or larger than the inner diameter dimension of the upstream side joint 37 provided in the same heat exchanger 31. The inner diameter dimension of the upstream joint 37 of the heat exchanger 31b is larger than the inner diameter dimension of the upstream joint 37 of the upstream heat exchanger 31a. Therefore, an excessive increase in pressure loss in each of the heat exchangers 31a and 31b can be suppressed, and the refrigerant flow to the flat tube 35 by the side opening 46 and the tip opening 45 can be made more uniform.
 したがって、本実施形態に係る熱交換器31、31A、31B、熱交換器モジュール51、および空気調和機1、1Aによれば、並行する複数の扁平管35に、冷媒をより均等に分配可能である。 Therefore, according to the heat exchangers 31, 31 </ b> A, 31 </ b> B, the heat exchanger module 51, and the air conditioners 1, 1 </ b> A according to this embodiment, the refrigerant can be more evenly distributed to the plurality of parallel flat tubes 35. is there.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1、1A…空気調和機、2…室内機、3…室外機、11…室内機筐体、12…室内熱交換器、13…室内送風機、13a…ファン、13b…電動機、15…室外機筐体、16…圧縮機、16a…吐出口、16b…吸込口、17…四方弁、18…室外熱交換器、19…絞り機構、21…室外送風機、21a…プロペラファン、21b…電動機、23…冷媒配管、23a…第一冷媒配管、23b…第二冷媒配管、23c…第三冷媒配管、23d…第四冷媒配管、23e…第五冷媒配管、23f…第六冷媒配管、23g…第七冷媒配管、23h…第八冷媒配管、23i…第九冷媒配管、23j…第十冷媒配管、25a…第一配管接続部、25b…第二配管接続部、25c…第三配管接続部、25d…第四配管接続部、27…制御部、31、31A、31B…熱交換器、31a…上流側の熱交換器、31b…下流側の熱交換器、32…上流側ヘッダーパイプ、32a…第一端部、32b…第二端部、32c…内壁面、33…下流側ヘッダーパイプ、33a…第一端部、33b…第二端部、35…扁平管、35a…冷媒流通路、36…コルゲートフィン、37…上流側継手、38…下流側継手、39…エンドキャップ、41…サイドプレート、45…先端開口、46、46A…側面開口、48…第二側面開口、49…突起部、51…熱交換器モジュール、53…中継配管。 DESCRIPTION OF SYMBOLS 1, 1A ... Air conditioner, 2 ... Indoor unit, 3 ... Outdoor unit, 11 ... Indoor unit housing, 12 ... Indoor heat exchanger, 13 ... Indoor fan, 13a ... Fan, 13b ... Electric motor, 15 ... Outdoor unit housing Body, 16 ... compressor, 16a ... discharge port, 16b ... suction port, 17 ... four-way valve, 18 ... outdoor heat exchanger, 19 ... throttle mechanism, 21 ... outdoor blower, 21a ... propeller fan, 21b ... electric motor, 23 ... Refrigerant piping, 23a ... first refrigerant piping, 23b ... second refrigerant piping, 23c ... third refrigerant piping, 23d ... fourth refrigerant piping, 23e ... fifth refrigerant piping, 23f ... sixth refrigerant piping, 23g ... seventh refrigerant Pipe, 23h ... eighth refrigerant pipe, 23i ... ninth refrigerant pipe, 23j ... tenth refrigerant pipe, 25a ... first pipe connection part, 25b ... second pipe connection part, 25c ... third pipe connection part, 25d ... Four pipe connection parts, 27 ... control part, 31 and 31A 31B ... Heat exchanger, 31a ... Upstream heat exchanger, 31b ... Downstream heat exchanger, 32 ... Upstream header pipe, 32a ... First end, 32b ... Second end, 32c ... Inner wall surface, 33 ... downstream header pipe, 33a ... first end, 33b ... second end, 35 ... flat tube, 35a ... refrigerant flow passage, 36 ... corrugated fin, 37 ... upstream joint, 38 ... downstream joint, 39 ... End cap, 41 ... Side plate, 45 ... Tip opening, 46, 46A ... Side opening, 48 ... Second side opening, 49 ... Projection, 51 ... Heat exchanger module, 53 ... Relay piping.

Claims (8)

