WO2019184611A1 - 一种近眼显示系统 - Google Patents

一种近眼显示系统 Download PDF

Info

Publication number
WO2019184611A1
WO2019184611A1 PCT/CN2019/075057 CN2019075057W WO2019184611A1 WO 2019184611 A1 WO2019184611 A1 WO 2019184611A1 CN 2019075057 W CN2019075057 W CN 2019075057W WO 2019184611 A1 WO2019184611 A1 WO 2019184611A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
image source
image
display system
diffraction
Prior art date
Application number
PCT/CN2019/075057
Other languages
English (en)
French (fr)
Inventor
宋海涛
周旭东
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2019184611A1 publication Critical patent/WO2019184611A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division

Definitions

  • the present invention relates to the field of near-eye display technology, and more particularly to a near-eye display system.
  • an AR near-eye display system composed of a scanning image source, such as a lens-type retinal scanning display invented by the Japanese brother company, a Vaunt smart glasses released by Intel, etc.
  • a scanning image source such as a lens-type retinal scanning display invented by the Japanese brother company, a Vaunt smart glasses released by Intel, etc.
  • the size of the display device is limited, and the human eye needs Strict alignment, otherwise it is easy to lose the field of view; therefore, it is necessary to customize a special wearing device according to the pupil position of each user, and the versatility is poor.
  • the embodiment of the invention provides a near-eye display system for solving the technical problem that the prior-eye display system requires the user to have a fixed pupil position and poor versatility.
  • the present invention provides a near-eye display system including an image source and an imaging mirror set, wherein:
  • the image source is used to exit the image to be displayed.
  • the imaging mirror set has at least two imaging components disposed in sequence along the exit path of the image source, the imaging components each reflecting or diffracting the light beam emitted by the image source, except for the imaging component located on the last side of the optical path, other imaging components
  • the reflectance or diffraction efficiency is less than 100%, and each imaging component forms an image on one view area by reflection or diffraction, and the view areas of the respective imaging components are on the same plane and do not overlap each other.
  • the imaging mirror group is positioned on the front side of the image source, and each imaging component reflects or diffracts the light beam emitted by the partial image source and transmits the light beam emitted from the image source that is not reflected or diffracted by the imaging component, and each imaging component passes the reflection Or diffracting the beam of light exiting the portion of the image source out of the imaging optics and directing to an area of view corresponding to the imaging assembly to form an image.
  • each imaging component emits the light beam emitted from the partial image source by reflecting or diffracting the light beam emitted from the partial image source, and is guided to the imaging lens group and guided to An image is formed on a view area corresponding to the imaging assembly, and a light beam emitted from an image source that is not reflected or diffracted by the imaging assembly is transmitted from the imaging assembly to the next imaging assembly, and the transmitted light beam is unmodulated.
  • each imaging group forms an image on a view area corresponding to the imaging assembly, and each view area is on the same plane and does not overlap each other, so that when the user's pupil is in a different view area of the plane The user can observe the image.
  • the imaging mirror set is an optical element having a transmission visual property that transmits a light beam that is emitted from the outside world to the plurality of view regions. Therefore, while observing the image emitted by the image source, the user can see the image of the real world through the imaging mirror group, and achieve the effect of augmented reality display.
  • the imaging mirror group does not transmit a light beam that is emitted from the external world to the plurality of view regions, thereby making the solution applicable to the virtual reality device.
  • the spacing between any two adjacent view regions is equal to the diameter smaller than the pupil of the eye, so that the image can be observed at any position within the range formed by the plurality of view regions. To further enhance the practicality.
  • the number of imaging assemblies may be two, three, four or more.
  • the image source is an image source that emits a display image at a single point.
  • the image source comprises any one of a mems scan display image source, a fiber scan display image source or a single-level sub-spectral image source of the area array image source.
  • the imaging component located at the rear of the optical path totally reflects or diffracts the light beam emitted from the image source incident on the imaging component.
  • the imaging component is a diffraction imaging microstructure, each of the diffraction imaging microstructures diffracts a beam of the image source and transmits the beam of the image source that is not diffracted by the imaging component, and each diffraction imaging micro
  • the structures each emit a beam of light exiting the portion of the image source out of the imaging mirror by diffraction and direct to form an image on a view area corresponding to the imaging assembly.
  • the diffractive imaging microstructure transmits a beam of light that is directed from the outside world to the plurality of view regions. Therefore, while observing the image emitted by the image source, the image of the real world can be seen through the imaging mirror group, and the effect of the augmented reality display is achieved.
  • the imaging component is a translucent optical surface disposed in the imaging lens assembly.
  • the imaging lens assembly comprises a light transmissive substrate, and the imaging component is disposed on the light transmissive substrate.
  • the diffraction imaging microstructure is processed on a light transmissive substrate.
  • the light-transmissive substrate is formed by stacking a plurality of flat-plate type light-transmitting materials, and the diffraction imaging microstructure is processed on the surface of each flat-type light-transmitting material.
  • the diffraction efficiency of each of the diffraction imaging microstructures can be set according to actual conditions.
  • the transparent substrate is composed of a plurality of light-transmissive base portions glued together, and further, may be plated on the plurality of transparent substrate portions.
  • the anti-permeable membrane layer is glued together, and each of the anti-permeable membrane layers forms a translucent optical surface.
  • a portion of the light may be reversely permeable. Reflecting on the optical surface, exiting the imaging optics, and forming an image on a view area corresponding to the imaging assembly, and another portion of the light passing through the reversible optical surface to the next reversible optical surface, in turn By analogy, an image is formed on multiple view areas.
