WO2019184596A1 - 一种支柱绝缘子及绝缘支柱 - Google Patents

一种支柱绝缘子及绝缘支柱 Download PDF

Info

Publication number
WO2019184596A1
WO2019184596A1 PCT/CN2019/074283 CN2019074283W WO2019184596A1 WO 2019184596 A1 WO2019184596 A1 WO 2019184596A1 CN 2019074283 W CN2019074283 W CN 2019074283W WO 2019184596 A1 WO2019184596 A1 WO 2019184596A1
Authority
WO
WIPO (PCT)
Prior art keywords
post insulator
insulating tube
flange
self
post
Prior art date
Application number
PCT/CN2019/074283
Other languages
English (en)
French (fr)
Inventor
马斌
方江
张栋葛
刘超
郁杰
倪桂炎
Original Assignee
江苏神马电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏神马电力股份有限公司 filed Critical 江苏神马电力股份有限公司
Priority to BR112020019294-5A priority Critical patent/BR112020019294B1/pt
Priority to EP19775935.0A priority patent/EP3780021A4/en
Priority to US17/041,068 priority patent/US11430586B2/en
Priority to RU2020131364A priority patent/RU2752643C1/ru
Publication of WO2019184596A1 publication Critical patent/WO2019184596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/14Supporting insulators
    • H01B17/145Insulators, poles, handles, or the like in electric fences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/14Supporting insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/36Insulators having evacuated or gas-filled spaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/14Supporting insulators
    • H01B17/16Fastening of insulators to support, to conductor, or to adjoining insulator

