WO2019114500A1 - 光纤扫描成像设备及其投影几何变形的矫正系统 - Google Patents

光纤扫描成像设备及其投影几何变形的矫正系统 Download PDF

Info

Publication number
WO2019114500A1
WO2019114500A1 PCT/CN2018/116202 CN2018116202W WO2019114500A1 WO 2019114500 A1 WO2019114500 A1 WO 2019114500A1 CN 2018116202 W CN2018116202 W CN 2018116202W WO 2019114500 A1 WO2019114500 A1 WO 2019114500A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
scanning imaging
imaging device
fiber scanning
scanned
Prior art date
Application number
PCT/CN2018/116202
Other languages
English (en)
French (fr)
Inventor
姚长呈
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2019114500A1 publication Critical patent/WO2019114500A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators

Definitions

  • the invention relates to the field of optical imaging, and in particular to a fiber scanning imaging device and a correction system for projection geometric deformation thereof.
  • laser scanning imaging such as fiber scanning imaging, MEMS (Micro-Electro-Mechanical Systems) scanning imaging, etc.
  • MEMS Micro-Electro-Mechanical Systems
  • a prominent advantage is Smaller, it can be integrated into a variety of handheld devices, such as: embedded in a mobile phone, or made into a separate cm-scale micro-projector, so that users can carry it anywhere, anytime, anywhere projection display.
  • the fiber-scanning projection imaging system uses the driver to drive the high-speed vibration of the fiber, and cooperates with the laser modulation algorithm to realize the display of image information.
  • the fiber works in the resonance mode, and the scanning characteristics of the fiber in the resonance state are complicated. Due to the nonlinear effect of vibration, the symmetry of the fiber, the symmetry of the scanner installation, and stability, the fiber is resonated.
  • the vibration amplitude in the area is large, the scanning trajectory of the fast axis (X axis) of the XY type scanner is no longer an ideal horizontal straight line, but an inclined straight line. Referring to FIG.
  • the mark 1 in the figure is the scan track of the fast axis (x direction)
  • 2 is the scan track of the slow axis (y direction)
  • 3 is the image display area of the synthesized track when the fast and slow axes are simultaneously scanned.
  • the modulated display image is no longer a rectangle, and the horizontal direction is inclined, and becomes a parallelogram having an obtuse angle, which seriously affects the image display effect.
  • the object of the present invention is to provide a correction system for projection geometric deformation of a fiber scanning imaging device and a fiber scanning imaging device including the same, which are used for solving image generation during projection of an XY laser scanning imaging device existing in the prior art. Tilting technical issues.
  • the present invention provides a correction system for projection geometric deformation of a fiber scanning imaging device, which is suitable for a fiber scanning imaging device in which an optical fiber scanner is an XY type two-dimensional scanner, and the correction system includes testing.
  • Image exporter, image collector and processor where:
  • the test image output device is configured to output a predetermined rectangular detection image to the fiber scanning imaging device
  • the image collector is configured to collect a projection image output by the fiber scanning imaging device
  • the driving signal for correcting the effective display area is calculated according to the tilting angle, so that the corrected effective display area is a horizontal rectangle, and specifically: calculating the to-be-scanned by the optical fiber scanning imaging device according to the tilting angle a trajectory; calculating a driving signal corresponding to the trajectory to be scanned according to the trajectory to be scanned.
  • the calculation expression for calculating the to-be-scanned track after the fiber scanning imaging device is corrected according to the tilt angle is:
  • x and y are standard scanning trajectories of the XY-type two-dimensional scanner; ⁇ is the inclination angle; and x' and y' are corrected trajectories to be scanned.
  • the driving signal corresponding to the to-be-scanned track is calculated according to the to-be-scanned track, specifically: according to the displacement amplitude in the track to be scanned and the frequency response coefficient k of the scan driver in the XY-type two-dimensional scanner, Calculating an excitation voltage corresponding to the excitation voltage and the y-direction driving frequency component corresponding to the x-direction driving frequency component in the to-be-scanned trajectory x′, and an excitation voltage corresponding to the x-direction driving frequency component in the to-be-scanned trajectory y′
  • the excitation voltage corresponding to the frequency component is driven in the y direction to determine a drive signal corresponding to the track to be scanned.
  • the voltage corresponding to the x-direction drive frequency component in the scan track x' is increased according to the tilt angle.
  • the present invention also provides an optical fiber scanning imaging apparatus comprising the above-described optical fiber scanning imaging apparatus projection geometric deformation correction system.
  • the optical path turning device is a rotating prism.
  • the rotating prism is specifically a Dove prism, a Bie prism or an Abbe prism.
  • the correction system of the projection geometric deformation of the optical fiber scanning imaging device proposed by the invention can effectively solve the geometric deformation easily occurring in the optical fiber scanning imaging device of the optical fiber scanner as the XY type two-dimensional scanner, and can effectively improve the user experience of the optical fiber scanning imaging device. To make it possible for mass production.