  • the reversible optical surface faces the image source and is a concave surface that is concave toward a side away from the image source.
  • the reversible optical surface transmits a light beam that is directed from the outside world to the plurality of view regions. Therefore, while observing the image emitted by the image source, the image of the real world can be seen through the imaging mirror group and the imaging component, and the effect of the augmented reality display is achieved.
  • the reflection efficiency of each of the translucent optical surfaces can be set according to actual conditions.
  • the invention has a plurality of view areas for observing the image emitted by the image source, so that the image emitted by the image source can be observed when the wearer's pupil is at different positions, and the versatility is strong, and it is not necessary to separately customize according to the individual wearer.
  • the universality of the display system overcomes the shortcomings of the existing near-eye display system described above.
  • FIG. 1 is a schematic structural view of an embodiment of an imaging assembly of the present invention as a diffraction imaging microstructure
  • FIG. 2 is a schematic structural view of an embodiment in which an imaging assembly of the present invention is a translucent optical surface
  • FIG. 3 is a schematic structural diagram of a single-level sub-spectral image source of a surface array image source according to the present invention.
  • an embodiment of the present invention provides a near-eye display system including an image source and an imaging mirror set, wherein:
  • Image source 1 is used to exit the image to be displayed.
  • the imaging lens assembly 2 has at least two imaging components 3 arranged in sequence along the exiting optical path of the image source 1, each of which reflects or diffracts the light beam emitted by the image source 1, except for the imaging component 3 located at the rearmost side of the optical path.
  • the reflectance or diffraction efficiency of the other imaging components 3 is less than 100%, and each imaging component 3 forms an image on one view area by reflection or diffraction, and the view areas of the respective imaging components 3 are located on the same plane and do not overlap each other. .
  • An imaging mirror set 2 which is positioned on the front side of the image source 1, each imaging mirror set 2 having at least two imaging assemblies 3 arranged in sequence along the exiting optical path of the image source 1, said imaging assemblies 3 each reflecting or diffracting portions a light beam emitted from the image source 1 and transmitting a light beam emitted from the image source 1 that is not reflected or diffracted by the imaging unit 3, and each of the imaging components 3 emits a light beam emitted from the partial image source 1 out of the imaging lens group by reflection or diffraction. 2, and directed to form an image on a view area corresponding to the imaging assembly 3, the plurality of view areas being on the same plane and not overlapping each other.
  • the image light emitted by the image source 1 is all incident on the imaging lens group 2 and directed to the imaging assembly 3, and each of the imaging components 3 emits a beam of light emitted from the image source 1 by reflecting or diffracting the light beam emitted from the partial image source 1.
  • the mirror group 2 is guided to form an image on a view area corresponding to the imaging unit 3, and a light beam emitted from the image source 1 that is not reflected or diffracted by the imaging unit 3 is transmitted from the imaging unit 3 to the next imaging unit 3. And the transmitted beam is not modulated.
  • each imaging assembly 3 forms an image on a view area corresponding to the imaging assembly 3, and each view area lies on the same plane and does not overlap each other, so that when the user's pupil is in a different view of the plane The user can observe the image in the area.
  • the imaging lens assembly 2 is an optical component having visual performance, so that the user can see the real world through the imaging lens group 2 while observing the image emitted by the image source 1.
  • the image reaches the effect of the augmented reality display.
  • the imaging optics 2 does not transmit light beams directed from the outside world to the plurality of view regions, thereby making the solution applicable to virtual reality devices.
  • the spacing between any two adjacent viewing regions is equal to the diameter of the pupil of the eye, such that the eye is anywhere within the range of the plurality of viewing regions. Images can be observed to further enhance the practicality.
  • the number of the imaging components 3 may be two, three, four or more.
  • the image source 1 is an image source 1 that emits a display image at a single point. Further preferably, the image source 1 comprises any one of a mems scan display image source 1, a fiber scan display image source 1 or a surface array image source of a single-level sub-spectral image source.
  • the array image source includes any one of a DLP display, an LCOS display, an LCD display, or an OLED display.
  • the imaging unit 3 located at the rear of the optical path totally reflects or diffracts the light beams emitted from the image source 1 of the imaging unit 3.
  • the laser light emitted from the RGB laser 11 is coupled into the optical fiber, and then combined by the optical fiber combiner 12 for three-color light.
  • the combined laser light is emitted through the optical fiber 13 and collimated by the collimating lens 14 to form an illumination beam.
  • the PBS prism 15 reflects the S light and illuminates the LCOS microdisplay 16. After image modulation, the displayed light beam P is transmitted through the PBS prism 15 into the subsequent optical system, and is focused by the focusing mirror 17, and the focus lens is placed at the focus position. 18. Filter out the advanced secondary beam to obtain the desired single spectral beam.
  • the imaging assembly 3 is a diffraction imaging microstructure. As shown in FIG. 1, each of the diffraction imaging microstructures diffracts a portion of the light beam emitted from the image source 1 and is not diffracted by the imaging assembly 3. a light beam emerging from the image source 1, each of the diffraction imaging microstructures diffracting the light beam emerging from the partial image source 1 out of the imaging lens group 2, and guided to a view region corresponding to the diffraction imaging microstructure The image, the plurality of view regions are on the same plane and do not overlap each other.
  • the diffraction imaging microstructure is a reflection diffraction type optical device; when the image source 1 and the user's human eye are separately disposed in the imaging lens group 2 On the side, the diffraction imaging microstructure is a transmission diffraction type optical device. Both the reflective diffractive optical device and the transmission diffractive optical device are for diffracting a portion of the image source 1 to be emitted from the imaging lens group 2 and guided to a view region corresponding to the diffraction imaging microstructure to form an image, and A light beam that is not emitted by the image source 1 that is diffracted by the diffraction imaging microstructure is transmitted.
