WO2019184377A1 - 功率开关的有源钳位电压应力抑制电路、方法及驱动电路 - Google Patents

功率开关的有源钳位电压应力抑制电路、方法及驱动电路 Download PDF

Info

Publication number
WO2019184377A1
WO2019184377A1 PCT/CN2018/115038 CN2018115038W WO2019184377A1 WO 2019184377 A1 WO2019184377 A1 WO 2019184377A1 CN 2018115038 W CN2018115038 W CN 2018115038W WO 2019184377 A1 WO2019184377 A1 WO 2019184377A1
Authority
WO
WIPO (PCT)
Prior art keywords
active clamp
power switch
current
voltage
circuit
Prior art date
Application number
PCT/CN2018/115038
Other languages
English (en)
French (fr)
Inventor
徐涛涛
梅佳胜
朱铁影
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2019184377A1 publication Critical patent/WO2019184377A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the present invention relates to the field of motor control, and in particular to an active clamp voltage stress suppression circuit, method and drive circuit for a power switch.
  • IGBT Insulated Gate Bipolar Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the active clamping technology detects the voltage between the collector and the emitter of the IGBT through a TVS (Transient Voltage Suppressor), and when the voltage exceeds the breakdown voltage of the TVS, the TVS is reversely broken.
  • TVS Transient Voltage Suppressor
  • the generated breakdown current flows to the gate of the IGBT, thereby slowing down the falling speed of the IGBT gate voltage, slowing down the turn-off speed of the IGBT, thereby reducing the induced electromotive force on the stray inductance, thereby reducing the IGBT during the turn-off process.
  • the voltage stress between the collector and the emitter is reduced.
  • the active clamping method has a good suppression effect on the voltage stress between the collector and the emitter of the IGBT turn-off process, but since the current active clamp method is to turn off the IGBT gate, the voltage stress exceeds the TVS. Clamping voltage, when TVS is reversely breakdownd, the current is injected into the gate through TVS, and the driving circuit outputs a low level during the IGBT turn-off process, so that the current flowing from the TVS to the IGBT gate is bypassed by the driving circuit, TVS Note that the loss of the entry pole current causes the suppression effect on the gate voltage drop speed to be weakened, so the IGBT gate drop speed is faster.
  • the voltage stress between the IGBT collector and the emitter increases, resulting in active clamp technology stress.
  • the increase of the collector voltage voltage between the IGBT collector and the emitter also leads to an increase in the breakdown of the TVS, an increase in the breakdown current, which in turn leads to an increase in the heat loss of the TVS, and the TVS temperature rises. Large, it will also cause the clamping voltage of TVS to be biased.
  • FIG. 1 is a schematic block diagram of an active clamp technique in the prior art.
  • the TVS is reversely broken down.
  • the breakdown current is injected into the IGBT gate G, thereby achieving the purpose of slowing down the IGBT turn-off speed and realizing the voltage stress between the collector C and the emitter E during the clamp-off process.
  • the TVS reverse breakdown current injection gate is extremely L1 path, and the current injected into the gate is lost to the L2 path through the drive circuit.
  • the technical problem to be solved by the present invention is to provide an active clamp of a power switch for the above-mentioned problem of the current leakage of the TVS reverse breakdown into the IGBT gate due to the bypass action of the driving circuit. Voltage stress suppression circuit, method and drive circuit.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an active clamp voltage stress suppression circuit of a power switch, and an active clamp circuit is connected between the input end and the control end of the power switch, including:
  • a detecting module configured to detect whether the power switch triggers an active clamp
  • the execution module is disposed in a driving path of the power switch, and is configured to cut off the driving path when the detecting module detects that the active clamp is triggered.
  • the detection module is respectively connected to the active clamp circuit of the power switch and the execution module, and by detecting the active
  • the clamping circuit outputs a current to the control terminal of the power switch to detect whether the power switch triggers an active clamp; the detecting module determines the active when detecting that the current of the power switch control terminal exceeds a preset current
  • the active clamp of the clamp circuit is triggered and outputs an active clamp detection signal to the execution module upon determining that the active clamp is triggered.
  • the execution module includes a shutdown control switch, the shutdown control switch is connected to the detection module, and the shutdown control switch is used for Turning off when the detection module outputs an active clamp detection signal that is triggered by the active clamp being triggered.
  • the detection module includes:
  • a current detecting unit connected to the active clamp circuit of the power switch, for detecting a current output by the active clamp circuit to a control end of the power switch, and generating a corresponding detection voltage
  • a comparison unit connected to the current detecting unit, configured to compare the detection voltage generated by the current detecting unit with a preset voltage corresponding to the preset current, when the detection voltage exceeds the preset voltage Output low level, otherwise output high level.
  • the execution module includes a shutdown control switch, and a control end of the shutdown control switch is connected to an output end of the comparison unit, The control terminal of the shutdown control switch is turned on when receiving the high level, and turned off when the low level is received.
  • the drive path includes a logic processing unit, the execution module further includes a digital-to-analog conversion unit and a logic and unit, and the detection module further includes An analog to digital conversion unit, wherein:
  • the analog-to-digital conversion unit is respectively connected to an output end of the comparison unit and a first input end of the logic unit, for converting the high level and the low level output by the comparison unit into digital signals, and Outputting the converted digital signal to the logic and unit;
  • a second input end of the logic and unit is connected to the logic processing unit, and an output end of the logic and unit is connected to a control end of the shutdown control switch via the digital to analog conversion unit, where the logic and unit are used And performing logical AND processing on the digital signal output by the analog-to-digital conversion unit and the digital signal output by the logic processing unit, and outputting the logic and the processed signal to the digital-to-analog conversion unit, and then performing digital-to-analog conversion and driving The shutdown control switch.
  • the power switch is an IGBT
  • the active clamp circuit comprises a unidirectional TVS tube, a bidirectional TVS tube and a common diode.
  • the current detecting unit includes a current sampling resistor
  • the comparing unit includes a comparator, a first voltage dividing resistor, and a second voltage dividing resistor
  • the logic and unit includes an AND gate
  • the analog to digital converting unit includes an analog to digital converter.
  • the digital-to-analog conversion unit includes a first digital-to-analog converter, and the driving path further includes a second digital-to-analog converter, a conduction control switch that controls conduction of the power switch, and a driving resistor, and the conduction control switch And the shutdown control switch are both MOS tubes;
  • the first end of the bidirectional TVS tube is connected to the anode of the common diode, the cathode of the common diode is connected to the control end of the power switch, and the second end of the bidirectional TVS tube is connected to the unidirectional TVS tube.
  • a positive pole, a negative pole of the unidirectional TVS tube is connected to an input end of the power switch, a first end of the current sampling resistor is grounded, a second end of the current sampling resistor is connected to a positive pole of the common diode, and a non-inverting input of the comparator, the first end of the first voltage dividing resistor is connected to a fixed voltage, and the second end of the first voltage dividing resistor is connected to the non-inverting input of the comparator and the second sub a first end of the voltage resistor, the second end of the second voltage dividing resistor is grounded, and an output of the comparator is connected to the first input end of the AND gate via the analog to digital converter, the logic processing unit a first port is connected to the second input end of the AND gate, and an output end of the AND gate is connected to the control end of the shutdown control switch via the first digital-to-analog converter, the second port of the logic processing unit is via The second digital-to-analog converter
  • the invention also discloses a driving circuit of a power switch, and an active clamp voltage stress suppression circuit of the power switch as described above is disposed on a high voltage side of the driving circuit.
  • the invention also discloses an active clamp voltage stress suppression method for a power switch, wherein an active clamp circuit is connected between the input end and the control end of the power switch, including:
