WO2019184332A1 - 制冷设备的防护系统和用于压缩机安全运行的保护方法 - Google Patents

制冷设备的防护系统和用于压缩机安全运行的保护方法 Download PDF

Info

Publication number
WO2019184332A1
WO2019184332A1 PCT/CN2018/112622 CN2018112622W WO2019184332A1 WO 2019184332 A1 WO2019184332 A1 WO 2019184332A1 CN 2018112622 W CN2018112622 W CN 2018112622W WO 2019184332 A1 WO2019184332 A1 WO 2019184332A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
preset
limit value
real
Prior art date
Application number
PCT/CN2018/112622
Other languages
English (en)
French (fr)
Inventor
伍时凯
黄执
宗远华
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2019184332A1 publication Critical patent/WO2019184332A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21153Temperatures of a compressor or the drive means therefor of electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • the present disclosure belongs to the technical field of compressor manufacturing, and in particular to a protection system for a refrigeration device and a protection method for safe operation of the compressor.
  • the present disclosure is intended to address at least one of the technical problems existing in the prior art. To this end, the present disclosure proposes a protection system for a refrigeration device that can effectively monitor the high temperature demagnetization risk of the compressor or the risk of air operation explosion.
  • a protection system for a refrigeration apparatus includes a compressor, a condenser, a throttle unit, and an evaporator, wherein the protection system includes: a measurement module for measuring the refrigeration cycle Real-time data; a data acquisition module, the data acquisition module is electrically connected to the measurement module, and is used for collecting real-time data measured by the measurement module; and a control module, the control module is electrically connected to the data acquisition module, and Electrically coupled to the compressor; wherein the control module is configured to control energization or de-energization of the compressor based on real-time data collected by the data acquisition module.
  • the protection system of the refrigeration device can effectively monitor the high temperature demagnetization risk of the compressor or the risk of air operation explosion.
  • the system has high versatility, low application difficulty, strong pertinence, fast response speed, and low cost. .
  • the measurement module includes: a condition parameter measuring part for measuring a case temperature Tc of the compressor, the condenser An inlet temperature Td, a condensation temperature Tcond of the condenser, an electrical parameter measuring unit for measuring an operating current I of the compressor.
  • the condition parameter measuring part includes: a first temperature measurer for detecting a case temperature Tc of the compressor; and a second temperature measurer for measuring The inlet temperature Td of the condenser; a third temperature measurer for measuring the condensation temperature Tcond of the condenser.
  • control module is configured to control the compressor to be powered off when Tc>Tcmax, wherein Tcmax is a casing temperature of the compressor The upper limit is preset.
  • the control module is configured to control the control module when Tc>Tcmax, Dv ⁇ Dvmin, Tcond ⁇ Tcondmax, ⁇ Tcond ⁇ Tcondmin, and Imin ⁇ I ⁇ Imax
  • Tcondmax is a condensing temperature of the condenser
  • the preset upper limit value, ⁇ Tcond is the rate of change of the condensing temperature
  • ⁇ Tcondmin is a preset lower limit value of the rate of change of the condens
  • the control module includes: a calculation unit, a registration unit, a comparison unit, and an output unit; wherein the registration unit and the data collection unit, the calculation unit, and the The comparison unit is electrically connected, the calculation unit is electrically connected to the comparison unit, and the output unit is electrically connected to the comparison unit; the calculation unit is configured to calculate a calculation result according to the real-time data and a preset calculation program; The registration unit is configured to register a preset parameter, the real-time data, the calculation result, and a comparison result of the comparison unit; the comparison unit is configured to compare the preset parameter, the real-time parameter, and the calculation The result is a comparison result; the output unit is adapted to be electrically connected to a switch of the compressor or the refrigeration device for controlling energization or de-energization of the compressor based on the comparison.
  • a protection system for a refrigeration apparatus further includes: an alarm, the alarm being electrically connected to the control module.
  • the present disclosure also provides a protection method for safe operation of a compressor, comprising the steps of: setting a preset parameter for safe operation of the refrigeration device; measuring real-time data in an operating state of the refrigeration device; Calculating the calculated value according to the real-time data and comparing the preset parameter, and outputting a control instruction according to the comparison result, the control instruction including controlling the compressor to be powered off.
  • the preset parameter including a housing temperature preset upper limit value Tcmax of the compressor
  • the real-time data including a housing of the compressor Temperature Tc
  • the step comparing the real-time data or the calculated value calculated according to the real-time data with the preset parameter, and outputting the control instruction according to the comparison result includes: when Tc>Tcmax, the control module controls The compressor is powered off.
  • the preset parameter including a housing temperature preset upper limit value Tcmax of the compressor, an inlet temperature of the condenser, and the compressor a preset difference lower limit value Dvmin of the casing temperature, a preset lower limit value Imin of the operating current of the compressor, and a preset upper limit value Imax of the operating current of the compressor
  • the real-time data including the The casing temperature Tc of the compressor and the inlet temperature Td of the condenser
  • the step of the real-time data or according to the real-time Comparing the calculated value calculated by the data with the preset parameter, and outputting the control command according to the comparison result includes: when Tc>Tcmax, Dv ⁇ Dvmin, and Imin ⁇ I ⁇ Imax, the control module controls the compressor to be off Electricity.
  • the preset parameter including a housing temperature preset upper limit value Tcmax of the compressor, an inlet temperature of the condenser, and the compressor a preset difference lower limit value Dvmin of the case temperature, a preset lower limit value Imin of the operating current of the compressor, a preset upper limit value Imax of the operating current of the compressor, and condensation of the condenser a preset upper limit value Tcondmax of the temperature, a preset lower limit value ⁇ Tcondmin of the rate of change of the condensing temperature, the real-time data including a casing temperature Tc of the compressor and an inlet temperature Td of the condenser, according to
  • the protection method for the safe operation of the compressor is the same as the protection system of the refrigeration device described above with respect to the prior art, and details are not described herein again.
  • FIG. 1 is a schematic structural view of a protection system according to an embodiment of the present disclosure
  • FIGS. 2 and 3 are schematic diagrams of data transmission in a protection system in accordance with an embodiment of the present disclosure