  1.  実質的に平行に並ぶ一対のヘッダーパイプと、
     前記一対のヘッダーパイプの延在方向に並び、かつ前記一対のヘッダーパイプの間に架設されて一方の前記ヘッダーパイプと他方の前記ヘッダーパイプとの間で冷媒を流通させる複数の熱交換管と、
     前記一方のヘッダーパイプの側面に設けられ、前記一方のヘッダーパイプへ前記冷媒を流入させ、または前記一方のヘッダーパイプから前記冷媒を流出させる継手と、を備え、
     前記継手は、先端に設けられる先端開口と、前記継手の側面に設けられて前記一方のヘッダーパイプの内壁面を臨む少なくとも1つの側面開口と、を有し、
     前記継手の延在方向の中心線に対して、前記側面開口の中心を通る線分の延在方向と前記ヘッダーパイプに直交する線分とがなす角は、45度より小さく、
     前記側面開口の開口面積は前記先端開口の開口面積より大きい熱交換器。
    A pair of header pipes arranged substantially in parallel;
    A plurality of heat exchange tubes that are arranged in the extending direction of the pair of header pipes and are laid between the pair of header pipes to allow refrigerant to flow between the one header pipe and the other header pipe;
    Provided on a side surface of the one header pipe, and includes a joint that allows the refrigerant to flow into the one header pipe, or allows the refrigerant to flow out of the one header pipe,
    The joint has a tip opening provided at a tip, and at least one side opening provided on a side surface of the joint and facing an inner wall surface of the one header pipe,
    The angle formed by the extending direction of the line passing through the center of the side opening and the line perpendicular to the header pipe with respect to the center line in the extending direction of the joint is less than 45 degrees,
    The heat exchanger has an opening area of the side opening larger than an opening area of the tip opening.
  2. 前記継手は前記熱交換管に向かって延び、前記ヘッダーパイプの延在方向から見て、前記熱交換管と前記継手との間には隙間が設けられ、
     前記先端開口は、隣り合う一対の前記熱交換管の間の、前記一方の前記ヘッダーパイプの内壁面を臨む請求項1に記載の熱交換器。
    The joint extends toward the heat exchange pipe, and when viewed from the extending direction of the header pipe, a gap is provided between the heat exchange pipe and the joint.
    The heat exchanger according to claim 1, wherein the tip opening faces an inner wall surface of the one header pipe between a pair of adjacent heat exchange tubes.
  3. 前記継手は、複数の前記側面開口を有する請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1, wherein the joint has a plurality of the side openings.
  4. 前記側面開口は1つのみ設けられ、前記ヘッダーパイプの延在方向から見て前記ヘッダーパイプの風上側の領域へ前記冷媒を流出させる請求項1から3のいずれか1項に記載の熱交換器。 4. The heat exchanger according to claim 1, wherein only one side opening is provided, and the refrigerant flows out to a region on the windward side of the header pipe when viewed from the extending direction of the header pipe. .
  5. 前記一方のヘッダーパイプの内壁面に設けられて前記側面開口および前記先端開口のそれぞれへ向かって突出する突起部を備える請求項1から4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, further comprising a protrusion provided on an inner wall surface of the one header pipe and projecting toward each of the side opening and the tip opening.
  6.  複数の、請求項1から5のいずれか1項に記載された熱交換器と、
     前記複数の熱交換器を直列に接続する中継配管と、を備え、
     前記冷媒の流れ方向において、下流側の前記熱交換器の前記側面開口および前記先端開口の総開口面積は、上流側の前記熱交換器の前記側面開口および前記先端開口の総開口面積より大きい熱交換器モジュール。
    A plurality of heat exchangers according to any one of claims 1 to 5;
    A relay pipe connecting the plurality of heat exchangers in series,
    In the flow direction of the refrigerant, the total opening area of the side opening and the tip opening of the heat exchanger on the downstream side is larger than the total opening area of the side opening and the tip opening of the upstream heat exchanger. Exchanger module.
  7.  前記熱交換器は、前記他方の前記ヘッダーパイプへ前記冷媒を流入させ、または前記他方の前記ヘッダーパイプから前記冷媒を流出させる第二継手を備え、
     前記第二継手の内径寸法は、同じ前記熱交換器に設けられる前記継手の内径寸法以上であり、
     前記冷媒の流れ方向において、下流側の前記熱交換器の前記継手の内径寸法は、上流側の前記熱交換器の前記継手の内径寸法より大きい請求項7に記載の熱交換器モジュール。
    The heat exchanger includes a second joint that allows the refrigerant to flow into the other header pipe, or allows the refrigerant to flow out from the other header pipe,
    The inner diameter dimension of the second joint is not less than the inner diameter dimension of the joint provided in the same heat exchanger,
    The heat exchanger module according to claim 7, wherein an inner diameter dimension of the joint of the heat exchanger on the downstream side is larger than an inner diameter dimension of the joint of the heat exchanger on the upstream side in the flow direction of the refrigerant.
  8. 圧縮機と、
     凝縮器と、
     膨張装置と、
     請求項1から5のいずれか1項に記載の熱交換器、または請求項6から7のいずれか1項に記載の熱交換器モジュールを有する蒸発器と、
     前記圧縮機、前記凝縮器、前記膨張装置、および前記蒸発器を接続して前記冷媒を流通させる冷媒配管と、を備える冷凍サイクル装置。
    A compressor,
    A condenser,
    An expansion device;
    An evaporator having the heat exchanger according to any one of claims 1 to 5, or the heat exchanger module according to any one of claims 6 to 7,
    A refrigeration cycle apparatus comprising: the compressor, the condenser, the expansion device, and a refrigerant pipe that connects the evaporator and distributes the refrigerant.
PCT/JP2018/012297 2018-03-27 2018-03-27 Heat exchanger, heat exchange module, and refrigeration cycle WO2019186674A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020510218A JP6963098B2 (en) 2018-03-27 2018-03-27 Heat exchangers, heat exchange modules, and refrigeration cycle equipment
PCT/JP2018/012297 WO2019186674A1 (en) 2018-03-27 2018-03-27 Heat exchanger, heat exchange module, and refrigeration cycle
CN201880089054.6A CN111699351A (en) 2018-03-27 2018-03-27 Heat exchanger, heat exchange module, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012297 WO2019186674A1 (en) 2018-03-27 2018-03-27 Heat exchanger, heat exchange module, and refrigeration cycle

