WO2019185149A1 - Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines - Google Patents

Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines Download PDF

Info

Publication number
WO2019185149A1
WO2019185149A1 PCT/EP2018/058153 EP2018058153W WO2019185149A1 WO 2019185149 A1 WO2019185149 A1 WO 2019185149A1 EP 2018058153 W EP2018058153 W EP 2018058153W WO 2019185149 A1 WO2019185149 A1 WO 2019185149A1
Authority
WO
WIPO (PCT)
Prior art keywords
crumbling
root crops
root
hooks
pieces
Prior art date
Application number
PCT/EP2018/058153
Other languages
English (en)
Inventor
Frank Friedhoff
Elke Hilscher
Original Assignee
KWS SAAT SE & Co. KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KWS SAAT SE & Co. KGaA filed Critical KWS SAAT SE & Co. KGaA
Priority to CN201880091998.7A priority Critical patent/CN111936238A/zh
Priority to JP2020552208A priority patent/JP7362645B2/ja
Priority to PCT/EP2018/058153 priority patent/WO2019185149A1/fr
Priority to MA51499A priority patent/MA51499B1/fr
Priority to EA202092091A priority patent/EA202092091A1/ru
Publication of WO2019185149A1 publication Critical patent/WO2019185149A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/14Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers
    • B02C18/142Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers with two or more inter-engaging rotatable cutter assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/18Knives; Mountings thereof
    • B02C18/20Sickle-shaped knives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/18Knives; Mountings thereof
    • B02C2018/188Stationary counter-knives; Mountings thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a device for crumbling root crops into substantially equal sized pieces, a device for determining components in root crops and a corresponding method.
  • Root crops for the purposes of this patent application, are root crops such as sugar beets, fodder beet, red beet, and turnips, as well as tubers such as potatoes, yam and Jerusalem artichokes. Cultivation involves a continuous, systematic selection of suitable root crops with respect to, for example, biomass yield, ingredients or disease tolerance. To be able to exercise such a selection, the contents of these crops are regularly analyzed. This is associated with a high investment in terms of labor and expense. Ultimately, however, the success of a breeding program is contingent upon the rapid and reliable analysis of the contents of root crops.
  • a plot represents a parcel of land of pre-measured size, and permits the cultivation of several crops, their number providing a statistical indication regarding the nature and distribution of crop yield.
  • the plot is rated for productive capacity for sugar beets, and, after uprooting, the sugar beet is analyzed for content.
  • Such an analysis takes place by means of conventional series techniques, which provide high accuracy. The goal however is to keep the cost of analysis to a minimum.
  • NIRS near- infrared spectroscopy
  • NIRS NIRS
  • NIR spectroscopy For cereals, maize and grass, NIR spectroscopy has already been used for real-time analysis of substances in conjunction with harvesting machines (WO 99/58959 A1 ).
  • NIR near infrared
  • a near infrared (NIR) probe composed of directed light source and sensor is oriented towards the flow of harvested materials, which consists of cereal grains, or even harvested chopped corn or grass chaff.
  • a device for performing the process comprising a apparatus for reducing the root crop to fine pieces, a transport device, a device to equalize a stream of reduced root crops and a measuring device for identification and quantification of ingredients.
  • the apparatus for reducing the root crop to fine pieces is effective, it has shown that particular reduction and the structure of the root crop pieces is essential for a subsequent analysis using the NIRS-method. It is essential that the root crop pieces are substantially equal sized, not too large and not too small, and relatively dry. It has been found by the inventors of the present invention that mashed root crops are difficult to analyze, and the same is true for too big pieces of cut root crops. Therefore, improvement of the already known apparatus is needed.
  • a device for crumbling root crops into substantially equally sized pieces comprises: a main frame having an inlet side and an outlet side; a root crop supply at the inlet side; at least one crumbling shaft rotatable supported in the main frame, the crumbling shaft being provided with a plurality of curved hooks, preferably curved into a direction of rotation of the crumbling shaft; and a non-rotating cutting rake having a plurality of recesses and preferably protrusions and forming a counterblade for the hooks, wherein the hooks are arranged for interlaced movement with said recesses of the non-rotating rake.
  • the hooks are curved and may have a small axial size compared to the axial length of the respective crumbling shaft.
  • the rake also has a sealing function and ensures that only pieces with a sufficiently reduced size may pass to the outlet side.
  • the hooks are adapted to crumble pieces of the root crop rather than cutting it. They break pieces off root crops out of the whole fruit and therefore the pieces are rather dry and do not comprise a flat and wet cutting surface. To support this function, the hooks may comprise a blade portion at the tip.
  • the cutting rake is adjustable in height for adjusting a vertical distance to said crumbling shaft.
  • the distance between the cutting rake and the crumbling shaft is increased, the crumbled pieces of root crop tend to be larger, while a reduced distance leads to smaller pieces of crumbled root crops.
  • the rotational speed of the crumbling shaft may be adjusted for achieving such an effect.
  • the crumbling shaft is connected to a drive for driving the crumbling shaft, in particular a motor drive. Normally, the crumbling shaft rotates in the range of 300 to 1000 rpm, while a higher rotational speed leads to reduced piece sizes, and vice versa.
  • the device comprises a cleaning rake adjacent to or opposite the cutting rake for stripping off root crop pieces from the hooks.
  • a cleaning rake adjacent to or opposite the cutting rake for stripping off root crop pieces from the hooks.
  • the device comprises a de- clogging device for de-clogging clogged root crops from the rake. It may happen that a root crop sticks in the device and is not crumbled anymore, since it may be located at a position where the hooks cannot reach it, or the hooks are blocked by the root crop. It may also happen that the root crop is cut at one place by the hooks and the hooks only move through the root crop, which does not move anymore, and thus do not crumble off additional pieces.