  • FIG. 1 is a schematic diagram of projection geometry deformation of a fiber scanning imaging device
  • FIG. 2 is a schematic diagram of a correction system correction method for projection geometric deformation of an optical fiber scanning imaging device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an angular deflection ratio of a dove prism according to an embodiment of the present invention.
  • the biggest difference between the fiber scanning display and the traditional display is that it is separated from the material pixel limitation.
  • the pixel grid displayed by the fiber scanning is an artificially divided spatial area, and is modulated by the laser according to a predetermined modulation time, thereby achieving uniformity and pre-preparation.
  • the set image is displayed. Therefore, the laser modulation parameters can be changed to deform the image, such as image distortion similar to optical distortion, fisheye effect, etc., uneven pixel size, irregular display area, and the like.
  • the inventors of the present invention have proposed a correction system for the projection geometric deformation of the optical fiber scanning imaging device for the geometric deformation easily generated by the optical fiber scanning, and the correction system is suitable for the optical fiber scanner as the XY type two-dimensional scanner.
  • Fiber optic scanning imaging equipment In the XY type two-dimensional scanner, the scanning direction includes x and y directions perpendicular to each other.
  • the scanning driver scans the image in the XY type two-dimensional scanner
  • the fast axis scans in the x direction
  • the slow axis is perpendicular to the x direction.
  • Directional scanning is referred to the optical fiber scanning.
  • the correction system of the embodiment of the invention comprises a test image outputter, an image collector and a processor.
  • the processor can be a separate processor or a processor of the fiber scanning imaging device, in which the corresponding computer program can be stored. specifically:
  • the test image outputter is configured to output a predetermined rectangular detection image to the fiber scanning imaging device.
  • This embodiment assumes that the rectangular detection image exhibits a standard horizontal rectangular image after passing through the ideal fiber scanning imaging device, and the standard horizontal matrix image is a standard image of the rectangular detection image.
  • the image collector is configured to collect a projection image output by the fiber scanning imaging device. If the fiber scanning imaging device is in an ideal state, the projected image output by the fiber scanning imaging device should be identical to the shape of the predetermined rectangular detection image output by the test image output device. When the projected image output by the fiber scanning imaging device does not coincide with the shape of the predetermined rectangular detection image output by the test image output device, it is proved that the fiber scanning imaging device is deformed during image scanning.
  • the present application mainly solves the geometric distortion of the optical fiber scanning imaging device, so that the computer program corresponding to the correction system stored in the processor is executed by the processor to implement the following steps:
  • S101 Determine whether the projection image acquired by the image collector is a parallelogram having an obtuse angle. If yes, respectively, starting from two obtuse angle vertices, and making a vertical line to the opposite side to obtain a new rectangular area. Referring to the first illustration on the left side of Fig. 2, the dotted line is a vertical line to the opposite side, and the area sandwiched between the two perpendicular lines is the new rectangular area.
  • S102 Laser-modulating the projected image by using the new rectangular area as the effective display area, thereby obtaining a rectangular image as shown in the middle of FIG. 2 .
  • effective image light modulation is no longer performed.
  • S104 Calculate a driving signal for correcting the effective display area according to the tilt angle, so that the corrected effective display area becomes a horizontal rectangle; or calculate an optical path turner for correcting the effective display area according to the tilt angle.
  • the deflection angle is such that the optical path deflector is deflected according to the deflection angle, and the corrected effective display area is made horizontal, as shown in the rightmost side of FIG. 2 .
  • the two types of rotation modes are included.
  • the deflection angle of the optical path deflector for correcting the effective display area may be calculated according to the inclination angle. After the optical path deflector is deflected according to the deflection angle, the corrected effective display area is made into a horizontal rectangle.
  • the optical path breaker may be an image-rotating prism, and may specifically be a Dove prism, a Beyond prism or an Abbe prism.
  • the optical path breaker is used as a dove prism to illustrate how to calculate the deflection angle of the optical path deflector for correcting the effective display area according to the tilt angle.
  • FIG. 3 is a schematic diagram of an angular deflection ratio of a Dove prism according to an embodiment of the present invention.
  • the scanning beam is incident from the left side of the dove prism 31, and is emitted from the right side of the dove prism 31.
  • the angular deflection ratio of the dove prism 31 is a rotation angle of the dove prism around the optical axis, and the passage is passed.
  • the reflected image of the wei prism 31 is rotated by 2 ⁇ in the same direction, that is, the angular deflection ratio of the Dove prism is 2.
  • the correction angle of the rotation prism should be - ⁇ /2, and the negative sign indicates that the direction of rotation is opposite to the inclination angle of the mechanism scanning device.
