WO2019185906A1 - Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc - Google Patents

Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc Download PDF

Info

Publication number
WO2019185906A1
WO2019185906A1 PCT/EP2019/058073 EP2019058073W WO2019185906A1 WO 2019185906 A1 WO2019185906 A1 WO 2019185906A1 EP 2019058073 W EP2019058073 W EP 2019058073W WO 2019185906 A1 WO2019185906 A1 WO 2019185906A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
composition
water
zinc
aqueous composition
Prior art date
Application number
PCT/EP2019/058073
Other languages
English (en)
Inventor
Stéphanie Mourier
Eric TOLEDO
Original Assignee
Suez Groupe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suez Groupe filed Critical Suez Groupe
Priority to US17/040,032 priority Critical patent/US20210017652A1/en
Priority to EP19713071.9A priority patent/EP3774672A1/fr
Priority to CA3095231A priority patent/CA3095231A1/fr
Publication of WO2019185906A1 publication Critical patent/WO2019185906A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/16Sulfur-containing compounds
    • C23F11/163Sulfonic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/528Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/167Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/184Phosphorous, arsenic, antimony or bismuth containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F14/00Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
    • C23F14/02Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means

Definitions

  • the invention relates to a method of preventing the formation of white rust on a zinc coated steel surface (galvanized steel), said surface being used in particular as a heat exchanger in a cooling tower.
  • the invention also relates to a cooling tower with a zinc-coated steel surface treated by such a method.
  • An air-cooling tower is a device used to cool a liquid, which is usually water, by contact heat exchange - typically by direct contact - with the ambient air. Such a tower has the function of discharging to the outside environment the heat from systems such as a refrigeration unit or an industrial process.
  • the first category of cooling tower is called “closed primary circuit” or “closed tower” type, as shown in Figure 1.
  • the second category is called “open primary circuit” or “open tower”.
  • the calories are evacuated by evaporation of a part of the water.
  • the hot fluid to be cooled circulates in a tubular bundle 11, cooled by water spraying 12.
  • One advantage of a closed tower is that it limits pollution due to the process to which the tower is connected.
  • the hot water to be cooled 10 is sprayed in the upper part of the tower, and circulates in a zone 13 where the water / air contact surface is maximized so to increase the heat transfer.
  • the towers also include walls (14) and a pond (15).
  • the cooling towers generally comprise galvanized steel elements. These are in particular heat exchange zones such as tubular bundles (closed tower) or the basin.
  • galvanized steel is a steel covered with a layer of zinc which protects the steel from corrosion in three ways: 1) by the formation of a physical screen between steel and the external environment, 2) in slowing the corrosion phenomena (the oxidation kinetics of zinc is much lower than that of steel), and 3) playing a sacrificial role in case of discontinuity (scratching for example) of the zinc layer (effect of stack between steel and zinc due to the lower dissolution potential of zinc compared to that of iron).
  • the protection offered by the galvanizing layer is fully effective once the zinc covered with a passivation layer.
  • the galvanized steel elements cooling towers including heat exchangers such as tubular bundles (closed towers) or the basin (open towers) are vulnerable to corrosion in the presence of water at the first implementation. service of said towers. Indeed, the zinc layer, which is not yet passivated, can then undergo corrosion, resulting in a reduction in the life of the tower. This corrosion is
  • White rust usually appears on a new tower when put into service, and is accelerated by submission to a thermal load. In other words, the first weeks of exposure of water-galvanized steel are crucial and must be carefully monitored to prevent and / or prevent the formation of white rust.
  • the zinc is itself stabilized by the formation of an amorphous and non-evolutive passivation layer which is formed on its surface, composed in particular of hydroxide, oxides, zinc carbonates and / or mixed species.
  • the process of forming such a passivation layer is complex, and requires precise monitoring of certain physico-chemical parameters, in particular pH.
  • a solution for forming the passivation layer is so-called natural passivation. It consists of circulating water without thermal load in the installation while respecting certain physicochemical parameters. The duration of the process, about two months, is however not compatible with the constraints of exploitation: the industrialist is, most of the time, forced to start his cooling tower immediately under thermal load. [001 1] However, the pH of the water contained in a cooling tower is not constant when the tower is in operation due to the degassing of C0 2 (in other words, because of the "stripping" phenomenon of C0 2 ).
  • the patent application WO2016 / 003483 discloses a method for treating aqueous systems, intended in particular to limit the corrosion of said systems, comprising the use of hydroxycarboxylic acids or their salts, as alternatives to the use phosphorus derivatives.
  • the aqueous compositions used may comprise para-toluenesulphonic acid (p-TSA), but this is used as a "chemical label", more specifically as a fluorophore (see D1, page 7, paragraphs [0029] - [0030]), and not as anti-corrosion agent, specifically aimed at preventing the formation of white rust.
  • p-TSA para-toluenesulphonic acid
  • No. 5,866,042 discloses methods and compositions for inhibiting the corrosion of iron-based metals in contact with aqueous systems, using a copolymer of (meth) acrylic acid and 2-acetoacetoxyethylmethacrylate, which does not enter in the definition of formula (I) of the present invention.
  • the patent application CN101736337 discloses a method for passivating galvanized steel without resorting to chromates. Nevertheless, the method of CN101736337 is an "electroplating" type treatment. This process is fundamentally different from the methods and uses of the present invention, since it involves treating the steel prior to manufacture of metal devices for containing water, and not during their commissioning. In any case, the single composition comprising a sulfonic acid is described in Example 13, and it is noted that the pH of the passivation bath is adjusted to a value of 6.
  • the invention aims to overcome all or part of the problems mentioned above by proposing a solution to combat the degradation of the zinc layer during the first weeks of operation of the cooling tower.
  • the solution consists in the implementation of a conditioning of water able to prevent and / or inhibit the corrosion of zinc and able to form a protective layer, called passivation, on the zinc-coated surface of the cooling tower, and this especially during normal operation, especially under thermal load.
  • a "galvanized steel surface” is understood as a steel surface covered, at least partially, with a thin layer of zinc, generally applied by electrochemical process. According to one embodiment, the steel is entirely covered with a thin layer of zinc.
  • the thickness of the zinc layer varies according to the intended uses. It is generally between 5 and 500 ⁇ m, in particular between 50 and 300 ⁇ m. In general, it is 80 pm.
  • the galvanized steel surface is typically located in the heat exchange areas (upper part of the tower). These include heat exchangers, such as tubular bundles (closed towers). Cooling towers may include other parts with galvanized steel surfaces, such as walls and / or basin (lower part of the tower).
  • a "thermal load” means that a hot fluid is circulated in the tower and causes a temperature differential in the heat exchange zone, particularly in heat exchangers such as tubular bundles (closed tower), and leads to evaporation of water. There is thus a temperature differential between the water sprayed in the upper part of the tower (hot part) and the water contained in the basin (cold part). This temperature difference is generally between 5 ° C and 20 ° C, especially 8 ° C and 15 ° C, typically it is 10 ° C.
  • the invention relates to a method for preventing and / or preventing the appearance of white rust on a steel surface at least partially covered with zinc, comprising a) contacting said surface with an aqueous composition whose pH is between 6.5 and 8.5 comprising at least one organic acid of formula (I):
  • X is C (O) or S (O) 2 , preferably X is S (O) 2 , and R is an organic chain, especially:
  • a linear or branched C 1 -C 2 alkyl optionally substituted with one or more (in particular from 1 to 3) groups chosen from a halogen, OH,
  • an aryl or heteroaryl group optionally substituted by a halogen, OH, linear or branched C 1 -C 4 alkyl or COOH group;
  • the C 1 -C 12 alkyl does not comprise more than 2 COOH groups and preferably the C 1 -C 12 alkyl does not contain more than one COOH substituent.
  • This method has the effect of bringing the galvanized steel surface into contact with water at a pH between 6.5 and 8.5 in order to form the so-called passivation protective layer on the surface of the zinc.
  • a "Ci-Ci 2 alkyl” means a saturated monovalent hydrocarbon chain, linear or branched, comprising 1 to 12, preferably 1 to 6, in particular 1 to 4 carbon atoms.
  • it is methyl and ethyl groups.
  • aryl for the purposes of the present invention, an aromatic monocyclic or bicyclic hydrocarbon group, preferably comprising from 6 to 10 carbon atoms, and comprising one or more contiguous rings, for example a phenyl or naphthyl group.
  • aryl for the purposes of the present invention, an aromatic monocyclic or bicyclic hydrocarbon group, preferably comprising from 6 to 10 carbon atoms, and comprising one or more contiguous rings, for example a phenyl or naphthyl group.
  • it is phenyl.
  • heteroaryl is meant, within the meaning of the present invention, a monocyclic or bicyclic aromatic group comprising 5 to 10 ring atoms including one or more heteroatoms, advantageously 1 to 4 and even more advantageously 1 or 2, chosen from the sulfur, nitrogen and oxygen atoms, the other cyclic atoms being carbon atoms.
  • heteroaryl groups are furyl, thienyl, pyrrolyl, pyridinyl, pyrimidinyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, indyl, quinoline or isoquinoline groups.
  • halogen atom means the fluorine, chlorine, bromine and iodine atoms, preferably the fluorine atom.
  • the steel surface at least partially covered with zinc is subjected to a thermal load (or temperature rise), especially during step a).
  • This rise in temperature results from bringing said surface into contact with a hot or fluid fluid to be cooled, said hot fluid generally being at a temperature of between 40 and 100 ° C., in particular between 50 and 90 ° C.
  • the hot fluid is a refrigerant such as ammonia, which is generally at a temperature of about 80 ° C, especially between 75 ° C and 85 ° C.