  • the de-clogging device is operable for de-clogging such root crops and may incorporate one or more elements, e.g. bars, which are movable upwards or any other direction for moving the clogged root crops for bringing them again into a position engageable with the hooks.
  • the device may comprise a set of first and second crumbling shafts supported in said frame, wherein the first and second crumbling shafts are arranged for a counter rotating, wherein one rake is provided between the crumbling shafts having opposingly arranged protrusions and recesses.
  • the rake which is positioned between these shafts, is the cutting rake.
  • two cleaning rakes are preferably arranged at opposite sides distal from the cutting rake.
  • a method for producing substantially equally sized pieces of root crops comprises: a) adjusting in the device for crumbling root crops, as described above and further in detail below, the vertical height of the cutting rake(s), the rotational speed of the crumbling shaft(s) and the length of the plurality of curved hooks according to the desired size of the pieces, b) loading the root crops to the device, and c) crumbling the root crops into substantially equally sized pieces.
  • a device for determining components in root crops comprises: a device for crumbling root crops into substantially equal sized pieces, the device for crumbling root crops comprises a main frame having an inlet side and an outlet side; a root crop supply at the inlet side; at least one crumbling shaft rotatable supported in the main frame, the crumbling shaft being provided with a plurality of curved hooks, preferably curved into a direction of rotation of the crumbling shaft; and a non- rotating cutting rake having a plurality of recesses and preferably protrusions and forming a counterblade for the hooks, wherein the hooks are arranged for interlaced movement with said recesses of the non-rotating rake; the device for determining components in root crops further comprises: a transport device for transporting the stream of root crop crumbles; an equalizing roller for homogenizing the stream of root crop crumbles; and a measuring device for identification and quantification of ingredients.
  • a method for determining components in root crops comprises the following steps, in this sequence: crumbling the root crops into substantially equal sized fine pieces using a device for crumbling root crops into substantially equal sized pieces, generating a stream of fine pieces of root crop, and transporting the fine pieces of root crop with the aid of a transporting device; homogenizing or evenly distributing the fine pieces of root crop in the stream; irradiating the stream of fine pieces of root crop with a light of the near infrared range; recording the reflected and/or absorbed radiation; converting radiation into a spectral signal; and processing of the spectral signal for determination of the components; wherein the device for crumbling root crops into substantially equal sized pieces comprises: a main frame having an inlet side and an outlet side; a root crop supply at the inlet side; at least one crumbling shaft rotatable supported in the main frame, the crumbling shaft being provided with a plurality of curved hooks, preferably curved into a direction of a rotation of
  • Fig. 1 is a schematic drawing of a device for determining components in root crops
  • Fig. 2 is a perspective view of a device for crumbling root crops
  • Fig. 3 is a top view of the device of Fig. 2;
  • Fig. 4 is a cut through the device of Figs. 2 and 3;
  • Fig. 5 is a further cut through the device of Figs. 2 and 3;
  • Fig. 6 is a perspective view of a crumbling shaft comprising curved hooks
  • Fig. 7 is a perspective view of a hook
  • Fig. 8 is a side view of the hook of Fig. 7;
  • Fig. 9 is a further cut through the device for crumbling root crops
  • Fig. 10 is a perspective view of a first de-clogging element
  • Fig. 1 1 is a perspective view of a second de-clogging element
  • Fig. 12 is a flowchart of a method for determining components in root crops.
  • Fig. 13 is a flowchart of a method for producing substantially equally sized pieces of root crops (A) and shows in B a series of equally sized pieces of sugar beets produced with different adjustments of rotational speed of the crumbling shafts and vertical height of the cutting rakes: a.
  • the rotational speed was 400 rpm and cutting rakes was positioned at a low vertical height b.
  • the rotational speed was 400 rpm and cutting rakes was positioned at a high vertical height c.
  • the rotational speed was 800 rpm and cutting rakes was positioned at a high vertical height d.
  • the rotational speed was 800 rpm and cutting rakes was positioned at a low vertical height.
  • a device 1 for determining components in root crops is shown schematically: cleaned root crops of a parcel are collected in a funnel-shaped hopper 13. From the hopper 13, the root crops move to a device 14 for crumbling root crops into substantially equal sized pieces, as it will be described in detail below. In the device 14, the root crops are reduced into essentially even sized pieces.
  • the device 14 comprises a main frame 15 having an inlet side 20 and an outlet side 22.
  • the root crop pieces 24 fall onto an apparatus for transportation 2, for example a conveyer belt 5, and accumulate there.
  • the speed of the conveyer belt 5 is adjustable and is adapted to the speed at which the root crops are reduced, however, the accumulation of pieces from the device 14 on the conveyer belt 5 does not result in a smooth surface.
  • the device 3 has a roller 6 in the form of an elongate shaft, which is arranged at a constant and fixed distance Di above the conveyer belt 5 along the roll axis 7. Using this roller 6, the sample stream of crumbled root crops 24 is compressed to a certain thickness, whereby a smooth surface results.
  • the distance between the roller 6 and conveyer belt 5 is adjustable; it is preferably between 100 mm and 150 mm.
  • a motor drives the roller 6 and rotates it in the running direction of conveyer belt 5, as indicated by the arrow.
  • the motor may be driven electrically, hydraulically, or pneumatically.
  • the movement of the roller 6 is coupled with drive of the conveyer belt 5.
  • the roller preferably comprises a smooth surface, as e.g. a polymer surface or a steel surface.
  • the polymer surface might be provided as a polymer layer on a frame structure of the roller 6, or the whole, substantially the complete roller 6, might be formed of a polymer. It has shown that a smooth surface is beneficial for homogenizing the stream. Moreover, it is preferred that the surface has low adhesive features, as e.g. a non-stick surface or a non-stick coating. In alternative embodiments, also additional rollers might be provided, which has shown to be beneficial, when the stream of root crop pieces 24 is large.