  • the types of the above-mentioned diffraction imaging microstructures can be selected according to common sense according to the design of the optical path.
  • the diffraction imaging microstructure transmits a light beam that is directed from the outside world to the plurality of view regions. Therefore, while observing the image emitted by the image source, the image of the real world can be seen through the imaging mirror group, and the effect of the augmented reality display is achieved.
  • the imaging assembly 3 is a reversible optical surface disposed within the imaging lens assembly 2.
  • the imaging lens assembly 2 described in some embodiments of the present invention includes a light-transmitting substrate 4, and the imaging assembly is disposed on the light-transmitting substrate 4.
  • the diffraction imaging microstructure is processed on the light-transmitting substrate 4.
  • the light-transmitting substrate 4 may be formed by stacking a plurality of flat-plate type light-transmitting materials, and the diffraction imaging microstructure is processed on the surface of each flat-type light-transmitting material.
  • the light-transmissive substrate is formed by stacking three flat-type light-transmitting materials, and the first diffraction imaging microstructure 31 is disposed on the first surface of the first flat-type light-transmitting material 41 .
  • the second diffraction imaging microstructure 32 is disposed on the first surface of the second flat type light transmissive material 42, and the third diffraction imaging microstructure 33 and the fourth diffraction imaging microstructure 34 are respectively disposed on the third flat type.
  • the first diffraction imaging microstructure 31 emits a light beam which is emitted from a part of the image source 1 by diffraction to the light-transmitting material 2, and is guided to a view area a corresponding to the diffraction imaging microstructure to form an image;
  • the second diffraction imaging The microstructure 32 emits a light beam which is emitted from a portion of the image source 1 by diffraction to the light-transmitting material 2, and is guided to form an image on a view region b corresponding to the diffraction imaging microstructure;
  • the third diffraction imaging microstructure 33 is diffracted by diffraction.
  • the light beam exiting part of the image source 1 exits the light-transmitting material 2 and is guided to form an image on a view area c corresponding to the diffraction imaging microstructure; the fourth diffraction imaging microstructure 34 diffracts a part of the image source 1
  • the emitted light beam exits the light-transmitting material 2 and is guided to form an image on a view area d corresponding to the diffraction imaging microstructure.
  • the diffraction efficiency of each of the diffraction imaging microstructures may be set according to actual conditions. For example, taking four diffraction imaging microstructures as an example, according to the transmission direction of the light rays in the imaging lens group 2, The diffraction efficiency of the first diffraction imaging microstructure 31 can be set to 25%, the diffraction efficiency of the second diffraction imaging microstructure 32 can be set to 30%, and the diffraction efficiency of the third diffraction imaging microstructure 33 can be set to 50%. %, the diffraction efficiency of the fourth diffraction imaging microstructure 34 is set to 100% such that the light intensity of each of the diffraction imaging microstructures is 25% of the total light intensity.
  • the light-transmitting substrate 4 may be composed of a plurality of light-transmissive base portions glued together, and further, may be divided into a plurality of light-transmitting substrates.
  • the portion is plated with an anti-permeable membrane layer and glued together, each of the anti-permeable membrane layers forming a translucent optical surface, and a portion of the light is transmitted when the light beam is transmitted to the translucent optical surface Reflection occurs on the anti-transmissive optical surface, exits the imaging lens set 2, and forms an image on a view area corresponding to the reversible optical surface, and another portion of the light passes through the reversible optical surface to the next
  • the optical surface can be reversed, and so on, to form an image on multiple view areas.
  • the first reversible optical surface 35 reflects a portion of the image source 1 out of the imaging lens group 2 by reflection, and leads to a reversible An image is formed on the view area e corresponding to the optically transmissive surface;
  • the second reversible optical surface 36 reflects the light beam emitted from the partial image source 1 out of the imaging lens group 2 by reflection, and is guided to a reversible optical An image is formed on the view area f corresponding to the surface;
  • the third reversible optical surface 37 emits a beam of the partial image source 1 out of the imaging lens group 2 by reflection, and is guided to a reversible optical surface.
  • An image is formed on the corresponding view area g; the fourth reversible optical surface 38 emits a beam of light exiting part of the image source 1 out of the imaging lens group 2 by reflection, and is guided to a corresponding one of the reversible optical surface An image is formed on the view area h.
  • the reversible optical surface faces the image source and is a concave surface that is concave toward a side away from the image source.
  • the reversible optical surface transmits a light beam that is directed from the outside world to the plurality of view regions. Therefore, while observing the image emitted by the image source, the image of the real world can be seen through the imaging mirror group and the imaging component, and the effect of the augmented reality display is achieved.
  • the reflection efficiency of each of the translucent optical surfaces can be set according to actual conditions, for example, by setting four reversible optical surfaces as an example, according to the light in the imaging lens group 2
  • the transmission direction can set the reflectivity of the first reversible optical surface 35 to 25%, the reflectance of the second reversible optical surface 36 to 30%, and the third reversible
  • the reflectivity of the transmissive optical surface 37 is set to 50%
  • the reflectance of the fourth reversible optical surface 38 is set to 100%, such that the intensity of light emitted by each of the translucent optical surfaces is the total light intensity. 25%.
  • the invention has a plurality of view areas for observing the image emitted by the image source, so that the image emitted by the image source can be observed when the wearer's pupil is at different positions, and the versatility is strong, and it is not necessary to separately customize according to the individual wearer.
  • the universality of the display system overcomes the shortcomings of the existing near-eye display system described above.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种近眼显示系统,包括图像源(1)和成像镜组(2),其中:图像源(1)用于出射待显示的图像;成像镜组(2)具有至少两个沿图像源(1)出射光路依次设置的成像组件(3),成像组件(3)均反射或衍射图像源(1)出射的光束,除位于光路最后侧的成像组件(3)外,其他成像组件(3)的反射率或衍射效率均小于100%,每个成像组件(3)均通过反射或衍射在一个视图区域上形成图像,各成像组件(3)的视图区域位于同一平面上且彼此不重叠。因而当佩戴者瞳孔处于不同位置时都能观察到图像源(1)发射的图像,通用性强,无需根据佩戴者个体进行单独定制,提升显示系统的普适性,克服了现有近眼显示系统存在的缺陷。

