WO2019184389A1 - 一种用于多并网逆变器的无电压采样协调控制系统及方法 - Google Patents

一种用于多并网逆变器的无电压采样协调控制系统及方法 Download PDF

Info

Publication number
WO2019184389A1
WO2019184389A1 PCT/CN2018/115560 CN2018115560W WO2019184389A1 WO 2019184389 A1 WO2019184389 A1 WO 2019184389A1 CN 2018115560 W CN2018115560 W CN 2018115560W WO 2019184389 A1 WO2019184389 A1 WO 2019184389A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
voltage
inverter
phase
signal
Prior art date
Application number
PCT/CN2018/115560
Other languages
English (en)
French (fr)
Inventor
高峰
许涛
吴强
张承慧
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2019184389A1 publication Critical patent/WO2019184389A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • H02J3/385
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a voltage-free sampling coordinated control system and method for a multi-grid inverter.
  • the grid-connected inverter is the key equipment for connecting photovoltaic panels and wind turbines to the grid.
  • Large-scale renewable energy power generation systems represented by centralized photovoltaic power plants and wind farms require a large number of grid-connected inverters.
  • the grid-connected inverter needs to obtain accurate grid voltage amplitude, phase angle and frequency information when it is connected to the grid to ensure that the inverter provides reactive power when the grid inputs active power or grid voltage decreases under normal operating conditions of the grid. support.
  • the traditional method uses the grid voltage sampling plus phase-locked loop method to obtain the grid voltage information. Therefore, the grid-connected inverter should be equipped with a voltage detecting device. Since the controller allows the input voltage amplitude to be low, in order to ensure accurate grid voltage detection, the grid voltage detecting device should include voltage transformers, operational amplifiers, etc., and the voltage detecting device increases the inverter cost.
  • the prior art mostly installs a voltage collecting device in each grid-connected converter. Although each inverter can calculate voltage amplitude, phase angle and frequency information according to local voltage information, the voltage collecting device increases the system. The cost reduces the competitive advantage of the inverter.
  • Existing patents and papers propose a variety of improved forms of grid voltage acquisition methods, mainly to improve the detection accuracy of grid voltage distortion, without escaping the dependence on voltage acquisition devices.
  • Patent application No. "201410073512.0" patent “Distributed grid-connected inverter system global synchronous pulse width modulation system and method” discloses a distributed grid-connected inverter system global synchronous pulse width modulation system, which determines global pulse width modulation
  • the basic structure of the system includes a main control unit (global synchronization unit) and a plurality of grid-connected inverters located in different geographical locations, each of which is connected to a distributed power source, and each grid-connected inverter
  • the controllers are connected to the grid through a common grid connection point, and the master control unit communicates with all the grid-connected inverters, and the master control unit receives the information of each grid-connected inverter, and after determining the global synchronization policy, the global synchronization is included.
  • the global synchronization signals of the strategy are respectively sent to the respective grid-connected inverters, and each grid-connected inverter adjusts the phase of the pulse width modulation wave by using the global synchronization signal, so as to meet the pulse width modulation waves of each grid-connected inverter.
  • the phase difference of the harmonic cancellation cancels the harmonic current injected into the grid by each grid-connected inverter. This method can effectively reduce the harmonic content of the total current.
  • the patent does not mention how to use the existing communication channel for coordinated control of voltage-free sensors.
  • the present invention provides a voltage-free sampling coordinated control system and method for a multi-grid inverter, which is only one inverter when multiple inverters are operated in parallel
  • the grid voltage collecting device is installed in the grid, and the collected grid voltage information is shared to other parallel-operated inverters by means of communication, so that the coordinated control of the voltage-free sensors is connected to the grid.
  • a voltage-free sampling coordinated control system for a multi-grid inverter includes a plurality of grid-connected inverters and a grid voltage collecting device, and an input end of each of the grid-connected inverters is connected to a power generating unit The output of each of the grid-connected inverters is connected to the grid through a common grid-connecting point, and each of the grid-connected inverters is connected to a communication line, and the grid voltage collecting device is installed in one of them.
  • the grid-connected inverter collects grid voltage information through the grid voltage collecting device, and shares it to other grid-connected inverters through the communication line, and other grid-connected inverters use the received shared grid voltage information and The locally collected voltage, current and power information enables grid-connected operation of the voltage-free sensor.
  • a control method based on the above non-voltage sampling coordinated control system for a multi-grid inverter comprising:
  • Step 1) After installing the grid-connected inverter of the grid voltage collecting device to collect the instantaneous value of the grid voltage, the phase-locked loop PLL algorithm is used to obtain accurate grid voltage phase information, and the grid voltage phase information is converted into the pulse signal Syn2;
  • Step 2 The grid-connected inverter of the grid voltage collecting device is combined with the pulse signal Syn1 and the conventional PWM synchronizing pulse signal Syn1 to generate a mixed synchronizing signal MixSyn including the grid voltage phase information and the PWM synchronizing information, and the hybrid synchronization is performed.
  • the signal MixSyn is passed to other grid-connected inverters;
  • Step 3 The other grid-connected inverter predicts the actual grid voltage phase according to the collected grid-connected current value and the inverter parameters, and then uses the received mixed synchronization signal MixSyn and the input and output parameters of the inverter to predict the grid.
  • the voltage phase is corrected to achieve grid-connected operation of the voltage-free sensor.
  • the grid phase generating module of the inverter receives the phase signal generated by the phase locked loop PLL, and generates the synchronization signal Syn2 when the phase is zero, and the Syn2 changes from 1 to 1 when the phase is 360°. 0, from 0 to 1 after a machine cycle of a digital signal processor.
  • the synchronizing signal Syn1 generated by the Syn2 and the conventional PWM synchronizing signal generating module is processed by the signal combining module to generate a mixed synchronizing signal MixSyn, wherein the rising edge of the Syn1 signal is the rising edge of the mixed synchronizing signal MixSyn signal.
  • the falling edge of the Syn2 signal is the falling edge of the mixed sync signal MixSyn.
  • the other grid-connected inverter predicts the actual grid voltage phase through the grid voltage prediction algorithm, and corrects the predicted grid voltage phase by the grid voltage correction algorithm.
  • the grid voltage prediction algorithm predicts the actual grid voltage phase according to the two-phase sampling current information in the dq coordinate system of the grid-connected inverter and the known inverter output filtering parameters.
  • the grid voltage correction algorithm corrects the grid voltage phase by the received mixed synchronizing signal MixSyn, the grid-connected inverter actual output current and the input power, and outputs the corrected grid voltage predicted phase.
  • the inverter is connected to the grid to output a current predicted value dq component.
