RU2392678C1 - Полимерный изолятор с контролем состояния изоляции - Google Patents

Полимерный изолятор с контролем состояния изоляции Download PDF

Info

Publication number
RU2392678C1
RU2392678C1 RU2009122249/28A RU2009122249A RU2392678C1 RU 2392678 C1 RU2392678 C1 RU 2392678C1 RU 2009122249/28 A RU2009122249/28 A RU 2009122249/28A RU 2009122249 A RU2009122249 A RU 2009122249A RU 2392678 C1 RU2392678 C1 RU 2392678C1
Authority
RU
Russia
Prior art keywords
control element
insulator
insulators
voltage
polymer
Prior art date
Application number
RU2009122249/28A
Other languages
English (en)
Inventor
Вадим Валерьевич Старцев (RU)
Вадим Валерьевич Старцев
Вячеслав Александрович Любимов (RU)
Вячеслав Александрович Любимов
Эдуард Павлович Соловьев (RU)
Эдуард Павлович Соловьев
Юрий Анатольевич Солодков (RU)
Юрий Анатольевич Солодков
Original Assignee
Закрытое Акционерное Общество "Арматурно-Изоляторный Завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Арматурно-Изоляторный Завод" filed Critical Закрытое Акционерное Общество "Арматурно-Изоляторный Завод"
Priority to RU2009122249/28A priority Critical patent/RU2392678C1/ru
Priority to PCT/RU2010/000265 priority patent/WO2010143994A1/ru
Application granted granted Critical
Publication of RU2392678C1 publication Critical patent/RU2392678C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/005Insulators structurally associated with built-in electrical equipment

Landscapes

  • Insulators (AREA)

Abstract

Изобретение относится к электротехнике и касается опорных, штыревых и подвесных полимерных изоляторов для высоковольтных подстанций и линий электропередачи. Заявленный полимерный изолятор содержит: электроизоляционное несущее тело, металлическую арматуру и контрольный элемент, выполненный из закаленного электротехнического стекла. Контрольный элемент разрушается во время эксплуатации при снижении электроизоляционных свойств несущего тела. Техническим результатом является повышение надежности электроснабжения за счет высокой приспособленности изоляторов для контроля внутреннего состояния в процессе эксплуатации. 2 ил.