  • the hot fluid is typically industrial water at a temperature generally between 35 ° C and 50 ° C.
  • the composition Under thermal load the composition has a temperature between 15 ° C and 40 ° C, especially between 25 ° C and 35 ° C, depending on the season and the measuring point in the tower, the water being more hot in the upper part of the tower, especially in the heat exchanger in the lower part of the tower, and in particular in the basin.
  • R represents linear or branched C 1 -C 6 alkyl, preferably linear, optionally substituted by one or more groups (in particular from 1 to 3 groups) chosen from a halogen, OH, COOH, an aryl group, said aryl group being itself optionally substituted by a halogen, OH, or COOH group, it being understood that the C 1 -C 12 alkyl does not comprise more than 2 COOH groups when X represents CO.
  • R represents linear or branched C 1 -C 6 alkyl, preferably linear, optionally substituted by one or two groups chosen from a halogen, OH, COOH and a phenyl group, said phenyl group being itself optionally substituted by a halogen, OH, or COOH group.
  • R represents linear or branched C 1 -C 6 alkyl, preferably linear, optionally substituted by one or two groups selected from a fluorine, OH or COOH atom. Most preferably, R is unsubstituted linear or branched C 1 -C 6 alkyl, and especially R is CH 3 .
  • X represents S0 2 .
  • R may represent a tolyl group (the acid of formula (I) is then advantageously para-toluenesulfonic acid), a methyl or a trifluoromethyl.
  • R is CH 3 , that is to say that the acid of formula (I) is methanesulfonic acid.
  • Methanesulfonic acid is particularly advantageous because it dissociates almost completely in water. This results in ease of pH regulation by moderate additions of this acid.
  • X represents CO.
  • the acid of formula (I) is a carboxylic acid, such as acetic acid.
  • citric acid is excluded from the scope of the invention, since, although it is effective in promoting the passivation layer and therefore makes it possible to prevent the formation of white rust, it has been shown that citric acid promotes bacterial proliferation.
  • an "aqueous composition” is composed mainly or essentially of water, and may contain one or more additives.
  • the aqueous composition comprises at least 95% by weight of water, especially at least 99% by weight of water relative to the total weight of the composition.
  • the aqueous composition of the invention may in particular be water for industrial use, whose pH is adjusted to a value between 6.5 and 8.5 by addition of organic acid of formula (I) as defined above or below, and to which are optionally added one or more additives. It may be industrial water, but also city water (possibly softened and / or pretreated), drilling water and / or surface water (including lake water, rainwater).
  • the aqueous composition of the invention is devoid of chromates.
  • the aqueous composition of the invention is devoid of tannins.
  • tannin refers to a polyphenolic compound comprising several phenolic groups (i.e. phenyl groups substituted by at least one OH group).
  • An example of tannin is tannic acid (CAS No. 1401-55-4 or 18483-17-5).
  • the aqueous composition is devoid of surfactant, especially the aqueous composition is free of amphoteric surfactant.
  • the aqueous composition of the invention further comprises a scale inhibitor and / or a corrosion inhibitor and / or a biocide.
  • the scale inhibitor can prevent or limit scale formation. It acts by dispersion or crystalline distortion. It is for example an acrylic polymer, which acts by dispersion or a phosphonate, which acts by crystalline distortion.
  • the corrosion inhibitor is particularly intended to prevent and / or limit corrosion of the metal parts of the cooling tower which do not include a zinc layer. It allows to act additionally in a preventive way against corrosion.
  • the corrosion inhibitor is preferably a phosphorus corrosion inhibitor such as orthophosphate.
  • the biocidal agent makes it possible to prevent or limit the proliferation of bacteria. It is chosen from oxidizing biocidal agents, such as hypochorite sodium and chlorine dioxide, and non-oxidizing biocidal agents such as isothiazolinones.
  • the method according to the invention may also comprise one or more in combination among the following steps:
  • the corrosion inhibitor, the scale inhibitor and the biocide are advantageously as defined above.
  • the composition further comprises a phosphorus compound.
  • the phosphorus compound may also have other properties, such as anticorrosion properties or scaling inhibiting properties or properties of phosphating agent, and be already known for the conditioning of cooling towers.
  • Such phosphorus compounds in combination with the acid of formula (I), provides a synergistic effect. Without wishing to be bound by the theory, it appears that such phosphorus compounds make it possible to improve and / or accelerate the formation of the passivation layer.
  • said phosphorus compound is a phosphating agent.
  • it may be hexametaphosphate, in particular marketed by SUEZ under the name AQUALEAD® PO 8005.
  • the composition advantageously has a polyphosphate content of between 5 g / m 3 and 100 g / m 3 , preferably between 5 g / m 3 and 50 g / m 3 , typically 20 g / m 3 .
  • the aqueous composition consists of water, in particular water for industrial use, and of acid of formula (I) as defined above and below, and optionally of an additive among a scaling inhibitor, a corrosion inhibitor, a biocide and mixtures thereof, said aqueous composition having a pH of between 6.5 and 8.5.
  • the pH of the aqueous composition is between 6.5 inclusive and 8.5 excluded.
  • the pH of the aqueous composition is between 7.0 and 8.0, preferably between 7.5 and 8.0, most preferably between 7.8 and 8.0.
  • the aqueous composition is also characterized by its hydrotimetric titre and its complete alkalimetric titre.
  • the "hydrotimetric title" (TH) or "hardness of the water” is a parameter well known to those skilled in the art. It corresponds to the concentration of calcium and magnesium ions and is often expressed in French degrees (symbol ° f or ° fH). TH measurement methods are well known to those skilled in the art. Generally, one distinguishes the permanent hardness and the temporary hardness, the sum of the two being the total hardness. The hardness is determined by a complexometric determination by EDTA.
  • the "total alkalinity titer” is the quantity used to measure the level of hydroxides, carbonates and bicarbonates of a water.
  • the unit of the TAC is the French degree (° f or ° fH).
  • TAC measurement methods are well known to those skilled in the art. For example, one can titrate the water to be analyzed with an acid in the presence of two colored indicators, one at 8.2 (phenolphthalein or Thymol blue) and the other at 4.4 (helianthine). Such an assay makes it possible to determine all the hydroxide, carbonate and bicarbonate ions initially present.
  • the composition has a TH between 8 ° F and 30 ° f, and a TAC greater than or equal to 8 ° f.
  • the composition is also characterized by its conductivity, which is preferably less than or equal to 2400 pS / cm 2, more preferably less than or equal to 2000 pS / cm 2.
  • the amount of acid to be added depends on the amount of the TAC (complete alkalimetric titer) to neutralize knowing that the make-up water cooling towers have varying qualities.
  • the pH range required for a TAC of 10 ° f is obtained with a convenient dosage of the acid generally between 160 mg / L and 1200 mg / L the total volume of the circuit.
  • the composition has a TH between 8 ° F and 30 ° f, and a TAC greater than or equal to 8 ° f and a conductivity less than or equal to 2400 pS / cm.
  • these parameters are measured continuously and adjusted to be maintained in the target ranges by methods well known to those skilled in the art.
  • step a) can be performed according to several embodiments.
  • step a) comprises: a1) bringing said surface into contact with water, and a2) adding at least one organic acid of formula (I) as defined above or below, so that the water exhibits a pH between 6.5 and
  • said steel surface at least partially covered with zinc is first put in contact with water whose pH is not controlled, then the pH of the water is adjusted by adding an acid of formula (I) so as to be between 6.5 and 8.5.
  • said steel surface coated at least partially with zinc is put directly in contact with the aqueous composition having a pH of between 6.5 and 8.5.
  • the pH of the aqueous composition in contact with the steel surface is thus controlled from the outset.
  • the method according to the invention further comprises the following successive steps:
  • step b) measuring the pH of said composition contacted with the surface, and c) depending on the result of the measurement obtained in step b) adjusting the pH of said composition contacted with the surface to a value between 6 , 5 and 8.5, in particular by addition of acid of formula (I) as defined above or below.
  • step c) either the pH measured in step b) is equal to the target value or included in the target range, then the adjustment step c) is not necessary;
  • step b) is greater than the target value or the upper limit of the target pH range; in this case the sufficient amount of acid of formula (I) is added to obtain the target pH value or to return to the targeted pH range (i.e.
  • the amount of acid of formula (I) added for the adjustment of step c) is slaved to the measurement of step b) via an automaton.
  • the succession of steps b) and c) is repeated at predetermined time intervals until complete passivation of the zinc layer.
  • steps b) and c) can be repeated at regular time intervals, for example every week, or every 3 days, or every day, until complete passivation of the zinc layer (especially during 5 days). at 8 weeks).
  • steps b) and c) are implemented in a continuous manner.
  • the pH of the aqueous composition is adjusted during step c) to a value between 6.5 inclusive and 8.5 excluded.
  • the pH of the aqueous composition is adjusted during step c) to a value in the range 7.0 - 8.0, preferably the range 7.5 - 8.0, most preferably the range. 7.8 - 8.0.
  • the process comprising the successive steps a), b) and c) is preferably carried out so as to maintain the pH of the aqueous composition at a value within the targeted pH range (i.e. 6.5 and 8.5) until complete passivation of the zinc layer.
  • the process of the invention is carried out for a period of approximately 2 months, especially between 3 weeks and 2 months, for example between 4 and 6 weeks.
  • the raw galvanized steel has a shiny appearance. Passivated galvanized steel is dull because of the passivation layer.
  • the formation of the passivation layer is followed by:
  • Passivation is considered complete when the appearance of galvanized steel has become dull and gray over the entire exposed surface.
  • the passivated galvanized steel layer can then be brought into direct contact with an acid-free composition of formula (I), advantageously meeting the specifications of the tower manufacturer, particularly in terms of TH, TAC, pH and conductivity.
