WO2024046373A1 - 投影设备以及投影系统 - Google Patents

投影设备以及投影系统 Download PDF

Info

Publication number
WO2024046373A1
WO2024046373A1 PCT/CN2023/115867 CN2023115867W WO2024046373A1 WO 2024046373 A1 WO2024046373 A1 WO 2024046373A1 CN 2023115867 W CN2023115867 W CN 2023115867W WO 2024046373 A1 WO2024046373 A1 WO 2024046373A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
optical waveguide
component
grating
Prior art date
Application number
PCT/CN2023/115867
Other languages
English (en)
French (fr)
Inventor
李巍
颜珂
田有良
顾晓强
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211055744.4A external-priority patent/CN117666263A/zh
Priority claimed from CN202211216165.3A external-priority patent/CN115509075A/zh
Priority claimed from CN202211208529.3A external-priority patent/CN117850136A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2024046373A1 publication Critical patent/WO2024046373A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to the field of laser projection technology, and in particular, to a projection device and a projection system.
  • the light source in the projection equipment can emit laser light of multiple colors, based on which the projection picture can be formed. Moreover, the higher the symmetry of the lasers of various colors emitted by the light source, the better the mixing effect, and the better the display effect of the projection screen.
  • a projection device includes a light source, an optical modulation component and a lens.
  • the light source is configured to emit laser light of multiple colors as illumination beams.
  • the optical modulation component is configured to modulate the illumination beam to obtain a projection beam.
  • the lens is located on the light exit side of the optical modulation component and is configured to project the projection beam to form a projection image.
  • the light source includes a laser and a light modulating component.
  • the laser is configured to emit laser light of multiple colors.
  • the dimming component includes a plurality of dimming areas, each of the plurality of dimming areas includes a plurality of diffraction microstructures, and the diffraction microstructures in different dimming areas are different.
  • the light modulating component is configured to diffract the plurality of colors of laser light through the plurality of diffraction microstructures in the plurality of light modulation areas and emit the laser light toward the same area, so that the plurality of colors of laser light
  • the lasers of multiple colors are respectively incident on the multiple dimming areas, and the lasers of different colors are incident on different dimming areas.
  • the multiple light spots formed by the lasers of the multiple colors on the dimming component are The size in the first direction is greater than the size in the second direction, the first direction being perpendicular to the second direction.
  • the plurality of dimming areas satisfy at least one of the following: the plurality of dimming areas are configured to shrink the corresponding laser in the first direction; or the plurality of dimming areas are configured to shrink the corresponding laser in the first direction. Expand the corresponding laser in two directions.
  • the projection device includes a light source, an optical modulation component and a lens.
  • the light source is configured to emit laser light of multiple colors as illumination beams.
  • the optical modulation component is configured to modulate the illumination beam to obtain a projection beam.
  • the lens is located on the light exit side of the optical modulation component and is configured to project the projection beam to form a projection image.
  • the light source includes at least one laser and at least one optical waveguide.
  • the at least one laser includes a plurality of first light-emitting chips, a plurality of second light-emitting chips and a plurality of third light-emitting chips.
  • the plurality of first light-emitting chips are configured to emit red laser light.
  • the plurality of second light-emitting chips are configured to emit blue laser light.
  • the plurality of third light-emitting chips are configured to emit green laser light.
  • the number of the plurality of third light-emitting chips and the number of the plurality of second light-emitting chips are respectively smaller than the number of the plurality of first light-emitting chips.
  • One of the at least one optical waveguide is located on the light exit side of the plurality of third light-emitting chips.
  • Each optical waveguide in the at least one optical waveguide includes a light entrance surface, a light exit surface, a light entrance part and a light exit part.
  • the light incident surface is a surface of the optical waveguide close to the laser.
  • the light-emitting surface is arranged parallel to the light-incident surface.
  • the light incident surface and the light exit surface are arranged opposite to each other in the thickness direction of the optical waveguide.
  • the light incident part is configured to introduce incident laser light into the optical waveguide.
  • the light emitting part is configured to export the laser light in the optical waveguide.
  • the light incident part and the light emitting part are located between the light incident surface and the light emitting surface.
  • the beam width of the laser beam emitted by the light emitting part is equal to the beam width of the red laser beam emitted by the plurality of first light-emitting chips.
  • a projection system in yet another aspect, includes the above-mentioned projection device and a projection screen.
  • the projection screen is located on the light exit side of the projection device.
  • Figure 1 is a structural diagram of a projection system according to some embodiments.
  • Figure 2 is a structural diagram of a projection device according to some embodiments.
  • Figure 3 is a light path diagram of a light source, an optical modulation component and a lens in a projection device according to some embodiments;
  • Figure 4 is a light path diagram of a light source and a light pipe according to some embodiments.
  • Figure 5 is a structural diagram of a light source according to some embodiments.
  • Figure 6 is a structural diagram of a laser according to some embodiments.
  • Figure 7 is a schematic diagram of the light spot formed on the dimming component by the laser emitted by the laser in Figure 6;
  • Figure 8 is a structural diagram of another laser according to some embodiments.
  • Figure 9 is a schematic diagram of the light spot formed on the dimming component by the laser emitted by the laser in Figure 8;
  • Figure 10 is a structural diagram of another light source according to some embodiments.
  • Figure 11 is a structural diagram of the dimming component of the light source in Figure 10.
  • Figure 12 is an energy distribution diagram of a laser according to some embodiments.
  • Figure 13 is an energy distribution diagram of another laser according to some embodiments.
  • Figure 14 is an energy distribution diagram of yet another laser according to some embodiments.
  • Figure 15 is a structural diagram of yet another light source according to some embodiments.
  • Figure 16 is a partial structural diagram of the dimming component of the light source in Figure 15;
  • Figure 17 is a structural diagram of yet another light source according to some embodiments.
  • Figure 18 is a structural diagram of another projection device according to some embodiments.
  • Figure 19 is a structural diagram of yet another laser according to some embodiments.
  • Figure 20 is a structural diagram of yet another light source according to some embodiments.
  • Figure 21 is a schematic diagram of volume grating diffraction according to some embodiments.
  • Figure 22 is a structural diagram of a volume grating and a light valve according to some embodiments.
  • Figure 23 is a structural diagram of an optical modulation component in a projection device according to some embodiments.
  • Figure 24 is a structural diagram of another optical modulation component in a projection device according to some embodiments.
  • Figure 25 is a structural diagram of yet another projection device according to some embodiments.
  • Figure 26 is a structural diagram of an arrayed optical waveguide according to some embodiments.
  • Figure 27 is a structural diagram of a zigzag optical waveguide according to some embodiments.
  • Figure 28 is an optical path diagram of yet another light source according to some embodiments.
  • Figure 29 is an optical path diagram of yet another light source according to some embodiments.
  • Figure 30 is a structural diagram of yet another projection device according to some embodiments.
  • Figure 31 is an optical path diagram of yet another light source according to some embodiments.
  • Figure 32 is an optical path diagram of yet another light source according to some embodiments.
  • Figure 33 is an optical path diagram of yet another light source according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following A, B and Combinations of C: A only, B only, C only, combination of A and B, combination of A and C, combination of B and C, and combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • a projection device that uses a laser as a light source
  • the light-emitting chips in the laser are arranged in different positions, the positions of the light spots of different colors of laser light emitted by the laser are different.
  • the number of light-emitting chips that emit red laser light is generally higher than the number of light-emitting chips that emit blue or green laser light. Therefore, blue and green lasers have different beam widths than red lasers. In this way, after lasers of different colors are combined, the uniformity of the light spot of the combined laser is poor, which affects the display effect of the projection screen.
  • some embodiments of the present disclosure provide a projection system.
  • Figure 1 is a structural diagram of a projection system according to some embodiments.
  • the projection system 1 includes a projection device 1000 and a projection screen 2000 .
  • the projection screen 2000 is located on the light exit side of the projection device 1000, and the audience faces the projection screen 2000. After the projection beam emitted from the projection device 1000 is incident on the projection screen 2000, it is reflected by the projection screen 2000 and enters the human eye, so that the audience can view the projection image.
  • Figure 2 is a structural diagram of a projection device according to some embodiments.
  • the projection device 1000 includes a complete machine housing 40 (only part of the complete machine housing 40 is shown in FIG. 2 ), a light source 10 assembled in the complete machine housing 40 , an optical modulation component 20 , and a lens 30 .
  • the light source 10 is configured to provide an illumination beam (such as a laser).
  • the optical modulation component 20 is configured to use an image signal to modulate the illumination beam provided by the light source 10 to obtain a projection beam.
  • the lens 30 is configured to project the projection beam onto the projection screen 2000 or the wall to form a projection image.
  • the light source 10, the optical modulation component 20 and the lens 30 are connected in sequence along the beam propagation direction, and each is wrapped by a corresponding housing.
  • the respective housings of the light source 10, the optical modulation component 20 and the lens 30 support the corresponding optical components and enable each optical component to meet certain sealing or airtight requirements.
  • One end of the optical modulation component 20 is connected to the light source 10 , and the light source 10 and the optical modulation component 20 are arranged along the exit direction of the illumination beam of the projection device 1000 (refer to the M direction in FIG. 2 ).
  • the other end of the optical modulation component 20 is connected to the lens 30 , and the optical modulation component 20 and the lens 30 are arranged along the emission direction of the projection beam of the projection device 1000 (refer to the N direction shown in FIG. 2 ).
  • the emission direction M of the illumination beam is substantially perpendicular to the emission direction N of the projection beam.
  • this connection structure can adapt to the optical path characteristics of the reflective light valve in the optical modulation component 20.
  • the optical modulation component 20 and the lens 30 are arranged in one dimensional direction (for example, the M direction), the length of the optical path in the dimensional direction will be very long, which is not conducive to the structural arrangement of the entire machine.
  • the reflective light valve will be described later.
  • the light source 10 can provide three primary color lights in a timely manner (other color lights can also be added on the basis of the three primary color lights). Due to the persistence of vision phenomenon of the human eye, what the human eye sees is the three primary color lights. Mixed white light. Alternatively, the light source 10 can also output three primary colors of light simultaneously and continuously emit white light.
  • the light source 10 may include a laser that emits at least one color of laser light, such as a red laser, a blue laser, or a green laser. When the laser emits laser light of one color, the laser may be called a monochromatic laser. In this case, the light source 10 may also include a fluorescent wheel, and the monochromatic laser cooperates with the fluorescent wheel to cause the light source to emit beams of multiple colors.
  • Figure 3 is a light path diagram of a light source, an optical modulation component and a lens in a projection device according to some embodiments.
  • the optical modulation component 20 includes a light uniformity component 210 , a lens component 220 , a light valve 240 (ie, an optical modulation component), and a prism component 250 .
  • the light uniformity component 210 is configured to uniformize the incident illumination beam and emit it to the lens assembly 220 .
  • the lens assembly 220 can first collimate the illumination beam and then converge it and emit it to the prism assembly 250 .
  • Prism assembly 250 reflects the illumination beam to light valve 240.
  • the light valve 240 is configured to modulate the illumination beam incident thereto into a projection beam according to the image signal, and to emit the projection beam toward the lens 30 .
  • the light uniformity component 210 may include a light pipe or a fly-eye lens set.
  • the light uniforming component 210 includes a light pipe, and the light entrance of the light pipe is rectangular. The illumination beam from the light source 10 is incident into the light pipe and is reflected in the light pipe for transmission, and the reflection angle is random, thereby improving the uniformity of the illumination beam emerging from the light pipe.
  • the light uniforming component 210 includes a fly-eye lens group.
  • the fly-eye lens group is composed of two oppositely arranged fly-eye lenses, and the fly-eye lens is formed by a plurality of microlens arrays.
  • the focus of the microlens in the first compound eye lens coincides with the center of the corresponding microlens in the second compound eye lens, and the optical axes of the microlenses in the two compound eye lenses are parallel to each other.
  • you can compare The light spot of the bright beam is divided.
  • the divided light spots can be accumulated through subsequent lens components 220 . In this way, the illumination beam can be homogenized.
  • the light uniformity component 210 can also be provided in the light source 10 .
  • the light source 10 includes a light uniformity component 210. In this case, there is no need to provide the light uniformity component 210 in the optical modulation component 20.
  • the light uniformity component 210 includes a wedge-shaped light guide 2100 .
  • the cross-sectional area of the light pipe 2100 decreases.
  • the light pipe 2100 includes a first end 211 and a second end 212 .
  • the first end 211 is close to the light source 10 and is an incident end to receive the illumination beam from the light source 10 .
  • the second end 212 is far away from the light source 10 and serves as the exit end.
  • the illumination beam homogenized by the light pipe 2100 exits from the second end 212 .
  • the cross-sectional area of the first end 211 is larger than the cross-sectional area of the second end 212 .
  • the cross section of the light pipe 2100 may refer to the cross section of the light pipe 2100 on a plane (target plane) perpendicular to the transmission direction of the illumination beam.
  • the wedge-shaped light pipe 2100 can directly receive the illumination beam from the light source 10, and the illumination beam can be converged without going through a condensing lens or other structures, which is conducive to simplifying the structure of the projection device 1000 and facilitating the miniaturization of the projection device 1000.
  • Lens assembly 220 may include a convex lens.
  • a convex lens For example, plano-convex lenses, biconvex lenses or meniscus lenses (also called positive meniscus lenses).
  • the convex lens can be a spherical lens or an aspherical lens.
  • the prism component 250 may be a total internal reflection (Total Internal Reflection, TIR) prism component or a refractive total reflection (Refraction Total Internal Reflection, RTIR) prism component.
  • TIR Total Internal Reflection
  • RTIR refractive total reflection
  • Light valve 240 may be a reflective light valve.
  • the light valve 240 includes a plurality of reflective sheets, and each reflective sheet can be used to form a pixel in the projection image.
  • the light valve 240 can adjust multiple reflective sheets according to the image to be displayed, so that the reflective sheets corresponding to the pixels in the image that need to be displayed in a bright state reflect the light beam to the lens 30.
  • the light beam reflected to the lens 30 is called a projection light beam. In this way, the light valve 240 can modulate the illumination beam to obtain the projection beam, and realize the display of the projection image through the projection beam.
  • the light valve 240 may be a Digital Micromirror Device (DMD).
  • DMD Digital Micromirror Device
  • a digital micromirror device contains multiple (eg, thousands) tiny reflective mirrors that can be driven individually to rotate. These tiny reflective lenses can be arranged in an array.
  • One micro-reflective lens (for example, each micro-reflective lens) corresponds to one pixel in the projection image to be displayed.
  • the image signal can be converted into digital codes such as 0 and 1 after processing.
  • tiny reflective mirrors can swing. Control the duration of each tiny reflective lens in the on and off states to achieve the grayscale of each pixel in a frame of image. In this way, the digital micromirror device can modulate the illumination beam to display the projected image.
  • the lens 30 includes a multi-piece lens combination, which is usually divided into groups, and is divided into three stages: front group, middle group and rear group, or two stages: front group and rear group.
  • the front group is a lens group close to the light exit side of the projection device 1000
  • the rear group is a lens group close to the light exit side of the optical modulation component 20 .
  • the lens 30 may be a zoom lens, a fixed focus adjustable focus lens, or a fixed focus lens.
  • the projection device 1000 may be an ultra-short throw projection device
  • the lens 30 may be an ultra-short throw projection lens.
  • some embodiments of the present disclosure mainly take the example in which the projection device 1000 adopts a digital light processing (DLP) projection architecture and the light valve 240 is a digital micromirror device.
  • DLP digital light processing
  • the light valve 240 is a digital micromirror device.
  • the light source 10 in some embodiments of the present disclosure is described in detail below.
  • Figure 5 is a structural diagram of a light source according to some embodiments.
  • the light source 10 includes a laser 101 and a dimming component 102 .
  • the laser 101 is configured to emit laser light of multiple colors
  • the dimming component 102 includes a plurality of dimming areas.
  • Lasers of different colors can be directed to different dimming areas in the dimming component 102 , and the lasers of multiple colors can respectively correspond to multiple dimming areas in the dimming component 102 .
  • Each color of laser light is directed to a corresponding dimming area, and the dimming area is configured to adjust the corresponding color of laser light.
  • Multiple dimming areas may each include multiple diffraction microstructures, and the diffraction microstructures in different dimming areas are different.
  • the shapes of the diffractive microstructures in different dimming areas are different; or the arrangement relationships between the diffractive microstructures in different dimming areas are different; or the shapes of the diffractive microstructures in different dimming areas are different, and they are different in modulation.
  • the arrangement relationship between the diffraction microstructures in the light region is different.
  • the light modulation component 102 is configured to diffract the received laser light of multiple colors through multiple diffraction microstructures in the multiple light modulation areas, and emit the laser light toward the same area, so that the laser light of multiple colors undergoes multiple modulation processes.
  • the light spots formed behind the light area can overlap.
  • different light output areas of the laser 101 can emit laser light of different colors.
  • the laser 101 is a multi-chip laser diode (MCL) type laser, and the laser 101 emits red laser, green laser and blue laser.
  • the three colors of laser light are respectively emitted to three light modulation areas in the light adjustment component 102, and each light modulation area can diffract the incident laser light of the corresponding color.
  • the red laser, green laser and blue laser emitted after passing through the dimming component 102 can be emitted to the same area, and the three light spots formed by the three colors of laser can overlap, thereby achieving the combination of the three colors of laser light.
  • the light spot Coincidence includes the situation where the light spots roughly coincide. The situation where there are some smaller areas of the two light spots that are staggered also falls within the scope of the light spot overlap.
  • the laser can also be other types of lasers, which is not limited in this disclosure.
  • the following introduction takes the laser 101 that emits laser light of three colors of red, green and blue as an example.
  • the laser 101 can also emit other laser colors that are different from the three colors of laser light, and the present disclosure does not limit this.
  • the laser can achieve the desired effect after being diffracted by the diffraction component.
  • the emission direction, light intensity, and emission position of the laser are adjusted through diffraction by the diffractive component.
  • the light modulating component 102 is a diffraction component that can emit lasers of different colors to the same area, and make the spot sizes formed by the lasers of different colors approximately the same, thereby realizing the overlap of the spots of different colors.
  • the specific structure of the diffraction component can be designed accordingly according to the area where the laser needs to be directed and the size and shape of the spot that needs to be formed.
  • FIG. 6 is a structural diagram of a laser according to some embodiments.
  • the laser 101 includes a base plate 1011 and a light emitting module 1010.
  • the light-emitting module 1010 includes a frame 1012 and a plurality of light-emitting chips 1013.
  • the frame 1012 and the plurality of light-emitting chips 1013 are arranged on the base plate 1011, and the frame 1012 surrounds the plurality of light-emitting chips 1013.
  • the plurality of light-emitting chips 1013 are configured to emit laser light of multiple colors.
  • the light emitting module 1010 may also include a plurality of heat sinks 1015 and a plurality of reflective prisms 1016.
  • the plurality of heat sinks 1015 and the plurality of reflective prisms 1016 respectively correspond to the plurality of light emitting chips 1013.
  • the heat sink 1015 is disposed on the base plate 1011, and the light-emitting chip 1013 is located on the corresponding heat sink 1015.
  • the heat sink 1015 is configured to assist the corresponding light-emitting chip 1013 in dissipating heat.
  • the reflective prism 1016 is located on the light-emitting side of the corresponding light-emitting chip 1013 to reflect the laser light emitted by the light-emitting chip 1013.
  • the light-emitting module 1010 may also include a light-transmitting layer and a collimating lens set.
  • the light-transmitting layer is provided on the side of the frame 1012 away from the bottom plate 1011 and is configured to close the opening on the side of the frame 1012 away from the bottom plate 1011 .
  • the collimating lens group is located on the side of the light-transmitting layer away from the base plate 1011 and is configured to collimate the laser light emitted by the light-emitting chip 1013 .