  • the actual output current dq components i M,d , i M,q , the corrected grid voltage angular frequency ⁇ ′ M and the inverter output filter inductor value L M calculate the voltage predicted value dq component across the output inductor
  • K p and K i are proportional integral regulator parameters in the grid voltage prediction algorithm
  • the voltage predicted value dq component across the output inductor of the inverter is utilized.
  • the output filter inductance value L M , the inductor equivalent resistance value R M and the corrected grid voltage angular frequency ⁇ ′ M calculate the dq component of the inverter grid-connected output current predicted value
  • the duty cycle signals v M, od , v M, oq , DC voltage v M, dc in the dq coordinate system are used , and the voltage prediction value dq component across the output inductor is used. Calculate the dq component of the grid voltage prediction value
  • the input power P m, In the actual output current dq components i M,d , i M,q are used to calculate the input power and the output current dq component i M,d ,i
  • the ratio of M, q modulus values ⁇ M,k The ratio of M, q modulus values ⁇ M,k :
  • the received mixed synchronization signal MixSyn generates a reset signal Reset through the grid phase synchronization module, specifically: the grid phase synchronization module detects a falling edge in the mixed synchronization signal MixSyn to generate a reset signal Reset;
  • the maximum value tracking algorithm MVT utilizes the network voltage prediction value dq component Phase-locked result
  • the ratio ⁇ M,k , the corrected grid voltage angular frequency ⁇ ′ M,k-1 in the previous step calculates the currently corrected grid voltage angular frequency ⁇ ′ M,k .
  • the corrected grid voltage phase ⁇ ' M is calculated using the corrected grid voltage angular frequency ⁇ ' M,k :
  • variable with k represents the result of this calculation
  • variable with k-1 represents the result of the last calculation
  • ⁇ ′ is the value of each change of the angular frequency, which has the value of the switching frequency f M,s and The rated operating frequency f 0 of the grid is obtained:
  • M represents the current grid-connected inverter number.
  • FIG. 1 is a schematic diagram of a parallel system of multiple inverters including a communication channel according to the present invention
  • FIG. 2 is a schematic diagram of a power circuit and various part control algorithms of the inverter 1 of the present invention
  • FIG. 3 is a schematic diagram of a power circuit and various part control algorithms of the inverters 2 to N of the present invention
  • FIG. 4 is a schematic diagram of a hybrid synchronization signal generation and an inverter 2 to N reset signal generation method in the inverter 1 of the present invention
  • FIG. 5 is a flow chart of the maximum value tracking algorithm for correcting the grid voltage angular frequency of the present invention.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is merely a relative relationship for the purpose of describing the structural relationship of the components or components of the present invention, and is not specifically referring to any component or component of the present invention, and may not be construed as a Limitations of the invention.
  • the present application provides a voltage-free sampling coordinated control system and method for a multi-grid inverter, when multiple inverters are operated in parallel, only A grid voltage collection device is installed in an inverter, and the collected grid voltage information is shared by the communication method to other parallel-operated inverters, so that the coordinated control of the voltage-free sensors is performed and connected to the grid.
  • a voltage-free sampling coordinated control system for a multi-grid inverter includes a plurality of grid-connected inverters and a grid voltage collecting device, and the input of each of the grid-connected inverters The terminals are connected to the renewable power generation unit, and the output terminals of each of the grid-connected inverters are connected to the power grid through a common grid-connected point PCC, and each of the grid-connected inverters is connected to the communication line CH.
  • the grid voltage collecting device is installed on one of the grid-connected inverters, and the grid-connected inverter collects grid voltage information through the grid voltage collecting device, and shares it to other grid-connected inverters through the communication line CH, and other grid-connected inverters
  • the transformer realizes the grid-connected operation of the voltage-free sensor by using the received shared grid voltage information and the locally collected voltage, current and power information.
  • the number of other grid-connected inverters is 2-N
  • the output filter inductance value connected to the grid-connected inverter M is defined as L M
  • the equivalent resistance value of the inductor is R M
  • the three-phase inverter M is three-phase.
  • the output current is defined as i M,a , i M,b and i M,c , collectively referred to as i M,abc
  • the switching frequency of the grid-connected inverter is defined as f M,s
  • the size of the selection is common knowledge in the industry. .
  • the inverter 1 includes a power circuit and a controller.
  • the power circuit part mainly includes DC-DC converter (DC-DC), DC-AC converter (DC-AC), grid-connected current sampling and grid voltage sampling, and the specific parameter design method is common knowledge in the industry.
  • the controller mainly includes an inverter traditional control algorithm and a hybrid pulse generation algorithm.
  • v 1, dcref is the reference value of the DC voltage of the inverter, which is used by the DC control module.
  • the abc is converted into two-phase currents i 1,d and i 1,q (collectively referred to as i 1,dq ), i 1,dq and reference currents i 1,dref and i 1,qref (collectively i 1, dqref ) for comparison, the duty cycle signal v 1, od and v 1, oq (collectively called v 1, odq ) in the dq coordinate system are generated by the regulator, v 1, odq is inversely transformed by dq/abc and PWM
  • the generation module generates a pulse signal and sends it to the power circuit portion.
  • the hybrid pulse generation algorithm includes a conventional PWM synchronization signal generation module, a grid phase signal generation module, and a signal combination module.
  • the algorithm outputs a mixed synchronization signal MixSyn, and the specific process will be elaborated in the following control method.
  • the power circuit part mainly includes a DC-DC converter (DC-DC), a DC AC-DC converter (DC-AC), and grid-connected current sampling.
  • DC-DC DC-DC converter
  • DC-AC DC AC-DC converter
  • grid-connected current sampling DC-DC converter
  • the controller mainly includes the inverter traditional control algorithm, the grid voltage prediction algorithm and the grid voltage correction algorithm.
  • the traditional control algorithm of the inverter is common knowledge in the industry.
  • the maximum power tracking module is used to ensure that the output of the photovoltaic panel is always at the maximum power, and the maximum power tracking module calculates the input power of the inverter P M,in ,v M , dcref is the reference value of the inverter DC voltage, and the DC control module is used to control the DC voltage v M, dc to v M, dcref , ⁇ ′ M is the output result in the grid voltage correction algorithm, and the abc/dq algorithm utilizes ⁇ ′ M converts the three-phase grid-connected current i M, abc into two-phase currents i M,d and i M,q (collectively referred to as i M,dq ), i M,dq and reference current i M in the dq coordinate system .
  • Dref is compared with i M,qref (collectively referred to as i M,dqref ), and the duty cycle signals v M,od and v M,oq (collectively referred to as v M,odq ) are generated by the regulator in the dq coordinate system.
  • M, odq generates a pulse signal through dq/abc inverse transform and PWM generation module and sends it to the power circuit part.