  • the correction angle example introduced in this embodiment is an angle within a circumference.
  • the correction angle may be added by N 360 degrees according to the actual situation, that is, the correction angle may be (N*). 2 ⁇ - ⁇ /2), will not be described here.
  • step S104 of the above embodiment is: calculating a driving signal for correcting the effective display area according to the tilt angle, so that the corrected effective display area becomes a horizontal rectangle, and the driving signal thereof
  • the specific calculation method includes the following steps A1 and A2.
  • step A1 the trajectory to be scanned corrected by the fiber scanning imaging device is calculated according to the tilt angle, and the calculation expression may be:
  • x and y are standard scanning trajectories of the XY-type two-dimensional scanner
  • is the tilt angle, in the embodiment of the invention, ⁇ is an x-direction tilt angle
  • x' and y' are corrected traces to be scanned.
  • step A2 calculating a driving signal corresponding to the to-be-scanned track according to the to-be-scanned track, specifically:
  • the X-direction drive may be performed according to the tilt angle value.
  • the voltage is increased as a whole to compensate for the swing. That is, when the tilt angle is greater than the set threshold, according to the tilt angle, the excitation voltage corresponding to the x-direction driving frequency component in the to-be-scanned track x' and the to-be-scanned track y' The excitation voltage corresponding to the frequency component of the x direction is increased to compensate for the swing.
  • the fiber drive signal can be a sinusoidal signal, a cosine signal, or a triangular wave signal.
  • the driving signal is a sinusoidal signal as an example: the driving signals of the optical fiber scanner in the x direction and the y direction can be expressed as:
  • a x is the amplitude of the displacement of the spot in the x direction
  • a y is the amplitude of the displacement of the spot in the y direction.
  • the excitation frequency of f x 1V
  • f y the voltage of the scan driver response at a voltage of 1 V
  • f x is the frequency of the drive signal in the x direction
  • f y is the frequency of the drive signal in the y direction
  • ⁇ x is the x direction versus the frequency f x
  • the phase delay of the response, ⁇ y is the phase delay of the y-direction response to frequency f y . Since the motion trajectory of the spot is directly related to the motion of the scan driver, the two-dimensional motion of the spot can be expressed in the Earth's inertial coordinate system as:
  • x, y are the motion trajectories of the spot in the x direction and the y direction, respectively.
  • the to-be-scanned track of the spot in the x' direction and the y' direction satisfies the following relationship:
  • the displacements of the scan driver in the x' direction and the y' direction both include the x-direction frequency component f x and the y-direction frequency component f y for the voltage-controlled vibration device (ie, in the embodiment of the present invention)
  • the harmonic component of the vibration displacement (which is a sinusoidal portion in the present scheme) can be realized by an excitation voltage corresponding to the frequency component, and therefore, the correction of the image tilt can be converted into an adjustment of the excitation voltage of the scan driver, wherein the tilt The change in angle ⁇ is reflected in the control of the excitation voltage.
  • the scan driver tests the spectral characteristics of the scan driver to obtain the spectral response of the scan driver, that is, the frequency response coefficient k associated with the excitation frequency, the frequency is f, and the value of k indicates that the excitation frequency is f.
  • the vibration device is at a voltage of 1V
  • the amplitude of the response, the frequency response coefficient of the vibrating device at different excitation frequencies is different, taking the x' direction as an example, assuming that the excitation frequency is f x , the frequency response coefficient is When the excitation frequency is f y , the frequency response coefficient is Then the track to be scanned in the x' direction can be expressed as:
  • the excitation voltages of the different spectral components in the driving signals of the scan driver in a single direction i.e., the x' direction or the y' direction in the embodiment of the present invention
  • the excitation voltage amplitude of each frequency component in the x′ direction is:
  • the excitation voltage of each frequency component in the y' direction can be obtained, and the driving signal corresponding to the track to be scanned can be expressed as:
  • ⁇ 1 is the phase delay of the response of the frequency f x in the x′ direction
  • ⁇ 2 is the phase delay of the response of the frequency f y in the x′ direction
  • ⁇ 3 is the phase delay of the response of the y′ direction to the frequency f x
  • ⁇ 4 is y′ The phase delay of the direction response to frequency f y .
  • the embodiment of the present invention further provides a fiber scanning imaging device, which comprises the correction system of the projection geometric deformation of the fiber scanning imaging device in the above embodiment.
  • the correction system for projecting geometric deformation of the fiber scanning imaging device may be an independent correction system for correcting or repairing the fiber scanning imaging device before leaving the factory.
  • the correction system is an independent correction system
  • the correction parameters are stored in the fiber scanning imaging device, and can be directly integrated into the fiber scanning imaging device, so that the user can control the correction by the command.
  • the fiber scanning imaging device needs to be placed horizontally.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