  • the detecting whether the power switch triggers the active clamp comprises: detecting whether the power switch triggers an active clamp by detecting a current output by the active clamp circuit to a control end of the power switch, and detecting a current Determining that an active clamp of the active clamp circuit of the power switch is triggered when a preset current is exceeded;
  • the cutting off the current drive path of the power switch includes turning off a shutdown control switch disposed in the drive path.
  • the drive path includes a logic processing unit, wherein:
  • the detecting whether the power switch triggers the active clamp comprises: detecting a current output by the active clamp circuit to a control end of the power switch, and generating a corresponding detection voltage; comparing the detection voltage with the Setting a preset voltage corresponding to the current, outputting a low level when the detected voltage exceeds the preset voltage, and outputting a high level; and converting the high level and the low level into a digital signal;
  • the cutting off the current driving path of the power switch includes: logically processing the converted digital signal and the digital signal output by the logic processing unit, and performing digital-to-analog conversion on the logic and the processed signal.
  • the shutdown control switch is driven.
  • An active clamp voltage stress suppression circuit, method and drive circuit for implementing the power switch of the present invention have the following beneficial effects: the present invention detects whether the power switch triggers an active clamp, and the active clamp is detected at the detection module When triggered, the current driving path of the power switch is cut off, thereby eliminating the bypass effect of the driving path on the current of the active clamp injection power switch, thereby improving the utilization of the reverse breakdown current of the active clamp circuit, thereby Improve the clamping effect of the active clamp, reduce the heat loss of the TVS in the active clamp circuit, reduce the heat loss of the drive circuit, and improve the reliability of the active clamp circuit.
  • FIG. 1 is a schematic block diagram of an active clamp technique in the prior art
  • FIG. 2 is a schematic block diagram of an active clamp voltage stress suppression circuit according to Embodiment 1 of the present invention.
  • FIG. 3 is a structural block diagram of an active clamp voltage stress suppression circuit according to Embodiment 2 of the present invention.
  • FIG. 4 is a circuit diagram of an active clamp voltage stress suppression circuit according to Embodiment 3 of the present invention.
  • FIG. 5 is a flowchart of an active clamp voltage stress suppression method according to Embodiment 4 of the present invention.
  • FIG. 6 is a flow chart of an active clamp voltage stress suppression method according to Embodiment 5 of the present invention.
  • the general idea of the present invention is to detect whether the power switch triggers an active clamp, and when the detection module detects that the active clamp is triggered, the drive path of the power switch is cut off, so that the drive path to the active clamp can be eliminated.
  • the bypass of the current injected into the power switch improves the utilization of the reverse breakdown current of the active clamp circuit, thereby improving the clamping effect of the active clamp and reducing the heat of the TVS in the active clamp circuit. Loss, reduce the heat loss of the drive circuit, and improve the reliability of the active clamp circuit.
  • an active clamp circuit 101 is connected between an input terminal and a control terminal of the power switch, and the power switch is not limited to an IGBT, a MOSFET, or the like.
  • the power switch is not limited to an IGBT, a MOSFET, or the like.
  • an IGBT is taken as an example, and the active clamp circuit 101 is connected between the collector and the gate of the IGBT.
  • the active clamp voltage stress suppression circuit of the power switch of the present invention comprises:
  • the detecting module 102 is configured to detect whether the power switch triggers an active clamp
  • the execution module 103 is disposed in the driving path of the power switch, and is configured to cut off the driving path when the detecting module 102 detects that the active clamp is triggered.
  • the active clamp when the active clamp is triggered, a current is injected into the power switch, so it can be determined whether the active clamp is triggered by detecting the magnitude of the current.
  • the currently cut drive path actually refers to the drive path when the control power switch is turned off. If the current drive path is to be cut off, only the power switch is required.
  • a switch tube is set in the drive path when the switch is turned off (either a new switch tube can be added, or the existing switch tube can be directly controlled), and when the detection module 102 detects that the active clamp is triggered, it is turned off.
  • the switch tube can be used.
  • the detecting module 102 is respectively connected to the active clamp circuit 101 of the power switch and the execution module 103, and detects the current outputted to the control terminal of the power switch by the active clamp circuit 101. Whether the power switch triggers the active clamp; the detecting module determines that the active clamp of the active clamp circuit 101 is triggered when detecting that the current of the power switch control terminal exceeds the preset current, and determines that The active clamp detection signal is output to the execution module 103 when the active clamp is triggered.
  • the execution module 103 includes a shutdown control switch, and the shutdown control switch is connected to the detection module 102 for turning off when the detection module 102 outputs an active clamp detection signal, and the shutdown control switch is turned off.
  • the current drive path can be cut away so that the bypass effect of the drive path on the current of the active clamp injection power switch can be eliminated.
  • the detection module 102 and the execution module 103 can be implemented by a combination of software and hardware, or can be implemented entirely by hardware circuits.
  • the detection of the magnitude of the current therein, and the control of the switch after detection, and the like the content of the judgment and the result output can be realized by software.
  • the current magnitude judgment of the detection module 102 can be implemented by a current sampling resistor and a comparator. Two fully hardware implemented embodiments are described below.
  • the active clamp voltage stress suppression circuit of the power switch includes: a detection module 202 and an execution module 203.
  • the detection module 202 includes a current detection unit and a comparison unit
  • the execution module 203 includes a shutdown control switch, and the shutdown control switch is disposed in a current driving path of the power switch.
  • the active clamp circuit 201 includes a unidirectional TVS tube D1 and a bidirectional TVS tube D2, and the power switch is an IGBT. Specifically:
  • a current detecting unit is connected between the bidirectional TVS tube D2 in the active clamp circuit 201 and the gate G of the power switch for detecting the output of the active clamp circuit 201 to the control end of the power switch That is, the current of the gate G, and the corresponding detection voltage is generated, and the current detecting unit can be specifically implemented by using a current sampling resistor.
  • a comparison unit connected to the current detecting unit, configured to compare a detection voltage generated by the current detecting unit with a preset voltage corresponding to the preset current, and output low when the detection voltage exceeds the preset voltage Level, and vice versa.
  • the comparison unit can be implemented by a comparator.
  • the control switch is turned off, and its control end is connected to the output end of the comparison unit, and the control terminal of the shutdown control switch is turned on when receiving the high level, and turned off when receiving the low level.
  • the shutdown control switch can be a newly added switch tube in the original drive path. Because the active clamp has no trigger, the comparison unit outputs a high level, so the switch tube is turned on and does not affect the drive path. However, when the active clamp is triggered, the comparison unit outputs a low level, so the switch is turned off, thereby cutting off the current drive path.
  • the shutdown control switch can also be the original switch tube in the drive path, and the output of the comparison unit can be directly sent to the switch tube. Since the active clamp is not triggered, the comparison unit outputs a high level, so with other outputs. The signal superimposition to the switch tube does not affect the control effect of other signals, but when the active clamp is triggered, the comparison unit outputs a low level, which will directly pull the control end of the switch tube down, thereby turning off the switch. Tube, so the current drive path is cut.
  • the working principle of this embodiment is as follows: When the voltage stress between the collector C and the emitter E of the IGBT exceeds the breakdown voltage of the TVS, the active clamp circuit 201 is triggered to perform active clamping, and a current is injected into the IGBT gate. At the same time, the detection voltage generated by the current detecting unit rises, when it is too high to exceed the preset voltage, the comparison unit detects the voltage output low level, the control end of the shutdown control switch is pulled low, and the shutdown control switch is turned off.