Publications (1)

Publication Number Publication Date
WO2019186674A1 true WO2019186674A1 (en) 2019-10-03

Family

ID=68062384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012297 WO2019186674A1 (en) 2018-03-27 2018-03-27 Heat exchanger, heat exchange module, and refrigeration cycle

Country Status (3)

Country Link
JP (1) JP6963098B2 (en)
CN (1) CN111699351A (en)
WO (1) WO2019186674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245901A1 (en) * 2020-06-05 2021-12-09 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air-conditioning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132598A (en) * 1997-07-29 1999-05-21 Ind Appl Thermiques Ciat:Co Distributer
JP2000292077A (en) * 1999-02-03 2000-10-20 Nippon Soken Inc Heat exchanger
US20080190134A1 (en) * 2006-11-29 2008-08-14 Parker-Hannifin Corporation Refrigerant flow distributor
US20100037652A1 (en) * 2006-10-13 2010-02-18 Carrier Corporation Multi-channel heat exchanger with multi-stage expansion
JP2016183847A (en) * 2015-03-27 2016-10-20 日本軽金属株式会社 Heat exchanger
WO2018055826A1 (en) * 2016-09-23 2018-03-29 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690235A1 (en) * 1992-04-16 1993-10-22 Valeo Thermique Moteur Sa Tubular box wall of fluid and method for the manufacture of a heat exchanger by driving of circulation tubes.
JP2004251556A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Heat exchanger
CN202813912U (en) * 2012-09-12 2013-03-20 珠海华宇金属有限公司 Distributor for air conditioner
CN203375867U (en) * 2013-03-27 2014-01-01 美的集团股份有限公司 Collecting pipe and concurrent flow heat exchanger
CN203163348U (en) * 2013-03-28 2013-08-28 广东美的电器股份有限公司 Heat exchanger and air conditioning device
JP2016176615A (en) * 2015-03-19 2016-10-06 日軽熱交株式会社 Parallel flow type heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132598A (en) * 1997-07-29 1999-05-21 Ind Appl Thermiques Ciat:Co Distributer
JP2000292077A (en) * 1999-02-03 2000-10-20 Nippon Soken Inc Heat exchanger
US20100037652A1 (en) * 2006-10-13 2010-02-18 Carrier Corporation Multi-channel heat exchanger with multi-stage expansion
US20080190134A1 (en) * 2006-11-29 2008-08-14 Parker-Hannifin Corporation Refrigerant flow distributor
JP2016183847A (en) * 2015-03-27 2016-10-20 日本軽金属株式会社 Heat exchanger
WO2018055826A1 (en) * 2016-09-23 2018-03-29 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245901A1 (en) * 2020-06-05 2021-12-09 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air-conditioning device
JPWO2021245901A1 (en) * 2020-06-05 2021-12-09
JP7313557B2 (en) 2020-06-05 2023-07-24 三菱電機株式会社 Refrigerant distributors, heat exchangers and air conditioners

Also Published As

Publication number Publication date
CN111699351A (en) 2020-09-22
JP6963098B2 (en) 2021-11-05
JPWO2019186674A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US8205470B2 (en) Indoor unit for air conditioner
US8439104B2 (en) Multichannel heat exchanger with improved flow distribution
US20110030932A1 (en) Multichannel heat exchanger fins
US20080141706A1 (en) Multichannel Evaporator with Flow Mixing Manifold
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
US5417279A (en) Heat exchanger having in fins flow passageways constituted by heat exchange pipes and U-bend portions
JP7263736B2 (en) Heat exchanger
US20240159434A1 (en) Heat exchanger and heat pump device
WO2006049122A1 (en) Shielding member and indoor unit of air conditioner
WO2017208493A1 (en) Air conditioner
JPWO2018225252A1 (en) Heat exchanger and refrigeration cycle device
WO2019186674A1 (en) Heat exchanger, heat exchange module, and refrigeration cycle
JP6711317B2 (en) Heat exchanger
JP2019027614A (en) Heat exchanging device and air conditioner
JP6755331B2 (en) Propeller fan and refrigeration cycle equipment
JP6661781B2 (en) Refrigeration cycle device
CN114041037B (en) Heat exchanger and refrigeration cycle device
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP2017132315A (en) Cool air unit
WO2020178966A1 (en) Gas header, heat exchanger, and refrigeration cycle device
JP6486718B2 (en) Heat exchanger
JP2020134100A (en) Heat exchanger
WO2017208784A1 (en) Vehicle interior heat exchanger
JP7137092B2 (en) Heat exchanger
WO2018020552A1 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912457

Country of ref document: EP

Kind code of ref document: A1