  • the light-emitting chip 1013 can emit laser light to the corresponding reflective prism 1016.
  • the reflective prism 1016 can reflect the received laser light toward the collimating lens group in a direction away from the base plate 1011, and then the laser light is collimated by the collimating lens group and then emitted.
  • the laser 101 includes a plurality of light-emitting modules 1010 , and the plurality of light-emitting modules 1010 include a first light-emitting module 1010A and a second light-emitting module 1010B.
  • the first light-emitting module 1010A includes a first frame 1012A and a plurality of first light-emitting chips 1013A, and the plurality of first light-emitting chips 1013A are surrounded by the first frame 1012A;
  • the second light-emitting module 1010B includes a second frame 1012B, The plurality of second light-emitting chips 1013B and the plurality of third light-emitting chips 1013C are surrounded by the second frame 1012B.
  • the first light-emitting chip 1013A is configured to emit red laser light
  • the second light-emitting chip 1013B is configured to emit blue laser light
  • the third light-emitting chip 1013C is configured to emit green laser light.
  • the laser light emitted by each light-emitting chip 1013 is called a sub-beam.
  • the laser 101 includes two light-emitting modules 1010, the first light-emitting module 1010A includes four first light-emitting chips 1013A, and the second light-emitting module 1010B includes two second light-emitting chips 1013B and three third light-emitting chips 1013C. Be explained.
  • the area where the four first light-emitting chips 1013A are located may be the first light emitting area Q1 of the laser 101, the area where the two second light emitting chips 1013B are located may be the second light emitting area Q2 of the laser 101, and the three third light emitting chips 1013A may be located in the first light emitting area Q1 of the laser 101.
  • the area where the chip 1013C is located may be the third light emitting area Q3 of the laser 101.
  • Each color of laser light emitted by the laser 101 can be directed to a dimming area in the dimming component 102.
  • Each color of laser light can include one or more sub-beams, and the one or more sub-beams are respectively composed of one or more light-emitting chips. 1013 issued.
  • Figure 7 is a schematic diagram of the light spot formed on the dimming component by the laser emitted by the laser in Figure 6.
  • the laser light emitted from the three light output areas of the laser 101 is directed to the three dimming areas of the dimming component 102 (the first dimming area G1, the second dimming area G2 and the third dimming area G3). ).
  • the distribution of the multiple dimming areas may be the same as the distribution of the multiple light output areas of the laser 101 .
  • the first light output area Q1 of the laser 101 emits four red sub-beams to the first dimming area G1 of the dimming component 102.
  • the four red sub-beams can form four small red light spots in the first dimming area G1.
  • the second light output area Q2 of the laser 101 emits two blue sub-beams to the second dimming area G2 of the dimming component 102.
  • the two blue sub-beams can form two small blue sub-beams in the second dimming area G2. light spot.
  • the third light emitting area Q3 of the laser 101 emits three green sub-beams to the third dimming area G3 of the dimming component 102.
  • the three green sub-beams can form three small green light spots in the third dimming area G3.
  • Figure 8 is a structural diagram of another laser according to some embodiments.
  • the laser 101 is provided with only one frame 1012 , and the multiple light-emitting chips 1013 in the laser 101 can be arranged in multiple rows and columns in the frame 1012 .
  • the second light emitting area Q2 where the second light emitting chip 1013B is located and the third light emitting area Q3 where the third light emitting chip 1013C is located may at least partially overlap.
  • the laser 101 includes a light-emitting module 1010.
  • the light-emitting module 1010 includes a frame 1012, seven first light-emitting chips 1013A, three second light-emitting chips 1013B and four third light-emitting chips. 1013C. Seven first light-emitting chips 1013A are arranged in one row along the first direction X, and three second light-emitting chips 1013B and four third light-emitting chips 1013C are staggered in another row along the first direction X.
  • FIG. 9 is a schematic diagram of the light spot formed on the dimming component by the laser emitted by the laser in FIG. 8 .
  • the light emitting area of the laser 101 the dimming area of the dimming component 102, and the corresponding sub-beams, reference can be made to the relevant content in FIG. 6 and FIG. 7, which will not be described again here.
  • the adjustment of the received laser light at different locations in the dimming area can be the same, and the diffraction microstructures at different locations in the dimming area can be the same.
  • Each dimming area can adjust the received laser of the corresponding color as a whole, and only need to adjust the received laser differently in different dimming areas.
  • the first dimming area G1 adjusts the four received red sub-beams in the same way
  • the second dimming area G2 adjusts the two received blue sub-beams in the same way.
  • the adjustment conditions are the same
  • the third dimming area G3 adjusts the three received green sub-beams in the same way.
  • the adjustment of the red sub-beam by the first dimming area G1 is different from the adjustment of the blue sub-beam by the second dimming area G2, and is also different from the adjustment of the green sub-beam by the third dimming area G3, and
  • the adjustment of the blue sub-beam by the second dimming area G2 is different from the adjustment of the green sub-beam by the third dimming area G3.
  • the adjustment can be understood as the adjustment of the exit angle, exit position, and energy of the light beam.
  • the present disclosure is not limited thereto.
  • the area to which each sub-beam is directed in the dimming area may be the sub-dimming area corresponding to the sub-beam, and the diffraction microstructures in different sub-dimming areas may be different.
  • Each sub-dimming area can use the diffraction microstructure therein to diffract the received sub-beam to expand the sub-beam.
  • the sub-beams directed to the dimming component 102 can be expanded after being diffracted by the corresponding sub-dimming areas, so that the size of the light spots formed by the multiple sub-beams becomes larger, and the shapes and sizes of the multiple light spots and the direction of the corresponding sub-beams are The positions can be the same, so that the spots formed by multiple sub-beams can overlap.
  • the size of the light spot formed on the dimming component 102 by the laser light of the corresponding color emitted by the laser 101 is larger in the first direction X than in the second direction Y, and the light spots are multiple of the same color.
  • the size L1 of the light spot formed by four small red light spots in the first direction X is larger than the size L2 in the second direction Y.
  • the first direction X may be perpendicular to the second direction Y.
  • the size of the light spot in any direction refers to the distance between the two furthest points in the light spot in that direction.
  • the light spot formed by the laser light of multiple colors emitted by the laser 101 has a large aspect ratio, which is different from that of the subsequent light collecting component (such as the light uniforming component 102).
  • the matching degree of the required light spot is low.
  • the length of the light spot may refer to its size in the first direction X
  • the width may refer to its size in the second direction Y.
  • the dimming component 102 can diffract the laser light so that the shape of the spot of the emitted laser light meets the requirements.
  • the light modulating component 102 is configured to diffract the received laser light to adjust the light spot formed by the laser light emitted from the light modulating component 102 to a light spot that matches the spot shape required by the light collecting component.
  • the light spot required by the light-collecting component has a small aspect ratio (such as 16:9, 1:1 or other ratios), which is not limited in this disclosure.
  • the plurality of dimming regions in the dimming component 102 are configured to shrink the laser light in the first direction X, so that the size of the spot formed by the laser light emitted by the dimming component 102 is reduced in the first direction
  • the aspect ratio of the light spot makes the shape of the light spot close to the required light spot shape and improves the matching degree between the light spot and the required light spot shape.
  • the plurality of light modulation areas are configured to expand the laser light in the second direction Y, so that the size of the light spot formed by the laser light emitted by the light modulation component 102 is increased in the second direction Y, thereby reducing the length of the light spot. width ratio.
  • the plurality of dimming regions are configured to contract the laser light in the first direction X and expand the laser light in the second direction Y.
  • the plurality of dimming regions are configured to shrink the laser light in the first direction X and the second direction Y, and the degree of shrinkage of the laser light in the first direction X is greater than the degree of shrinkage in the second direction Y.
  • the corresponding reduction magnification of the laser in the first direction X is greater than the corresponding reduction magnification in the second direction Y.
  • the plurality of dimming regions are configured to expand the laser light in the first direction X and the second direction Y, and the degree of expansion of the laser light in the first direction X is smaller than the degree of expansion in the second direction Y.
  • the corresponding magnification factor of the laser in the first direction X is smaller than the corresponding magnification factor in the second direction Y.
  • a beam-reducing component (such as a converging lens) is usually provided on the light exit side of the laser to reduce the beam of the laser and reduce the beam size of the subsequently transmitted laser.
  • a beam-reducing component such as a converging lens
  • the light spot shape required by the light collecting component is a rectangle.
  • the plurality of dimming areas in the dimming component 102 are configured to The received laser light is diffracted so that the shape of the spot formed by the laser light emitted through the multiple dimming areas is rectangular. Since the lasers of multiple colors emitted after passing through multiple dimming areas can be directed to the same area to achieve light synthesis, the light spots formed by the lasers of multiple colors emitted by the laser 101 after passing through the dimming component 102 can be respectively rectangle.
  • the dimming component 102 can also use multiple sub-dimming areas to separately adjust the multiple sub-beams received, so that the light spots formed by the multiple sub-beams after emitting from the dimming component 102 are respectively rectangular.
  • the dimming component 102 can also diffract the laser light to make the energy distribution of the emitted laser light uniform.
  • the plurality of sub-beams directed to the dimming component 102 are respectively Gaussian beams.
  • the energy (such as amplitude) in the sub-beams has a Gaussian distribution.
  • the center brightness of the light spot formed by the sub-beams is high and the edge brightness is low.
  • the multiple dimming areas in the dimming component 102 can adjust the energy distribution of the received laser light, so that the laser light of multiple colors emitted by the laser 101 is diffracted by the multiple dimming areas in the dimming component 102.
  • the energy difference (such as illuminance or brightness) between any two positions of the light spot formed by the multiple colors of laser light can be less than the energy threshold, thereby making the energy distribution of the laser light emitted from the dimming component 102 uniform.
  • the laser light emitted from the dimming component 102 can form a square light spot with uniform brightness in multiple locations.
  • one dimming component 102 can be used to combine, shape and homogenize the lasers of multiple colors emitted by the laser 101 . In this way, there is no need to provide corresponding lenses, diffusers and other components, which can reduce the number of components in the light source 10, simplify the structure and preparation process of the light source 10, and facilitate the miniaturization of the light source 10.
  • the dimming component 102 in some embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • the dimming component 102 may be a grating waveguide.
  • the grating waveguide includes a coupling grating, an optical waveguide and a coupling out grating.
  • the diffraction microstructure in the light modulating component 102 refers to the microstructure in the coupling grating and the microstructure in the coupling out grating.
  • the coupling grating is configured to diffract the received laser light in a first direction and transmit the diffracted laser light to the optical waveguide.
  • the optical waveguide is configured to transmit laser light from the coupling-in grating to the coupling-out grating.
  • the coupling grating is configured to diffract the received laser light in the second direction and emit the diffracted laser light.
  • the first direction is perpendicular to the second direction.
  • Each dimming area in the dimming component 102 may include a first area in the coupling grating and a second area in the coupling out grating.
  • first direction and the second direction are only used to indicate that the coupling grating and the coupling grating process the laser in two different directions respectively.
  • the first direction and the second direction here can be the same as those in Figures 7 and 9
  • the first direction X and the second direction Y are the same, or the first direction here can be the second direction Y in Figures 7 and 9, and the second direction here can be the first direction X in Figures 7 and 9 , this disclosure does not limit this.
  • the irradiation area of each color of laser in the coupling grating can be called the first area corresponding to the laser, and the irradiation area of each color of laser in the coupling grating can be called the second area corresponding to the laser.
  • the corresponding dimming area of each color of laser in the dimming component 102 includes the first area and the second area.
  • the irradiation area of each sub-beam in the coupling grating can be called the first sub-area corresponding to the sub-beam
  • the irradiation area of each sub-beam in the coupling grating can be called the second sub-area corresponding to the sub-beam.
  • the sub-dimming area corresponding to each sub-beam in the dimming component 102 includes the first sub-region and the second sub-region.
  • Figure 10 is a structural diagram of another light source according to some embodiments.
  • the dimming component 102 ie, the grating waveguide
  • the dimming component 102 includes a coupling grating 1021 , an optical waveguide 1022 , and a coupling grating 1023 .
  • the diffractive microstructures 1024 in the dimming component 102 are microstructures in the coupling grating 1021 and the coupling out grating 1023 .
  • the coupling grating 1021, the optical waveguide 1022 and the coupling grating 1023 can be an integral part, or they can also be independent components that are bonded and fixed.
  • the optical waveguide 1022 is plate-shaped and has two relatively large plate surfaces (ie, a first plate surface 1022A and a second plate surface 1022B).
  • the coupling grating 1021 is located on the first plate surface 1022A of the optical waveguide 1022 away from the laser 101, and the coupling grating 1023 is located on the second plate surface 1022B of the optical waveguide 1022 close to the laser 101.
  • the orthographic projection of the coupling grating 1021 on the optical waveguide 1022 may be located outside the orthographic projection of the coupling grating 1023 on the optical waveguide 1022 .
  • the coupling-in grating 1021 and the coupling-out grating 1023 may be reflective gratings.
  • the laser light emitted by the laser 101 can be incident on the coupling grating 1021 through the optical waveguide 1022, diffracted at the coupling grating 1021, and then reflected back to the optical waveguide 1022.
  • the laser light reflected back to the optical waveguide 1022 undergoes total reflection in the optical waveguide 1022 and is incident on the coupling grating 1023. After being diffracted by the coupling grating 1023, it is emitted from the optical waveguide 1022, thus completing the adjustment of the received laser light by the light modulating component 102. .
  • the diffraction microstructure 1024 in the dimming component 102 can be in a zigzag shape, with coupling-in grating 1021 and coupling-out grating 1023 Each may include a plurality of zigzag diffraction microstructures 1024.
  • the diffraction microstructure 1024 may be in a strip shape, and the length direction of the diffraction microstructure 1024 in the coupling grating 1021 may be perpendicular to the length direction of the diffraction microstructure 1024 in the coupling grating 1023 .
  • the length direction of the diffraction microstructure 1024 in the coupling grating 1021 is the first direction
  • the length direction of the diffraction microstructure 1024 in the coupling grating 1023 is the second direction.
  • the vertex angles of the zigzag diffractive microstructures 1024 can be different to achieve different processing of the received laser light in different dimming areas.
  • the vertex angle refers to the angle between the two tooth surfaces of the sawtooth, such as the angle ⁇ in Figure 10.
  • the diffraction microstructure 1024 has different vertex angles, and the corresponding grating thicknesses are also different.
  • the width of the diffraction microstructure 1024 in different dimming areas is different to achieve different processing of the received laser light in different dimming areas.
  • the width of the diffraction microstructure 1024 may be the width D1 in FIG. 10 . This width is the grating pitch, which can also be called the grating constant.
  • At least one of the vertex angles or widths of the diffractive microstructures 1024 in different first regions of the coupling grating 1021 is different, and at least one of the vertex angles or widths of the diffractive microstructures 1024 in different second regions of the coupling grating 1023 is different.
  • at least one parameter of the vertex angle or width of the diffractive microstructures 1024 in different first sub-regions of the coupling grating 1021 is different, and the vertex angles of the diffractive microstructures 1024 in different second sub-regions of the coupling grating 1023 are different.
  • at least one parameter in the width is different.
  • FIG. 11 is a structural diagram of the dimming component of the light source in FIG. 10 .
  • the laser light diffracted by the diffraction microstructure 1024 has multiple diffraction energy levels.
  • the state where the diffraction energy level is 0 is equivalent to the laser being reflected.
  • the incident angle of the laser on a diffraction microstructure 1024 is the angle ⁇
  • the width of the diffraction microstructure 1024 is the width D1 as an example.
  • the transmission direction of the laser when the diffraction energy level is 0 is schematically illustrated.
  • the emission angle of laser light is also angle ⁇ .
  • the laser and diffraction microstructure 1024 can satisfy the following formula (1):
  • m is an integer and represents the diffraction energy level (also called the grating order)
  • represents the wavelength of the laser
  • D1 represents the required width of the diffraction microstructure 1024 (ie, the grating constant)
  • represents the required
  • the grating (such as the coupling grating 1021 and the coupling grating 1023) can be designed based on this relationship (such as formula (1)), so that the energy of the incident laser is evenly distributed on multiple diffraction energy levels after diffraction.
  • the energy distribution of the incident laser can also be such that the energy of the incident laser is only distributed on a certain diffraction energy level after diffraction to achieve contraction of the laser.
  • FIG. 12 is an energy distribution diagram of a laser according to some embodiments
  • FIG. 13 is an energy distribution diagram of another laser according to some embodiments
  • FIG. 14 is an energy distribution diagram of yet another laser according to some embodiments.
  • the abscissa represents the diffraction energy level
  • the ordinate represents the energy of the laser.
  • Figure 12 shows the energy distribution when the laser is emitted to the grating, and the energy distribution is a Gaussian distribution.
  • Figure 13 shows the energy distribution when the laser emits a grating.
  • the grating can evenly distribute the energy of the laser in various diffraction energy levels, thereby realizing the expansion of the laser.
  • the grating in this case can be a multi-level grating.
  • Figure 14 shows the energy distribution when the laser emits another grating. As shown in Figure 14, this grating can concentrate the energy of the laser at one diffraction energy level, thereby shrinking the laser.
  • the grating can be a grating of a certain order, and the laser can be focused on different diffraction energy levels by adjusting the grating order.
  • the diffractive microstructure 1024 may also be a rectangular protrusion.
  • the diffraction microstructure 1024 is columnar and has a rectangular cross-section.
  • the cross-section may also have other shapes, or the structures of the coupling grating 1021 and the coupling-out grating 1023 may also be similar to a blazed grating, and the cross-section of the diffractive microstructure 1024 may be triangular, which is not limited in this disclosure.
  • Figure 15 is a structural diagram of yet another light source according to some embodiments.
  • the dimming component 102 includes a coupling grating 1021 , an optical waveguide 1022 and an coupling grating 1023 .
  • the coupling grating 1021 is disposed on the second plate surface 1022B of the optical waveguide 1022 close to the laser 101, and the coupling grating 1023 is disposed on the first plate surface 1022A of the optical waveguide 1022 away from the laser 101.
  • the orthographic projection of the coupling grating 1021 on the optical waveguide 1022 and the orthographic projection of the coupling grating 1023 on the optical waveguide 1022 may at least partially overlap.
  • the coupling-in grating 1021 and the coupling-out grating 1023 may be transmission gratings.
  • the orthographic projection of the coupling grating 1021 on the optical waveguide 1022 may not overlap with the orthographic projection of the coupling grating 1023 on the optical waveguide 1022.
  • the diffractive microstructures 1024 in the in-coupling grating 1021 and the out-coupling grating 1023 in Figure 15 may include grooves (eg, scores).
  • the groove can be opaque, and the portion between adjacent grooves is equivalent to a slit, and the slit can be light-transmissive.
  • FIG. 16 is a partial structural diagram of the dimming component of the light source in FIG. 15
  • FIG. 16 shows a partial structure of the coupling grating 1021 or the coupling grating 1023 .
  • the laser light incident on the coupling grating 1021 or the coupling grating 1023 changes its emission direction after being diffracted.
  • m represents the diffraction energy level
  • represents the wavelength of the laser
  • represents the diffraction angle of the laser
  • D2 represents the distance between adjacent grooves C (i.e., the grating constant)
  • the distance D2 between adjacent grooves C is equal to the sum of the width D3 of one of the grooves C and the minimum distance D4 between the adjacent grooves C.
  • the gratings (such as the coupling grating 1021 and the coupling grating 1023) can be designed based on this relationship (such as formula (2)), so that the energy of the incident laser is evenly distributed on multiple diffraction energy levels after diffraction, thereby achieving Expansion of the laser; alternatively, the energy of the incident laser can be distributed only on a certain diffraction energy level after diffraction to achieve contraction of the laser.
  • this content please refer to the relevant introduction of Figure 12 to Figure 14 above. , which will not be described in detail here.
  • the coupling grating 1021 and the coupling grating 1023 can also be located on the same plate of the optical waveguide 1022.
  • One of the coupling grating 1021 and the coupling grating 1023 is a transmission grating and the other is a reflection grating.
  • transmissive gratings and reflective gratings please refer to the introduction of reflective gratings in Figure 10 and the introduction of transmissive gratings in Figure 15.
  • the dimming component 102 may be a diffractive optical element (Diffractive Optical Elements, DOE).