Description

Область техники
Изобретение относится к электротехнике и касается опорных, штыревых и подвесных полимерных изоляторов для высоковольтных подстанций и линий электропередачи.
Предшествующий уровень техники
Такие полимерные изоляторы представляют собой, как правило, стеклопластиковый стержень или трубу, снабженную закрепленной на концах металлической арматурой и защитной оболочкой с ребрами. Изоляторы предназначены для изоляции и крепления элементов высоковольтной ошиновки в распределительных устройствах станций и подстанций, проводов воздушных линий электропередачи, а также используются в качестве междуфазных распорок и т.п.
Известна опорно-изоляционная конструкция по Патенту РФ №2173902, H01B 17/14 в виде опорного полимерного изолятора, содержащего стержень из электроизоляционного материла, например из стекложгута, пропитанного термореактивным компаундом, а также трекингостойкую оболочку и металлические фланцы.
Недостатком указанной конструкции является отсутствие доступных методов оперативного контроля состояния внутренней структуры изолятора, в особенности при воздействии высокого напряжения.
Известна конструкция подвесного изолятора, содержащая стеклопластиковый стержень, а также трекингостойкую оболочку и металлическую арматуру [ГОСТ 28856-90 Изоляторы линейные подвесные стержневые полимерные. Общие технические условия.].
Недостатком указанной конструкции также является отсутствие доступных методов оперативного контроля состояния внутренней структуры изолятора, причем известны случаи замены полимерных изоляторов на целых линиях электропередачи из-за невозможности найти и идентифицировать один пробитый и потерявший электрическую прочность изолятор.
Цели изобретения
Предлагаемым изобретением решается задача создания изоляции для крепления элементов высоковольтной ошиновки в распределительных устройствах станций и подстанций, проводов воздушных линий электропередачи, создания междуфазных распорок и т.п. Одновременно решается задача повышения надежности энергоснабжения, что связано с высокой приспособленностью изоляторов для контроля внутреннего состояния в процессе эксплуатации, позволяющей своевременно обнаруживать и устранять существующие и возникающие дефекты полимерной изоляции.
Описание
Для решения поставленной задачи, согласно предполагаемому изобретению, используется полимерный изолятор, содержащий несущее электроизоляционное тело изолятора, металлическую арматуру, установленную на обоих торцах изолятора, а также дополнительно контрольный элемент между несущим электроизоляционным телом изолятора и металлическим фланцем. Контрольный элемент выполнен из электроизоляционного закаленного стекла. Элемент из закаленного стекла при нарушении целостности в случае пробоя полностью разрушается. Разрушенный стеклянный элемент сигнализирует о выходе полимерного изолятора из строя и нарушении его изоляционных свойств. Контрольный элемент до разрушения обладает электроизоляционными свойствами, а также развитой поверхностью и юбкой, формирующей воздушный промежуток. Электрическая прочность контрольного элемента меньше, чем электрическая прочность расстояния между местами приложения к нему потенциалов по воздуху, меньше, чем электрическая прочность его воздушного промежутка. Таким образом, при выходе из строя изоляционного тела фазное напряжение линии электропередачи или мгновенное в случае перенапряжений в линии становится приложенным к контрольному элементу. Контрольный элемент имеет достаточный вылет ребер юбки для того, чтобы воздушный промежуток имел более высокую прочность, чем электрическая прочность изоляционного тела, выполненного из закаленного стекла. Толщина стенки из изоляционного стекла выбрана таким образом, чтобы электрическая прочность ее была меньше электрической прочности воздушного промежутка вокруг юбки контрольного элемента. Пробой контрольного элемента с разрушением происходит при более низком напряжении, чем перекрытие его по воздуху.
Заявителям неизвестен полимерный изолятор, содержащий несущее тело изолятора, металлическую арматуру, установленную на обоих торцах изолятора, и контрольный элемент из закаленного стекла между изоляционным телом и фланцем, обладающий вышеперечисленными свойствами.
Описание работы изолятора
Полимерный изолятор работает следующим образом.
Контрольный элемент при изготовлении изолятора установлен между металлическим оконцевателем изолятора и электроизоляционным телом неразъемно. При нормальной работе изолятора контрольный элемент также выполняет небольшую электроизолирующую роль. Значение напряжения пробоя всего изолятора вместе с контрольным элементом значительно больше, чем значение напряжения перекрытия изолятора по воздуху.
Падение напряженности электрического поля на контрольном элементе максимально, так как он установлен первым от оконцевателя. В нормальном состоянии при рабочем состоянии изоляционного тела полимерного изолятора величина падения напряжения на контрольном элементе будет недостаточной для его пробоя и разрушения. В случае ухудшения электроизоляционных свойств несущего изоляционного тела полимерного изолятора на контрольном элементе значение падения напряженности электрического поля будет увеличиваться. При достижении значения падения напряжения на контрольном элементе больше внутренней электрической прочности контрольный элемент разрушается, сигнализируя о выходе из строя изолятора. В конструкцию всех изоляторов заложен принцип того, что воздушный промежуток любого участка изолятора имеет меньшую электрическую прочность, чем соответствующий участок тела изолятора. Контрольный же элемент напротив имеет электрическую прочность меньше, чем воздушный промежуток вокруг него. В результате такой композиционный изолятор при постепенном разрушении в определенный момент будет иметь совокупную прочность воздушного