Definitions

  • the invention relates to the field of transmission and transformation electrical insulation equipment, in particular to a pillar insulator and an insulation pillar.
  • the composite post insulator includes a hollow composite insulating tube and an insulating material filled in the insulating tube to meet electrical and mechanical properties of the electrical equipment.
  • Existing insulation fills typically include solid fill and gas fill.
  • the solid filling is generally filled with a polyurethane material in a hollow insulating tube, and the gas filling is generally filled with a high-pressure nitrogen gas in the hollow insulating tube.
  • a post insulator comprising a hollow insulating tube, a shed at the periphery of the hollow insulating tube, and an upper flange and a lower flange disposed at both ends of the hollow insulating tube, hollow
  • the insulating tube is sealed with a gas, and the absolute pressure of the gas is 0.1 to 0.15 MPa.
  • the absolute pressure of the internal filling gas of the above-mentioned post insulator is 0.1 to 0.15 MPa, and the gas which is normal pressure is less likely to leak, and maintenance and monitoring are not required.
  • the absolute pressure of the internally filled atmospheric gas is set within a certain range, and the pressure difference between different regions and altitudes can be satisfied, and the internal gas of the insulating tube can be made non-negative under pressure in different regions.
  • the insulating tube filled with atmospheric gas has a large micro water control margin, which reduces the difficulty of micro water control and the manufacturing difficulty.
  • the hollow insulating tube is made of an insulating material having a water vapor permeability of less than 0.2 g/m 2 ⁇ d at a temperature of 55 ° C and a relative humidity of 90% RH.
  • the hollow insulating tube is made of insulating material with water vapor permeability less than 0.2g/m 2 ⁇ d under the condition of temperature 55 ° C and relative humidity 90% RH. It can be verified by micro water experiment to meet the micro water control index and has low water vapor. content.
  • the gas is a dry high-purity nitrogen gas, air or sulfur hexafluoride gas.
  • High-purity nitrogen, air and sulfur hexafluoride gas have good insulation performance and economy, and ensure the internal insulation performance of the pillar insulator while helping to reduce the manufacturing cost of the pillar insulator.
  • the upper flange and/or the lower flange are provided with a self-sealing valve, and the self-sealing valve is used for backfilling the gas after vacuuming.
  • the self-sealing valve is placed on the upper flange and/or the lower flange to easily control the extraction and filling of the gas without affecting the electric field inside the insulating tube.
  • the self-sealing valve can also be used for leak detection and micro water testing before leaving the factory.
  • the lower flange comprises a base and a flange tube, the base is used for sealing the hollow insulating tube, the flange tube is fixed to the wall of the hollow insulating tube, and the base or the flange tube is provided with a self-sealing valve.
  • the self-sealing valve is located on the base, and the base is recessed toward the inside of the insulating tube, so that the opening of the self-sealing valve is located in the recess.
  • the self-sealing valve opening is placed in the recess to facilitate the connection of the plurality of post insulators.
  • the self-sealing valve is located on the flange tube, and the flange tube is in communication with the hollow insulating tube via the base.
  • the self-sealing valve is placed on the flanged cylinder, which facilitates the operation of the self-sealing valve when connected to the post insulator.
  • the upper flange and/or the lower flange are provided with a drying device, and the drying device is located inside the hollow insulating tube.
  • a drying device is arranged inside the hollow insulating tube to keep the gas in the insulating tube dry, and it is difficult to accumulate micro water in the gas inside the insulating tube, thereby avoiding the problem of flashover inside the insulating tube.
  • the drying device comprises a cage desiccant cartridge and a desiccant placed in the desiccant cartridge.
  • the desiccant cartridge is made of a conductive material and is uniformly provided with a plurality of through holes.
  • a cage desiccant box made of a conductive material is provided with a plurality of through holes to form a shield cage structure.
  • the shielding cage principle is used to ensure that the drying device does not affect the electric field inside the insulating tube.
  • the desiccant is a molecular sieve desiccant.
  • Another object of the present invention is to provide an insulating strut capable of providing insulating support for large electrical equipment. It can not effectively solve the interface problem of the solid-filled insulation pillar, and can also solve the gas leakage problem of the high-pressure gas-filled insulation pillar, and is free from detection and maintenance. At the same time, it has a large micro water control margin, which reduces the difficulty of micro water control and manufacturing.
  • an insulating post comprising two post insulators connected end to end, the post insulator being any of the above post insulators.
  • a gasket is arranged between the two pillar insulators.
  • a gasket is placed between the two post insulators to further ensure the tightness and reliability of the connection between the post insulators.
  • FIG. 1 is a longitudinal cross-sectional structural view showing a post insulator 100 of a first embodiment of a post insulator of the present invention.
  • FIG. 2 is a longitudinal cross-sectional structural view of a post insulator 200 of the second embodiment of the post insulator of the present invention
  • FIG. 3 is a schematic perspective view of a drying device 260
  • Figure 4 is an enlarged schematic view of A in Figure 2.
  • Fig. 5 is a longitudinal sectional structural view showing a post insulator 300 of the third embodiment of the post insulator of the present invention.
  • Fig. 6 is a longitudinal sectional structural view showing a post insulator 400 of the fourth embodiment of the post insulator of the present invention.
  • Fig. 7 is a longitudinal sectional structural view showing a post insulator 500 of the fifth embodiment of the post insulator of the present invention.
  • Fig. 8 is a longitudinal sectional structural view showing a post insulator 600 of the sixth embodiment of the post insulator of the present invention.
  • Fig. 9 is a longitudinal sectional structural view showing a post insulator 700 of the seventh embodiment of the post insulator of the present invention.
  • Figure 10 is a longitudinal cross-sectional structural view of an insulating post 800 of the first embodiment of the insulating post of the present invention.
  • Figure 11 is a longitudinal cross-sectional structural view of an insulating post 900 of Embodiment 9 of the insulating post of the present invention.
  • Embodiment 1 of the post insulator of the present invention is a first embodiment of the post insulator of the present invention.
  • the post insulator 100 of the present embodiment includes a hollow insulating tube 110, a shed 120 at the periphery of the hollow insulating tube 110, and an upper flange 130 and a lower flange 140 disposed at both ends of the hollow insulating tube 110.
  • the hollow insulating tube 110 is sealed with a gas, and the absolute pressure of the gas is 0.1 to 0.15 MPa.
  • the absolute pressure of the gas in the post insulator 100 is set to 0.1 to 0.15 MPa.
  • the gas of the hollow insulating tube 110 is in a normal pressure state, and is not easily leaked from the hollow insulating tube 110, and is free from the routine maintenance and monitoring of the post insulator 100.
  • the gas in the hollow insulating tube 100 is placed in a normal pressure state, and the pressure difference existing between different regions and altitudes can also be satisfied, thereby ensuring that the internal gas of the hollow insulating tube 110 is in a non-negative pressure state in use in different regions.
  • the hollow insulating tube 110 having a normal internal pressure has a large micro water control margin, which effectively reduces the difficulty of micro water control and the difficulty of manufacturing.
  • the upper flange 130 and the lower flange 140 have the same structure.
  • the upper flange 130 and the lower flange 140 are concepts of relative positions and are not absolutely limited. The position and name of the upper and lower flanges can be adjusted according to actual needs.
  • the hollow insulating tube 100 is made of an insulating material having a water vapor permeability of less than 0.2 g/m 2 ⁇ d at a temperature of 55 ° C and a relative humidity of 90% RH.
  • the hollow insulating tube is wound by an insulating material having a water vapor permeability of 0.2 g/m 2 ⁇ d at a temperature of 55 ° C and a relative humidity of 90% RH.
  • the hollow insulating tube 100 has been verified by the micro water experiment and has a low water vapor content, which can meet the micro water control index.
  • the hollow insulating tube may also be made of an insulating material having a water permeability of less than 0.2 g/m 2 ⁇ d.
  • the process of hollow insulating tubes is also not limited to the winding process.
  • the gas is a dry high-purity nitrogen gas, air or sulfur hexafluoride gas.
  • the gas is a dry high-purity nitrogen gas.
  • the high purity nitrogen gas is a gas having a nitrogen content of 99.999%.
  • the absolute gas pressure of the high purity nitrogen gas in the hollow insulating tube 110 is controlled to be 0.1 MPa, that is, one atmosphere.
  • the high-purity nitrogen gas is an inert gas and is used for filling in the hollow insulating tube 110, and has the advantages of good insulation performance, good stability, economy and practicality.
  • the absolute gas pressure of the high-purity nitrogen gas in the hollow insulating tube 110 is controlled to be one atmosphere, which is the same as the external air pressure of the hollow insulating tube 110, thereby effectively avoiding the possibility of gas leakage.
  • the gas may be air or sulfur hexafluoride gas as long as the absolute pressure of the gas in the insulating tube is 0.1 to 0.15 MPa.
  • the upper flange 130 and/or the lower flange 140 are provided with a self-sealing valve 150 for vacuuming and backfilling the gas.
  • a self-sealing valve 150 is disposed on the lower flange 140. Easy to control the extraction and filling of gases. The self-sealing valve 150 can also be used for product leak detection and micro water testing before leaving the factory.
  • the self-sealing valve may also be disposed on the upper flange, or a self-sealing valve may be disposed on both the upper flange and the lower flange.
  • the number of the self-sealing valves may be plural, and is not limited to one. The position and the number of the self-sealing valves may be set according to actual needs.
  • the lower flange 140 includes a base 141 and a flange tube 142.
  • the base 141 is used for sealing the hollow insulating tube 110.
  • the flange tube 142 is fixed to the wall of the hollow insulating tube 110, and the base 141 or the flange tube 142 is disposed.
  • Self-sealing valve 150 is disposed.
