WO2019184624A1 - 光纤扫描中用于矫正图像畸变的方法及光纤扫描器 - Google Patents

光纤扫描中用于矫正图像畸变的方法及光纤扫描器 Download PDF

Info

Publication number
WO2019184624A1
WO2019184624A1 PCT/CN2019/075483 CN2019075483W WO2019184624A1 WO 2019184624 A1 WO2019184624 A1 WO 2019184624A1 CN 2019075483 W CN2019075483 W CN 2019075483W WO 2019184624 A1 WO2019184624 A1 WO 2019184624A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
response
fast axis
fiber
axis
Prior art date
Application number
PCT/CN2019/075483
Other languages
English (en)
French (fr)
Inventor
姚长呈
宋海涛
周旭东
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2019184624A1 publication Critical patent/WO2019184624A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements

Definitions

  • the present invention relates to the field of fiber scanning technology, and more particularly to a method for correcting image distortion in fiber scanning.
  • the existing fiber scanner scanning probe structure mainly includes a cylindrical quadrant quadrant tube, a rectangular piezoelectric ceramic sheet, etc., and the grid type (X-Y type) scanning can be easily realized.
  • the response of the fast and slow axis is not vertical due to processing, adjustment, driving, etc., especially the optical fiber works in the resonance region, and the nonlinearity is strong, due to the comprehensive effects of assembly mode, fiber geometric defects, and nonlinear response.
  • the dynamic response of the fast and slow axes of the fiber is coupled to each other (that is, the non-driven out-of-plane response is caused), and when the fast axis is separately driven, the trajectory of the fiber is an ellipse or a slanted straight line, causing distortion of the displayed image.
  • This kind of image distortion can be corrected to an oblique straight line by the algorithm, that is, the method of changing the driving is used for correction.
  • this correction scheme is feasible, but the driving voltage required is too large, and the resolution of the scanned image is affected. rate.
  • the present invention provides a method for correcting image distortion in fiber scanning and a fiber scanner structure for correcting an image display area to a regular rectangle.
  • the inventors have found that the above distortion is different from the usual optical distortion.
  • the two-dimensional driving caused by the fiber scanner is not strictly vertical, assembly error, nonlinearity, etc.
  • the image display area caused by the factor is not a rectangle, but exhibits an irregular shape such as a parallelogram or an ellipse.
  • the scanning line of the fiber scanner in the horizontal direction is not a straight line, but a diagonal line or an elliptical arc which is at an angle to the horizontal direction.
  • the resulting image pixel grid is still uniform, without affecting contrast and sharpness, but instead the entire image is in a certain direction (when the horizontal scan line is oblique) or in certain directions (the horizontal scan line is arced) When pulling the line, perform a "pull".
  • the present invention employs a method of introducing a drive for eliminating distortion by correcting an ellipse, a tilted straight line, and the like by changing the drive.
  • the first aspect of the present invention provides a method for correcting image distortion in optical fiber scanning.
  • the scanning mode of the optical fiber scanning is a grid scanning, and the optical fiber is driven by the fast axis driver to vibrate in the x direction.
  • the optical fiber is driven by the slow axis driver to vibrate in a y direction perpendicular to the x direction, and the method for correcting image distortion in the fiber scanning includes:
  • a response in the y direction is superimposed on the fast axis drive or the slow axis drive such that the superposition response in the y direction cancels the response in the y direction caused by the fast axis drive.
  • the obtained scan line is expressed as:
  • a x is the scan amplitude in the x direction
  • f x is the drive frequency of the fast axis driver
  • t is time
  • a xy is the displacement amplitude in the y direction generated by the fast axis drive.
  • the scan line generated by the separate drive of the fast axis driver is a slanted straight line, and the tilt angle is related to the ratio of A x and A xy ;
  • the scan line generated by the fast axis drive is an ellipse, and the angle between the long axis of the ellipse and the horizontal direction is The value is related to the ellipticity and the ratio of A x and A xy .
  • the superimposing a response in the y direction on the fast axis drive or the slow axis drive means that the fast axis drive or the slow axis drive has a drive part that drives the optical fiber to vibrate in the y direction, by adjusting the The drive signal of the drive unit causes the fast axis drive or the slow axis drive to superimpose a response in the y direction based on the original response. That is, the scan line obtained when the drive unit individually drives the fiber vibration is expressed as:
  • the superimposing a response in the y direction on the fast axis driver means that the fast axis driver is a two-dimensional scan driver, and the fast axis driver is in the original x direction by adjusting the signal of the fast axis driver.
  • the response remains unchanged on the basis of superimposing a response in the y direction.
  • the fast axis scanner itself is a two-dimensional scanner, which can generate two driving directions with a certain angle of angle (in the figure, a 90° vertical driving is taken as an example, and a fast axis is used as a tube. The scanner replaces the previous chip scanner.
  • the driving voltage can be reasonably set at the same driving frequency as the fast axis to make it respond in the y direction. for In this way, the two interact to make the synthetic trajectory a straight line in the horizontal direction, and achieve the purpose of compensation.
  • a second aspect of the invention provides a fiber optic scanner.
  • the fiber optic scanner includes an optical fiber and a scan driver; the scan driver fixedly supports the optical fiber in a cantilever manner and drives the fiber cantilever to move along a predetermined scan trajectory, the scan driver including a fast axis drive that drives the fiber cantilever to vibrate in the x direction, And a slow axis driver for driving the fiber cantilever to vibrate in a y direction perpendicular to the x direction, the x direction and the y direction are both perpendicular to the fiber cantilever, and the optical fiber directs the light beam emitted by the light source and emits the light beam through the end of the fiber cantilever;
  • the fast axis driver or the slow axis driver has a driver section for driving the fiber cantilever to vibrate in the y direction, and the fast axis driver or the slow axis driver is superimposed on the original response by adjusting the driving signal of the driver section. a response in the y direction such that the superposition response in the y direction cancels the response in the y direction caused by the fast axis drive;
  • the fast axis driver is a two-dimensional scan driver, and by superimposing the signal of the fast axis driver, the fast axis driver superimposes a response in the y direction on the basis of the original x direction response, so that the superposition The response in the y direction cancels the response in the y direction caused by the fast axis drive.
  • the fast axis driver comprises at least two driver segments that respectively drive the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber, and the different driver segments respectively drive the fiber cantilever to vibrate in different directions;