  • 4-6 are flow diagrams of a method of protection for safe operation of a compressor in accordance with an embodiment of the present disclosure.
  • Compressor 10 condenser 20, throttling unit 30, evaporator 40,
  • Measurement module 100 first temperature measurer 110, second temperature measurer 120, third temperature measurer 130, electrical parameter measurement component 140,
  • Control module 300 calculation unit 310, registration unit 320, comparison unit 330, output unit 340,
  • Alarm 410 switch 420, power supply 430.
  • first and second may include one or more of the features, either explicitly or implicitly.
  • a plurality of means two or more unless otherwise stated.
  • connection In the description of the present disclosure, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present disclosure can be understood in the specific circumstances by those skilled in the art.
  • the refrigeration equipment can be a device such as an air conditioner.
  • the refrigeration cycle of the refrigeration apparatus includes a compressor 10, a condenser 20, a throttling unit 30, and an evaporator 40.
  • the exhaust port of the compressor 10 is connected to the inlet of the condenser 20 through a pipeline, and the condenser 20
  • the outlet is connected to the inlet of the evaporator 40 through a pipe, and a throttle unit 30 is provided between the outlet of the condenser 20 and the inlet of the evaporator 40, and the outlet of the evaporator 40 and the suction port of the compressor 10 pass through the pipeline.
  • the compressor 10 is connected to the power source 430, and a switch 420 is provided between the compressor 10 and the power source 430.
  • the protection system of the refrigeration apparatus includes: a measurement module 100, a data acquisition module 200, and a control module 300.
  • the measurement module 100 is configured to measure real-time data of a refrigeration cycle, and the real-time data may include a temperature of at least a part of the components in the refrigeration cycle or an operating temperature of the refrigerant in the refrigeration cycle, and the data acquisition module 200 and the measurement module 100
  • the data acquisition module 200 is used to collect the real-time data measured by the measurement module 100
  • the control module 300 is electrically connected to the data acquisition module 200.
  • the data acquisition module 200 transmits the real-time data of the collected refrigeration cycle to the control module 300, and the control module 300 and The compressor 10 is electrically connected, and the control module 300 is configured to control the energization or de-energization of the compressor 10 based on the real-time data collected by the data acquisition module 200.
  • the protection system of the refrigeration apparatus monitors the working data of the refrigeration equipment, and uses the data to determine whether the compressor 10 has a high temperature demagnetization or an air operation explosion risk, find a risk point in advance, and compare the compressor to the compressor. 10 for power-off treatment, can improve the operational safety of refrigeration equipment.
  • the high temperature demagnetization risk or the air operation explosion risk of the compressor 10 can be effectively monitored, and the system has high versatility, low application difficulty, high pertinence, fast response speed, and cost. low.
  • the measurement module 100 includes a condition parameter measurement unit and an electrical parameter measurement unit 140.
  • the operating condition parameter measuring unit is for measuring the casing temperature Tc of the compressor 10, the inlet temperature Td of the condenser 20, the condensation temperature Tcond of the condenser 20, and the inlet temperature Td of the condenser 20 is approximately equal to the exhaust of the compressor 10.
  • the temperature, the condensation temperature Tcond of the condenser 20 is the condensation temperature of the refrigeration cycle of the refrigeration unit, and can be characterized by the central temperature of the condenser 20.
  • the operating condition parameter measuring component may include a first temperature measuring device 110, a second temperature measuring device 120, and a third temperature measuring device 130.
  • the first temperature measurer 110 is for detecting the case temperature Tc of the compressor 10, such as the first temperature measurer 110 being a thermistor sensor, and the first temperature measurer 110 being mounted to the upper case of the compressor 10.
  • the second temperature measurer 120 is used to measure the inlet temperature Td of the condenser 20, for example, the second temperature measurer 120 may be a thermocouple sensor, and the second temperature measurer 120 is affixed to the exhaust pipe of the compressor 10 and the condenser 20 The middle portion is connected. Specifically, for a certain type of refrigeration device, the first U-bend of the connecting pipe after the exhaust pipe of the compressor 10 can be attached, and the condenser 20 is characterized by the middle temperature of the connecting pipe between the compressor 10 and the condenser 20.
  • the inlet temperature Td can simplify the measurement of the inlet temperature Td of the condenser 20.
  • the third temperature measurer 130 is used to measure the condensation temperature Tcond of the condenser 20, for example, the third temperature measurer 130 is a thermal resistance sensor, and the third temperature measurer 130 is pasted in the middle of the condenser 20, specifically, for a certain model
  • the refrigeration device third temperature measurer 130 is affixed to the fifth U-bend of the first row of the condenser 20.
  • the electrical parameter measuring component 140 is for measuring the operating current I of the compressor 10, and the electrical parameter measuring component 140 includes a Hall sensor for measuring the R-phase current of the measuring compressor 10.
  • control module 300 includes a calculation unit 310, a registration unit 320, a comparison unit 330, and an output unit 340.
  • the registration unit 320 is electrically connected to the data collection unit, the calculation unit 310, and the comparison unit 330.
  • the calculation unit 310 is electrically connected to the comparison unit 330.
  • the output unit 340 is electrically connected to the comparison unit 330.
  • the calculation unit 310 is configured to use real-time data and presets.
  • the calculation program calculates the calculation result
  • the registration unit 320 is configured to register the preset parameters, the real-time data, the calculation result, and the comparison result of the comparison unit 330
  • the comparison unit 330 is configured to compare the preset parameters, the real-time parameters, and the calculation result to obtain a comparison result.
  • the output unit 340 is adapted to be electrically coupled to the compressor 10 or the switch 420 of the refrigeration unit for controlling energization or de-energization of the compressor 10 based on the comparison.
  • the protection system of the refrigeration device may further include: an alarm 410.
  • the alarm 410 is electrically connected to the control module 300. Specifically, the alarm 410 is electrically connected to the output unit 340, and the comparison result determines that the compressor 10 has a high temperature. The risk of demagnetization or air running explosion, the output unit 340 outputs a signal to the alarm 410.
  • control module 300 is configured such that when Tc > Tcmax, the control module 300 controls the compressor 10 to be powered down, wherein Tcmax is the preset upper limit value of the housing temperature of the compressor 10, and Tcmax can be pre-written. Control module 300. It can be understood that when Tc>Tcmax, it can be judged that the compressor 10 has an internal high temperature risk, the control module 300 controls the alarm 410 to issue an alarm signal, and the control switch 420 cuts off the power supply of the compressor 10.