  • the flange barrel 142 of the lower flange 140 is perpendicular to the base 141.
  • the base 141 closes the end surface of the hollow insulating tube 110.
  • the flange barrel 142 is attached to the wall of the hollow insulating tube 110.
  • the self-sealing valve 150 is disposed on the base 141.
  • the upper flange 130 has the same structure as the lower flange 140.
  • the self-sealing valve may also be disposed on the flanged cylinder. It is conceivable that when more than one self-sealing valve is provided on the post insulator, a self-sealing valve may be disposed on the base and the flanged cylinder, or all of the self-sealing valves may be disposed on the base or the flanged cylinder, which is not limited herein.
  • the self-sealing valve 150 is located on the base 141, and the base 141 is recessed toward the inside of the hollow insulating tube 110 such that the opening 151 of the self-sealing valve 150 is located in the recess.
  • the base 141 has a recess facing the inside of the hollow insulating tube 110.
  • the height of the recess in the longitudinal direction is smaller than the height of the flange cylinder 142, and the diameter of the recess in the lateral direction is smaller than the diameter of the hollow insulating tube 110.
  • a self-sealing valve 150 is disposed on the base 141 of the recessed portion. Specifically, the base 141 is provided with a connecting hole 1411, and the connecting end 152 of the self-sealing valve is screwed to the connecting hole 1411 (not shown). A sealant (not shown) is disposed between the connecting end 152 and the connecting hole 1411.
  • the self-sealing valve 150 is disposed within the recess and the opening 151 is located inside the recess such that with the two post insulators 100 connected, the self-sealing valve 150 on the lower flange 140 does not affect the connection of the two post insulators 100.
  • the size of the recess on the base may not be limited to the embodiment.
  • the recess can also be omitted on the base, and the self-sealing valve is directly on the base.
  • the connection method of the self-sealing valve and the base is not limited to the screw hole connection, and a connection manner such as welding or interference fit can also be used. It is also possible to use no sealant between the connecting end and the connecting hole, or to use other connection sealing methods, which will not be described here.
  • the upper flange 130 and/or the lower flange 140 are provided with a drying device 160, and the drying device 160 is located inside the hollow insulating tube 110.
  • a drying device 160 is disposed on the lower flange 140, and the drying device 160 is disposed in the hollow insulating tube 110. Specifically, the drying device 160 is disposed at a convex portion inside the hollow insulating tube 110 corresponding to the recess of the base 141.
  • the drying device may not be disposed on the convex portion corresponding to the recess, but may be disposed at a portion where the base is not recessed.
  • the number of drying devices may also be plural, and is not limited to one.
  • the drying device can also be arranged on the upper flange or, when there are a plurality of drying devices, a drying device can be provided on both the upper flange and the lower flange.
  • Embodiment 2 of the post insulator of the present invention is a first embodiment of the post insulator of the present invention.
  • the post insulator 200 of the present embodiment is similar in structure to the post insulator 100 of the first embodiment of the inventive post insulator.
  • the structural similarities will not be described here.
  • the difference is that the gas and absolute gas pressure filled inside the post insulator 200 in this embodiment are different from the post insulator 100.
  • Drying device 260 is disposed on upper flange 230.
  • the gas is a dry high-purity nitrogen gas, air or sulfur hexafluoride gas.
  • the gas is dried air.
  • the absolute air pressure of the air in the hollow insulating tube 210 is controlled to be 0.15 MPa.
  • the air stability is good, economical and practical, and is filled in the hollow insulating tube 210 to control the absolute air pressure to 0.15 atmospheres, thereby effectively avoiding gas leakage.
  • the gas with a slight positive pressure can also adapt to the pressure difference existing in the elevation of different regions, thereby ensuring that the hollow insulating tube 210 is kept non-negative under pressure in different regions.
  • the gas may be sulfur hexafluoride gas as long as the absolute pressure of the gas in the insulating tube is 0.1 to 0.15 MPa.
  • the upper flange 230 and/or the lower flange 240 are provided with a drying device 260, and the drying device 260 is located inside the hollow insulating tube 210.
  • a drying device 260 is disposed on the upper flange 230.
  • the upper flange 230 is identical in structure to the lower flange 240.
  • the upper flange 230 includes a base 231 and a flange barrel 232, and a drying device 260 is disposed on the base 231.
  • the drying device may also be disposed on the lower flange.
  • the number of drying devices is not limited to one, and may be plural. When there are a plurality of drying devices, a drying device can be disposed on both the upper flange and the lower flange.
  • the drying device 260 includes a cage desiccant cartridge 261 and a desiccant placed in the desiccant cartridge 261.
  • the drying device 260 includes a desiccant cartridge 261 and a desiccant (not shown) placed in the desiccant cartridge 261.
  • the desiccant cartridge 261 is in the form of a cage, the desiccant cartridge 261 is inverted on the upper flange 230, and the desiccant is disposed in the desiccant cartridge 261.
  • the upper flange 230 seals the opening of the desiccant cartridge 261.
  • the drying device 260 mounted on the base 231 has a height in the longitudinal direction that is smaller than the flange barrel 232.
  • a connecting lug 263 perpendicular to the desiccant cartridge 261 extends from the opening of the desiccant cartridge 261, and a plurality of connecting holes 264 are formed in the connecting lug 263.
  • the connecting hole 264 is for fixed connection with the base 231 of the upper flange 230.
  • the drying device may be fixed to the upper flange by other means, and is not limited to the connection manner in the embodiment.
  • the desiccant cartridge 261 is made of a conductive material and is uniformly provided with a plurality of through holes 262.
  • the desiccant cartridge 261 is made of a metal material, and a plurality of through holes 262 of uniform size and uniform distribution are disposed on the desiccant cartridge 261.
  • the desiccant cartridge 261 is in the shape of a cage, and is provided with through holes 262 of uniform size and uniform distribution to constitute a shielding cage.
  • the shield cage principle is utilized to ensure that the desiccant cartridge 261 does not affect the internal electric field of the hollow insulating tube 210.
  • the conductive material and shape of the desiccant cartridge are not limited to the specific shape in the embodiment, and the distribution and size of the through holes are not limited to the embodiment, as long as the requirements of the shielding cage can be met. can.
  • the height of the drying device is not limited to be smaller than the height of the flanged cylinder, and may be slightly higher than the flanged cylinder, as long as the drying device can satisfy the principle of the shielding cage, that is, it does not affect the electric field in the hollow insulating tube.
  • the desiccant is a molecular sieve desiccant.
  • the desiccant may also be other kinds of desiccants.
  • Embodiment 3 of the post insulator of the present invention is a first embodiment of the post insulator of the present invention.
  • the post insulator 300 of the present embodiment is similar in structure to the post insulator 100 of the first embodiment of the inventive post insulator.
  • the specific structure of the drying device 360 of the present embodiment is the same as that of the drying device 260 of the second embodiment.
  • the structural similarities will not be described here.
  • the difference from the first embodiment and the second embodiment is that the hollow insulating tube 310 is filled with 0.13 MPa of sulfur hexafluoride gas in the embodiment.
  • Both the self-sealing valve 350 and the drying device 360 are disposed on the upper flange 330.
  • the gas is a dry high-purity nitrogen gas, air or sulfur hexafluoride gas.
  • the gas is a dried sulfur hexafluoride gas.
  • the absolute air pressure of the air in the hollow insulating tube 310 is controlled to be 0.13 MPa.
  • the upper flange 330 and/or the lower flange 340 are provided with a self-sealing valve 350 for vacuuming and backfilling the gas.
  • the self-sealing valve 350 is disposed on the upper flange 330.
  • the lower flange 340 includes a base and a flange tube.
  • the base is used for sealing the hollow insulating tube 310.
  • the flange tube is fixed to the wall of the hollow insulating tube 310, and the base or the flange tube is provided with a self-sealing valve.
  • the upper flange 330 and the lower flange 340 have the same structure. Therefore, the upper flange 330 includes a base 331 and a flange barrel 332.
  • the flange barrel 332 is perpendicular to the base 331.
  • the base 331 blocks the end surface of the hollow insulating tube 310, and the flange tube 332 connects the tube wall of the hollow insulating tube 310.
  • a self-sealing valve 350 is disposed on the base 331.
  • the self-sealing valve may also be disposed on the flanged cylinder.
  • the number of self-sealing valves is not limited to one. When the number of self-sealing valves is more than one, a self-sealing valve may be provided on both the flange tube and the base. The above situation can be set according to actual needs.
  • the self-sealing valve is located on the base, and the base is recessed toward the inside of the hollow insulating tube 310, so that the opening of the self-sealing valve is located in the recess.
  • the self-sealing valve 350 is located on the base 331, and the base 331 is recessed toward the inside of the hollow insulating tube 310 such that the opening 351 of the self-sealing valve 350 is located in the recess.
  • the base 331 is provided with a recess.
  • the height of the recess in the longitudinal direction is smaller than the height of the flange barrel 332, and the diameter of the recess in the lateral direction is smaller than the diameter of the base 331.
  • the opening 351 of the self-sealing valve 350 is located within the recess.
  • the self-sealing valve 350 located within the recess does not affect the connection of the post insulator 300.
  • the upper flange 330 and/or the lower flange 340 are provided with a drying device 360, and the drying device 360 is located inside the hollow insulating tube 310.
  • a drying device 360 is disposed on the upper flange 330, and the drying device 360 is located in the hollow insulating tube 310. Specifically, the drying device 360 is disposed at a convex portion corresponding to the recess of the base 331.
  • the drying device may not be disposed on the corresponding convex portion of the recess, or may be disposed at a portion where the base is not recessed.
  • the number of drying devices is not limited to one, and a drying device may be disposed on both the upper flange and the lower flange, and details are not described herein.