  • the invention also relates to the use of an organic acid of formula (I) as defined above (both in its general definition and in its preferred embodiments, advantageous or particular), to prevent the occurrence of white rust on a steel surface at least partially covered with zinc brought into contact with water to obtain a solution having a pH at a desired value between 6.5 and 8.5.
  • an organic acid of formula (I) with water allows the formation of the passivation layer on the surface and thus prevents the formation of white rust.
  • the organic acid of formula (I) is methanesulfonic acid.
  • the invention also relates to an aqueous composition
  • an aqueous composition comprising an organic acid of formula (I) as defined above (both in its general definition and in its preferred, advantageous or particular embodiments), the composition having an pH between 6.5 and 8.5 (in particular between 6.5 and 8.5 excluded), preferably between 7 and 8, preferably between 7.5 and 8, preferably between 7.8 and 8.
  • the composition of the The invention is useful for preventing and / or preventing the occurrence of white rust on a steel surface at least partially covered with zinc.
  • the organic acid of formula (I) is methanesulphonic acid.
  • the aqueous composition of the invention further comprises a scale inhibitor and / or a corrosion inhibitor and / or a biocide, which may be as described above.
  • the aqueous composition is devoid of strong mineral acid, such as sulfuric acid or nitric acid or hydrochloric acid.
  • the composition of the invention is devoid of sulfuric acid, nitric acid and hydrochloric acid.
  • the aqueous composition of the invention is devoid of chromates.
  • the aqueous composition of the invention is devoid of tannins.
  • the aqueous composition is devoid of surfactant, especially the aqueous composition is free of amphoteric surfactant.
  • the aqueous composition consists of water, especially water for industrial use, of acid of formula (I) as defined above and below, and optionally of an additive among a scaling inhibitor (for example a polymer, a phosphonate), a corrosion inhibitor, a biocide (such as an oxidizing biocidal agent, especially chosen from sodium hypochorite and chlorine dioxide, or a non-oxidizing biocidal agent such as isothiazolinones), and mixtures thereof, said aqueous composition having a pH of between 6.5 and 8.5.
  • a scaling inhibitor for example a polymer, a phosphonate
  • a corrosion inhibitor for example a polymer, a phosphonate
  • a biocide such as an oxidizing biocidal agent, especially chosen from sodium hypochorite and chlorine dioxide, or a non-oxidizing biocidal agent such as isothiazolinones
  • the aqueous composition comprises at least 95% by weight of water, especially at least 99% by weight of water relative to the total weight of the composition.
  • the water may in particular be water for industrial use. It can be industrial water, city water (possibly softened and / or pretreated), drilling water and / or surface water (including lake water, rainwater).
  • the composition has a TH between 8 ° F and 30 ° f, and a TAC greater than or equal to 8 ° f.
  • the composition is also characterized by its conductivity, which is preferably less than or equal to 2400 ⁇ S / cm, more preferably less than or equal to 2000 ⁇ S / cm.
  • the composition further comprises a phosphorus compound.
  • said phosphorus compound is a phosphating agent.
  • it may be hexametaphosphate, in particular marketed by SUEZ under the name AQUALEAD®PO 8005.
  • the composition advantageously has a polyphosphate content of between 5 g / m 3 and 100 g / m 3 , preferably between 5 g / m 3 and 50 g / m 3 , typically 20 g / m 3 .
  • the invention also relates to a cooling tower comprising a steel surface at least partially covered with zinc (thus subject to the appearance of white rust in the presence of water), the surface being treated by the process mentioned above.
  • the resulting technical effect is the formation of the passivation layer in a reduced time to a few weeks. The advantage that This is to prevent the formation of white rust while allowing the tower to operate quickly under thermal load.
  • the method of the invention allows to obtain the formation of the passivation layer from the commissioning of the cooling tower, under thermal load.
  • FIG. 1 schematically represents a closed-type air-cooling tower according to the prior art
  • FIG. 2 diagrammatically represents an open-type air-cooling tower according to the prior art
  • FIG. 3 schematically shows a cooling tower treated by the method according to the invention.
  • FIG. 1 schematically represents a closed type air-cooling tower according to the prior art
  • FIG. 2 schematically represents an open-type air-cooling tower according to the prior art and both have been presented in introduction.
  • the method according to the invention comprises a step of bringing said surface into contact with an aqueous composition whose pH is between 6.5 and 8.5, comprising methanesulphonic acid.
  • the method comprises a step b) of measuring the pH of said composition in contact with the surface, and a step c) of adjusting the pH of said composition in contact with the surface to the desired value or a value in the target pH range (at least between 6.5 and 8.5) depending on the result of the measurement obtained in step b), in particular by addition of methanesulphonic acid, the pH having a tendency to increase naturally because of stripping phenomenon of C0 2 .
  • These steps are preferably performed in a continuous manner.
  • the measurement and adjustment steps allow a good regulation of the pH so that the composition has a pH equal to or substantially equal to the desired value (s), or is in a target range. By these steps, the pH requirements for the formation of the passivation layer are ensured.
  • a pH regulating device also makes it possible to avoid any overconsumption of acid.
  • the composition further comprises hexametaphosphate, in particular marketed by SUEZ under the name AQUALEAD®8005.
  • the composition advantageously has a polyphosphate content of between 5 g / m 3 and 50 g / m 3 , preferably between 5 g / m 3 and 100 g / m 3 , typically 20 g / m 3 .
  • the composition may also include an anti-scale additive and / or a biocide.
  • the composition has a TH between
  • these parameters are measured continuously and adjusted to be maintained in the target ranges.
  • FIG. 3 schematically shows a cooling tower 130 treated by the method according to the invention.
  • the cooling tower 130 comprises at least one surface 131 of steel covered, at least partially, with zinc.
  • the surface 131 has a protective layer called passivation.
  • the TH is maintained at a value between 8 ° f and 30 ° f
  • the TAC is maintained at a value greater than or equal to 8 ° f
  • the conductivity is maintained at a value less than or equal to 2400 ⁇ S / cm. .
  • the tests were conducted with different acids.
  • Comparative Example 1 First, the tests were conducted with citric acid. The quality of the film formed under these conditions is poor: a generalized corrosion start of the zinc layer (galvanized layer) took place but (early stage), with a thickness loss of the galvanized layer of about 30 ⁇ m. The underlying steel tube is intact and shows no significant damage, but the passivation layer thus obtained does not prevent corrosion. In addition, the bacterial count is drifting. Citric acid therefore does not solve the problem of the invention.
  • Comparative Example 2 Another test was conducted with nitric acid HNO 3 . At the end of the test period, the thickness of the zinc layer (galvanized layer) was partially consumed and a beginning of corrosion of the steel of the test tube was observed. This confirms that a strong inorganic acid (mineral) such as nitric acid does not form the protective passivation layer, but on the contrary causes corrosion of the galvanized steel.
  • a strong inorganic acid such as nitric acid does not form the protective passivation layer, but on the contrary causes corrosion of the galvanized steel.
  • the makeup water used is a "re-cured" water, so as to reach a value greater than 8 ° f in circuit.
  • the pH is adjusted so that the alkalinity TAC is greater than 8 ° f in circuit.
  • Phosphating agent aqualead PO 8005, at a dose of 70 to 100 g / m3 in circuit. This product is injected by a specific pump, independent of the device for adding methanesulphonic acid.
  • Methanesulfonic acid aqualead PA 065 / DPIA16-0003, during a period of 4 weeks so as to maintain a regulated pH of 7.8 to 8.2 in circuit, the target pH being 7.8.
  • the parameters of the water used in the circuit are as follows:
  • the analytical monitoring is performed weekly to ensure that the physicochemical and microbiological parameters are satisfactory.
  • pH 8.1
  • the target pH is 7.8.
  • the appearance and thickness of galvanized steel tubular bundles are regularly observed during chemical passivation.
  • the shiny tubes at the beginning (J0) become gradually gray and dull (J0 + 4 weeks) (visual observation).
  • the average 3-point thickness measured by permascope does not decrease: at 0, this thickness is 65 pm, and goes to 68 pm at 0 + 4 weeks.
  • Additional example 2 Achievement of a chemical passivation under load for 4 weeks when starting a Baltimore cooling tower:
  • the make-up water used is a "re-cured" water, so as to reach a value greater than 8 ° f in circuit.
  • the pH is adjusted so that the alkalinity TAC is greater than 8 ° f in circuit.
  • Phosphating agent aqualead PO 8005, at a dose of 70 to 100 g / m3 in circuit. This product is injected by a specific pump, independent of the device for adding methanesulphonic acid.
  • Methanesulfonic acid aqualead PA 065 / DPIA16-0003, during a period of 4 weeks so as to maintain a regulated pH of 7.8 to 8.2 in circuit, the target pH being 7.8.
  • the parameters of the water used in the circuit are as follows:
  • the analytical monitoring is performed weekly to ensure that the physicochemical and microbiological parameters are satisfactory.
  • pH 8.1
  • the target pH is 7.8.
  • the appearance of galvanized steel tubular beams is observed regularly during chemical passivation.
  • the shiny tubes at the beginning (OJ) become gradually gray and dull (OJ + 4 weeks) (visual observation).
  • the device for regulating the addition of methanesulphonic acid as a function of the pH used in the two additional examples 1 and 2 above comprises a pH measuring probe, a dosing pump, a dosing tank and its retention. .
  • the circuit water is derived at an entry point of the regulating device.
  • the water from the circuit is taken at a sampling point connected to a flow detector.
  • a pH probe measures the pH of the withdrawn circuit water.
  • a second so-called safety pH probe may also be present.
  • the pH is adjusted, if necessary, within a range of predetermined values as explained above, by adding an acid of formula (I), methanesulfonic acid in the two additional examples 1 and 2, at a point of injection.
  • the dosing pump is connected to the injection point on the one hand and to the dosing tank and its retention on the other.
  • Dedicated equipment is connected between the pH probe and the dosing pump to control the amount of acid to be injected according to the pH measurement.
  • the device comprises an outlet point downstream of the injection point and the water is redirected to the circuit.