  • the grid voltage prediction algorithm predicts the actual grid voltage phase according to the two-phase sampling current information in the dq coordinate system of the grid-connected inverter and the known inverter output filter parameters.
  • the grid voltage correction algorithm receives the mixed synchronization signal MixSyn, sampling.
  • the specific process will be elaborated in the following control method.
  • a control method based on the above non-voltage sampling coordinated control system for a multi-grid inverter comprising:
  • Step 1) After the grid-connected inverter 1 collects the instantaneous value of the grid voltage, the phase-locked loop PLL algorithm is used to obtain accurate grid voltage phase information, and the grid voltage phase information is converted into the pulse signal Syn2;
  • Step 2 The grid-connected inverter 1 combines the pulse signal Syn2 with the conventional PWM synchronizing pulse signal Syn1 to generate a mixed synchronizing signal MixSyn including both the grid voltage phase information and the PWM synchronizing information, and transmits the mixed synchronizing signal MixSyn to the other Network inverter 2-N;
  • Step 3 The other grid-connected inverter 2-N predicts the actual grid voltage phase according to the collected grid-connected current value and the inverter parameters, and then uses the received mixed synchronization signal MixSyn and the input and output parameter pairs of the inverter. The predicted grid voltage phase is corrected to achieve grid-connected operation of the voltage-free sensor.
  • the grid phase generating module 1PU of the inverter 1 receives the phase signal generated by the phase locked loop PLL, and generates the synchronization signal Syn2 when the phase is zero, and the Syn2 changes from 1 to 0 when the phase is 360°. , from 0 to 1 after a machine cycle of a digital signal processor.
  • the synchronizing signal Syn1 generated by the Syn2 and the conventional PWM synchronizing signal generating module 1GSU is processed by the signal combining module 1MU to generate a mixed synchronizing signal MixSyn, wherein the rising edge of the Syn1 signal is the rising edge of the mixed synchronizing signal MixSyn signal.
  • the falling edge of the Syn2 signal is the falling edge of the mixed sync signal MixSyn.
  • the method for generating the Syny1 is the method described in the patent “201410073512.0, Distributed Grid-Connected Inverter Global Synchronous Pulse Width Modulation System and Method”.
  • the other grid-connected inverters 2-N predict the actual grid voltage phase through the grid voltage prediction algorithm, and correct the predicted grid voltage phase by the grid voltage correction algorithm.
  • the inverter is connected to the grid to output the current predicted value dq component.
  • the actual output current dq components i M,d , i M,q , the corrected grid voltage angular frequency ⁇ ′ M and the inverter output filter inductor value L M calculate the voltage predicted value dq component across the output inductor
  • K p and K i are the proportional integral regulator parameters in the grid voltage prediction algorithm, and the specific selection method is commonly known in the industry;
  • the voltage predicted value dq component across the output inductor of the inverter is utilized.
  • the output filter inductance value L M , the inductor equivalent resistance value R M and the corrected grid voltage angular frequency ⁇ ′ M calculate the dq component of the inverter grid-connected output current predicted value
  • the duty cycle signal dq components v M, od , v M, oq , DC voltage v M, dc in the dq coordinate system are used , and the voltage prediction value dq component across the output inductor is used. Calculate the dq component of the grid voltage prediction value