  • Embodiment 4 of the post insulator of the present invention is a first embodiment of the post insulator of the present invention.
  • the post insulator 400 of the present embodiment is similar in structure to the post insulator 300 of the third embodiment of the inventive post insulator.
  • the specific structure of the drying device 560 of the present embodiment is the same as that of the drying device 260 of the second embodiment of the inventive post insulator.
  • the structure is the same and will not be described again.
  • the difference is that the drying devices 460 in this embodiment are all disposed on the lower flange 440.
  • the upper flange 430 and/or the lower flange 440 are provided with a drying device 460, and the drying device 460 is located inside the hollow insulating tube 410.
  • the drying device 460 is located on the lower flange 440.
  • the upper flange 430 and/or the lower flange 440 are provided with a drying device 460, and the drying device 460 is located inside the hollow insulating tube 410.
  • a drying device 460 is disposed on the lower flange 440, and the drying device 460 is disposed in the hollow insulating tube 410. Specifically, the drying device 460 is disposed on the base 441.
  • the number of drying devices is not limited to one, and a drying device may be disposed on both the upper flange and the lower flange to meet actual needs.
  • Embodiment 5 of the post insulator of the present invention is a first embodiment of the post insulator of the present invention.
  • the post insulator 500 of the present embodiment is similar in structure to the post insulator 100 of the first embodiment of the inventive post insulator.
  • the structure is the same and will not be described again.
  • the difference is that a drying device 560 is also disposed on the upper flange 530 in this embodiment.
  • a drying device 560 is disposed on the upper flange 530 and/or the lower flange 540, and the drying device 560 is located inside the hollow insulating tube 510.
  • a drying device 560 is disposed on the lower flange 540, and the drying device 560 is located in the hollow insulating tube 510.
  • the upper flange 530 is also provided with a drying device 560. Specifically, the drying device 560 is disposed on the base 531, and the drying device 560 is located in the hollow insulating tube 510.
  • the number of drying devices is not limited to two, and may be more, and may be set according to the actual size and requirements of the pillar insulators.
  • Embodiment 6 of the post insulator of the present invention is a first embodiment of the post insulator of the present invention.
  • the post insulator 600 of the present embodiment is similar in structure to the post insulator 200 of the second embodiment of the inventive post insulator.
  • the structure is the same and will not be described again.
  • the difference is that the upper flange 630 is also provided with a self-sealing valve 650 in this embodiment.
  • the upper flange 630 and/or the lower flange 640 are provided with a self-sealing valve 650 for vacuuming and backfilling the gas.
  • a self-sealing valve 650 is disposed on the upper flange 630, and a self-sealing valve 650 is also disposed on the lower flange 640.
  • the lower flange 640 includes a base and a flange tube.
  • the base is used for sealing the hollow insulating tube 610.
  • the flange tube is fixed to the wall of the hollow insulating tube 610, and the base or the flange tube is provided with a self-sealing valve 650.
  • the self-sealing valve 650 is located on the base, and the base is recessed toward the inside of the hollow insulating tube 610 such that the opening of the self-sealing valve is located in the recess.
  • the upper flange 630 and the lower flange 640 have the same structure. Therefore, the upper flange 630 includes a base 631 and a flange barrel 632.
  • the flange barrel 632 is perpendicular to the base 631.
  • the base 631 blocks the end surface of the hollow insulating tube 610, and the flange tube 632 connects the wall of the hollow insulating tube 610.
  • a self-sealing valve 650 is disposed on the base 631.
  • the self-sealing valve 650 is located on the base 631, and the base 631 is recessed toward the inside of the hollow insulating tube 610 such that the opening 651 of the self-sealing valve 650 is located in the recess.
  • the base 631 is provided with a recess.
  • the height of the recess in the longitudinal direction is smaller than the height of the flange barrel 632, and the diameter of the recess in the lateral direction is slightly smaller than the diameter of the base 631.
  • the opening 651 of the self-sealing valve 650 is located within the recess.
  • the self-sealing valve 650 on the upper flange 630 is prevented from affecting the connection of the post insulators.
  • the self-sealing valve may also be disposed on the flanged cylinder in order to facilitate the pumping and deflation.
  • the number of self-sealing valves may not be plural, and the position and number of the self-sealing valves may be set according to actual needs.
  • Embodiment 7 of the post insulator of the present invention is a first embodiment of the post insulator of the present invention.
  • the post insulator 700 of the present embodiment is similar in structure to the post insulator 100 of the first embodiment of the inventive post insulator.
  • the structure is the same and will not be described again.
  • the difference is that the self-sealing valve 750 is disposed on the flange cylinder 742 of the lower flange 740 in this embodiment.
  • the self-sealing valve 750 is located on the flange tube 742, and the flange tube 742 is in communication with the hollow insulating tube 710 via the base 741.
  • the lower flange 740 includes a base 741 and a flange barrel 742.
  • the self-sealing valve 750 is disposed on the flange barrel 742 at an angle of 60 degrees from the longitudinal direction.
  • the opening 751 of the self-sealing valve 750 is disposed outside the post insulator 700.
  • a threaded hole 743 is provided in the flange tube 742, and the connecting end 752 of the self-sealing valve 750 is screwed to the threaded hole 743.
  • a hole 744 communicating with the inside of the hollow insulating tube 710 and the screw hole 743 is provided in the base 741. The threaded hole 743 is disposed at an angle to the hole 744.
  • the self-sealing valve 750 is disposed on the flange tube 742. When connected to the post insulator 700, the extraction and charging of the gas are not affected.
  • a threaded hole 743 is provided in the flange cylinder 742, and a hole 744 disposed at an angle with the screw hole 743 is provided on the base 741 to communicate the inside of the self-sealing valve 750 and the hollow insulating tube 710.
  • the self-sealing valve 750 is directly connected to the hollow insulating tube 710 from the flange barrel 754, the wall thickness and height of the flange tube 742 need to be reinforced, thereby increasing the weight and cost of the flange 740.
  • the self-sealing valve 750 is connected to the self-sealing valve 750 and the hollow insulating tube 710 through the screw holes 743 and the holes 744 which communicate with each other at two angles, thereby effectively reducing the weight of the flange 740 and reducing the cost.
  • the number of self-sealing valves is not limited to one. Naturally, it is also possible to provide a self-sealing valve on both the base and the flange cylinder according to actual needs.
  • Embodiment 1 of the insulating pillar of the present invention is a first embodiment of the insulating pillar of the present invention.
  • the insulating post 800 of the present embodiment includes two post insulators 810, 820 connected end to end, and the post insulators 810, 820 are post insulators in the post insulator embodiment.
  • the post insulators disclosed in the above embodiment of the post insulator are connected end to end into an insulating post 800, which can provide reliable insulation support for large electrical equipment. Effectively solve the interface problem of solid filled insulating pillars. It can also solve the gas leakage problem of high-pressure gas-filled insulation pillars, and is free from detection and maintenance. At the same time, it has a large micro water control margin, which reduces the difficulty of micro water control and manufacturing.
  • the post insulator 810 has the same structure as the post insulator 100 disclosed in the first embodiment of the inventive post insulator.
  • the post insulator 820 has the same structure as the post insulator 400 disclosed in the fourth embodiment of the above-described inventive post insulator. The same thing will not be repeated here.
  • the post insulator 810 and the post insulator 820 are post insulators of the same specification.
  • the lower flange 812 of the post insulator 810 is correspondingly coupled to the upper flange 821 of the post insulator 820.
  • the lower flange 812 and the upper flange 821 are fastened by bolts 830.
  • a gasket 840 is disposed between the two post insulators 810 and 820.
  • the base 8121 of the lower flange 812 and the base 8211 of the upper flange 821 are correspondingly fitted, and a gasket 840 is disposed therebetween.
  • the gasket 840 disposed between the base 8211 and the base 8121 can improve the connection tightness between the lower flange 812 and the upper flange 821, and further ensure that the insulating pillar 800 has good gas sealing performance.
  • the post insulators of the insulating post may also be selected from the post insulators of the other inventive post insulator embodiments.
  • the two post insulators of the insulating post may be selected from the post insulators disclosed in the same insulator embodiment, or the post insulators disclosed in the different insulator embodiments may be selected.
  • Embodiment 2 of the insulating pillar of the present invention is a diagrammatic representation of Embodiment 2 of the insulating pillar of the present invention.
  • the insulating post 900 of the present embodiment of the insulating post is similar in structure to the insulating post 800 of the first embodiment of the insulating post.
  • the structure is the same and will not be described again.
  • the difference is that the post insulator 910 has the same structure as the post insulator 700 in the seventh embodiment of the post insulator.
  • the post insulator 920 has the same structure as the post insulator 910.
  • the post insulator 910 has the same structure as the post insulator 920, and is identical in structure to the post insulator 700 in the seventh embodiment of the post insulator. Specifically, the lower flange 911 of the post insulator 910 is correspondingly coupled to the upper flange 921 of the post insulator 920.
  • a self-sealing valve 912 of the post insulator 910 is disposed on the flange barrel of the lower flange 911.
  • a self-sealing valve 923 of the post insulator 920 is disposed on the flange barrel of the lower flange 922.
  • the post insulators of the insulating post may also be selected from the post insulators of the other inventive post insulator embodiments.
  • the two post insulators of the insulating post may be selected from the post insulators disclosed in the same post insulator embodiment, or the post insulators disclosed in the different post insulator embodiments may be selected.