Abstract

L'invention concerne un procédé de prévention de la formation de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc comprenant a) la mise en contact de ladite surface, de préférence sous charge therminque, avec une composition aqueuse dont le pH est compris entre 6,5 et 8,5 comprenant au moins un acide organique de formule (I): R-X-OH dans laquelle X représente C(O) ou S(O)2, et R représente une chaîne organique. L'invention concerne aussi une composition, ainsi qu'une tour aéroréfrigérante traitée par le procédé selon l'invention.

Description

PROCEDE DE PREVENTION DE LA FORMATION DE ROUILLE BLANCHE SUR UNE SURFACE EN ACIER RECOUVERTE DE ZINC
DOMAINE TECHNIQUE DE L’INVENTION
[0001] L’invention concerne un procédé de prévention de la formation de rouille blanche sur une surface en acier recouverte de zinc (acier galvanisé), ladite surface étant notamment utilisée comme échangeur thermique dans une tour aéroréfrigérante. L’invention concerne également une tour aéroréfrigérante avec une surface en acier recouverte de zinc traitée par un tel procédé.
ARRIERE-PLAN TECHNOLOGIQUE
[0002] Une tour aéroréfrigérante est un dispositif utilisé pour refroidir un liquide, qui est généralement de l’eau, par échange thermique par contact - typiquement par contact direct - avec l’air ambiant. Une telle tour a pour fonction d’évacuer vers le milieu extérieur la chaleur issue de systèmes tels qu’un groupe frigorifique ou un procédé industriel.
[0003] Il existe essentiellement deux types de tours. La première catégorie de tour aéroréfrigérante est dite de type « circuit primaire fermé » ou « tour fermée », comme représenté sur la figure 1 . La seconde catégorie est dite de type « circuit primaire ouvert » ou « tour ouverte ». Pour ces deux types de tour, les calories sont évacuées par évaporation d’une partie de l’eau. Dans le cas d’une tour dite « fermée 1 » (figure 1 ), le fluide chaud à refroidir 10 circule dans un faisceau tubulaire 1 1 , refroidi par aspersion d’eau 12. Un avantage d’une tour fermée est de limiter les pollutions dues au procédé auquel la tour est reliée. Dans le cas d’une tour dite « ouverte 2 » (figure 2), l’eau chaude à refroidir 10 est pulvérisée en partie supérieure de la tour, et circule dans une zone 13 où la surface de contact eau/air est maximisée afin d’accroitre le transfert thermique. Les tours comprennent également des parois (14) et un bassin (15).
[0004] Les tours aéroréfrigérantes comportent en général des éléments en acier galvanisé. Il s’agit en particulier des zones d’échanges de chaleur telles que les faisceaux tubulaires (tour fermée) ou le bassin.
[0005] Comme indiqué plus haut, l’acier galvanisé est un acier recouvert d’une couche de zinc qui protège l’acier de la corrosion notamment de trois manières : 1 ) par la formation d’un écran physique entre l’acier et le milieu extérieur, 2) en ralentissant les phénomènes de corrosion (la cinétique d’oxydation du zinc est beaucoup plus faible que celle de l’acier), et 3) en jouant un rôle sacrificiel en cas de discontinuité (griffure par exemple) de la couche de zinc (effet de pile entre l’acier et le zinc du fait du potentiel de dissolution plus faible du zinc par rapport à celui du fer). Toutefois, la protection offerte par la couche de galvanisation n’est pleinement efficace qu’une fois le zinc recouvert d’une couche de passivation.
[0006] Ainsi, les éléments en acier galvanisé des tours aéroréfrigérantes, notamment les échangeurs de chaleur tels les faisceaux tubulaires (tours fermées) ou le bassin (tours ouvertes) sont vulnérables à la corrosion en présence d’eau lors de la première mise en service desdites tours. En effet, la couche de zinc, qui n’est pas encore passivée, peut alors subir une corrosion, entraînant une diminution de la durée de vie de la tour. Cette corrosion est
[0007] en général rapide et localisée, et se manifeste par la formation de cristaux blancs ou gris d’hydroxyde, d’oxydes et/ou de carbonates de zinc, généralement regroupés sous le nom générique de « rouille blanche » ou « corrosion blanche ».
[0008] La rouille blanche apparaît généralement sur une tour neuve lors de sa mise en service, et est accélérée par la soumission à une charge thermique. Autrement dit, les premières semaines d’exposition de l’acier galvanisé à l’eau sont cruciales et doivent être surveillées avec précaution afin d’éviter et/ou prévenir la formation de rouille blanche.
[0009] Comme indiqué plus haut, le zinc est lui-même stabilisé par la formation d’une couche de passivation amorphe et non évolutive qui se forme à sa surface, composée notamment d’hydroxyde, d’oxydes, de carbonates de zinc et/ou d’espèces mixtes. Le processus de formation d’une telle couche de passivation est complexe, et nécessite un suivi précis de certains paramètres physico-chimiques, en particulier le pH.
[0010] Une solution pour former la couche de passivation est la passivation dite naturelle. Elle consiste à faire circuler de l’eau sans charge thermique dans l’installation tout en respectant certains paramètres physico-chimiques. La durée du processus, d’environ deux mois, n’est cependant pas compatible avec les contraintes d’exploitation : l’industriel est, la plupart du temps, contraint de démarrer sa tour aéroréfrigérante immédiatement sous charge thermique. [001 1] Or, le pH de l’eau contenue dans une tour aéroréfrigérante n’est pas constant lorsque la tour est en fonctionnement du fait du dégazage du C02 (autrement dit, du fait du phénomène de « stripping » du C02).
[0012] On notera qu’il est connu de l’art antérieur que les acides minéraux forts, tels que l’acide sulfurique, nitrique ou chlorhydrique, ont tendance à favoriser la corrosion plutôt que la passivation. L’art antérieur décrit néanmoins plusieurs méthodes de passivation d’acier galvanisé pour tour aéroréfrigérante, comprenant l’ajout d’acide dans l’eau à réfrigérer.
[0013] On connaît aussi des procédés comprenant l’ajout d’inhibiteurs de corrosion à base de chromâtes, tels que décrits notamment dans le brevet américain US 3,352,793. Toutefois, du fait de leur toxicité, les chromâtes ne sont plus employés aujourd’hui.
[0014] La solution de l’art antérieur généralement mise en œuvre aujourd’hui est l’utilisation de produits organophosphorés, tel que décrit par exemple dans le brevet américain US 6,468,470 ou WO2017/180328. En pratique, l’efficacité de ce type de procédé est remise en cause, car la passivation obtenue reste encore insuffisante et les vitesses de corrosion excessives.
[0015] Par ailleurs, la demande de brevet WO2016/003483 divulgue une méthode de traitement de systèmes aqueux, destinés notamment à limiter la corrosion desdits systèmes, comprenant l’utilisation d’acides hydroxycarboxyliques ou de leurs sels, comme alternatives à l’utilisation de dérivés phosphorés. Selon une variante, les compositions aqueuses utilisées peuvent comprendre de l’acide para-toluènesulfonique (p-TSA), mais celui-ci est utilisé comme « étiquette chimique », plus spécifiquement comme fluorophore (voir D1 , page 7, paragraphes [0029]-[0030]), et non comme agent anti-corrosion, visant spécifiquement à éviter la formation de rouille blanche.
[0016] Le brevet US 5,866,042 divulgue des méthodes et compositions pour inhiber la corrosion de métaux à base de fer en contact avec des systèmes aqueux, utilisant un copolymère d’acide (meth)acrylique et de 2- acétoacétoxyéthylméthacrylate, qui n’entre pas dans la définition de la formule (I) de la présente invention.
[0017] La demande de brevet CN101736337 divulgue une méthode visant à passiver de l’acier galvanisé sans recourir à des chromâtes. Néanmoins, la méthode de CN101736337 est un traitement de type « electroplating ». Ce procédé est donc fondamentalement différent des méthodes et utilisations de la présente invention, puisqu’il s’agit de traiter l’acier avant fabrication des dispositifs métalliques destinés à contenir de l’eau, et non au cours de leur mise en service. En tout état de cause, l’unique composition comprenant un acide sulfonique est décrite dans l’exemple 13, et on note que le pH du bain de passivation est ajusté à une valeur de 6.
[0018] Enfin, la demande de brevet US 2016/0017200 divulgue des fluides de transferts de chaleur comprenant des carboxylates. Il ne divulgue pas de compositions ou méthodes pour prévenir et/ou empêcher l’apparition de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc
[0019] Il existe donc un besoin pour des procédés permettant de prévenir et/ou de lutter contre la dégradation de la couche de zinc lors des premières semaines de fonctionnement de la tour aéroréfrigérante, notamment sous charge thermique, qui soient faciles à mettre en oeuvre industriellement, économiquement viables, relativement rapides, non nocifs pour l’environnement, et qui ne favorisent pas la prolifération des bactéries.
EXPOSE DE L’INVENTION
[0020] L’invention vise à pallier tout ou partie des problèmes cités plus haut en proposant une solution pour lutter contre la dégradation de la couche de zinc lors des premières semaines de fonctionnement de la tour aéroréfrigérante. La solution consiste en la mise en oeuvre d’ un conditionnement de l’eau apte à prévenir et/ou inhiber la corrosion du zinc et apte à former une couche protectrice, dite de passivation, sur la surface recouverte de zinc de la tour aéroréfrigérante, et ceci en particulier pendant son fonctionnement normal, notamment sous charge thermique.
[0021] Au sens de la présente invention, une « surface en acier galvanisé » est entendue comme une surface en acier recouverte, au moins partiellement, d’une fine couche de zinc, généralement appliquée par procédé électrochimique. Selon un mode de réalisation, l’acier est entièrement recouvert d’une fine couche de zinc. L’épaisseur de la couche de zinc est variable en fonction des utilisations visées. Elle est généralement comprise entre 5 et 500 pm, notamment entre 50 et 300 pm. En général, elle est de 80 pm.
La surface en acier galvanisé se situe typiquement dans les zones d’échanges de chaleur (partie haute de la tour). Il s’agit notamment des échangeurs de chaleurs, tels que des faisceaux tubulaires (tours fermées). Les tours aéroréfrigérantes peuvent comprendre d’autres parties avec des surfaces en acier galvanisé, telles que les parois et/ou le bassin (partie basse de la tour).
[0022] Au sens de la présente invention, une « charge thermique » signifie qu’un fluide chaud est mis en circulation dans la tour et provoque un différentiel de température dans la zone d’échange de chaleur, notamment dans les échangeurs de chaleur tels que les faisceaux tubulaires (tour fermée), et conduit à provoquer l’évaporation d’eau. Il existe ainsi un différentiel de température entre l’eau pulvérisée dans la partie haute de la tour (partie chaude) et l’eau contenue dans le bassin (partie froide). Ce différentiel de température est en général compris entre 5°C et 20°C, notamment 8°C et 15°C, typiquement il est de 10°C.
[0023] A cet effet, l’invention a pour objet un procédé pour prévenir et/ou empêcher l’apparition de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc, comprenant a) la mise en contact de ladite surface avec une composition aqueuse dont le pH est compris entre 6,5 et 8,5 comprenant au moins un acide organique de formule (I) :
R-X-OH (I)
dans laquelle X représente C(O) ou S(0)2, de préférence X représente S(0)2, et R représente une chaîne organique, notamment:
o un alkyle en CrCi2 linéaire ou ramifié, optionnellement substitué par un ou plusieurs (notamment de 1 à 3) groupes choisis parmi un halogène, OH,
COOH, un groupe aryle ou hétéroaryle, ledit groupe aryle ou hétéroaryle étant lui-même optionnellement substitué par un groupe halogène, OH, un alkyle en CrC4 linéaire ou ramifié, ou un groupe COOH ; ou
o un groupe aryle ou hétéroaryle, optionnellement substitué par un groupe halogène, OH, alkyle en CrC4 linéaire ou ramifié ou COOH ;