  • Block 25 ensures that the belt 5 is not pushed downwards with respect to Fig. 1 and thus, the stream of crumbled root crops 24 substantially has a height of Di after passing the roller 6.
  • scrapers 8A, 8B, 19 are provided on the roller 6 and/or the conveyer belt 5 and continuously clean the roller surface and belt 5 during operation, thus avoiding the cross-mixing of two root crop samples of consecutive processed plots. Moreover, a clumping or accumulation of root crop sample 24 on the conveyer belt 5 and roller 6 can be ruled out, which would otherwise severely disturb the comparative homogenization of the sample flow.
  • the scraper is a wiper 8A positioned directly in front of the roller 6 relative to the direction of movement of the conveyer belt 5.
  • the wiper 8A is cleaning the roller surface above the rotation axis of the roller, i.e. the wiper 8A is positioned or affects the roller surface above the rotation axis 7 of the roller.
  • the optimum distance between rotation axis of the roller and wiper 8A (D3) is around 20 mm.
  • an apparatus determining components in root crops 4 (for example NIR- or THz-spectrometer) using e.g. a sensor head 9 with a light source 10 and a sensor 1 1 for detecting the radiation reflected or absorbed from the smooth surface of the stream of root crop sample 24 in the wavelength range from 850 nm to 1650 nm.
  • the sensor head 9 is elevated at a fixed distance of 200 mm to 250 mm of the surface of the smooth sample flow 24 and can be pivoted as desired relative to the sample stream 24, e.g. in the direction of the conveyer belt parallel or at a 90 degree angle. In this way, it is possible for instance to sense and record the entire width of the sample stream 24.
  • the sensor 11 continuously records reflected or absorbed radiation and transmits it via optical fiber 17 to a spectrometer 18, which converts the spectrally resolved radiation wavelengths into digitized portions, at regular intervals of 40 ms.
  • a spectrometer 18 which converts the spectrally resolved radiation wavelengths into digitized portions, at regular intervals of 40 ms.
  • a processor 12 By comparison with suitable calibration data, the identities and concentrations of quality-ingredients such as sugar, starch, crude protein, crude ash, crude fiber content, crude fat, anions or cations, NDF (neutral detergent fibre), ADF (acid detergent fibre), (acid detergent lignin), Hemicellulose (HCEL) or Cellulose (CEL) are determined with high precision and are output.
  • Slices of root crops had the negative effect that their distance between the stream on the conveyer belt and the sensor head varies, when the slices are put upon each other or in case they are not completely evenly cut. Therefore, it is important to achieve an even and homogeneous particulate stream, which is relatively dry, has even root crop piece sizes and a relatively flat surface.
  • the device 14 for crumbling root crops into substantially even equal sized pieces in a first perspective view is shown in Fig. 2.
  • the device comprises a frame 15, which is substantially rectangular and comprises first and second head portions 30, 32, which are opposingly arranged and first and second side portions 34, 36, which are also opposingly arranged. All side portions 30, 32, 34, 36 are arranged in a rectangular angle to each other, such that a frame is build.
  • a hopper 13 would be placed, which is not shown in Fig. 2 for simplicity (see Fig. 1 ).
  • crumbling shafts 40, 41 , 42, 43 are rotatable supported.
  • the crumbling shafts 40, 41 , 42, 43 will be described in more detail with reference to Fig. 6 below.
  • the bearings 46, 47, 48, 49, 50, 51 , 52, 53 are formed as roller bearings, in particular tilted roller bearings, to support the high forces, which act on the crumbling shafts 40, 41 , 42, 43 during crumbling of root crops.
  • Two of the four crumbling shafts 40, 41 , 42, 43 form one set, in this embodiment, the crumbling shafts 40, 41 form a first set of crumbling shafts and the crumbling shafts 42, 43 form a second set of crumbling shafts.
  • Only one crumbling shaft 41 , 43 of each set of crumbling shafts is provided with a drive shaft extension 54, 55, protruding through the respective bearing 48, 52 and engageable with a corresponding drive shaft of a drive motor or the like.
  • a gearing 56 for each set of crumbling shafts 40, 41 , 42, 43 is provided, wherein gearing 56 can be seen in Fig. 4.
  • Gearing 56 comprises a first gearing wheel 57 mounted on the crumbling shaft 41 , which engages a second gearing wheel 58 fixed to crumbling shaft 40 (see Fig. 6).
  • the rotation of crumbling shaft 41 can be transferred to crumbling shaft 40 so that the crumbling shafts 40, 41 of the first set of crumbling shafts rotate at the same speed. Due to the gearing 56, they rotate in counter rotation.
  • an identical gearing is provided within the casing 33.
  • the two sets of crumbling shafts 40, 41 , 42, 43 are formed identical and the reason for providing four crumbling shafts 40, 41 , 42, 43 mainly is to increase throughput and performance of the device 14.
  • the crumbling shafts 40, 41 , 42, 43 (in Fig. 6, only one crumbling shaft 40 is shown; however, the design of the crumbling shafts 40, 41 , 42, 43 is substantially identical) is provided with a plurality of hooks 60 (only one indicated with reference sign in Fig. 6).
  • the hooks 60 are all formed identical to each other, however provided offset to each other and about a circumference of the crumbling shaft 40.
  • the crumbling shaft 40 comprises a main shaft portion 62 and the two extensions 40, 42 for being received in respective bearings 46, 47.
  • the main shaft portion 62 according to this embodiment, has a rectangular shape having four surfaces being at substantially 90° to each other.
  • the main shaft portion 62 is provided with through bores 64, 65 (again only two in Fig. 6 indicated with reference signs), which are arranged in alternating manner through the main shaft portion 40. That is, the through bores 64, 65 alternate, while the first through bore 64 is provided in a first direction and the second through bore 65 in a second direction, which is perpendicular to the first direction of the first through bore 64.
  • the through bores, which are parallel to each other, in embodiments of the invention are offset by a value in the range of 20 mm to 80 mm, preferably 30 mm to 50 mm and in this particular embodiment are offset by a value of 40 mm. The value may be dependent on the size of the hooks 60 and also on the type of root crop to be crumbled. 40 mm has shown to be a preferred range for sugar beets or fodder beets.