  • the diffractive optical element is a two-dimensional diffraction device that can directly adjust the received laser light in two directions. For example, the diffractive optical element directly diffracts the received laser light in the first direction and the second direction, so that the laser light emitted from the diffractive optical element can match the required light spot.
  • diffractive optical elements can include multiple diffractive microstructures that are two-dimensionally distributed using micro-nano etching processes. Each diffractive microstructure has a specific morphology and refractive index. Multiple diffractive microstructures can achieve precise detection of laser light. Regulation. For example, each diffraction microstructure is rectangular, the size and depth (or height) of the multiple diffraction microstructures can be different, and the distance between different diffraction microstructures can also be different, thereby achieving targeting of the incident laser. sexual adjustment.
  • the dimming component 102 is a holographic optical element (Holographic Optical Element, HOE).
  • FIG. 17 is a structural diagram of yet another light source according to some embodiments.
  • the light source 10 further includes a converging lens 103 .
  • the laser light emitted by the dimming component 102 can be directed to the condensing lens 103 to be converged by the condensing lens 103 to the uniform light component 210 .
  • the condensing lens 103 is configured to condense the laser light so that more laser light can be incident on the uniform light component 210 and improve the utilization rate of the laser light.
  • Converging lens 103 may include one or more lenses. In practical applications, the appropriate number and type of lenses can be used as needed.
  • the light source 10 further includes a diffusion sheet 105 located between the condensing lens 103 and the light uniformity component 210 .
  • the diffuser 105 is configured to homogenize the incident light beam, thereby eliminating speckle.
  • the diffusion sheet 105 may be stationary or movable.
  • the light source 10 also includes a center point that passes through the diffuser 105 and is perpendicular to the rotation axis of the diffuser 105.
  • the diffuser 105 can rotate along the rotation axis, so that the laser light can be emitted to different positions of the diffuser plate 105 at different times, so that the laser light can be directed at different positions of the diffuser plate 105 at different times.
  • the angle of divergence of time is different.
  • the diffusion sheet 105 may reciprocate in a direction parallel to the plane in which it is located.
  • each dimming area in the dimming component 102 can use the diffraction microstructure 1024 therein to diffract the received laser light, and the diffraction microstructure 1024 in different dimming areas can be different.
  • the optical modulation assembly 20 may include a volume grating to adjust the illumination beam, thereby omitting the above components (such as the lens assembly 220 and the prism assembly 250), reducing the volume of the illumination system in the projection device 1000, and facilitating the projection device. 1000 miniaturization.
  • the illumination system may refer to the relevant optical components in the optical modulation assembly 20 for shaping the illumination beam to match the light valve 240 .
  • Figure 18 is a structural diagram of another projection device according to some embodiments.
  • Figure 19 is a structural diagram of yet another laser according to some embodiments.
  • the projection device 1000 includes a light source 10 , an optical modulation component 20 and a lens 30 .
  • the optical modulation component 20 includes a light uniformity component 210, a volume grating 230, and a light valve 240 (such as a DMD).
  • the light homogenizing component 210 can adopt the above-mentioned wedge-shaped light pipe 2100.
  • the illumination beam from the light source 10 enters the light pipe 2100 through the first end 211 of the light pipe 2100 for homogenization, and after homogenization, exits from the second end 212 of the light pipe 2100. Emit towards the volume grating 230.
  • the light valve 240 is located on the light exit side of the volume grating 230 and is configured to receive the illumination beam from the volume grating 230 and modulate the illumination beam to obtain a projection beam. It should be noted that the relevant contents of the light uniformity component 210 and the light valve 240 may be referred to the above, and will not be described again here.
  • the laser 101 in FIG. 19 includes a plurality of light-emitting chips 1013, which are arranged in a 4 ⁇ 7 matrix array.
  • the plurality of light-emitting chips 1013 includes a plurality of first light-emitting chips 1013A, a plurality of second light-emitting chips 1013B and a plurality of third light-emitting chips 1013C.
  • a plurality of first light-emitting chips 1013A emit red laser light and are arranged in a 2 ⁇ 7 matrix array.
  • the plurality of second light-emitting chips 1013B emits blue laser light
  • the plurality of third light-emitting chips 1013C emits green laser light
  • the plurality of second light-emitting chips 1013B and the plurality of third light-emitting chips 1013C are respectively arranged in a 1 ⁇ 7 matrix array.
  • the number and arrangement of the lasers 101 and the plurality of light-emitting chips 1013 are not limited to this.
  • the positions of the plurality of second light-emitting chips 1013B and the plurality of third light-emitting chips 1013C in FIG. 19 are interchanged.
  • Figure 20 is a structural diagram of yet another light source according to some embodiments.
  • the light source 10 further includes a first light-combining lens group 104 located at a plurality of first light-emitting chips 1013A, a plurality of second light-emitting chips 1013B and a plurality of The light emitting side of the third light emitting chip 1013C is configured to combine the red laser, the green laser and the blue laser.
  • the light pipe 2100 (light uniforming component 210) is located on the light exit side of the first light combining lens group 104.
  • the light pipe 2100 may be a light pipe with the same cross-sectional area.
  • the first light combining lens group 104 may include a first light combining lens 1041, a second light combining lens 1042, and a third light combining lens 1043.
  • the third light combining mirror 1043 is located on the light emitting side of the plurality of third light emitting chips 1013C.
  • the third light combining mirror 1043 can be a reflecting mirror and is configured to combine the green laser light emitted by the plurality of third light emitting chips 1013C to the second light combining mirror.
  • Mirror 1042 reflection is configured to combine the green laser light emitted by the plurality of third light emitting chips 1013C to the second light combining mirror.
  • the second light combining mirror 1042 is located on the light emitting side of the plurality of second light emitting chips 1013B and on the light emitting side of the third light combining mirror 1043 .
  • the second light combining mirror 1042 is located at the intersection of the reflected light of the third light combining mirror 1043 and the emitted light of the plurality of second light emitting chips 1013B.
  • the second light combining mirror 1042 may be a dichroic mirror and is configured to transmit the green laser light reflected by the third light combining mirror 1043 and reflect the blue laser light emitted by the plurality of second light emitting chips 1013B, thereby combining the blue laser light and the green laser light. Laser beam combination.
  • the first light combining mirror 1041 is located on the light emitting side of the plurality of first light emitting chips 1013A, and on the light emitting side of the second light combining mirror 1042 .
  • the first light combining mirror 1041 is located at the intersection of the emitted light of the plurality of first light emitting chips 1013A and the emitted light of the second light combining mirror 1042 .
  • the first light combining mirror 1041 can be a dichroic mirror, and is configured to transmit the blue laser and the green laser emitted by the second light combining mirror 1042, and reflect the red laser emitted by the plurality of first light emitting chips 1013A, thereby converting the blue laser to the blue laser.
  • the laser, green laser and red laser are combined.
  • the functions of multiple light combiners are not limited to this.
  • the third light-combining mirror 1043 may be configured to reflect blue laser light
  • the second light-combining mirror 1043 may be configured to reflect blue laser light
  • 1042 is configured to reflect green laser light and transmit blue laser light.
  • the light source 10 further includes a diffusion sheet 105 and a converging lens 103 .
  • the diffusion sheet 105 and the condensing lens 103 are located between the first light combining lens group 104 and the light pipe 2100 . Furthermore, the diffusion sheet 105 is located on the light exit side of the first light combining lens group 104 , and the condenser lens 103 is located on the light exit side of the diffusion sheet 105 .
  • the relevant functions of the diffuser 105 and the condensing lens 103 can be referred to the relevant contents mentioned above, and will not be described again here.
  • volume grating 230 in some embodiments of the present disclosure is introduced in detail below.
  • the volume grating 230 is located on the light exit side of the light uniformity component 210 and is configured to diffract incident light (such as an illumination beam).
  • the volume grating 230 may also be called a volume grating, which refers to a diffraction element formed by the entire volume of an element.
  • the diffraction element can modulate incident light through periodic refractive index changes or periodic absorption of light of specific wavelengths.
  • the volume grating 230 is a grating with a periodic refractive index, which is also called a volume phase grating. The refractive index at different parts of the volume grating 230 changes periodically.
  • a light beam can be diffracted after being incident on a thin diffraction grating and form two beams (i.e., a transmitted beam and a diffracted beam). After the light beam is incident on the volume grating 230 and diffracted, only one light beam is formed.
  • Figure 21 is a schematic diagram of volume grating diffraction according to some embodiments. For example, as shown in FIG. 21 , the first beam A1 is diffracted after being incident on the volume grating 230 to form the first diffracted beam A11 . The second beam A2 is diffracted after being incident on the volume grating 230 and is formed into the second diffracted beam A22 .
  • Diffraction efficiency is the ratio of the optical power of diffracted light to the optical power of incident light. Diffraction efficiency reaches 100%, indicating that all incident light can be diffracted and emitted. Under ideal circumstances, the diffraction efficiency can reach 100% only when light of a set wavelength is incident on the volume grating 230 at a Bragg angle. Deviations in the incident angle or wavelength will cause the diffraction efficiency to decrease or even become zero.
  • the volume grating 230 can be designed according to the above properties to obtain greater diffraction efficiency.
  • the incident angle of the light beam incident on the volume grating 230 can be determined.
  • the incident angle is related to the structure of the projection device 1000 and the divergence angle of the emitted light of the light pipe 2100.
  • the laser incident on the volume grating 230 can be Has three wavelength bands (eg, wavelengths corresponding to red laser, green laser, and blue laser).
  • the volume grating 230 when designing the volume grating 230, appropriate refractive index changes, thicknesses, and periods can be selected based on the wavelength of the incident laser and the incident angles of the incident laser at different positions of the volume grating 230, so that the three-color laser can be incident on the volume grating 230. 230 It can then be completely diffracted (that is, the diffraction efficiency corresponding to all incident light is 100%), thereby avoiding crosstalk between light at different angles and different wavelengths and reducing unnecessary diffraction.
  • the period of the volume grating 230 refers to the length from one refractive index change point to an adjacent refractive index change point in the volume grating 230 .
  • the volume grating 230 may be a photopolymer film.
  • the volume grating 230 uses a polypropylene (PP) film.
  • Photopolymers can polymerize under light conditions, causing the refractive index of the reacted material to change. In this way, according to the design requirements of the volume grating 230, different positions of the photopolymer film can be illuminated to different degrees to form gradient refractive index changes, so that the volume grating 230 has a higher sensitivity to the incident three-color laser. diffraction efficiency.
  • volume grating 230 has a thickness on the order of wavelengths.
  • the thickness of the volume grating 230 is an integer multiple of the laser wavelength of the corresponding color.
  • the volume grating 230 is disposed on one side of the light valve 240, and a set angle is formed between the light exit surface of the volume grating 230 and the light entrance surface of the light valve 240. Since digital micromirror devices are usually square, the laser light from the light source needs to be incident on the DMD at a set angle. Therefore, the light exit surface of the volume grating 230 and the light entrance surface of the DMD can be arranged at a set included angle.
  • Figure 22 is a structural diagram of a volume grating and a light valve according to some embodiments.
  • the light exit surface 2300 of the volume grating 230 and the light entrance surface 2400 of the light valve 240 form a set included angle ⁇ . Since DMDs of different specifications have different requirements for the incident angle of light, the angle between the volume grating 230 and the DMD needs to be set according to the requirements of the DMD.
  • Figure 23 is a structural diagram of an optical modulation component in a projection device according to some embodiments.
  • volume grating 230 is located on the side of light valve 240.
  • the light pipe 2100 is located on a side of the volume grating 230 away from the light valve 240 , and the extending direction of the light pipe 2100 is parallel to the side of the light valve 240 .
  • the optical modulation component 20 further includes a mirror group 260 .
  • the reflector group 260 is disposed on the light exit side of the light pipe 2100 , and the reflector group 260 is configured to reflect the illumination beam emitted from the light pipe 2100 to the volume grating 230 .
  • the reflector group 260 may include one or more reflectors, which may reflect red, green, and blue lasers.
  • the reflector group 260 includes two reflectors 261 and 262 arranged at a preset angle. It should be noted that one, two, or more reflectors may be provided on the light exit side of the light pipe 2100 according to actual conditions, and this disclosure does not limit this.
  • the size, position, and tilt angle of the reflector group 260 relative to the illumination beam emitted from the light pipe 2100 need to meet the conditions for reflecting the illumination beam emitted from the light pipe 2100 to the light incident surface of the volume grating 230 . Therefore, the period, thickness, refractive index change and other parameters of the volume grating 230 can be designed according to the incident angle when the reflection mirror group 260 reflects the illumination beam to the volume grating 230 .
  • Figure 24 is a structural diagram of another optical modulation component in a projection device according to some embodiments.
  • optical modulation assembly 20 also includes one or more collimating lenses 270.
  • Collimating lens 270 is located between light pipe 2100 and mirror set 260 and is configured to collimate the incident light beam.
  • the collimating lens 270 is disposed close to the light outlet of the light pipe 2100 .
  • the illumination beam emitted from the light pipe 2100 is collimated by the collimating lens 270 , it is incident on the reflector group 260 , and the incident angle of the illumination beam incident on the reflector group 260 can be a fixed value, so that the illumination beam passes through the reflector group 260
  • the incident angle when reflected to the volume grating 230 can also be a fixed value, which is beneficial to simplifying the design difficulty of the volume grating 230 .
  • the structure of the optical modulation component 20 is simple, which facilitates miniaturization of the projection device 1000.
  • the collimating lens 270 at the light outlet of the light pipe 2100, the divergence angle of the illumination beam emitted from the light pipe 2100 can be reduced, which facilitates the determination of the incident angle when the illumination beam enters the volume grating 230.
  • volume grating 230 to achieve uniform light in some embodiments of the present disclosure can also be applied to liquid crystal display devices.
  • this solution is used as the backlight of a liquid crystal display panel.
  • the projection device 1000 can also use optical waveguides (such as array optical waveguides or zigzag optical waveguides) to adjust the uniformity of light spots of lasers of multiple colors.
  • the array optical waveguide or the zigzag optical waveguide may be in a sheet shape.
  • an array optical waveguide or a zigzag optical waveguide is a transparent substrate with a high refractive index.
  • the illumination beam emitted by the light source is coupled into the substrate through a specific structure.
  • the illumination beam propagates through total reflection within the substrate and propagates to a location. Then it is coupled out through another specific structure.
  • the light source 10 with an optical waveguide in some embodiments of the present disclosure is introduced in detail below.
  • light source 10 may include a laser 101 and one or more optical waveguides 108.
  • the following laser shown in Figure 19 Take device 101 as an example.
  • the optical waveguide 108 may be located on the light emitting side of the third light emitting chip 1013C.
  • the optical waveguide 108 may include a light entrance part 1081 and a light exit part 1082.
  • the light incident part 1081 is configured to introduce incident laser light (eg, at least one of blue laser light or green laser light) into the optical waveguide 108 .
  • the light extraction part 1082 is configured to derive the laser light in the optical waveguide 108 .
  • the beam width of at least one of the blue laser or the green laser emitted by the light emitting part 1082 is equal to the beam width of the red laser emitted by the first light-emitting chip 1013A.
  • the beam width may refer to the size of the beam on a plane perpendicular to the axis direction of the beam.
  • the optical waveguide 108 may be made of materials with low optical transparency and low transmission loss, such as glass, silicon dioxide, or lithium niobate. Furthermore, the light incident part 1081 and the light emitting part 1082 of the optical waveguide 108 have film layers with reflective or transmissive functions, so that the light incident on the optical waveguide 108 propagates in the optical waveguide 108 according to a set path.
  • Figure 25 is a structural diagram of yet another projection device according to some embodiments.
  • the optical waveguide 108 includes parallel light incident surfaces 1080A and 1080B, which are in the thickness direction of the optical waveguide 108 (PL direction in FIG. 25 ) relative settings.
  • the light incident part 1081 and the light emitting part 1082 of the optical waveguide 108 are respectively located between the light incident surface 1080A and the light emitting surface 1080B.
  • the light incident surface 1080A of the optical waveguide 108 faces the laser 101 .
  • optical waveguide 108 may include arrayed optical waveguide 106 or zigzag optical waveguide 107.
  • Figure 26 is a structural diagram of an arrayed optical waveguide according to some embodiments.
  • the arrayed optical waveguide 106 includes a first body 1061 , a first reflective film 1062 , one or more first transflective films 1063 , and a second reflective film 1064 .
  • the first reflective film 1062, the first transflective film 1063 and the second reflective film 1064 are provided in the first body 1061.
  • the first reflective film 1062 is located at one end of the first body 1061 to serve as the light incident portion of the array optical waveguide 106 (ie, the light incident portion 1081 of the optical waveguide 108).
  • the first transflective film 1063 and the second reflective film 1064 are located at the other end of the first body 1061 to serve as the light exit portion of the array optical waveguide 106 (ie, the light exit portion 1082 of the optical waveguide 108).
  • the first transflective film 1063 is located between the first reflective film 1062 and the second reflective film 1064.
  • the first reflective film 1062 , the first transflective film 1063 and the second reflective film 1064 are arranged parallel to each other, and are inclined at a set angle ⁇ with respect to the light incident surface 1080A of the optical waveguide 108 .
  • the set angle ⁇ satisfies the conditions for reflecting the incident laser light and causing total reflection of the laser light in the first body 1061 .
  • the light beam incident on the light incident part of the arrayed optical waveguide 106 is reflected by the first reflective film 1062 and then propagates through multiple total reflections in the first body 1061 .
  • the first transflective film 1063 can reflect the first part of the light beam out of the array optical waveguide 106 and transmit the second part of the light beam to the next first transflective film 1063.
  • the second reflective film 1064 reflects all the remaining light beams out of the array optical waveguide 106. It should be noted that the transmittance and reflectivity of incident light can be changed by coating the first transflective film 1063 , and the light beams that can be transmitted and reflected can be changed by coating the second reflective film 1064 .
  • the light beam in the arrayed optical waveguide 106 can be divided into different parts for emission, thereby expanding the light beam. Furthermore, by adjusting the number and position of the first transflective films 1063 in the arrayed optical waveguide 106, the size (eg, beam width) of the light beam emitted from the arrayed optical waveguide 106 can be adjusted.
  • the array optical waveguide 106 includes a plurality of first transflective films 1063
  • adjusting the reflectivity and transmittance of the plurality of first transflective films 1063 can cause the light beam to be reflected multiple times in the array optical waveguide 106, thereby improving the Uniformity of the light beam emerging from the arrayed optical waveguide 106 .
  • Figure 27 is a structural diagram of a zigzag optical waveguide according to some embodiments.
  • the zigzag optical waveguide 107 includes a second body 1071 , a third reflective film 1072 and a prism portion 1073 .
  • the third reflective film 1072 and the prism portion 1073 are provided in the second body 1071 .
  • the third reflective film 1072 is located at one end of the second body 1071 to serve as the light incident portion of the zigzag optical waveguide 107 (ie, the light incident portion 1081 of the optical waveguide 108).
  • the prism portion 1073 is located at the other end of the second body 1071 to serve as the light exit portion of the zigzag optical waveguide 107 (ie, the light exit portion 1082 of the optical waveguide 108).
  • the third reflective film 1072 is separated from the prism part 1073 by a set distance to satisfy the transmission and reflection of laser light of corresponding wavelengths by the prism part 1073.
  • the third reflective film 1072 is inclined at a set angle ⁇ with respect to the light incident surface 1080A of the optical waveguide 108 .
  • the set angle ⁇ satisfies the conditions for reflecting the incident laser light and causing total reflection of the laser light in the second body 1071 .
  • the prism portion 1073 is located on the light incident surface 1080A of the optical waveguide 108 .
  • the prism part 1073 may include a plurality of sub-prisms 1074 arranged in parallel, and the sub-prisms 1074 are in a strip shape.
  • a second transflective film 1075 is provided on the surface of the sub-prisms 1074 facing the third reflective film 1072.
  • a fourth reflective film 1076 is provided on the surface of the sub-prism 1074 facing the third reflective film 1072.
  • the number of the second transflective film 1075 and the fourth reflective film 1076 can be set according to actual needs.
  • the light beam incident on the light incident part of the zigzag optical waveguide 107 is reflected by the third reflective film 1072 and then totally reflected multiple times in the second body 1071. spread.
  • the second transflective film 1075 can reflect the first part of the light beam out of the zigzag optical waveguide 107 and transmit the second part of the light beam to the next second The transflective film 1075 , until the light beam propagates to the fourth reflective film 1076 , is reflected out of the zigzag optical waveguide 107 by the fourth reflective film 1076 .
  • the spot of the light beam emitted from the zigzag optical waveguide 107 can be expanded to the same width as the prism portion 1073, and the light beam can be homogenized.