  • control module 300 is configured to control the compressor 10 to be powered down when Tc>Tcmax, Dv ⁇ Dvmin, and Imin ⁇ I ⁇ Imax, where Tcmax is the housing of the compressor 10.
  • the preset upper limit value of the temperature, Dv Td-Tc, Dvmin is the preset difference lower limit value of the inlet temperature of the condenser 20 and the casing temperature of the compressor 10, and Imin is a preset of the operating current of the compressor 10.
  • the lower limit value, Imax is a preset upper limit value of the operating current of the compressor 10, and Tcmax, Dvmin, Imin, Imax may be written in advance to the control module 300.
  • control module 300 controls the alarm 410 to issue an alarm signal and the control switch 420 cuts off the power supply of the compressor 10. It should be noted that if I does not satisfy Imin ⁇ I ⁇ Imax, it may be other faults.
  • the preset lower limit value of the operating current of the machine 10 Imax is a preset upper limit value of the operating current of the compressor 10
  • Tcondmax is a preset upper limit value of the condensing temperature of the condenser 20
  • ⁇ Tcond is a rate of change of the condensing temperature
  • ⁇ Tcondmin is a preset lower limit value of the rate of change of the condensing temperature
  • Tcmax, Tcondmax, Dvmin, ⁇ Tcondmin, Imin, Imax may be written in advance to the control module 300.
  • control module 300 controls the alarm 410 to issue an alarm signal and the control switch 420 cuts off the power supply of the compressor 10. It should be noted that if I does not satisfy Imin ⁇ I ⁇ Imax, it may be other faults.
  • the present disclosure also discloses a protection method for safe operation of the compressor 10, and the protection method for the safe operation of the compressor 10 of the embodiment of the present disclosure can be implemented using the protection system of the refrigeration apparatus of the above embodiment.
  • the protection method for the safe operation of the compressor 10 includes the following steps: setting a preset parameter for safe operation of the refrigeration device; and measuring real-time data in a running state of the refrigeration device; The real-time data or the calculated value calculated from the real-time data is compared with a preset parameter, and a control command is output according to the comparison result, and the control command includes controlling the compressor 10 to be powered off.
  • the preset parameters include a housing temperature preset upper limit value Tcmax of the compressor 10, and the real-time data includes a housing temperature Tc of the compressor 10, and the step calculates real-time data or calculated values based on real-time data.
  • the preset parameter comparison and outputting the control command according to the comparison result includes: when Tc>Tcmax, the control module 300 controls the compressor 10 to be powered off. It can be understood that when Tc>Tcmax, it can be judged that the compressor 10 has an internal high temperature risk, the control module 300 controls the alarm 410 to issue an alarm signal, and the control switch 420 cuts off the power supply of the compressor 10.
  • the preset parameters include a preset temperature upper limit value Tcmax of the compressor 10, a preset difference lower limit value Dvmin of the inlet temperature of the condenser 20, and a casing temperature of the compressor 10, and compression.
  • control module 300 controls the alarm 410 to issue an alarm signal and the control switch 420 cuts off the power supply of the compressor 10. It should be noted that if I does not satisfy Imin ⁇ I ⁇ Imax, it may be other faults.
  • the preset parameters include a preset temperature upper limit value Tcmax of the compressor 10, a preset difference lower limit value Dvmin of the inlet temperature of the condenser 20, and a casing temperature of the compressor 10, and compression.
  • the real-time data or the calculated value calculated according to the real-time data is compared with the preset parameter, and the output control command according to the comparison result includes:
  • control module 300 controls the alarm 410 to issue an alarm signal and the control switch 420 cuts off the power supply of the compressor 10. It should be noted that if I does not satisfy Imin ⁇ I ⁇ Imax, it may be other faults.
  • a method of protection for safe operation of compressor 10 in accordance with an embodiment of the present disclosure includes the following steps:
  • S1 installing a protection system for safe operation of the compressor 10 in the refrigeration device, and writing a preset parameter for safe operation
  • S2 measuring and collecting real-time working condition parameters and electrical parameters under the operating state of the refrigeration device
  • S3 The specific logic performs calculation processing on the working condition parameter and the electrical parameter
  • S4 comparing, determining, and outputting the working condition parameter, the electrical parameter, and the calculating processing result with the preset parameter.
  • a protection method for safe operation of a compressor 10 includes the following steps:
  • S102 preset the housing temperature upper limit value Tcmax in the control module 300, the unit time change rate lower limit value ⁇ Tcondmin of the condensing temperature, the difference between the inlet temperature of the condenser 20 and the housing temperature of the compressor 10
  • S103 measuring and collecting the casing temperature Tc and the condenser 20 in the operating state of the refrigeration equipment The inlet temperature Td, the condensing temperature Tcond of the refrigeration unit, and the operating current I of the compressor 10
  • S104 calculating the unit time change rate ⁇ Tcond of the condensing temperature and the difference between the inlet temperature of the condenser 20 and the casing temperature of the compressor 10
  • S105 Compare the following parameters.
  • Tc>Tcmax it can be judged that the compressor 10 has an internal high temperature risk, and the output alarm signal and the switch 420 control the action;
  • S106 compare the following parameters, if Tc>Tcmax, Dv ⁇ Dvmin, Imin If ⁇ I ⁇ Imax is satisfied at the same time, it can be judged that the system has the risk of clogging on the high voltage side, and the output alarm signal and the switch 420 control the action;
  • S107 compare the following parameters, if Tc Tcmax, Dv ⁇ Dvmin, Tcond ⁇ Tcondmax, ⁇ Tcond ⁇ Tcondmin, and Imin ⁇ I ⁇ Imax meet, the compressor 10 may be determined that the presence of air or high temperature demagnetization run the risk of, an alarm signal is output to the switch 420 control operation.
  • the protection method for the safe operation of the compressor 10 compares and determines the preset parameters with the specific logic calculation of the working condition parameters and the electrical parameters of the measuring and collecting refrigeration equipment, and finally outputs the final output.
  • the alarm signal and the power source 430 control the action to avoid high temperature demagnetization and air operation explosion of the compressor 10.
  • the method is clear in logic, high in versatility, and highly targeted, and does not contradict the control logic of existing common refrigeration equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种制冷设备的防护系统和用于压缩机安全运行的保护方法,防护系统包括:测量模块(100),测量模块(100)用于测量制冷循环的实时数据;数据采集模块(200),数据采集模块(200)与测量模块(100)电连接,用于采集测量模块(100)测量的实时数据;控制模块(300),控制模块(300)与数据采集模块(200)电连接,且与压缩机(10)电连接;控制模块(300)设置为根据数据采集模块(200)采集的实时数据控制压缩机(10)的通电或断电。

