CN103944143B - 一种空调器及其压缩机退磁保护电路和方法 - Google Patents

一种空调器及其压缩机退磁保护电路和方法 Download PDF

Info

Publication number
CN103944143B
CN103944143B CN201410132086.3A CN201410132086A CN103944143B CN 103944143 B CN103944143 B CN 103944143B CN 201410132086 A CN201410132086 A CN 201410132086A CN 103944143 B CN103944143 B CN 103944143B
Authority
CN
China
Prior art keywords
compressor
resistance
signal
reference voltage
demagnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410132086.3A
Other languages
English (en)
Other versions
CN103944143A (zh
Inventor
鲍殿生
陈建昌
黄国超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
Midea Group Wuhan Refrigeration Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
Midea Group Wuhan Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Midea Group Wuhan Refrigeration Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201410132086.3A priority Critical patent/CN103944143B/zh
Publication of CN103944143A publication Critical patent/CN103944143A/zh
Application granted granted Critical
Publication of CN103944143B publication Critical patent/CN103944143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于电路领域,提供了一种空调器及其压缩机退磁保护电路和方法。本发明由参考电压生成模块根据室外环境温度输出相应的参考电压信号至电压比较模块,电压比较模块将电流采样模块输出的采样电压信号与参考电压信号进行比较,并根据比较结果输出相应的保护电平信号以驱动智能功率模块相应地控制压缩机运行或停机,从而在兼容不同压缩机型号的情况下,当压缩机在某个室外环境温度时的相电流不小于退磁电流,则会控制压缩机停机,以对压缩机实现有效的退磁保护。

Description

一种空调器及其压缩机退磁保护电路和方法
技术领域
本发明属于电路领域,尤其涉及一种空调器及其压缩机退磁保护电路和方法。
背景技术
空调器所用的压缩机在工作于高温、低温或者大电流环境下会出现退磁现象,即压缩机的电机转子的永久磁铁的磁通量降低,而由于压缩机的工作电流在此时会升高,所以退磁现象会使压缩机因过流而运转异常,则空调器因此而不能正常工作。