étant entendu que, lorsque X représente CO, l’alkyle en CrC12 ne comprend pas plus de 2 groupes COOH et de préférence l’alkyle en CrC12 ne comporte pas plus d’un substituant COOH.
Ce procédé a pour effet de mettre la surface en acier galvanisé en contact avec de l’eau à un pH compris entre 6,5 et 8,5 afin de former la couche protectrice dite de passivation à la surface du zinc.
[0024] Au sens de la présente invention, un « alkyle en Ci-Ci2 » s’entend d’une chaîne hydrocarbonée monovalente saturée, linéaire ou ramifiée, comportant 1 à 12, de préférence 1 à 6, notamment de 1 à 4 atomes de carbone. A titre d’exemple, on peut citer les groupes méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec- butyle, tert-butyle, pentyle ou encore hexyle. De préférence, il s’agit des groupes méthyle et éthyle.
[0025] Par « aryle ». on entend, au sens de la présente invention, un groupement hydrocarboné monocyclique ou bicyclique aromatique, comportant de préférence de 6 à 10 atomes de carbone, et comprenant un ou plusieurs cycles accolés, comme par exemple un groupement phényle ou naphtyle. Avantageusement, il s’agit du phényle.
[0026] Par « hétéroaryle », on entend, au sens de la présente invention, un groupe aromatique monocyclique ou bicyclique comprenant 5 à 10 atomes cycliques dont un ou plusieurs hétéroatomes, avantageusement 1 à 4 et encore plus avantageusement 1 ou 2, choisis parmi les atomes de soufre, azote et oxygène, les autres atomes cycliques étant des atomes de carbone. Des exemples de groupes hétéroaryle sont les groupes furyle, thiényle, pyrrolyle, pyridinyle, pyrimidinyle, pyrazolyle, imidazolyle, triazolyle, tétrazolyle, indyle, quinoline ou isoquinoline.
[0027] Par « atome d’halogène », on entend, au sens de la présente invention, les atomes de fluor, de chlore, de brome et d’iode, de préférence l’atome de fluor.
[0028] Typiquement, dans le procédé de l’invention, la surface en acier recouverte au moins partiellement de zinc est soumise à une charge thermique (ou élévation de température), notamment lors de l’étape a). Cette élévation de température résulte de la mise en contact de ladite surface avec un fluide chaud ou fluide à refroidir, ledit fluide chaud étant généralement à une température comprise entre 40 et 100°C, notamment entre 50 et 90°C.
[0029] Typiquement, dans une tour fermée, le fluide chaud est un fluide frigorigène tel que l’ammoniac, qui est généralement à une température d’environ 80°C, notamment entre 75°C et 85°C. Dans une tour ouverte, le fluide chaud est typiquement de l’eau industrielle à une température généralement comprise entre 35°C et 50°C.
[0030] Sous charge thermique la composition présente une température comprise entre 15°C et 40°C, notamment entre 25°C et 35°C, en fonction de la saison et du point de mesure dans la tour, l’eau étant plus chaude en partie haute de la tour, notamment dans l’échangeur de chaleur qu’en partie basse de la tour, et notamment dans le bassin. [0031] Avantageusement, R représente alkyle en CrC6 linéaire ou ramifié, de préférence linéaire, optionnellement substitué par un ou plusieurs groupes (notamment de 1 à 3 groupes) choisis parmi un halogène, OH, COOH, un groupe aryle, ledit groupe aryle étant lui-même optionnellement substitué par un groupe halogène, OH, ou COOH, étant entendu que l’alkyle en CrC12 ne comprend pas plus de 2 groupes COOH lorsque X représente CO. De préférence, R représente alkyle en CrC6 linéaire ou ramifié, de préférence linéaire, optionnellement substitué par un ou deux groupes choisis parmi un halogène, OH, COOH, un groupe phényle, ledit groupe phényle étant lui-même optionnellement substitué par un groupe halogène, OH, ou COOH.
De préférence, R représente alkyle en CrC6 linéaire ou ramifié, de préférence linéaire, optionnellement substitué par un ou deux groupes choisis parmi un atome de fluor, OH ou COOH. De manière préférée entre toutes, R représente alkyle en CrC6 linéaire ou ramifié non substitué, et notamment R est CH3.
[0032] Selon un premier mode de réalisation, X représente S02. Ce mode de réalisation est avantageux car les acides sulfoniques ont un pKa plus faible que les acides carboxyliques correspondants, ce qui permet, pour obtenir un pH de la composition identique, d’ajouter une quantité moindre d’acide. Dans ce mode de réalisation, R peut représenter un groupement tolyl (l’acide de formule (I) est alors avantageusement de l’acide para-toluenesulfonique), un méthyle ou un trifluorométhyle. Avantageusement, dans ce mode de réalisation, R est CH3, c’est-à- dire que l’acide de formule (I) est l’acide méthanesulfonique. L’acide méthanesulfonique est particulièrement avantageux car il se dissocie presque intégralement dans l’eau. Il en résulte une facilité de régulation du pH par des ajouts modérés de cet acide.
[0033] Selon un autre mode de réalisation de l’invention, X représente CO. Dans ce mode de réalisation, l’acide de formule (I) est un acide carboxylique, tel que l’acide acétique. On notera que l’acide citrique est exclu du champ de l’invention, car bien qu’étant efficace pour favoriser la couche de passivation et donc permettre de prévenir la formation de rouille blanche, il a été montré que l’acide citrique favorise la prolifération bactérienne.
[0034] Au sens de la présente invention, une « composition aqueuse » est composée majoritairement ou essentiellement constituée d’eau, et peut contenir un ou plusieurs additifs. En particulier, la composition aqueuse comprend au moins 95% en poids d’eau, notamment au moins 99 % en poids d’eau par rapport au poids total de la composition.
[0035] La composition aqueuse de l’invention peut en particulier être de l’eau à usage industriel, dont le pH est ajusté à une valeur comprise entre 6,5 et 8,5 par ajout d’acide organique de formule (I) telle que définie ci-avant ou ci-après, et à laquelle sont optionnellement ajoutés un ou plusieurs additifs. Il peut s’agir d’eau industrielle, mais également d’eau de ville (éventuellement adoucie et/ou prétraitée), d’eau de forage et/ou d’eau de surface (notamment eau de lac, eau de pluie).
[0036] Selon un mode de réalisation particulier, la composition aqueuse de l’invention est dépourvue de chromâtes.
[0037] Selon un mode de réalisation particulier, la composition aqueuse de l’invention est dépourvue de tannins. Un « tannin » s’entend d’un composé polyphénolique comprenant plusieurs groupes phénoliques (i.e. groupes phényls substitués par au moins un groupe OH). Un exemple de tannin est l’acide tannique (numéro CAS 1401 -55-4 ou 18483-17-5).
[0038] Selon un mode de réalisation particulier, la composition aqueuse est dépourvue de tensioactif, notamment la composition aqueuse est dépourvue de tensioactif amphotère.
[0039] Selon un mode de réalisation particulier, la composition aqueuse de l’invention comprend en outre un inhibiteur d’entartrage et/ou un inhibiteur de corrosion et/ou un biocide.
[0040] L’inhibiteur d’entartrage permet d’empêcher ou limiter la formation de tartre. Il agit par dispersion ou distorsion cristalline. Il s’agir par exemple d’un polymère acrylique, qui agit par dispersion ou d’un phosphonate, qui agit par distorsion cristalline.
[0041] L’inhibiteur de corrosion est notamment destiné à prévenir et/ou limiter la corrosion des parties métalliques de la tour aéroréfrigérante qui ne comprennent pas de couche de zinc. Il permet d’agir additionnellement de façon préventive contre la corrosion. L’inhibiteur de corrosion est de préférence un inhibiteur de corrosion phosphoré tel qu’un orthophosphate.
[0042] L’agent biocide permet d’empêcher ou limiter la prolifération de bactéries. Il est choisi parmi les agents biocides oxydants, tels que l’hypochorite de sodium et le bioxyde de chlore, et les agents biocides non oxydants tels que les isothiazolinones.
[0043] Le procédé selon l’invention peut également comprendre une seule ou plusieurs en combinaison parmi les étapes suivantes :
- Ajout dans la composition aqueuse d’un inhibiteur de corrosion,
- Ajout dans la composition aqueuse d’un inhibiteur d’entartrage,
- Ajout dans la composition aqueuse d’un biocide.
L’inhibiteur de corrosion, l’inhibiteur d’entartrage et le biocide sont avantageusement tels que définis ci-dessus.
[0044] Dans un mode de réalisation avantageux, la composition comprend en outre un composé phosphoré. Le composé phosphoré, peut également présenter d’autres propriétés, telles que des propriétés anticorrosion ou des propriétés d’inhibition de l’entartrage ou des propriétés d’agent phosphatant, et être déjà connu pour le conditionnement des tours aéroréfrigérantes. De tels composés phosphorés, en combinaison avec l’acide de de formule (I), permet d’obtenir un effet synergique. Sans vouloir être lié par la théorie, il apparaît que de tels composés phosphorés permettent d’améliorer et/ou d’accélérer la formation de la couche de passivation.
De préférence, ledit composé phosphoré est un agent phosphatant. Par exemple, il peut s’agir de l’hexamétaphosphate, notamment commercialisé par SUEZ sous le nom AQUALEAD® PO 8005. La composition présente avantageusement une teneur en polyphosphate comprise entre 5 g/m3 et 100 g/m3, de préférence comprise entre 5 g/m3 et 50 g/m3, typiquement de 20 g/m3.
[0045] Selon un mode de réalisation particulier, la composition aqueuse est constituée d’eau, notamment d’eau à usage industriel, et d’acide de formule (I) telle que définie ci-avant et ci-après, et éventuellement d’un additif parmi un inhibiteur d’entartrage, un inhibiteur de corrosion, un biocide et leurs mélanges, ladite composition aqueuse présentant un pH compris entre 6,5 et 8,5.
[0046] De préférence, le pH de la composition aqueuse est compris entre 6,5 inclus et 8,5 exclu. Avantageusement, le pH de la composition aqueuse est compris entre 7,0 et 8,0, préférentiellement entre 7,5 et 8,0, de manière préférée entre toutes entre 7,8 et 8,0.
[0047] La composition aqueuse est également caractérisée par son titre hydrotimétrique et son titre alcalimétrique complet. [0048] Le « titre hvdrotimétriaue » (TH) ou « dureté de l’eau », est un paramètre bien connu de l’homme du métier. Il correspond à la concentration en ions calcium et magnésium et s’exprime souvent en degrés français (symbole °f ou °fH). Les méthodes de mesure du TH sont bien connues de l’homme du métier. Généralement, on distingue la dureté permanente et la dureté temporaire, la somme des deux étant la dureté totale. La dureté se détermine par un dosage complexométrique par l’EDTA.
[0049] Le « titre alcalimétrique complet » (TAC) est la grandeur utilisée pour mesurer le taux d’hydroxydes, de carbonates et de bicarbonates d’une eau. L’unité du TAC est le degré français (°f ou °fH).
Les méthodes de mesure du TAC sont bien connues de l’homme du métier. Par exemple, on peut titrer l’eau à analyser avec un acide en présence de deux indicateurs colorés, l’un à 8,2 (phénolphtaléine ou bleu de Thymol) et l’autre à 4,4 (hélianthine). Un tel dosage permet de doser la totalité des ions hydroxydes, carbonates et bicarbonates présents initialement.
[0050] Avantageusement, dans le procédé de l’invention, la composition présente un TH compris entre 8°f et 30°f, et un TAC supérieur ou égal à 8°f.
[0051] La composition est également caractérisée par sa conductivité, qui est de préférence inférieure ou égale à 2400 pS/crn, de manière encore préférée inférieure ou égale à 2000 pS/crn.
[0052] La quantité d’acide à additionner dépend de la quantité du TAC (titre alcalimétrique complet) à neutraliser sachant que les eaux d’appoint des tours aéroréfrigérantes présentent des qualités variables. Dans l’exemple d’un acide sulfonique, notamment l’acide méthanesulfonique, la plage de pH requise pour un TAC de 10 °f est obtenue avec un dosage pratique de l’acide généralement situé entre 160 mg/L et 1200 mg/L du volume total du circuit.