  • Predicted voltage correction algorithm using the inverter input power P M, In, dq actual output current component i M, d, i M, q calculate the input power and the output current dq components i M, d, i M, q
  • the ratio of the modulus values ⁇ M,k The ratio of the modulus values ⁇ M,k :
  • the received mixed synchronization signal MixSyn generates a reset signal Reset through the grid phase synchronization module 1RU, specifically: the grid phase synchronization module 1RU detects a falling edge in the mixed synchronization signal MixSyn to generate a reset signal Reset;
  • the maximum value tracking algorithm MVT utilizes the network voltage prediction value dq component Phase-locked result
  • the ratio ⁇ M,k , the corrected grid voltage angular frequency ⁇ ′ M,k-1 in the previous step calculates the currently corrected grid voltage angular frequency ⁇ ′ M,k .
  • the corrected grid voltage phase ⁇ ' M is calculated using the corrected grid voltage angular frequency ⁇ ' M,k :
  • the specific steps of the maximum value tracking algorithm MVT are:
  • variable with k represents the result of this calculation
  • variable with k-1 represents the result of the last calculation
  • ⁇ ′ is the value of each change of the angular frequency, which has the value of the switching frequency f M,s and The rated operating frequency f 0 of the grid is obtained:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种用于多并网逆变器的无电压采样协调控制系统及方法,包括多个并网逆变器和一个电网电压采集装置,每个所述并网逆变器的输入端均与发电单元连接,每个所述并网逆变器的输出端均通过公共并网点与电网连接,每个所述并网逆变器间均与通讯线路连接,所述电网电压采集装置加装于其中一个并网逆变器上,该并网逆变器通过电网电压采集装置采集电网电压信息,并通过通讯线路共享至其他并网逆变器,其他并网逆变器利用接收到的共享电网电压信息及本地采集的电压、电流和功率信息实现无电压传感器的并网运行。

Description

一种用于多并网逆变器的无电压采样协调控制系统及方法 技术领域
本发明涉及一种用于多并网逆变器的无电压采样协调控制系统及方法。
背景技术
随着可再生能源发电技术的不断发展,可再生能源的装机容量不断增加。并网逆变器是将光伏电池板、风力发电机接入电网的关键设备。以集中式光伏电站、风电场为代表的大型可再生能源发电系统中需要装备数量众多的并网逆变器。
并网逆变器在并网运行时需要获取准确的电网电压幅值、相角和频率信息,以保证逆变器在电网正常运行状况下向电网输入有功功率或电网电压降低时提供无功功率支撑。传统方法多采用电网电压采样加锁相环的方法获取电网电压信息。因此,并网逆变器要加装电压检测装置。由于控制器允许输入电压幅值低,为保证准确的电网电压检测,电网电压检测装置要包括电压互感器、运算放大器等装置,电压检测装置会增加逆变器成本。
现有技术多是在每台并网变换器中加装电压采集装置,虽然每台逆变器都可以根据本地电压信息计算出电压幅值、相角、频率信息,但电压采集装置增加了系统的成本降低了逆变器的竞争优势。现有专利、论文提出了多种改进形式的电网电压获取方法,主要是为了提高电网电压畸变情况下的检测精度,没有摆脱对电压采集装置的依赖。
现有大型并网逆变器系统中会加装RS485等通讯设施,对逆变器的运行参数进行实施监视。大规模并网逆变器系统具有逆变器距离近、并网运行参数相似等特点,基于本地电压信息的锁相方法没有充分利用通讯设施的优势,造成 硬件、算法的过度冗余。
专利申请号为“201410073512.0”的专利“分布式并网逆变系统全局同步脉宽调制系统及方法”公开了一种分布式并网逆变系统全局同步脉宽调制系统,确定了全局脉宽调制系统的基本结构,包括主控单元(全局同步单元)和位于不同地理位置的若干个并网逆变器,每个所述并网逆变器均与分布式电源连接,每个并网逆变器均通过公共并网点与电网连接,所述主控单元与所有的并网逆变器通信,所述主控单元接收各个并网逆变器的信息,确定全局同步策略后,将包含全局同步策略的全局同步信号分别发送给各个并网逆变器,各个并网逆变器利用全局同步信号调整自己的脉宽调制波相位,以达到各个并网逆变器脉宽调制波之间能够满足谐波抵消的相位差,从而抵消各个并网逆变器注入电网的谐波电流,该方法能够有效降低总电流的谐波含量。但该专利没有提及如何利用现有的通讯通道进行无电压传感器协调控制。
发明内容
为了解决现有技术的不足,本发明提供了一种用于多并网逆变器的无电压采样协调控制系统及方法,通过在多台逆变器并联运行时,仅在一台逆变器中加装电网电压采集装置,并利用通讯方式将采集的电网电压信息共享到其他并联运行逆变器,实现无电压传感器的协调控制并网运行。
为了实现上述目的,本发明的技术方案如下:
一种用于多并网逆变器的无电压采样协调控制系统,包括多个并网逆变器和一个电网电压采集装置,每个所述并网逆变器的输入端均与发电单元连接,每个所述并网逆变器的输出端均通过公共并网点与电网连接,每个所述并网逆变器间均与通讯线路连接,所述电网电压采集装置加装于其中一个并网逆变器 上,该并网逆变器通过电网电压采集装置采集电网电压信息,并通过通讯线路共享至其他并网逆变器,其他并网逆变器利用接收到的共享电网电压信息及本地采集的电压、电流和功率信息实现无电压传感器的并网运行。
一种基于上述用于多并网逆变器的无电压采样协调控制系统的控制方法,包括:
步骤1)加装电网电压采集装置的并网逆变器采集电网电压瞬时值后,利用锁相环PLL算法获得准确的电网电压相位信息,并将电网电压相位信息转换成脉冲信号Syn2;
步骤2)加装电网电压采集装置的并网逆变器将脉冲信号Syn2与传统的PWM同步脉冲信号Syn1结合,生成同时包含电网电压相位信息和PWM同步信息的混合同步信号MixSyn,并将混合同步信号MixSyn传递至其他并网逆变器;
步骤3)其他并网逆变器根据采集的逆变器并网电流值和逆变器参数预测实际电网电压相位,再利用接收的混合同步信号MixSyn和逆变器的输入输出参数对预测的电网电压相位进行校正,从而实现无电压传感器的并网运行。
进一步的,所述步骤1)中,逆变器的电网相位产生模块接收锁相环PLL产生的相位信号,在相位为零时刻产生同步信号Syn2,Syn2在相位为360°时由1跳变为0,经过1个数字信号处理器的机器周期后由0变为1。
进一步的,所述步骤2)中,Syn2与传统PWM同步信号产生模块产生的同步信号Syn1经过信号结合模块处理产生混合同步信号MixSyn,其中,Syn1信号的上升沿为混合同步信号MixSyn信号的上升沿,Syn2信号的下降沿为混合同步信号MixSyn的下降沿。
进一步的,所述步骤3)中,其他并网逆变器通过电网电压预测算法预测实际电网电压相位,并通过电网电压矫正算法对预测的电网电压相位进行校正。
进一步的,所述电网电压预测算法为根据并网逆变器dq坐标系下的两相采样电流信息以及已知的逆变器输出滤波参数预测实际的电网电压相位。
进一步的,所述电网电压矫正算法为通过接收的混合同步信号MixSyn、并网逆变器实际输出电流和输入功率对电网电压相位进行矫正,并输出经过矫正的电网电压预测相位。
进一步的,在电网电压预测算法中,利用逆变器并网输出电流预测值dq分量
Figure PCTCN2018115560-appb-000001