因此,现有的空调驱动电路都有压缩机电流保护功能,如压缩机中常用的智能功率模块(IPM,Intelligent Power Module)就具有驱动电流保护功能,其通过设定压缩机的工作电流保护值,在压缩机出现过流时,由智能功率模块停止对压缩机驱动以避免因压缩机退磁而造成的故障。压缩机的工作电流保护值是与工作的环境温度相关的,压缩机在高温条件下的工作电流保护值要比低温条件下的工作电流保护值高。在传统的压缩机电流保护电路中,压缩机的工作电流保护值是固定的,通常设定为低温条件下的工作电流保护值,以保证压缩机工作在低温条件下不发生退磁现象,在正常温度且尚未达到高温条件时,会导致压缩机的工作电流保护值过低,从而致使智能功率模块不能输出更大的电流驱动压缩机,则会使压缩机在正常温度条件下的性能得不到有效的提升。针对该问题,现有技术提出了一种压缩机过流保护方案,其压缩机的工作电流保护值可随着温度的变化而变化,其具体通过采用具有热敏电阻的温度补偿模块实现,然而,具有热敏电阻的温度补偿模块在实际工作时,由于其对参考电压的补偿有限和精度不高,并且由于不同类型的压缩机的退磁电流变化规律不一样,该方案无法兼容不同类型的压缩机退磁电流变化规律,则有可能会造成无法对压缩机实现有效的退磁保护的问题。
发明内容
本发明的目的在于提供一种压缩机退磁保护电路,旨在解决现有技术所存在的对不同类型的压缩机的兼容性差而导致无法对压缩机实现有效的退磁保护的问题。
本发明是这样实现的,一种压缩机退磁保护电路,包括电流采样模块、电压比较模块及智能功率模块,所述电流采样模块对压缩机的相电流进行采样并输出相应的采样电压信号至所述电压比较模块的第一输入端,所述智能功率模块对所述压缩机的工作状态进行控制;
所述压缩机退磁保护电路还包括参考电压生成模块;
所述参考电压生成模块的输出端连接所述电压比较模块的第二输入端,所述电压比较模块的输出端连接所述智能功率模块的保护触发电压检测端口;
所述参考电压生成模块根据室外环境温度输出相应的参考电压信号至所述电压比较模块,所述电压比较模块将所述采样电压信号与所述参考电压信号进行比较,并根据比较结果输出相应的保护电平信号驱动所述智能功率模块相应地控制压缩机运行或停机。
本发明的另一目的还在于提供一种空调器,其包括压缩机以及上述的压缩机退磁保护电路。
本发明的又一目的还在于提供一种基于上述压缩机退磁保护电路的压缩机退磁保护方法,所述压缩机退磁保护方法包括以下步骤:
参考电压生成模块根据室外环境温度输出相应的参考电压信号至电压比较模块;
所述电压比较模块将电流采样模块输出的采样电压信号与所述参考电压信号进行比较,并根据比较结果输出相应的保护电平信号驱动智能功率模块相应地控制压缩机运行或停机。
本发明通过在具有电流采样模块、电压比较模块及智能功率模块的压缩机退磁保护电路中采用参考电压生成模块,由参考电压生成模块根据室外环境温度输出相应的参考电压信号至电压比较模块,电压比较模块将电流采样模块输出的采样电压信号与参考电压信号进行比较,并根据比较结果输出相应的保护电平信号以驱动智能功率模块相应地控制压缩机运行或停机,从而在兼容不同压缩机型号的情况下,当压缩机在某个室外环境温度时的相电流不小于退磁电流,则会控制压缩机停机,以对压缩机实现有效的退磁保护。
附图说明
图1是本发明实施例提供的压缩机退磁保护电路的模块结构图;
图2是本发明实施例所涉及的铁氧体压缩机的温度-退磁电流对应关系曲线图;
图3是本发明实施例所涉及的稀土压缩机的温度-退磁电流对应关系曲线图;
图4是本发明实施例提供的压缩机退磁保护方法的实现流程图;
图5是本发明实施例提供的压缩机退磁保护电路的示例电路结构图;
图6是本发明实施例提供的压缩机退磁保护电路的另一示例电路结构图;
图7是本发明另一实施例提供的压缩机退磁保护电路的示例电路结构图;
图8是本发明另一实施例提供的压缩机退磁保护电路的示例电路结构图;
图9是本发明另一实施例提供的压缩机退磁保护电路的示例电路结构图;
图10是本发明另一实施例提供的与图7对应的压缩机退磁保护电路的示例电路结构图;
图11是本发明另一实施例提供的与图8对应的压缩机退磁保护电路的示例电路结构图;
图12是本发明另一实施例提供的与图9对应的压缩机退磁保护电路的示例电路结构图;
图13是图7至图12所示的压缩机退磁保护电路所涉及的脉宽调制信号与参考电压信号的波形图。
图14是本发明其他实施例提供的压缩机退磁保护电路的模块结构图;
图15是本发明其他实施例提供的压缩机退磁保护方法的实现流程图;
图16是图14所示的压缩机退磁保护电路的示例电路结构图;
图17是图14所示的压缩机退磁保护电路的示例电路结构图;