Landscapes

  • Insulators (AREA)

Abstract

本发明公开一种支柱绝缘子,包括空心绝缘管、位于空心绝缘管外围的伞裙、以及设置于空心绝缘管两端的上法兰和下法兰,空心绝缘管内密封有气体,气体的绝对压力为0.1~0.15Mpa。还公开了一种由上述支柱绝缘子首尾连接而成的绝缘支柱。本发明的支柱绝缘子及绝缘支柱解决了内绝缘固体材料填充存在的界面问题。也解决了采用高压气体填充具有的气体泄漏问题,使得支柱绝缘子免于检测与维护。同时提升了微水控制范围的裕度,降低了微水控制和生产制造的难度。

Description

一种支柱绝缘子及绝缘支柱 技术领域
本发明涉及输、变电绝缘设备领域,具体是一种支柱绝缘子及绝缘支柱。
背景技术
随着复合绝缘子的发展与应用,电力设备中使用的支柱绝缘子多为大直径复合绝缘子。复合支柱绝缘子包括空心复合绝缘管和填充在绝缘管内的绝缘物质,以满足电力设备的电气性能和机械性能。现有的绝缘物质填充一般包括固体填充和气体填充。固体填充一般是在空心绝缘管内填充聚氨酯材料,气体填充一般是在空心绝缘管内填充高压氮气。
但固体填充和高压气体填充面临急需解决的实际问题。固体填充可能出现的界面问题会影响支柱绝缘子的电气性能。高压氮气填充的空心绝缘管存在一定的内部气体泄漏问题,因而需要定期检测与维护。同时在空心绝缘管内填充高压绝缘气体,空心绝缘管的微水控制范围裕度较小,控制难度较大,对生产制造提出了较高的要求。
发明内容
针对现有技术的不足,本发明的目的之一是提供一种支柱绝缘子,该支柱绝缘子解决了固体填充可能存在的界面问题。也解决了高压气体填充具有的气体泄漏问题,使得支柱绝缘子免于检测与维护。同时提升微水控制范围的裕度,降低了微水控制和生产制造的难度。
为实现上述目的,本发明所采用的技术方案如下:一种支柱绝缘子,包括空心绝缘管、位于空心绝缘管外围的伞裙、以及设置于空心绝缘管两端的上法兰和下法兰,空心绝缘管内密封有气体,气体的绝对压力为0.1~0.15Mpa。
上述支柱绝缘子内部填充气体的绝对压力为0.1~0.15Mpa,呈常压的气体不易发生泄漏,无需维护与监测。同时将内部填充的常压气体的绝对压力设置在一定范围内,又能够满足不同地域和海拔存在的压力差异,确保在不同地域使用都能使得绝缘管的内部气 体处于非负压状态。同时填充常压气体的绝缘管具有较大的微水控制裕度,降低了微水控制难度和生产制造难度。
其中,上述空心绝缘管由温度55℃、相对湿度90%RH条件下水汽渗透率小于0.2g/m 2·d的绝缘材料制成。
采用温度55℃、相对湿度90%RH条件下水汽渗透率小于0.2g/m 2·d的绝缘材料制成空心绝缘管,经微水实验验证,能够满足微水控制指标,具有较低的水汽含量。
其中,气体为经过干燥处理的高纯氮气、空气或六氟化硫气体。
高纯氮气、空气和六氟化硫气体绝缘性能好、经济实用,保证支柱绝缘子的内部绝缘性能的同时,有助于降低支柱绝缘子的制造成本。
其中,上法兰和/或下法兰上设有自封阀,自封阀用于抽真空后回填气体。
将自封阀设置在上法兰和/或下法兰上,易于控制气体的抽取与填充,并且不会对绝缘管内部电场造成影响。同时自封阀还可用于产品出厂前检漏和微水检测试验。
其中,下法兰包括底座和法兰筒,底座用于密封空心绝缘管,法兰筒固接于空心绝缘管的管壁,底座或法兰筒上设有自封阀。
其中,自封阀位于底座上,底座朝向绝缘管内部凹陷,使得自封阀开口位于凹陷内。
将自封阀开口设置位于凹陷内,便于多根支柱绝缘子的连接。
其中,自封阀位于法兰筒上,法兰筒经由底座与空心绝缘管连通。
将自封阀设置在法兰筒上,当多跟支柱绝缘子连接时,便于自封阀的操作。
其中,上法兰和/或下法兰上设有干燥装置,干燥装置位于空心绝缘管内部。
在空心绝缘管内部设置干燥装置,保持绝缘管内气体干燥,不易在绝缘管内部气体中积累微水,避免绝缘管内部闪络问题。
其中,干燥装置包括笼状干燥剂盒和置于干燥剂盒内的干燥剂。
进一步地,干燥剂盒由导电材料制成,均匀设有若干通孔。
采用导电材料制成的笼状干燥剂盒,设置若干通孔,构成屏蔽笼结构。利用屏蔽笼原理,保证干燥装置不会对绝缘管内部电场造成影响。
进一步地,干燥剂为分子筛干燥剂。
本发明的目的之二是提供一种绝缘支柱,能够为大型电器设备提供绝缘支撑。不能 能够有效解决固体填充绝缘支柱的界面问题,也能解决高压气体填充绝缘支柱的气体泄漏问题,免于检测与维护。同时具有较大的微水控制裕度,降低了微水控制和生产制造的难度。
为实现上述目的,本发明所采用的技术方案如下:一种绝缘支柱,包括首尾连接的两个支柱绝缘子,该支柱绝缘子为上述任一个支柱绝缘子。
其中,两个支柱绝缘子之间设有密封垫片。
在连接的两个支柱绝缘子之间设置密封垫片,进一步保证支柱绝缘子之间的连接密封性和可靠性。
附图说明
图1是本发明支柱绝缘子实施例一的支柱绝缘子100的纵向剖视结构示意图。
图2是本发明支柱绝缘子实施例二的支柱绝缘子200的纵向剖视结构示意图;
图3是干燥装置260的立体结构示意图;
图4是图2中A的放大示意图。
图5是本发明支柱绝缘子实施例三的支柱绝缘子300的纵向剖视结构示意图。
图6是本发明支柱绝缘子实施例四的支柱绝缘子400的纵向剖视结构示意图。
图7是本发明支柱绝缘子实施例五的支柱绝缘子500的纵向剖视结构示意图。
图8是本发明支柱绝缘子实施例六的支柱绝缘子600的纵向剖视结构示意图。
图9是本发明支柱绝缘子实施例七的支柱绝缘子700的纵向剖视结构示意图。
图10是本发明绝缘支柱实施例一的绝缘支柱800的纵向剖视结构示意图。
图11是本发明绝缘支柱实施例九的绝缘支柱900的纵向剖视结构示意图。
具体实施方式
根据要求,这里将披露本发明的具体实施方式。然而,应当理解的是,这里所披露的实施方式仅仅是本发明的典型例子而已,其可体现为各种形式。因此,这里披露的具体细节不被认为是限制性的,而仅仅是作为权利要求的基础以及作为用于教导本领域技术人员以实际中任何恰当的方式不同地应用本发明的代表性的基础,包括采用这里所披 露的各种特征并结合这里可能没有明确披露的特征。
本发明支柱绝缘子实施例一:
如图1所示,本实施例的支柱绝缘子100,包括空心绝缘管110、位于空心绝缘管110外围的伞裙120、以及设置于空心绝缘管110两端的上法兰130和下法兰140,空心绝缘管110内密封有气体,气体的绝对压力为0.1~0.15Mpa。
上述支柱绝缘子100内气体的绝对压力设置为0.1~0.15Mpa。空心绝缘管110的气体呈常压状态,不易从空心绝缘管110内泄漏,免于支柱绝缘子100的日常维护与监测。将空心绝缘管100内的气体设置呈常压状态,也能够满足不同地域和海拔之间存在的压力差异,从而确保在不同地域使用都能保证空心绝缘管110的内部气体处于非负压状态。进一步地,内部呈常压的空心绝缘管110具有较大的微水控制裕度,有效降低了微水控制的难度和生产制造的难度。
需要说明的是,本实施例中,上法兰130与下法兰140的结构相同。上法兰130与下法兰140是相对位置的概念,没有做出绝对限定。上法兰和下法兰的位置和名称可以根据实际需求做调整。
其中,空心绝缘管100由温度55℃、相对湿度90%RH条件下水汽渗透率小于0.2g/m 2·d的绝缘材料制成。
本实施例中,空心绝缘管采用温度55℃、相对湿度90%RH条件下水汽渗透率为0.2g/m 2·d的绝缘材料缠绕制成。空心绝缘管100经过微水实验验证,具有较低的水汽含量,能够满足微水控制指标。
需要说明的是,在其他实施例中,空心绝缘管也可以采用水渗透率小于0.2g/m 2·d的绝缘材料制成。空心绝缘管的工艺也不限于采用缠绕工艺。
其中,气体为经过干燥处理的高纯氮气、空气或六氟化硫气体。
本实施例中,气体为经过干燥处理的高纯氮气。高纯氮气为氮气含量为99.999%的气体。空心绝缘管110内的高纯氮气的绝对气压控制为0.1Mpa,即为一个大气压。
高纯氮气为惰性气体,用于填充于空心绝缘管110内,具有绝缘性能好、稳定性能佳、经济实用等优点。将空心绝缘管110内高纯氮气的绝对气压控制为一个大气压,与空心绝缘管110的外部气压相同,有效避免气体泄露的可能。
需要说明的是,在其他实施例中,气体也可以为空气或者六氟化硫气体,只要能够保证气体在绝缘管内的绝对压力为0.1~0.15Mpa即可。
其中,上法兰130和/或下法兰140上设有自封阀150,自封阀150用于抽真空后回填气体。
本实施例中,下法兰140上设置一个自封阀150。便于控制气体的抽取与填充。出厂前自封阀150还可用于产品检漏、微水检测试验。
需要说明的是,在其他实施例中,自封阀也可以设置在上法兰上,或者在上法兰和下法兰上均设置自封阀。自封阀的个数也可以为多个,不限定为一个,自封阀的位置和个数均可以根据实际需求设定。
其中,下法兰140包括底座141和法兰筒142,底座141用于密封空心绝缘管110,法兰筒142固接于空心绝缘管110的管壁,底座141或法兰筒142上设有自封阀150。
本实施例中,下法兰140的法兰筒142垂直于底座141。底座141将空心绝缘管110的端面封闭。法兰筒142连接在空心绝缘管110的管壁上。自封阀150设置在底座141上。上法兰130与下法兰140的结构相同。
需要说明的是,在其他实施例中,自封阀也可以设置在法兰筒上。可以想到的是,当支柱绝缘子上设置不止一个自封阀时,底座和法兰筒上均可以设置自封阀,或者所有的自封阀均设置在底座或者法兰筒上,在此不作限定。
其中,自封阀150位于底座141上,底座141朝向空心绝缘管110内部凹陷,使得自封阀150的开口151位于凹陷内。
本实施例中,底座141上具有朝向空心绝缘管110内部的凹陷。该凹陷沿纵向的高度小于法兰筒142的高度,该凹陷沿横向的直径小于空心绝缘管110的直径。
自封阀150设置在该凹陷部位的底座141上。具体地,底座141上设置连接孔1411,自封阀的连接端152与连接孔1411螺纹连接(图中未示出)。连接端152与连接孔1411之间设置密封胶(图中未示出)。
将自封阀150设置在凹陷内,并且开口151位于凹陷内部,使得在两根支柱绝缘子100连接的情况下,下法兰140上的自封阀150不会影响两根支柱绝缘子100的连接。
需要说明的是,在其他实施例中,底座上的凹陷的尺寸可以不限于本实施例。底座 上也可以不设置凹陷,自封阀直接位于底座上。自封阀与底座的连接方式也不限于螺纹孔连接,也可以采用焊接、过盈配合等连接方式。连接端与连接孔之间也可以不使用密封胶,或者采用其他的连接密封方式,在此不多赘述。
其中,上法兰130和/或下法兰140上设有干燥装置160,干燥装置160位于空心绝缘管110内部。
本实施例中,下法兰140上设置一个干燥装置160,干燥装置160位于空心绝缘管110内。具体地,干燥装置160设置在底座141的凹陷对应的空心绝缘管110内部的凸起部位。
需要说明的是,在其他实施例中,干燥装置也可以不设置在凹陷对应的凸起部位上,而设置在底座未凹陷的部位。干燥装置的个数也可以为多个,而不限于一个。干燥装置也可以设置在上法兰上,或者当干燥装置为多个时,可以在上法兰和下法兰上均设置干燥装置。
本发明支柱绝缘子实施例二:
如图2所示,本实施例的支柱绝缘子200与发明支柱绝缘子实施例一中的支柱绝缘子100的结构相似。在此,结构相同之处在此不再赘述。不同之处在于,本实施例中支柱绝缘子200内部填充的气体和绝对气压不同于支柱绝缘子100。干燥装置260设置在上法兰230上。
其中,气体为经过干燥处理的高纯氮气、空气或六氟化硫气体。
本实施例中,气体为经过干燥处理的空气。空心绝缘管210内的空气的绝对气压控制为0.15Mpa。
空气稳定性能佳、经济实用,填充在空心绝缘管210内,将绝对气压控制为0.15个大气压,有效避免气体泄露。并且略正压的气体,也能适应不同地域海拔存在的气压差距,从而保证在不同地域始终保持空心绝缘管210内为非负压。
需要说明的是,在其他实施例中,气体也可以为六氟化硫气体,只要能够保证气体在绝缘管内的绝对压力为0.1~0.15Mpa即可。
其中,上法兰230和/或下法兰240上设有干燥装置260,干燥装置260位于空心绝缘管210内部。
本实施例中,上法兰230上设置一个干燥装置260。具体地,上法兰230与下法兰240结构相同。上法兰230包括底座231和法兰筒232,干燥装置260设置在底座231上。