本发明公开了一种光纤扫描成像设备及其投影几何变形的矫正系统,矫正系统包括测试图像输出器、图像采集器和处理器,其中:所述测试图像输出器,用于向光纤扫描成像设备输出预定的矩形检测图像;所述图像采集器,用于采集光纤扫描成像设备输出的投影图像;所述处理器中存储的计算机程序根据来自测试图像输出器和图像采集器的数据,执行一系列图像及信号处理,实现将倾斜变形的投影图像矫正为水平矩形图像,能有效解决现有技术中存在的XY型激光扫描成像设备在投影时图像产生倾斜的技术问题。

Description

光纤扫描成像设备及其投影几何变形的矫正系统
本申请要求享有2017年12月15日提交的名称为“光纤扫描成像设备投影几何变形的校正系统”的中国专利申请CN201711348728.3的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及光学成像领域,尤其涉及一种光纤扫描成像设备及其投影几何变形的矫正系统。
背景技术
相比传统的投影显示设备,以激光扫描成像(如光纤扫描成像、MEMS(Micro-Electro-Mechanical Systems;微机电系统)扫描成像等)为核心光学显示系统的激光扫描成像设备,一个突出优势就是体积更小,可以集成到各种手持设备中,如:嵌入手机、或者做成独立的厘米级别尺寸的微型投影仪,从而方便用户随身携带,随时随地进行投影显示。
光纤扫描投影成像系统利用驱动器带动光纤高速振动,配合激光调制算法,实现图像信息的显示。为了实现最大幅度的振动,光纤工作在共振模式,而共振状态下光纤的扫描特性复杂,由于振动的非线性效应、光纤对称性、扫描器安装的对称性、稳定性等因素,导致光纤在共振区内振动幅度较大时,XY型扫描器快轴(X轴)的扫描轨迹不再是理想的水平的直线,而是倾斜的直线。参见图1所示,图中标记1为快轴(x方向)的扫描轨迹,2为慢轴(y方向)的扫描轨迹,3为快、慢轴同时扫描时合成轨迹的图像显示区域。此时,调制出来的显示图像不再是矩形,水平方向产生了倾斜,成为了具有钝角的平行四边形,会严重影响图像显示效果。
发明内容
本发明的目的是提供一种光纤扫描成像设备投影几何变形的矫正系统及包含该矫正系统的光纤扫描成像设备,用于解决现有技术中存在的XY型激光扫描成像设备在投影时,图像产生倾斜的技术问题。
为了实现上述发明目的,本发明提供了一种光纤扫描成像设备投影几何变形的矫正系统,该矫正系统适用于光纤扫描器为XY型二维扫描器的光纤扫描成像设备,所述矫正系统包括测试图像输出器、图像采集器和处理器,其中:
所述测试图像输出器,用于向光纤扫描成像设备输出预定的矩形检测图像;
所述图像采集器,用于采集光纤扫描成像设备输出的投影图像;
所述处理器中存储的计算机程序被处理器执行时实现如下步骤:
判断图像采集器采集到的投影图像是否为具有钝角的平行四边形,若是,则分别以两个钝角顶点为起点,向对边做垂线,得到一个新的矩形区域;
将新的矩形区域作为有效显示区域对所述投影图像进行激光调制;
将所述图像采集器采集到的投影图像与矩形检测图像的标准图像进行比对,得到投影图像与标准图像之间水平方向的倾斜角度;
根据所述倾斜角度计算用于矫正所述有效显示区域的驱动信号,使矫正后的有效显示区域成为水平矩形;或根据所述倾斜角度计算用于矫正所述有效显示区域的光路转折器偏转角度,以使光路转折器根据该偏转角度进行偏转后,使矫正后的有效显示区域成为水平矩形。
优选的,根据所述倾斜角度计算用于矫正所述有效显示区域的驱动信号,使矫正后的有效显示区域成为水平矩形,具体为:根据所述倾斜角度计算光纤扫描成像设备矫正后的待扫描轨迹;根据所述待扫描轨迹,计算与所述待扫描轨迹对应的驱动信号。
优选的,根据所述倾斜角度计算光纤扫描成像设备矫正后的待扫描轨迹的计算表达式为:
Figure PCTCN2018116202-appb-000001
其中,x和y为所述XY型二维扫描器的标准扫描轨迹;α为所述倾斜角度;x′和y′为矫正后的待扫描轨迹。
优选的,根据所述待扫描轨迹,计算与所述待扫描轨迹对应的驱动信号,具体为:根据待扫描轨迹中的位移振幅和XY型二维扫描器中的扫描驱动器的频率响应系数k,计算所述待扫描轨迹x′中的x方向驱动频率分量对应的激励电压和y方向驱动频率分量对应的激励电压,以及所述待扫描轨迹y′中的x方向驱动频率分量对应的激励电压和y方向驱动频率分量对应的激励电压,从而确定与待扫描轨迹对应的驱动信号。
优选的,当所述倾斜角度大于设定阈值时,根据所述倾斜角度,对待扫描轨迹x′中的x方向驱动频率分量对应的电压进行加大。
相应的,本发明还提供了一种光纤扫描成像设备,所述光纤扫描成像设备包括上述任一种光纤扫描成像设备投影几何变形的矫正系统。
优选的,当所述光纤扫描成像设备具备光路转折器时,所述光路转折器为旋像棱镜。
优选的,所述旋像棱镜具体为道威棱镜、别汉棱镜或阿贝棱镜。
本发明提出的光纤扫描成像设备投影几何变形的矫正系统能有效解决光纤扫描器为XY型二维扫描器的光纤扫描成像设备容易发生的几何变形,能有效提升该类光纤扫描成像设备的用户体验,使其具备量产可能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为光纤扫描成像设备投影几何变形示意图;