图18是图14所示的压缩机退磁保护电路的另一示例电路结构图;
图19是图18所示的压缩机退磁保护电路的具体示例电路结构图;
图20是图18所示的压缩机退磁保护电路的具体示例电路结构图;
图21是与图18对应的压缩机退磁保护电路的另一示例电路结构图;
图22是与图19对应的压缩机退磁保护电路的具体示例电路结构图;
图23是与图20对应的压缩机退磁保护电路的具体示例电路结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了本发明实施例提供的压缩机退磁保护电路的模块结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
本发明实施例提供的压缩机退磁保护电路100包括电流采样模块101、电压比较模块102及智能功率模块103,电流采样模块101对压缩机200的相电流进行采样并输出相应的采样电压信号至电压比较模块102的第一输入端,智能功率模块103对压缩机200的工作状态进行控制。
压缩机退磁保护电路100还包括参考电压生成模块104。
参考电压生成模块104的输出端连接电压比较模块102的第二输入端,电压比较模块102的输出端连接智能功率模块103的保护触发电压检测端口CIN。
参考电压生成模块104根据室外环境温度输出相应的参考电压信号至电压比较模块102,电压比较模块102将上述的采样电压信号与上述的参考电压信号进行比较,并根据比较结果输出相应的保护电平信号驱动智能功率模块103相应地控制压缩机200运行或停机。
其中,参考电压生成模块104具体是对室外环境温度进行检测,并根据预设压缩机型号信息所对应的温度-退磁电流对应关系获取与当前室外环境温度相对应的退磁电流值,再根据该退磁电流值生成参考电压信号。此处所涉及的预设压缩机型号信息是压缩机出厂前已预先设定的,或者是用户在使用空调器时,根据说明书的指示通过遥控器或空调器控制面板从预先设定的压缩机型号数据库中进行选择;温度-退磁电流对应关系是与预设压缩机型号信息相匹配且预先存储在参考电压生成模块104中的温度与退磁电流相关联的数据库;退磁电流是指压缩机在某个室外环境温度下出现退磁现象时的工作电流。
不同类型的压缩机的退磁电流跟随温度变化的规律是不同的,以铁氧体为磁性材料的压缩机(简称铁氧体压缩机)的温度-退磁电流对应关系曲线和以稀土为磁性材料的压缩机(简称稀土压缩机)的温度-退磁电流对应关系曲线是完全相反的。图2所示的是铁氧体压缩机的温度-退磁电流对应关系曲线,图3所示的是稀土压缩机的温度-退磁电流对应关系曲线,从图2可知,铁氧体压缩机的退磁电流与室外环境温度是呈正比关系,而从图3可知,稀土压缩机的退磁电流与室外环境温度是呈反比关系,而且从图2和图3可知,采用同一种磁性材料的不同型号的压缩机(如图2中的压缩机1和压缩机2,图3中的压缩机3和压缩机4)的温度-退磁电流对应关系曲线也会有所区别。所以,为了能够兼容对不同型号的压缩机实现退磁保护,本发明实施例通过参考电压生成模块104根据室外环境温度和预设压缩机型号信息确定所要输出的参考电压信号,从而能够准确地对不同型号的压缩机实现退磁保护,保证压缩机工作时的相电流维持在当前室外环境温度对应的退磁电流范围之内。
基于上述的压缩机退磁保护电路,本发明实施例还提供了一种压缩机退磁保护方法,如图4所示,其包括以下步骤:
S1.参考电压生成模块104根据室外环境温度输出相应的参考电压信号至电压比较模块102;
S2.电压比较模块102将电流采样模块101输出的采样电压信号与参考电压生成模块104输出的参考电压信号进行比较,并根据比较结果输出相应的保护电平信号驱动智能功率模块103相应地控制压缩机200运行或停机。
其中,步骤S1具体为:
参考电压生成模块104对室外环境温度进行检测,并根据预设压缩机型号信息所对应的温度-退磁电流对应关系获取与当前室外环境温度相对应的退磁电流值,再根据退磁电流值生成相应的参考电压信号。此处根据退磁电流值生成相应的参考电压信号具体是根据参考电压生成模块104内部预先设定的退磁电流-参考电压对应关系或者电流电压对应算法生成与退磁电流值对应的参考电压信号。