Description

一种近眼显示系统
相关申请的交叉引用
本申请要求享有于2018年03月26日提交的名称为“一种近眼显示系统”的中国专利申请CN201810254394.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及近眼显示技术领域,尤其涉及一种近眼显示系统。
背景技术
目前采用扫描型图像源组成的AR近眼显示系统,例如日本兄弟公司发明的镜片式视网膜扫描显示器,Intel发布的Vaunt智能眼镜等,此类显示装置都存在出瞳大小受限制的问题,人眼需要严格对准,否则容易丢失视野;因而需要根据各使用者的瞳孔位置定制专用的佩戴设备,通用性差。
发明内容
本发明实施例提供一种近眼显示系统,用以解决现有近眼显示系统要求用户瞳孔位置固定、通用性差的技术问题。
为了实现上述发明目的,本发明提供了一种近眼显示系统,包括图像源和成像镜组,其中:
图像源用于出射待显示的图像,
成像镜组具有至少两个沿图像源出射光路依次设置的成像组件,所述的成像组件均反射或衍射图像源出射的光束,除位于所述光路最后侧的成像组件外,其他成像组件的反射率或衍射效率均小于100%,每个成像组件均通过反射或衍射在一个视图区域上形成图像,各成像组件的视图区域位于同一平面上且彼此不重叠。
成像镜组定位于图像源的前侧,每个成像组件均反射或衍射部分图像源出射 的光束,并透射未被该成像组件反射或衍射的图像源出射的光束,每个成像组件均通过反射或衍射将所述部分图像源出射的光束射出成像镜组,并引导至一个与该成像组件相对应的视图区域上形成图像。从而图像源出射的图像光全部射入成像镜组并射向成像组件,每个成像组件通过反射或衍射部分图像源出射的光束,将这部分图像源出射的光束射出成像镜组,并引导至一个与该成像组件相对应的视图区域上形成图像,未被该成像组件反射或衍射的图像源出射的光束从该成像组件透射至下一个成像组件,并且透射的光束未被调制。同理,每个成像组均在一个与该成像组件相对应的视图区域上形成图像,并且各视图区域位于同一平面上且彼此不重叠,从而当用户的瞳孔处于所述平面的不同视图区域时,用户都能观察到图像。
可选的,所述的成像镜组为具有透过视觉性能的光学元件,其透射从外部世界射向所述多个视图区域的光束。从而用户在观察到图像源出射的图像的同时,能够透过成像镜组看到现实世界的图像,达到增强现实显示的效果。
可选的,所述的成像镜组不透射从外部世界射向所述多个视图区域的光束,从而使得本方案可应用于虚拟现实设备上。
优选的,所述的多个视图区域中,任意两个相邻的视图区域间的间距等于小于眼睛瞳孔的直径,从而眼睛在由多个视图区域构成的范围内的任意位置均可以观察到图像,进一步提升实用性。
所述的成像组件的数量可以为两个、三个、四个或四个以上。
优选的,所述的图像源为单点出射显示图像的图像源。
进一步优选的,所述的图像源包括mems扫描显示图像源、光纤扫描显示图像源或面阵列图像源的单级次频谱图像源中的任意一种。
通过调整各成像组件的反射率或衍射效率,可以保证出瞳面的光亮度均匀性。且进一步的,为了提高入射光束的利用效率,位于光路最后方的成像组件将入射至该成像组件的图像源出射的光束全部进行反射或衍射。
可选的,所述的成像组件为衍射成像微结构,每个衍射成像微结构均衍射部分图像源出射的光束,并透射未被该成像组件衍射的图像源出射的光束,每个衍射成像微结构均通过衍射将所述部分图像源出射的光束射出成像镜组,并引导至一个与该成像组件相对应的视图区域上形成图像。
进一步的,所述的衍射成像微结构透射从外部世界射向所述多个视图区域的 光束。从而在观察到图像源出射的图像的同时,能够透过成像镜组看到现实世界的图像,达到增强现实显示的效果。
可选的,所述的成像组件为设置于成像镜组内的可反可透光学表面。
可选的,所述的成像镜组包括透光基体,成像组件设置于透光基体上。
进一步的,对于上述衍射成像微结构而言,衍射成像微结构加工于透光基体上。为了便于加工,所述的透光基体由多个平板型透光材料堆叠而成,所述的衍射成像微结构加工于各平板型透光材料的表面。
当然,为了保证光强度的均匀性,可以根据实际情况设置每个衍射成像微结构的衍射效率。