  • the slow axis driver includes at least one driver segment that drives the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • the driver section of the fast axis driver is composed of a first driver section that drives the fiber cantilever to vibrate along the x-axis and a second driver section that drives the fiber cantilever to vibrate along the y-axis, by adjusting the second driver section Driving the signal such that the fast axis driver superimposes a response in the y direction based on the original response such that the superimposed response in the y direction cancels the response in the y direction caused by the fast axis drive; or
  • the fast axis driver includes at least two third driver sections that drive the fiber cantilever along the non-x-axis and non-y-axis to vibrate, and simultaneously adjust the driving signals of at least two of the third driver sections to make the fast axis driver in the original x
  • the response in the directional direction remains superimposed with a response in the y-direction such that the superposition response in the y-direction cancels the response in the y-direction caused by the fast-axis drive.
  • the first driver sub-portion, the second driver sub-portion or the third driver sub-portion may each comprise at least one driving device that drives the fiber optic cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • the fast axis driver comprises at least one driver segment that drives the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber;
  • the slow axis driver comprises two driver segments that drive the fiber cantilever to vibrate in the y direction.
  • the slow axis driver includes a driver subsection for performing grid scan with the fast axis driver, the slow axis driver including another driver subsection for slowing by adjusting the drive signal of the driver subsection
  • the axis driver superimposes a response in the y direction on the basis of the original response such that the superposition response in the y direction cancels the response in the y direction caused by the fast axis drive.
  • the driver segments of the two driving fiber cantilever vibrating in the y direction may each include at least one driving device that drives the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • FIG. 1 is a schematic structural view of an embodiment in which a fast axis driver superimposes a response in the y direction;
  • FIG. 2 is a schematic structural view of an embodiment in which a slow axis driver superimposes a response in the y direction;
  • Figure 3 is a block diagram showing the principle of using the controller to acquire distortion data and correct the control signals of the fast axis driver and/or the slow axis driver.
  • the present invention provides a method for correcting image distortion in fiber scanning and a fiber scanner structure for correcting an image display area to a regular rectangle.
  • a first aspect of the present invention provides a method for correcting image distortion in a fiber scanning process.
  • the scanning mode of the optical fiber scanning is a grid scanning, and the grid scanning comprises driving the optical fiber by the fast axis driver to vibrate in the x direction. And driving the optical fiber in the y direction perpendicular to the x direction by the slow axis driver, and the method for correcting image distortion in the optical fiber scanning includes:
  • a response in the y direction is superimposed on the fast axis drive or the slow axis drive such that the superposition response in the y direction cancels the response in the y direction caused by the fast axis drive.
  • a x is the scan amplitude in the x direction
  • f x is the drive frequency of the fast axis driver
  • t is time
  • a xy is the displacement amplitude in the y direction caused by the fast axis drive.
  • the scan line generated by the separate drive of the fast axis driver is a slanted straight line, and the tilt angle is related to the ratio of A x and A xy ;
  • the scan line generated by the fast axis drive is an ellipse, and the angle between the long axis of the ellipse and the horizontal direction is The value is related to the ellipticity and the ratio of A x and A xy .
  • the superimposing a response in the y direction on the fast axis driver or the slow axis driver means that the fast axis driver or the slow axis driver has a driving portion that drives the optical fiber to vibrate in the y direction, and the driving is adjusted by adjusting the driving.
  • the drive signal of the part causes the fast axis drive or the slow axis drive to superimpose a response in the y direction based on the original response. That is, the scan line obtained when the drive unit individually drives the fiber vibration is expressed as:
  • the superimposing a response in the y direction on the fast axis driver means that the fast axis driver is a two-dimensional scan driver, and the fast axis driver is in the original x direction by adjusting the signal of the fast axis driver.
  • the response remains unchanged on the basis of superimposing a response in the y direction.
  • the fast axis scanner itself is a two-dimensional scanner, which can generate two driving directions with a certain angle of angle (in the figure, a 90° vertical driving is taken as an example, and a fast axis is used as a tube. The scanner replaces the previous chip scanner.
  • the driving voltage can be reasonably set at the same driving frequency as the fast axis to make it respond in the y direction. for In this way, the two interact to make the synthetic trajectory a straight line in the horizontal direction, and achieve the purpose of compensation.
  • a second aspect of the invention provides a fiber optic scanner.
  • the fiber optic scanner includes an optical fiber 1 and a scan driver.
  • the scan driver fixedly supports the optical fiber in a cantilever manner and drives the fiber cantilever to move along a predetermined scanning trajectory
  • the scan driver includes a fast axis driver 2 that drives the fiber cantilever to vibrate in the x direction, and drives the fiber cantilever to be perpendicular to
  • the slow axis driver 3 vibrating in the y direction in the x direction, the x direction and the y direction are both perpendicular to the fiber cantilever
  • the optical fiber 1 guides the light beam emitted from the light source and emits the light beam through the end of the fiber cantilever.
  • the fast axis driver 2 or the slow axis driver 3 has a driver section for driving the fiber cantilever to vibrate in the y direction, and the fast axis driver 2 or the slow axis driver 3 is in the original response by adjusting the driving signal of the driver section. Superimposing a response in the y direction such that the superposition response in the y direction cancels the response in the y direction caused by the fast axis drive;
  • the fast axis driver 2 is a two-dimensional scan driver, and by adjusting the signal of the fast axis driver 2, the fast axis driver 2 superimposes a response in the y direction while the response in the original x direction remains unchanged.
  • the response of the superposition in the y-direction is offset against the response in the y-direction caused by the fast axis drive.
  • the scanning actuator fixedly supporting the optical fiber in a cantilever manner means that the scanning actuator is fixedly connected to a portion of the optical fiber close to the beam emitting end, and the beam exit end of the optical fiber exceeds the end of the scanning actuator, and the optical fiber cantilever is the optical fiber beyond the scanning Part of the actuator.
  • the light source includes a lighting unit and a beam coupling system for coupling a beam of the lighting unit into the fiber.
  • the light emitting unit includes a red light emitting unit, a green light emitting unit, and a blue light emitting unit
  • the beam coupling system is configured to couple the light beams emitted by the red light emitting unit, the green light emitting unit, and the blue light emitting unit into the optical fiber.
  • the color of the coupled light is controlled by controlling the energy output by the red, green, and blue light units, respectively.
  • both ends of the slow axis driver 3 and the fast axis driver 2 along the optical axis of the optical fiber are respectively a fixed end and a free end, which are slow.