  • Applying the array optical waveguide 106 and the zigzag optical waveguide 107 to the projection device 1000 can make the lasers of different colors emitted from the light source 10 uniformly distributed, thereby improving the display effect of the projection image.
  • the light source 10 may include an optical waveguide 108, and the optical waveguide 108 is located on the light exit side of the plurality of third light-emitting chips 1013C.
  • the optical waveguide 108 is configured to expand the beam width of the green laser emitted by the third light-emitting chip 1013C, so that the beam width of the green laser emitted from the light emitting portion 1082 of the optical waveguide 108 is consistent with the beam width of the red laser emitted by the plurality of first light-emitting chips 1013A.
  • the widths are equal.
  • the product of the laser spot size and the divergence angle determines the optical etendue of the laser.
  • the smaller the beam width of a laser the smaller the etendue of the laser.
  • the optical etendue of the red laser in the three-color laser projection equipment is usually greater than the optical etendue of the blue laser and green laser. Therefore, the scattering of the blue laser and green laser The spot phenomenon is more obvious than that of red laser.
  • the human eye is less sensitive to blue light, making the beam widths of the green laser and the red laser the same can make the emitted light uniform. Moreover, by increasing the beam width of the green laser, the etendue of the green laser can be increased, making the etendue of the green laser the same as that of the red laser, thereby reducing the speckle phenomenon of the green laser. In this way, a better display effect can be achieved using fewer optical components, and the projection device 1000 can be miniaturized.
  • the light source 10 further includes a second light combining lens group 109 .
  • the second light combining lens group 109 is located on the light exit side of the laser 101 and the optical waveguide 108, and is configured to combine the red laser, the green laser and the blue laser.
  • the combined light beam can have good uniformity.
  • the second light combining lens group 109 is composed of one or more reflecting mirrors and one or more dichroic mirrors.
  • the second light combining lens group 109 can also be set according to specific light combining requirements.
  • the light source 10 further includes a light uniformity component 210 .
  • the light uniformity component 210 can be located on the light exit side of the second light combiner lens group 109 and is configured to adjust the light combiner lens group 109 to the second light combiner lens group 109 .
  • the combined laser beams are homogenized to make the energy distribution of the laser uniform and reduce speckles.
  • the relevant content of the light uniforming component 210 can be referred to the previous section, and will not be described again here.
  • the light source 10 further includes a condensing lens 103 , which is disposed on the light exit side of the second light combining lens group 109 and configured to converge the incident light beam.
  • a condensing lens 103 which is disposed on the light exit side of the second light combining lens group 109 and configured to converge the incident light beam.
  • the light source 10 includes an optical waveguide 108 in some embodiments of the present disclosure are described in detail below.
  • Figure 28 is an optical path diagram of yet another light source according to some embodiments.
  • the first reflective film 1062 is located on the light exit side of the third light-emitting chip 1013C
  • the first transflective film 1063 and the second reflective film 1064 is located on the light emitting side of the first light emitting chip 1013A.
  • the first transflective film 1063 is configured to reflect the first part of the green laser light and transmit the second part of the green laser light and the red laser light.
  • the second reflective film 1064 is configured to reflect green laser light and transmit red laser light.
  • the second reflective film 1064 is equivalent to a dichroic mirror.
  • the distance W1 between the first transflective film 1063 and the second reflective film 1064 is equal to the beam width of the red laser light emitted by the plurality of first light-emitting chips 1013A.
  • the beam width of the red laser that is equal to the pitch W1 can be understood as the corresponding size of the red laser in the same direction as the pitch W1, of course, the present disclosure is not limited thereto.
  • the green laser light emitted by the third light-emitting chip 1013C is incident on the first reflective film 1062 . Since the inclination angle of the first reflective film 1062 relative to the light incident surface 1080A satisfies the total reflection condition, after the first reflective film 1062 reflects the green laser onto the light incident surface 1080A, the green laser can be reflected in the first body 1061 Multiple total reflections are performed between the light incident surface 1080A and the light exit surface 1080B and are incident on the first transflective film 1063 .
  • the first part of the green laser is reflected out of the array optical waveguide 106 by the first transflective film 1063, and the second part of the green laser is transmitted by the transflective film 1063 and continues to propagate in the first body 1061 until it is incident on the second reflective film 1064.
  • the second reflective film 1064 reflects all the incident green laser light out of the array optical waveguide 106 .
  • the second light combining lens group 109 may include a fourth light combining lens 1091 and a fifth light combining lens 1092.
  • the fourth light combining lens 1091 is located on the light exit side of the plurality of second light emitting chips 1013B and is configured as Reflect blue laser light.
  • the fifth light combining mirror 1092 is located on the light exit side of the array optical waveguide 106 and is configured to reflect red laser light and green laser light and transmit blue laser light.
  • the fourth light combiner 1091 and the fifth light combiner 1092 are arranged in parallel, and they can be tilted at a preset angle relative to the plane where the optical waveguide 108 is located.
  • the green laser can be reflected by the fifth light combining mirror 1092 to the condensing lens 103 after being emitted from the array optical waveguide 106;
  • the blue laser light emitted by the two light-emitting chips 1013B can be directly transmitted by the array optical waveguide 106 and then incident on the fourth light combining mirror 1091 and reflected by the fourth light combining mirror 1091 to the fifth light combining mirror 1092 .
  • the blue laser light reflected to the fifth light combining mirror 1092 is transmitted to the converging lens 103 by the fifth light combining mirror 1092; the red laser light emitted from the plurality of first light-emitting chips 1013A is transmitted to the fifth light combining mirror 1092 by the array optical waveguide 106.
  • the condensing lens 103 is reflected by the fifth light combining mirror 1092 to the condensing lens 103; the red, green, and blue lasers incident on the condensing lens 103 are converged by the condensing lens 103 to the uniform light component 210.
  • the first transflective film 1063 and the second reflective film 1064 are respectively disposed on the light exit sides of the two rows of first light-emitting chips 1013A, and the green laser is reflected by the first transflective film 1063 and the second Membrane 1064 is split into two parts to exit from arrayed optical waveguide 106 . Therefore, the beam width of the green laser emitted from the array optical waveguide 106 can be increased and can be equal to the distance W1 between the first transflective film 1063 and the second reflective film 1064 .
  • the first transflective film 1063 and the second reflective film 1064 can transmit red laser light
  • the beam width of the red laser light emitted by the plurality of first light-emitting chips 1013A can also be the same as that of the first transflective film 1063 and the second reflective film 1064
  • the spacing W1 between them is equal. Therefore, the beam width of the green laser can be equal to the beam width of the red laser. In this way, the light beam emitted from the light source 10 is relatively uniform, and the etendue of the green laser can be expanded to be the same as the etendue of the red laser, thereby reducing the speckle phenomenon of the green laser.
  • the transmittance and reflectivity of the first transflective film 1063 can be changed according to the design requirements of the projection device 1000 .
  • the transmittance of the first transflective film 1063 may be 50%, and the reflectivity of the first transflective film 1063 may be 50%, so that the green laser can pass through the first transflective film 1063 and the second reflective film.
  • the energy of the beams emitted at 1064 is equal, thereby improving the uniformity of the light intensity distribution of the emitted green laser.
  • Figure 29 is an optical path diagram of yet another light source according to some embodiments.
  • the optical waveguide 108 includes a zigzag optical waveguide 107
  • the third reflective film 1072 is located on the light exit side of the plurality of third light-emitting chips 1013C
  • the prism portion 1073 is located on the first light-emitting chip.
  • the second transflective film 1075 is configured to reflect the first part of the green laser light and transmit the second part of the green laser light and the red laser light.
  • a fourth reflective film 1076 is provided on the surface of the sub-prism 1074 farthest from the third reflective film 1072 facing the third reflective film 1072, and the fourth reflective film 1076 is configured to reflect green laser light and transmit red laser light.
  • the fourth reflective film 1076 is equivalent to a dichroic mirror.
  • the fourth reflective film 1076 can reflect all the light beam propagating there in the zigzag optical waveguide 107 out of the zigzag optical waveguide 107 , thereby avoiding the loss of the light beam when the light beam is expanded.
  • the width of the prism portion 1073 is equal to the beam width of the red laser beam emitted by the plurality of first light-emitting chips 1013A.
  • the green laser light emitted from the plurality of third light-emitting chips 1013C is incident on the third reflective film 1072 . Since the inclination angle of the third reflective film 1072 relative to the light incident surface 1080A satisfies the total reflection condition, after the third reflective film 1072 reflects the green laser onto the light incident surface 1080A, the green laser can be reflected in the second body 1071 Multiple total reflections occur between the light incident surface 1080A and the light exit surface 1080B and are incident on the prism portion 1073 .
  • the first part of the green laser can be reflected out of the zigzag optical waveguide 107, and the second part of the green laser can be transmitted and continue to the next sub-prism.
  • Prism 1074 spread. After repeating the above process multiple times, all remaining green laser light is reflected out of the zigzag optical waveguide 107 by the fourth reflective film 1076 .
  • the second light combining lens group 109 may include a fourth light combining lens 1091 and a fifth light combining lens 1092 .
  • the structure and function of the second light combining lens group 109 are similar to the structure and function of the second light combining lens group 109 in FIG. 28 , and will not be described again here.
  • the beam width of the green laser beam emitted from the zigzag optical waveguide 107 is increased, and may be equal to the width W2 of the prism portion 1073 . Since the width of the prism portion 1073 is equal to the beam width of the red laser light emitted by the plurality of first light-emitting chips 1013A, the beam widths of the green laser light and the red laser light may be equal.
  • the emitted light after the two are combined by the second light combining lens group 109 is relatively uniform, and the etendue of the green laser can be expanded to the same etendue as the red laser to reduce the speckle phenomenon of the green laser.
  • light source 10 may also include two optical waveguides 108 .
  • Figure 30 is a structural diagram of yet another projection device according to some embodiments.
  • the light source 10 includes a first optical waveguide 108A and a second optical waveguide 108B.
  • the first optical waveguide 108A is located on the light emitting side of the plurality of third light-emitting chips 1013C
  • the second optical waveguide 108B is located on the light emitting side of the plurality of second light-emitting chips 1013B.
  • the first optical waveguide 108A is configured to expand the beam width of the green laser light emitted by the plurality of third light-emitting chips 1013C
  • the second optical waveguide 108B is configured to expand the beam width of the blue laser light emitted by the plurality of second light-emitting chips 1013B, thereby
  • the beam width of the green laser beam emitted from the first optical waveguide 108A and the beam width of the blue laser beam emitted from the second optical waveguide 108B are equal to the beam width of the red laser beam emitted by the plurality of first light-emitting chips 1013A.
  • the solution of arranging two optical waveguides 108 in the projection device 1000 can be used when the number of second light-emitting chips 1013B (such as blue light-emitting chips) in the laser 101 is small, so as to expand the beam width of the blue and green lasers to match
  • the beam width of the red laser is the same, Therefore, the output beam of the light source 10 is evenly distributed, and the problem of abnormal color temperature and color conditions of the projection image caused by the small beam width of the blue laser can be avoided.
  • the optical etendues of the blue laser and the green laser can be increased to the same as the red laser respectively, thereby reducing the speckles of the blue laser and the green laser.
  • the first optical waveguide 108A and the second optical waveguide 108B may respectively adopt an array optical waveguide 106; or the first optical waveguide 108A and the second optical waveguide 108B may respectively adopt a zigzag optical waveguide 107; or the first optical waveguide 108A may adopt an array.
  • the optical waveguide 106 and the second optical waveguide 108B adopt a zigzag optical waveguide 107; or the first optical waveguide 108A adopts a zigzag optical waveguide 107 and the second optical waveguide 108B adopts an array optical waveguide 106.
  • the above four methods can expand the beam width of blue laser and green laser.
  • the following description takes the first optical waveguide 108A and the second optical waveguide 108B respectively adopting the array optical waveguide 106 as an example.
  • Figure 31 is an optical path diagram of yet another light source according to some embodiments.
  • the first reflective film 1062 of the first optical waveguide 108A is located on the light exit side of the plurality of third light-emitting chips 1013C, and the first transflective film 1063 and the second reflective film of the first optical waveguide 108A
  • the film 1064 is located on the light-emitting side of the plurality of first light-emitting chips 1013A.
  • the structure and function of the multiple film layers in the first optical waveguide 108A please refer to the relevant content of the array optical waveguide 106 in FIG. 28, and will not be described again here.
  • the first reflective film 1062 of the second optical waveguide 108B is located on the light emitting side of the plurality of second light-emitting chips 1013B.
  • the first reflective film 1062 of the second optical waveguide 108B is configured to reflect the blue laser light emitted by the plurality of second light-emitting chips 1013B.
  • the first transflective film 1063 and the second reflective film 1064 of the second optical waveguide 108B are located on the light exit side of the plurality of first light-emitting chips 1013A.
  • the first transflective film 1063 of the second optical waveguide 108B is configured to reflect a first part of the blue laser light, and to transmit a second part of the blue laser light, the green laser light, and the red laser light.
  • the second reflective film 1064 of the second optical waveguide 108B is configured to reflect blue laser light and transmit green laser light and red laser light.
  • first transflective film 1063 and the second reflective film 1064 of the second optical waveguide 108B may be equivalent to dichroic mirrors.
  • the arrangement angles of the multiple film layers in the second optical waveguide 108B can be referred to the relevant descriptions above, and will not be described again here.
  • the distance between the first transflective film 1063 and the second reflective film 1064 in the first optical waveguide 108A and the distance between the first transflective film 1063 and the second reflective film 1064 in the second optical waveguide 108B are respectively the same as those of the first optical waveguide 108A and the second optical waveguide 108B.
  • the red laser beams emitted by the first light-emitting chips 1013A have the same beam width.
  • the first transflective film 1063 in the first optical waveguide 108A may be disposed parallel to the first transflective film 1063 in the second optical waveguide 108B, and the second reflective film 1064 in the first optical waveguide 108A may be in parallel with the second optical waveguide 108B.
  • the second reflective film 1064 in the waveguide 108B is arranged in parallel.
  • the green laser light emitted by the plurality of third light-emitting chips 1013C is incident on the first reflective film 1062 in the first optical waveguide 108A, and is reflected by the first reflective film 1062.
  • the green laser light reflected by the first reflective film 1062 is totally reflected multiple times in the first optical waveguide 108A, and is incident on the first transflective film 1063 in the first optical waveguide 108A.
  • the first part of the green laser is reflected by the first transflective film 1063 and exits the first optical waveguide 108A.
  • the second part of the green laser is transmitted by the first transflective film 1063 and continues to propagate in the first optical waveguide 108A until it is incident on the first optical waveguide 108A.
  • a second reflective film 1064 in the optical waveguide 108A is completely reflected out of the first optical waveguide 108A by the second reflective film 1064, and the beam width of the green laser light emitted from the first optical waveguide 108A is equal to the beam width of the red laser light.
  • the blue laser light emitted by the plurality of second light-emitting chips 1013B passes through the first optical waveguide 108A and is incident on the first reflective film 1062 in the second optical waveguide 108B, and is reflected by the first reflective film 1062.
  • the blue laser light reflected by the first reflective film 1062 is totally reflected multiple times in the second optical waveguide 108B, and is incident on the first transflective film 1063 in the second optical waveguide 108B.
  • the first part of the blue laser is reflected by the first transflective film 1063 and exits the second optical waveguide 108B.
  • the second part of the blue laser is transmitted by the first transflective film 1063 and continues to propagate in the second optical waveguide 108B until it is incident on The second reflective film 1064 in the second optical waveguide 108B.
  • the blue laser light incident on the second reflective film 1064 is completely reflected out of the second optical waveguide 108B by the second reflective film 1064, and the beam width of the blue laser light emitted from the second optical waveguide 108B is equal to the beam width of the red laser light.
  • the green laser light and the red laser light emitted from the first optical waveguide 108A can be incident on the condensing lens 103 through the second optical waveguide 108B, and the blue laser light and red laser light emitted from the second optical waveguide 108B can be directly incident on the converging lens 103 .
  • the beam widths of the red, green, and blue lasers can be made equal, so that the color distribution of the emitted light beam from the light source 10 is uniform.
  • Figure 32 is an optical path diagram of yet another light source according to some embodiments.
  • the light source 10 in FIG. 31 may also include a second light combining lens group 109 .
  • the light source 10 further includes a second light combining lens group 109
  • the second light combining lens group 109 includes a sixth light combining lens 1093
  • the sixth light combining lens 1093 is configured to remove the first light from the first light combining lens.
  • the green laser light and the red laser light emitted from the waveguide 108A, and the blue laser light and the red laser light emitted from the second optical waveguide 108B are reflected in the same direction to achieve beam combination.
  • the sixth light combining mirror 1093 reflects the incident three-color laser light toward the condensing lens 103 .
  • the laser light in the light source 10 can be turned to facilitate
  • the projection device 1000 can be applied to more real-world scenarios.
  • the structures and functions of the laser 101, the first optical waveguide 108A, and the second optical waveguide 108B can be referred to the relevant description in FIG. 31 and will not be described again here.
  • the light source 10 includes a laser 101.
  • the laser 101 includes a plurality of first light-emitting chips 1013A, a plurality of second light-emitting chips 1013B and a plurality of third light-emitting chips 1013C.
  • One or more optical waveguides 108 are located at the light output of the laser 101. Take the side as an example to illustrate.
  • the light source 10 may also include multiple lasers 101 .
  • Figure 33 is an optical path diagram of yet another light source according to some embodiments.
  • the plurality of lasers 101 includes a first laser 101A and a second laser 101B.
  • the first laser 101A includes one or more first light-emitting chips 1013A
  • the second laser 101B includes one or more second light-emitting chips 1013B and one or more third light-emitting chips 1013C.
  • the first optical waveguide 108A and the second optical waveguide 108B are located on the light emitting side of the second laser 101B
  • the second optical waveguide 108B is located on the side of the first optical waveguide 108A away from the second laser 101B.
  • the first optical waveguide 108A is located on the light emitting side of the plurality of third light-emitting chips 1013C
  • the second optical waveguide 108B is located on the light emitting side of the plurality of second light-emitting chips 1013B.
  • the first optical waveguide 108A is configured to expand the beam width of the green laser light emitted by the plurality of third light-emitting chips 1013C
  • the second optical waveguide 108B is configured to expand the beam width of the blue laser light emitted by the plurality of second light-emitting chips 1013B.
  • the distance between the first transflective film 1063 and the second reflective film 1064 is equal to the beam width of the red laser light emitted by the plurality of first light-emitting chips 1013A in the first laser 101A; in the first In the two-optical waveguide 108B, the distance between the first transflective film 1063 and the second reflective film 1064 is equal to the beam width of the red laser light emitted by the plurality of first light-emitting chips 1013A in the first laser 101A.
  • the light source 10 further includes a second light combining lens group 109.
  • the second light combining lens group 109 includes a sixth light combining lens 1093.
  • the sixth light combining lens 1093 is configured to reflect blue laser, green laser, and transmit Red laser.
  • the red laser light emitted from the plurality of first light-emitting chips 1013A in the first laser 101A is transmitted to the converging lens 103 through the sixth light combining mirror 1093; the green laser light emitted from the plurality of third light-emitting chips 1013C in the second laser 101B is transmitted through
  • the first optical waveguide 108A is expanded to the same beam width as the red laser
  • the blue laser emitted from the plurality of second light-emitting chips 1013B in the second laser 101B is expanded to the same beam width as the red laser through the second optical waveguide 108B.
  • the green laser and the blue laser are respectively reflected by the sixth light combining mirror 1093 to the converging lens 103, and the condensing lens 103 converges the red, green and blue lasers.
  • the solution in which the light source 10 includes two lasers 101 can also be used in the laser 101 shown in FIG. 19 .
  • the solution in which the light source 10 includes two lasers 101 can be applied to situations where the lasers 101 include three-color light-emitting chips in different proportions.
  • the solution of two lasers 101 in Figure 33 can also use only one optical waveguide 108.
  • the structure and function of the optical waveguide 108 please refer to the relevant descriptions above and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