进一步的,对于上述可反可透光学表面而言,所述的透光基体由多个胶合在一起的透光基体分部构成,进一步的,可在所述多个透光基体分部上镀上可反可透膜层并胶合在一起,每个可反可透膜层形成一个可反可透光学表面,光束传递至该可反可透光学表面时,一部分光线会在该可反可透光学表面上发生反射,射出成像镜组,并在一个与该成像组件相对应的视图区域上形成图像,另一部分光线会透过可反可透光学表面到下一个可反可透光学表面,依次类推,从而在多个视图区域上均形成图像。
进一步的,所述的可反可透光学表面朝向图像源并且为向远离图像源的一侧凹的凹面。
进一步的,所述的可反可透光学表面透射从外部世界射向所述多个视图区域的光束。从而在观察到图像源出射的图像的同时,能够透过成像镜组和成像组件看到现实世界的图像,达到增强现实显示的效果。
当然,为了保证光强度的均匀性,可以根据实际情况设置每个可反可透光学表面的反射效率。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
本发明具有多个可以观察到图像源发射的图像的视图区域,因而当佩戴者瞳孔处于不同位置时都能观察到图像源发射的图像,通用性强,无需根据佩戴者个体进行单独定制,提升显示系统的普适性,克服了上述现有近眼显示系统存在的缺陷。
附图说明
在下文中参考附图来对本发明进行更详细的描述。其中:
图1为本发明成像组件为衍射成像微结构的实施例的结构示意图;
图2为本发明成像组件为可反可透光学表面的实施例的结构示意图;
图3为本发明的一种面阵列图像源的单级次频谱图像源的结构示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1、图2所示,本发明实施例提供一种近眼显示系统,包括图像源和成像镜组,其中:
图像源1用于出射待显示的图像,
成像镜组2具有至少两个沿图像源1出射光路依次设置的成像组件3,所述的成像组件3均反射或衍射图像源1出射的光束,除位于所述光路最后侧的成像组件3外,其他成像组件3的反射率或衍射效率均小于100%,每个成像组件3均通过反射或衍射在一个视图区域上形成图像,各成像组件3的视图区域位于同一平面上且彼此不重叠。
成像镜组2,其定位于图像源1的前侧,每个成像镜组2具有至少两个沿图像源1出射光路依次设置的成像组件3,所述的成像组件3均反射或衍射部分图像源1出射的光束,并透射未被该成像组件3反射或衍射的图像源1出射的光束,每个成像组件3均通过反射或衍射将所述部分图像源1出射的光束射出成像镜组2,并引导至一个与该成像组件3相对应的视图区域上形成图像,所述的多个视图区域位于同一平面上且彼此不重叠。从而图像源1出射的图像光全部射入成像镜组2并射向成像组件3,每个成像组件3通过反射或衍射部分图像源1出射的光束,将这部分图像源1出射的光束射出成像镜组2,并引导至一个与该成像组件3相对应的视图区域上形成图像,未被该成像组件3反射或衍射的图像源1出射的光束从该成像组件3透射至下一个成像组件3,并且透射的光束未被调制。 同理,每个成像组件3均在一个与该成像组件3相对应的视图区域上形成图像,并且各视图区域位于同一平面上且彼此不重叠,从而当用户的瞳孔处于所述平面的不同视图区域时,用户都能观察到图像。
本发明的实施例中,所述的成像镜组2为具有透过视觉性能的光学元件,从而用户在观察到图像源1出射的图像的同时,能够透过成像镜组2看到现实世界的图像,达到增强现实显示的效果。
本发明的另外的实施例中,所述的成像镜组2不透射从外部世界射向所述多个视图区域的光束,从而使得本方案可应用于虚拟现实设备上。
本发明的优选实施例中,所述的多个视图区域中,任意两个相邻的视图区域间的间距等于小于眼睛瞳孔的直径,从而眼睛在由多个视图区域构成的范围内的任意位置均可以观察到图像,进一步提升实用性。
本发明的实施例中,所述的成像组件3的数量可以为两个、三个、四个或四个以上。
作为本发明优选的实施例,所述的图像源1为单点出射显示图像的图像源1。进一步优选的,所述的图像源1包括mems扫描显示图像源1、光纤扫描显示图像源1或面阵列图像源的单级次频谱图像源中的任意一种。
所述的阵列图像源包括DLP显示器、LCOS显示器、LCD显示器或OLED显示器中的任意一种。
通过调整各成像组件3的反射率或衍射效率,可以保证出瞳面的光亮度均匀性。且进一步的,为了提高入射光束的利用效率,位于光路最后方的成像组件3将入射至该成像组件3的图像源1出射的光束全部进行反射或衍射。