[0053] Selon un mode de réalisation particulièrement avantageux, la composition présente un TH compris entre 8°f et 30°f, et un TAC supérieur ou égal à 8°f et une conductivité inférieure ou égale à 2400 pS/cm. De préférence, ces paramètres sont mesurés en continu et ajustés pour être maintenu dans les plages de valeurs cibles selon des méthodes bien connues pour l’homme du métier.
[0054] Lorsque la surface en acier galvanisé est une tour aéroréfrigérante, ou une partie d’une telle tour, alors l’étape a) peut être effectuée selon plusieurs modes de réalisation. Selon le premier mode de réalisation, l’étape a) comprend : a1 ) la mise en contact de ladite surface avec de l’eau, et a2) ajout d’au moins un acide organique de formule (I) telle que définie ci- avant ou ci-après, de manière que l’eau présente un pH compris entre 6,5 et
8,5.
Selon ce premier mode de réalisation, ladite surface en acier recouverte au moins partiellement de zinc est dans un premier temps mise en contact avec de l’eau dont le pH n’est pas maîtrisé, puis le pH de l’eau est ajusté par ajout d’un acide de formule (I) de manière à être compris entre 6,5 et 8,5.
Alternativement, ladite surface en acier recouverte au moins partiellement de zinc est mise directement en contact avec la composition aqueuse ayant un pH compris entre 6,5 et 8,5. Le pH de la composition aqueuse au contact avec la surface en acier est ainsi maîtrisé dès le départ.
[0055] Avantageusement, le procédé selon l’invention comprend en outre les étapes successives suivantes :
b) mesure du pH de ladite composition mise au contact de la surface, et c) en fonction du résultat de la mesure obtenue à l’étape b) ajustement du pH de ladite composition mise au contact de la surface à une valeur comprise entre 6,5 et 8,5, notamment par ajout d’acide de formule (I) telle que définie ci-dessus ou ci- dessous.
Du fait du phénomène de stripping du C02 (« C02 stripping »), le pH a naturellement tendance à augmenter. Ainsi, l’ajustement du pH est généralement effectué par ajout d’acide de formule (I) telle que définie ci-avant ou ci-après. Ainsi, sauf accident d’exploitation, on rencontre généralement deux cas :
- soit le pH mesuré à l’étape b) est égal à la valeur cible ou bien compris dans la plage cible, alors l’étape d’ajustement c) n’est pas nécessaire ;
- soit le pH mesuré à l’étape b) est supérieur à la valeur cible ou à la borne supérieure de la plage cible de pH ; dans ce cas on ajoute la quantité suffisante d’acide de formule (I) pour obtenir la valeur de pH cible ou revenir dans la plage de pH ciblée (c’est-à-dire entre 6,5 et
8,5).
Selon un mode de réalisation particulier, la quantité d’acide de formule (I) ajoutée pour l’ajustement de l’étape c) est asservie à la mesure de l’étape b) via un automate. [0056] Selon un mode de réalisation particulier, la succession d’étapes b) et c) est répétée à intervalles de temps prédéterminés jusqu’à passivation complète de la couche de zinc. En particulier, les étapes b) et c) peuvent être répétées à intervalle de temps réguliers, par exemple toutes les semaines, ou tous les 3 jours, ou tous les jours, jusqu’à passivation complète de la couche de zinc (notamment pendant 5 à 8 semaines).
[0057] Selon un mode de réalisation préféré, les étapes b) et c) sont mises en oeuvre d’une manière continue.
[0058] De préférence, le pH de la composition aqueuse est ajusté lors de l’étape c) à une valeur comprise entre 6,5 inclus et 8,5 exclu. Avantageusement, le pH de la composition aqueuse est ajusté lors de l’étape c) à une valeur comprise dans la plage 7,0 - 8,0, préférentiellement la plage 7,5 - 8,0, de manière préférée entre toutes la plage 7,8 - 8,0.
[0059] Le procédé comprenant les étapes successives a), b) et c) est de préférence effectué de manière à maintenir le pH de la composition aqueuse à une valeur comprise dans la plage de pH ciblée (c’est-à-dire entre 6,5 et 8,5) jusqu’à passivation complète de la couche de zinc. En général, le procédé de l’invention est mis en oeuvre pendant une durée d’environ 2 mois, notamment entre 3 semaines et 2 mois, par exemple entre 4 et 6 semaines.
[0060] L’acier galvanisé brut présente un aspect brillant. L’acier galvanisé passivé est terne, à cause de la couche de passivation. On suit la formation de la couche de passivation par :
• des observations régulières de la surface des faisceaux en acier galvanisé (photos avant, pendant et à la fin de la passivation chimique),
· la pose de coupons de corrosion en acier galvanisé (sur lyre, en immersion dans bassin ou en surface des tubes),
• la mesure par permascope de l’épaisseur de zinc sur les faisceaux tubulaires .
[0061] On considère la passivation terminée lorsque l’aspect de l’acier galvanisé est devenu terne et gris sur toute la surface exposée.
[0062] Une fois que la passivation complète de la couche de zinc est obtenue, on peut arrêter la mise en oeuvre du procédé. La couche en acier galvanisé passivée peut alors être mise en contact directement avec une composition dépourvue d’acide de formule (I), répondant avantageusement aux spécifications du constructeur de la tour, notamment en termes de TH, de TAC, de pH et de conductivité.
[0063] L’invention concerne aussi l’utilisation d’un acide organique de formule (I) telle que définie ci-avant (aussi bien dans sa définition générale que dans ses modes de réalisation préférés, avantageux ou particuliers), pour empêcher l’apparition de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc mise en contact avec de l’eau pour obtenir une solution ayant un pH à une valeur souhaitée située entre 6,5 et 8,5. L’utilisation d’un tel acide organique de formule (I) avec de l’eau permet la formation de la couche de passivation sur la surface et donc empêche la formation de la rouille blanche. De préférence, l’acide organique de formule (I) est l’acide méthanesulfonique.
[0064] L’invention concerne aussi une composition aqueuse comprenant un acide organique de formule (I) telle que définie ci-avant (aussi bien dans sa définition générale que dans ses modes de réalisation préférés, avantageux ou particuliers), la composition présentant un pH situé entre 6,5 et 8,5 (notamment entre 6,5 inclus et 8,5 exclu), préférentiellement entre 7 et 8, préférentiellement entre 7,5 et 8, préférentiellement entre 7,8 et 8. La composition de l’invention est utile pour prévenir et/ou empêcher l’apparition de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc.
[0065] De préférence, l’acide organique de formule (I) est l’acide méthanesulfonique.
[0066] Selon un mode de réalisation avantageux, la composition aqueuse de l’invention comprend en outre un inhibiteur d’entartrage et/ou un inhibiteur de corrosion et/ou un biocide, qui peuvent être tels que décrit ci-avant.
[0067] Avantageusement, la composition aqueuse est dépourvue d’acide minéral fort, tel que l’acide sulfurique ou l’acide nitrique ou l’acide chlorhydrique. Ainsi, de préférence, la composition de l’invention est dépourvue notamment d’acide sulfurique, d’acide nitrique et d’acide chlorhydrique.
[0068] Selon un mode de réalisation particulier, la composition aqueuse de l’invention est dépourvue de chromâtes.
[0069] Selon un mode de réalisation particulier, la composition aqueuse de l’invention est dépourvue de tannins. [0070] Selon un mode de réalisation particulier, la composition aqueuse est dépourvue de tensioactif, notamment la composition aqueuse est dépourvue de tensioactif amphotère.
[0071] Selon un mode de réalisation particulier, la composition aqueuse est constituée d’eau, notamment d’eau à usage industriel, d’acide de formule (I) telle que définie ci-avant et ci-après, et éventuellement d’un additif parmi un inhibiteur d’entartrage (par exemple un polymère, un phosphonate), un inhibiteur de corrosion, un biocide (tel qu’un agent biocide oxydant, notamment choisi parmi l’hypochorite de sodium et le bioxyde de chlore, ou un agent biocide non oxydant tel que les isothiazolinones), et leurs mélanges, ladite composition aqueuse présentant un pH compris entre 6,5 et 8,5.
[0072] En particulier, la composition aqueuse comprend au moins 95% en poids d’eau, notamment au moins 99% en poids d’eau par rapport au poids total de la composition.
[0073] L’eau peut en particulier être de l’eau à usage industriel. Il peut s’agir d’eau industrielle, d’eau de ville (éventuellement adoucie et/ou prétraitée), d’eau de forage et/ou d’eau de surface (notamment eau de lac, eau de pluie).
[0074] Avantageusement, dans le procédé de l’invention, la composition présente un TH compris entre 8°f et 30°f, et un TAC supérieur ou égal à 8°f.
[0075] La composition est également caractérisée par sa conductivité, qui est de préférence inférieure ou égale à 2400 pS/cm, de manière encore préférée inférieure ou égale à 2000 pS/cm.
[0076] Selon un mode de réalisation avantageux, la composition comprend en outre un composé phosphoré. De préférence, ledit composé phosphoré est un agent phosphatant. Par exemple, il peut s’agir de l’hexamétaphosphate, notamment commercialisé par SUEZ sous le nom AQUALEAD®PO 8005. La composition présente avantageusement une teneur en polyphosphate comprise entre 5 g/m3 et 100 g/m3, de préférence comprise entre 5 g/m3 et 50 g/m3, typiquement de 20 g/m3. [0077] L’invention concerne aussi une tour aéroréfrigérante comprenant une surface en acier recouverte au moins partiellement de zinc (donc sujette à l’apparition de rouille blanche en présence d’eau), la surface étant traitée par le procédé précédemment cité. L’effet technique qui en résulte est la formation de la couche de passivation dans un délai réduit à quelques semaines. L’avantage qui en découle est d’empêcher la formation de rouille blanche tout en permettant une mise en fonctionnement rapide de la tour sous charge thermique.
[0078] Avantageusement, le procédé de l’invention permet l’obtention de la formation de la couche de passivation dès la mise en service de la tour aéroréfrigérante, sous charge thermique.
BREVE DESCRIPTION DES FIGURES
[0079] L’invention sera mieux comprise et d’autres avantages apparaîtront à la lecture de la description détaillée d’un mode de réalisation donné à titre d’exemple, description illustrée par le dessin joint dans lequel :
- la figure 1 représente schématiquement une tour aéroréfrigérante de type fermé selon l’art antérieur,
- la figure 2 représente schématiquement une tour aéroréfrigérante de type ouvert selon l’art antérieur,
la figure 3 représente schématiquement une tour aéroréfrigérante traitée par le procédé selon l’invention.
[0080] Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures. DESCRIPTION DETAILLEE D’UN MODE DE REALISATION
[0081] La figure 1 représente schématiquement une tour aéroréfrigérante de type fermé selon l’art antérieur, la figure 2 représente schématiquement une tour aéroréfrigérante de type ouvert selon l’art antérieur et ont toutes deux été présentées en introduction.
[0082] Dans un mode de réalisation avantageux, le procédé selon l’invention comprend une étape de mise en contact de ladite surface avec une composition aqueuse dont le pH est compris entre 6,5 et 8,5 comprenant de l’acide méthanesulfonique.
Dans ce mode de réalisation, le procédé comprend une étape b) de mesure du pH de ladite composition au contact de la surface, et une étape c) d’ajustement du pH de ladite composition au contact de la surface à la valeur souhaitée ou à une valeur comprise dans la plage de pH cible (au moins entre 6,5 et 8,5) en fonction du résultat de la mesure obtenue à l’étape b), notamment par ajout d’acide méthanesulfonique, le pH ayant tendance à augmenter naturellement du fait du phénomène de stripping du C02. Ces étapes sont de préférence effectuées d’une manière continue. Les étapes de mesure et d’ajustement permettent une bonne régulation du pH pour que la composition ait un pH égal ou sensiblement égal à la (ou les) valeur(s) souhaitée(s), ou se situe dans une plage cible. Grâce à ces étapes, les conditions requises en termes de pH pour la formation de la couche de passivation sont assurées. Un dispositif de régulation du pH permet également d’éviter toute surconsommation d’acide.