Description

制冷设备的防护系统和用于压缩机安全运行的保护方法
相关申请的交叉引用
本申请要求广东美芝制冷设备有限公司于2018年3月30日提交的、发明名称为“制冷设备的防护系统和用于压缩机安全运行的保护方法”的中国专利申请号“201810292056.7”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于压缩机制造技术领域,具体而言,涉及一种制冷设备的防护系统和用于压缩机安全运行的保护方法。
背景技术
随着国内外家用空调能效标准不断提升,个人节能环保意识持续增强,家用空调市场中,变频压缩机的使用量近年增长较快,但是变频压缩机高温退磁故障率高成为制约变频压缩机推广的一个重要因素。在实现本公开的过程中,发明人发现,压缩机高温退磁主要是由于空调高压流路堵塞,而压缩机持续运行,超高的吸排气压比以及较高的吸气温度,导致泵体排气温度远超磁铁正常工作温度,引起转子失磁,最终压缩机失效。
同时,在制冷设备运行过程中,也偶尔会出现因空调系统高压侧堵塞,低压侧泄漏,压缩机持续运行而从低压侧吸入空气,然后导致压缩机空气运行爆炸的事故。其机理和内燃机类似,当空气不断被吸入、压缩、过热排气,压缩机冷冻机油气化形成油汽混合物。当温度、压力达到一定条件,冷冻机油自燃、爆炸!此类事故可导致人员伤亡、财产损失。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种制冷设备的防护系统,所述制冷设备的防护系统可以有效地监控压缩机的高温退磁风险或空气运行爆炸风险。
根据本公开实施例的制冷设备的防护系统,包括压缩机、冷凝器、节流单元和蒸发器,其特征在于,所述防护系统包括:测量模块,所述测量模块用于测量所述制冷循环的实时数据;数据采集模块,所述数据采集模块与所述测量模块电连接,用于采集所述测量模块测量的实时数据;控制模块,所述控制模块与所述数据采集模块电连接,且与所述压缩机电连接;其中,所述控制模块设置为根据所述数据采集模块采集的实时数据控制所述压缩机的通电或断电。
根据本公开实施例的制冷设备的防护系统,可以有效地监控压缩机的高温退磁风险或空气运行爆炸风险,该系统的通用性高、应用难度低、针对性强、反应速度快,且成本低。
根据本公开一个实施例的制冷设备的防护系统,所述测量模块包括:工况参数测量部件,所述工况参数测量部件用于测量所述压缩机的壳体温度Tc、所述冷凝器的入口温度Td、所述冷凝器的冷凝温度Tcond;电参数测量部件,所述电参数测量部件用于测量所述压缩机的工作电流I。
根据本公开一个实施例的制冷设备的防护系统,所述工况参数测量部件包括:第一温度测量器,用于检测所述压缩机的壳体温度Tc;第二温度测量器,用于测量所述冷凝器的入口温度Td;第三温度测量器,用于测量所述冷凝器的冷凝温度Tcond。
根据本公开一个实施例的制冷设备的防护系统,所述控制模块设置成,当Tc>Tcmax时,所述控制模块控制所述压缩机断电,其中,Tcmax为所述压缩机的壳体温度预设上限值。
根据本公开一个实施例的制冷设备的防护系统,所述控制模块设置成,当Tc>Tcmax,Dv≤Dvmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电,其中,Tcmax为所述压缩机的壳体温度的预设上限值,Dv=Td-Tc,Dvmin为所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值,Imin为所述压缩机的工作电流的预设下限值,Imax为所述压缩机的工作电流的预设上限值。
根据本公开一个实施例的制冷设备的防护系统,所述控制模块设置成,当Tc>Tcmax,Dv≤Dvmin,Tcond≤Tcondmax,ΔTcond≤ΔTcondmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电,其中,Tcmax为所述压缩机的壳体温度的预设上限值,Dv=Td-Tc,Dvmin为所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值,Imin为所述压缩机的工作电流的预设下限值,Imax为所述压缩机的工作电流的预设上限值,Tcondmax为所述冷凝器的冷凝温度的预设上限值,ΔTcond为所述冷凝温度的变化率,ΔTcondmin为所述冷凝温度的变化率的预设下限值。
根据本公开一个实施例的制冷设备的防护系统,所述控制模块包括:计算单元、寄存单元、比较单元、输出单元;其中,所述寄存单元与所述数据采集单元、所述计算单元、所述比较单元电连接,所述计算单元与比较单元电连接,所述输出单元与所述比较单元电连接;所述计算单元用于根据所述实时数据以及预设的计算程式计算出计算结果;所述寄存单元用于寄存预设参数、所述实时数据、所述计算结果、所述比较单元的比较结果;所述比较单元用于比较所述预设参数、所述实时参数以及所述计算结果以得出比较结果;所述输出单元适于与所述压缩机或所述制冷设备的开关电连接,用于根据所述比较结果控制所述压缩机的通电或断电。
根据本公开一个实施例的制冷设备的防护系统,还包括:报警器,所述报警器与所述控制模块电连接。
本公开还提出了一种用于压缩机安全运行的保护方法,包括如下步骤:设定制冷设备安全运行的预设参数;测量所述制冷设备运行状态下的实时数据;将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令,所述控制指令包括控制压缩机断电。
根据本公开一个实施例的用于压缩机安全运行的保护方法,所述预设参数包括所述压缩机的壳体温度预设上限值Tcmax,所述实时数据包括所述压缩机的壳体温度Tc,所述步骤将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令包括:当Tc>Tcmax时,所述控制模块控制所述压缩机断电。
根据本公开一个实施例的用于压缩机安全运行的保护方法,所述预设参数包括所述压缩机的壳体温度预设上限值Tcmax、所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值Dvmin、所述压缩机的工作电流的预设下限值Imin、所述压缩机的工作电流的预设上限值Imax,所述实时数据包括所述压缩机的壳体温度Tc和所述冷凝器的入口温度Td,根据所述实时数据计算出的计算值包括Dv,Dv=Td-Tc,所述步骤将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令包括:当Tc>Tcmax,Dv≤Dvmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电。