промежутка остатка полимерного изолятора и внутреннюю электрическую прочность контрольного элемента, равную мгновенному значению напряжения в линии электропередачи. В этот момент произойдет пробой контрольного элемента с его разрушением и перекрытие рабочего остатка полимерного изолятора по воздуху. Неисправный изолятор можно легко идентифицировать на линии после ее отключения в результате короткого замыкания. В случае, если остаток полимерного изолятора имеет электрическую прочность более фазного напряжения, линию электропередачи возможно эксплуатировать далее после успешного повторного включения. Так как в линии электропередачи, особенно на напряжения до 110 кВ, импульсы перенапряжения, в 2-3 раза превосходящие значение фазного напряжения, встречаются достаточно часто, следует ожидать, что большинство изоляторов после пробоя контрольного элемента и перекрытия остатка полимерного изолятора могут эксплуатироваться и далее. При плановом обследовании линии такие изоляторы будут выявлены и заменены на новые. При этом, учитывая разброс значений перекоммутации, трудно количественно определить величину первоначального разрушения полимерного изолятора. При прямом ударе молнии или грозовом перенапряжении, в десятки раз превосходящем фазное напряжение, даже абсолютно целые изоляторы будут перекрыты по воздушному промежутку между оконцевателями, а контрольные элементы будут разрушены, сигнализируя о произошедшем перекрытии изоляторов. При этом сами изоляторы будут полностью работоспособными и линия электропередачи может эксплуатироваться далее. Разрушенный контрольный элемент не уменьшает электрическую прочность изолятора. Механическая прочность изолятора с разрушенным контрольным элементом должна быть не ниже нормированной.
Реализация изобретения и пример работы изолятора с контролем внутренней изоляции
На предприятии-заявителе были изготовлены партии полимерных изоляторов на напряжение 35кВ, 110 кВ, 220кВ опорного и подвесного исполнения с контрольными элементами из закаленного электротехнического стекла. Контрольные элементы были изготовлены специально таким образом, чтобы напряжение перекрытия их было меньше напряжения внутреннего пробоя. Контрольный элемент сконструирован таким образом, что при разрушении остаток сохраняет прочность на уровне 70-75% от первоначальной. Механическая прочность контрольного элемента для подвесных изоляторов выбиралась изначально больше на 30-35% нормированного, для того, чтобы после разрушения она соответствовала нормированному.
Первую партию изоляторов на все классы напряжения испытывали грозовыми импульсами в соответствии с нормативными документами(Правила устройств электроустановок). В частности, для класса напряжения 35 кВ подавался импульс положительной полярности значением 190 кВ, для класса напряжения изоляторов 110 кВ подавался импульс напряжения значением 480 кВ, для класса напряжения 220 кВ на изоляторы подавался импульс напряжения положительной полярности значением 960 кВ. Во всех случаях при перекрытии изоляторов по воздуху происходило разрушение контрольного элемента на мелкие осколки. При отсутствии перекрытия разрушения не происходило. Подвесные изоляторы после разрушения контрольного элемента подвергали воздействию растягивающей механической нагрузки на нормированное тяжение 70 кН. Во всех случаях изоляторы механические испытания выдержали, падения провода не отмечено. Опорные изоляторы подвергали механическим испытаниям на кручение и горизонтальное отклонение. Во всех случаях изоляторы испытание выдержали.
Вторую партию изоляторов на все классы напряжения испытывали искусственным моделированием частичного разрушения полимерной изоляции. Для этого часть электроизоляционного тела полимерного изолятора заземляли оборачиванием вокруг него заземленного проводника. Сначала заземляли 1/4 часть изолятора, далее 1/3 часть изолятора, далее 1/2 часть изолятора, далее 2/3 части изолятора и 3/4 части изолятора. Таким образом моделировалось постепенное разрушение полимерной электроизоляционной части изолятора. Испытанию подвергались изоляторы на каждом этапе. Испытание проводилось напряжением промышленной частоты, значением, соответствующим для каждого класса напряжения. В частности, для класса 35 кВ напряжением 62 кВ, на класс напряжения 110 кВ значением 220 кВ, на класс напряжения 220 кВ значением 420 кВ. У всех изоляторов произошло перекрытие с разрушением (пробоем) контрольного элемента при заземлении половины длины изоляционного тела. Изоляторы после отключения напряжения остались работоспособными. Механические испытания проводились, как в первой партии.
Результаты испытаний полимерных изоляторов подтверждают возможность их применения в электроэнергетике и предприятиях.
Заявляемый полимерный изолятор может найти применение для изоляции и крепления элементов высоковольтной ошиновки в распределительных устройствах станций и подстанций, проводов воздушных линий электропередачи, а также в качестве междуфазных распорок и т.п. Применение таких изоляторов позволит увеличить надежность энергоснабжения потребителей электроэнергии.
Конструкция устройства поясняется чертежами
Сущность изобретения поясняется Фиг.1, 2.
На Фиг.1 изображен подвесной полимерный изолятор, включающий несущее изоляционное тело 1, металлическую арматуру 2 и контрольный элемент 3. На фиг.1 также отмечен воздушный промежуток для контрольного элемента из закаленного стекла 4.
На Фиг.2 изображен опорный стержневой полимерный изолятор, включающий несущее изоляционное тело 1, металлическую арматуру 2 и контрольный элемент 3. На фиг.2 также отмечен воздушный промежуток для контрольного элемента из закаленного стекла 4.
Фланцы и оконцеватели, а также форма и конструкция изоляционного тела могут иметь отличный вид от изображенных на чертежах, что не изменяет существа предлагаемого изолятора.