实际输出电流dq分量i M,d、i M,q,经修正的电网电压角频率ω′ M和逆变器输出滤波电感值L M计算输出电感两端的电压预测值dq分量
Figure PCTCN2018115560-appb-000002
Figure PCTCN2018115560-appb-000003
其中,K p、K i为电网电压预测算法中的比例积分调节器参数;
在电网电压预测算法中,利用逆变器输出电感两端的电压预测值dq分量
Figure PCTCN2018115560-appb-000004
Figure PCTCN2018115560-appb-000005
输出滤波电感值L M,电感等效电阻值为R M和经修正的电网电压角频率ω′ M计算出逆变器并网输出电流预测值dq分量
Figure PCTCN2018115560-appb-000006
Figure PCTCN2018115560-appb-000007
在电网电压预测算法中,利用dq坐标系下占空比信号v M,od,v M,oq,直流电压v M,dc,输出电感两端的电压预测值dq分量
Figure PCTCN2018115560-appb-000008
计算出电网电压预测值dq分量
Figure PCTCN2018115560-appb-000009
Figure PCTCN2018115560-appb-000010
进一步的,在预测电压矫正算法中,利用逆变器输入功率P M,In,实际输出电流dq分量i M,d、i M,q计算出输入功率与输出电流dq分量i M,d、i M,q模值的比值λ M,k
Figure PCTCN2018115560-appb-000011
其中,j表示虚数单位。在预测电压矫正算法中,接收到的混合同步信号MixSyn经过电网相位同步模块产生复位信号Reset,具体为:电网相位同步模块检测出混合同步信号MixSyn中的下降沿时产生复位信号Reset;
在预测电压矫正算法中,最大值追踪算法MVT利用网电压预测值dq分量
Figure PCTCN2018115560-appb-000012
的锁相结果
Figure PCTCN2018115560-appb-000013
比值λ M,k,上一步中经修正的电网电压角频率ω′ M,k-1计算出当前经修正的电网电压角频率ω′ M,k
在预测电压矫正算法中,经矫正后的电网电压相位θ′ M为利用经矫正后的电网电压角频率ω′ M,k计算得到:
θ′ M=ω′ M,k·t                                                    (1-5)
当接收到复位信号Reset时,时间t变为0。
进一步的,所述最大值追踪算法MVT的具体步骤为:
如果λ M,kM,k-1且ω′ M,k<ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1-Δω′
如果λ M,kM,k-1且ω′ M,k>ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1+Δω′
如果λ M,kM,k-1且ω′ M,k>ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1-Δω′
如果λ M,kM,k-1且ω′ M,k<ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1+Δω′
其中,带有k的变量表示本次计算结果,带有k-1的变量表示上次计算结果,Δω′为角频率每次改变的数值,其具取值可利用开关频率f M,s和电网额定运行频率f 0求得:
Figure PCTCN2018115560-appb-000014
上述各式的下标中,M表示当前并网逆变器编号。
与现有技术相比,本发明的有益效果是:
(1)本专利所提用于多台并网逆变器系统的无电压传感器协调控制系统及方法,只需在逆变器1中装设一套电压采样装置,相较于现有的在每台并网逆变器中装设电压采样装置而言,本专利所提系统能够降低多台并网逆变器系统的整体成本。
(2)本专利所提用于多台并网逆变器系统的无电压传感器协调控制系统及方法,相较于现有每台逆变器单独采样电网电压相位的方法而言,能够增加锁相的一致性,提高多台逆变器整体的响应特性。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明含有通讯通道的多逆变器并联系统示意图;
图2为本发明逆变器1的功率电路及各部分控制算法示意图;
图3为本发明逆变器2至N的功率电路及各部分控制算法示意图;
图4本发明逆变器1中混合同步信号产生及逆变器2至N复位信号产生方法示意图
图5本发明修正电网电压角频率的最大值追踪算法流程图。
具体实施方式
下面结合附图与具体实施例对本发明做进一步的说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本发明中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本发明各部件或元件结构关系而确定的关系词,并非特指本发明中任一部件或元件,不能理解为对本发明的限制。
本发明中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体 情况确定上述术语在本发明中的具体含义,不能理解为对本发明的限制。
正如背景技术所介绍的,现有技术中存在每台并网变换器中加装电压采集装置,增加了系统的成本降低了逆变器的竞争优势,且没有充分利用通讯设施,造成硬件、算法的过度冗余的问题,为了解决如上的技术问题,本申请提供了一种用于多并网逆变器的无电压采样协调控制系统及方法,通过在多台逆变器并联运行时,仅在一台逆变器中加装电网电压采集装置,并利用通讯方式将采集的电网电压信息共享到其他并联运行逆变器,实现无电压传感器的协调控制并网运行。
如图1所示,一种用于多并网逆变器的无电压采样协调控制系统,包括多个并网逆变器和一个电网电压采集装置,每个所述并网逆变器的输入端均与可再生发电单元连接,每个所述并网逆变器的输出端均通过公共并网点PCC与电网连接,每个所述并网逆变器间均与通讯线路CH连接,所述电网电压采集装置加装于其中一个并网逆变器上,该并网逆变器通过电网电压采集装置采集电网电压信息,并通过通讯线路CH共享至其他并网逆变器,其他并网逆变器利用接收到的共享电网电压信息及本地采集的电压、电流和功率信息实现无电压传感器的并网运行。
为方便解释,总的并网逆变器数量定义为N,逆变器编号定义为M,因此M=1,…,N,其中加装电网电压采集装置的并网逆变器编号为1,其他并网逆变器的编号为2-N,并定义并网逆变器M所连接的输出滤波电感值为L M,电感等效电阻值为R M,并网逆变器M的三相输出电流定义为i M,a、i M,b和i M,c,合称为i M,abc,并网逆变器的开关频率定义为f M,s,其大小的选择为业内公知常识。
如图2所示,所述逆变器1包括功率电路和控制器。
功率电路部分主要包括直流-直流变换器(DC-DC)、直流-交流变换器(DC-AC)、并网电流采样和电网电压采样,其具体参数设计方法为业内公知常识。
控制器主要包括逆变器传统控制算法和混合脉冲产生算法。
逆变器传统控制算法为业内公知常识,其中,最大功率追踪模块用来保证光伏电池板的输出始终保持在最大功率,v 1,dcref为逆变器直流电压的参考值,直流控制模块用来将直流电压v 1,dc控制到v 1,dcref,锁相环PLL根据采样的电网电压v 1,abc计算电网电压的实际相位θ,abc/dq算法利用θ将三相并网电流i 1,abc转换为dq坐标系下两相电流i 1,d和i 1,q(合称为i 1,dq),i 1,dq与参考电流i 1,dref和i 1,qref(合称为i 1,dqref)进行比较,经过调节器产生dq坐标系下占空比信号v 1,od和v 1,oq(合称为v 1,odq),v 1,odq经过dq/abc反变换和PWM生成模块产生脉冲信号并发送到功率电路部分。
混合脉冲产生算法包括传统PWM同步信号产生模块、电网相位信号产生模块和信号结合模块,该算法输出为混合同步信号MixSyn,具体过程将在下文控制方法中详细阐述。
如图3所示,所述逆变器M(M=2,3,……,N)包括功率电路和控制器。
功率电路部分主要包括直流-直流变换器(DC-DC)、直流交-流变换器(DC-AC)和并网电流采样。
控制器主要包括逆变器传统控制算法、电网电压预测算法和电网电压矫正算法。逆变器传统控制算法为业内公知常识,其中,最大功率追踪模块用来保证光伏电池板的输出始终保持在最大功率,最大功率追踪模块计算出逆变器的输入功率P M,in,v M,dcref为逆变器直流电压的参考值,直流控制模块用来将直流电压 v M,dc控制到v M,dcref,θ′ M为电网电压矫正算法中的输出结果,abc/dq算法利用θ′ M将三相并网电流i M,abc转换为dq坐标系下两相电流i M,d和i M,q(合称为i M,dq),i M,dq与参考电流i M,dref和i M,qref(合称为i M,dqref)进行比较,经过调节器产生dq坐标系下占空比信号v M,od和v M,oq(合称为v M,odq),v M,odq经过dq/abc反变换和PWM生成模块产生脉冲信号并发送到功率电路部分。