  • the output of the driver module is switched to the high-impedance state between the gate drive resistance Rg of the IGBT, and the connection between the driver module and the gate of the IGBT is cut off to avoid the drive path of the drive module (L2 in the figure) to the gate of the IGBT.
  • the path action causes the reverse breakdown current of the TVS to flow off the entry pole and is bypassed by the drive circuit and lost. It can be seen that, in the embodiment, when the active clamp is triggered, the gate current leakage path L2 is cut off, so that the current flowing into the IGBT gate G through the TVS reverse breakdown path L1 is used to raise the gate voltage and slow down the gate.
  • the shutdown speed while achieving the purpose of suppressing the IGBT turn-off stress, reduces the breakdown current and heat loss of the TVS, increases the service life of the TVS, and improves the reliability of the active clamp.
  • the power switch is an IGBT.
  • the suppression circuit includes: a detection module 302 and an execution module 303.
  • the active clamp circuit 301 includes a unidirectional TVS tube D1, a bidirectional TVS tube D2, and a diode D3.
  • the detection module 302 includes a current sampling resistor R1, voltage dividing resistors R2 and R3, and a comparator A1, an analog-to-digital converter C1.
  • the execution module 303 includes an AND gate C2, a digital-to-analog converter A3, a shutdown control switch K2, and a power switch.
  • the path includes a logic processing unit, a digital to analog converter A2, and a conduction control switch K1 that controls the power switch to be turned on.
  • the first end of the bidirectional TVS tube D2 is connected to the anode of the diode D3, the cathode of the diode D3 is connected to the control end of the power switch, and the second end of the bidirectional TVS tube is connected to the anode of the unidirectional TVS tube D1.
  • the negative terminal of the unidirectional TVS tube D1 is connected to the input end of the power switch, the first end of the current sampling resistor R1 is grounded, the second end of the current sampling resistor R1 is connected to the anode of the diode D3 and the comparison
  • the first end of the voltage dividing resistor R3 is connected to a fixed voltage, and the second end of the voltage dividing resistor R3 is connected to the non-inverting input terminal of the comparator A1 and the first end of the voltage dividing resistor R2.
  • the second end of the voltage resistor R2 is grounded, the output end of the comparator A1 is connected to the first input end of the AND gate C2 via the analog-to-digital converter C1, and the first port of the logic processing unit is connected to the a second input of the gate C2, the output of the AND gate C2 is connected to the control terminal of the shutdown control switch K2 via a digital to analog converter A3, and the second port of the logic processing unit is connected via the digital to analog converter A2
  • the control terminal of the conduction control switch K1, the conduction control The input end of the switch K1 is connected to the high level VH, and the output end of the turn-on control switch K1 is connected to the input end of the turn-off control switch K2 and the first end of the drive resistor Rg, the turn-off control switch
  • the output end of K2 is connected to a low level VL, and the second end of the driving resistor Rg is connected to the control end of the power switch.
  • the current sampling resistor R1 detects the current output by the active clamp circuit 301 to the control terminal of the power switch, and generates a corresponding detection voltage V1.
  • the voltage dividing resistors R2 and R3 divide the voltage to generate a preset voltage, and the preset voltage level can be adjusted by adjusting the resistance values of the voltage dividing resistors R2 and R3.
  • the comparator A1 compares the detection voltage V1 with a preset voltage, and outputs a low level when the detection voltage V1 exceeds the preset voltage, and outputs a high level.
  • the analog-to-digital converter C1 converts the low level output from the comparator A1 into a digital signal 0, and converts the high level output from the comparison unit into a digital signal 1, and outputs the converted digital signal to the AND gate C2.
  • the AND gate C2 logically processes the digital signal output from the analog-to-digital converter C1 and the digital signal output from the logic processing unit, and outputs the logic and the processed signal to the digital-to-analog converter A3, and then performs digital-to-analog conversion. Turn off the control switch K2.
  • the working principle of this embodiment is as follows: When the voltage between the collector C and the emitter E of the IGBT exceeds the breakdown voltage of the TVS, the TVS is reversely broken. After the reverse breakdown current of TVS flows through R1, the voltage of V1 rises.
  • the resistors R2 and R3 form a voltage dividing circuit, which generates the comparison voltage reference value of comparator A1.
  • the comparator A1 When the voltage of V1 exceeds the reference value, the comparator A1 output low level, after A/D conversion of analog-to-digital converter C1, output 0; when the active clamp is not triggered, V1 voltage is lower than the reference value, comparator A1 outputs high level, after analog-to-digital converter
  • the A1 output of C1 outputs 1 to realize the function of detecting whether the active clamp is triggered.
  • the switch K1 is turned off and the switch K2 is turned off.
  • the analog-to-digital converter C1 sends a 0 signal to the AND gate C2 of the executing module 303, and the 0 signal and the control signal of K2 are combined to output a 0 signal.
  • the control switch K2 is turned off, the path L2 is turned off, and both K1 and K2 are in an off state, and a high blocking opening is achieved between the driving module and the driving resistance Rg of the IGBT gate G, and the reverse breakdown path L1 is passed through the TVS.
  • the current flowing into the IGBT gate G is used to raise the gate voltage and slow down the gate turn-off speed.
  • no software or hardware changes are made to the original driving circuit, and only the detecting module 302 and the executing module 303 are added to the original driving circuit to form an outer loop feedback. It can be understood that the detection module 302 and the execution module 303 can also be integrated into the original drive circuit to form a new drive module.
  • the AND gate C2 and the analog-to-digital converter C1 in this embodiment can also be omitted, and the output of the comparator A1 is directly connected to the control terminal of the switch K2.
  • a switch can be added anywhere on the high voltage side of the power switch including the switch K2 (on the right side of the dashed line in Fig. 4), and then the output of the comparator is directly applied to the newly added switch.
  • the present invention also discloses a driving circuit for a power switch, and an active clamp voltage stress suppression circuit of the power switch as described above is disposed on a high voltage side of the driving circuit.
  • the present invention also discloses an active clamp voltage stress suppression method for a power switch, including:
  • the active clamp when the active clamp is triggered, a current is injected into the power switch, so it can be determined whether the active clamp is triggered by detecting the magnitude of the current, for example, by detecting the output of the active clamp circuit.
  • the current of the control terminal of the power switch detects whether the power switch triggers an active clamp, and when it detects that the current exceeds the preset current, it is determined that the active clamp of the active clamp circuit of the power switch is triggered.
  • the current drive path that is cut off actually refers to the drive path when the power switch is turned off. If the current drive path is to be cut, only It is necessary to set a switch tube in the drive path when the power switch is turned off (either a new switch tube or a direct control of the existing switch tube), and the detection module 102 detects that the active clamp is triggered. When the switch is turned off.
  • S203 converting the high level and the low level into a digital signal, such as: converting a low level into a digital signal 0, and converting a high level into a digital signal 1;
  • S204 Perform logical AND processing on the converted digital signal and the digital signal output by the logic processing unit, and perform digital-to-analog conversion on the logic and the processed signal to drive the shutdown control switch.
  • the active clamp voltage stress suppression circuit, method and drive circuit for implementing the power switch of the present invention have the following beneficial effects: the present invention detects whether the power switch triggers an active clamp, and the detection module detects When the active clamp is triggered, the current drive path of the power switch is cut off, thereby eliminating the bypass effect of the drive path on the current of the active clamp injection power switch, and improving the reverse breakdown current of the active clamp circuit. Utilization, thereby improving the clamping effect of the active clamp, reducing the heat loss of the TVS in the active clamp circuit, reducing the heat loss of the drive circuit, and improving the reliability of the active clamp circuit.