图2为本发明实施例光纤扫描成像设备投影几何变形的矫正系统矫正原理图;
图3为本发明实施例提供的道威棱镜的角度偏转比例的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
光纤扫描显示与传统显示最大的区别就在于,其脱离了物料像素的限制,光纤扫描显示的像素网格是人为划分的空间区域,并通过激光按照预定的调制时间进行调制,从而实现均匀、预设的图像显示。因此,可以改变激光调制参数,使图像产生变形,如类似于光学畸变、鱼眼效应等的图像变形、像素尺寸不均匀、显示区域不规则等各种变形形式。
本申请发明人基于上述光纤扫描技术特性,针对光纤扫描容易产生的几何变形,提出 了一种光纤扫描成像设备投影几何变形的矫正系统,该矫正系统适用于光纤扫描器为XY型二维扫描器的光纤扫描成像设备。XY型二维扫描器,扫描方向包括相互垂直的x方向和y方向,在XY型二维扫描器中的扫描驱动器扫描图像时,快轴沿x方向扫描,慢轴沿与x方向垂直的y方向扫描。
本发明实施例所述矫正系统包括测试图像输出器、图像采集器和处理器。该处理器可以为单独处理器,也可以共用光纤扫描成像设备的处理器,在其中存储对应的计算机程序即可。具体地:
所述测试图像输出器,用于向光纤扫描成像设备输出预定的矩形检测图像。本实施例假设该矩形检测图像在经过理想光纤扫描成像设备后,呈现出的是标准水平矩形图像,该标准水平矩阵图像即为矩形检测图像的标准图像。
所述图像采集器,用于采集光纤扫描成像设备输出的投影图像。如果光纤扫描成像设备处于理想状态,则光纤扫描成像设备输出的投影图像应该是与所述测试图像输出器输出的预定矩形检测图像形状一致的。当光纤扫描成像设备输出的投影图像与所述测试图像输出器输出的预定矩形检测图像形状不一致时,证明光纤扫描成像设备在图像扫描过程中发生了变形。本申请主要为解决光纤扫描成像设备几何变形,因此所述处理器中存储的对应于所述矫正系统的计算机程序被处理器执行时实现如下步骤:
S101:判断图像采集器采集到的投影图像是否为具有钝角的平行四边形,若是,则分别以两个钝角顶点为起点,向对边做垂线,得到一个新的矩形区域。参见图2左侧第一个图示,虚线即为向对边做垂线,夹在两条垂线中间的区域即为该新的矩形区域。
S102:将新的矩形区域作为有效显示区域对投影图像进行激光调制,从而得到如图2中间图示矩形图像。而除了上述新的矩形区域以外的区域,不再进行有效图像光调制。
S103:将所述图像采集器采集到的投影图像与矩形检测图像的标准图像进行比对,得到投影图像与标准图像之间水平方向的倾斜角度;
S104:根据所述倾斜角度计算用于矫正所述有效显示区域的驱动信号,使矫正后的有效显示区域成为水平矩形;或根据所述倾斜角度计算用于矫正所述有效显示区域的光路转折器偏转角度,以使光路转折器根据该偏转角度进行偏转后,使矫正后的有效显示区域成为水平矩形,如图2最右侧图示。
上述实施例的步骤S104中,包含两种旋像方式,当所述光纤扫描成像设备具备光路转折器时,可以采用根据所述倾斜角度计算用于矫正所述有效显示区域的光路转折器偏转角度,以使光路转折器根据该偏转角度进行偏转后,使矫正后的有效显示区域成为水平矩 形。此种实施例中,所述光路转折器可以为旋像棱镜,具体可以为道威棱镜、别汉棱镜或阿贝棱镜。
下面以光路转折器为道威棱镜进行举例说明如何根据倾斜角度计算用于矫正所述有效显示区域的光路转折器偏转角度。
参加图3,图3为本发明实施例提供的道威棱镜的角度偏转比例的示意图。如图3所示,扫描光束从道威棱镜31的左侧入射,从道威棱镜31的右侧出射,道威棱镜31的角度偏转比例为道威棱镜绕光轴旋转β角度,则通过道威棱镜31的反射像会同方向旋转2β角度,也即道威棱镜的角度偏转比例为2。因此在投影图像与标准图像之间水平方向的倾斜角度为α的情况下,可以计算出旋像棱镜的矫正角度应当为-α/2,负号表示旋转的方向与机构扫描装置的倾斜角度相反。需要说明的是,本实施例所介绍的矫正角度示例是在一个圆周内角度,在其他实施例中,矫正角度还可以根据实际情况加上N个360°,也即矫正角度可以为(N*2π-α/2),在此就不再赘述了。
当然,在其他实施例中,本领域所属的技术人员能够根据实际情况,选择其他具有转像功能的偏转棱镜,以满足实际情况的需要,当然,不同的旋像棱镜中棱镜旋转角度和像的旋转角度可能不同,针对特定的旋像系统,只要所采用的矫正角度满足该系统的旋像角度关系即可,在此就不再赘述了。
另一种实施例中,即上述实施例的步骤S104为:根据所述倾斜角度计算用于矫正所述有效显示区域的驱动信号,使矫正后的有效显示区域成为水平矩形时,其驱动信号的具体计算方式包括如下步骤A1和步骤A2。
在步骤A1中:根据所述倾斜角度计算光纤扫描成像设备矫正后的待扫描轨迹,计算表达式可以为:
Figure PCTCN2018116202-appb-000002
其中,x和y为所述XY型二维扫描器的标准扫描轨迹;α为所述倾斜角度,本发明实施例中α为x方向倾斜角度;x′和y′为矫正后的待扫描轨迹。