  • each hook 60 comprises a hook portion 66 (see Fig. 7 and 8) and a mounting portion 67. Between the hook portion 66 and mounting portion 67, a flange portion 68 is provided, which serves as an abutment, when the respective hook 60 is seated in one of the through bore 64, 65. The respective hook 60 is pushed with its mounting portion 67 through the through bore 64, 65 and comes into contact with the main shaft portion 40 with its flange portion 68, such that it is in a defined position.
  • the flange portion 68 can be designed with a square-shaped cross- section as shown in Fig. 7 or alternatively an oval cross-section. This flange portion 68 fits in a respective pressed or milled notch in crumbling shafts 40, 41 , 42, 43.
  • the mounting portion 67 is provided with a thread portion 69, which acts together with a nut 70 comprising a correspondingly provided inner threaded portion (see Fig. 6).
  • Each hook 60 is curved into a direction of movement of the respective crumbling shaft 40, 41 , 42, 43, as indicated by the moving arrow M.
  • the hook portion 66 comprises a substantially rectangular cross-section with two parallel side faces 72, as well as a back surface 73 and a front surface 74.
  • Front and back surface 73, 74 are curved and resemble a partial circle.
  • the radius of the curvature of each of the front and back faces 73, 74 differ from each other and the radius of the front face 74 is slightly larger than the radius of curvature of the back face 73. This is not absolutely necessary, but beneficial in this embodiment. It shall, however, be understood that it could also be the other way around and that the radius of the curvature of the back face 73 is larger than the radius of curvature of the front face 74.
  • the radius Ri of the curvature of the back face is in the range of 20 mm to 40 mm, in particular in the range of 34 mm.
  • the radius of curvature R 2 of the front face 74 is also in the range of 20 mm to 40 mm, in this particular embodiment in the range of 35 mm.
  • the tapering shape of the hook portion 66 is due to an offset of the center points Pi, P 2 of each radius Ri, R 2 , which are offset by the thickness D 2 of a base portion 75 of the hook portion 66.
  • the thickness D 2 is in the range of 5 mm to 15 mm, in this particular example, it may be in the range of 10 mm.
  • the offset between the points Pi and P 2 is about 10 mm, resulting in the tapering shape of the hook portion 66.
  • the hook portion 66 comprises a sharp edge 77 tapering inwardly and merging via a small protrusion 78 into the front face 74.
  • the edge portion 77 is relatively sharp and comprises a small radius, in particular in the range of 0.1 mm to 0.3 mm.
  • Each hook 60 has a length, when measured from the edge portion 77 to the center of the base portion 75, in the range of 20 mm to 80 mm, preferably 30 mm to 50 mm, in particular about 40 mm.
  • the edge 77 will cut into the respective root crop, when the crumbling shaft 40, 41 , 42, 43 rotates and thus cause brittling, crumbling or ripping off portions of the root crop due to the tapering or wedge shape of the hook 60.
  • the extension of angle a is in the range of 45° to 90°, in particular in the range of 60° to 80°, more preferred about 75°.
  • the extension of the angle b is shorter to provide the wedge portion at the edge 77 and is in the range of 30° to 80°, in particular 40° to 60° and more preferred in the range of 50°.
  • the length of the hooks plays an important role, the longer the hooks the better the root crops are crumbled (i.e. generation of a high amount of abrasion and the profuse leaking of fluids like water is prevented) and de-clogging is reduced; however, the longer the hooks the larger are the produced pieces. This might disturb the process of homogenizing of the stream of fine pieces in preparation of subsequent determination of ingredients as well as the determination of ingredients by e.g. spectroscopic methodologies as such.
  • each cutting rake 80, 82 is formed the same and comprises a longitudinal bar 83, 84 extending from the head portion 30 to head portion 32 and attached thereto, by means of a respective mounting plate 85, 86 (see Fig. 5).
  • the cutting rake 80, 82 is attached to the main frame 15.
  • the cutting rake 80, 82 comprises a plurality of metal plates 87 attached to the bars 80, 82, respectively, and offset in axial direction to each other, such that they form protrusions 88 and recesses 89 for cooperating with the hooks 60 on the respective crumbling shafts 40, 41 , 42, 43.
  • the protrusions and recesses 88, 89 are provided for interlaced movement with the hooks 66 and provide a counter support or counter blade for the root crops to be cut.
  • the protrusions and recesses 88, 89 provide a sieving function, which might be inferred from e.g. Figs. 3 and 5 and serves such that root crop pieces, which are larger than a specific size, are not able to pass to the outlet side 22.
  • the vertical height of the cutting rakes 80, 82 is adjustable. While the cutting rakes 80, 82 are shown in an intermediate position in Fig. 5, they might be mounted further upwards, such that the size of the crumbling root crop pieces becomes smaller, and might also be attached to a lower portion of main frame 15, such that bigger pieces of root crops are cut from the root crops. However, in an upward direction, the position is limited by the cutting circle C, which is a circle connecting the moving point of the edges 77 of the hooks. The bar 83, 84 is not able to move further upward, otherwise a contact between the edges 77 and the bar 83, 84 would occur.
  • two cleaning rakes 90, 91 , 92, 93 are provided for each of the first set of crumbling shafts 40, 41 and second set of crumbling shafts 42, 43.
  • the cleaning rakes 90, 91 , 92, 93 extend along the crumbling shafts 40, 41 , 42, 43 and parallel to them. They are formed as a counterpart to the cutting rakes 80, 82.
  • the cleaning rakes 90, 91 , 92, 93 are attached to either the head portions 30, 32, or the side panels 34, 36 of the main frame 15. They might be adjustable in height position, even though this is not particularly necessary for the present invention.
  • the cleaning rakes 90, 91 , 92, 93 do not have to be very high forces; they are made out of a sheet metal, in particular punched out of a sheet metal and bend, such that they have a substantially angled shape. Again, protrusions 95 and recesses 96 are formed at the cleaning rake 90, 91 , 92, 93 by punching, for interlaced movement with the hooks 60, when the crumbling shafts 40, 41 , 42, 43 rotate.
  • the cleaning rakes 90, 91 , 92, 93 are stabilized by gusset plates 99 fixed by welding as indicated in Fig. 5.
  • the device 14 of the present invention comprises a de-clogging device 100.
  • This de-clogging device will now be described with reference to Figs. 2, 5, 9, 10 and 1 1 in particular.
  • the de-clogging device 100 is operable for de-clogging clogged root crops from the cutting rake 80, 82 or cleaning rakes 90, 91 , 92, 93.