  • the fixed end of the shaft driver 3 is fixedly mounted, for example, fixedly mounted on a support
  • the fixed end of the fast shaft drive 2 is fixedly connected with the free end of the slow shaft drive 3
  • the optical fiber is fixedly mounted on the free end of the fast shaft drive 2
  • the optical fiber extends beyond the free end of the fast axis drive 2 to form a fiber cantilever.
  • the slow axis driver 3 and the fast axis driver 2 may each comprise one of various types of actuation elements driven by electrical signals, such as piezoelectric actuators, electrostrictive actuators or magnetostrictive actuators. A variety.
  • the structure of the slow axis driver 3 and the fast axis driver 2 will be described by taking a piezoelectric actuator as an example, and the structure of other actuating elements driven by electric signals such as an electrostrictive actuator or a magnetostrictive actuator is also The arrangement is similarly configured in accordance with the structure of the piezoelectric actuator as described below, which is clear and easy for those skilled in the art to implement.
  • the slow axis driver 3 and the fast axis driver 2 may each include one or more of a bimorph or a piezoelectric ceramic tube or a piezoelectric ceramic sheet driving vibration device.
  • each bimorph is a driver section of a slow axis driver 3 or a fast axis driver 2 that can drive the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • the piezoelectric ceramic tube is radially polarized, and the inner wall of the piezoelectric ceramic tube is coated with an inner electrode covering the entire inner wall, and the outer portion of the tubular body is coated with at least one external Electrodes, each pair of electrodes comprising two independent electrodes arranged axially symmetrically and extending in the axial direction.
  • Each of the outer electrodes and the tubular body and the inner electrode constitute a slow axis driver 3 or a driver section of the fast axis driver 2, which can drive the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • the piezoelectric ceramic sheet driving vibration device includes a body and at least one pair of piezoelectric ceramic sheets disposed on an outer surface of the body, each pair of piezoelectric ceramic sheet driving body being perpendicular to The direction of the central axis of the body vibrates.
  • Each pair of piezoelectric ceramic sheets is symmetrically disposed about a central axis of the body, and each of the piezoelectric ceramic sheets is polarized along a thickness and extends along a central axis of the body.
  • each pair of piezoelectric ceramic sheets is in operation, one of the piezoelectric ceramic sheets is axially contracted under voltage driving, and the other piezoelectric ceramic sheet is axially elongated under voltage driving, thereby driving the body to contract the piezoelectric.
  • One side of the ceramic piece is bent.
  • the body is bent to the other side, so that the body is driven by each pair of piezoelectric ceramic sheets along the vertical voltage driven by the voltage-variable voltage. Vibration in the direction of the central axis.
  • Each pair of piezoelectric ceramic sheets and the body constitute a slow shaft driver 3 or a driver portion of the fast axis driver 2, which can drive the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • the fast axis driver 2 includes at least two driver segments that drive the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber, and different driver segments drive the fiber cantilever respectively.
  • the slow axis drive 3 includes at least one driver segment that drives the fiber optic cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • each of the driver sections may include any one or more of a bimorph, a piezoelectric ceramic tube, and a piezoelectric ceramic sheet driving vibration device.
  • the driver section of the fast axis driver 2 is composed of a first driver section 201 that vibrates the x-axis of the driving fiber cantilever and a second driver section 202 that vibrates along the y-axis of the driving fiber cantilever
  • the fast axis driver 2 superimposes a response in the y direction on the basis of the original response, so that the superposition response in the y direction cancels out the fast axis driving. Response in the y direction.
  • the fast axis driver 2 includes at least two third driver segments that drive the fiber cantilever to vibrate along the non-x axis and not the y axis, by simultaneously adjusting the driving signals of at least two of the third driver segments,
  • the shaft driver 2 superimposes a response in the y direction on the basis of the original x-direction response so that the superposition response in the y direction cancels the response in the y direction caused by the fast axis drive.
  • the first driver sub-portion, the second driver sub-portion or the third driver sub-portion may each comprise at least one driving device that drives the fiber optic cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • the fast axis drive 2 includes at least one driver segment that drives the fiber optic cantilever in a direction perpendicular to the optical axis of the fiber.
  • the slow axis driver 3 comprises two driver sections that drive the fiber optic cantilever to vibrate in the y direction, wherein one driver section 301 is used to implement the grid scan with the fast axis driver 2 and the other driver section 302 is used to pass Adjusting the drive signal of the driver section 302 such that the slow axis driver 3 superimposes a response in the y direction on the basis of the original response such that the superimposed response in the y direction cancels the y direction caused by the fast axis drive. response.
  • each of the driver segments of the two driving fiber cantilever vibrating in the y direction may each include at least one driving device that drives the fiber cantilever to vibrate in a direction perpendicular to the optical axis of the fiber.
  • each of the driver sections may include any one or more of a bimorph, a piezoelectric ceramic tube, and a piezoelectric ceramic sheet driving vibration device.
  • the optical fiber scanner further includes a controller electrically connected to the light source, the fast axis driver 2 and the slow axis driver 3, respectively, for scanning duration corresponding to each valid scanning pixel stored therein.
  • the light source is controlled to emit light and a control signal is applied to the fast axis driver 2 and the slow axis driver 3.
  • the fiber optic scanner further includes an image outputter.
  • An image outputter is electrically coupled to the controller for outputting a predetermined scanned image signal to the controller.
  • the controller controls the light source, the fast axis driver 2, and the slow axis driver 3 to output a predetermined scanned image corresponding to the predetermined scanned image signal by means of optical fiber scanning according to the predetermined scanned image signal.
  • the fiber optic scanner further includes an image capture device.
  • the image capture device is electrically coupled to the controller and captures a projected image of the fiber scan output.
  • the controller compares the acquired projection image with the predetermined scan image to obtain projection image distortion data; and calculates corrected image for application to the fast axis driver 2 and/or the slow axis driver 3 according to the projection image distortion data.
  • the control signal is applied to the fast axis driver 2 and/or the slow axis driver 3.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种光纤扫描中用于矫正图像畸变的方法,光纤扫描为栅格式扫描,栅格式扫描包括由快轴驱动器(2)驱动光纤(1)进行沿x方向振动以及由慢轴驱动器(3)驱动光纤沿与x方向相垂直的y方向振动,在快轴驱动器或慢轴驱动器上叠加一个在y方向上的响应,使得叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。通过引入与快轴驱动导致的在y方向上的响应相反的量,使其产生抵消效应,与快轴的平面外响应相互抵消,以使快轴的响应为水平的直线,此时图像显示区域为规则的矩形,即平面外响应得到矫正。从而实现对扫描轨迹的精确控制,提升扫描图像的显示分辨率和性能。还公开了一种光纤扫描器。