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明公开了一种功率开关的有源钳位电压应力抑制电路、方法及驱动电路,所述功率开关的输入端和控制端之间连接有有源钳位电路,所述抑制电路包括:检测模块,用于检测功率开关是否触发有源钳位;执行模块,设置于所述功率开关的驱动路径中,用于在所述检测模块检测到有源钳位被触发时,切断所述驱动路径。本发明检测功率开关是否触发有源钳位,在所述检测模块检测到有源钳位被触发时,切断所述功率开关的当前的驱动路径,从而消除驱动路径对有源钳位注入功率开关的电流的旁路作用,提高有源钳位电路的反向击穿电流的利用率,从而提高有源钳位的钳位效果、减小有源钳位电路中的TVS的热损耗、减小驱动电路的热损耗,提高有源钳位电路的可靠性。

Description

功率开关的有源钳位电压应力抑制电路、方法及驱动电路 技术领域
本发明涉及电机控制领域,尤其涉及一种功率开关的有源钳位电压应力抑制电路、方法及驱动电路。
背景技术
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)是常见的功率开关器件,经常被使用在高压大电流的工况下。在IGBT关断过程中,在回路杂散电感上产生的感生电动势叠加在母线电压上,使得IGBT的集电极和发射极之间产生较大电压应力。有源钳位技术通过TVS(Transient Voltage Suppressor,又称为瞬态抑制二极管)检测IGBT的集电极和发射极之间的电压,当电压超过TVS的击穿电压后,TVS被反向击穿,产生的击穿电流流向IGBT的门极,从而可以减缓IGBT门极电压的下降速度,减慢IGBT的关断速度,从而减小杂散电感上的感生电动势,进而减小IGBT在关断过程中的集电极与发射极之间的电压应力。
有源钳位方法对IGBT的关断过程集电极与发射极之间的电压应力有很好的抑制作用,但由于目前的有源钳位方法是在IGBT门极关断,电压应力超过TVS的钳位电压,TVS被反向击穿的时候通过TVS向门极注入电流,而IGBT关断过程中驱动电路输出低电平,从而导致TVS流向IGBT门极的电流被驱动电路旁路一部分,TVS注入门极电流的流失导致对门极电压下降速度的抑制效果减弱,所以IGBT门极下降速度较快,如此,一方面导致IGBT集电极与发射极之间电压应力增加,导致有源钳位技术应力抑制效果减弱;另一方面IGBT集电极与发射极之间的集射极电压应力的增加还会导致TVS的击穿程度增加,击穿电流增加,进而导致TVS的热损耗增加,TVS温升过大,同时还会导致TVS的嵌位电压上偏。
参考图1为现有技术中有源钳位技术的原理框图,在IGBT关断过程中,集电极C与发射极E之间的电压应力超过TVS的击穿电压时,TVS被反向击穿。击穿电流注入IGBT门极G,从而实现减缓IGBT关断速度,实现钳位关断过程中的集电极C与发射极E之间电压应力的目的。TVS反向击穿电流注入门极为L1通路,注入到门极的电流通过驱动电路流失为L2通路。
以上可知,现有技术中由于驱动电路的旁路作用,TVS反向击穿注入IGBT门极的电流被流失,极大程度上影响了有源钳位的效果和TVS的使用寿命。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述由于驱动电路的旁路作用而导致的TVS反向击穿注入IGBT门极的电流的流失问题,提供一种功率开关的有源钳位电压应力抑制电路、方法及驱动电路。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种功率开关的有源钳位电压应力抑制电路,所述功率开关的输入端和控制端之间连接有有源钳位电路,包括:
检测模块,用于检测功率开关是否触发有源钳位;
执行模块,设置于所述功率开关的驱动路径中,用于在所述检测模块检测到有源钳位被触发时,切断所述驱动路径。
在本发明所述的功率开关的有源钳位电压应力抑制电路中,所述检测模块分别与所述的功率开关的有源钳位电路以及所述执行模块连接,并通过检测所述有源钳位电路输出至所述功率开关的控制端的电流来检测所述功率开关是否触发有源钳位;所述检测模块在检测到所述功率开关控制端的电流超过预设电流时判断所述有源钳位电路的有源钳位被触发,并在判断出有源钳位被触发时输出有源钳位检测信号到所述执行模块。
在本发明所述的功率开关的有源钳位电压应力抑制电路中,所述执行模块包括关断控制开关,所述关断控制开关与所述检测模块连接,所述关断控制开关用于在所述检测模块输出代表有源钳位被触发的有源钳位检测信号时关断。
在本发明所述的功率开关的有源钳位电压应力抑制电路中,所述检测模块包括:
电流检测单元,与所述的功率开关的有源钳位电路连接,用于检测所述有源钳位电路输出至所述功率开关的控制端的电流,并生成相应的检测电压;
比较单元,与所述电流检测单元连接,用于比较所述电流检测单元产生的所述检测电压和与所述预设电流对应的预设电压,在所述检测电压超过所述预设电压时输出低电平,反之输出高电平。
在本发明所述的功率开关的有源钳位电压应力抑制电路中,所述执行模块包括关断控制开关,所述关断控制开关的控制端与所述比较单元的输出端连接,所述关断控制开关的控制端接收到所述高电平时导通,接收到所述低电平时关断。
在本发明所述的功率开关的有源钳位电压应力抑制电路中,所述驱动路径中包括逻辑处理单元,所述执行模块还包括数模转换单元和逻辑与单元,所述检测模块还包括模数转换单元,其中:
所述模数转换单元,与所述比较单元的输出端以及逻辑与单元的第一输入端分别连接,用于将所述比较单元输出的所述高电平和低电平转化为数字信号,并将转换后的数字信号输出至所述逻辑与单元;
所述逻辑与单元的第二输入端与所述逻辑处理单元连接,所述逻辑与单元的输出端经由所述数模转换单元连接所述关断控制开关的控制端,所述逻辑与单元用于将所述模数转换单元输出的数字信号与逻辑处理单元输出的数字信号进行逻辑与处理,并将逻辑与处理后得到的信号输出至所述数模转换单元,再进行数模转换后驱动所述关断控制开关。
在本发明所述的功率开关的有源钳位电压应力抑制电路中,所述功率开关为IGBT,所述有源钳位电路包括一个单向TVS管、一个双向TVS管和一个普通二极管,所述电流检测单元包括电流采样电阻,所述比较单元包括比较器、第一分压电阻、第二分压电阻,所述逻辑与单元包括与门,所述模数转换单元包括模数转换器,所述数模转换单元包括第一数模转换器,所述驱动路径中还包括第二数模转换器、控制所述功率开关导通的导通控制开关、驱动电阻,所述导通控制开关和关断控制开关均为MOS管;
其中,所述双向TVS管的第一端连接所述普通二极管的正极,所述普通二极管的负极连接所述功率开关的控制端,所述双向TVS管的第二端连接所述单向TVS管的正极,所述单向TVS管的负极连接所述功率开关的输入端,所述电流采样电阻的第一端接地,所述电流采样电阻的第二端连接所述普通二极管的正极和所述比较器的异相输入端,所述第一分压电阻的第一端接一固定电压,所述第一分压电阻的第二端连接所述比较器的同相输入端以及所述第二分压电阻的第一端,所述第二分压电阻的第二端接地,所述比较器的输出端经由所述模数转换器连接所述与门的第一输入端,所述逻辑处理单元的第一端口连接所述与门的第二输入端,与门的输出端经由所述第一数模转换器连接所述关断控制开关的控制端,所述逻辑处理单元的第二端口经由所述第二数模转换器连接所述导通控制开关的控制端,所述导通控制开关的输入端接高电平,所述导通控制开关的输出端连接所述关断控制开关的输入端和所述驱动电阻的第一端,所述关断控制开关的输出端接低电平,所述驱动电阻的第二端连接所述功率开关的控制端。