Claims (1)

  1. Полимерный изолятор, содержащий неразъемно соединенные электроизоляционное несущее тело, металлическую арматуру на обоих торцах изолятора и контрольный элемент между ними, отличающийся тем, что содержит контрольный элемент, выполненный из закаленного электротехнического стекла, разрушающийся во время эксплуатации при снижении электроизоляционных свойств несущего тела, при этом внутренняя электрическая прочность контрольного элемента до разрушения меньше электрической прочности его воздушного промежутка, а механическая прочность контрольного элемента после разрушения достаточна для эксплуатации изолятора.
RU2009122249/28A 2009-06-10 2009-06-10 Полимерный изолятор с контролем состояния изоляции RU2392678C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2009122249/28A RU2392678C1 (ru) 2009-06-10 2009-06-10 Полимерный изолятор с контролем состояния изоляции
PCT/RU2010/000265 WO2010143994A1 (ru) 2009-06-10 2010-05-25 Полимерный изолятор с контролем состояния изоляции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009122249/28A RU2392678C1 (ru) 2009-06-10 2009-06-10 Полимерный изолятор с контролем состояния изоляции

Publications (1)

Publication Number Publication Date
RU2392678C1 true RU2392678C1 (ru) 2010-06-20

Family

ID=42682909

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009122249/28A RU2392678C1 (ru) 2009-06-10 2009-06-10 Полимерный изолятор с контролем состояния изоляции

Country Status (2)

Country Link
RU (1) RU2392678C1 (ru)
WO (1) WO2010143994A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503076C1 (ru) * 2012-05-22 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) Устройство для определения дефектов в изоляторах
RU2720131C2 (ru) * 2011-08-29 2020-04-24 Акционерное общество НПО Изолятор Птицезащищенный изолятор
RU2752643C1 (ru) * 2018-03-27 2021-07-29 Цзянсу Шимер Электрик Ко., Лтд. Опорный изолятор и изолирующая опора

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289532B (zh) * 2020-02-24 2023-04-07 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种造假支柱绝缘子的甄别方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259545A (en) * 1979-12-31 1981-03-31 Hayden Robert K High voltage safety-glow insulator
SU1697121A1 (ru) * 1989-05-11 1991-12-07 Специальное конструкторско-технологическое бюро по изоляторам и арматуре Всесоюзного производственного объединения "Союзэлектросетьизоляция" Полимерный изол тор
RU2173902C1 (ru) * 1999-12-23 2001-09-20 Общество с ограниченной ответственностью ООО "Альфа-Энерго" Опорная стержневая изоляционная конструкция
RU2248057C1 (ru) * 2003-10-01 2005-03-10 Открытое акционерное общество "Южноуральский арматурно-изоляторный завод" Штыревой линейный изолятор

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720131C2 (ru) * 2011-08-29 2020-04-24 Акционерное общество НПО Изолятор Птицезащищенный изолятор
RU2503076C1 (ru) * 2012-05-22 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) Устройство для определения дефектов в изоляторах
RU2752643C1 (ru) * 2018-03-27 2021-07-29 Цзянсу Шимер Электрик Ко., Лтд. Опорный изолятор и изолирующая опора
US11430586B2 (en) 2018-03-27 2022-08-30 Jiangsu Shemar Electric Co., Ltd. Post insulator and insulated support post

Also Published As

Publication number Publication date
WO2010143994A1 (ru) 2010-12-16

Similar Documents

Publication Publication Date Title
RU2392679C1 (ru) Индикатор состояния высоковольтной изоляции
Cherney et al. Evaluation of and replacement strategies for aged high voltage porcelain suspension-type insulators
RU2392678C1 (ru) Полимерный изолятор с контролем состояния изоляции
Su Case study: lessons learned from the failure of a new 230-kV transformer-cable termination
CN110426616B (zh) 一种基于法兰盘螺栓的gis局部放电检测装置和方法
Kosse et al. Overview of development, design, testing and application of compact gas-insulated DC systems up to±550 kV
Tsuboi et al. Energy absorption capacity of a 500 kV surge arrester for direct and multiple lightning strokes
Metwally Technology progress in high-voltage gas-insulated substations
Lapworth et al. Transformer internal over-voltages caused by remote energisation
Yang et al. Protection radius of bird-preventing installation design for 110 kV suspension insulators based on withstand tests
Jiang et al. Live work insulation considerations on HVDC lines
CN211554215U (zh) 三相共筒式gis设备同频同相耐压试验的故障抑制系统
CN210720633U (zh) 一种基于法兰盘螺栓的gis局部放电检测装置
CN105958464A (zh) 一种特高压直流接地极线路绝缘配合方法
Kioupis et al. Failures of insulating joints and spark gaps on the Hellenic Gas Pipeline System-a case study
Al Abri et al. Bushing Failure-Investigation process & findings
Jonsson Advantages vs. risks with on-line monitoring of transformer bushings
CN214626350U (zh) 低残压母线保护装置
Ding et al. Ageing mechanisms and diagnostics for high voltage bushings—An overview
Reddy et al. Potential and electric field distribution in a ceramic disc insulator string with faulty insulators
Liu et al. Study on waveform parameters of impulse test voltage and on-site docking method for EHV/UHV GIS
Qi et al. The Anomaly Power Transmission and Analysis at a 500kV GIS Substation
VIIȘOREANU-RĂCHIȚEANU et al. OVERVOLTAGE PROTECTION OF TRANSFORMERS AND HIGH VOLTAGE NETWORKS BY SURGE ARRESTER.
Savvaitov et al. Technical state of basic equipment of substations and overhead transmission lines and measures for raising their reliability
Hosseini et al. Reliability Analysis of Surge Arrester Location Effect in High voltage substations