[0083] Du fait du pKa relativement faible de l’acide méthanesulfonique (pKa = - 1.9), la régulation de pH peut être effectuée par des ajouts modérés de cet acide, sans apport supplémentaire de sels d’acides forts, préjudiciables.
[0084] Le risque que le pH diminue trop fortement après l’ajout d’acide est écarté par le fait que l’acide est ajouté progressivement sous forme diluée dans de l’eau, l’ajustement étant contrôlé par un régulateur.
[0085] Une fois la couche de passivation formée, le zinc est protégé. L’ajustement d’acide organique de formule (I) telle que définie ci-avant n’est plus nécessaire. Un traitement anticorrosion préventif, ne comprenant pas l’ajout d’acide de formule (I), est alors de préférence appliqué, en conformité en particulier avec les spécifications des fabricants de tours aéroréfrigérantes.
[0086] Dans ce mode de réalisation, de préférence la composition comprend en outre de l’hexamétaphosphate, notamment commercialisé par SUEZ sous le nom AQUALEAD®8005. La composition présente avantageusement une teneur en polyphosphate comprise entre 5 g/m3 et 50 g/m3, de préférence comprise entre 5 g/m3 et 100 g/m3, typiquement de 20 g/m3. La composition peut également comprendre un additif anti-tartre et/ou un biocide.
[0087] Dans ce mode de réalisation, la composition présente un TH compris entre
8°f et 30°f, et un TAC supérieur ou égal à 8°f et une conductivité inférieure ou égale à 2400 ou à 2000 pS/cm. De préférence, ces paramètres sont mesurés en continu et ajustés pour être maintenu dans les plages de valeurs cibles.
[0088] La figure 3 représente schématiquement une tour aéroréfrigérante 130 traitée par le procédé selon l’invention. La tour aéroréfrigérante 130 comprend au moins une surface 131 en acier recouverte, au moins partiellement, de zinc. Sont représentées l’aspiration d’air (f), la sortie d’air (a), l’arrivée de fluide chaud (b) et le départ de fluide refroidi (c), ainsi que la pompe de recirculation (d) et le pare- gouttelette (e). Traitée par le procédé selon l’invention tel que décrit précédemment, la surface 131 présente une couche protectrice dit de passivation.
EXEMPLES
[0089] Des essais ont été menés sur une tour aéroréfrigérante pilote sur une période de fonctionnement minimum de quatre semaines. Les conditions des essais sont résumées dans le tableau ci-dessous :
Figure imgf000019_0001
Figure imgf000020_0001
[0090] Le TH est maintenu à une valeur comprise entre 8°f et 30°f, le TAC est maintenu à une valeur supérieure ou égale à 8°f et la conductivité est maintenue à une valeur inférieure ou égale à 2400 pS/cm. Les essais ont été conduits avec différents acides.
[0091] Exemple Comparatif 1 : Tout d’abord, les essais ont été conduits avec l’acide citrique. La qualité du film formé dans ces conditions est médiocre : un début de corrosion généralisée de la couche de zinc (couche galvanisée) a eu lieu mais (stade précoce), avec une perte d’épaisseur de la couche galvanisée d’environ 30 pm. Le tube en acier sous-jacent est intact et ne présente aucun dommage significatif, mais la couche de passivation ainsi obtenue ne permet pas de prévenir la corrosion. En outre, le comptage bactérien est en dérive. L’acide citrique ne permet donc pas de résoudre le problème de l’invention.
[0092] Exemple Comparatif 2: Un autre essai a été conduit avec l’acide nitrique HN03. En fin de période de test, l’épaisseur de la couche de zinc (couche galvanisée) a été consommée partiellement et un début de corrosion de l’acier du tube-test a été observé. Ceci confirme qu’un acide inorganique (minéral) fort tel que l’acide nitrique ne permet pas de former la couche protectrice de passivation, mais au contraire entraîne la corrosion de l’acier galvanisé.
[0093] Exemples selon l’invention: Plusieurs essais ont été conduits avec l’acide méthanesulfonique (de formule RXOH où X est S02 et R est CH3) une valeur de pH cible de 7,5 (exemple 1) et de 7,8 (exemple 2). Ces essais ont montré la formation partielle de la couche de passivation stable après deux semaines de test, associée à une perte d’épaisseur de la couche galvanisée d’environ 30 pm. Contrairement à l’exemple comparatif 1 , la perte d’épaisseur de la couche de zinc est stabilisée à ce stade, du fait de la bonne qualité de la couche de passivation formée. Le tube en acier sous-jacent ne présente aucun dommage significatif. La prolifération bactérienne reste maîtrisée. La couche de passivation apparaît uniforme après deux mois de test. Les analyses réalisées sur le film par analyse spectroscopique infrarouge (IR) révèlent la présence de formes d’oxydes de zinc stables.
[0094] Un essai complémentaire réalisé avec une valeur de pH cible de 8,0 (exemple 3) donne des résultats similaires. Une telle valeur de pH cible permet en outre de modérer la consommation d’acide méthanesulfonique lors de la mise en oeuvre du procédé.
[0095] Un autre essai a été réalisé en l’absence d’additif phosphoré (exemple 4). Il est alors constaté que la couche de passivation se forme plus lentement que dans les exemples 1 , 2 et 3.
[0096] Exemple supplémentaire 1 : Réalisation d’une passivation chimique en charge pendant 4 semaines lors du démarrage d’une tour aéroréfriqérante
Baltimore : La tour aéroréfrigérante Baltimore passivée dans cet essai est un condenseur évaporatif (fluide utilisé dans le circuit primaire = NH3), modèle VXC- 221 R série n° H180200201 (Dieue sur Meuse), dont le corps d’échange (faisceaux tubulaires) est en acier galvanisé. La purge est effectuée si un seuil prédéterminé de conductivité (mesuré à l’aide d’une sonde de conductivité) est dépassé.
[0097] Lors de cet essai, l’eau d’appoint utilisée est une eau « re-durcie », de façon à atteindre une valeur supérieure à 8°f en circuit. En outre, le pH est ajusté de manière que l’alcalinité TAC soit supérieure à 8°f en circuit.
[0098] Durant la période de « passivation », qui s’étale sur une période de 4 à 8 semaines après mise en route de la tour, les additifs suivants sont ajoutés à l’eau d’appoint :
> Agent phosphatant : aqualead PO 8005, à une dose de 70 à 100 g/m3 en circuit. Ce produit est injecté par une pompe spécifique, indépendante du dispositif d’ajout de l’acide méthanesulfonique.
> Acide méthanesulfonique : aqualead PA 065 / DPIA16-0003, pendant une période de 4 semaines de façon à maintenir un pH régulé de 7.8 à 8.2 en circuit, le pH cible étant 7.8.
[0099] Durant la période de passivation, les paramètres de l’eau utilisée dans le circuit sont les suivants :
Figure imgf000021_0001
Figure imgf000022_0001
[00100] Le suivi analytique est réalisé chaque semaine afin de s’assurer que les paramètres physicochimiques et microbiologiques soient satisfaisants. Le pH moyen pendant la période est de pH=8.1 (compris entre 7.8 et 8.3) et suivi à distance. Dans le cas du démarrage d’une tour de ce modèle en charge, on constate habituellement une augmentation naturelle du pH jusqu’à 8,3 en circuit. Il est donc nécessaire d’injecter un produit passivant et acide afin de se trouver dans l’intervalle optimum de 7.5<pH<8 pour la passivation de l’acier galvanisé. Par régulation le pH cible est de 7.8. L’aspect et l’épaisseur des faisceaux tubulaires en acier galvanisé sont observés régulièrement en cours de la passivation chimique. Les tubes brillants au départ (J0) deviennent progressivement gris et ternes (J0 + 4 semaines) (observation visuelle). En outre, on constate que l’épaisseur moyenne sur 3 points mesurée par permascope ne diminue pas: à J0, cette épaisseur est de 65 pm, et passe à 68 pm à J0 + 4 semaines.
[00101 ] Conclusion: La passivation a été validée visuellement et corroborée par l’absence d’apparition de rouille blanche. Le dispositif d’ajout d’agent phosphatant et d’acide méthanesulfonique a été retiré, et la tour fonctionne maintenant en routine suivant les préconisations du fournisseur.
[00102] Exemple supplémentaire 2 : Réalisation d’une passivation chimique en charge pendant 4 semaines lors du démarrage d’une tour aéroréfrigérante Baltimore : La tour aéroréfrigérante Baltimore passivée dans cet essai est un condenseur évaporatif (fluide utilisé dans le circuit primaire = NH3 + eau glycolée), modèle CXVE-340 1012 201 série n° H17 07 71701 (Honfleur), dont le corps d’échange (faisceaux tubulaires) est en acier galvanisé. La purge est effectuée si un seuil prédéterminé de conductivité (mesuré à l’aide d’une sonde de conductivité) est dépassé. [00103] Lors de cet essai, l’eau d’appoint utilisée est une eau « re-durcie », de façon à atteindre une valeur supérieure à 8°f en circuit. En outre, le pH est ajusté de manière que l’alcalinité TAC soit supérieure à 8°f en circuit.
[00104] Durant la période de « passivation », qui s’étale sur une période de 4 à 8 semaines après mise en route de la tour, les additifs suivants sont ajoutés à l’eau d’appoint :
> Agent phosphatant : aqualead PO 8005, à une dose de 70 à 100 g/m3 en circuit. Ce produit est injecté par une pompe spécifique, indépendante du dispositif d’ajout de l’acide méthanesulfonique. > Acide méthanesulfonique : aqualead PA 065 / DPIA16-0003, pendant une période de 4 semaines de façon à maintenir un pH régulé de 7.8 à 8.2 en circuit, le pH cible étant 7.8.
Durant la période de passivation, les paramètres de l’eau utilisée dans le circuit sont les suivants :
Figure imgf000023_0001
[00105] Le suivi analytique est réalisé chaque semaine afin de s’assurer que les paramètres physicochimiques et microbiologiques soient satisfaisants. Le pH moyen pendant la période est de pH=8.1 (compris entre 7.8 et 8.3) et suivi à distance. Dans le cas du démarrage d’une tour de ce modèle en charge, on constate habituellement une augmentation naturelle du pH jusqu’à 8,3 en circuit. Il est donc nécessaire d’injecter un produit passivant et acide afin de se trouver dans l’intervalle optimum de 7.5<pH<8 pour la passivation de l’acier galvanisé. Par régulation le pH cible est de 7.8. L’aspect des faisceaux tubulaires en acier galvanisé est observé régulièrement en cours de la passivation chimique. Les tubes brillants au départ (JO) deviennent progressivement gris et ternes (JO + 4 semaines) (observation visuelle).
[00106] Conclusion: La passivation a été validée visuellement et corroborée par l’absence d’apparition de rouille blanche. Le dispositif d’ajout d’agent phosphatant et d’acide méthanesulfonique a été retiré, et la tour fonctionne maintenant en routine suivant les préconisations du fournisseur.
[00107] Le dispositif de régulation de l’ajout d’acide méthanesulfonique en fonction du pH utilisé dans les deux exemples supplémentaires 1 et 2 ci-dessus comprend une sonde de mesure de pH, une pompe doseuse, un bac de dosage et sa rétention. L’eau du circuit est dérivée en un point d’entrée du dispositif de régulation. L’eau du circuit est prélevée au niveau d’un point de prélèvement relié à un détecteur de débit. Une sonde pH mesure le pH de l’eau du circuit prélevée. Une deuxième sonde pH dite de sécurité peut également être présente. En fonction du résultat de la mesure du pH, le pH est ajusté, si besoin, dans une plage de valeurs prédéterminées comme expliqué précédemment, par ajout d’un acide de formule (I), l’acide méthanesulfonique dans les deux exemples supplémentaires 1 et 2, au niveau d’un point d’injection. La pompe doseuse est reliée au point d’injection d’une part et au bac de dosage et sa rétention d’autre part. Un appareillage dédié est connecté entre la sonde pH et la pompe doseuse pour piloter la quantité d’acide à injecter en fonction de la mesure de pH. Enfin, le dispositif comprend un point de sortie en aval du point d’injection et l’eau est redirigée vers le circuit.