本发明还公开了一种功率开关的驱动电路,在所述驱动电路的高压侧设置有如上所述的功率开关的有源钳位电压应力抑制电路。
本发明还公开了一种功率开关的有源钳位电压应力抑制方法,所述功率开关的输入端和控制端之间连接有有源钳位电路,包括:
检测功率开关是否触发有源钳位;
在检测到有源钳位被触发时,切断所述功率开关的驱动路径。
在本发明所述的功率开关的有源钳位电压应力抑制方法中,
所述的检测功率开关是否触发有源钳位包括:通过检测所述有源钳位电路输出至所述功率开关的控制端的电流来检测所述功率开关是否触发有源钳位,在检测到电流超过预设电流时判断所述功率开关的有源钳位电路的有源钳位被触发;
所述的切断所述功率开关的当前的驱动路径包括:关断设置在所述驱动路径中的关断控制开关。
在本发明所述的功率开关的有源钳位电压应力抑制方法中,
所述驱动路径中包括逻辑处理单元,其中:
所述的检测功率开关是否触发有源钳位包括:检测所述有源钳位电路输出至所述功率开关的控制端的电流,并生成相应的检测电压;比较所述检测电压和与所述预设电流对应的预设电压,在所述检测电压超过所述预设电压时输出低电平,反之输出高电平;并将所述高电平和低电平转化为数字信号;
所述的切断所述功率开关的当前的驱动路径包括:将转换后的数字信号与所述逻辑处理单元输出的数字信号进行逻辑与处理,并将逻辑与处理后得到的信号进行数模转换后驱动所述关断控制开关。
有益效果
实施本发明的功率开关的有源钳位电压应力抑制电路、方法及驱动电路,具有以下有益效果:本发明检测功率开关是否触发有源钳位,在所述检测模块检测到有源钳位被触发时,切断所述功率开关的当前的驱动路径,从而消除驱动路径对有源钳位注入功率开关的电流的旁路作用,提高有源钳位电路的反向击穿电流的利用率,从而提高有源钳位的钳位效果、减小有源钳位电路中的TVS的热损耗、减小驱动电路的热损耗,提高有源钳位电路的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图:
图1是现有技术中有源钳位技术的原理框图;
图2是本发明实施例一提供的有源钳位电压应力抑制电路的原理框图;
图3是本发明实施例二提供的有源钳位电压应力抑制电路的结构框图。
图4是本发明实施例三提供的有源钳位电压应力抑制电路的电路图;
图5是本发明实施例四提供的有源钳位电压应力抑制方法的流程图;
图6是本发明实施例五提供的有源钳位电压应力抑制方法的流程图。
本发明的实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的典型实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,本文中所提到的“相连”或“连接”,不仅仅包括将两个实体直接相连,也包括通过具有有益改善效果的其他实体间接相连。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明总的思路是:检测功率开关是否触发有源钳位,在所述检测模块检测到有源钳位被触发时,切断所述功率开关的驱动路径,这样可以消除驱动路径对有源钳位注入功率开关的电流的旁路作用,提高有源钳位电路的反向击穿电流的利用率,从而提高有源钳位的钳位效果、减小有源钳位电路中的TVS的热损耗、减小驱动电路的热损耗,提高有源钳位电路的可靠性。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明,应当理解本发明实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本发明实施例以及实施例中的技术特征可以相互组合。
实施例一
参考图1,功率开关的输入端和控制端之间连接有有源钳位电路101,功率开关不限于IGBT、MOSFET等。例如,本实施例中以IGBT为例,有源钳位电路101连接于IGBT的集电极和门极之间。本发明的功率开关的有源钳位电压应力抑制电路包括:
检测模块102,用于检测功率开关是否触发有源钳位;
执行模块103,设置于所述功率开关的驱动路径中,用于在检测模块102检测到有源钳位被触发时,切断所述驱动路径。
可以理解的是,有源钳位被触发时会向功率开关注入电流,所以可以通过检测该电流大小,判断有源钳位是否被触发。另外,由于有源钳位是出现在功率开关关断时,所以当前被切断的驱动路径其实就是指的控制功率开关关断时的驱动路径,如果要切断当前的驱动路径,只需要在功率开关关断时的驱动路径中设置一个开关管(可以是新增一个开关管,也可以是直接对现有的开关管进行控制),在检测模块102检测到有源钳位被触发时,关断该开关管即可。鉴于该思路,具体的:
检测模块102,分别与所述的功率开关的有源钳位电路101以及所述执行模块103连接,并通过检测所述有源钳位电路101输出至所述功率开关的控制端的电流来检测所述功率开关是否触发有源钳位;所述检测模块在检测到所述功率开关控制端的电流超过预设电流时判断所述有源钳位电路101的有源钳位被触发,并在判断出有源钳位被触发时输出有源钳位检测信号到所述执行模块103。
执行模块103,包括关断控制开关,所述关断控制开关与所述检测模块102连接,用于在所述检测模块102输出有源钳位检测信号时关断,关断控制开关关断则可以切除当前的驱动路径,从而可以消除所述驱动路径对有源钳位注入功率开关的电流的旁路作用。
可以理解的是,检测模块102和执行模块103可以是软硬件结合实现,也可以完全借助硬件电路实现。例如,如果以软硬件结合实现,则可以将其中的电流大小的检测,以及检测后对开关管的控制等涉及到判断和结果输出的内容借助软件实现。当然,也可以完全硬件实现, 比如检测模块102的电流大小判断可以通过电流采样电阻、比较器实现,下面介绍两个完全硬件实现的实施例。
实施例二
参考图3,本实施例中,功率开关的有源钳位电压应力抑制电路包括:检测模块202和执行模块203。其中,检测模块202包括电流检测单元和比较单元,执行模块203包括关断控制开关,所述关断控制开关设置于功率开关的当前驱动路径中。有源钳位电路201包括一个单向TVS管D1和一个双向TVS管D2,功率开关为IGBT,具体的:
电流检测单元,连接于所述有源钳位电路201中的双向TVS管D2与功率开关的门极G之间,用于检测所述有源钳位电路201输出至所述功率开关的控制端即门极G的电流,并生成相应的检测电压,电流检测单元可以具体采用电流采样电阻实现。
比较单元,与所述电流检测单元连接,用于比较所述电流检测单元产生的检测电压和与所述预设电流对应的预设电压,在所述检测电压超过所述预设电压时输出低电平,反之输出高电平。比较单元可以通过比较器实现。
关断控制开关,其控制端与所述比较单元的输出端连接,关断控制开关的控制端接收到所述高电平时导通,接收到低电平时关断。关断控制开关可以是在原有的驱动路径中新增加的开关管,因为有源钳位没有触发时,比较单元输出的是高电平,所以开关管导通,不会对驱动路径产生影响,但是当有源钳位触发时,比较单元输出的是低电平,所以开关管关断,从而切断了当前驱动路径。
关断控制开关也可以是驱动路径中原有的开关管,可以将比较单元的输出直接给到该开关管,由于有源钳位没有触发时,比较单元输出的是高电平,所以与其他输出到该开关管的信号叠加不会影响其他信号的控制效果,但是当有源钳位触发时,比较单元输出的是低电平,会将该开关管的控制端直接拉低,从而关断开关管,所以当前驱动路径被切断。