Description

光纤扫描中用于矫正图像畸变的方法及光纤扫描器
本申请要求享有2018年3月26日提交的名称为“光纤扫描中用于矫正图像畸变的方法及光纤扫描器”的中国专利申请CN201810254392.2的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及光纤扫描技术领域,尤其涉及光纤扫描中用于矫正图像畸变的方法。
背景技术
现有的光纤扫描器扫描探头结构主要有圆柱四分象限管、矩形压电陶瓷片等,可以很容易实现栅格式(X-Y型)扫描。但在实际工作过程中,会由于加工、装调、驱动等原因导致快慢轴响应不垂直,特别是光纤工作在共振区,非线性强烈,由于装配方式、光纤几何缺陷、非线性响应等综合作用,使得光纤快、慢轴的动态响应互相耦合(即导致非驱动平面外响应),导致单独驱动快轴时,光纤的轨迹为椭圆或者倾斜的直线,造成显示图像的畸变。这种图像畸变可通过算法矫正成倾斜直线,即采用改变驱动的方式进行矫正,但由于快慢轴频率相差悬殊,此矫正方案虽可行,但其需要的驱动电压偏大,并且影响扫描图像的分辨率。
发明内容
本发明提供光纤扫描中用于矫正图像畸变的方法及光纤扫描器结构,用以将图像显示区域矫正为规则的矩形。
发明人发现,上述的畸变与通常说的光学畸变不同,此处所描述的是整个图像显示区域的变形,由于光纤扫描器制作瑕疵导致的二维驱动并非严格垂直、装配误差、非线性等各种因素导致的图像显示区域并非矩形,而是呈现如平行四边形、椭圆形等不规则形状。光纤扫描器在水平方向上的扫描线并非直线,而是与水平方向成一定夹角的斜线或椭圆形弧线。由此造成的图像像素网格依然是均匀的,不影响对比度和清晰度,而是将整个图像沿某个特定方向(水平扫描线为斜线时)或某些特定方向(水平扫描线呈弧线时)进行“拉 扯”。为了消除这些畸变,本发明采用引入用于消除畸变的驱动的方式,通过对驱动的改变矫正椭圆、倾斜直线等响应。
为了实现上述发明目的,本发明第一方面提供了光纤扫描中用于矫正图像畸变的方法,所述的光纤扫描的扫描方式为栅格式扫描,由快轴驱动器驱动光纤进行沿x方向振动,由慢轴驱动器驱动光纤沿与x方向相垂直的y方向振动,所述光纤扫描中用于矫正图像畸变的方法包括:
在快轴驱动器或慢轴驱动器上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
可选的,将快轴驱动器单独驱动光纤振动时,得到的扫描线表示为:
Figure PCTCN2019075483-appb-000001
其中A x为x方向的扫描幅度,f x为快轴驱动器的驱动频率,t为时间,A xy为快轴驱动产生的在y方向上的位移幅度,
Figure PCTCN2019075483-appb-000002
为快轴驱动导致的y方向上的响应与快轴驱动在x方向上的响应的相位差,所述的叠加在y方向上的响应为
Figure PCTCN2019075483-appb-000003
由上述表达式可见:
当A xy=0时,快轴驱动器的单独驱动产生水平方向的直线,此时图像无上文描述的图像变形;
当A xy≠0时,若
Figure PCTCN2019075483-appb-000004
或π,则快轴驱动器的单独驱动产生的扫描线为倾斜的直线,倾斜角度与A x、A xy的比例有关;
当A xy≠0时,若
Figure PCTCN2019075483-appb-000005
为0或π以外任意值,则快轴驱动产生的扫描线为椭圆,椭圆的长轴与水平方向的夹角与
Figure PCTCN2019075483-appb-000006
值有关,椭圆度则与A x、A xy的比例有关。
因而,当A xy≠0时,通过引入与y轴方向响应相反的量
Figure PCTCN2019075483-appb-000007
使其产生抵消效应,与快轴的平面外响应相互抵消,二者共同作用下,快轴的响应为水平的直线,此时图像显示区域为规则的矩形,即平面外响应得到矫正。实现对扫描轨迹的精确控制,提升扫描图像的显示分辨率和性能。
可选的,所述的在快轴驱动器或慢轴驱动器上叠加一个在y方向上的响应是指:快轴驱动器或慢轴驱动器上具有一个驱动光纤在y方向振动的驱动部,通过调节该驱动部的驱动信号,使得快轴驱动器或慢轴驱动器在原有响应的基础上叠加一个在y方向上的响应。即该驱动部单独驱动光纤振动时得到的扫描线表示为:
Figure PCTCN2019075483-appb-000008
进一步的,所述的在快轴驱动器上叠加一个在y方向上的响应是指:所述的快轴驱动器为二维扫描驱动器,通过调节快轴驱动器的信号,使得快轴驱动器在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应。具体来说,制作光纤扫描器时,快轴扫描器本身为二维扫描器,可以产生两个具有一定夹角方向的驱动(图中以90°即垂直驱动为例,将快轴用一个管状扫描器代替之前的片状扫描器),若以A y表示快轴在y方向的驱动产生幅度,则可以在与快轴相同的驱动频率下、合理设置驱动电压使得其产生的y方向上响应为
Figure PCTCN2019075483-appb-000009
如此,二者相互作用,可以使其合成轨迹为水平方向的直线,达到补偿的目的。
本发明第二方面提供了一种光纤扫描器。该光纤扫描器包括光纤和扫描驱动器;扫描驱动器以悬臂方式固定支撑所述光纤并驱动光纤悬臂沿预定扫描轨迹进行运动,所述扫描驱动器包括驱动所述光纤悬臂沿x方向振动的快轴驱动器、以及驱动所述光纤悬臂沿垂直于x方向的y方向振动的慢轴驱动器,x方向和y方向均垂直于光纤悬臂,光纤引导光源发射的光束并通过光纤悬臂的端部射出所述光束;
所述的快轴驱动器或慢轴驱动器上具有一个驱动光纤悬臂在y方向振动的驱动器分部,通过调节该驱动器分部的驱动信号,使得快轴驱动器或慢轴驱动器在原有响应的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应;
或,所述的快轴驱动器为二维扫描驱动器,通过调节快轴驱动器的信号,使得快轴驱动器在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
可选的,所述的快轴驱动器包括至少两个均驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部,且不同驱动器分部分别驱动光纤悬臂沿不同的方向振动;所述的慢轴驱动器包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部。