电网电压预测算法根据并网逆变器dq坐标系下的两相采样电流信息以及已知的逆变器输出滤波参数预测实际的电网电压相位,电网电压矫正算法通过接收的混合同步信号MixSyn、采样的i M,dq和逆变器输入功率P M,in对电网电压相位进行矫正,输出为经过矫正的电网电压预测相位θ′ M,具体过程将在下文控制方法中详细阐述。
一种基于上述用于多并网逆变器的无电压采样协调控制系统的控制方法,包括:
步骤1)并网逆变器1采集电网电压瞬时值后,利用锁相环PLL算法获得准确的电网电压相位信息,并将电网电压相位信息转换成脉冲信号Syn2;
步骤2)并网逆变器1将脉冲信号Syn2与传统的PWM同步脉冲信号Syn1结合,生成同时包含电网电压相位信息和PWM同步信息的混合同步信号MixSyn,并将混合同步信号MixSyn传递至其他并网逆变器2-N;
步骤3)其他并网逆变器2-N根据采集的逆变器并网电流值和逆变器参数预测实际电网电压相位,再利用接收的混合同步信号MixSyn和逆变器的输入输出参数对预测的电网电压相位进行校正,从而实现无电压传感器的并网运行。
所述步骤1)中,逆变器1的电网相位产生模块1PU接收锁相环PLL产生的相位信号,在相位为零时刻产生同步信号Syn2,Syn2在相位为360°时由1 跳变为0,经过1个数字信号处理器的机器周期后由0变为1。
所述步骤2)中,Syn2与传统PWM同步信号产生模块1GSU产生的同步信号Syn1经过信号结合模块1MU处理产生混合同步信号MixSyn,其中,Syn1信号的上升沿为混合同步信号MixSyn信号的上升沿,Syn2信号的下降沿为混合同步信号MixSyn的下降沿,具体实现过程如图4所示。
具体实施中,所述Syny1的产生方式为专利“201410073512.0,分布式并网逆变系统全局同步脉宽调制系统及方法”中所述方法。
所述步骤3)中,其他并网逆变器2-N通过电网电压预测算法预测实际电网电压相位,并通过电网电压矫正算法对预测的电网电压相位进行校正。
电网电压预测算法的具体过程如图3所示。
在电网电压预测算法中,利用逆变器并网输出电流预测值dq分量
Figure PCTCN2018115560-appb-000015
实际输出电流dq分量i M,d、i M,q,经修正的电网电压角频率ω′ M和逆变器输出滤波电感值L M计算输出电感两端的电压预测值dq分量
Figure PCTCN2018115560-appb-000016
Figure PCTCN2018115560-appb-000017
其中,K p、K i为电网电压预测算法中的比例积分调节器参数,具体选取方法为业内公知常识;
在电网电压预测算法中,利用逆变器输出电感两端的电压预测值dq分量
Figure PCTCN2018115560-appb-000018
Figure PCTCN2018115560-appb-000019
输出滤波电感值L M,电感等效电阻值为R M和经修正的电网电压角频率ω′ M计算出逆变器并网输出电流预测值dq分量
Figure PCTCN2018115560-appb-000020
Figure PCTCN2018115560-appb-000021
在电网电压预测算法中,利用dq坐标系下占空比信号dq分量v M,od,v M,oq,直流电压v M,dc,输出电感两端的电压预测值dq分量
Figure PCTCN2018115560-appb-000022
计算出电网电压预测值dq分量
Figure PCTCN2018115560-appb-000023
Figure PCTCN2018115560-appb-000024
预测电压矫正算法的具体过程如图3所示。
在预测电压矫正算法中,利用逆变器输入功率P M,In,实际输出电流dq分量i M,d、i M,q计算出输入功率与输出电流dq分量i M,d、i M,q模值的比值λ M,k
Figure PCTCN2018115560-appb-000025
在预测电压矫正算法中,接收到的混合同步信号MixSyn经过电网相位同步模块1RU产生复位信号Reset,具体为:电网相位同步模块1RU检测出混合同步信号MixSyn中的下降沿时产生复位信号Reset;
在预测电压矫正算法中,最大值追踪算法MVT利用网电压预测值dq分量
Figure PCTCN2018115560-appb-000026
的锁相结果
Figure PCTCN2018115560-appb-000027
比值λ M,k,上一步中经修正的电网电压角频率ω′ M,k-1计算出当前经修正的电网电压角频率ω′ M,k
在预测电压矫正算法中,经矫正后的电网电压相位θ′ M为利用经矫正后的电网电压角频率ω′ M,k计算得到:
θ′ M=ω′ M,k·t                                                     (1-5)
当接收到复位信号Reset时,时间t变为0。
如图5所示,所述最大值追踪算法MVT的具体步骤为:
如果λ M,kM,k-1且ω′ M,k<ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1-Δω′
如果λ M,kM,k-1且ω′ M,k>ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1+Δω′
如果λ M,kM,k-1且ω′ M,k>ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1-Δω′
如果λ M,kM,k-1且ω′ M,k<ω′ M,k-1,则执行算法:
ω′ M,k=ω′ M,k-1+Δω′
其中,带有k的变量表示本次计算结果,带有k-1的变量表示上次计算结果,Δω′为角频率每次改变的数值,其具取值可利用开关频率f M,s和电网额定运行频率f 0求得:
Figure PCTCN2018115560-appb-000028
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上, 本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种用于多并网逆变器的无电压采样协调控制系统,其特征在于:包括多个并网逆变器和一个电网电压采集装置,每个所述并网逆变器的输入端均与发电单元连接,每个所述并网逆变器的输出端均通过公共并网点与电网连接,每个所述并网逆变器间均与通讯线路连接,所述电网电压采集装置加装于其中一个并网逆变器上,该并网逆变器通过电网电压采集装置采集电网电压信息,并通过通讯线路共享至其他并网逆变器,其他并网逆变器利用接收到的共享电网电压信息及本地采集的电压、电流和功率信息实现无电压传感器的并网运行。
  2. 一种基于如权利要求1所述的用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,包括:
    步骤1)加装电网电压采集装置的并网逆变器采集电网电压瞬时值后,利用锁相环PLL算法获得准确的电网电压相位信息,并将电网电压相位信息转换成脉冲信号Syn2;
    步骤2)加装电网电压采集装置的并网逆变器将脉冲信号Syn2与传统的PWM同步脉冲信号Syn1结合,生成同时包含电网电压相位信息和PWM同步信息的混合同步信号MixSyn,并将混合同步信号MixSyn传递至其他并网逆变器;
    步骤3)其他并网逆变器根据采集的逆变器并网电流值和逆变器参数预测实际电网电压相位,再利用接收的混合同步信号MixSyn和逆变器的输入输出参数对预测的电网电压相位进行校正,从而实现无电压传感器的并网运行。
  3. 如权利要求2所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,所述步骤1)中,逆变器的电网相位产生模块接收锁相环PLL产生的相位信号,在相位为零时刻产生同步信号Syn2,Syn2在相位为 360°时由1跳变为0,经过1个数字信号处理器的机器周期后由0变为1。
  4. 如权利要求2所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,所述步骤2)中,Syn2与传统PWM同步信号产生模块产生的同步信号Syn1经过信号结合模块处理产生混合同步信号MixSyn,其中,Syn1信号的上升沿为混合同步信号MixSyn信号的上升沿,Syn2信号的下降沿为混合同步信号MixSyn的下降沿。
  5. 如权利要求2所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,所述步骤3)中,其他并网逆变器通过电网电压预测算法预测实际电网电压相位,并通过电网电压矫正算法对预测的电网电压相位进行校正。
  6. 如权利要求5所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,所述电网电压预测算法为根据并网逆变器dq坐标系下的两相采样电流信息以及已知的逆变器输出滤波参数预测实际的电网电压相位。