需要说明的是,在其他实施例中,干燥装置也可以设置在下法兰上。干燥装置的数量也不限于一个,可以为多个。当干燥装置为多个,上法兰和下法兰上均可以设置干燥装置。
其中,干燥装置260包括笼状干燥剂盒261和置于干燥剂盒261内的干燥剂。
本实施例中,如图3、图4所示,干燥装置260包括干燥剂盒261和放置在干燥剂盒261内的干燥剂(图中未示出)。干燥剂盒261呈笼状,干燥剂盒261倒扣在上法兰230上,干燥剂设置在干燥剂盒261内。
具体地,上法兰230将干燥剂盒261的开口封堵住。安装在底座231上的干燥装置260沿纵向的高度小于法兰筒232。干燥剂盒261开口处延伸有与干燥剂盒261垂直的连接耳263,连接耳263上设置若干连接孔264。连接孔264用于与上法兰230的底座231固定连接。
需要说明的是,在其他实施例中,干燥装置也可以为采用其他方式固定在上法兰上,不限于本实施例中的连接方式。
其中,干燥剂盒261由导电材料制成,均匀设有若干通孔262。
本实施例中,干燥剂盒261采用金属材料制成,并在干燥剂盒261上设置若干大小一致、分布均匀的通孔262。
干燥剂盒261为笼状,并设置有大小一致、均匀分布的通孔262,构成屏蔽笼。利用屏蔽笼原理,保证干燥剂盒261不会对空心绝缘管210的内部电场造成影响。
需要说明的是,在其他实施例中,干燥剂盒的导电材料、形状不限于本实施例中的具体形状,通孔的分布与大小也不限于本实施例,只要能够满足屏蔽笼的要求即可。干燥装置的高度也不限于小于法兰筒的高度,也可以略高于法兰筒,只要干燥装置能够满足屏蔽笼原理,即不会对空心绝缘管内部电场早场影响。
其中,干燥剂为分子筛干燥剂。
需要说明的是,在其他实施例中,干燥剂也可以为其他种类的干燥剂。
本发明支柱绝缘子实施例三:
如图5所示,本实施例的支柱绝缘子300与发明支柱绝缘子实施例一中的支柱绝缘子100的结构相似。本实施例的干燥装置360的具体结构与实施例二中的干燥装置260的结构相同。在此,结构相同之处在此不再赘述。与实施例一和实施例二的不同之处在于,本实施例中空心绝缘管310内填充0.13Mpa的六氟化硫气体。自封阀350和干燥装置360均设置在上法兰330上。
其中,气体为经过干燥处理的高纯氮气、空气或六氟化硫气体。
本实施例中,气体为经过干燥处理的六氟化硫气体。空心绝缘管310内的空气的绝对气压控制为0.13Mpa。
其中,上法兰330和/或下法兰340上设有自封阀350,自封阀350用于抽真空后回填气体。
本实施例中,自封阀350设置在上法兰330上。
其中,下法兰340包括底座和法兰筒,底座用于密封空心绝缘管310,法兰筒固接于空心绝缘管310的管壁,底座或法兰筒上设有自封阀。
本实施例中,上法兰330和下法兰340的结构相同。因此,上法兰330包括底座331和法兰筒332。法兰筒332垂直于底座331。底座331封堵空心绝缘管310的端面,法兰筒332连接空心绝缘管310的管壁。底座331上设置一个自封阀350。
需要说明的是,在其他实施例中,自封阀也可以设置在法兰筒上。自封阀的个数也不限定为一个,当自封阀的个数不止一个时,也可以在法兰筒和底座上均设置自封阀。以上情况可以根据实际需求设定。
其中,自封阀位于底座上,底座朝向空心绝缘管310内部凹陷,使得自封阀开口位于凹陷内。
本实施例中,自封阀350位于底座331上,底座331朝向空心绝缘管310内部凹陷,使得自封阀350的开口351位于凹陷内。
本实施例中,底座331上设置凹陷。凹陷沿纵向的高度小于法兰筒332的高度,凹陷沿横向的直径小于底座331的直径。
自封阀350的开口351位于凹陷内,当两根支柱绝缘子300连接时,位于凹陷内的自封阀350不会影响支柱绝缘子300的连接。
其中,上法兰330和/或下法兰340上设有干燥装置360,干燥装置360位于空心绝缘管310内部。
本实施例中,上法兰330上设置一个干燥装置360,干燥装置360位于空心绝缘管310内。具体地,干燥装置360设置在底座331的凹陷对应的凸起部位。
需要说明的是,在其他实施例中,干燥装置也可以不设置在凹陷对应的凸起部位上,也可以设置在底座未凹陷的部位。干燥装置的个数也不限于一个,可以在上法兰和下法兰上均设置干燥装置,在此不再赘述。
本发明支柱绝缘子实施例四:
如图6所示,本实施例的支柱绝缘子400与发明支柱绝缘子实施例三中的支柱绝缘子300的结构相似。本实施例的干燥装置560的具体结构与发明支柱绝缘子实施例二的干燥装置260的结构相同。在此,结构相同之处不再赘述。其不同之处在于,本实施例中的干燥装置460均设置在下法兰440上。
其中,上法兰430和/或下法兰440上设有干燥装置460,干燥装置460位于空心绝缘管410内部。
本实施例中,干燥装置460位于下法兰440上。
其中,上法兰430和/或下法兰440上设有干燥装置460,干燥装置460位于空心绝缘管410内部。
本实施例中,下法兰440上设置一个干燥装置460,干燥装置460设置在空心绝缘管410内。具体地,干燥装置460设置在底座441上。
需要说明的是,在其他实施例中,干燥装置的个数也不限于一个,也可以在上法兰和下法兰上均设置干燥装置,以配合实际需求。
本发明支柱绝缘子实施例五:
如图7所示,本实施例的支柱绝缘子500与发明支柱绝缘子实施例一中的支柱绝缘子100的结构相似。在此,结构相同之处不再赘述。其不同之处在于,本实施例中的上法兰530上也设置一个干燥装置560。
上法兰530和/或下法兰540上设有干燥装置560,干燥装置560位于空心绝缘管510内部。
本实施例中,下法兰540上设置一个干燥装置560,该干燥装置560位于空心绝缘管510内。上法兰530也设置一个干燥装置560。具体地,干燥装置560设置在底座531上,干燥装置560位于空心绝缘管510内。
需要说明的是,在其他实施例中,干燥装置的数量不限于两个,也可以为更多个,可以根据支柱绝缘子实际尺寸和需求进行设定。
本发明支柱绝缘子实施例六:
如图8所示,本实施例的支柱绝缘子600与发明支柱绝缘子实施例二中的支柱绝缘子200的结构相似。在此,结构相同之处不再赘述。其不同之处在于,本实施例中上法兰630也设置一个自封阀650。
其中,上法兰630和/或下法兰640上设有自封阀650,自封阀650用于抽真空后回填气体。
本实施例中,上法兰630上设置一个自封阀650,下法兰640上也设置一个自封阀650。
其中,下法兰640包括底座和法兰筒,底座用于密封空心绝缘管610,法兰筒固接于空心绝缘管610的管壁,底座或法兰筒上设有自封阀650。
其中,自封阀650位于底座上,底座朝向空心绝缘管610内部凹陷,使得自封阀开口位于凹陷内。
本实施例中,上法兰630和下法兰640的结构相同。因此,上法兰630包括底座631和法兰筒632。法兰筒632垂直于底座631。底座631封堵空心绝缘管610的端面,法兰筒632连接空心绝缘管610的管壁。底座631上设置一个自封阀650。
进一步地,自封阀650位于底座631上,底座631朝向空心绝缘管610内部凹陷,使得自封阀650的开口651位于凹陷内。
本实施例中,底座631上设置凹陷。凹陷沿纵向的高度小于法兰筒632的高度,凹陷沿横向的直径略小于底座631的直径。
自封阀650的开口651位于凹陷内,当两根支柱绝缘子600连接时,避免位于上法兰630上的自封阀650影响支柱绝缘子的连接。
需要说明的是,在其他实施例中,为了便于抽气放气,自封阀也可以设置在法兰筒 上。自封阀的个数也可以不为多个,自封阀的位置和个数均可以根据实际需求设定。
本发明支柱绝缘子实施例七:
如图9所示,本实施例的支柱绝缘子700与发明支柱绝缘子实施例一中的支柱绝缘子100的结构相似。在此,结构相同之处不再赘述。其不同之处在于,本实施例中自封阀750设置在下法兰740的法兰筒742上。
其中,自封阀750位于法兰筒742上,法兰筒742经由底座741与空心绝缘管710连通。
本实施例中,下法兰740包括底座741和法兰筒742。自封阀750设置在法兰筒742上,与纵向夹角为60度。
自封阀750的开口751设置在支柱绝缘子700外部。法兰筒742上设置螺纹孔743,自封阀750的连接端752螺纹连接于螺纹孔743。底座741上设置连通空心绝缘管710内部和螺纹孔743的孔744。螺纹孔743与孔744呈角度设置。
将自封阀750设置在法兰筒742上,当多跟支柱绝缘子700连接时,不会影响到气体的抽取与充入。在法兰筒742上设置螺纹孔743,同时在底座741上设置与螺纹孔743呈角度设置的孔744,从而连通自封阀750与空心绝缘管710内部。
若自封阀750从法兰筒754直接孔连接到空心绝缘管710内,则需要增强法兰筒742壁厚与高度,进而增加法兰740的重量与成本。本实施例中将自封阀750通过两个角度连通的螺纹孔743和孔744,连通自封阀750与空心绝缘管710,有效减轻法兰740的重量、降低成本。
需要说明的是,在其他实施例中,自封阀的个数不限于一个。自然也可以根据实际需要,在底座和法兰筒上均设置自封阀。
本发明绝缘支柱实施例一:
如图10所示,本实施例的绝缘支柱800,包括首尾连接的两个支柱绝缘子810、820,支柱绝缘子810、820为上述支柱绝缘子实施例中的支柱绝缘子。
本实施例中将上述支柱绝缘子实施例中揭示的支柱绝缘子首尾连接成绝缘支柱800,能够为大型电器设备提供可靠的绝缘支撑。有效解决固体填充绝缘支柱的界面问题。也能够解决高压气体填充绝缘支柱的气体泄漏问题,免于检测与维护。同时具有较大的微 水控制裕度,降低微水控制和生产制造的难度。
本实施例中,支柱绝缘子810与上述发明支柱绝缘子实施例一中揭示的支柱绝缘子100的结构相同。支柱绝缘子820与上述发明支柱绝缘子实施例四中揭示的支柱绝缘子400的结构相同。相同之处,在此不再赘述。
支柱绝缘子810与支柱绝缘子820为相同规格的支柱绝缘子。支柱绝缘子810的下法兰812与支柱绝缘子820的上法兰821对应连接。具体地,下法兰812与上法兰821通过螺栓830紧固连接。
其中,两个支柱绝缘子810、820之间设有密封垫片840。
本实施例中,下法兰812的底座8121与上法兰821的底座8211对应贴合,两者之间设置密封垫片840。
在底座8211与底座8121之间设置的密封垫片840,能够提高下法兰812与上法兰821之间的连接密封性,进一步保证绝缘支柱800具有良好的气体密封性能。
需要说明的是,在其他实施例中,绝缘支柱的支柱绝缘子也可以选取上述其他发明支柱绝缘子实施例中的支柱绝缘子。绝缘支柱的两个支柱绝缘子可以选择相同绝缘子实施例中揭示的支柱绝缘子,也可以选择不同绝缘子实施例中揭示的支柱绝缘子。
本发明绝缘支柱实施例二:
如图11所示,本绝缘支柱实施例的绝缘支柱900与绝缘支柱实施例一中的绝缘支柱800的结构相似。在此,结构相同之处不再赘述。其不同之处在于,支柱绝缘子910与支柱绝缘子实施例七中的支柱绝缘子700的结构相同。支柱绝缘子920与支柱绝缘子910的结构相同。
本实施例中,支柱绝缘子910与支柱绝缘子920的结构相同,均与支柱绝缘子实施例七中的支柱绝缘子700的结构相同。具体地,支柱绝缘子910的下法兰911与支柱绝缘子920的上法兰921对应连接。
支柱绝缘子910的自封阀912设置在下法兰911的法兰筒上。支柱绝缘子920的自封阀923设置在下法兰922的法兰筒上。当支柱绝缘子910与支柱绝缘子920连接时,自封阀912和自封阀923仍然能够进行空心绝缘管内部气体的抽取与充入。不会受到支柱绝缘子910、920连接结构的影响,提高了实用性。
需要说明的是,在其他实施例中,绝缘支柱的支柱绝缘子也可以选取上述其他发明支柱绝缘子实施例中的支柱绝缘子。绝缘支柱的两个支柱绝缘子可以选择相同支柱绝缘子实施例揭示的支柱绝缘子,也可以选择不同支柱绝缘子实施例揭示的支柱绝缘子。
本发明的技术内容及技术特点已揭示如上,然而可以理解,在本发明的创作思想下,本领域的技术人员可以对上述结构和材料作各种变化和改进,包括这里单独披露或要求保护的技术特征的组合,明显地包括这些特征的其它组合。这些变形和/或组合均落入本发明所涉及的技术领域内,并落入本发明权利要求的保护范围。