以下以面阵列图像源为LCOS显示器为例,对面阵列图像源的单级次频谱图像源进行解释说明。如图3所示,RGB激光器11出射的激光耦合进入光纤,再通过光纤合束器12进行三色光合束,合束激光通过光纤13出射后,经由准直透镜14准直成照明光束,通过PBS棱镜15,反射S光,照明LCOS微显示器16,经过图像调制,使得显示的光束P光透过PBS棱镜15进入后续的光学系统,经由聚焦镜17聚焦,聚焦镜焦点位置放置小孔光阑18,滤出高级次光束,得到所需的单一频谱光束。
本发明一些实施例中,所述的成像组件3为衍射成像微结构,如图1所示,每个衍射成像微结构均衍射部分图像源1出射的光束,并透射未被该成像组件3 衍射的图像源1出射的光束,每个衍射成像微结构均通过衍射将所述部分图像源1出射的光束射出成像镜组2,并引导至一个与该衍射成像微结构相对应的视图区域上形成图像,所述的多个视图区域位于同一平面上且彼此不重叠。进一步的,当图像源1与用户人眼位于成像镜组2的同侧时,所述的衍射成像微结构为反射衍射型光学器件;当图像源1与用户人眼分设于成像镜组2两侧时,所述的衍射成像微结构为透射衍射型光学器件。反射衍射型光学器件和透射衍射型光学器件均是用于将部分图像源1出射的光束衍射出成像镜组2,并引导至一个与该衍射成像微结构相对应的视图区域上形成图像,并透射未被该衍射成像微结构衍射的图像源1出射的光束。上述衍射成像微结构的类型可依据常识根据光路设计的不同进行选取。
进一步的,所述的衍射成像微结构透射从外部世界射向所述多个视图区域的光束。从而在观察到图像源出射的图像的同时,能够透过成像镜组看到现实世界的图像,达到增强现实显示的效果。
本发明的另一些实施例中,如图2所示,所述的成像组件3为设置于成像镜组2内的可反可透光学表面。
进一步可选的,本发明一些实施例中所述的成像镜组2包括透光基体4,成像组件设置于透光基体4上。
进一步的,对于采用上述衍射成像微结构的实施例而言,衍射成像微结构加工于透光基体4上。为了便于加工,所述的透光基体4可由多个平板型透光材料堆叠而成,所述的衍射成像微结构加工于各平板型透光材料的表面。作为一个实施例,如图1所示,该透光基体由三个平板型透光材料堆叠而成,第1个衍射成像微结构31设置于第1个平板型透光材料41的第一表面,第2个衍射成像微结构32设置于第2个平板型透光材料42的第一表面,第3个衍射成像微结构33和第4个衍射成像微结构34分别设置于第3个平板型透光材料43的第一表面和第二表面。第1个衍射成像微结构31通过衍射将部分图像源1出射的光束射出型透光材料2,并引导至一个与该衍射成像微结构相对应的视图区域a上形成图像;第2个衍射成像微结构32通过衍射将部分图像源1出射的光束射出型透光材料2,并引导至一个与该衍射成像微结构相对应的视图区域b上形成图像;第3个衍射成像微结构33通过衍射将部分图像源1出射的光束射出型透光材料2,并引导至一个与该衍射成像微结构相对应的视图区域c上形成图像;第4个衍射 成像微结构34通过衍射将部分图像源1出射的光束射出型透光材料2,并引导至一个与该衍射成像微结构相对应的视图区域d上形成图像。
当然,为了保证光强度的均匀性,可以根据实际情况设置每个衍射成像微结构的衍射效率,例如,以设置4个衍射成像微结构为例,按照光线在成像镜组2中的传输方向,可以将第1个衍射成像微结构31的衍射效率设置为25%,将第2个衍射成像微结构32的衍射效率设置为30%,将第3个衍射成像微结构33的衍射效率设置为50%,将第4个衍射成像微结构34的衍射效率设置为100%,这样,每个衍射成像微结构出射的光强度为总光强度的25%。
进一步的,对于采用上述可反可透光学表面的实施例而言,所述的透光基体4可由多个胶合在一起的透光基体分部构成,进一步的,可在多个透光基体分部上镀上可反可透膜层并胶合在一起,每个可反可透膜层形成一个可反可透光学表面,光束传递至该可反可透光学表面时,一部分光线会在该可反可透光学表面上发生反射,射出成像镜组2,并在一个与该可反可透光学表面相对应的视图区域上形成图像,另一部分光线会透过可反可透光学表面到下一个可反可透光学表面,依次类推,从而在多个视图区域上均形成图像。例如,以设置4个可反可透光学表面为例,第1个可反可透光学表面35通过反射将部分图像源1出射的光束射出成像镜组2,并引导至一个与该可反可透光学表面相对应的视图区域e上形成图像;第2个可反可透光学表面36通过反射将部分图像源1出射的光束射出成像镜组2,并引导至一个与该可反可透光学表面相对应的视图区域f上形成图像;第3个可反可透光学表面37通过反射将部分图像源1出射的光束射出成像镜组2,并引导至一个与该可反可透光学表面相对应的视图区域g上形成图像;第4个可反可透光学表面38通过反射将部分图像源1出射的光束射出成像镜组2,并引导至一个与该可反可透光学表面相对应的视图区域h上形成图像。