可选的,快轴驱动器的驱动器分部由驱动光纤悬臂沿x轴振动的第一驱动器分部和驱动光纤悬臂沿y轴振动的第二驱动器分部构成,通过调节该第二驱动器分部的驱动信号,使得快轴驱动器在原有响应的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应;或者
快轴驱动器包括至少两个驱动光纤悬臂沿非x轴且非y轴振动的第三驱动器分部,通过同时调节至少两个所述的第三驱动器分部的驱动信号,使得快轴驱动器在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快 轴驱动导致的在y方向上的响应。并且进一步的,所述的第一驱动器分部、第二驱动器分部或第三驱动器分部均可包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器件。
可选的,所述的快轴驱动器包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部;所述的慢轴驱动器包括两个驱动光纤悬臂沿y方向振动的驱动器分部,所述慢轴驱动器包括的一个驱动器分部用于配合快轴驱动器实现栅格式扫描,所述慢轴驱动器包括的另一个驱动器分部用于通过调节该驱动器分部的驱动信号,使得慢轴驱动器在原有响应的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。并且进一步的,所述的两个驱动光纤悬臂沿y方向振动的驱动器分部均可包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器件。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
通过引入与快轴驱动导致的在y方向上的响应相反的量,使其产生抵消效应,与快轴的平面外响应相互抵消,以使快轴的响应为水平的直线,此时图像显示区域为规则的矩形,即平面外响应得到矫正。实现对扫描轨迹的精确控制,提升扫描图像的显示分辨率和性能。
附图说明
图1为在快轴驱动器叠加一个在y方向上的响应的实施例的结构示意图;
图2为在慢轴驱动器叠加一个在y方向上的响应的实施例的结构示意图;
图3为采用控制器获取畸变数据并对快轴驱动器和/或慢轴驱动器的控制信号进行矫正的原理框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供光纤扫描中用于矫正图像畸变的方法及光纤扫描器结构,用以将图像显示区域矫正为规则的矩形。
本发明实施例第一方面提供光纤扫描中用于矫正图像畸变的方法,所述的光纤扫描的 扫描方式为栅格式扫描,栅格式扫描包括由快轴驱动器驱动光纤进行沿x方向振动,以及由慢轴驱动器驱动光纤沿与x方向相垂直的y方向振动,所述光纤扫描中用于矫正图像畸变的方法包括:
在快轴驱动器或慢轴驱动器上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
将快轴驱动器单独驱动光纤振动时得到的扫描线表示为:
Figure PCTCN2019075483-appb-000010
其中A x为x方向的扫描幅度,f x为快轴驱动器的驱动频率,t为时间,A xy为快轴驱动导致的在y方向上的位移幅度,
Figure PCTCN2019075483-appb-000011
为快轴驱动导致的y方向上的响应与快轴驱动在x方向上的响应的相位差,所述的叠加在y方向上的响应为
Figure PCTCN2019075483-appb-000012
由上述表达式可见:
当A xy=0时,快轴驱动器的单独驱动产生水平方向的直线,此时图像无上文描述的图像变形;
当A xy≠0时,若
Figure PCTCN2019075483-appb-000013
或π,则快轴驱动器的单独驱动产生的扫描线为倾斜的直线,倾斜角度与A x、A xy的比例有关;
当A xy≠0时,若
Figure PCTCN2019075483-appb-000014
为0或π以外任意值,则快轴驱动产生的扫描线为椭圆,椭圆的长轴与水平方向的夹角与
Figure PCTCN2019075483-appb-000015
值有关,椭圆度则与A x、A xy的比例有关。
因而,当A xy≠0时,通过引入与y轴方向响应相反的量
Figure PCTCN2019075483-appb-000016
使其产生抵消效应,与快轴的平面外响应相互抵消,以使快轴的响应为水平的直线,此时图像显示区域为规则的矩形,即平面外响应得到矫正。实现对扫描轨迹的精确控制,提升扫描图像的显示分辨率和性能。
进一步的,所述的在快轴驱动器或慢轴驱动器上叠加一个在y方向上的响应是指:快轴驱动器或慢轴驱动器上具有一个驱动光纤在y方向振动的驱动部,通过调节该驱动部的驱动信号,使得快轴驱动器或慢轴驱动器在原有响应的基础上叠加一个在y方向上的响应。即该驱动部单独驱动光纤振动时得到的扫描线表示为:
Figure PCTCN2019075483-appb-000017
进一步的,所述的在快轴驱动器上叠加一个在y方向上的响应是指:所述的快轴驱动器为二维扫描驱动器,通过调节快轴驱动器的信号,使得快轴驱动器在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应。具体来说,制作光纤扫描器时,快轴扫描 器本身为二维扫描器,可以产生两个具有一定夹角方向的驱动(图中以90°即垂直驱动为例,将快轴用一个管状扫描器代替之前的片状扫描器),若以A y表示快轴在y方向的驱动产生幅度,则可以在与快轴相同的驱动频率下、合理设置驱动电压使得其产生的y方向上响应为
Figure PCTCN2019075483-appb-000018
如此,二者相互作用,可以使其合成轨迹为水平方向的直线,达到补偿的目的。
本发明第二方面提供了一种光纤扫描器。如图1、图2所示,该光纤扫描器包括光纤1和扫描驱动器。其中,扫描驱动器以悬臂方式固定支撑所述光纤并驱动光纤悬臂沿预定扫描轨迹进行运动,扫描驱动器包括驱动所述光纤悬臂沿x方向振动的快轴驱动器2、以及驱动所述光纤悬臂沿垂直于x方向的y方向振动的慢轴驱动器3,x方向和y方向均垂直于光纤悬臂,光纤1引导光源发射的光束并通过光纤悬臂的端部射出所述光束。
所述的快轴驱动器2或慢轴驱动器3上具有一个驱动光纤悬臂在y方向振动的驱动器分部,通过调节该驱动器分部的驱动信号,使得快轴驱动器2或慢轴驱动器3在原有响应的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应;
或,所述的快轴驱动器2为二维扫描驱动器,通过调节快轴驱动器2的信号,使得快轴驱动器2在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