提供一种投影设备和投影系统。所述投影设备包括光源、光学调制组件和镜头。所述光源包括激光器和调光部件。所述激光器被配置为发出多种颜色的激光。所述调光部件包括多个调光区域,每个调光区域包括多个衍射微结构,且不同调光区域中的衍射微结构不同。所述调光部件被配置为分别对多种颜色的激光进行衍射并朝向同一区域出射,以使多种颜色的激光在经过所述调光部件后形成的光斑重合。所述多个调光区域满足以下至少一个:所述多个调光区域被配置为在第一方向上收缩对应的激光;或,所述多个调光区域被配置为在第二方向上扩展对应的激光。

Description

投影设备以及投影系统
本申请要求于2022年08月31日提交的、申请号为202211055744.4的中国专利申请的优先权;2022年09月30日提交的、申请号为202211208529.3的中国专利申请的优先权;2022年09月30日提交的、申请号为202211216165.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及激光投影技术领域,尤其涉及一种投影设备和投影系统。
背景技术
随着激光投影技术的发展,投影设备逐渐走进了人们的生活中,成为了人们工作和生活中的常用用品。投影设备中的光源可以发出多种颜色的激光,基于该激光可以形成投影画面。并且,光源发出的各种颜色的激光的对称性越高,混合效果越好,投影画面的显示效果越好。
发明内容
一方面,提供一种投影设备。所述投影设备包括光源、光学调制组件以及镜头。所述光源被配置为发出多种颜色的激光,以作为照明光束。所述光学调制组件被配置为调制所述照明光束以获得投影光束。所述镜头位于所述光学调制组件的出光侧,且被配置为投射所述投影光束以形成投影画面。所述光源包括激光器和调光部件。所述激光器被配置为发出多种颜色的激光。所述调光部件包括多个调光区域,所述多个调光区域中的每个调光区域包括多个衍射微结构,且不同调光区域中的衍射微结构不同。所述调光部件被配置为通过所述多个调光区域中的所述多个衍射微结构分别对所述多种颜色的激光进行衍射并朝向同一区域出射,以使所述多种颜色的激光在经过所述调光部件后形成的光斑重合。所述多种颜色的激光分别入射至所述多个调光区域,且不同颜色的激光入射的调光区域不同,所述多种颜色的激光在所述调光部件上形成的多个光斑在第一方向上的尺寸大于在第二方向上的尺寸,所述第一方向垂直所述第二方向。所述多个调光区域满足以下至少一个:所述多个调光区域被配置为在所述第一方向上收缩对应的激光;或,所述多个调光区域被配置为在所述第二方向上扩展对应的激光。
另一方面,提供另一种投影设备。所述投影设备包括光源、光学调制组件以及镜头。所述光源被配置为发出多种颜色的激光,以作为照明光束。所述光学调制组件被配置为调制所述照明光束以获得投影光束。所述镜头位于所述光学调制组件的出光侧,且被配置为投射所述投影光束以形成投影画面。所述光源包括至少一个激光器和至少一个光波导。所述至少一个激光器包括多个第一发光芯片、多个第二发光芯片以及多个第三发光芯片。所述多个第一发光芯片被配置为发出红色激光。所述多个第二发光芯片被配置为发出蓝色激光。所述多个第三发光芯片被配置为发出绿色激光。所述多个第三发光芯片的数量和所述多个第二发光芯片的数量分别小于所述多个第一发光芯片的数量。所述至少一个光波导中的一个光波导位于所述多个第三发光芯片的出光侧。所述至少一个光波导中的每个光波导包括入光面、出光面、入光部以及出光部。所述入光面为所述光波导的靠近所述激光器的表面。所述出光面与所述入光面平行设置。在所述光波导的厚度方向上所述入光面和所述出光面相对设置。所述入光部被配置为将入射的激光导入所述光波导内。所述出光部被配置为将所述光波导内的激光导出。所述入光部和所述出光部位于所述入光面和所述出光面之间。所述出光部出射的激光的光束宽度与所述多个第一发光芯片发出的红色激光的光束宽度相等。
又一方面,提供一种投影系统。所述投影系统包括上述投影设备以及投影屏幕。所述投影屏幕位于所述投影设备的出光侧。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种投影系统的结构图;
图2为根据一些实施例的一种投影设备的结构图;
图3为根据一些实施例的投影设备中光源、光学调制组件和镜头的光路图;
图4为根据一些实施例的光源和光导管的光路图;
图5为根据一些实施例的一种光源的结构图;
图6为根据一些实施例的一种激光器的结构图;
图7为图6中激光器发出的激光在调光部件上形成的光斑的示意图;
图8为根据一些实施例的另一种激光器的结构图;
图9为图8中激光器发出的激光在调光部件上形成的光斑的示意图;
图10为根据一些实施例的另一种光源的结构图;
图11为图10中光源的调光部件的结构图;
图12为根据一些实施例的一种激光的能量分布图;
图13为根据一些实施例的另一种激光的能量分布图;
图14为根据一些实施例的又一种激光的能量分布图;
图15为根据一些实施例的又一种光源的结构图;
图16为图15中光源的调光部件的局部结构图;
图17为根据一些实施例的又一种光源的结构图;
图18为根据一些实施例的另一种投影设备的结构图;
图19为根据一些实施例的又一种激光器的结构图;
图20为根据一些实施例的又一种光源的结构图;
图21为根据一些实施例的体光栅衍射的示意图;
图22为根据一些实施例的体光栅与光阀的结构图;
图23为根据一些实施例的投影设备中光学调制组件的结构图;
图24为根据一些实施例的投影设备中另一种光学调制组件的结构图;
图25为根据一些实施例的又一种投影设备的结构图;
图26为根据一些实施例的阵列光波导的结构图;
图27为根据一些实施例的锯齿形光波导的结构图;
图28为根据一些实施例的又一种光源的光路图;
图29为根据一些实施例的又一种光源的光路图;
图30为根据一些实施例的又一种投影设备的结构图;
图31为根据一些实施例的又一种光源的光路图;
图32为根据一些实施例的又一种光源的光路图;
图33为根据一些实施例的又一种光源的光路图。
具体实施方式
下面将结合附图,对本公开一些实施例进行清楚、完整地描述。然而,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和 C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
通常,在采用激光器作为光源的投影设备中,由于激光器中发光芯片的排布位置不同,因此,激光器发出的不同颜色激光的光斑的位置不同。并且,由于颜色配比和激光器功率的需要,发出红色激光的发光芯片的数量一般高于发出蓝色或绿色激光的发光芯片的数量。因此,蓝色激光和绿色激光与红色激光的光束宽度不同。这样,在不同颜色的激光进行合光后,合光后激光的光斑的均匀性较差,影响投影画面的显示效果。
为了解决上述问题,本公开一些实施例提供一种投影系统。
图1为根据一些实施例的一种投影系统的结构图。如图1所示,投影系统1包括投影设备1000和投影屏幕2000。投影屏幕2000位于投影设备1000的出光侧,观众面向投影屏幕2000。从投影设备1000出射的投影光束入射至投影屏幕2000后,经过投影屏幕2000的反射入人眼,从而使观众观看到投影图像。
图2为根据一些实施例的一种投影设备的结构图。
如图2所示,投影设备1000包括整机壳体40(图2中仅示出部分整机壳体40),装配于整机壳体40中的光源10,光学调制组件20,以及镜头30。该光源10被配置为提供照明光束(如激光)。该光学调制组件20被配置为利用图像信号对光源10提供的照明光束进行调制以获得投影光束。该镜头30被配置为将投影光束投射在投影屏幕2000或墙壁上形成投影画面。
光源10、光学调制组件20和镜头30沿着光束传播方向依次连接,各自由对应的壳体进行包裹。光源10、光学调制组件20和镜头30各自的壳体对相应的光学部件进行支撑并使得各光学部件达到一定的密封或气密要求。
光学调制组件20的一端连接光源10,且光源10和光学调制组件20沿着投影设备1000的照明光束的出射方向(参照图2中的M方向)设置。光学调制组件20的另一端和镜头30连接,且光学调制组件20和镜头30沿着投影设备1000的投影光束的出射方向(参照图2中所示的N方向)设置。照明光束的出射方向M与投影光束的出射方向N大致垂直。这种连接结构一方面可以适应光学调制组件20中反射式光阀的光路特点,另一方面,还有利于缩短一个维度方向上光路的长度,利于整机的结构排布。例如,当将光源10、光学调制组件20和镜头30设置在一个维度方向(例如M方向)上时,该维度方向上光路的长度就会很长,从而不利于整机的结构排布。所述反射式光阀将在后文中描述。
在一些实施例中,光源10可以时序性地提供三基色光(也可以在三基色光的基础上增加的其他色光),由于人眼的视觉暂留现象,人眼看到的是由三基色光混合形成的白光。或者,光源10也可以同时输出三基色光,持续发出白光。光源10可以包括激光器,该激光器可发出至少一种颜色的激光,比如红色激光、蓝色激光或绿色激光。在激光器发出一种颜色的激光的情况下,激光器可以被称为单色激光器,此时,光源10还可以包括荧光轮,单色激光器与荧光轮配合,以使光源发出多种颜色的光束。
图3为根据一些实施例的投影设备中光源、光学调制组件和镜头的光路图。如图3所示,光学调制组件20包括匀光部件210、透镜组件220、光阀240(即光学调制部件)和棱镜组件250。匀光部件210被配置为对入射的照明光束进行匀化并出射至透镜组件220。透镜组件220可以对照明光束先进行准直后进行会聚并出射至棱镜组件250。棱镜组件250将照明光束反射至光阀240。光阀240被配置为根据图像信号将射入其的照明光束调制成投影光束,并将投影光束射向镜头30。
在一些实施例中,匀光部件210可以包括光导管或复眼透镜组。例如,匀光部件210包括光导管,光导管的入光口呈矩形。来自光源10的照明光束入射至光导管中,并在光导管中反射以进行传输,且反射角度随机,从而提高从光导管中出射的照明光束的均匀性。
又例如,匀光部件210包括复眼透镜组,复眼透镜组由两个相对设置的复眼透镜组成,且复眼透镜由多个微透镜阵列排布形成。沿照明光束的入射方向,第一个复眼透镜中的微透镜的焦点与第二个复眼透镜中对应的微透镜的中心重合,两个复眼透镜中微透镜的光轴互相平行。通过复眼透镜组,可以对照 明光束的光斑进行分割。此外,通过后续的透镜组件220可以将分割的光斑累加。这样,可以实现对照明光束的匀化。需要说明的是,匀光部件210也可以设置在光源10中。例如,光源10包括匀光部件210,在此情况下,光学调制组件20中可以无需设置匀光部件210。
图4为根据一些实施例的光源和光导管的光路图,且图4中包含光导管的侧视图。在一些实施例中,如图4所示,匀光部件210包括呈楔形的光导管2100。沿照明光束的传输方向(如图4中的K方向),光导管2100的截面面积减小。例如,如图4所示,光导管2100包括第一端211和第二端212,第一端211靠近光源10,且为入射端,以接收来自光源10的照明光束。第二端212远离光源10,且为出射端,经光导管2100匀化的照明光束从第二端212出射。第一端211的截面面积大于第二端212的截面面积。这里,光导管2100的截面可以指光导管2100在垂直于照明光束的传输方向的平面(目标平面)上的截面。
楔形光导管2100可以直接接收光源10的照明光束,照明光束可以无需经会聚透镜等结构进行会聚,有利于简化投影设备1000的结构,便于投影设备1000的小型化。
透镜组件220可以包括凸透镜。例如平凸透镜、双凸透镜或凹凸透镜(又称为正弯月透镜)。凸透镜可以为球面透镜,也可以为非球面透镜。
棱镜组件250可以为全内反射(Total Internal Reflection,TIR)棱镜组件或者折射全反射(Refraction Total Internal Reflection,RTIR)棱镜组件。
光阀240可以为反射式光阀。光阀240包括多个反射片,每个反射片可以用于形成投影画面中的一个像素。光阀240可以根据待显示的图像调整多个反射片,使图像中需呈亮态显示的像素对应的反射片将光束反射至镜头30,被反射至镜头30的光束被称为投影光束。这样,光阀240可以对照明光束进行调制以得到投影光束,并通过投影光束实现投影画面的显示。
在一些实施例中,光阀240可以为数字微镜器件(Digital Micromirror Device,DMD)。数字微镜器件包含成多个(如成千上万个)可被单独驱动以旋转的微小反射镜片。这些微小反射镜片可以呈阵列排布。一个微小反射镜片(例如每个微小反射镜片)对应待显示的投影画面中的一个像素。图像信号通过处理后可以被转换成0、1这样的数字代码。响应于这些数字代码,微小反射镜片可以摆动。控制每个微小反射镜片在开状态和关状态分别持续的时间,来实现一帧图像中每个像素的灰阶。这样,数字微镜器件可以对照明光束进行调制,进而实现投影画面的显示。
镜头30包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近投影设备1000的出光侧的镜片群组,后群是靠近光学调制组件20的出光侧的镜片群组。镜头30可以是变焦镜头,或者为定焦可调焦镜头,或者为定焦镜头。在一些实施例中,投影设备1000可以为超短焦投影设备,镜头30可以为超短焦投影镜头。
为了便于叙述,本公开一些实施例主要以投影设备1000采用数字光处理(Digital Light Processing,DLP)投影架构,光阀240为数字微镜器件为例进行说明,然而,这并不能理解为对本公开的限制。
下面详细描述本公开一些实施例中的光源10。
图5为根据一些实施例的一种光源的结构图。在一些实施例中,如图5所示,光源10包括激光器101和调光部件102。
激光器101被配置为发出多种颜色的激光,且调光部件102包括多个调光区域。不同颜色的激光可以射向调光部件102中不同的调光区域,且该多种颜色的激光可以分别与调光部件102中的多个调光区域对应。每种颜色的激光射向对应的调光区域,调光区域被配置为调整对应颜色的激光。多个调光区域可以分别包括多个衍射微结构,不同的调光区域中的衍射微结构不同。例如,不同调光区域中的衍射微结构的形状不同;或者,不同调光区域中衍射微结构之间的设置关系不同;或者,不同调光区域中的衍射微结构的形状不同,且不同调光区域中衍射微结构之间的设置关系不同。调光部件102被配置为通过多个调光区域中的多个衍射微结构将接收到的多种颜色的激光进行衍射,并朝向同一区域出射,以使该多种颜色的激光经过多个调光区域后形成的光斑可以重合。
在一些示例中,激光器101的不同出光区可以发出不同颜色的激光。例如,激光器101为多芯片激光二极管(Multi-Chip Laser Diode,MCL)型的激光器,且激光器101发出红色激光、绿色激光和蓝色激光。该三种颜色的激光分别射向调光部件102中的三个调光区域,每个调光区域可以对射入的对应颜色的激光进行衍射。经过调光部件102后射出的红色激光、绿色激光和蓝色激光可以射向同一区域,且该三种颜色的激光形成的三个光斑可以重合,从而实现该三种颜色的激光的合光。需要说明的是,光斑 重合包含光斑大致重合的情况,两个光斑中存在一些较小的区域错开的情况,也属于光斑重合的范围。当然,激光器也可以为其他类型的激光器,本公开对此不做限定。
以下以激光器101发出红绿蓝三种颜色的激光为例进行介绍。当然,激光器101也可以发出颜色不同于该三种颜色的激光的其他激光,本公开对此不做限定。
需要说明的是,通过对衍射部件的结构进行设计,可以使激光在经衍射部件衍射后达到所需的效果。例如,通过衍射部件的衍射调整激光的出射方向、光强以及射向的位置。调光部件102为一种衍射部件,可以通过该衍射部件实现将不同颜色的激光出射至相同的区域,且使该不同颜色的激光形成的光斑尺寸大致相同,从而实现不同颜色的光斑的重合。衍射部件的具体结构可以根据激光所需射向的区域以及所需形成的光斑尺寸和形状进行相应地设计。
图6为根据一些实施例的一种激光器的结构图。在一些实施例中,如图6所示,激光器101包括底板1011和发光模组1010。发光模组1010包括框体1012和多个发光芯片1013。框体1012和多个发光芯片1013设置在底板1011上,且框体1012环绕多个发光芯片1013。多个发光芯片1013被配置为发出多种颜色的激光。
发光模组1010还可以包括多个热沉1015和多个反射棱镜1016。多个热沉1015以及多个反射棱镜1016分别与多个发光芯片1013对应。热沉1015设置在底板1011上,且发光芯片1013位于对应的热沉1015上,热沉1015被配置为辅助对应的发光芯片1013散热。反射棱镜1016位于对应的发光芯片1013的出光侧,以反射发光芯片1013发出的激光。
并且,发光模组1010还可以包括透光层和准直镜组。透光层设置在框体1012的远离底板1011的一侧,且被配置为封闭框体1012的远离底板1011的一侧的开口。准直镜组位于透光层的远离底板1011的一侧,且被配置为对发光芯片1013发出的激光进行准直。发光芯片1013可以向对应的反射棱镜1016发出激光,反射棱镜1016可以沿远离底板1011的方向,将接收到的激光反射向准直镜组,进而该激光被该准直镜组准直后出射。
在一些示例中,如图6所示,激光器101包括多个发光模组1010,且多个发光模组1010包括第一发光模组1010A和第二发光模组1010B。第一发光模组1010A包括第一框体1012A和多个第一发光芯片1013A,且多个第一发光芯片1013A被第一框体1012A包围;第二发光模组1010B包括第二框体1012B、多个第二发光芯片1013B和多个第三发光芯片1013C,多个第二发光芯片1013B和多个第三发光芯片1013C被第二框体1012B包围。第一发光芯片1013A被配置为发出红色激光,第二发光芯片1013B被配置为发出蓝色激光,第三发光芯片1013C被配置为发出绿色激光。这里,为了便于说明,将每个发光芯片1013发出的激光称为一个子光束。
以激光器101包括两个发光模组1010,第一发光模组1010A包括四个第一发光芯片1013A,第二发光模组1010B包括两个第二发光芯片1013B和三个第三发光芯片1013C为例进行说明。
该四个第一发光芯片1013A所在的区域可以为激光器101的第一出光区Q1,该两个第二发光芯片1013B所在的区域可以为激光器101的第二出光区Q2,该三个第三发光芯片1013C所在的区域可以为激光器101的第三出光区Q3。激光器101发出的每种颜色的激光可以射向调光部件102中的一个调光区域,每种颜色的激光可以包括一个或多个子光束,该一个或多个子光束分别由一个或多个发光芯片1013发出。本公开一些实施例以激光器101中每种颜色的激光对应两个或更多个发光芯片1013,且激光器101发出的每种颜色的激光包括二个或更多个子光束为例进行说明。
图7为图6中激光器发出的激光在调光部件上形成的光斑的示意图。如图7所示,激光器101的三个出光区发出的激光分别射向调光部件102的三个调光区域(第一调光区域G1、第二调光区域G2和第三调光区域G3)。多个调光区域的分布可以与激光器101的多个出光区的分布相同。激光器101的第一出光区Q1向调光部件102的第一调光区域G1发出四个红色子光束,该四个红色子光束可以在第一调光区域G1形成四个小的红色光斑。激光器101的第二出光区Q2向调光部件102的第二调光区域G2发出两个蓝色子光束,该两个蓝色子光束可以在第二调光区域G2形成两个小的蓝色光斑。激光器101的第三出光区Q3向调光部件102的第三调光区域G3发出三个绿色子光束,该三个绿色子光束可以在第三调光区域G3形成三个小的绿色光斑。
图8为根据一些实施例的另一种激光器的结构图。在另一些示例中,如图8所示,激光器101仅设置一个框体1012,激光器101中的多个发光芯片1013可以在框体1012中排布成多行多列。并且,第二发光芯片1013B所在的第二出光区Q2和第三发光芯片1013C所在的第三出光区Q3可以至少部分重 合。例如,如图8所示,激光器101包括一个发光模组1010,该发光模组1010包括一个框体1012、七个第一发光芯片1013A,三个第二发光芯片1013B和四个第三发光芯片1013C。七个第一发光芯片1013A沿第一方向X排成一排,三个第二发光芯片1013B和四个第三发光芯片1013C沿第一方向X交错排成另一排。
图9为图8中激光器发出的激光在调光部件上形成的光斑的示意图。对于激光器101的出光区、调光部件102的调光区域以及对应的子光束之间的关系可以参照图6与图7中的相关内容,在此不再赘述。
在一些实施例中,对于调光部件102中的任一调光区域,该调光区域中不同位置对于接收到的激光的调整情况可以相同,该调光区域中不同位置的衍射微结构可以相同。每个调光区域可以将接收到的对应颜色的激光作为一个整体,进行相同的调整,仅需使不同调光区域对接收到的激光的调整情况不同即可。
例如,在图7对应的调光部件102中,第一调光区域G1对接收到的四个红色子光束的调整情况相同,第二调光区域G2对接收到的两个蓝色子光束的调整情况相同,第三调光区域G3对接收到的三个绿色子光束的调整情况相同。然而,第一调光区域G1对红色子光束的调整情况不同于第二调光区域G2对蓝色子光束的调整情况,也不同于第三调光区域G3对绿色子光束的调整情况,且第二调光区域G2对蓝色子光束的调整情况不同于第三调光区域G3对绿色子光束的调整情况。这样,在经过该三个调光区域的衍射后,红色激光、绿色激光和蓝色激光的光斑的形状、大小和位置可以被调整成相同。这里,调整情况可以理解为对光束的出射角度、出射位置、以及能量的调整,当然,本公开并不局限于此。
在一些实施例中,每个子光束在调光区域中射向的区域可以为该子光束对应的子调光区域,不同的子调光区域中的衍射微结构可以不同。每个子调光区域可以利用其中的衍射微结构对接收到的子光束进行衍射,以将所述子光束扩展。射向调光部件102的子光束经过对应的子调光区域衍射后可以被扩展,使得多个子光束形成的光斑的尺寸变大,且多个光斑的形状、大小以及对应的子光束射向的位置可以相同,从而多个子光束形成的光斑可以重合。
继续参考图7与图9,激光器101发出的对应颜色的激光在调光部件102上形成的光斑在第一方向X上的尺寸大于在第二方向Y上的尺寸,该光斑为多个相同颜色的子光束的小光斑整体形成的光斑。例如,在图7中,四个红色小光斑形成的光斑在第一方向X上的尺寸L1大于在第二方向Y上的尺寸L2。该第一方向X可以垂直第二方向Y。这里,光斑在任一方向上的尺寸指的是该方向上该光斑中距离最远的两点之间的距离。如图7和图9所示,在经调光部件102衍射前,激光器101发出的多种颜色的激光形成的光斑的长宽比较大,与后续的收光部件(如匀光部件102)所需的光斑的匹配度较低。这里,光斑的长度可以指其在第一方向X上的尺寸,宽度可以指其在第二方向Y上的尺寸。
在一些实施例中,调光部件102可以通过对激光进行衍射,使得出射的激光的光斑的形状满足要求。例如,调光部件102被配置为对接收到的激光进行衍射,以将从调光部件102射出的激光形成的光斑调整为与收光部件所需的光斑形状匹配的光斑。例如,收光部件所需的光斑的长宽比(如,16:9,1:1或者其它比例)小,本公开对此不做限定。