  • the de-clogging device 100 comprises three de-clogging elements 101 , 102, 103, while the second de-clogging element 102 is used for both sets of crumbling shafts 40, 41 , 42, 43.
  • the first and third de-clogging elements 101 , 103 are substantially formed identical to each other, but arranged mirrored and opposite to each other.
  • Each of the de-clogging elements 101 ,102, 103 is arranged to be movable adjacent to a cleaning rake 90, 91 , 92, 93.
  • Root crops have more tendencies to be clogged at the cleaning rakes 90, 91 , 92, 93, since there is less cutting action than at the cutting rakes 80, 82.
  • the de-clogging element 102 is at a central portion and the de-clogging elements 101 , 103 are at the side panels 34, 36.
  • Each of the de- clogging elements 101 , 102, 103 comprise a bar 104, 105, 106 with a longitudinal extension parallel to said crumbling shafts 40, 41 , 42, 43 and movable upwardly for raising clogged root crops or root crop pieces.
  • the outer de-clogging elements 101 , 103 comprise respective brackets 107, 108, 109, 1 10, between which the bar 104, 106 extends and to which the bar 104, 106 is attached to.
  • the brackets 107, 108, 109, 110 are pivotally attached to the head portions 30, 32 via respective pivot hinges 1 11 , 112, 113, 1 14, which are substantially arranged vertically above the cutting rakes 80, 82, respectively. They might also be positioned at other positions within the scope of the invention.
  • engagement pins 1 15, 116, 117, 1 18 are attached, extending outwardly away from the respective bracket 107, 108, 109, 110.
  • the engagement pins 1 15, 1 16, 1 17, 1 18 are provided for an engagement with an activation piston 119, 120 (see Fig. 9).
  • the activation piston 1 19, 120 is attached to a fixing portion 121 , 122 and is able to contract with respect to the right-hand side of Fig. 9 (piston 120) to a position as shown in the left-hand side of Fig. 9 (piston 119).
  • the de-clogging element 101 , 103 is pivoted about the pivot hinges 11 1 , 1 12, 1 13, 114 and thus, the bar 104, 106 is raised in an arch-shaped path starting from the respective cleaning rake 90, 93 and upwardly towards the centre of the device 14 and thus, in a direction of the rotating direction of the crumbling shafts 40, 43.
  • the bars 104, 106 are moreover provided with respective through holes 124 (only shown with reference sign in Fig. 11 ) thus, increasing a friction between the clogged root crop and the bar 104, such that the clogged root crop might be transported towards a central direction and thus again engaged by means of the hooks 60.
  • the central de-clogging element 102 acts in a similar manner. It comprises engagement portions 125, 126 (see Fig. 10), which are engaged by a third pair of pistons 128 (only one shown in Fig. 9; it shall be understood there is a second one for engagement section 125 on the opposite side of the device).
  • These pistons 128 can be activated in a parallel manner, such that the whole de-clogging element 102 is straightly lifted upwards, but they might also be activated in sequence, such that the de-clogging element 102 is pivoted and in a first step, portion 125 is raised and lowered again and in a second step, portion 126 is raised and lowered again. This also leads to the effect that clogged root crops are pushed towards the centre of the device 14.
  • Fig. 13 A illustrates a method 300 for producing substantially equally sized pieces of root crops.
  • a method according to this particularly preferred embodiment comprises three steps in the following order:
  • the method starts with the step of adjusting 301 the vertical height of the cutting rakes 80, 82, the rotational speed of the crumbling shafts 40, 41 , 42, 43 and the length of the plurality of curved hooks 60 according to the desired size of the pieces.
  • the cutting rakes 80 are adjusted to a lower vertical height, for bigger pieces the vertical height of the cutting rakes 80 can be increased.
  • the crumbling shafts 40 is adjusted to a lower vertical height, for bigger pieces the vertical height of the cutting rakes 80 can be increased.
  • the curved hooks 60 have a length in a range of 20mm to 80mm, measured along a center line of the hooks. Further preferred designs of the hooks suitable for the adjusting 301 are described above in context of the device 14.
  • the root crops are loaded to the device 14, as described beforehand.
  • the loading is conducted by continuous and steady delivery of root crops adapted to the capacity or performance of the device 14. This can reduce or avoid the occurrence of clogging as described above.
  • a third step 303 the root crops are crumbled into substantially equally sized pieces.
  • Figure 13 B shows an experimental series for the production of equally sized pieces of sugar beets produced with different adjustments of rotational speed of the crumbling shafts 40, 41 ,
  • the rotational speed of 400 rpm and cutting rakes positioned at a low vertical height produced hereby the largest pieces (a.).
  • the rotational speed of 800 rpm and cutting rakes positioned at a low vertical height produced the smallest pieces (d.).
  • Piece sizes between this maximum and minimum values could be produced either by adjusting the rotational speed or the vertical height of the cutting rakes.
  • the pieces are significantly smaller than in the largest one and in c. pieces have been produced, slightly smaller than in a. and significantly larger than in b.
  • Fig. 12 illustrates a method 200 for determining components in root crops.
  • a method according to this particularly preferred embodiment comprises seven steps in the following order: The method starts with the step of crumbling 201 the root crops into substantially equal sized fine pieces using the device 14, as described beforehand.
  • the root crops are fed into the hopper 13, the crumbling shafts 40, 41 , 42, 43 are activated to rotate and root crop pieces are provided at the outlet side 22.
  • the crumbling shafts are rotated at a speed of about 300 to 1000 rpm, wherein a higher rotational speed results in smaller pieces of root crop and a lower rotational speed results in bigger pieces of root crop.
  • a stream of fine pieces of root crop 24 is generated and the fine pieces of root crop are transported with the aid of a transporting device 5.
  • a step of homogenizing 203 or evenly distributing the fine pieces of root crop 24 in the stream is carried out.
  • an irradiating step 204 of the stream of fine pieces of root crop with light in the near infrared range is carried out and the reflected or absorbed radiation is recorded 205.
  • This recorded radiation is converted 206 into a spectral signal, and processing 207 of the spectral signal for determination of the components is carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Harvesting Machines For Root Crops (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