所述扫描致动器以悬臂方式固定支撑光纤是指扫描致动器与光纤靠近光束射出端的部分固定连接,光纤的光束射出端超出扫描致动器的端部,光纤悬臂即为光纤超出扫描致动器的部分。
本发明的一些实施例中,所述的光源包括发光单元和用于将发光单元的光束耦合进光纤的光束耦合系统。作为典型的实施例,所述的发光单元包括红色发光单元、绿色发光单元和蓝色发光单元,光束耦合系统用于将红色发光单元、绿色发光单元和蓝色发光单元发出的光束耦合进光纤。通过分别控制红色发光单元、绿色发光单元和蓝色发光单元输出的能量控制耦合后的光线的颜色。
本发明的一些实施例中,所述的慢轴驱动器3和快轴驱动器2沿光纤光轴的方向(即光纤悬臂的长度方向)的两端均分别为固定端和自由端,所述的慢轴驱动器3的固定端固定安装,如固定安装于一个支座上,快轴驱动器2的固定端与慢轴驱动器3的自由端固定连接,光纤固定安装于快轴驱动器2的自由端,且光纤1的端部超出快轴驱动器2的自由端形成光纤悬臂。从而慢轴驱动器3的自由端沿y方向振动,快轴驱动器2的自由端沿x 方向振动。
所述的慢轴驱动器3和快轴驱动器2均可包括压电致动器、电致伸缩致动器或磁致伸缩致动器等通过电信号驱动的各类致动元件中的一种或多种。
以下以压电致动器为例对慢轴驱动器3和快轴驱动器2的结构进行说明,电致伸缩致动器或磁致伸缩致动器等其他通过电信号驱动的致动元件的结构也可同理依照如下所述的压电致动器的结构进行设置,这对于本领域技术人员而言是清楚且容易实施的。
具体来说,所述的慢轴驱动器3和快轴驱动器2均可包括双压电晶片或压电陶瓷管或压电陶瓷片驱动振动装置中的一种或多种。
对于所述双压电晶片而言,每个双压电晶片即为一个慢轴驱动器3或快轴驱动器2的驱动器分部,可以驱动光纤悬臂沿垂直于光纤光轴的方向振动。
对于压电陶瓷管而言,所述的压电陶瓷管沿径向极化,压电陶瓷管的内壁涂布有一层覆盖整个所述内壁的内电极,管状主体的外部涂布有至少一对外电极,每对电极包括两个相互轴对称设置、沿轴向延伸的独立电极。每对外电极与管状主体和内电极构成一个慢轴驱动器3或快轴驱动器2的驱动器分部,可以驱动光纤悬臂沿垂直于光纤光轴的方向振动。
对于压电陶瓷片驱动振动装置而言,所述的压电陶瓷片驱动振动装置包括本体和在本体的外表面设置的至少一对压电陶瓷片,每对压电陶瓷片驱动本体沿垂直于本体中心轴的方向振动。所述每对压电陶瓷片关于本体的中心轴轴对称设置,每个压电陶瓷片均沿厚度极化、沿本体中心轴方向延伸。从而每对压电陶瓷片在工作时,其中一片压电陶瓷片在电压驱动下沿轴向收缩、另一片压电陶瓷片在电压驱动下沿轴向伸长,从而驱动本体往收缩的压电陶瓷片的一侧弯转,当两片压电陶瓷片施加的电压改变极性后,本体往另一侧弯转,从而在压变电压驱动下,本体由每对压电陶瓷片驱动沿垂直于中心轴的方向振动。每对压电陶瓷片与本体构成一个慢轴驱动器3或快轴驱动器2的驱动器分部,可以驱动光纤悬臂沿垂直于光纤光轴的方向振动。
进一步的,本发明的一些实施例中,所述的快轴驱动器2包括至少两个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部,且不同驱动器分部分别驱动光纤悬臂沿不同的方向振动。所述的慢轴驱动器3包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部。如上所述,所述的各驱动器分部均可以包括双压电晶片、压电陶瓷管和压电陶瓷片驱动振动装置中的任意一种或多种。
并且进一步的,如图1所示,当快轴驱动器2的驱动器分部由驱动光纤悬臂沿x轴振 动的第一驱动器分部201和驱动光纤悬臂沿y轴振动的第二驱动器分部202构成时,通过调节该第二驱动器分部的驱动信号,使得快轴驱动器2在原有响应的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
而当快轴驱动器2包括至少两个驱动光纤悬臂沿非x轴且非y轴振动的第三驱动器分部时,通过同时调节至少两个所述的第三驱动器分部的驱动信号,使得快轴驱动器2在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。并且进一步的,所述的第一驱动器分部、第二驱动器分部或第三驱动器分部均可包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器件。
本发明的另一些实施例中,如图2所示,所述的快轴驱动器2包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部。所述的慢轴驱动器3包括两个驱动光纤悬臂沿y方向振动的驱动器分部,其中一个驱动器分部301用于配合快轴驱动器2实现栅格式扫描,另一个驱动器分部302用于通过调节该驱动器分部302的驱动信号,使得慢轴驱动器3在原有响应的基础上叠加一个在y方向上的响应,使得该叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。并且进一步的,所述的两个驱动光纤悬臂沿y方向振动的驱动器分部均可包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器件。如上所述,所述的各驱动器分部均可以包括双压电晶片、压电陶瓷管和压电陶瓷片驱动振动装置中的任意一种或多种。
参照图3,所述的光纤扫描器还包括控制器,控制器分别与光源、快轴驱动器2和慢轴驱动器3电连接,用于根据其内部存储的每个有效扫描像素对应的扫描时长,控制光源出射光线及对快轴驱动器2和慢轴驱动器3施加控制信号。
进一步优选的,所述的光纤扫描器还包括图像输出器。图像输出器与所述控制器电连接,用于向控制器输出预定扫描图像信号。控制器根据该预定扫描图像信号控制光源、快轴驱动器2和慢轴驱动器3以通过光纤扫描的方式输出所述预定扫描图像信号对应的预定扫描图像。
更进一步优选的,所述的光纤扫描器还包括图像采集装置。图像采集装置与所述控制器电连接,其采集光纤扫描输出的投影图像。控制器将所述采集到的投影图像与所述预定扫描图像进行对比,得到投影图像畸变数据;并根据投影图像畸变数据计算矫正后的用于施加给快轴驱动器2和/或慢轴驱动器3的控制信号,并将矫正后的所述控制信号施加到快轴驱动器2和/或慢轴驱动器3。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序,可将这些单词解释为名称。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