根据本公开一个实施例的用于压缩机安全运行的保护方法,所述预设参数包括所述压缩机的壳体温度预设上限值Tcmax、所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值Dvmin、所述压缩机的工作电流的预设下限值Imin、所述压缩机的工作电流的预设上限值Imax、所述冷凝器的冷凝温度的预设上限值Tcondmax、所述冷凝温度的变化率的预设下限值ΔTcondmin,所述实时数据包括所述压缩机的壳体温度Tc和所述冷凝器的入口温度Td,根据所述实时数据计算出的计算值包括Dv和所述冷凝温度的变化率ΔTcond,Dv=Td-Tc,所述步骤将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令包括:当Tc>Tcmax,Dv≤Dvmin,Tcond≤Tcondmax,ΔTcond≤ΔTcondmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电。
所述用于压缩机安全运行的保护方法与上述的制冷设备的防护系统相对于现有技术所具有的优势相同,在此不再赘述。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的防护系统的结构示意图;
图2和图3是根据本公开实施例的防护系统中的数据传输示意图;
图4-图6是根据本公开实施例的用于压缩机安全运行的保护方法的流程图。
附图标记:
压缩机10,冷凝器20,节流单元30,蒸发器40,
测量模块100,第一温度测量器110,第二温度测量器120,第三温度测量器130,电参数测量部件140,
数据采集模块200,
控制模块300,计算单元310、寄存单元320、比较单元330、输出单元340,
报警器410,开关420,电源430。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
下面参考图1-图3描述根据本公开实施例的制冷设备的防护系统。制冷设备可以为空调等设备。
如图1所示,制冷设备的制冷循环包括压缩机10、冷凝器20、节流单元30和蒸发器40,压缩机10的排气口与冷凝器20的入口通过管路相连,冷凝器20的出口通过管路与蒸发器40的入口相连,且冷凝器20的出口与蒸发器40的入口之间设有节流单元30,蒸发器40的出口与压缩机10的吸气口通过管路相连,压缩机10与电源430相连,且压缩机10与电源430之间设有开关420。
如图1-图3所示,根据本公开一个实施例的制冷设备的防护系统包括:测量模块100、数据采集模块200、控制模块300。
其中,测量模块100用于测量制冷循环的实时数据,该实时数据可以包括制冷循环中的至少部分器件的温度或制冷剂在制冷循环中各处的工作温度,数据采集模块200与测量模块100电连接,数据采集模块200用于采集测量模块100测量的实时数据,控制模块300与数据采集模块200电连接,数据采集模块200将采集的制冷循环的实时数据传输给控制模块300,控制模块300与压缩机10电连接,控制模块300设置为根据数据采集模块200采集的实时数据控制压缩机10的通电或断电。
也就是说,本公开实施例的制冷设备的防护系统通过监测制冷设备的工作数据,通过该数据来判断压缩机10是否存在高温退磁或空气运行爆炸的风险,提前发现风险点,并对压缩机10作断电处理,可以提高制冷设备的运行安全性。
根据本公开实施例的制冷设备的防护系统,可以有效地监控压缩机10的高温退磁风险或空气运行爆炸风险,该系统的通用性高、应用难度低、针对性强、反应速度快,且成本低。
如图2和图3所示,测量模块100包括:工况参数测量部件和电参数测量部件140。
其中,工况参数测量部件用于测量压缩机10的壳体温度Tc、冷凝器20的入口温度Td、冷凝器20的冷凝温度Tcond,冷凝器20的入口温度Td约等于压缩机10的排气温度,冷凝器20的冷凝温度Tcond为制冷设备冷冻循环的冷凝温度,可以用冷凝器20的中部温度来表征。
工况参数测量部件可以包括:第一温度测量器110、第二温度测量器120、第三温度测量器130。
第一温度测量器110用于检测压缩机10的壳体温度Tc,比如第一温度测量器110为热电阻传感器,且第一温度测量器110安装于压缩机10的上壳体。
第二温度测量器120用于测量冷凝器20的入口温度Td,比如第二温度测量器120可以为热电偶传感器,且第二温度测量器120粘贴于压缩机10排气管与冷凝器20的连接中部,具体地,对于某型号的制冷设备可以粘贴于压缩机10排气管后连接管的第一个U弯,通过压缩机10与冷凝器20之间连接管的中部温度表征冷凝器20的入口温度Td,可以简化冷 凝器20的入口温度Td的测量。
第三温度测量器130用于测量冷凝器20的冷凝温度Tcond,比如第三温度测量器130为热电阻传感器,且第三温度测量器130粘贴于冷凝器20的中部,具体地,对于某型号的制冷设备第三温度测量器130粘贴于冷凝器20的第一排第五个U弯。
电参数测量部件140用于测量压缩机10的工作电流I,电参数测量部件140包括:霍尔传感器,用于测量测量压缩机10的R相电流。
如图2和图3所示,控制模块300包括:计算单元310、寄存单元320、比较单元330、输出单元340。
寄存单元320与数据采集单元、计算单元310、比较单元330电连接,计算单元310与比较单元330电连接,输出单元340与比较单元330电连接,计算单元310用于根据实时数据以及预设的计算程式计算出计算结果,寄存单元320用于寄存预设参数、实时数据、计算结果、比较单元330的比较结果,比较单元330用于比较预设参数、实时参数以及计算结果以得出比较结果,输出单元340适于与压缩机10或制冷设备的开关420电连接,用于根据比较结果控制压缩机10的通电或断电。
参考图3,制冷设备的防护系统还可以包括:报警器410,报警器410与控制模块300电连接,具体地,报警器410与输出单元340电连接,在比较结果判断出压缩机10存在高温退磁或空气运行爆炸的风险,输出单元340输出信号给报警器410。
在一些实施例中,控制模块300设置成,当Tc>Tcmax时,控制模块300控制压缩机10断电,其中,Tcmax为压缩机10的壳体温度预设上限值,Tcmax可以预先写入控制模块300。可以理解的是,当Tc>Tcmax时则可判断压缩机10存在内部高温风险,控制模块300控制报警器410发出报警信号且控制开关420切断压缩机10的供电。
在另一些实施例中,控制模块300设置成,当Tc>Tcmax,Dv≤Dvmin,且Imin≤I≤Imax时,控制模块300控制压缩机10断电,其中,Tcmax为压缩机10的壳体温度的预设上限值,Dv=Td-Tc,Dvmin为冷凝器20的入口温度与压缩机10的壳体温度的预设差值下限值,Imin为压缩机10的工作电流的预设下限值,Imax为压缩机10的工作电流的预设上限值,Tcmax、Dvmin、Imin、Imax可以预先写入控制模块300。可以理解的是,当上述条件同时满足时,则可判断系统存在高压侧堵塞的风险,控制模块300控制报警器410发出报警信号且控制开关420切断压缩机10的供电。需要说明的是,若I不满足Imin≤I≤Imax,则可能是其他故障。