本实施例的工作原理如下:当IGBT的集电极C与发射极E之间电压应力超过TVS的击穿电压后触发有源钳位电路201进行有源钳位,向IGBT门极注入电流。同时,电流检测单元产生的检测电压升高,当其太高超过所述预设电压时,比较单元检测电压输出低电平, 关断控制开关的控制端被拉低,关断控制开关关断,驱动模块的输出与IGBT的门极驱动电阻Rg之间切换为高阻状态,切断驱动模块与IGBT门极之间的连接,避免驱动模块的驱动路径(图中L2)对IGBT门极的旁路作用导致TVS的反向击穿电流流入门极后被驱动电路旁路而流失。可见,本实施例在触发有源钳位时,切断门极电流的流失通路L2,使得通过TVS反向击穿通路L1流入IGBT门极G的电流全部用来抬升门极电压,减慢门极关断速度,在达到抑制IGBT关断应力的目的的同时,减小TVS的击穿电流和热损耗,增加TVS的使用寿命,提高有源钳位的可靠性。
实施例三
参考图4,功率开关为IGBT。本实施例中,抑制电路包括:检测模块302和执行模块303。其中,有源钳位电路301包括一个单向TVS管D1、一个双向TVS管D2和一个二极管D3。检测模块302包括电流采样电阻R1、分压电阻R2和R3以及比较器A1、模数转换器C1,执行模块303包括与门C2、数模转换器A3、关断控制开关K2,功率开关的驱动路径包括逻辑处理单元、数模转换器A2、、控制所述功率开关导通的导通控制开关K1。
其中,所述双向TVS管D2的第一端连接二极管D3的正极,二极管D3的负极连接所述功率开关的控制端,所述双向TVS管的第二端连接所述单向TVS管D1的正极,所述单向TVS管D1的负极连接所述功率开关的输入端,所述电流采样电阻R1的第一端接地,所述电流采样电阻R1的第二端连接二极管D3的正极和所述比较器A1的异相输入端,分压电阻R3的第一端接一固定电压,分压电阻R3的第二端连接所述比较器A1的同相输入端以及分压电阻R2的第一端,分压电阻R2的第二端接地,所述比较器A1的输出端经由所述模数转换器C1连接所述与门C2的第一输入端,所述逻辑处理单元的第一端口连接所述与门C2的第二输入端,与门C2的输出端经由数模转换器A3连接所述关断控制开关K2的控制端,所述逻辑处理单元的第二端口经由所述数模转换器A2连接所述导通控制开关K1的控制端,所述导通控制开关K1的输入端接高电平VH,所述导通控制开关K1的输出端连接所述关断控制开关K2的输入端和所述驱动电阻Rg的第一端,所述关断控制开关K2的输出端接低电平VL,所述驱动电阻Rg的第二端连接所述功率开关的控制端。正常驱动时,当需关断功率开关时,关断K1,导通K2;当需导通功率开关时,关断K2,导通K1。
其中,电流采样电阻R1检测所述有源钳位电路301输出至所述功率开关的控制端的电流,并生成相应的检测电压V1。分压电阻R2、R3分压产生预设电压,通过调整分压电阻R2、R3的阻值可以调整预设电压大小。比较器A1比较检测电压V1与预设电压,在所述检测电压V1超过所述预设电压时输出低电平,反之输出高电平。模数转换器C1将比较器A1输出的低电平转换为数字信号0,以及将所述比较单元输出的高电平转换为数字信号1,并将转换后的数字信号输出至与门C2。与门C2将模数转换器C1输出的数字信号与逻辑处理单元输出的数字信号进行逻辑与处理,并将逻辑与处理得到的信号输出至数模转换器A3,再进行数模转换后驱动所述关断控制开关K2。
本实施例的工作原理如下:当IGBT的集电极C与发射极E之间的电压超过TVS的击穿电压后,TVS被反向击穿。TVS的反向击穿电流流过R1后,会使V1电压升高,电阻R2和R3形成了一个分压电路,产生比较器A1的比较电压参考值,当V1电压超过参考值后,比较器A1输出低电平,经过模数转换器C1的A/D转换后输出0;当未触发有源钳位时,V1电压低于参考值,比较器A1输出高电平,经过模数转换器C1的A/D转换后输出1,从而实现对有源钳位是否触发进行检测的功能。当IGBT关断时,开关K1断开,开关K2闭合。当检测模块302检测到触发有源钳位时,其中的模数转换器C1会给执行模块303的与门C2输送一个0信号,0信号与K2的控制信号相与之后,输出一个0信号,从而控制开关K2断开,通路L2断开,此时K1和K2均处于断开状态,驱动模块与IGBT门极G的驱动电阻Rg之间实现高阻断开,通过TVS反向击穿通路L1流入IGBT门极G的电流全部用来抬升门极电压,减慢门极关断速度,在达到抑制IGBT关断应力的目的的同时,减小TVS的击穿电流和热损耗,增加TVS的使用寿命,提高有源钳位的可靠性。当不触发有源钳位时检测模块302输出为1,经过与门C2之后,不改变开关K2的控制逻辑,不影响IGBT的正常开通关断动作。
本实施例中,不对原来的驱动电路做任何软件上或硬件上的改动,只需在原来的驱动电路上增加检测模块302和执行模块303,组成了外环反馈。可以理解的是,检测模块302和执行模块303也可以集成到原有驱动电路中形成新的驱动模块。
另外,可以理解的是,本实施例中的与门C2、模数转换器C1也可以省略掉,直接将比较器A1的输出连接到开关K2的控制端。另外,还可以在功率开关的包含开关K2的驱动路径上的高压侧(图4中虚线右侧)的任意位置增加一个开关管,然后将比较器的输出直接给到该新增加的开关管。
基于同一发明构思,本发明还公开了一种功率开关的驱动电路,在所述驱动电路的高压侧设置有如上所述的功率开关的有源钳位电压应力抑制电路。
实施例四
参考图5,基于同一发明构思,本发明还公开了一种功率开关的有源钳位电压应力抑制方法,包括:
S101、检测功率开关是否触发有源钳位;
可以理解的是,有源钳位被触发时会向功率开关注入电流,所以可以通过检测该电流大小,判断有源钳位是否被触发,例如,通过检测所述有源钳位电路输出至所述功率开关的控制端的电流来检测所述功率开关是否触发有源钳位,在检测到电流超过预设电流时判断所述功率开关的有源钳位电路的有源钳位被触发。
S102、在检测到有源钳位被触发时,切断所述功率开关的驱动路径。
可以理解的是,由于有源钳位是出现在功率开关关断时,所以被切断的当前的驱动路径其实就是指的控制功率开关关断时的驱动路径,如果要切断当前的驱动路径,只需要在功率开关关断时的驱动路径中设置一个开关管(可以是新增一个开关管,也可以是直接对现有的开关管进行控制),在检测模块102检测到有源钳位被触发时,关断该开关管即可。
实施例五
本实施例中的有源钳位电压应力抑制方法包括:
S201、检测有源钳位电路输出至功率开关的控制端的电流,并生成相应的检测电压;
S202、比较所述检测电压和与预设电流对应的预设电压,在所述检测电压超过所述预设电压时输出低电平,反之输出高电平;
S203、将所述高电平和低电平转化为数字信号,比如:低电平转换为数字信号0,以及将高电平转换为数字信号1;
S204、将转换后的数字信号与逻辑处理单元输出的数字信号进行逻辑与处理,并将逻辑与处理后得到的信号进行数模转换后驱动所述关断控制开关。
工业实用性
综上所述,实施本发明的功率开关的有源钳位电压应力抑制电路、方法及驱动电路,具有以下有益效果:本发明检测功率开关是否触发有源钳位,在所述检测模块检测到有源钳位被触发时,切断所述功率开关的当前的驱动路径,从而消除驱动路径对有源钳位注入功率开关的电流的旁路作用,提高有源钳位电路的反向击穿电流的利用率,从而提高有源钳位的钳位效果、减小有源钳位电路中的TVS的热损耗、减小驱动电路的热损耗,提高有源钳位电路的可靠性。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (11)