L'invention concerne un dispositif pour effriter des cultures de racines et obtenir des morceaux de taille sensiblement égale, comprenant : un cadre principal ayant un côté d'entrée et un côté de sortie ; une alimentation en culture de racines au niveau du côté d'entrée ; au moins un arbre d'effritement supporté rotatif dans le cadre principal, l'arbre d'effritement étant pourvu d'une pluralité de crochets incurvés qui sont incurvés dans une direction de rotation de l'arbre d'effritement ; et un râteau de coupe non rotatif ayant une pluralité de saillies et de renfoncements et formant une contre-lame pour les crochets, les crochets étant agencés pour un mouvement entrelacé avec lesdits évidements du râteau non rotatif. L'invention concerne en outre un système et un procédé correspondant.
PCT/EP2018/058153 2018-03-29 2018-03-29 Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines WO2019185149A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880091998.7A CN111936238A (zh) 2018-03-29 2018-03-29 用于将块根作物粉碎和确定块根作物中成分的装置和方法
JP2020552208A JP7362645B2 (ja) 2018-03-29 2018-03-29 根菜類を粉砕する装置および方法ならびに根菜類の成分を測定する装置および方法
PCT/EP2018/058153 WO2019185149A1 (fr) 2018-03-29 2018-03-29 Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines
MA51499A MA51499B1 (fr) 2018-03-29 2018-03-29 Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines
EA202092091A EA202092091A1 (ru) 2018-03-29 2018-03-29 Устройство и способ дробления корнеплодов, а также определения компонентов в корнеплодах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/058153 WO2019185149A1 (fr) 2018-03-29 2018-03-29 Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines

Publications (1)

Publication Number Publication Date
WO2019185149A1 true WO2019185149A1 (fr) 2019-10-03

Family

ID=61868516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/058153 WO2019185149A1 (fr) 2018-03-29 2018-03-29 Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines

Country Status (5)

Country Link
JP (1) JP7362645B2 (fr)
CN (1) CN111936238A (fr)
EA (1) EA202092091A1 (fr)
MA (1) MA51499B1 (fr)
WO (1) WO2019185149A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175309A1 (fr) * 2021-02-17 2022-08-25 KWS SAAT SE & Co. KGaA Procédés pour analyser un matériau végétal, pour déterminer des composants de matière végétale et pour détecter des maladies végétales dans un matériau végétal
WO2022223729A1 (fr) * 2021-04-23 2022-10-27 Pfeifer & Langen GmbH & Co. KG Système mobile pour la récolte et/ou le transport et/ou le chargement de betteraves sucrières, système de production de sucre et procédé de production de sucre
EP4163620A1 (fr) * 2021-10-06 2023-04-12 KWS SAAT SE & Co. KGaA Procédé d'analyse d'un échantillon de culture comprenant une matière végétale cible à laquelle des résidus de terre sont adhérés
CN117548200A (zh) * 2023-12-04 2024-02-13 临沂市玉泉沥青有限公司 一种改性沥青原料生产制作用粉碎装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2611636B1 (de) 1976-03-19 1977-03-03 Amawerk Gmbh Maschinen Und App Vorrichtung zur gewinnung von ruebenbrei
GB2056880A (en) * 1979-08-27 1981-03-25 Meyer Ag J Comminuting apparatus
DE3313928A1 (de) * 1983-04-16 1984-10-18 Rudolf 8881 Lutzingen Götz Vorrichtung zum broeckeln von festkoerpern wie knollenfruechten
DE9011121U1 (de) * 1990-07-27 1991-11-28 Mayr, Manfred, 8851 Tagmersheim Vorrichtung zum Zerkleinern von Stoffen, insbesondere zum Bröckeln von Tierfutter
WO1999058959A1 (fr) 1998-05-11 1999-11-18 Pioneer Hi-Bred International, Inc. Spectrometrie de proche infrarouge pour analyses de substances en temps reel
US20100216114A1 (en) 2009-02-26 2010-08-26 Kws Saat Ag Method and apparatus for determination of components in root crops
EP3305409A1 (fr) * 2016-10-07 2018-04-11 Kws Saat Se Dispositif et procédé de broyage des tubercules et de détermination de composants de cultures racine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230030Y2 (fr) * 1986-01-09 1990-08-13
JPH09308836A (ja) * 1996-05-21 1997-12-02 Hitachi Constr Mach Co Ltd 破砕機
KR100916972B1 (ko) 2009-02-16 2009-09-14 주식회사 삼원에스티지 파쇄기 자동 클리닝 장치
CN206483535U (zh) * 2017-01-15 2017-09-12 司继勇 一种新材料成分分析装置
CN107520011A (zh) * 2017-08-14 2017-12-29 怀宁县中坚竹胶板制造有限公司 一种腐竹粉碎治标装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2611636B1 (de) 1976-03-19 1977-03-03 Amawerk Gmbh Maschinen Und App Vorrichtung zur gewinnung von ruebenbrei
GB2056880A (en) * 1979-08-27 1981-03-25 Meyer Ag J Comminuting apparatus
DE3313928A1 (de) * 1983-04-16 1984-10-18 Rudolf 8881 Lutzingen Götz Vorrichtung zum broeckeln von festkoerpern wie knollenfruechten
DE9011121U1 (de) * 1990-07-27 1991-11-28 Mayr, Manfred, 8851 Tagmersheim Vorrichtung zum Zerkleinern von Stoffen, insbesondere zum Bröckeln von Tierfutter
WO1999058959A1 (fr) 1998-05-11 1999-11-18 Pioneer Hi-Bred International, Inc. Spectrometrie de proche infrarouge pour analyses de substances en temps reel
US20100216114A1 (en) 2009-02-26 2010-08-26 Kws Saat Ag Method and apparatus for determination of components in root crops
EP3305409A1 (fr) * 2016-10-07 2018-04-11 Kws Saat Se Dispositif et procédé de broyage des tubercules et de détermination de composants de cultures racine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FERNANDEZ ET AL., JOURNAL OF NEAR INFRARED SPECTROSCOPY, vol. 16, 2008, pages 105 - 110
HAASE, STARCH-STARKE, vol. 58, no. 6, 2006, pages 268 - 273
HEPPNER ET AL., SUGAR INDUSTRY, vol. 125, no. 5, 2000, pages 325 - 330
ZIOLKO; JEHLE, GIT LABORATORY JOURNAL, vol. 2000, 2002, pages 268 - 273