调光部件102中的多个调光区域被配置为在第一方向X上对激光进行收缩,以使经过调光部件102射出的激光形成的光斑在第一方向X上的尺寸缩小,从而缩小光斑的长宽比,使该光斑的形状接近所需的光斑形状,提高该光斑与所需的光斑形状的匹配度。或者,多个调光区域被配置为在第二方向Y上对激光进行扩展,以使经过调光部件102射出的激光形成的光斑在第二方向Y上的尺寸增大,从而缩小光斑的长宽比。或者,多个调光区域被配置为在第一方向X上对激光进行收缩,且在第二方向Y上对激光进行扩展。或者,多个调光区域被配置为在第一方向X上和第二方向Y上对激光进行收缩,激光在第一方向X上的收缩程度大于在第二方向Y上的收缩程度。例如,激光在第一方向X上对应的缩小倍率大于在第二方向Y上对应的缩小倍率。或者,多个调光区域被配置为在第一方向X上和第二方向Y上对激光进行扩展,激光在第一方向X上的扩展程度小于在第二方向Y上的扩展程度。例如,激光在第一方向X上对应的扩大倍率小于在第二方向Y上对应的扩大倍率。
需要说明的是,为了使激光可以在小型化的部件中传输,通常会在激光器的出光侧设置缩束部件(如会聚透镜),以对激光进行缩束,减小后续传输的激光的光束尺寸。然而,在本公开一些实施例中,通过设置调光部件102中的多个调光区域以使激光在第一方向X上和第二方向Y上分别收缩,可以使光源10中无需设置缩束部件,进一步简化了光源10的结构,便于投影设备1000的小型化。
在一些实施例中,该收光部件所需的光斑形状为矩形。调光部件102中的多个调光区域被配置为对 接收到的激光进行衍射,以使经过多个调光区域射出的激光形成的光斑的形状呈矩形。由于分别经过多个调光区域后射出的多种颜色的激光可以射向同一区域以实现合光,因此,激光器101发出的多种颜色的激光在经过调光部件102后形成的光斑可以分别呈矩形。这样,在匀光部件210为光导管的情况下,入射至光导管的激光形成的光斑形状与光导管的入光口的形状匹配度较高,从而匀光部件210的收光效果较好,进而提高了匀光部件210对激光的利用率以及匀化效果。在一些实施例中,调光部件102也可以利用其中多个子调光区域将接收到的多个子光束分别进行调整,以使多个子光束射出调光部件102后形成的光斑分别呈矩形。
在一些实施例中,调光部件102还可以通过对激光进行衍射,使得出射的激光的能量分布均匀。
射向调光部件102的多个子光束分别为高斯光束,该子光束中的能量(如振幅)呈高斯分布,子光束形成的光斑的中心亮度高、边缘亮度低。调光部件102中的多个调光区域可以对接收到的激光的能量分布进行调整,以使激光器101发出的多种颜色的激光在经过调光部件102中的多个调光区域衍射后,该多种颜色的激光形成的光斑的任意两个位置之间的能量差异(如照度或亮度)可以小于能量阈值,从而使从调光部件102射出的激光的能量分布均匀。例如,从调光部件102射出的激光可以形成一个多个位置亮度均匀的方形光斑。
通常,为了将激光器射出的激光的光斑调整至与所需的光斑形状匹配,需要在光源中设置相应的透镜。并且,为了将激光器射出的激光均匀化,还需要在光源中设置扩散片等部件。然而,在本公开的一些实施例中,通过一个调光部件102即可实现对激光器101射出的多种颜色激光的合光、整形和匀化。这样,无需设置对应的透镜以及扩散片等部件,可以减少光源10中的部件数量,简化光源10的结构以及制备过程,有利于实现光源10的小型化。
下面结合附图对本公开一些实施例中的调光部件102进行详细介绍。
在一些实施例中,调光部件102可以为光栅波导。光栅波导包括耦入光栅、光波导和耦出光栅,调光部件102中的衍射微结构指的是耦入光栅中的微结构和耦出光栅中的微结构。耦入光栅被配置为在第一方向上衍射接收到的激光,并将衍射后的激光传输至光波导。光波导被配置为将来自耦入光栅的激光传输至耦出光栅。耦出光栅被配置为在第二方向上衍射接收到的激光,并将衍射后的激光射出。第一方向垂直第二方向。调光部件102中的每个调光区域可以包括耦入光栅中的第一区域和耦出光栅中的第二区域。
这里,第一方向与第二方向仅用于表示耦入光栅和耦出光栅分别在两个不同的方向上对激光进行处理,这里的第一方向和第二方向可以与图7和图9中的第一方向X和第二方向Y相同,或者,这里的第一方向可以为图7和图9中的第二方向Y,这里的第二方向为图7和图9中的第一方向X,本公开对此不做限定。
另外,可以将每种颜色的激光在耦入光栅中的照射区域称为该激光对应的第一区域,将每种颜色的激光在耦出光栅中的照射区域称为该激光对应的第二区域,每种颜色的激光在调光部件102中对应的调光区域包括该第一区域和第二区域。类似地,每个子光束在耦入光栅中的照射区域可以称为该子光束对应的第一子区域,每个子光束在耦出光栅中的照射区域可以称为该子光束对应的第二子区域,每个子光束在调光部件102中对应的子调光区域包括该第一子区域和第二子区域。
图10为根据一些实施例的另一种光源的结构图。在一些示例中,如图10所示,调光部件102(即光栅波导)包括耦入光栅1021、光波导1022和耦出光栅1023。调光部件102中的衍射微结构1024为耦入光栅1021和耦出光栅1023中的微结构。这里,耦入光栅1021、光波导1022和耦出光栅1023可以为一体件,或者,也可以为互相独立的部件通过贴合固定而成。
光波导1022呈板状,且具有两个相对的较大的板面(即第一板面1022A和第二板面1022B)。耦入光栅1021位于光波导1022的远离激光器101的第一板面1022A上,耦出光栅1023位于光波导1022的靠近激光器101的第二板面1022B上。在光波导1022的厚度方向(即图10的HF方向)上,耦入光栅1021在光波导1022上的正投影可以位于耦出光栅1023在光波导1022上的正投影之外。耦入光栅1021和耦出光栅1023可以为反射式光栅。
激光器101发出的激光可以透过光波导1022入射至耦入光栅1021,在耦入光栅1021处发生衍射后反射回光波导1022。反射回光波导1022的激光在光波导1022中进行全反射并入射至耦出光栅1023,在被耦出光栅1023衍射后从光波导1022射出,从而完成调光部件102对接收到的激光的调整。
继续参考图10,调光部件102中的衍射微结构1024可以呈锯齿状,耦入光栅1021和耦出光栅1023 分别可以包括多个锯齿状的衍射微结构1024。在一些实施例中,衍射微结构1024可以呈条状,耦入光栅1021中的衍射微结构1024的长度方向可以垂直于耦出光栅1023中的衍射微结构1024的长度方向。例如,耦入光栅1021中的衍射微结构1024的长度方向为第一方向,耦出光栅1023中的衍射微结构1024的长度方向为第二方向。
在调光部件102的不同调光区域中,锯齿状的衍射微结构1024的顶角可以不同,以实现不同调光区域对接收到的激光的不同处理。该顶角指的是锯齿的两个齿面之间的夹角,如图10中的角α。衍射微结构1024的顶角不同,对应的光栅厚度也不同。例如,不同的调光区域中衍射微结构1024的宽度不同,以实现不同调光区域对接收到的激光的不同处理。该衍射微结构1024的宽度可以为图10中的宽度D1。该宽度为光栅的栅距,也可以称为光栅常数。
例如,耦入光栅1021中不同第一区域中的衍射微结构1024的顶角或宽度中至少一个不同,耦出光栅1023中不同第二区域中的衍射微结构1024的顶角或宽度中的至少一个不同。又例如,耦入光栅1021中不同第一子区域中的衍射微结构1024的顶角或宽度中的至少一个参数不同,耦出光栅1023中不同第二子区域中的衍射微结构1024的顶角或宽度中的至少一个参数不同。
图11为图10中光源的调光部件的结构图。经衍射微结构1024衍射后的激光存在多个衍射能级,衍射能级为0的状态相当于激光被反射。图11中以激光在一个衍射微结构1024上的入射角为角θ,衍射微结构1024的宽度为宽度D1为例,对该激光在衍射能级为0的状态下的传输方向进行示意。如图11所示,激光的出射角也为角θ。该激光与衍射微结构1024可以满足以下公式(1):
D1×sin2θ=m×λ(1)
这里,m为整数,且表示衍射能级(也可称为光栅级次),λ表示激光的波长,D1表示所需的衍射微结构1024的宽度(即,光栅常数),θ表示所需的激光的出射角(即,衍射角),衍射能级m不同对应的激光的出射角θ也不同。假设入射光的波长为525nm,激光的出射角θ需要满足2θ=45°,则D1=1.3468um。
这样,可以基于该关系(如公式(1))对光栅(如耦入光栅1021和耦出光栅1023)进行设计,使射入的激光的能量在衍射后在多个衍射能级上均匀分布,从而实现对激光的扩展。射入的激光的能量分布也可以使射入的激光的能量在衍射后仅分布在某一衍射能级上,以实现对激光的收缩。
图12为根据一些实施例的一种激光的能量分布图,图13为根据一些实施例的另一种激光的能量分布图,图14为根据一些实施例的又一种激光的能量分布图。横坐标表示衍射能级,纵坐标表示激光的能量。图12表示激光射向光栅时的能量分布,该能量分布为高斯分布。图13表示激光射出一种光栅时的能量分布,如图13所示,该光栅可以使激光的能量均匀地分布在各个衍射能级,从而实现对激光的扩展。在此情况下的光栅可以为多级光栅。图14表示激光射出另一种光栅时的能量分布,如图14所示,该光栅可以使激光的能量均聚集在一个衍射能级,从而实现对激光的收缩。在此情况下,光栅可以为某一级次的光栅,可以通过调整光栅级次使激光聚集在不同的衍射能级上。
当然,本公开一些实施例中衍射微结构1024也可以为矩形凸起。例如,衍射微结构1024为柱状,且截面呈矩形。该截面也可以其他形状,或者耦入光栅1021和耦出光栅1023的结构也可以类似于闪耀光栅,衍射微结构1024的截面可以呈三角形,本公开对此不做限定。
图15为根据一些实施例的又一种光源的结构图。在另一些示例中,如图15所示,调光部件102包括耦入光栅1021、光波导1022和耦出光栅1023。耦入光栅1021设置在光波导1022的靠近激光器101的第二板面1022B上,耦出光栅1023设置在光波导1022的远离激光器101的第一板面1022A上。在光波导1022的厚度方向上,耦入光栅1021在光波导1022上的正投影与耦出光栅1023在光波导1022上的正投影可以至少部分重叠。耦入光栅1021和耦出光栅1023可以为透射式光栅。
图15中的调光部件102的多个调光区域的介绍,以及对激光的作用可以参考关于图10的相关介绍,在此不再赘述。当然,在光波导1022的厚度方向上,耦入光栅1021在光波导1022上的正投影也可以与耦出光栅1023在光波导1022上的正投影不重叠。
图15中耦入光栅1021和耦出光栅1023中的衍射微结构1024可以包括凹槽(如,刻痕)。该凹槽可以不透光,且相邻的凹槽之间的部分相当于一个狭缝,该狭缝可以透光。
图16为图15中光源的调光部件的局部结构图,且图16示出了耦入光栅1021或耦出光栅1023的部分结构。例如,如图16所示,射入该耦入光栅1021或耦出光栅1023的激光在经过其衍射后激光的出射方向发生改变。激光与衍射微结构1024满足以下公式(2):
D2×π×sinθ=m×λ   (2)
这里,m表示衍射能级,λ表示激光的波长,θ表示激光的衍射角,D2表示相邻凹槽C之间的距离(即,光栅常数),衍射能级m不同对应的激光的衍射角θ也不同。如图16所示,相邻凹槽C之间的距离D2等于其中一个凹槽C的宽度D3与该相邻凹槽C之间的最小间距D4之和。
可以基于该关系(如公式(2))对光栅(如耦入光栅1021和耦出光栅1023)进行设计,使射入的激光的能量在衍射后在多个衍射能级上均匀分布,从而实现对激光的扩展;或者,也可以使射入的激光的能量在衍射后仅分布在某一衍射能级上,以实现对激光的收缩,该内容可以参考上述关于图12至图14的相关介绍,在此不再赘述。
需要说明的是,耦入光栅1021和耦出光栅1023也可以位于光波导1022的同一个板面上,耦入光栅1021和耦出光栅1023中的一个为透射式光栅,另一个为反射式光栅。透射式光栅和反射式光栅的结构可以参考图10中对反射式光栅的介绍和对图15中对透射式光栅的介绍。
在另一些实施例中,调光部件102可以为衍射光学元件(Diffractive Optical Elements,DOE)。衍射光学元件为一种二维衍射器件,可以对接收到的激光直接在两个方向上进行调整。例如,衍射光学元件直接对接收到的激光在第一方向和第二方向上分别进行衍射,使从衍射光学元件射出的激光可以匹配所需的光斑。
例如,衍射光学元件可以包括采用微纳刻蚀工艺构成二维分布的多个衍射微结构,每个衍射微结构具有特定的形貌以及折射率,通过多个衍射微结构可以实现对激光的精细调控。例如,每个衍射微结构呈矩形,多个衍射微结构的尺寸和深度(或者称为高度)可以不同,且不同衍射微结构之间的距离也可以不同,从而实现对射入的激光的针对性调整。例如,调光部件102为全息光学元件(Holographic Optical Element,HOE)。
图17为根据一些实施例的又一种光源的结构图。在一些实施例中,如图17所示,在上述任一光源10的基础上,光源10还包括会聚透镜103。调光部件102射出的激光可以射向会聚透镜103,以被该会聚透镜103会聚至匀光部件210。会聚透镜103被配置为会聚激光,以使较多激光可以入射至匀光部件210中,提高对激光的利用率。会聚透镜103可以包括一个或多个透镜。在实际应用中,可以根据需要采用合适数量以及种类的透镜。
在一些实施例中,继续参考图17,光源10还包括扩散片105,该扩散片105位于会聚透镜103和匀光部件210之间。扩散片105被配置为匀化入射的光束,从而消除散斑。该扩散片105可以静止不动,或者,也可以可移动。例如,光源10还包括过扩散片105的中心点且垂直于扩散片105的转轴,扩散片105可以沿转轴进行旋转,以使激光在不同时刻射向扩散片105的不同位置,使激光在不同时刻的发散角度不同。或者,扩散片105可以在平行于其所在平面的某一方向上进行往复移动。
在本公开一些实施例的光源中,调光部件102中的各个调光区域可以利用其中的衍射微结构1024对接收到的激光进行衍射,且不同调光区域中的衍射微结构1024可以不同,使得激光器101发出的多种颜色的激光经过多个调光区域后形成的光斑可以重合。这样,光源10发出的多种颜色的激光的合光效果较好,基于光源10发出的激光形成的投影画面的颜色均匀性较高,该投影画面的显示效果较好。
另外,在激光器101的出光侧设置一个调光部件102即可实现对多种颜色的激光的合光,无需设置多个合光镜片,可以简化光源10的结构,便于投影设备1000的小型化。
前文主要以投影设备1000中设有透镜组件220和棱镜组件250为例进行说明。当然,在一些实施例中,光学调制组件20可以包括体光栅以调节照明光束,从而省略上述部件(如透镜组件220和棱镜组件250),减小投影设备1000中照明系统的体积,便于投影设备1000的小型化。这里,照明系统可以指光学调制组件20中用于对照明光束整形以匹配光阀240的相关光学部件。
图18为根据一些实施例的另一种投影设备的结构图。图19为根据一些实施例的又一种激光器的结构图。
如图18所示,投影设备1000包括光源10、光学调制组件20以及镜头30。光学调制组件20包括匀光部件210、体光栅230、和光阀240(如DMD)。匀光部件210可以采用上述楔形光导管2100,来自光源10的照明光束通过光导管2100的第一端211进入光导管2100内进行匀化,并在匀化后从光导管2100的第二端212朝向体光栅230出射。光阀240位于体光栅230的出光侧,且被配置为接收来自体光栅230的照明光束,并对该照明光束进行调制,以获得投影光束。需要说明的是,匀光部件210和光阀240的相关内容可参照前文,在此不再赘述。
以下以图19所示的激光器101为例介绍光源10的相关结构。需要说明的是,图19中的激光器101包括多个发光芯片1013,该多个发光芯片1013以4×7的矩阵阵列排布。多个发光芯片1013包括多个第一发光芯片1013A、多个第二发光芯片1013B和多个第三发光芯片1013C。多个第一发光芯片1013A发出红色激光,且以2×7的矩阵阵列排布。多个第二发光芯片1013B发出蓝色激光,多个第三发光芯片1013C发出绿色激光,且多个第二发光芯片1013B和多个第三发光芯片1013C分别以1×7的矩阵阵列排布。当然,激光器101和多个发光芯片1013的数量和排列方式并不局限于此。例如,图19中的多个第二发光芯片1013B和多个第三发光芯片1013C的位置互换。
图20为根据一些实施例的又一种光源的结构图。
在一些实施例中,如图20所示,光源10还包括第一合光镜组104,第一合光镜组104位于多个第一发光芯片1013A、多个第二发光芯片1013B和多个第三发光芯片1013C的出光侧,且被配置为将红色激光、绿色激光和蓝色激光合束。光导管2100(匀光部件210)位于第一合光镜组104的出光侧。这里,该光导管2100可以为截面面积相同的光导管。
第一合光镜组104可以包括第一合光镜1041、第二合光镜1042和第三合光镜1043。第三合光镜1043位于多个第三发光芯片1013C的出光侧,第三合光镜1043可以采用反射镜,且被配置为将多个第三发光芯片1013C发出的绿色激光向第二合光镜1042反射。
第二合光镜1042位于多个第二发光芯片1013B的出光侧,以及第三合光镜1043的出光侧。例如,第二合光镜1042位于第三合光镜1043的反射光和多个第二发光芯片1013B的出射光的交汇处。第二合光镜1042可以采用二向色镜,且被配置为透射第三合光镜1043反射的绿色激光,反射多个第二发光芯片1013B发出的蓝色激光,从而将蓝色激光和绿色激光合束。
第一合光镜1041位于多个第一发光芯片1013A的出光侧,以及第二合光镜1042的出光侧。例如,第一合光镜1041位于多个第一发光芯片1013A的出射光和第二合光镜1042的出射光的交汇处。第一合光镜1041可以采用二向色镜,且被配置为透射第二合光镜1042出射的蓝色激光和绿色激光,反射多个第一发光芯片1013A发出的红色激光,从而将蓝色激光、绿色激光和红色激光进行合束。需要说明的是,多个合光镜的功能并不局限于此。例如,在图19中的多个第二发光芯片1013B和多个第三发光芯片1013C的位置互换的情况下,第三合光镜1043可以被配置为反射蓝色激光,第二合光镜1042被配置为反射绿色激光,透射蓝色激光。
在一些实施例中,如图20所示,光源10还包括扩散片105和会聚透镜103。扩散片105和会聚透镜103位于第一合光镜组104和光导管2100之间。并且,扩散片105位于第一合光镜组104的出光侧,且会聚透镜103位于扩散片105的出光侧。扩散片105和会聚透镜103的相关功能可参照前文的相关内容,在此不再赘述。
下面详细介绍本公开一些实施例中的体光栅230。
如图18所示,体光栅230位于匀光部件210的出光侧,且被配置为对入射光线(如照明光束)进行衍射。
体光栅230也可称为体积光栅,是指通过一个元件的整体体积构成的衍射元件,该衍射元件可以通过周期性折射率变化或周期性吸收特定波长的光以调制入射光。例如,体光栅230为具有周期性折射率的光栅,也称为体积相位光栅,该体光栅230不同部位处的折射率呈周期性变化。
需要说明的是,通常,光束入射到薄衍射光栅后可以发生衍射,并形成两束光束(即透射光束和衍射光束)。而光束入射到体光栅230并发生衍射后,只会形成一束光束。图21为根据一些实施例的体光栅衍射的示意图。例如,如图21所示,第一光束A1入射至体光栅230后发生衍射,形成第一衍射光束A11,第二光束A2入射体光栅230后发生衍射,形成第二衍射光束A22。
衍射效率是衍射光的光功率与入射光的光功率的比值,衍射效率达到100%,表明所有入射光都可以衍射并出射。在理想情况下,只有在设定波长的光以布拉格角入射到体光栅230上的情况下,衍射效率才能达到100%。当入射角或波长产生偏差均会导致衍射效率的减小或甚至为零。
因此,体光栅230可以根据上述性质进行设计,以获得较大的衍射效率。通常情况下,入射到体光栅230上的光束的入射角度是可以确定的,该入射角度与投影设备1000的结构、光导管2100的出射光的发散角度相关,而入射到体光栅230的激光可以具有三个波段(如,红色激光、绿色激光和蓝色激光对应的波长)。因此,在设计体光栅230时,可以根据入射激光的波长以及入射到体光栅230不同位置的入射激光的入射角度,选择合适的折射率变化、厚度以及周期,使得三色激光在入射到体光栅230 之后可以被完全衍射(即所有入射光对应的衍射效率为100%),从而避免不同角度、不同波长光线之间的串扰,减少不必要衍射的产生。这里,体光栅230的周期是指在体光栅230中从一个折射率改变点到相邻一个折射率改变点的长度。
在一些实施例中,体光栅230可以采用光致聚合物薄膜。例如,体光栅230采用聚丙烯(polypropylene,PP)薄膜。光致聚合物可以在光照条件下发生聚合反应,从而使发生反应后的材料的折射率产生变化。这样,可以根据对体光栅230的设计要求,对光致聚合物薄膜的不同的位置进行不同程度的光照,以形成梯度折射率变化,从而使体光栅230对入射的三色激光具有较高的衍射效率。
在一些实施例中,体光栅230的厚度为波长量级。例如,体光栅230的厚度为对应颜色的激光波长的整数倍。匀光部件210出射的光束入射到体光栅230之后,体光栅230可以将该光束进行偏转、匀化和放大,使得光束变为一个面积较大的面光源,且经体光栅230出射的衍射光线大致为平行光线,可以直接入射至光阀240。因此,相比于图3所示的投影设备1000,通过采用体光栅230可以大大缩小投影设备1000中照明系统的尺寸,减小投影设备1000的体积,便于投影设备1000的小型化。
在一些实施例中,体光栅230设置在光阀240的一侧,且体光栅230的出光面与光阀240的入光面之间呈设定夹角。由于数字微镜器件通常为方形,且来自光源的激光需要以一设定角度入射至DMD。因此,体光栅230的出光面与DMD的入光面之间可以呈设定夹角设置。
图22为根据一些实施例的体光栅与光阀的结构图。例如,如图22所示,体光栅230的出光面2300与光阀240的入光面2400之间呈设定夹角β。由于不同规格的DMD对光线的入射角度的要求不同,因此,在设置体光栅230与DMD之间的夹角时需要根据DMD的需求进行设置。
图23为根据一些实施例的投影设备中光学调制组件的结构图。在一些实施例中,如图23所示,体光栅230位于光阀240的侧边。光导管2100位于体光栅230的远离光阀240的一侧,且光导管2100的延伸方向平行于光阀240的所述侧边。在此情况下,光学调制组件20还包括反射镜组260。该反射镜组260设置在光导管2100的出光侧,且反射镜组260被配置为将光导管2100出射的照明光束反射至体光栅230。
反射镜组260可以包括一个或多个反射镜,该反射镜可以反射红、绿、蓝三色激光。例如,如图23所示,反射镜组260包括两个呈预设角度设置的反射镜261、262。需要说明的是,可以根据实际情况在光导管2100的出光侧设置一个、两个、或更多个反射镜,本公开对此不做限定。
需要说明的是,由于反射镜组260的尺寸、位置以及相对于光导管2100出射的照明光束的倾斜角度需要满足将光导管2100出射的照明光束反射至体光栅230的入光面的条件。因此,可以根据反射镜组260将照明光束反射至体光栅230时的入射角度对体光栅230的周期、厚度、折射率变化等参数进行设计。
图24为根据一些实施例的投影设备中另一种光学调制组件的结构图。在一些实施例中,如图24所示,光学调制组件20还包括一个或多个准直透镜270。准直透镜270位于光导管2100和反射镜组260之间,且被配置为准直入射的光束。例如,准直透镜270紧贴光导管2100的出光口设置。光导管2100出射的照明光束经过准直透镜270准直后,入射到反射镜组260,且入射至反射镜组260的照明光束的入射角度可以为固定值,从而该照明光束经反射镜组260反射到体光栅230时的入射角度也可以为固定值,有利于简化体光栅230的设计难度。