进一步的,所述的可反可透光学表面朝向图像源并且为向远离图像源的一侧凹的凹面。
进一步的,所述的可反可透光学表面透射从外部世界射向所述多个视图区域的光束。从而在观察到图像源出射的图像的同时,能够透过成像镜组和成像组件看到现实世界的图像,达到增强现实显示的效果。
当然,为了保证光强度的均匀性,可以根据实际情况设置每个可反可透光学表面的反射效率,例如,以设置4个可反可透光学表面为例,按照光线在成像镜 组2中的传输方向,可以将第1个可反可透光学表面35的反射率设置为25%,将第2个可反可透光学表面36的反射率设置为30%,将第3个可反可透光学表面37的反射率设置为50%,将第4个可反可透光学表面38的反射率设置为100%,这样,每个可反可透光学表面出射的光强度为总光强度的25%。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序,可将这些单词解释为名称。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
本发明具有多个可以观察到图像源发射的图像的视图区域,因而当佩戴者瞳孔处于不同位置时都能观察到图像源发射的图像,通用性强,无需根据佩戴者个体进行单独定制,提升显示系统的普适性,克服了上述现有近眼显示系统存在的缺陷。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 一种近眼显示系统,其特征在于,包括图像源和成像镜组,其中:
    图像源用于出射待显示的图像,
    成像镜组具有至少两个沿图像源出射光路依次设置的成像组件,所述的成像组件均反射或衍射图像源出射的光束,除位于所述光路最后侧的成像组件外,其他成像组件的反射率或衍射效率均小于100%,每个成像组件均通过反射或衍射在一个视图区域上形成图像,各成像组件的视图区域位于同一平面上且彼此不重叠。
  2. 如权利要求1所述的一种近眼显示系统,其特征在于,所述的成像镜组透射从外部世界射向所述多个视图区域的光束,或
    所述的成像镜组不透射从外部世界射向所述多个视图区域的光束。
  3. 如权利要求1所述的一种近眼显示系统,其特征在于,任意两个相邻的视图区域间的间距等于小于眼睛瞳孔的直径。
  4. 如权利要求1所述的一种近眼显示系统,其特征在于,所述的成像组件的数量为两个、三个、四个或四个以上。
  5. 如权利要求1所述的一种近眼显示系统,其特征在于,所述的图像源为单点出射显示图像的图像源。
  6. 如权利要求5所述的一种近眼显示系统,其特征在于,所述的图像源包括mems扫描显示图像源、光纤扫描显示图像源或面阵列图像源的单级次频谱图像源中的任意一种。
  7. 如权利要求1所述的一种近眼显示系统,其特征在于,所述的成像组件为衍射成像微结构,每个衍射成像微结构均衍射部分图像源出射的光束,并透射未被该成像组件衍射的图像源出射的光束,每个衍射成像微结构均通过衍射将所述部分图像源出射的光束射出成像镜组,并引导至一个与该成像组件相对应的视图区域上形成图像,所述的多个视图区域位于同一平面上且彼此不重叠。
  8. 如权利要求1所述的一种近眼显示系统,其特征在于,所述的成像组件为设置于成像镜组内的可反可透光学表面。
  9. 如权利要求1、7或8中任意一项所述的一种近眼显示系统,其特征在于,所述的成像镜组包括透光基体,成像组件设置于透光基体上。
  10. 如权利要求9所述的一种近眼显示系统,其特征在于,所述的透光基体由多个平板型透光材料堆叠而成,所述的衍射成像微结构加工于各平板平板型透光材料的表面。
PCT/CN2019/075057 2018-03-26 2019-02-14 一种近眼显示系统 WO2019184611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810254394.1 2018-03-26
CN201810254394.1A CN108803027A (zh) 2018-03-26 2018-03-26 一种近眼显示系统