  7. 如权利要求5所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,所述电网电压矫正算法为通过接收的混合同步信号MixSyn、并网逆变器实际输出电流和输入功率对电网电压相位进行矫正,并输出经过矫正的电网电压预测相位。
  8. 如权利要求6所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,在电网电压预测算法中,利用逆变器并网输出电流预测值dq分量
    Figure PCTCN2018115560-appb-100001
    实际输出电流dq分量i M,d、i M,q,经修正的电网电压角频率ω′ M和逆变器输出滤波电感值L M计算输出电感两端的电压预测值dq分量
    Figure PCTCN2018115560-appb-100002
    Figure PCTCN2018115560-appb-100003
    其中,K p、K i为电网电压预测算法中的比例积分调节器参数;
    在电网电压预测算法中,利用逆变器输出电感两端的电压预测值dq分量
    Figure PCTCN2018115560-appb-100004
    Figure PCTCN2018115560-appb-100005
    输出滤波电感值L M,电感等效电阻值为R M和经修正的电网电压角频率ω′ M计算出逆变器并网输出电流预测值dq分量
    Figure PCTCN2018115560-appb-100006
    Figure PCTCN2018115560-appb-100007
    在电网电压预测算法中,利用dq坐标系下占空比信号dq分量v M,od,v M,oq,直流电压v M,dc,输出电感两端的电压预测值dq分量
    Figure PCTCN2018115560-appb-100008
    计算出电网电压预测值dq分量
    Figure PCTCN2018115560-appb-100009
    Figure PCTCN2018115560-appb-100010
    上述各式的下标中,M表示当前并网逆变器编号,其中M=2,3,……,N。
  9. 如权利要求7所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,在预测电压矫正算法中,利用逆变器输入功率P M,In,实际输出电流i M,d、i M,q计算出输入功率与输出电流i M,d、i M,q模值的比值λ M,k
    Figure PCTCN2018115560-appb-100011
    在预测电压矫正算法中,接收到的混合同步信号MixSyn经过电网相位同步模块1RU产生复位信号Reset,具体为:电网相位同步模块1RU检测出混合同步信号MixSyn中的下降沿时产生复位信号Reset;
    在预测电压矫正算法中,最大值追踪算法MVT利用网电压预测值dq分量
    Figure PCTCN2018115560-appb-100012
    的锁相结果
    Figure PCTCN2018115560-appb-100013
    比值λ M,k,上一步中经修正的电网电压角频率ω′ M,k-1计算出当前经修正的电网电压角频率ω′ M,k
    在预测电压矫正算法中,经矫正后的电网电压相位θ′ M为利用经矫正后的电网电压角频率ω′ M,k计算得到:
    θ′ M=ω′ M,k·t    (1-5)
    当接收到复位信号Reset时,时间t变为0;
    上述各式的下标中,M表示当前并网逆变器编号,其中M=2,3,……,N。
  10. 如权利要求9所述的一种用于多并网逆变器的无电压采样协调控制系统的控制方法,其特征在于,所述最大值追踪算法MVT的具体步骤为:
    如果λ M,kM,k-1且ω′ M,k<ω′ M,k-1,则执行算法:
    ω′ M,k=ω′ M,k-1-Δω′
    如果λ M,kM,k-1且ω′ M,k>ω′ M,k-1,则执行算法:
    ω′ M,k=ω′ M,k-1+Δω′
    如果λ M,kM,k-1且ω′ M,k>ω′ M,k-1,则执行算法:
    ω′ M,k=ω′ M,k-1-Δω′
    如果λ M,kM,k-1且ω′ M,k<ω′ M,k-1,则执行算法:
    ω′ M,k=ω′ M,k-1+Δω′
    其中,带有k的变量表示本次计算结果,带有k-1的变量表示上次计算结果, Δω′为角频率每次改变的数值,其具取值可利用开关频率f M,s和电网额定运行频率f 0求得:
    Figure PCTCN2018115560-appb-100014
PCT/CN2018/115560 2018-03-29 2018-11-15 一种用于多并网逆变器的无电压采样协调控制系统及方法 WO2019184389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810273565.5A CN108336760B (zh) 2018-03-29 2018-03-29 一种用于多并网逆变器的无电压采样协调控制系统及方法
CN201810273565.5 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184389A1 true WO2019184389A1 (zh) 2019-10-03

Family

ID=62931557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115560 WO2019184389A1 (zh) 2018-03-29 2018-11-15 一种用于多并网逆变器的无电压采样协调控制系统及方法

Country Status (2)

Country Link
CN (1) CN108336760B (zh)
WO (1) WO2019184389A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994083A (zh) * 2021-02-03 2021-06-18 深圳科士达科技股份有限公司 一种并网的快速预同步控制方法及控制系统
CN113625054A (zh) * 2021-08-20 2021-11-09 江苏固德威电源科技股份有限公司 一种电网阻抗检测装置、逆变器及电网阻抗检测方法
CN114629151A (zh) * 2022-04-01 2022-06-14 电力规划总院有限公司 储能并网变流器的电流解耦控制方法、装置及设备
CN115049323A (zh) * 2022-08-16 2022-09-13 东方电子股份有限公司 一种基于分布式资源协同的虚拟电厂监督系统
CN115800380A (zh) * 2022-12-26 2023-03-14 山东大学 一种并网变流脉宽调制相位及频率协同方法及系统
CN116599159A (zh) * 2023-07-13 2023-08-15 湖北长江电气有限公司 光伏并网逆变器的智能控制方法
CN116599125A (zh) * 2023-05-04 2023-08-15 国网江苏省电力有限公司电力科学研究院 一种新能源场站仿真优化方法、装置、设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336760B (zh) * 2018-03-29 2019-08-23 山东大学 一种用于多并网逆变器的无电压采样协调控制系统及方法
CN109004681B (zh) * 2018-09-05 2019-07-12 山东大学 基于锁相环的无通讯全局调制信号同步控制方法及系统
CN111487498B (zh) * 2020-05-20 2022-03-25 广州思泰信息技术有限公司 一种配电自动化远程可用性测试系统及方法
CN112803803B (zh) * 2021-01-29 2022-04-22 中国兵器工业集团第二一四研究所苏州研发中心 基于模糊逻辑pi控制器的柔性多状态开关控制方法及系统
CN113437896B (zh) * 2021-06-25 2022-08-19 北京英博电气股份有限公司 一种多逆变器并联的控制方法和系统
CN114050605B (zh) * 2021-11-18 2023-08-15 山东大学 一种基于本地电网相位的变频脉宽调制同步系统及方法
CN114050597B (zh) * 2021-11-19 2024-05-14 山东大学 多并网逆变器的协同主动热控制系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103004A1 (en) * 2005-11-10 2007-05-10 Uis Abler Electronics Co., Ltd. Islanding detection apparatus for a distributed generation power system and detection method therefor