通过引入与快轴驱动导致的在y方向上的响应相反的量,使其产生抵消效应,与快轴的平面外响应相互抵消,以使快轴的响应为水平的直线,此时图像显示区域为规则的矩形,即平面外响应得到矫正。实现对扫描轨迹的精确控制,提升扫描图像的显示分辨率和性能。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 光纤扫描中用于矫正图像畸变的方法,所述的光纤扫描的扫描方式为栅格式扫描,由快轴驱动器驱动光纤进行沿x方向振动,由慢轴驱动器驱动光纤沿与x方向相垂直的y方向振动,其特征在于,所述光纤扫描中用于矫正图像畸变的方法包括:在快轴驱动器或慢轴驱动器上叠加一个在y方向上的响应,使得叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
  2. 如权利要求1所述的光纤扫描中用于矫正图像畸变的方法,其特征在于,将快轴驱动器单独驱动光纤振动时得到的扫描线表示为:
    Figure PCTCN2019075483-appb-100001
    其中A x为快轴驱动器在x方向上的扫描幅度,f x为快轴驱动器的驱动频率,t为时间,A xy为快轴驱动导致的在y方向上的位移幅度,
    Figure PCTCN2019075483-appb-100002
    为快轴驱动导致的y方向上的响应与快轴驱动在x方向上的响应的相位差,所述的叠加在y方向上的响应为
    Figure PCTCN2019075483-appb-100003
  3. 如权利要求1或2所述的光纤扫描中用于矫正图像畸变的方法,其特征在于,所述的在快轴驱动器或慢轴驱动器上叠加一个在y方向上的响应是指:快轴驱动器或慢轴驱动器上具有一个驱动光纤在y方向振动的驱动部,通过调节该驱动部的驱动信号,使得快轴驱动器或慢轴驱动器在原有响应的基础上叠加一个在y方向上的响应。
  4. 如权利要求3所述的光纤扫描中用于矫正图像畸变的方法,其特征在于,所述的驱动部单独驱动光纤振动时得到的扫描线表示为:
    Figure PCTCN2019075483-appb-100004
    其中f x为快轴驱动器的驱动频率,t为时间,A xy为快轴驱动导致的在y方向上的位移幅度,
    Figure PCTCN2019075483-appb-100005
    为快轴驱动导致的y方向上的响应与快轴驱动在x方向上的响应的相位差。
  5. 如权利要求1或2所述的光纤扫描中用于矫正图像畸变的方法,其特征在于,所述的在快轴驱动器上叠加一个在y方向上的响应是指:所述的快轴驱动器为二维扫描驱动器,通过调节快轴驱动器的信号,使得快轴驱动器在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应。
  6. 一种光纤扫描器,包括:光纤和扫描驱动器;扫描驱动器以悬臂方式固定支撑所述光纤并驱动光纤悬臂沿预定扫描轨迹进行运动,所述扫描驱动器包括驱动所述光纤悬臂沿x方向振动的快轴驱动器和驱动所述光纤悬臂沿垂直于x方向的y方向振动的慢轴驱动器,所述光纤引导光源发射的光束并通过光纤悬臂的端部射出所述光束;其特征在于,
    所述的快轴驱动器或慢轴驱动器上具有一个驱动光纤悬臂在y方向振动的驱动器分部,通过调节该驱动器分部的驱动信号,使得快轴驱动器或慢轴驱动器在原有响应的基础上叠加一个在y方向上的响应,使得叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应;
    或,所述的快轴驱动器为二维扫描驱动器,通过调节快轴驱动器的信号,使得快轴驱动器在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应,使得叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
  7. 如权利要求6所述的光纤扫描器,其特征在于,所述的快轴驱动器包括至少两个均驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部,且不同驱动器分部分别驱动光纤悬臂沿不同的方向振动;所述的慢轴驱动器包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部。
  8. 如权利要求7所述的光纤扫描器,其特征在于,快轴驱动器的驱动器分部由驱动光纤悬臂沿x轴振动的第一驱动器分部和驱动光纤悬臂沿y轴振动的第二驱动器分部构成,通过调节该第二驱动器分部的驱动信号,使得快轴驱动器在原有响应的基础上叠加一个在y方向上的响应,使得叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应;或者
    快轴驱动器包括至少两个驱动光纤悬臂沿非x轴且非y轴振动的第三驱动器分部,通过同时调节至少两个所述的第三驱动器分部的驱动信号,使得快轴驱动器在原x方向上的响应保持不变的基础上叠加一个在y方向上的响应,使得叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
  9. 如权利要求6所述的光纤扫描器,其特征在于,所述的快轴驱动器包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器分部;所述的慢轴驱动器包括两个驱动光纤悬臂沿y方向振动的驱动器分部,所述的慢轴驱动器包括的一个驱动器分部用于配合快轴驱动器实现栅格式扫描,所述的慢轴驱动器包括的另一个驱动器分部用于通过调节该驱动器分部的驱动信号,使得慢轴驱动器在原有响应的基础上叠加一个在y方向上的响应,使得叠加在y方向上的响应抵消快轴驱动导致的在y方向上的响应。
  10. 如权利要求9所述的光纤扫描器,其特征在于,所述的两个驱动光纤悬臂沿y方向振动的驱动器分部均包括至少一个驱动光纤悬臂沿垂直于光纤光轴的方向振动的驱动器件。
PCT/CN2019/075483 2018-03-26 2019-02-19 光纤扫描中用于矫正图像畸变的方法及光纤扫描器 WO2019184624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810254392.2A CN108803012A (zh) 2018-03-26 2018-03-26 光纤扫描中用于矫正图像畸变的方法及光纤扫描器
CN201810254392.2 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019184624A1 true WO2019184624A1 (zh) 2019-10-03