步骤S2中根据比较结果输出相应的电平信号的步骤具体为:
当电流采样模块101输出的采样电压信号不小于参考电压生成模块104输出的参考电压信号时,电压比较模块102输出高电平;
当电流采样模块101输出的采样电压信号小于参考电压生成模块104输出的参考电压信号时,电压比较模块102输出低电平。
对于上述的智能功率模块103控制压缩机200运行或停机,具体是指:当压缩机的相电流不小于当前室外环境温度所对应的退磁电流时,电压比较模块102会输出高电平,则此时保护电平信号为高电平,智能功率模块103根据该高电平控制压缩机200停机以达到对压缩机200实现退磁保护的目的;当压缩机的相电流小于当前室外环境温度所对应的退磁电流时,电压比较模块102会输出低电平,则此时保护电平信号为低电平,智能功率模块103根据该低电平控制压缩机200正常运行,则压缩机200工作时的相电流可以处于不超过退磁电流的最大值,进而使压缩机200可以按照最大功率运行以达到输出能力最大化。图5示出了本发明实施例提供的压缩机退磁保护电路的示例电路结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
电流采样模块101包括第一电阻R1,第一电阻R1的第一端接入压缩机200的三相电流(Iu、Iv及Iw),并连接电压比较模块102的第一输入端,第一电阻R1的第二端接等电势地。由第一电阻R1对压缩机200的三相电流进行采样并生成相应的采样电压信号。
电压比较模块102包括:
第二电阻R2、第一比较器IC1及第三电阻R3;
第二电阻R2的第一端为电压比较模块102的第一输入端,第二电阻R2的第二端连接第一比较器IC1的同相输入端,第一比较器IC1的反相输入端为电压比较模块102的第二输入端,第一比较器IC1的正电源端和负电源端分别连接第一直流电源VCC1(如+3.3V直流电源)和地,第一比较器IC1的输出端连接第三电阻R3的第一端,第三电阻R3的第二端为电压比较模块102的输出端。
智能功率模块103为现有的包含控制器和上下桥臂开关管的智能功率模块(即IPM)。
参考电压生成模块104包括:
第一温度传感器S1、第一微控制器IC2、数模转换芯片IC3、第四电阻R4、第五电阻R5、第一基准电压源芯片IC4以及第六电阻R6;
第一温度传感器S1的输出端连接第一微控制器IC2的输入输出端I/O,第一微控制器IC2的数据信号端SDA和时钟信号端SCL分别连接数模转换芯片IC3的数据信号端SDA和时钟信号端SCL,数模转换芯片IC3的地址端ADR0和接地端GND共接于地,数模转换芯片IC3的输出端Vout为参考电压生成模块104的输出端,数模转换芯片IC3的参考电压端VA与第一基准电压源芯片IC4的阴极、第四电阻R4的第一端及第五电阻R5的第一端共接于第二直流电源VCC2(如+3V直流电源),第四电阻R4的第二端连接第一直流电源VCC1(如+3.3V直流电源),第五电阻R5的第二端与第六电阻R6的第一端共接于第一基准电压源芯片IC4的调整极,第六电阻R6的第二端连接第一基准电压源芯片IC4的阳极。其中,第一微控制器IC2具体可以是单片机、ARM处理器或者其他具备数据逻辑处理能力的可编程控制器;数模转换芯片IC3具体可以是型号为DAC081C081的8位DAC转换芯片;第一基准电压源芯片IC4具体可以是型号为TL431的基准电压源。
此外,在图5所示的基础上,电压比较模块102还可以进一步包括第一电容C1和第二电容C2,如图6所示,第一电容C1连接于第一比较器IC1的同相输入端与地之间,第二电容C2连接于第一比较器IC1的反相输入端与地之间;由第一电容C1和第二电容C2分别对第一比较器IC1的同相输入端和反相输入端所输入的信号进行延时和滤波处理。
以下结合具体实例对上述的压缩机退磁电路的工作原理进行说明:
假设第一电阻R1的阻值为10mΩ,第一直流电源VCC1的输出电压为3.3V,则第一比较器IC1的工作电压和第一基准电压源芯片IC4的工作电压均为3.3V,第二直流电源VCC2的输出电压为3V,则数模转换芯片IC3(此处采用型号为DAC081C081的8位DAC转换芯片)的参考电压为3V;压缩机200的型号为图3所示的压缩机3。