在又一些实施例中,控制模块300设置成,当Tc>Tcmax,Dv≤Dvmin,Tcond≤Tcondmax,ΔTcond≤ΔTcondmin,且Imin≤I≤Imax时,控制模块300控制压缩机10断电,其中,Tcmax为压缩机10的壳体温度的预设上限值,Dv=Td-Tc,Dvmin为冷凝器20的入口温度与 压缩机10的壳体温度的预设差值下限值,Imin为压缩机10的工作电流的预设下限值,Imax为压缩机10的工作电流的预设上限值,Tcondmax为冷凝器20的冷凝温度的预设上限值,ΔTcond为冷凝温度的变化率,ΔTcondmin为冷凝温度的变化率的预设下限值,Tcmax、Tcondmax、Dvmin、ΔTcondmin、Imin、Imax可以预先写入控制模块300。可以理解的是,当上述条件同时满足时,可判断压缩机10存在高温退磁或空气运行的风险,控制模块300控制报警器410发出报警信号且控制开关420切断压缩机10的供电。需要说明的是,若I不满足Imin≤I≤Imax,则可能是其他故障。
本公开还公开了一种用于压缩机10安全运行的保护方法,本公开实施例的用于压缩机10安全运行的保护方法可以使用上述实施例的制冷设备的防护系统实现。
如图4-图6所示,根据本公开实施例的用于压缩机10安全运行的保护方法包括如下步骤:设定制冷设备安全运行的预设参数;测量制冷设备运行状态下的实时数据;将实时数据或根据实时数据计算出的计算值与预设参数比较,并根据比较结果输出控制指令,控制指令包括控制压缩机10断电。
在一些实施例中,预设参数包括压缩机10的壳体温度预设上限值Tcmax,实时数据包括压缩机10的壳体温度Tc,步骤将实时数据或根据实时数据计算出的计算值与预设参数比较,并根据比较结果输出控制指令包括:当Tc>Tcmax时,控制模块300控制压缩机10断电。可以理解的是,当Tc>Tcmax时则可判断压缩机10存在内部高温风险,控制模块300控制报警器410发出报警信号且控制开关420切断压缩机10的供电。
在另一些实施例中,预设参数包括压缩机10的壳体温度预设上限值Tcmax、冷凝器20的入口温度与压缩机10的壳体温度的预设差值下限值Dvmin、压缩机10的工作电流的预设下限值Imin、压缩机10的工作电流的预设上限值Imax,实时数据包括压缩机10的壳体温度Tc和冷凝器20的入口温度Td,根据实时数据计算出的计算值包括Dv,Dv=Td-Tc,步骤将实时数据或根据实时数据计算出的计算值与预设参数比较,并根据比较结果输出控制指令包括:当Tc>Tcmax,Dv≤Dvmin,且Imin≤I≤Imax时,控制模块300控制压缩机10断电。可以理解的是,当上述条件同时满足时,则可判断系统存在高压侧堵塞的风险,控制模块300控制报警器410发出报警信号且控制开关420切断压缩机10的供电。需要说明的是,若I不满足Imin≤I≤Imax,则可能是其他故障。
在又一些实施例中,预设参数包括压缩机10的壳体温度预设上限值Tcmax、冷凝器20的入口温度与压缩机10的壳体温度的预设差值下限值Dvmin、压缩机10的工作电流的预设下限值Imin、压缩机10的工作电流的预设上限值Imax、冷凝器20的冷凝温度的预设上限值Tcondmax、冷凝温度的变化率的预设下限值ΔTcondmin,实时数据包括压缩机10的壳体温度Tc和冷凝器20的入口温度Td,根据实时数据计算出的计算值包括Dv和冷凝温 度的变化率ΔTcond,Dv=Td-Tc,步骤将实时数据或根据实时数据计算出的计算值与预设参数比较,并根据比较结果输出控制指令包括:当Tc>Tcmax,Dv≤Dvmin,Tcond≤Tcondmax,ΔTcond≤ΔTcondmin,且Imin≤I≤Imax时,控制模块300控制压缩机10断电。可以理解的是,当上述条件同时满足时,可判断压缩机10存在高温退磁或空气运行的风险,控制模块300控制报警器410发出报警信号且控制开关420切断压缩机10的供电。需要说明的是,若I不满足Imin≤I≤Imax,则可能是其他故障。
在又一些实施例中,参考图5,根据本公开实施例的用于压缩机10安全运行的保护方法包括以下步骤:
S1:把用于压缩机10安全运行的防护系统安装在制冷设备中,写入安全运行的预设参数;S2:测量并采集制冷设备运行状态下的实时工况参数和电参数;S3:根据特定逻辑对所述工况参数和所述电参数进行计算处理;S4:把所述工况参数、电参数以及计算处理结果与所述预设参数进行比较、判断及输出控制。
参考图6,根据本公开实施例的用于压缩机10安全运行的保护方法包括以下步骤:
S101:把用于压缩机10安全运行的防护系统安装在制冷设备中;
S102:于控制模块300中预设壳体温度上限值Tcmax、冷凝温度的单位时间变化率下限值ΔTcondmin、冷凝器20的入口温度与所述压缩机10的壳体温度的差值下限值Dvmin、压缩机10的正常工作电流上限Imax、压缩机10的正常工作电流下限Imin以及冷凝温度的上限值Tcondmax;S103:测量并采集制冷设备运行状态下的壳体温度Tc、冷凝器20的入口温度Td、制冷设备的冷凝温度Tcond与压缩机10的工作电流I;S104:计算冷凝温度的单位时间变化率ΔTcond以及冷凝器20入口温度与所述压缩机10壳体温度的差值Dv;S105:比较以下参数,若Tc>Tcmax,则可判断所述压缩机10存在内部高温风险,输出报警信号与开关420控制动作;S106:比较以下参数,若Tc>Tcmax,Dv≤Dvmin,Imin≤I≤Imax同时满足,则可判断所述系统存在高压侧堵塞的风险,输出报警信号与开关420控制动作;S107:比较以下参数,若Tc>Tcmax,Dv≤Dvmin,Tcond≤Tcondmax,ΔTcond≤ΔTcondmin,且Imin≤I≤Imax同时满足,则可判断所述压缩机10存在高温退磁或空气运行的风险,输出报警信号与开关420控制动作。
综上,根据本公开提出的用于压缩机10安全运行的保护方法,通过对测量、采集制冷设备的工况参数和电参数进行特定逻辑计算后,与预设参数进行比较、判断,最终输出报警信号及与电源430控制动作,从而避免压缩机10出现高温退磁和空气运行爆炸。该方法逻辑清晰、通用性高、针对性强,且不会与现有常用制冷设备的控制逻辑矛盾。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、 “示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种制冷设备的防护系统,所述制冷设备的制冷循环包括压缩机、冷凝器、节流单元和蒸发器,其特征在于,所述防护系统包括:
    测量模块,所述测量模块用于测量所述制冷循环的实时数据;
    数据采集模块,所述数据采集模块与所述测量模块电连接,用于采集所述测量模块测量的实时数据;
    控制模块,所述控制模块与所述数据采集模块电连接,且与所述压缩机电连接;其中,
    所述控制模块设置为根据所述数据采集模块采集的实时数据控制所述压缩机的通电或断电。
  2. 根据权利要求1所述的制冷设备的防护系统,其特征在于,所述测量模块包括:
    工况参数测量部件,所述工况参数测量部件用于测量所述压缩机的壳体温度Tc、所述冷凝器的入口温度Td、所述冷凝器的冷凝温度Tcond;
    电参数测量部件,所述电参数测量部件用于测量所述压缩机的工作电流I。
  3. 根据权利要求2所述的制冷设备的防护系统,其特征在于,所述工况参数测量部件包括:
    第一温度测量器,用于检测所述压缩机的壳体温度Tc;
    第二温度测量器,用于测量所述冷凝器的入口温度Td;
    第三温度测量器,用于测量所述冷凝器的冷凝温度Tcond。
  4. 根据权利要求2或3所述的制冷设备的防护系统,其特征在于,所述控制模块设置成,当Tc>Tcmax时,所述控制模块控制所述压缩机断电,其中,Tcmax为所述压缩机的壳体温度预设上限值。
  5. 根据权利要求2-4中任一项所述的制冷设备的防护系统,其特征在于,所述控制模块设置成,当Tc>Tcmax,Dv≤Dvmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电,其中,Tcmax为所述压缩机的壳体温度的预设上限值,Dv=Td-Tc,Dvmin为所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值,Imin为所述压缩机的工作电流的预设下限值,Imax为所述压缩机的工作电流的预设上限值。
  6. 根据权利要求2-5中任一项所述的制冷设备的防护系统,其特征在于,所述控制模块设置成,当Tc>Tcmax,Dv≤Dvmin,Tcond≤Tcondmax,ΔTcond≤ΔTcondmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电,其中,Tcmax为所述压缩机的壳体温度的预设上限值,Dv=Td-Tc,Dvmin为所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值,Imin为所述压缩机的工作电流的预设下限值,Imax为所述压缩机的工 作电流的预设上限值,Tcondmax为所述冷凝器的冷凝温度的预设上限值,ΔTcond为所述冷凝温度的变化率,ΔTcondmin为所述冷凝温度的变化率的预设下限值。
  7. 根据权利要求1-6中任一项所述的制冷设备的防护系统,其特征在于,所述控制模块包括:计算单元、寄存单元、比较单元、输出单元;其中,
    所述寄存单元与所述数据采集单元、所述计算单元、所述比较单元电连接,所述计算单元与比较单元电连接,所述输出单元与所述比较单元电连接;
    所述计算单元用于根据所述实时数据以及预设的计算程式计算出计算结果;
    所述寄存单元用于寄存预设参数、所述实时数据、所述计算结果、所述比较单元的比较结果;
    所述比较单元用于比较所述预设参数、所述实时参数以及所述计算结果以得出比较结果;
    所述输出单元适于与所述压缩机或所述制冷设备的开关电连接,用于根据所述比较结果控制所述压缩机的通电或断电。
  8. 根据权利要求1-6中任一项所述的制冷设备的防护系统,其特征在于,还包括:报警器,所述报警器与所述控制模块电连接。
  9. 一种用于压缩机安全运行的保护方法,其特征在于,包括如下步骤:
    设定制冷设备安全运行的预设参数;
    测量所述制冷设备运行状态下的实时数据;
    将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令,所述控制指令包括控制压缩机断电。
  10. 根据权利要求9所述的用于压缩机安全运行的保护方法,其特征在于,所述预设参数包括所述压缩机的壳体温度预设上限值Tcmax,所述实时数据包括所述压缩机的壳体温度Tc,所述步骤将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令包括:
    当Tc>Tcmax时,所述控制模块控制所述压缩机断电。
  11. 根据权利要求9或10所述的用于压缩机安全运行的保护方法,其特征在于,所述预设参数包括所述压缩机的壳体温度预设上限值Tcmax、所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值Dvmin、所述压缩机的工作电流的预设下限值Imin、所述压缩机的工作电流的预设上限值Imax,所述实时数据包括所述压缩机的壳体温度Tc和所述冷凝器的入口温度Td,根据所述实时数据计算出的计算值包括Dv,Dv=Td-Tc,所述步骤将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令包括:
    当Tc>Tcmax,Dv≤Dvmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电。
  12. 根据权利要求9-11中任一项所述的用于压缩机安全运行的保护方法,其特征在于,所述预设参数包括所述压缩机的壳体温度预设上限值Tcmax、所述冷凝器的入口温度与所述压缩机的壳体温度的预设差值下限值Dvmin、所述压缩机的工作电流的预设下限值Imin、所述压缩机的工作电流的预设上限值Imax、所述冷凝器的冷凝温度的预设上限值Tcondmax、所述冷凝温度的变化率的预设下限值ΔTcondmin,所述实时数据包括所述压缩机的壳体温度Tc和所述冷凝器的入口温度Td,根据所述实时数据计算出的计算值包括Dv和所述冷凝温度的变化率ΔTcond,Dv=Td-Tc,所述步骤将所述实时数据或根据所述实时数据计算出的计算值与所述预设参数比较,并根据比较结果输出控制指令包括:
    当Tc>Tcmax,Dv≤Dvmin,Tcond≤Tcondmax,ΔTcond≤ΔTcondmin,且Imin≤I≤Imax时,所述控制模块控制所述压缩机断电。
PCT/CN2018/112622 2018-03-30 2018-10-30 制冷设备的防护系统和用于压缩机安全运行的保护方法 WO2019184332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810292056.7 2018-03-30
CN201810292056.7A CN108662730B (zh) 2018-03-30 2018-03-30 制冷设备的防护系统和用于压缩机安全运行的保护方法