Publications (1)

Publication Number Publication Date
WO2019184611A1 true WO2019184611A1 (zh) 2019-10-03

Family

ID=64095379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075057 WO2019184611A1 (zh) 2018-03-26 2019-02-14 一种近眼显示系统

Country Status (2)

Country Link
CN (1) CN108803027A (zh)
WO (1) WO2019184611A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803027A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 一种近眼显示系统
DE102018220034B4 (de) * 2018-11-22 2021-10-21 Robert Bosch Gmbh Optische Kombinationsvorrichtung und Projektionssystem

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168260A1 (en) * 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
CN104903774A (zh) * 2013-01-02 2015-09-09 谷歌公司 用于近眼显示器的光组合器
CN105911699A (zh) * 2016-07-01 2016-08-31 成都理想境界科技有限公司 近眼显示系统、虚拟现实设备及增强现实设备
CN107305291A (zh) * 2016-04-22 2017-10-31 成都理想境界科技有限公司 一种近眼显示系统
CN107329273A (zh) * 2017-08-29 2017-11-07 京东方科技集团股份有限公司 一种近眼显示装置
CN206649211U (zh) * 2017-02-24 2017-11-17 北京耐德佳显示技术有限公司 一种使用波导型光学元件的近眼显示装置
CN108803026A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 一种近眼显示系统
CN108803027A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 一种近眼显示系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196729A1 (en) * 2008-12-12 2010-06-16 BAE Systems PLC Improvements in or relating to waveguides
JP6035793B2 (ja) * 2012-03-14 2016-11-30 ソニー株式会社 画像表示装置及び画像生成装置
CN102928981B (zh) * 2012-11-14 2016-08-03 中航华东光电有限公司 全息光波导头盔显示器光学系统
KR20150136601A (ko) * 2013-03-25 2015-12-07 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 다수의 출사동을 가진 헤드 착용 디스플레이로부터 투영된 이미지를 디스플레이하기 위한 방법
CN103885184B (zh) * 2014-04-10 2016-04-27 北京理工大学 一种投影式平面波导头盔显示器
CN104216120B (zh) * 2014-08-29 2016-11-02 中国科学院长春光学精密机械与物理研究所 半透膜阵列平板波导式头戴显示器光学系统
CN104614857A (zh) * 2015-01-21 2015-05-13 佛山市智海星空科技有限公司 一种大出瞳全息波导眼镜系统
CN105223796B (zh) * 2015-09-08 2018-09-11 北京邮电大学 基于近眼显示设备的全息图计算方法及装置
CN205787362U (zh) * 2016-02-26 2016-12-07 中国航空工业集团公司洛阳电光设备研究所 光波导元件、二维扩展光波导器件、平视显示装置及照明装置
CN106371222A (zh) * 2016-11-30 2017-02-01 苏州苏大维格光电科技股份有限公司 一种纳米透镜波导镜片和多景深三维显示装置
CN106597672B (zh) * 2017-02-16 2020-06-16 上海鲲游光电科技有限公司 一种基于波导的增强现实显示装置
CN107329261B (zh) * 2017-06-08 2019-04-30 东南大学 一种基于全息波导的头戴式显示器件
CN207020398U (zh) * 2017-06-26 2018-02-16 京东方科技集团股份有限公司 显示系统
CN107300778B (zh) * 2017-08-24 2019-12-24 浙江晶景光电有限公司 增强现实的显示装置及增强显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168260A1 (en) * 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
CN104903774A (zh) * 2013-01-02 2015-09-09 谷歌公司 用于近眼显示器的光组合器
CN107305291A (zh) * 2016-04-22 2017-10-31 成都理想境界科技有限公司 一种近眼显示系统
CN105911699A (zh) * 2016-07-01 2016-08-31 成都理想境界科技有限公司 近眼显示系统、虚拟现实设备及增强现实设备
CN206649211U (zh) * 2017-02-24 2017-11-17 北京耐德佳显示技术有限公司 一种使用波导型光学元件的近眼显示装置
CN107329273A (zh) * 2017-08-29 2017-11-07 京东方科技集团股份有限公司 一种近眼显示装置
CN108803026A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 一种近眼显示系统
CN108803027A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 一种近眼显示系统

Also Published As

Publication number Publication date
CN108803027A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
US10386563B2 (en) Illuminator for a wearable display
US9989763B2 (en) Imaging using multiple different narrow bands of light having respective different emission peaks
EP3447561B1 (en) Head-up display device
US10754162B2 (en) Projection apparatus and head-mounted display device
CN110221428B (zh) 近眼显示系统
US20220057633A1 (en) Near-eye display system for pupil expansion based on diffractive optical element
CN111679360A (zh) 一种大视场光栅波导元件及近眼显示装置
JP2022517796A (ja) 小型ホモジナイザーを有する画像装置
WO2019184611A1 (zh) 一种近眼显示系统
US7869145B2 (en) System and method for illuminating a target
JP2008224850A (ja) 表示装置
JP2018173633A (ja) ヘッドマウント式表示装置
JP2004271651A (ja) 映像表示装置
TW202111391A (zh) 雷射光學投影模組及包含其之穿戴裝置
CN113376834A (zh) 头戴式透视显示器及记录体积全息透镜的方法
JP4735506B2 (ja) 映像表示装置
TWI811699B (zh) 照明系統及投影裝置
US11669002B2 (en) Illumination system and projection device
CN216696867U (zh) 一种数字光处理系统及装置
CN218824990U (zh) 一种光机系统及近眼显示设备
WO2024046373A1 (zh) 投影设备以及投影系统
US11988845B2 (en) Near-eye display devices
JP5024467B2 (ja) 映像表示装置
CN111983806A (zh) 用于可穿戴显示器的照明系统
JP5983841B2 (ja) 虚像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776562

Country of ref document: EP

Kind code of ref document: A1