CN103023060A (zh) * 2012-09-14 2013-04-03 深圳市汇川技术股份有限公司 光伏逆变器系统及谐波抑制方法
CN103840485A (zh) * 2014-02-28 2014-06-04 山东大学 分布式并网逆变系统全局同步脉宽调制系统及方法
CN104578884A (zh) * 2015-02-04 2015-04-29 国家电网公司 一种低电压微电网多逆变器并联电压不平衡控制方法
CN105762789A (zh) * 2015-11-09 2016-07-13 湘潭大学 一种无电压传感器的三相变流器模型预测控制方法
CN106527272A (zh) * 2016-12-01 2017-03-22 中国东方电气集团有限公司 一种电力电子通用控制系统
CN108336760A (zh) * 2018-03-29 2018-07-27 山东大学 一种用于多并网逆变器的无电压采样协调控制系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606965B (zh) * 2013-11-27 2015-10-07 国家电网公司 一种基于准实时同步信号的储能逆变器的联网控制方法
CN105896593B (zh) * 2016-03-31 2018-08-07 江苏固德威电源科技股份有限公司 光伏并网逆变器多机并联运行协调控制方法
CN106374764B (zh) * 2016-09-21 2019-08-13 南京航空航天大学 一种isop并网逆变器组合系统及其目标多重化控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103004A1 (en) * 2005-11-10 2007-05-10 Uis Abler Electronics Co., Ltd. Islanding detection apparatus for a distributed generation power system and detection method therefor
CN103023060A (zh) * 2012-09-14 2013-04-03 深圳市汇川技术股份有限公司 光伏逆变器系统及谐波抑制方法
CN103840485A (zh) * 2014-02-28 2014-06-04 山东大学 分布式并网逆变系统全局同步脉宽调制系统及方法
CN104578884A (zh) * 2015-02-04 2015-04-29 国家电网公司 一种低电压微电网多逆变器并联电压不平衡控制方法
CN105762789A (zh) * 2015-11-09 2016-07-13 湘潭大学 一种无电压传感器的三相变流器模型预测控制方法
CN106527272A (zh) * 2016-12-01 2017-03-22 中国东方电气集团有限公司 一种电力电子通用控制系统
CN108336760A (zh) * 2018-03-29 2018-07-27 山东大学 一种用于多并网逆变器的无电压采样协调控制系统及方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994083A (zh) * 2021-02-03 2021-06-18 深圳科士达科技股份有限公司 一种并网的快速预同步控制方法及控制系统
CN112994083B (zh) * 2021-02-03 2023-10-03 深圳科士达新能源有限公司 一种并网的快速预同步控制方法及控制系统
CN113625054A (zh) * 2021-08-20 2021-11-09 江苏固德威电源科技股份有限公司 一种电网阻抗检测装置、逆变器及电网阻抗检测方法
CN114629151A (zh) * 2022-04-01 2022-06-14 电力规划总院有限公司 储能并网变流器的电流解耦控制方法、装置及设备
CN115049323A (zh) * 2022-08-16 2022-09-13 东方电子股份有限公司 一种基于分布式资源协同的虚拟电厂监督系统
CN115049323B (zh) * 2022-08-16 2022-11-15 东方电子股份有限公司 一种基于分布式资源协同的虚拟电厂监督系统
CN115800380A (zh) * 2022-12-26 2023-03-14 山东大学 一种并网变流脉宽调制相位及频率协同方法及系统
CN115800380B (zh) * 2022-12-26 2023-12-08 山东大学 一种并网变流脉宽调制相位及频率协同方法及系统
CN116599125A (zh) * 2023-05-04 2023-08-15 国网江苏省电力有限公司电力科学研究院 一种新能源场站仿真优化方法、装置、设备及存储介质
CN116599125B (zh) * 2023-05-04 2023-11-24 国网江苏省电力有限公司电力科学研究院 一种新能源场站仿真优化方法、装置、设备及存储介质
CN116599159A (zh) * 2023-07-13 2023-08-15 湖北长江电气有限公司 光伏并网逆变器的智能控制方法
CN116599159B (zh) * 2023-07-13 2023-10-13 湖北长江电气有限公司 光伏并网逆变器的智能控制方法

Also Published As

Publication number Publication date
CN108336760A (zh) 2018-07-27
CN108336760B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2019184389A1 (zh) 一种用于多并网逆变器的无电压采样协调控制系统及方法
CN111769591B (zh) 基于双分裂变压器的多逆变器系统双模式组合控制方法
CN103475033B (zh) 无锁相环节三相lcl型并网逆变器电流控制方法及系统
CN102291023B (zh) 三相pwm变换器正负序电压前馈方法
Li et al. PLL-less robust active and reactive power controller for single phase grid-connected inverter with LCL filter
CN205212446U (zh) 一种单相光伏并网逆变器控制装置
CN110138253A (zh) 一种多谐振pr和pi联合控制的光伏并网逆变器控制方法
CN102723741A (zh) 基于下垂控制的微网逆变器的并网预同步控制方法
CN104092245B (zh) 交流旁路单相光伏逆变器及其控制方法和控制装置
CN106571643B (zh) 一种光储微电网系统控制方法
CN103078322B (zh) 风电场储能系统谐波控制器及其参数整定方法
WO2020019550A1 (zh) 基于多同步旋转坐标系的多功能并网逆变器谐波治理方法
CN102904568A (zh) 一种自适应并网变流器单相软锁相环
CN110350551B (zh) 一种电压源型并网变换装置电流直接幅频控制方法及系统
CN105244919A (zh) 一种lcl型逆变器的鲁棒延时补偿并网控制方法
CN109193794A (zh) 一种低压直流微电网的并网控制策略
CN110571796B (zh) 孤岛运行级联h桥微网结构分散交错及分层谐波治理方法
CN107895948B (zh) 一种光伏组串逆变器的谐波检测方法
CN109193793B (zh) 一种变流器免电压检测的并网控制系统和方法
CN104539181A (zh) 基于llc谐振变换的微型光伏并网逆变器
TWI413332B (zh) 電力轉換電路
CN112039359B (zh) 准pci和pi联合控制的单相光伏并网逆变器电流控制方法
CN109301874A (zh) 弱电网下基于电压扰动补偿的并网变换器控制方法
CN106684907B (zh) 提高并网逆变器弱电网暂态运行下系统动态响应的控制方法
Kashani et al. Grid Synchronization of Bidirectional Electric Vehicle Chargers Using Second Order Generalized Integrator based Phase Lock Loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911830

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18911830

Country of ref document: EP

Kind code of ref document: A1