  1. 一种功率开关的有源钳位电压应力抑制电路,所述功率开关的输入端和控制端之间连接有有源钳位电路,其特征在于,包括:
    检测模块,用于检测功率开关是否触发有源钳位;
    执行模块,设置于所述功率开关的驱动路径中,用于在所述检测模块检测到有源钳位被触发时,切断所述驱动路径。
  2. 根据权利要求1所述的功率开关的有源钳位电压应力抑制电路,其特征在于,所述检测模块分别与所述的功率开关的有源钳位电路以及所述执行模块连接,并通过检测所述有源钳位电路输出至所述功率开关的控制端的电流来检测所述功率开关是否触发有源钳位;所述检测模块在检测到所述功率开关控制端的电流超过预设电流时判断所述有源钳位电路的有源钳位被触发,并在判断出有源钳位被触发时输出有源钳位检测信号到所述执行模块。
  3. 根据权利要求1所述的功率开关的有源钳位电压应力抑制电路,其特征在于,所述执行模块包括关断控制开关,所述关断控制开关与所述检测模块连接,所述关断控制开关用于在所述检测模块输出代表有源钳位被触发的有源钳位检测信号时关断。
  4. 根据权利要求1所述的功率开关的有源钳位电压应力抑制电路,其特征在于,所述检测模块包括:
    电流检测单元,与所述的功率开关的有源钳位电路连接,用于检测所述有源钳位电路输出至所述功率开关的控制端的电流,并生成相应的检测电压;
    比较单元,与所述电流检测单元连接,用于比较所述电流检测单元产生的所述检测电压和与所述预设电流对应的预设电压,在所述检测电压超过所述预设电压时输出低电平,反之输出高电平。
  5. 根据权利要求4所述的功率开关的有源钳位电压应力抑制电路,其特征在于,所述执行模块包括关断控制开关,所述关断控制开关的控制端与所述比较单元的输出端连接,所述关断控制开关的控制端接收到所述高电平时导通,接收到所述低电平时关断。
  6. 根据权利要求5所述的功率开关的有源钳位电压应力抑制电路,其特征在于,所述驱动路径中包括逻辑处理单元,所述执行模块还包括数模转换单元和逻辑与单元,所述检测模块还包括模数转换单元,其中:
    所述模数转换单元,与所述比较单元的输出端以及逻辑与单元的第一输入端分别连接,用于将所述比较单元输出的所述高电平和低电平转化为数字信号,并将转换后的数字信号输出至所述逻辑与单元;
    所述逻辑与单元的第二输入端与所述逻辑处理单元连接,所述逻辑与单元的输出端经由所述数模转换单元连接所述关断控制开关的控制端,所述逻辑与单元用于将所述模数转换单元输出的数字信号与逻辑处理单元输出的数字信号进行逻辑与处理,并将逻辑与处理后得到的信号输出至所述数模转换单元,再进行数模转换后驱动所述关断控制开关。
  7. 根据权利要求6所述的功率开关的有源钳位电压应力抑制电路,其特征在于,所述功率开关为IGBT,所述有源钳位电路包括一个单向TVS管、一个双向TVS管和一个普通二极管,所述电流检测单元包括电流采样电阻,所述比较单元包括比较器、第一分压电阻、第二分压电阻,所述逻辑与单元包括与门,所述模数转换单元包括模数转换器,所述数模转换单元包括第一数模转换器,所述驱动路径中还包括第二数模转换器、控制所述功率开关导通的导通控制开关、驱动电阻,所述导通控制开关和关断控制开关均为MOS管;
    其中,所述双向TVS管的第一端连接所述普通二极管的正极,所述普通二极管的负极连接所述功率开关的控制端,所述双向TVS管的第二端连接所述单向TVS管的正极,所述单向TVS管的负极连接所述功率开关的输入端,所述电流采样电阻的第一端接地,所述电流采样电阻的第二端连接所述普通二极管的正极和所述比较器的异相输入端,所述第一分压电阻的第一端接一固定电压,所述第一分压电阻的第二端连接所述比较器的同相输入端以及所述第二分压电阻的第一端,所述第二分压电阻的第二端接地,所述比较器的输出端经由所述模数转换器连接所述与门的第一输入端,所述逻辑处理单元的第一端口连接所述与门的第二输入端,与门的输出端经由所述第一数模转换器连接所述关断控制开关的控制端,所述逻辑处理单元的第二端口经由所述第二数模转换器连接所述导通控制开关的控制端,所述导通控制开关的输入端接高电平,所述导通控制开关的输出端连接所述关断控制开关的输入端和所述驱动电阻的第一端,所述关断控制开关的输出端接低电平,所述驱动电阻的第二端连接所述功率开关的控制端。
  8. 一种功率开关的驱动电路,其特征在于,在所述驱动电路的高压侧设置有如权利要求1-7任一项所述的功率开关的有源钳位电压应力抑制电路。
  9. 一种功率开关的有源钳位电压应力抑制方法,所述功率开关的输入端和控制端之间连接有有源钳位电路,其特征在于,包括:
    检测功率开关是否触发有源钳位;
    在检测到有源钳位被触发时,切断所述功率开关的驱动路径。
  10. 根据权利要求9所述的功率开关的有源钳位电压应力抑制方法,其特征在于,
    所述的检测功率开关是否触发有源钳位包括:通过检测所述有源钳位电路输出至所述功率开关的控制端的电流来检测所述功率开关是否触发有源钳位,在检测到电流超过预设电流时判断所述功率开关的有源钳位电路的有源钳位被触发;
    所述的切断所述功率开关的当前的驱动路径包括:关断设置在所述驱动路径中的关断控制开关。
  11. 根据权利要求10所述的功率开关的有源钳位电压应力抑制方法,其特征在于,所述驱动路径中包括逻辑处理单元,其中:
    所述的检测功率开关是否触发有源钳位包括:检测所述有源钳位电路输出至所述功率开关的控制端的电流,并生成相应的检测电压;比较所述检测电压和与所述预设电流对应的预设电压,在所述检测电压超过所述预设电压时输出低电平,反之输出高电平;并将所述高电平和低电平转化为数字信号;
    所述的切断所述功率开关的当前的驱动路径包括:将转换后的数字信号与所述逻辑处理单元输出的数字信号进行逻辑与处理,并将逻辑与处理后得到的信号进行数模转换后驱动所述关断控制开关。
PCT/CN2018/115038 2018-03-29 2018-11-12 功率开关的有源钳位电压应力抑制电路、方法及驱动电路 WO2019184377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810271920.5A CN108471304B (zh) 2018-03-29 2018-03-29 功率开关的有源钳位电压应力抑制电路、方法及驱动电路
CN201810271920.5 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184377A1 true WO2019184377A1 (zh) 2019-10-03