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175309A1 (fr) * 2021-02-17 2022-08-25 KWS SAAT SE & Co. KGaA Procédés pour analyser un matériau végétal, pour déterminer des composants de matière végétale et pour détecter des maladies végétales dans un matériau végétal
WO2022223729A1 (fr) * 2021-04-23 2022-10-27 Pfeifer & Langen GmbH & Co. KG Système mobile pour la récolte et/ou le transport et/ou le chargement de betteraves sucrières, système de production de sucre et procédé de production de sucre
EP4163620A1 (fr) * 2021-10-06 2023-04-12 KWS SAAT SE & Co. KGaA Procédé d'analyse d'un échantillon de culture comprenant une matière végétale cible à laquelle des résidus de terre sont adhérés
CN117548200A (zh) * 2023-12-04 2024-02-13 临沂市玉泉沥青有限公司 一种改性沥青原料生产制作用粉碎装置
CN117548200B (zh) * 2023-12-04 2024-04-19 临沂市玉泉沥青有限公司 一种改性沥青原料生产制作用粉碎装置

Also Published As

Publication number Publication date
MA51499B1 (fr) 2021-09-30
CN111936238A (zh) 2020-11-13
JP2021524799A (ja) 2021-09-16
JP7362645B2 (ja) 2023-10-17
MA51499A1 (fr) 2020-12-31
EA202092091A1 (ru) 2021-01-29

Similar Documents

Publication Publication Date Title
US11549928B2 (en) Device and method for crumbling root crops and for determining components in root crops
WO2019185149A1 (fr) Dispositif et procédé pour effriter des cultures de racines et pour déterminer des composants dans des cultures de racines
DE102009010438B3 (de) Verfahren und Vorrichtung zur Bestimmung von Inhaltsstoffen in Hackfrüchten
EP2119339B1 (fr) Agencement de mesure destiné à la détermination des composants d'un échantillon extrait d'un flux de récoltes
CA2331865A1 (fr) Spectrometrie de proche infrarouge pour analyses de substances en temps reel
Nawi et al. In-field measurement and sampling technologies for monitoring quality in the sugarcane industry: a review
EP3305409B1 (fr) Dispositif et procédé de broyage des tubercules et de détermination de composants de cultures racine
US8530844B2 (en) Recording of position-specific wavelength absorption spectra
Phuphaphud et al. Non-destructive and rapid measurement of sugar content in growing cane stalks for breeding programmes using visible-near infrared spectroscopy
WO2022269354A1 (fr) Dispositifs désagrégation de plantes racines et de détermination de leur composition
Brunt et al. Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part I: off-line NIR feasibility study for the characterization of potato composition
US20230115652A1 (en) Devices for crumbling root crops and determining the composition thereof
CN208317505U (zh) 一种组合式切纵流脱粒分离清选试验装置
Pothula et al. Digital image processing based identification of nodes and internodes of chopped biomass stems
EA040626B1 (ru) Устройство и способ дробления корнеплодов, а также определения компонентов в корнеплодах
EP3932175B1 (fr) Installation de traitement de produits récoltés, notamment de fruits récoltés tels que de la vendange
RU2609969C1 (ru) Картофелеуборочный комбайн
JP2024509757A (ja) 植物材料を分析し、植物材料成分を決定し、植物材料中の植物病害を検出するための方法
Madsen et al. Evaluation of a near infrared spectrometer for the direct analysis of sugar cane
RU2542770C1 (ru) Выделитель семян из плодов арбузов
EP4047350A1 (fr) Procédés de détermination de composants dans le traitement industriel de betteraves sucrières dans une installation de production
CN112198135B (zh) 一种基于近红外光谱技术的维c银翘片制粒过程在线检测装置和快速终点判断方法
Kizatova et al. Development of a mathematical model for the process of modernization of a melon cleaning machine
AR027076A1 (es) Analisis infrarrojo cercano de componentes
RU2293501C1 (ru) Установка для приготовления сока из плодов овощей, фруктов и мякоти бахчевых культур

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18715014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18715014

Country of ref document: EP

Kind code of ref document: A1