Claims

REVENDICATIONS
1. Procédé de prévention de formation de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc, caractérisé en ce qu’il comprend a) la mise en contact de ladite surface avec une composition aqueuse dont le pH est compris entre 6,5 et 8,5 comprenant au moins un acide organique de formule (I) :
R-X-OH (I)
dans laquelle X représente S(0)2, et R représente:
o un alkyle en CrC12 linéaire ou ramifié, optionnellement substitué par un ou plusieurs groupes choisis parmi un halogène, OH, COOH, un groupe aryle ou hétéroaryle, ledit groupe aryle ou hétéroaryle étant lui-même optionnellement substitué par un groupe halogène, OH, un alkyle en CrC4 linéaire ou ramifié, ou un groupe COOH ; ou
o un groupe aryle ou hétéroaryle, optionnellement substitué par un groupe halogène, OH, alkyle en CrC4 linéaire ou ramifié ou COOH.
2. Procédé selon la revendication 1 , caractérisé en ce qu’il comprend en outre les étapes suivantes :
b) mesure du pH de ladite composition mise au contact de la surface, et c) en fonction du résultat de la mesure obtenue à l’étape b), ajustement du pH de ladite composition au contact de la surface à une valeur comprise entre 6,5 et 8,5 par ajout d’acide de formule (I) telle que définie dans la revendication 1 .
3. Procédé selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que le pH de la composition aqueuse est compris entre 7,0 et 8,0, préférentiellement entre 7,5 et 8,0, de manière préférée entre toutes entre 7,8 et 8,0.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que la composition présente un TH compris entre 8°f et 30°f, et un TAC supérieur ou égal à 8°f, et une conductivité inférieure à 2000 pS/cm.
5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la surface en acier recouverte au moins partiellement de zinc est soumise à une élévation de température.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que X est S02.
7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce que R est CH3.
8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce que la composition aqueuse comprend en outre un composé phosphoré, de préférence un agent phosphatant, par exemple l’hexamétaphosphate.
9. Utilisation d’un acide organique de formule (I) telle que définie dans l’une quelconque des revendications 1 , 6 et 7, pour empêcher l’apparition de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc mise en contact avec de l’eau pour obtenir une solution ayant un pH à une valeur souhaitée située entre 6,5 et 8,5.
10. Utilisation d’une composition aqueuse comprenant un acide organique de formule (I) telle que définie dans l’une quelconque des revendications 1 , 6 et 7 pour prévenir et/ou empêcher l’apparition de rouille blanche sur une surface en acier recouverte au moins partiellement de zinc,
ladite composition présentant un pH situé entre 6,5 et 8,5, préférentiellement entre 7 et 8, préférentiellement entre 7,5 et 8, préférentiellement entre 7,8 et 8.
1 1. Utilisation aqueuse selon la revendication 10, caractérisée en ce que l’acide de formule (I) est l’acide méthanesulfonique.
12. Utilisation aqueuse selon la revendication 10 ou 1 1 , caractérisée en ce que la composition aqueuse comprend en outre un composé phosphoré, de préférence un agent phosphatant, par exemple l’hexamétaphosphate.
13. Utilisation aqueuse selon la revendication 10 ou 1 1 , caractérisée en ce que la composition aqueuse est constituée d’eau, d’acide de formule (I) telle que définie dans l’une quelconque des revendications 1 , 5 et 6, et éventuellement d’un additif choisi parmi un inhibiteur d’entartrage ou de corrosion, un biocide et leurs mélanges, ladite composition aqueuse présentant un pH compris entre 6,5 et 8,5.
14. Utilisation aqueuse selon l’une quelconque des revendications 10 à 13, caractérisée en ce que la composition aqueuse comprend au moins 95% en poids d’eau, notamment au moins 99% en poids d’eau, par rapport au poids total de la composition.
15. Utilisation selon l’une quelconque des revendications 10 à 14, caractérisée en ce qu’elle présente un TH compris entre 8°f et 30°f, et un TAC supérieur ou égal à 8°f, et une conductivité inférieure à 2000 pS/cm.
PCT/EP2019/058073 2018-03-29 2019-03-29 Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc WO2019185906A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/040,032 US20210017652A1 (en) 2018-03-29 2019-03-29 Method for preventing the formation of white rust on a zinc-coated steel surface
EP19713071.9A EP3774672A1 (fr) 2018-03-29 2019-03-29 Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc
CA3095231A CA3095231A1 (fr) 2018-03-29 2019-03-29 Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1800261A FR3079528A1 (fr) 2018-03-29 2018-03-29 Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc
FR1800261 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019185906A1 true WO2019185906A1 (fr) 2019-10-03

Family

ID=62749047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/058073 WO2019185906A1 (fr) 2018-03-29 2019-03-29 Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc

Country Status (5)

Country Link
US (1) US20210017652A1 (fr)
EP (1) EP3774672A1 (fr)
CA (1) CA3095231A1 (fr)
FR (1) FR3079528A1 (fr)
WO (1) WO2019185906A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352793A (en) 1964-02-05 1967-11-14 Nalco Chemical Co Cooling water treatment and compositions useful therein
US5866042A (en) 1997-07-18 1999-02-02 Betzdearborn Inc. Methods and compositions for inhibiting corrosion
US6468470B1 (en) 1999-06-18 2002-10-22 Fremont Industries, Inc. Galvanized metal corrosion inhibitor
US20070164258A1 (en) * 2006-01-17 2007-07-19 Johnsondiversey, Inc. Enhanced galvanized corrosion inhibitor
CN101736337A (zh) 2009-12-28 2010-06-16 哈尔滨工业大学 无铬钝化液的制备方法及用无铬钝化液钝化电镀锌或锌合金层的方法
WO2016003483A1 (fr) 2014-06-30 2016-01-07 Baker Hughes Incorporated Inhibiteurs de corrosion ne contenant pas de phosphore pour des systèmes aqueux
US20160017200A1 (en) 2012-09-07 2016-01-21 Prestone Products Corporation Heat transfer fluids and corrosion inhibitor formulations for use thereof
WO2017180328A1 (fr) 2016-04-14 2017-10-19 Nch Corporation Composition et procédé d'inhibition de la corrosion

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105406A (en) * 1976-12-30 1978-08-08 Murray W Bruce Method of inhibiting corrosion using a hexametaphosphate and a phosphate buffer
US4592783A (en) * 1984-10-22 1986-06-03 Koppers Company, Inc. Rust preventives
US4847001A (en) * 1987-07-01 1989-07-11 W. R. Grace & Co.-Conn. Control of corrosion in aqueous systems
JP3701475B2 (ja) * 1998-09-14 2005-09-28 株式会社神戸製鋼所 耐錆性鋼材
FR2939146B1 (fr) * 2008-11-28 2012-11-16 Arkema France Utilisation d'acide alcane sulfonique pour elimination de la rouille
JP6091042B2 (ja) * 2009-06-29 2017-03-08 Jxエネルギー株式会社 さび止め油組成物
FR2960885B1 (fr) * 2010-06-03 2012-06-01 Rhodia Poliamida E Especialidades Ltda Composition catalytique a effet inhibiteur de corrosion, procede d'inhibition de la corrosion et utilisation
CN103215110B (zh) * 2012-12-14 2016-01-20 靖江恒丰化工有限公司 汽车钢板润滑防锈油添加剂
US20190301027A1 (en) * 2016-07-18 2019-10-03 Basf Se Low corrosion alkane sulfonic acids for condensation reactions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352793A (en) 1964-02-05 1967-11-14 Nalco Chemical Co Cooling water treatment and compositions useful therein
US5866042A (en) 1997-07-18 1999-02-02 Betzdearborn Inc. Methods and compositions for inhibiting corrosion
US6468470B1 (en) 1999-06-18 2002-10-22 Fremont Industries, Inc. Galvanized metal corrosion inhibitor
US20070164258A1 (en) * 2006-01-17 2007-07-19 Johnsondiversey, Inc. Enhanced galvanized corrosion inhibitor
CN101736337A (zh) 2009-12-28 2010-06-16 哈尔滨工业大学 无铬钝化液的制备方法及用无铬钝化液钝化电镀锌或锌合金层的方法
US20160017200A1 (en) 2012-09-07 2016-01-21 Prestone Products Corporation Heat transfer fluids and corrosion inhibitor formulations for use thereof
WO2016003483A1 (fr) 2014-06-30 2016-01-07 Baker Hughes Incorporated Inhibiteurs de corrosion ne contenant pas de phosphore pour des systèmes aqueux
WO2017180328A1 (fr) 2016-04-14 2017-10-19 Nch Corporation Composition et procédé d'inhibition de la corrosion
US20170297938A1 (en) * 2016-04-14 2017-10-19 Nch Corporation Composition and Method for Inhibiting Corrosion

Also Published As

Publication number Publication date
CA3095231A1 (fr) 2019-10-03
US20210017652A1 (en) 2021-01-21
EP3774672A1 (fr) 2021-02-17
FR3079528A1 (fr) 2019-10-04

Similar Documents

Publication Publication Date Title
JP7214810B2 (ja) 腐食を抑制するための組成物及び方法
AU2016267614B2 (en) Purine-based corrosion inhibitors
TWI823854B (zh) 抑制腐蝕和水垢的組成物及方法
EP3774672A1 (fr) Procede de prevention de la formation de rouille blanche sur une surface en acier recouverte de zinc
US11085118B2 (en) Composition and method for inhibiting corrosion and scale
CA3058148C (fr) Inhibiteurs de corrosion pour la passivation de revetements galvanises et d&#39;acier au carbone
WO2016081209A1 (fr) Procédés améliorés de prétraitement d&#39;équipement utilisé dans des systèmes faisant intervenir de l&#39;eau
US20200362467A1 (en) 1,2,4-TRIAZOLO[1,5-a] PYRIMIDINE DERIVATIVE AS COPPER CORROSION INHIBITOR
Beecher et al. Corrosion inhibition with sodium nitrite
Miksic et al. Slow Release Corrosion Inhibiting Block
FR2492413A1 (fr) Procede et compositions pour la protection des surfaces de zinc au moyen de depots de pyrophosphates de zinc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19713071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3095231

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019713071

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019713071

Country of ref document: EP

Effective date: 20201029