在步骤A2中:根据所述待扫描轨迹,计算与所述待扫描轨迹对应的驱动信号,具体为:
根据待扫描轨迹中的位移振幅和XY型二维扫描器中的扫描驱动器的频率响应系数k,计算所述待扫描轨迹x′中的x方向驱动频率分量对应的激励电压和y方向驱动频率分量对应的激励电压,以及所述待扫描轨迹y′中的x方向驱动频率分量对应的激励电压和y方向驱动频率分量对应的激励电压,从而确定与待扫描轨迹对应的驱动信号。
上述实施例中,当所述倾斜角度大于设定阈值时,直接调制成矩形区域将使显示尺寸有明显的变小,为了解决这一问题,可根据所述倾斜角度值,对X方向的驱动电压进行整体加大,以提升摆幅进行补偿。也就是说,当所述倾斜角度大于设定阈值时,根据所述倾斜角度,对所述待扫描轨迹x′中的x方向驱动频率分量对应的激励电压和所述待扫描轨迹y′中的x方向驱动频率分量对应的激励电压都进行加大,以提升摆幅进行补偿。
为了更详细地介绍本发明实施例,下面将结合计算表达式举例详细介绍下驱动信号的一种计算方式:
光纤驱动信号可以为正弦信号、余弦信号或三角波信号等等。本发明实施例中,以驱动信号为正弦信号为例进行介绍:光纤扫描器在x方向和y方向的驱动信号可以表示为:
Figure PCTCN2018116202-appb-000003
其中,A x为光斑在x方向上的位移的振幅,A y为光斑在y方向上的位移的振幅,
Figure PCTCN2018116202-appb-000004
为激励频率为f x,1V的电压下,光纤扫描器中的扫描驱动器响应的幅值,
Figure PCTCN2018116202-appb-000005
为激励频率为f y,1V的电压下,扫描驱动器响应的幅值,f x为x方向的驱动信号的频率,f y为y方向上驱动信号的频率,φ x为x方向对频率f x响应的相位延迟,φ y为y方向对频率f y响应的相位延迟。由于光斑的运动轨迹与扫描驱动器的运动具有直接关系,光斑的二维运动在地球惯性坐标系中可以表示为:
其中,x,y分别为光斑在x方向和y方向的运动轨迹。
要使扫描驱动器能沿x′方向和y′方向进行扫描,根据表达式(2),则光斑的在x′方向和y′方向的待扫描轨迹满足以下关系:
Figure PCTCN2018116202-appb-000007
求解得待扫描轨迹的计算表达式为:
Figure PCTCN2018116202-appb-000008
由表达式(3)可知,扫描驱动器在x′方向和y′方向的位移均包括x方向频率分量 f x和y方向频率分量f y,对于电压控制的振动器件(即本发明实施例中的光纤)而言,振动位移的和谐分量(本方案中为正弦部分)可以通过与频率分量对应的激励电压实现,因此,图像倾斜的矫正可以转化为对扫描驱动器的激励电压的调整,其中,倾斜角度α的变化反映在了激励电压的控制中。
具体地,扫描驱动器在标定过程中,会对扫描驱动器的频谱特性进行测试,得到扫描驱动器的频谱响应,即与激励频率相关的频率响应系数k,频率为f,k的值表示激励频率为f时,振动器件在1V的电压下,响应的幅值,振动器件在不同的激励频率下的频率响应系数不同,以x′方向为例,假设激励频率为f x时,频率响应系数为
Figure PCTCN2018116202-appb-000009
激励频率为f y时,频率响应系数为
Figure PCTCN2018116202-appb-000010
则x′方向的待扫描轨迹可以表示为:
Figure PCTCN2018116202-appb-000011
根据表达式(4)和(5),可以得到单一方向(即本发明实施例中的x′方向或y′方向)的扫描驱动器的驱动信号中不同频谱分量的激励电压,从而实现对图像倾斜的矫正。
具体的,本发明实施例中,x′方向的各频率分量的激励电压幅值为:
Figure PCTCN2018116202-appb-000012
同理,可以得到y′方向的各频率分量的激励电压,则与待扫描轨迹对应的驱动信号可以表示为:
Figure PCTCN2018116202-appb-000013
φ 1为x′方向对频率f x响应的相位延迟,φ 2为x′方向对频率f y响应的相位延迟,φ 3为y′方向对频率f x响应的相位延迟,φ 4为y′方向对频率f y响应的相位延迟。然后,根据上述驱动信号对激光扫描装置进行驱动,使得激光扫描装置的在x′方向和y′方向的轨迹在标准扫描方向上的合成轨迹与标准扫描轨迹相同,从而使得扫描图像保持稳定,不随激光扫描装置的倾斜而倾斜。
相应的,本发明实施例还提出了一种光纤扫描成像设备,所述光纤扫描成像设备包括上述实施例中的光纤扫描成像设备投影几何变形的矫正系统。即本发明实施例中,光纤扫 描成像设备投影几何变形的矫正系统可以为一个独立的矫正系统,用于光纤扫描成像设备出厂前矫正或维修矫正,当该矫正系统为一个独立的矫正系统时,矫正后将矫正参数存储在光纤扫描成像设备中出厂即可;也可以直接集成到光纤扫描成像设备中,使用户可以自行通过指令控制矫正。用户矫正时,需要先将光纤扫描成像设备水平放置。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (8)