Claims (13)

  1. 一种支柱绝缘子,其特征在于:包括空心绝缘管、位于所述空心绝缘管外围的伞裙、以及设置于所述空心绝缘管两端的上法兰和下法兰,所述空心绝缘管内密封有气体,所述气体的绝对压力为0.1~0.15Mpa。
  2. 如权利要求1所述的支柱绝缘子,其特征在于:所述空心绝缘管由温度55℃、相对湿度90%RH条件下水汽渗透率小于0.2g/m 2·d的绝缘材料制成。
  3. 如权利要求1所述的支柱绝缘子,其特征在于:所述气体为经过干燥处理的高纯氮气、空气或六氟化硫气体。
  4. 如权利要求1所述的支柱绝缘子,其特征在于:所述上法兰和/或所述下法兰上设有自封阀,所述自封阀用于抽真空后回填所述气体。
  5. 如权利要求4所述的支柱绝缘子,其特征在于:所述下法兰包括底座和法兰筒,所述底座用于密封所述空心绝缘管,所述法兰筒固接于所述空心绝缘管的管壁,所述底座或所述法兰筒上设有所述自封阀。
  6. 如权利要求5所述的支柱绝缘子,其特征在于:所述自封阀位于所述底座上,所述底座朝向所述绝缘管内部凹陷,使得所述自封阀开口的位置位于所述凹陷内。
  7. 如权利要求5所述的支柱绝缘子,其特征在于:所述自封阀位于所述法兰筒上,所述法兰筒经由所述底座与所述空心绝缘管连通。
  8. 如权利要求1所述的支柱绝缘子,其特征在于:所述上法兰和/或所述下法兰上设有干燥装置,所述干燥装置位于所述空心绝缘管内部。
  9. 如权利要求8所述的支柱绝缘子,其特征在于:所述干燥装置包括笼状干燥剂盒和置于所述干燥剂盒内的干燥剂。
  10. 如权利要求9所述的支柱绝缘子,其特征在于:所述干燥剂盒由导电材料制成,均匀设有若干通孔。
  11. 如权利要求9所述的支柱绝缘子,其特征在于:所述干燥剂为分子筛干燥剂。
  12. 一种绝缘支柱,其特征在于:包括首尾连接的两个支柱绝缘子,所述支柱绝缘子为如权利要求1-11任一项所述的支柱绝缘子。
  13. 如权利要求12所述的绝缘支柱,其特征在于:所述两个支柱绝缘子之间设有密封垫片。
PCT/CN2019/074283 2018-03-27 2019-01-31 一种支柱绝缘子及绝缘支柱 WO2019184596A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112020019294-5A BR112020019294B1 (pt) 2018-03-27 2019-01-31 Isolador de suporte do tipo pino e pino de suporte isolante
EP19775935.0A EP3780021A4 (en) 2018-03-27 2019-01-31 SUPPORT POST INSULATOR AND INSULATING SUPPORT POST
US17/041,068 US11430586B2 (en) 2018-03-27 2019-01-31 Post insulator and insulated support post
RU2020131364A RU2752643C1 (ru) 2018-03-27 2019-01-31 Опорный изолятор и изолирующая опора