在光学调制组件20包括一个准直透镜270的情况下,光学调制组件20的结构简单,便于投影设备1000的小型化。另外,通过在光导管2100的出光口设置准直透镜270,可以减小光导管2100出射的照明光束的发散角度,便于照明光束入射到体光栅230时的入射角度的确定。
需要说明的是,本公开一些实施例中的利用体光栅230实现匀光的方案还可以适用于液晶显示装置。例如,采用该方案作为液晶显示面板的背光。
前文主要以光栅调整光斑的均匀度为例进行说明。当然,在一些实施例中,投影设备1000也可以采用光波导(如阵列光波导或锯齿形光波导)调整多种颜色激光的光斑的均匀度。这里,阵列光波导或锯齿形光波导可以呈片状。例如,阵列光波导或锯齿形光波导为一片高折射率的透明基底,从基底一侧通过特定的结构耦合入光源发出的照明光束,该照明光束在基底内进行全反射传播,传播到一位置后通过另一特定的结构耦合出射。
下面详细介绍本公开一些实施例中的具有光波导的光源10。
在一些实施例中,光源10可以包括激光器101和一个或多个光波导108。以下以图19所示的激光 器101为例介绍。
光波导108可以位于第三发光芯片1013C的出光侧。光波导108可以包括入光部1081和出光部1082。入光部1081被配置为将入射的激光(如,蓝色激光或绿色激光中的至少一个)导入光波导108内。出光部1082被配置为将光波导108内的激光导出。并且,出光部1082出射的蓝色激光或绿色激光中的至少一个的光束宽度与第一发光芯片1013A发出的红色激光的光束宽度相等。这里,光束宽度可以指光束在垂直于该光束轴线方向的平面上的尺寸。
光波导108可以由玻璃、二氧化硅、或铌酸锂等光学透明度和传输损耗小的材料制成。并且,光波导108的入光部1081和出光部1082具有反射或透射功能的膜层,以使入射至光波导108中的光线在光波导108中按照设定的路径传播。
图25为根据一些实施例的又一种投影设备的结构图。在一些示例中,如图25所示,光波导108包括平行的入光面1080A和出光面1080B,该入光面1080A和出光面1080B在光波导108的厚度方向(如图25中的PL方向)上相对设置。光波导108的入光部1081和出光部1082分别位于入光面1080A和出光面1080B之间。光波导108的入光面1080A朝向激光器101。
在一些实施例中,光波导108可以包括阵列光波导106或锯齿形光波导107。
图26为根据一些实施例的阵列光波导的结构图。例如,如图26所示,阵列光波导106包括第一本体1061、第一反射膜1062、一个或多个第一透反射膜1063、和第二反射膜1064。第一反射膜1062、第一透反射膜1063和第二反射膜1064设置在第一本体1061内。第一反射膜1062位于第一本体1061的一端,以作为阵列光波导106的入光部(即光波导108的入光部1081)。第一透反射膜1063和第二反射膜1064位于第一本体1061的另一端,以作为阵列光波导106的出光部(即光波导108的出光部1082)。第一透反射膜1063位于第一反射膜1062和第二反射膜1064之间。
第一反射膜1062、第一透反射膜1063和第二反射膜1064相互平行设置,且三者相对于光波导108的入光面1080A倾斜设定角度γ。该设定角度γ满足对入射的激光进行反射,并使激光在第一本体1061中发生全反射的条件。
入射到阵列光波导106入光部的光束被第一反射膜1062反射后在第一本体1061中多次全反射并传播。该光束在经过第一透反射膜1063时,第一透反射膜1063可以将光束中的第一部分反射出阵列光波导106,将光束中的第二部分透射至下一个第一透反射膜1063,直至光束传播至第二反射膜1064时,第二反射膜1064将剩余的光束全部反射出阵列光波导106。需要说明的是,可以通过在第一透反射膜1063上镀膜来改变其对入射光的透射率和反射率,通过在第二反射膜1064上镀膜来改变其可以透射和反射的光束。
通过在阵列光波导106中设置多个膜层,可以实现将阵列光波导106中的光束分成不同部分出射,从而扩展光束。并且,通过调节阵列光波导106中第一透反射膜1063的数量和位置,可以调整从阵列光波导106出射的光束的尺寸(如光束宽度)。另外,在阵列光波导106包括多个第一透反射膜1063的情况下,调节多个第一透反射膜1063的反射率和透射率,可以使光束在阵列光波导106中多次反射,提高从阵列光波导106出射的光束的均匀度。
图27为根据一些实施例的锯齿形光波导的结构图。例如,如图27所示,锯齿形光波导107包括第二本体1071、第三反射膜1072和棱镜部1073。第三反射膜1072和棱镜部1073设置在第二本体1071内。第三反射膜1072位于第二本体1071的一端,以作为锯齿形光波导107的入光部(即光波导108的入光部1081)。棱镜部1073位于第二本体1071的另一端,以作为锯齿形光波导107的出光部(即光波导108的出光部1082)。
第三反射膜1072与棱镜部1073相距设定距离,以满足棱镜部1073对对应波长激光的透射和反射。第三反射膜1072相对于光波导108的入光面1080A倾斜设定角度γ。该设定角度γ满足对入射的激光进行反射,并使激光在第二本体1071中发生全反射的条件。
棱镜部1073位于光波导108的入光面1080A上。棱镜部1073可以包括多个平行排列的子棱镜1074,该子棱镜1074呈条形。在靠近第三反射膜1072的两个或更多个子棱镜1074中,子棱镜1074的朝向第三反射膜1072的表面上设有第二透反射膜1075。在远离第三反射膜1072的一个或多个子棱镜1074中,子棱镜1074的朝向第三反射膜1072的表面上设有第四反射膜1076。第二透反射膜1075和第四反射膜1076的数量可以根据实际需要设置。
入射到锯齿形光波导107入光部的光束被第三反射膜1072反射后在第二本体1071中多次全反射并 传播。该光束经过棱镜部1073中的第二透反射膜1075时,第二透反射膜1075可以将光束中的第一部分反射出锯齿形光波导107,将光束中的第二部分透射至下一个第二透反射膜1075,直至光束传播至第四反射膜1076时,被第四反射膜1076反射出锯齿形光波导107。
通过在锯齿形光波导107中设置多个膜层,可以将从锯齿形光波导107出射的光束的光斑扩展至与棱镜部1073的宽度相同,并匀化光束。
将阵列光波导106和锯齿形光波导107应用于投影设备1000之中,可以使光源10出射的不同颜色的激光的分布均匀,从而提高投影画面的显示效果。
在一些实施例中,光源10可以包括一个光波导108,且该光波导108位于多个第三发光芯片1013C的出光侧。光波导108被配置为扩展第三发光芯片1013C发出的绿色激光的光束宽度,使从光波导108的出光部1082出射的绿色激光的光束宽度与多个第一发光芯片1013A发出的红色激光的光束宽度相等。
激光的光斑尺寸和发散角度的乘积决定了激光的光学扩展量。例如,激光的光束宽度越小,该激光的光学扩展量越小。又由于光学扩展量小会导致激光散斑现象严重,而三色激光投影设备中红色激光的光学扩展量通常大于蓝色激光和绿色激光的光学扩展量,因此,蓝色激光和绿色激光的散斑现象相比于红色激光更明显。
而在本公开的一些实施例中,由于人眼对蓝色光的敏感度较低,因此,使绿色激光和红色激光的光束宽度相同即可使出射光均匀。并且,通过增大绿色激光的光束宽度,可以增加绿色激光的光学扩展量,使绿色激光的光学扩展量与红色激光的光学扩展量相同,从而减少绿色激光的散斑现象。这样,使用较少的光学部件即可实现较好的显示效果,并便于投影设备1000的小型化。
在一些实施例中,如图25所示,光源10还包括第二合光镜组109。第二合光镜组109位于激光器101和光波导108的出光侧,且被配置为将红色激光、绿色激光和蓝色激光合束,合束后的光束可以具有较好的均匀性。例如,第二合光镜组109由一个或多个反射镜、一个或多个二向色镜构成。当然,第二合光镜组109也可以根据具体的合光需求设置。
在一些实施例中,如图25所示,光源10还包括匀光部件210,匀光部件210可以位于第二合光镜组109的出光侧,且被配置为对第二合光镜组109合束的激光进行匀化,以使激光的能量分布均匀,减小散斑。匀光部件210的相关内容可以参照前文,在此不再赘述。
在一些实施例中,如图25所示,光源10还包括会聚透镜103,该会聚透镜103设置在第二合光镜组109的出光侧,且被配置为会聚入射的光束。会聚透镜103的相关内容可以参照前文,在此不再赘述。
下面详细介绍本公开一些实施例中光源10包括一个光波导108的多个示例。
图28为根据一些实施例的又一种光源的光路图。在一些示例中,如图28所示,在光波导108包括阵列光波导106的情况下,第一反射膜1062位于第三发光芯片1013C的出光侧,第一透反射膜1063和第二反射膜1064位于第一发光芯片1013A的出光侧。第一透反射膜1063被配置为反射绿色激光的第一部分,透射绿色激光的第二部分和红色激光。第二反射膜1064被配置为反射绿色激光且透射红色激光。这里,第二反射膜1064相当于一个二向色镜。并且,第一透反射膜1063与第二反射膜1064之间的间距W1与多个第一发光芯片1013A发出的红色激光的光束宽度相等。这里,与间距W1相等的红色激光的光束宽度可以理解为与红色激光在与间距W1相同方向上的对应的尺寸,当然,本公开并不局限于此。
继续参考图28,第三发光芯片1013C发出的绿色激光入射至第一反射膜1062。由于第一反射膜1062相对于入光面1080A的倾斜角度满足全反射条件,因此,第一反射膜1062在将绿色激光反射至入光面1080A上后,绿色激光可以在第一本体1061中在入光面1080A和出光面1080B之间进行多次全反射并入射至第一透反射膜1063。绿色激光中的第一部分被第一透反射膜1063反射出阵列光波导106,绿色激光的第二部分被透反射膜1063透射并继续在第一本体1061内传播,直至入射至第二反射膜1064。第二反射膜1064将入射的绿色激光全部反射出阵列光波导106。
在此情况下,第二合光镜组109可以包括第四合光镜1091和第五合光镜1092,第四合光镜1091位于多个第二发光芯片1013B的出光侧,且被配置为反射蓝色激光。第五合光镜1092位于阵列光波导106的出光侧,且被配置为反射红色激光和绿色激光,并透射蓝色激光。第四合光镜1091和第五合光镜1092平行设置,且二者可以相对于光波导108所在的平面倾斜一预设角度。
这样,绿色激光在从阵列光波导106出射后可以被第五合光镜1092反射至会聚透镜103;多个第 二发光芯片1013B发出的蓝色激光可以直接被阵列光波导106透射后入射至第四合光镜1091,并被第四合光镜1091反射至第五合光镜1092。反射至第五合光镜1092的蓝色激光被第五合光镜1092透射至会聚透镜103;从多个第一发光芯片1013A发出的红色激光被阵列光波导106透射至第五合光镜1092,并被第五合光镜1092反射至会聚透镜103;入射至会聚透镜103的红、绿、蓝三色激光被会聚透镜103会聚至匀光部件210。
在本公开的一些实施例中,由于第一透反射膜1063和第二反射膜1064分别设置于两行第一发光芯片1013A的出光侧,且绿色激光被第一透反射膜1063和第二反射膜1064分成两部分以从阵列光波导106出射。因此,从阵列光波导106出射的绿色激光的光束宽度可以增大,并可以与第一透反射膜1063与第二反射膜1064之间的间距W1相等。并且,由于第一透反射膜1063和第二反射膜1064可以透射红色激光,且多个第一发光芯片1013A发出的红色激光的光束宽度也可以与第一透反射膜1063与第二反射膜1064之间的间距W1相等。因此,绿色激光的光束宽度可以与红色激光的光束宽度相等。这样,从光源10出射的光束较为均匀,且绿色激光的光学扩展量可以扩大至与红色激光的光学扩展量相同,以减少绿色激光的散斑现象。
需要说明的是,第一透反射膜1063的透射率和反射率可以根据投影设备1000的设计需求改变。在一些实施例中,第一透反射膜1063的透射率可以为50%,第一透反射膜1063的反射率可以为50%,以使绿色激光从第一透反射膜1063和第二反射膜1064处出射的光束的能量相等,从而提高出射的绿色激光的光强分布的均匀度。
图29为根据一些实施例的又一种光源的光路图。在另一些示例中,如图29所示,在光波导108包括锯齿形光波导107的情况下,第三反射膜1072位于多个第三发光芯片1013C的出光侧,棱镜部1073位于第一发光芯片1013A的出光侧。第二透反射膜1075被配置为反射绿色激光的第一部分,透射绿色激光的第二部分和红色激光。与第三反射膜1072距离最远的子棱镜1074的朝向第三反射膜1072的表面上设有第四反射膜1076,且该第四反射膜1076被配置为反射绿色激光和透射红色激光。这里,第四反射膜1076相当于一个二向色镜。该第四反射膜1076可以将锯齿形光波导107中传播至该处的光束全部反射出锯齿形光波导107,从而在扩展光束的情况下避免光束的损耗。并且,棱镜部1073的宽度与多个第一发光芯片1013A发出的红色激光的光束宽度相等。
继续参考图29,从多个第三发光芯片1013C发出的绿色激光入射至第三反射膜1072。由于第三反射膜1072相对于入光面1080A的倾斜角度满足全反射条件,因此,第三反射膜1072在将绿色激光反射至入光面1080A上后,绿色激光可以在第二本体1071中在入光面1080A和出光面1080B之间进行多次全反射并入射至棱镜部1073。该绿色激光在经过子棱镜1074上的第二透反射膜1075时,绿色激光中的第一部分可以被反射出锯齿形光波导107,绿色激光中的第二部分可以被透射并继续向下一个子棱镜1074传播。多次重复上述过程后剩余的绿色激光被第四反射膜1076全部反射出锯齿形光波导107。
在此情况下,第二合光镜组109可以包括第四合光镜1091和第五合光镜1092。该第二合光镜组109的结构和功能与图28中第二合光镜组109的结构和功能类似,在此不再赘述。
由于从多个第三发光芯片1013C发出的绿色激光在锯齿形光波导107中被分成多个部分以从锯齿形光波导107出射。因此,从锯齿形光波导107出射的绿色激光的光束宽度增大,并可以与棱镜部1073的宽度W2相等。由于棱镜部1073的宽度与多个第一发光芯片1013A发出的红色激光的光束宽度相等,因此,绿色激光和红色激光的光束宽度可以相等。这样,二者经第二合光镜组109合束后的出射光较为均匀,并且绿色激光的光学扩展量可以扩大至与红色激光的光学扩展量相同,以减少绿色激光的散斑现象。
在一些实施例中,光源10也可以包括两个光波导108。
图30为根据一些实施例的又一种投影设备的结构图。例如,如图30所示,光源10包括第一光波导108A和第二光波导108B。第一光波导108A位于多个第三发光芯片1013C的出光侧,且第二光波导108B位于多个第二发光芯片1013B的出光侧。第一光波导108A被配置为扩展多个第三发光芯片1013C发出的绿色激光的光束宽度,第二光波导108B被配置为扩展多个第二发光芯片1013B发出的蓝色激光的光束宽度,从而使第一光波导108A出射的绿色激光的光束宽度、第二光波导108B出射的蓝色激光的光束宽度与多个第一发光芯片1013A发出的红色激光的光束宽度相等。
在投影装置1000中设置两个光波导108的方案可以使用于激光器101中第二发光芯片1013B(如蓝色发光芯片)数量较少的情况,以扩大蓝色和绿色激光的光束宽度使之与红色激光的光束宽度相同, 从而使光源10的出射光束分布均匀,并且可以避免由于蓝色激光的光束宽度较小导致的投影画面色温和颜色情况出现异常的问题。另外,蓝色激光和绿色激光的光学扩展量可以分别增大至与红色激光相同,从而减小蓝色激光和绿色激光的散斑。
第一光波导108A和第二光波导108B可以分别采用阵列光波导106;或者,第一光波导108A和第二光波导108B可以分别采用锯齿形光波导107;或者,第一光波导108A采用阵列光波导106,第二光波导108B采用锯齿形光波导107;或者,第一光波导108A采用锯齿形光波导107,第二光波导108B采用阵列光波导106。上述四种方法可以扩展蓝色激光和绿色激光的光束宽度。以下以第一光波导108A和第二光波导108B分别采用阵列光波导106为例进行描述。
图31为根据一些实施例的又一种光源的光路图。在一些示例中,如图31所示,第一光波导108A的第一反射膜1062位于多个第三发光芯片1013C的出光侧,第一光波导108A的第一透反射膜1063和第二反射膜1064位于多个第一发光芯片1013A的出光侧。对于第一光波导108A中的多个膜层的结构和功能可参见图28中阵列光波导106的相关内容,在此不再赘述。
第二光波导108B的第一反射膜1062位于多个第二发光芯片1013B的出光侧,第二光波导108B的第一反射膜1062被配置为反射多个第二发光芯片1013B发出的蓝色激光。第二光波导108B的第一透反射膜1063和第二反射膜1064位于多个第一发光芯片1013A的出光侧。第二光波导108B的第一透反射膜1063被配置为反射蓝色激光中的第一部分,且透射蓝色激光中的第二部分、绿色激光和红色激光。第二光波导108B的第二反射膜1064被配置为反射蓝色激光,透射绿色激光和红色激光。
这里,第二光波导108B的第一透反射膜1063和第二反射膜1064可以相当于二向色镜。第二光波导108B中的多个膜层的设置角度可参见前文的相关描述,此处不再赘述。
第一光波导108A中的第一透反射膜1063和第二反射膜1064之间的间距、第二光波导108B中的第一透反射膜1063和第二反射膜1064之间的间距分别与多个第一发光芯片1013A发出的红色激光的光束宽度相等。并且,第一光波导108A中的第一透反射膜1063可以和第二光波导108B中的第一透反射膜1063平行设置,第一光波导108A中的第二反射膜1064可以和第二光波导108B中的第二反射膜1064平行设置。
多个第三发光芯片1013C发出的绿色激光入射至第一光波导108A中的第一反射膜1062,并被第一反射膜1062反射。经第一反射膜1062反射的绿色激光在第一光波导108A中多次全反射,并入射至第一光波导108A中的第一透反射膜1063。绿色激光中第一部分被第一透反射膜1063反射出第一光波导108A,绿色激光中第二部分被第一透反射膜1063透射,并继续在第一光波导108A中传播,直至入射至第一光波导108A中的第二反射膜1064。入射至第二反射膜1064的绿色激光被第二反射膜1064全部反射出第一光波导108A,且从第一光波导108A出射的绿色激光的光束宽度与红色激光的光束宽度相等。
多个第二发光芯片1013B发出的蓝色激光透过第一光波导108A并入射至第二光波导108B中的第一反射膜1062,并被第一反射膜1062反射。经第一反射膜1062反射的蓝色激光在第二光波导108B中多次全反射,并入射至第二光波导108B中的第一透反射膜1063。蓝色激光中第一部分被第一透反射膜1063反射出第二光波导108B,蓝色激光中第二部分被第一透反射膜1063透射,并继续在第二光波导108B中传播直至入射至第二光波导108B中的第二反射膜1064。入射至第二反射膜1064的蓝色激光被第二反射膜1064全部反射出第二光波导108B,且从第二光波导108B出射的蓝色激光的光束宽度与红色激光的光束宽度相等。
从第一光波导108A出射的绿色激光和红色激光可以透过第二光波导108B入射至会聚透镜103,从第二光波导108B出射的蓝色激光和红色激光可以直接入射至会聚透镜103。
这样,通过在投影设备1000中设置两个光波导108,可以使红、绿、蓝三色激光的光束宽度相等,使得光源10的出射光束的颜色分布均匀。并且,无需设置第二合光镜组109进行合束,可以通过一个会聚透镜103直接会聚光束,有利于简化投影设备1000的内部结构,实现低成本和轻便化设计。
图32为根据一些实施例的又一种光源的光路图。在另一些示例中,图31中的光源10也可以包括第二合光镜组109。例如,如图32所示,光源10还包括第二合光镜组109,该第二合光镜组109包括第六合光镜1093,第六合光镜1093被配置为将从第一光波导108A出射的绿色激光和红色激光、从第二光波导108B出射的蓝色激光和红色激光反射向同一方向,以实现合束。例如,第六合光镜1093将入射的三色激光反射向会聚透镜103。通过设置第六合光镜1093,可以实现光源10中激光的转向,便 于投影画面的显示,从而投影设备1000可以适用于更多的现实场景中。
激光器101、第一光波导108A、以及第二光波导108B的结构和功能可参见图31中的相关描述,在此不再赘述。
前文主要以光源10包括一个激光器101,激光器101包括多个第一发光芯片1013A、多个第二发光芯片1013B和多个第三发光芯片1013C,且一个或多个光波导108位于激光器101的出光侧为例进行说明。当然,在一些实施例中,光源10也可以包括多个激光器101。
图33为根据一些实施例的又一种光源的光路图。在一些示例中,如图33所示,多个激光器101包括第一激光器101A和第二激光器101B。第一激光器101A包括一个或多个第一发光芯片1013A,第二激光器101B包括一个或多个第二发光芯片1013B和一个或多个第三发光芯片1013C。第一光波导108A和第二光波导108B位于第二激光器101B的出光侧,且第二光波导108B位于第一光波导108A的远离第二激光器101B的一侧。例如,如图33所示,第一光波导108A位于多个第三发光芯片1013C的出光侧,第二光波导108B位于多个第二发光芯片1013B的出光侧。第一光波导108A被配置为扩展多个第三发光芯片1013C发出的绿色激光的光束宽度,第二光波导108B被配置为扩展多个第二发光芯片1013B发出的蓝色激光的光束宽度。并且,在第一光波导108A中,第一透反射膜1063和第二反射膜1064之间的间距等于第一激光器101A中的多个第一发光芯片1013A发出的红色激光的光束宽度;在第二光波导108B中,第一透反射膜1063和第二反射膜1064之间的间距等于第一激光器101A中的多个第一发光芯片1013A发出的红色激光的光束宽度。
在此情况下,光源10还包括第二合光镜组109,第二合光镜组109包括第六合光镜1093,第六合光镜1093被配置为反射蓝色激光、绿色激光,透射红色激光。
从第一激光器101A中的多个第一发光芯片1013A发出的红色激光经第六合光镜1093透射至会聚透镜103;从第二激光器101B中的多个第三发光芯片1013C发出的绿色激光经第一光波导108A扩展至与红色激光的光束宽度相同,从第二激光器101B中的多个第二发光芯片1013B发出的蓝色激光经第二光波导108B扩展至与红色激光的光束宽度相同。绿色激光和蓝色激光分别被第六合光镜1093反射至会聚透镜103,会聚透镜103会聚红、绿、蓝三色激光。
另外,光源10包括两个激光器101的方案也可以使用于如图19所示的激光器101中。这样,上述光源10包括两个激光器101的方案可以适用于激光器101包括的三色发光芯片数量比例不同的情形。需要说明的是,图33中的两个激光器101的方案也可以仅使用一个光波导108,该光波导108的结构和功能可以参见前文的相关描述,在此不再赘述。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何一个或多个实施例或示例中以合适的方式结合。
本领域的技术人员将会理解,本公开的公开范围不限于上述具体实施例,并且可以在不脱离本公开的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权利要求的限制。