Publications (1)

Publication Number Publication Date
WO2019184332A1 true WO2019184332A1 (zh) 2019-10-03

Family

ID=63783016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112622 WO2019184332A1 (zh) 2018-03-30 2018-10-30 制冷设备的防护系统和用于压缩机安全运行的保护方法

Country Status (2)

Country Link
CN (1) CN108662730B (zh)
WO (1) WO2019184332A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229126A (zh) * 2020-10-22 2021-01-15 青岛德而酷电器有限公司 吸收式冰箱制冷系统损坏预判方法以及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662730B (zh) * 2018-03-30 2021-02-12 广东美芝制冷设备有限公司 制冷设备的防护系统和用于压缩机安全运行的保护方法
CN110594953A (zh) * 2019-09-09 2019-12-20 广东美的暖通设备有限公司 压缩机驱动装置、压缩机压力保护方法及空调器
CN111780380A (zh) * 2020-06-15 2020-10-16 珠海格力电器股份有限公司 压缩机运行状态的控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131118A (ja) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp インバータ制御装置並びに空気調和装置
CN107359594A (zh) * 2017-07-03 2017-11-17 广东美芝制冷设备有限公司 压缩机断电退磁保护方法、装置、家用电器及存储介质
CN108662730A (zh) * 2018-03-30 2018-10-16 广东美芝制冷设备有限公司 制冷设备的防护系统和用于压缩机安全运行的保护方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301039A (ja) * 2003-03-31 2004-10-28 Mitsubishi Electric Corp 圧縮機の保護装置及びそれを用いる圧縮機
CN102345915B (zh) * 2011-08-02 2013-11-27 宁波奥克斯电气有限公司 直流变频空调的故障运行控制方法
CN102761103B (zh) * 2012-02-24 2013-05-29 珠海格力电器股份有限公司 压缩机退磁保护电路及退磁保护方法和空调器
CN103944143B (zh) * 2014-04-02 2017-06-06 美的集团股份有限公司 一种空调器及其压缩机退磁保护电路和方法
CN104613690B (zh) * 2014-12-16 2017-02-01 广东美的制冷设备有限公司 冷凝器温度保护的控制方法和控制系统
CN106839276A (zh) * 2017-01-03 2017-06-13 青岛海尔空调器有限总公司 一种空调缺氟检测的控制方法及空调
CN107039950A (zh) * 2017-03-27 2017-08-11 珠海凌达压缩机有限公司 压缩机保护系统、空调器及压缩机保护系统控制的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131118A (ja) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp インバータ制御装置並びに空気調和装置
CN107359594A (zh) * 2017-07-03 2017-11-17 广东美芝制冷设备有限公司 压缩机断电退磁保护方法、装置、家用电器及存储介质
CN108662730A (zh) * 2018-03-30 2018-10-16 广东美芝制冷设备有限公司 制冷设备的防护系统和用于压缩机安全运行的保护方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229126A (zh) * 2020-10-22 2021-01-15 青岛德而酷电器有限公司 吸收式冰箱制冷系统损坏预判方法以及装置

Also Published As

Publication number Publication date
CN108662730B (zh) 2021-02-12
CN108662730A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2019184332A1 (zh) 制冷设备的防护系统和用于压缩机安全运行的保护方法
CN101512160B (zh) 压缩机数据模块
CN109631229B (zh) 制冷系统制冷剂快速泄漏的判定方法
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
CN109631228B (zh) 制冷系统制冷剂快速泄漏的判定方法及系统
CN101802521B (zh) 制冷监控系统和方法
CN107560112B (zh) 一种空调制冷防高温保护的控制方法
CN202883418U (zh) 用于空调室外风机的故障检测装置
US20220090979A1 (en) Systems and methods for leak management utilizing sub-barometric refrigerant conduit sleeves
CN105065249B (zh) 压缩机性能检测装置、具有该装置的空调系统和控制方法
CN107289599A (zh) 一种检测空调冷媒泄露量的装置和方法
CN109869955A (zh) 制冷系统排气温度传感器脱落检测方法及系统
CN107631527B (zh) 检测变频制冷设备是否缺少冷媒的方法及系统
CN105135628A (zh) 空调器及空调器的除霜控制方法
WO2019011095A1 (zh) 空调运行控制方法
US9951985B2 (en) Refrigerant charge detection for ice machines
CN108548273A (zh) 一种空调故障检测方法及装置
CN105258219B (zh) 空调器及其控制方法和控制系统
WO2020177284A1 (zh) 防止空调器的压缩机液击的控制方法及控制系统
CN106705305A (zh) 空调器及空调器用蓄热组件工作状态的检测方法
CN110906505A (zh) 一种空调冷媒泄露检测方法及空调
CN112393377A (zh) 故障判断方法及空调器
CN103307818A (zh) 空调系统及空调系统防液击的控制方法
CN103362819B (zh) 带温度保护装置的压缩机
CN110836519B (zh) 一种空调器冷媒泄漏检测方法及检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912143

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912143

Country of ref document: EP

Kind code of ref document: A1