  1. 光纤扫描成像设备投影几何变形的矫正系统,该矫正系统适用于光纤扫描器为XY型二维扫描器的光纤扫描成像设备,其特征在于,所述矫正系统包括测试图像输出器、图像采集器和处理器,其中:
    所述测试图像输出器,用于向光纤扫描成像设备输出预定的矩形检测图像;
    所述图像采集器,用于采集所述光纤扫描成像设备输出的投影图像;
    所述处理器中存储的计算机程序被处理器执行时实现如下步骤:
    判断所述图像采集器采集到的投影图像是否为具有钝角的平行四边形,若是,则分别以两个钝角顶点为起点,向对边做垂线,得到一个新的矩形区域;
    将所述新的矩形区域作为有效显示区域对所述投影图像进行激光调制;
    将所述图像采集器采集到的投影图像与所述矩形检测图像的标准图像进行比对,得到投影图像与标准图像之间水平方向的倾斜角度;
    根据所述倾斜角度计算用于矫正所述有效显示区域的驱动信号,使矫正后的有效显示区域成为水平矩形;或根据所述倾斜角度计算用于矫正所述有效显示区域的光路转折器偏转角度,以使光路转折器根据该偏转角度进行偏转后,使矫正后的有效显示区域成为水平矩形。
  2. 如权利要求1所述的矫正系统,其特征在于,根据所述倾斜角度计算用于矫正所述有效显示区域的驱动信号,使矫正后的有效显示区域成为水平矩形,具体为:
    根据所述倾斜角度计算光纤扫描成像设备矫正后的待扫描轨迹;
    根据所述待扫描轨迹,计算与所述待扫描轨迹对应的驱动信号。
  3. 如权利要求2所述的矫正系统,其特征在于,根据所述倾斜角度计算光纤扫描成像设备矫正后的待扫描轨迹的计算表达式为:
    Figure PCTCN2018116202-appb-100001
    其中,x和y为所述XY型二维扫描器的标准扫描轨迹;α为所述倾斜角度;x′和y′为矫正后的待扫描轨迹。
  4. 如权利要求3所述的矫正系统,其特征在于,根据所述待扫描轨迹,计算与所述待扫描轨迹对应的驱动信号,具体为:
    根据待扫描轨迹中的位移振幅和所述XY型二维扫描器中的扫描驱动器的频率响应 系数k,计算所述待扫描轨迹x′中的x方向驱动频率分量对应的激励电压和y方向驱动频率分量对应的激励电压,以及所述待扫描轨迹y′中的x方向驱动频率分量对应的激励电压和y方向驱动频率分量对应的激励电压,从而确定与待扫描轨迹对应的驱动信号。
  5. 如权利要求4所述的矫正系统,其特征在于,当所述倾斜角度大于设定阈值时,根据所述倾斜角度,对所述待扫描轨迹x′中的x方向驱动频率分量对应的激励电压和所述待扫描轨迹y′中的x方向驱动频率分量对应的激励电压都进行加大。
  6. 一种光纤扫描成像设备,其特征在于,所述光纤扫描成像设备包括权利要求1至5任一项所述的光纤扫描成像设备投影几何变形的矫正系统。
  7. 如权利要求6所述的光纤扫描成像设备,其特征在于,当所述光纤扫描成像设备具备光路转折器时,所述光路转折器为旋像棱镜。
  8. 如权利要求7所述的光纤扫描成像设备,其特征在于,所述旋像棱镜为道威棱镜、别汉棱镜或阿贝棱镜。
PCT/CN2018/116202 2017-12-15 2018-11-19 光纤扫描成像设备及其投影几何变形的矫正系统 WO2019114500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711348728.3A CN108810499B (zh) 2017-12-15 2017-12-15 光纤扫描成像设备投影几何变形的校正系统
CN201711348728.3 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019114500A1 true WO2019114500A1 (zh) 2019-06-20