Family

ID=63262331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115038 WO2019184377A1 (zh) 2018-03-29 2018-11-12 功率开关的有源钳位电压应力抑制电路、方法及驱动电路

Country Status (2)

Country Link
CN (1) CN108471304B (zh)
WO (1) WO2019184377A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020126465A1 (de) 2020-10-08 2022-04-14 Danfoss Silicon Power Gmbh Leistungselektronikmodul mit einem verbesserten Gate-Treiber

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108471304B (zh) * 2018-03-29 2020-05-26 苏州汇川联合动力系统有限公司 功率开关的有源钳位电压应力抑制电路、方法及驱动电路
US11668733B2 (en) * 2018-11-09 2023-06-06 Keithley Instruments, Llc Multi-stage current measurement architecture
CN112104346B (zh) * 2020-08-31 2021-08-06 电子科技大学 一种igbt高压驱动过流过压保护电路
CN112769425A (zh) * 2021-01-14 2021-05-07 青岛海信日立空调系统有限公司 一种抑制igbt电压应力的装置
DE112021007109T5 (de) * 2021-02-17 2023-12-14 Mitsubishi Electric Corporation Treiberschaltung für halbleiter-schalteinrichtung
CN113595541A (zh) * 2021-08-03 2021-11-02 珠海格力电器股份有限公司 开关管控制装置及开关管设备
CN113507200B (zh) * 2021-08-20 2023-05-26 阳光电源股份有限公司 一种功率变换器及其驱动电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052048A (zh) * 2014-07-10 2014-09-17 北京赛德高科铁道电气科技有限责任公司 一种igbt驱动的有源钳位电路
US20150145583A1 (en) * 2012-05-31 2015-05-28 Renesas Electronics Corporation Semiconductor device
CN204906177U (zh) * 2015-09-19 2015-12-23 许昌学院 一种igbt关断过电压有源钳位电路
CN106603050A (zh) * 2016-12-15 2017-04-26 苏州捷芯威半导体有限公司 一种集成式半导体功率开关器件
CN108387830A (zh) * 2018-01-16 2018-08-10 中国矿业大学 一种基于有源钳位反馈型的igbt过流检测装置及方法
CN108471304A (zh) * 2018-03-29 2018-08-31 苏州汇川联合动力系统有限公司 功率开关的有源钳位电压应力抑制电路、方法及驱动电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013848B2 (en) * 2012-09-27 2015-04-21 Alpha And Omega Semiconductor Incorporated Active clamp protection circuit for power semiconductor device for high frequency switching
CN203645530U (zh) * 2013-10-29 2014-06-11 上海联影医疗科技有限公司 一种绝缘栅双极型晶体管的有源钳位电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150145583A1 (en) * 2012-05-31 2015-05-28 Renesas Electronics Corporation Semiconductor device
CN104052048A (zh) * 2014-07-10 2014-09-17 北京赛德高科铁道电气科技有限责任公司 一种igbt驱动的有源钳位电路
CN204906177U (zh) * 2015-09-19 2015-12-23 许昌学院 一种igbt关断过电压有源钳位电路
CN106603050A (zh) * 2016-12-15 2017-04-26 苏州捷芯威半导体有限公司 一种集成式半导体功率开关器件
CN108387830A (zh) * 2018-01-16 2018-08-10 中国矿业大学 一种基于有源钳位反馈型的igbt过流检测装置及方法
CN108471304A (zh) * 2018-03-29 2018-08-31 苏州汇川联合动力系统有限公司 功率开关的有源钳位电压应力抑制电路、方法及驱动电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020126465A1 (de) 2020-10-08 2022-04-14 Danfoss Silicon Power Gmbh Leistungselektronikmodul mit einem verbesserten Gate-Treiber

Also Published As

Publication number Publication date
CN108471304A (zh) 2018-08-31
CN108471304B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2019184377A1 (zh) 功率开关的有源钳位电压应力抑制电路、方法及驱动电路
JP5644830B2 (ja) 駆動対象スイッチング素子の駆動回路
TWI472154B (zh) 功率開關串聯電路及其控制方法
CN110635792A (zh) 一种基于短路电流抑制的SiC MOSFET短路保护电路及方法
JP2016086490A (ja) 半導体駆動装置ならびにそれを用いた電力変換装置
CN109672149B (zh) 一种针对npc三电平变流器过流故障的混合检测保护电路及方法
CN112946517B (zh) 一种快速的大功率SiC MOSFET短路故障检测电路及检测方法
WO2016189830A1 (ja) 駆動装置
JP2011135731A (ja) スイッチング素子の駆動装置
CN114977753B (zh) 有源钳位方法、电路及电力变换设备
CN108592343B (zh) Igbt管门极电阻调节电路及空调器
US9412853B2 (en) Protective device for a voltage-controlled semiconductor switch
CN109995350B (zh) 一种功率场效应管的驱动级短路保护装置及保护方法
TWI459673B (zh) 功率開關串聯電路及其控制方法以及多電平變換裝置
US9490794B1 (en) Dynamic shutdown protection circuit
CN105846665A (zh) 一种具有自保护功能的常通型SiC JFET驱动电路
CN106787632B (zh) 一种SiC JFET串的多阶段驱动电路
US20220337237A1 (en) Circuit and control method for preventing false turn-on of semiconductor switching device
WO2022111464A1 (zh) 检测方法及检测电路
JP2012217087A (ja) 負荷駆動装置
CN210780592U (zh) 一种三电平全桥llc故障封脉冲的装置
CN112953174B (zh) 基于dv/dt检测的抑制SiC MOSFET串扰的钳位有源驱动电路
TWI481166B (zh) 橋式開關控制電路及其操作方法
WO2017206385A1 (zh) 智能功率模块和空调器
CN110460021B (zh) 一种igbt保护电路及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18911690

Country of ref document: EP

Kind code of ref document: A1