Claims (20)

  1. 一种投影设备,包括:
    光源,被配置为发出多种颜色的激光,以作为照明光束;
    光学调制组件,被配置为调制所述照明光束以获得投影光束;以及
    镜头,位于所述光学调制组件的出光侧,所述镜头被配置为投射所述投影光束以形成投影画面;
    所述光源包括:
    激光器,被配置为发出多种颜色的激光;以及
    调光部件,包括多个调光区域,所述多个调光区域中的每个调光区域包括多个衍射微结构,且不同调光区域中的衍射微结构不同;所述调光部件被配置为通过所述多个调光区域中的所述多个衍射微结构分别对所述多种颜色的激光进行衍射并朝向同一区域出射,以使所述多种颜色的激光在经过所述调光部件后形成的光斑重合;
    其中,所述多种颜色的激光分别入射至所述多个调光区域,且不同颜色的激光入射的调光区域不同,所述多种颜色的激光在所述调光部件上形成的多个光斑在第一方向上的尺寸大于在第二方向上的尺寸,所述第一方向垂直所述第二方向;所述多个调光区域满足以下至少一个:
    所述多个调光区域被配置为在所述第一方向上收缩对应的激光;
    或,
    所述多个调光区域被配置为在所述第二方向上扩展对应的激光。
  2. 根据权利要求1所述的投影设备,其中,所述多个调光区域还满足以下之一:
    所述多个调光区域被配置为在所述第一方向上和所述第二方向上收缩对应的激光,所述激光在所述第一方向上的收缩程度大于在所述第二方向上的收缩程度;
    以及,
    所述多个调光区域被配置为在所述第一方向上和所述第二方向上扩展对应的激光,所述激光在所述第一方向上的扩展程度小于在所述第二方向上的扩展程度。
  3. 根据权利要求1或2所述的投影设备,其中,所述激光器包括多个发光芯片,所述多个发光芯片中的每个发光芯片被配置为发出一个子光束,以使所述多个发光芯片发出多个子光束,所述多种颜色的激光中每种颜色的激光包括两个或更多个子光束;
    所述多个调光区域被配置为衍射接收的激光,以扩展所述子光束,以使所述多种颜色的激光中的多个子光束经过所述多个调光区域后形成的光斑重合。
  4. 根据权利要求1至3中任一项所述的投影设备,其中,所述调光部件满足以下至少之一:
    所述多种颜色的激光经过所述多个调光区域后形成的光斑中任意两个位置之间的能量差异小于能量阈值;
    或,
    所述多种颜色的激光经过所述多个调光区域后形成的光斑呈矩形。
  5. 根据权利要求1至4中任一项所述的投影设备,其中,所述调光部件满足以下之一:
    所述调光部件包括光栅波导,所述光栅波导包括:
    光波导,被配置为将来自耦入光栅的激光传输至耦出光栅;
    所述耦入光栅,设置在所述光波导上,所述耦入光栅被配置为将接收到的激光在所述第一方向上进行衍射,并传播至所述光波导;以及
    所述耦出光栅,设置在所述光波导上,所述耦出光栅被配置为将接收到的激光在所述第二方向上进行衍射,并使衍射后的激光从所述光栅波导出射;
    其中,所述每个调光区域包括所述耦入光栅中的第一区域和所述耦出光栅中的第二区域,所述第一区域为每种颜色的激光在所述耦入光栅中的照射区域,所述第二区域为每种颜色的激光在所述耦出光栅中的照射区域;
    以及,
    所述调光部件包括衍射光学元件。
  6. 根据权利要求5所述的投影设备,其中,所述光栅波导满足以下之一:
    所述耦入光栅位于所述光波导的远离所述激光器的第一板面上,所述耦出光栅位于所述光波导的靠近所述激光器的第二板面上,在所述光波导的厚度方向上,所述耦入光栅在所述光波导上的正投影位于所述耦出光栅在所述光波导上的正投影之外;所述衍射微结构呈锯齿状,不同调光区域的所述衍射微结 构的顶角或宽度中的至少一个不同;
    以及,
    所述耦入光栅位于所述光波导的靠近所述激光器的所述第二板面上,所述耦出光栅位于所述光波导的远离所述激光器的第一板面上,在所述光波导的厚度方向上,所述耦入光栅在所述光波导上的正投影与所述耦出光栅在所述光波导上的正投影至少部分重叠;所述衍射微结构包括凹槽,不同调光区域的相邻凹槽之间的距离不同。
  7. 根据权利要求1至6中任一项所述的投影设备,其中,所述光学调制组件包括:
    匀光部件,位于所述光源的出光侧,所述匀光部件被配置为匀化入射的所述照明光束;
    体光栅,位于所述匀光部件的出光侧,所述体光栅被配置为对来自所述匀光部件的照明光束进行衍射,以使经所述体光栅衍射的激光的光斑尺寸和出射角度满足光学调制部件的入射条件;经所述体光栅衍射的激光的光斑尺寸以及出射角度与所述体光栅的厚度、周期和折射率变化相关;所述体光栅的出光面与所述光学调制部件的入光面之间呈设定夹角,所述设定夹角满足激光入射所述光学调制部件时的入射角条件;以及
    所述光学调制部件,位于所述体光栅的出光侧,所述光学调制部件被配置为对从所述体光栅出射的照明光束进行调制,以获得所述投影光束。
  8. 根据权利要求7所述的投影设备,其中,所述体光栅位于所述光学调制部件的侧边;所述匀光部件位于所述体光栅的远离所述光学调制部件的一侧;
    所述光学调制组件还包括反射镜组,所述反射镜组位于所述匀光部件的出光侧,且被配置为将从所述匀光部件出射的照明光束反射至所述体光栅,以使经所述反射镜组反射的照明光束以布拉格角入射所述体光栅;所述反射镜组包括反射镜。
  9. 根据权利要求8所述的投影设备,其中,所述光学调制组件还包括准直透镜组,所述准直透镜组位于所述匀光部件和所述反射镜组之间,且被配置为准直从所述匀光部件出射的照明光束,经所述准直透镜组准直后的照明光束入射至所述反射镜组。
  10. 根据权利要求8或9所述的投影设备,其中,所述匀光部件包括光导管,所述光导管的延伸方向平行于所述光学调制部件的所述侧边。
  11. 一种投影设备,包括:
    光源,被配置为发出多种颜色的激光,以作为照明光束;
    光学调制组件,被配置为调制所述照明光束以获得投影光束;以及
    镜头,位于所述光学调制组件的出光侧,所述镜头被配置为投射所述投影光束以形成投影画面;
    所述光源包括:
    至少一个激光器,所述至少一个激光器包括:
    多个第一发光芯片,被配置为发出红色激光;
    多个第二发光芯片,被配置为发出蓝色激光;以及
    多个第三发光芯片,被配置为发出绿色激光,所述多个第三发光芯片的数量和所述多个第二发光芯片的数量分别小于所述多个第一发光芯片的数量;以及
    至少一个光波导,所述至少一个光波导中的一个光波导位于所述多个第三发光芯片的出光侧;所述至少一个光波导中的每个光波导包括:
    入光面,为所述光波导的靠近所述激光器的表面;
    出光面,与所述入光面平行设置,在所述光波导的厚度方向上所述入光面和所述出光面相对设置;
    入光部,被配置为将入射的激光导入所述光波导内;以及
    出光部,被配置为将所述光波导内的激光导出,所述入光部和所述出光部位于所述入光面和所述出光面之间;所述出光部出射的激光的光束宽度与所述多个第一发光芯片发出的红色激光的光束宽度相等。
  12. 根据权利要求11所述的投影设备,其中,所述光波导满足以下之一:
    所述光波导包括阵列光波导,所述阵列光波导包括:
    第一本体;
    第一反射膜,设置在所述第一本体内,且位于所述第一本体的一端,所述第一反射膜被配置为 反射入射至所述第一反射膜的激光;
    第一透反射膜,设置在所述第一本体内,且位于所述第一本体的另一端,所述第一透反射膜被配置为反射来自所述第一反射膜的激光的第一部分,透射来自所述第一反射膜的激光的第二部分;以及
    第二反射膜,设置在所述第一本体内,且位于所述第一本体的所述另一端,所述第一透反射膜位于所述第一反射膜和所述第二反射膜之间,所述第二反射膜至少被配置为反射所述第一透反射膜透射的激光;
    其中,所述入光部为所述第一反射膜,所述出光部为所述第一透反射膜和所述第二反射膜,所述第一反射膜、所述第一透反射膜和所述第二反射膜相互平行设置,且相对于所述光波导的入光面倾斜设定角度,所述设定角度满足使入射的激光在所述光波导中发生全反射的条件;所述第一透反射膜与所述第二反射膜之间的间距与所述多个第一发光芯片发出的红色激光的光束宽度相等;
    以及,
    所述光波导包括锯齿形光波导,所述锯齿形光波导包括:
    第二本体;
    第三反射膜,设置在所述第二本体内;以及
    棱镜部,设置在所述第二本体内,且位于所述光波导的入光面上,所述棱镜部包括平行排列的多个子棱镜,所述多个子棱镜分别呈条形;在靠近所述第三反射膜的两个或更多个子棱镜中,所述两个或更多个子棱镜的朝向所述第三反射膜的表面上设有第二透反射膜;在远离所述第三反射膜的至少一个子棱镜中,所述至少一个子棱镜的朝向所述第三反射膜的表面上设有第四反射膜;
    其中,所述入光部为所述第三反射膜,所述出光部为所述棱镜部,所述第三反射膜与所述棱镜部相距设定距离;所述棱镜部的宽度与所述多个第一发光芯片发出的红色激光的光束宽度相等。
  13. 根据权利要求12所述的投影设备,其中,所述第一透反射膜的反射率为50%,所述第一透反射膜的透射率为50%。
  14. 根据权利要求12或13所述的投影设备,其中,所述至少一个光波导满足以下之一:
    所述至少一个光波导包括一个光波导,所述第一反射膜位于所述多个第三发光芯片的出光侧,且被配置为反射绿色激光;所述第一透反射膜被配置为反射来自所述第一反射膜的绿色激光的第一部分,透射来自所述第一反射膜的绿色激光的第二部分;所述第二反射膜位于所述多个第一发光芯片的出光侧,且被配置为反射绿色激光且透射红色激光;
    以及,
    所述至少一个光波导包括一个光波导,所述第三反射膜位于所述多个第三发光芯片的出光侧,且被配置为反射绿色激光;所述棱镜部位于所述多个第一发光芯片的出光侧,所述两个或更多个子棱镜中的所述第二透反射膜被配置为反射来自所述第三反射膜的绿色激光的第一部分,透射来自所述第三反射膜的绿色激光的第二部分;所述至少一个子棱镜中的所述第四反射膜被配置为反射绿色激光且透射红色激光;
    以及,
    所述至少一个光波导包括:
    第一光波导,位于所述多个第三发光芯片的出光侧,所述第一光波导被配置为扩展所述多个第三发光芯片发出的绿色激光的光束宽度,以使从所述第一光波导出射的绿色激光的光束宽度与所述多个第一发光芯片发出的红色激光的光束宽度相等;以及
    第二光波导,位于所述多个第二发光芯片的出光侧,所述第二光波导被配置为扩展所述多个第二发光芯片发出的蓝色激光的光束宽度,以使从所述第二光波导出射的蓝色激光的光束宽度与所述多个第一发光芯片发出的红色激光的光束宽度相等。
  15. 根据权利要求12至14中任一项所述的投影设备,其中,所述至少一个激光器满足以下之一:
    所述至少一个激光器包括一个激光器,所述激光器包括所述多个第一发光芯片、所述多个第二发光芯片和所述多个第三发光芯片;所述至少一个光波导位于所述激光器的出光侧;
    以及,
    所述至少一个激光器包括:
    第一激光器,包括所述多个第一发光芯片;以及
    第二激光器,包括所述多个第二发光芯片和所述多个第三发光芯片;所述至少一个光波导位于 所述第二激光器的出光侧。
  16. 根据权利要求15所述的投影设备,其中,所述光源还包括合光镜组,所述合光镜组位于所述至少一个激光器的出光侧,且被配置为将所述红色激光、所述绿色激光和所述蓝色激光合束。
  17. 根据权利要求11至16中任一项所述的投影设备,其中,所述光学调制组件包括:
    匀光部件,位于所述光源的出光侧,所述匀光部件被配置为匀化入射的所述照明光束;
    体光栅,位于所述匀光部件的出光侧,所述体光栅被配置为对来自所述匀光部件的照明光束进行衍射,以使经所述体光栅衍射的激光的光斑尺寸和出射角度满足光学调制部件的入射条件;经所述体光栅衍射的激光的光斑尺寸以及出射角度与所述体光栅的厚度、周期和折射率变化相关;所述体光栅的出光面与所述光学调制部件的入光面之间呈设定夹角,所述设定夹角满足激光入射所述光学调制部件时的入射角条件;以及
    所述光学调制部件,位于所述体光栅的出光侧,所述光学调制部件被配置为对从所述体光栅出射的照明光束进行调制,以获得所述投影光束。
  18. 根据权利要求17所述的投影设备,其中,所述体光栅位于所述光学调制部件的侧边;所述匀光部件位于所述体光栅的远离所述光学调制部件的一侧;
    所述光学调制组件还包括:
    反射镜组,位于所述匀光部件的出光侧,所述反射镜组被配置为将从所述匀光部件出射的照明光束反射至所述体光栅,以使经所述反射镜组反射的照明光束以布拉格角入射所述体光栅;所述反射镜组包括反射镜;以及
    准直透镜组,位于所述匀光部件和所述反射镜组之间,所述准直透镜组被配置为准直从所述匀光部件出射的照明光束,经所述准直透镜组准直后的照明光束入射至所述反射镜组。
  19. 根据权利要求18所述的投影设备,其中,所述匀光部件包括光导管,所述光导管的延伸方向平行于所述光学调制部件的所述侧边。
  20. 一种投影系统,包括:
    投影设备,所述投影设备为权利要求1至19中任一项所述的投影设备;以及
    投影屏幕,位于所述投影设备的出光侧。
PCT/CN2023/115867 2022-08-31 2023-08-30 投影设备以及投影系统 WO2024046373A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211055744.4 2022-08-31
CN202211055744.4A CN117666263A (zh) 2022-08-31 2022-08-31 投影光源和投影设备
CN202211216165.3A CN115509075A (zh) 2022-09-30 2022-09-30 一种投影设备和投影系统
CN202211208529.3 2022-09-30
CN202211208529.3A CN117850136A (zh) 2022-09-30 2022-09-30 一种投影设备和投影系统
CN202211216165.3 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024046373A1 true WO2024046373A1 (zh) 2024-03-07

Family

ID=90100376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115867 WO2024046373A1 (zh) 2022-08-31 2023-08-30 投影设备以及投影系统

Country Status (1)

Country Link
WO (1) WO2024046373A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023173A1 (en) * 2004-07-30 2006-02-02 Aram Mooradian Projection display apparatus, system, and method
CN110850669A (zh) * 2019-07-29 2020-02-28 上海鲲游光电科技有限公司 基于MicroLED的显像设备及其显像方法
CN113625522A (zh) * 2021-08-18 2021-11-09 青岛海信激光显示股份有限公司 一种激光投影系统
CN113625523A (zh) * 2021-08-18 2021-11-09 青岛海信激光显示股份有限公司 一种激光器和激光投影系统
CN115509075A (zh) * 2022-09-30 2022-12-23 青岛海信激光显示股份有限公司 一种投影设备和投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023173A1 (en) * 2004-07-30 2006-02-02 Aram Mooradian Projection display apparatus, system, and method
CN110850669A (zh) * 2019-07-29 2020-02-28 上海鲲游光电科技有限公司 基于MicroLED的显像设备及其显像方法
CN113625522A (zh) * 2021-08-18 2021-11-09 青岛海信激光显示股份有限公司 一种激光投影系统
CN113625523A (zh) * 2021-08-18 2021-11-09 青岛海信激光显示股份有限公司 一种激光器和激光投影系统
CN115509075A (zh) * 2022-09-30 2022-12-23 青岛海信激光显示股份有限公司 一种投影设备和投影系统

Similar Documents

Publication Publication Date Title
CN201780448U (zh) 一种图像均匀清晰的投影光学引擎
JP4895141B2 (ja) 光色分割システム
WO2010061699A1 (ja) 薄型バックライトシステムおよびこれを用いた液晶表示装置
JP2005070631A (ja) スクリーン及びプロジェクタ
CN110456512B (zh) 一种基于衍射光学元件扩瞳的近眼显示系统
WO2019071951A1 (zh) 复眼透镜组及投影装置
TWM547687U (zh) 投影機
JP2006318922A (ja) 照明装置及び画像投影装置
US20040046942A1 (en) Illumination optical unit liquid crystal projector and production method of liquid crystal projector
WO2009110081A1 (ja) 投光光学系、及びこれを用いた投写型表示装置
US6809867B2 (en) Illuminating optical system and projection display device including it
CN115509075A (zh) 一种投影设备和投影系统
WO2024046373A1 (zh) 投影设备以及投影系统
CN109521637B (zh) 一种激光投影系统
WO2019184611A1 (zh) 一种近眼显示系统
JP5200337B2 (ja) ディスプレイ装置
CN213122578U (zh) 匀光元件及投影装置
WO2024067359A1 (zh) 投影设备以及投影系统
CN113640903B (zh) 复眼透镜、背光照明系统及其制造方法
WO2024104038A1 (zh) 投影设备及投影系统
TWI805417B (zh) 照明系統以及投影裝置
CN220154786U (zh) 投影光机
EP4258053A1 (en) Illumination system and projeciton device
WO2024078268A1 (zh) 激光器和投影系统
CN216118360U (zh) 合光装置及投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859402

Country of ref document: EP

Kind code of ref document: A1