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810260475.2A CN108257741B (zh) 2018-03-27 2018-03-27 一种支柱绝缘子及绝缘支柱
CN201810260475.2 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184596A1 true WO2019184596A1 (zh) 2019-10-03

Family

ID=62746431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074283 WO2019184596A1 (zh) 2018-03-27 2019-01-31 一种支柱绝缘子及绝缘支柱

Country Status (5)

Country Link
US (1) US11430586B2 (zh)
EP (1) EP3780021A4 (zh)
CN (1) CN108257741B (zh)
RU (1) RU2752643C1 (zh)
WO (1) WO2019184596A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108257741B (zh) 2018-03-27 2021-04-23 江苏神马电力股份有限公司 一种支柱绝缘子及绝缘支柱
CN208570227U (zh) * 2018-06-20 2019-03-01 江苏神马电力股份有限公司 一种法兰和绝缘子及绝缘支柱
CN110233008B (zh) * 2019-04-26 2024-04-26 江苏神马电力股份有限公司 复合绝缘子
CN115346737A (zh) * 2021-05-14 2022-11-15 江苏神马电力股份有限公司 一种支柱绝缘子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002039A1 (en) * 1989-08-11 1991-02-21 The Dow Chemical Company Polystyrene-polyisoprene-polystyrene block copolymers, hot-melt adhesive compositions, and articles produced therefrom
CN1851835A (zh) * 2006-03-22 2006-10-25 国家电网公司 复合外套支柱绝缘子和复合外套瓷套管
CN205943609U (zh) * 2016-05-31 2017-02-08 中国南方电网有限责任公司电网技术研究中心 防雨闪复合支柱绝缘子
CN108257741A (zh) * 2018-03-27 2018-07-06 江苏神马电力股份有限公司 一种支柱绝缘子及绝缘支柱

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650363C2 (de) * 1976-11-03 1985-10-10 Rosenthal Technik Ag, 8672 Selb Verbundisolator für Hochspannungsfreiluft-Anwendungen
DE2746870C2 (de) * 1977-10-19 1982-08-26 Rosenthal Technik Ag, 8672 Selb Verfahren zur Herstellung von Freiluft-Verbundisolatoren
JPS58176325U (ja) * 1982-05-19 1983-11-25 株式会社東芝 ガスブツシング
US5406033A (en) 1992-09-02 1995-04-11 Maclean-Fogg Company Insulator structure and method of construction
RU2173902C1 (ru) 1999-12-23 2001-09-20 Общество с ограниченной ответственностью ООО "Альфа-Энерго" Опорная стержневая изоляционная конструкция
IT249776Y1 (it) * 2000-03-17 2003-05-28 Passoni & Villa S P A Isolatore passante monolitico
RU19607U1 (ru) 2000-06-09 2001-09-10 Покатаев Константин Алексеевич Полимерный электрический опорный изолятор
CN1331163C (zh) * 2004-05-26 2007-08-08 宁波电业局 复合外套绝缘子避雷器及其制造方法
GB0416227D0 (en) 2004-07-20 2004-08-25 Nokia Corp A method for use in a communication system
EP1848009B1 (en) * 2006-04-20 2014-03-26 ABB Technology Ltd An elongated member and use thereof
EP2048673B1 (en) * 2007-10-12 2014-05-14 ABB Research Ltd. A device for electric connection, a method for producing such a device, and an electric power installation provided therewith
RU2392678C1 (ru) 2009-06-10 2010-06-20 Закрытое Акционерное Общество "Арматурно-Изоляторный Завод" Полимерный изолятор с контролем состояния изоляции
DE102010015729B4 (de) * 2010-04-21 2015-01-22 Maschinenfabrik Reinhausen Gmbh Hochspannungsisolator
EP2500914B1 (en) 2011-03-16 2014-03-05 ABB Technology Ltd High voltage bushing with support for the conductor
EP2637180A1 (en) * 2012-03-06 2013-09-11 ABB Technology Ltd A post insulator
RU130747U1 (ru) 2013-01-11 2013-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) Опорно-штыревой изолятор с перемещающимся сигнальным устройством
RU2635831C1 (ru) 2016-12-13 2017-11-16 Общество с ограниченной ответственностью "Масса" Оптический измерительный трансформатор напряжения на основе электрооптического эффекта поккельса
CN207021046U (zh) 2017-05-04 2018-02-16 江苏神马电力股份有限公司 一种绝缘子及复合横担
RU194013U1 (ru) 2019-09-05 2019-11-25 Закрытое акционерное общество "СуперОкс" (ЗАО "СуперОкс") Токоограничивающее устройство на основе высокотемпературной сверхпроводимости

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002039A1 (en) * 1989-08-11 1991-02-21 The Dow Chemical Company Polystyrene-polyisoprene-polystyrene block copolymers, hot-melt adhesive compositions, and articles produced therefrom
CN1851835A (zh) * 2006-03-22 2006-10-25 国家电网公司 复合外套支柱绝缘子和复合外套瓷套管
CN205943609U (zh) * 2016-05-31 2017-02-08 中国南方电网有限责任公司电网技术研究中心 防雨闪复合支柱绝缘子
CN108257741A (zh) * 2018-03-27 2018-07-06 江苏神马电力股份有限公司 一种支柱绝缘子及绝缘支柱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780021A4 *

Also Published As

Publication number Publication date
US20210193351A1 (en) 2021-06-24
BR112020019294A2 (pt) 2021-01-05
CN108257741A (zh) 2018-07-06
RU2752643C1 (ru) 2021-07-29
EP3780021A4 (en) 2021-12-08
US11430586B2 (en) 2022-08-30
EP3780021A1 (en) 2021-02-17
CN108257741B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2019184596A1 (zh) 一种支柱绝缘子及绝缘支柱
US9601240B2 (en) High-voltage insulator
CN208027821U (zh) 一种支柱绝缘子及绝缘支柱
WO2013000310A1 (zh) 干燥高压力空气或氮气绝缘真空灭弧室的内外波纹管结构
US9322737B2 (en) Method of testing the integrity of a second seal of an electrical insulator
CN203595782U (zh) 参数可调整内部放电试验模型
CN210270047U (zh) 一种用于环保型气体绝缘性能研究的试验装置
CN215377082U (zh) 一种支柱绝缘子
CN211701383U (zh) 一种用于绝缘母线中间接头的绝缘装置
CN213068097U (zh) 一种空心绝缘子和空心绝缘横担密封性能实时监测装置
CN106683939A (zh) 一种充气柜用高密封性固封极柱
CN113903551A (zh) 一种sf6气体绝缘变压器可抽真空箱沿结构及方法
CN111162494A (zh) 一种用于绝缘母线中间接头的绝缘装置及其制作方法
WO2020119362A1 (zh) 一种法兰、其密封方法以及使用法兰的绝缘子
CN207300572U (zh) 一种鼠笼形密封圈老化试验装置
CN205406387U (zh) 一种固封极柱
CN106058790B (zh) 一种隔爆灌胶电缆防水接头
CN215868819U (zh) 一种支柱绝缘子
CN210053092U (zh) 一种gis设备新型带压堵漏工装
WO2013113374A1 (en) Removable under pressure transportation supports for pure gas wall bushings
CN204794509U (zh) 隔爆电机用加热器接线总成
CN215377081U (zh) 一种绝缘横担
BR112020019294B1 (pt) Isolador de suporte do tipo pino e pino de suporte isolante
CN216902440U (zh) 一种sf6气体绝缘变压器可抽真空箱沿结构
CN110005809B (zh) 一种用于密封真空电子器件的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019294

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019775935

Country of ref document: EP

Effective date: 20201027

ENP Entry into the national phase

Ref document number: 112020019294

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200924