Family

ID=64095181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116202 WO2019114500A1 (zh) 2017-12-15 2018-11-19 光纤扫描成像设备及其投影几何变形的矫正系统

Country Status (2)

Country Link
CN (1) CN108810499B (zh)
WO (1) WO2019114500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741123A (zh) * 2020-05-28 2021-12-03 成都理想境界科技有限公司 一种投影矫正方法及光纤扫描成像设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810499B (zh) * 2017-12-15 2020-04-24 成都理想境界科技有限公司 光纤扫描成像设备投影几何变形的校正系统
CN112859327B (zh) * 2019-11-27 2022-10-18 成都理想境界科技有限公司 一种图像输出控制方法及光纤扫描成像系统
CN112269263A (zh) * 2020-11-06 2021-01-26 苏州金螳螂文化发展股份有限公司 一种展厅多屏折幕影片投射方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204670A1 (en) * 2007-02-23 2008-08-28 Seiko Epson Corporation Projector, projected image adjustment method, and program
CN202535470U (zh) * 2011-12-28 2012-11-14 高原 方向矫正装置、投影发射装置、投影图像矫正系统
CN105100792A (zh) * 2015-09-21 2015-11-25 上海碧虎网络科技有限公司 一种几何图形投影成像自动校正装置及其校正方法
CN105227880A (zh) * 2015-09-06 2016-01-06 青岛海信信芯科技有限公司 一种投影图像校正方法和装置
CN105573023A (zh) * 2015-11-25 2016-05-11 全普光电科技(上海)有限公司 多mems激光投影装置及其方法
CN106507077A (zh) * 2016-11-28 2017-03-15 江苏鸿信系统集成有限公司 基于图像分析的投影仪画面矫正及遮挡避让方法
CN108810499A (zh) * 2017-12-15 2018-11-13 成都理想境界科技有限公司 光纤扫描成像设备投影几何变形的校正系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204670A1 (en) * 2007-02-23 2008-08-28 Seiko Epson Corporation Projector, projected image adjustment method, and program
CN202535470U (zh) * 2011-12-28 2012-11-14 高原 方向矫正装置、投影发射装置、投影图像矫正系统
CN105227880A (zh) * 2015-09-06 2016-01-06 青岛海信信芯科技有限公司 一种投影图像校正方法和装置
CN105100792A (zh) * 2015-09-21 2015-11-25 上海碧虎网络科技有限公司 一种几何图形投影成像自动校正装置及其校正方法
CN105573023A (zh) * 2015-11-25 2016-05-11 全普光电科技(上海)有限公司 多mems激光投影装置及其方法
CN106507077A (zh) * 2016-11-28 2017-03-15 江苏鸿信系统集成有限公司 基于图像分析的投影仪画面矫正及遮挡避让方法
CN108810499A (zh) * 2017-12-15 2018-11-13 成都理想境界科技有限公司 光纤扫描成像设备投影几何变形的校正系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741123A (zh) * 2020-05-28 2021-12-03 成都理想境界科技有限公司 一种投影矫正方法及光纤扫描成像设备
CN113741123B (zh) * 2020-05-28 2022-12-30 成都理想境界科技有限公司 一种投影矫正方法及光纤扫描成像设备

Also Published As

Publication number Publication date
CN108810499A (zh) 2018-11-13
CN108810499B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2019114500A1 (zh) 光纤扫描成像设备及其投影几何变形的矫正系统
WO2019174537A1 (zh) 一种图像矫正方法及光纤扫描成像设备
EP3937486A1 (en) Projector keystone correction method, apparatus, and system, and readable storage medium
CN102998885B (zh) 对投影仪投影图像失真校正的方法
US20060017890A1 (en) Image display method, image display apparatus, light scattering means, and image display program
JP4266660B2 (ja) 投射型表示光学系および投射型画像表示装置
JP2001061121A (ja) プロジェクタ装置
US20050190419A1 (en) Two-dimensional scanning apparatus and scanning type image displaying apparatus using the same
US20050052620A1 (en) Projection type display device
CN102365865A (zh) 多投影显示系统和屏幕画面形成方法
EP2911380B1 (en) Inclining action device, optical scanner employing the inclining action device, and image displaying apparatus employing the inclining action device
US10481363B2 (en) Projector and focus adjustment method
US20120293850A1 (en) Optical scanning apparatus and optical reflection device used therefor
US20110242421A1 (en) Image distortion correction apparatus and method
US7982934B2 (en) Scanned beam display with parallelogram distortion correction
JP4407727B2 (ja) 走査型画像表示装置
US10928611B2 (en) Lens module and projector
JP4199641B2 (ja) プロジェクタ装置
CN108718404B (zh) 影像校正方法及影像校正系统
CN109308684B (zh) 一种图像倾斜矫正方法及计算机可读存储介质
CN103561224A (zh) 激光倾斜投影图像的校正方法
TW200909975A (en) Device and method for compensating at least one non-linearity and laser projection system
JPWO2009057522A1 (ja) 走査型投射装置
JP5565270B2 (ja) 走査方法、映像投影装置および画像取得装置
TWI688274B (zh) 影像校正方法及影像校正系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889671

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18889671

Country of ref document: EP

Kind code of ref document: A1