Family

ID=64095374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075483 WO2019184624A1 (zh) 2018-03-26 2019-02-19 光纤扫描中用于矫正图像畸变的方法及光纤扫描器

Country Status (2)

Country Link
CN (1) CN108803012A (zh)
WO (1) WO2019184624A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803012A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 光纤扫描中用于矫正图像畸变的方法及光纤扫描器
CN109581654B (zh) * 2018-11-19 2021-08-31 成都理想境界科技有限公司 栅格式光纤扫描成像系统及其控制方法和应用
CN111381365A (zh) * 2018-12-29 2020-07-07 成都理想境界科技有限公司 一种扫描致动器、扫描驱动器及光纤扫描器
CN111381364A (zh) * 2018-12-29 2020-07-07 成都理想境界科技有限公司 一种光纤扫描器
CN111381363B (zh) * 2018-12-29 2022-11-08 成都理想境界科技有限公司 一种扫描驱动器及光纤扫描器
CN111856744B (zh) * 2019-04-29 2022-07-19 成都理想境界科技有限公司 一种光纤扫描显示装置
CN112444964A (zh) * 2019-08-30 2021-03-05 成都理想境界科技有限公司 一种致动器及光纤扫描器
CN113741123B (zh) * 2020-05-28 2022-12-30 成都理想境界科技有限公司 一种投影矫正方法及光纤扫描成像设备
CN115079403B (zh) * 2021-03-15 2024-03-08 成都理想境界科技有限公司 投影矫正方法及光纤扫描成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755233A (zh) * 2007-07-20 2010-06-23 皇家飞利浦电子股份有限公司 光纤扫描仪
CN201537081U (zh) * 2009-11-19 2010-08-04 浙江大学 一种二维扫描光纤探头
CN103782223A (zh) * 2011-09-02 2014-05-07 奥林巴斯株式会社 光扫描器件及具有光扫描器件的内窥镜、显微镜、投影仪
CN105899120A (zh) * 2014-02-21 2016-08-24 奥林巴斯株式会社 光的扫描轨迹的计算方法以及光扫描装置
CN107505704A (zh) * 2017-09-15 2017-12-22 华中科技大学 一种光纤螺旋扫描器的驱动调节方法及装置
CN206990919U (zh) * 2017-06-29 2018-02-09 成都理想境界科技有限公司 一种光扫描装置
CN108803012A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 光纤扫描中用于矫正图像畸变的方法及光纤扫描器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737374C2 (de) * 1997-08-27 1999-09-02 Ldt Gmbh & Co Verfahren zur Kompensation geometrischer Bildfehler bei Videobildern sowie ein Projektor zur Durchführung des Verfahrens
JP2001174744A (ja) * 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
US6891984B2 (en) * 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
JP2012231911A (ja) * 2011-04-28 2012-11-29 Olympus Corp 光走査装置および走査型観察装置
JP2013068859A (ja) * 2011-09-26 2013-04-18 Hitachi Media Electoronics Co Ltd 画像表示装置
US9201240B2 (en) * 2011-09-30 2015-12-01 The Commonwealth Of Australia As Represented By The Department Of Industry Positioning system
JP6006039B2 (ja) * 2012-08-24 2016-10-12 オリンパス株式会社 光走査型観察装置
CN104363816B (zh) * 2012-10-22 2017-05-24 奥林巴斯株式会社 扫描型内窥镜系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755233A (zh) * 2007-07-20 2010-06-23 皇家飞利浦电子股份有限公司 光纤扫描仪
CN201537081U (zh) * 2009-11-19 2010-08-04 浙江大学 一种二维扫描光纤探头
CN103782223A (zh) * 2011-09-02 2014-05-07 奥林巴斯株式会社 光扫描器件及具有光扫描器件的内窥镜、显微镜、投影仪
CN105899120A (zh) * 2014-02-21 2016-08-24 奥林巴斯株式会社 光的扫描轨迹的计算方法以及光扫描装置
CN206990919U (zh) * 2017-06-29 2018-02-09 成都理想境界科技有限公司 一种光扫描装置
CN107505704A (zh) * 2017-09-15 2017-12-22 华中科技大学 一种光纤螺旋扫描器的驱动调节方法及装置
CN108803012A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 光纤扫描中用于矫正图像畸变的方法及光纤扫描器

Also Published As

Publication number Publication date
CN108803012A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2019184624A1 (zh) 光纤扫描中用于矫正图像畸变的方法及光纤扫描器
JP5310566B2 (ja) マイクロスキャナ装置およびマイクロスキャナ装置の制御方法
JP5167634B2 (ja) レーザー投射装置
JP2007199251A (ja) 光走査装置及びそれを有する走査型画像表示装置
US9251730B2 (en) Image display apparatus and image scanning apparatus
US20150277107A1 (en) Optical deflector including inner frame with circumferential rib and branch ribs
US9414032B2 (en) Video projection apparatus capable of operating at optimum resonant frequency and its controlling method
JP6118913B2 (ja) 表示装置
WO2019114500A1 (zh) 光纤扫描成像设备及其投影几何变形的矫正系统
EP2891917B1 (en) Optical deflection device, optical scanning apparatus, image display apparatus, and image forming apparatus
WO2016189591A1 (ja) 走査型内視鏡およびその制御方法
JP2008287149A (ja) 画像表示装置
EP2924485B1 (en) Optical deflection device, and image display device
JP6189137B2 (ja) 光スキャナ
JP2005242036A (ja) 画像投射装置、および画像投射装置の制御方法
KR20200011665A (ko) 멤스 미러 및 이의 리사쥬 스캔 구동방법
JP2005250078A (ja) 光偏向器
TW200909975A (en) Device and method for compensating at least one non-linearity and laser projection system
CN114384688B (zh) 一种光纤扫描器光纤粘接结构
JP7027689B2 (ja) 光偏向装置および画像投影装置
WO2012176492A1 (ja) 共振駆動アクチュエーター、マイクロスキャナおよび光学機器
CN214540232U (zh) 一种扫描致动器及光纤扫描器
CN111381361A (zh) 一种扫描驱动器、光纤扫描装置及投影显示设备
CN219417871U (zh) 一种扫描致动器及光纤扫描器
CN216356516U (zh) 一种扫描致动器及光纤扫描器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777966

Country of ref document: EP

Kind code of ref document: A1