当压缩机200开始工作时,第一微控制器IC2通过第一温度传感器S1对室外环境温度进行检测,同时,第一微控制器IC2根据预设压缩机信号信息确定温度-退磁电流对应关系曲线,如果压缩机200的工作在A点,则此时的室外环境温度为70℃,对应的退磁电流为24A,当压缩机200的相电流不小于24A时,就需要对压缩机200实现退磁保护,在压缩机200以24A的相电流工作时,则第一电阻R1上产生的电压为24A×10mΩ=0.24V,由于数模转换芯片IC3的参考电压为3V,根据该芯片的内部工作原理,其输出电压可以是0~3V中的任意电压值,且最小单位电压为3V/28=0.0117V,根据上述24A在第一电阻R1上所形成的电压0.24V,则在第一微控制器IC2中预先设定的退磁电流-参考电压对应关系中,退磁电流24A对应20个最小单位电压,即0.0117V×20=0.234V,其是小于0.24V且最接近0.24V的电压值,所以在实际情况下,0.234V就是根据图3所示的压缩机3所设定的参考电压信号,第一微控制器IC2将发送数据(即20)至数模转换芯片IC3,从而使数模转换芯片IC3输出0.234V的参考电压信号至第一比较器IC1的反相输入端。因此,在压缩机200的运行过程中,如果第一电阻R1的电压不小于0.234V(即压缩机200工作时的相电流不小于退磁电流24A),则第一比较器IC1会输出高电平信号,该高电平信号进入智能功率模块103的保护触发电压检测端口CIN,从而使智能功率模块103关闭压缩机,从而使压缩机200不出现退磁现象,实现了退磁保护,同时使压缩机200工作时的相电流可以处于不超过退磁电流的最大值,进而使压缩机200可以按照最大功率运行以达到输出能力最大化。
图7示出了本发明另一实施例提供的压缩机退磁保护电路的示例电路结构,其中,电流采样模块101、电压比较模块102及智能功率模块103均与图5所示的相同,因此不再赘述。
对于参考电压生成模块104,其包括:
第二温度传感器S2、第二微控制器IC5、第七电阻R7、第八电阻R8、开关管1041、第二基准电压源芯片IC6、第九电阻R9、第十电阻R10以及第三电容C3;
第二温度传感器S2的输出端连接第二微控制器IC5的输入输出端I/O,第二微控制器IC5的数据信号端SDA连接第七电阻R7的第一端,第七电阻R7的第二端与第八电阻R8的第一端共接于开关管1041的输入端,开关管1041的接地端与第八电阻R8的第二端及第二基准电压源芯片IC6的阳极共接于地,开关管1041的输出端与第九电阻R9的第一端、第十电阻R10的第一端、第二基准电压源芯片IC6的阴极和调整极共接于第二直流电源VCC2(如+2.5V直流电源),第九电阻R9的第二端连接第一直流电源VCC1(如+3.3V直流电源),第十电阻R10的第二端与第三电容C3的第一端的共接点为参考电压生成模块104的输出端,第三电容C3的第二端接地。
其中,第二微控制器IC5具体可以是单片机、ARM处理器或者其他具备数据逻辑处理能力的可编程控制器;第二基准电压源芯片IC6具体可以是型号为TL431的基准电压源;开关管1041具体可以是NMOS管或NPN型三极管,当开关管1041为NMOS管N1,如图8所示,NMOS管N1的栅极、漏极及源极分别为开关管1041的输入端、输出端及接地端;当开关管1041为NPN型三极管Q1时,如图9所示,NPN型三极管Q1的基极、集电极及发射极分别为开关管1041的输入端、输出端及接地端。
另外,基于图7、图8及图9所示的压缩机退磁保护电路,电压比较模块102还包括第四电容C4,分别如图10、图11及图12所示(分别对应图7、图8及图9),第四电容C4连接于第一比较器IC1的同相输入端与地之间,由第四电容C4对第一比较器IC1的同相输入端所输入的信号进行延时和滤波处理。
以下结合具体实例对上述的压缩机退磁电路的工作原理进行说明:
假设第一电阻R1的阻值为20mΩ,第一直流电源VCC1的输出电压为3.3V,第二直流电源VCC2的输出电压为2.5V,压缩机200的型号为图2所示的压缩机1。当压缩机200开始工作时,第二微控制器IC5通过第二温度传感器S2对室外环境温度进行检测,同时,第二微控制器IC5根据预设压缩机信号信息确定温度-退磁电流对应关系曲线,如图2所示,如果室外环境温度为-10℃,则退磁电流为10A,第一电阻R1上产生的电压为10A×20mΩ=0.2V,所以,在出厂前,第二微控制器IC5中就会内置有I(退磁电流)×R1的电流电压对应算法以得到参考电压信号的电压值。那么,在室外环境温度为-10℃时,退磁电流10A对应0.2V的参考电压信号,则第二微控制器IC5根据0.2V从预设的电压-PWM对应关系中得到需要输出的脉宽调制信号的周期和脉宽值分别为1mS和50us,并以此输出该脉宽调制信号以驱动开关管1041(图8和图11中的NMOS管N1,图9和图12中的NPN型三极管Q1)按照50us的脉宽值实现开关动作,从而得以输出相应的脉冲信号,最后由第十电阻R10和第三电容C3组成的积分电路对该脉冲信号进行整形后得到0.2V的参考电压信号(脉宽调制信号与参考电压信号的波形如图13所示),并输出至第一比较器IC1的反相输入端。因此,在压缩机200的运行过程中,如果第一电阻R1的电压不小于0.2V(即压缩机200工作时的相电流不小于退磁电流10A),则第一比较器IC1会输出高电平信号,该高电平信号进入智能功率模块103的保护触发电压检测端口CIN,从而使智能功率模块103关闭压缩机,从而使压缩机200不出现退磁现象,实现了退磁保护,同时使压缩机200工作时的相电流可以处于不超过退磁电流的最大值,进而使压缩机200可以按照最大功率运行以达到输出能力最大化。
另外,在本发明其他实施例中,如图14所示,压缩机退磁保护电路还包括信号整形模块105,信号整形模块105的输入端和输出端分别连接电压比较模块102的输出端和智能功率模块103的的保护触发电压检测端口CIN,信号整形模块105对电压比较模块102输出的保护电平信号进行信号整形处理后输出至智能功率模块103。
具体地,信号整形模块105是对电压比较模块102输出的保护电平信号进行放大、隔离及反相处理后输出至智能功率模块103。
基于图14所示的压缩机退磁保护电路,本发明其他实施例还提供了一种压缩机退磁保护方法,如图15所示,其包括以下步骤:
S11.参考电压生成模块104根据室外环境温度输出相应的参考电压信号至电压比较模块102;
S12.电压比较模块102将电流采样模块101输出的采样电压信号与参考电压生成模块104输出的参考电压信号进行比较,并根据比较结果输出相应的保护电平信号至信号整形模块105;
S13.信号整形模块105对电压比较模块102所输出的保护电平信号进行信号整形处理后输出以驱动智能功率模块103相应地控制压缩机200运行或停机。
其中,步骤S11具体为:
参考电压生成模块104对室外环境温度进行检测,并根据预设压缩机型号信息所对应的温度-退磁电流对应关系获取与当前室外环境温度相对应的退磁电流值,再根据退磁电流值生成相应的参考电压信号。此处根据退磁电流值生成相应的参考电压信号具体是根据参考电压生成模块104内部预先设定的退磁电流-参考电压对应关系或者电流电压对应算法生成与退磁电流值对应的参考电压信号。
步骤S12中根据比较结果输出相应的保护电平信号的步骤具体为:
当电流采样模块101输出的采样电压信号不小于参考电压生成模块104输出的参考电压信号时,电压比较模块102输出低电平;
当电流采样模块101输出的采样电压信号小于参考电压生成模块104输出的参考电压信号时,电压比较模块102输出高电平。
步骤S13具体为:
如果电压比较模块102输出低电平,则信号整形模块105对该低电平进行放大、隔离及反相处理后输出高电平以驱动智能功率模块103相应地控制压缩机200停机;
如果电压比较模块102输出高电平,则信号整形模块105对该高电平进行放大、隔离及反相处理后输出低电平以驱动智能功率模块103相应地控制压缩机200运行。
图16示出了图14所示的压缩机退磁保护电路的示例电路结构,其中,电流采样模块101、智能功率模块103及参考电压生成模块104均与图5所示的相同,因此不再赘述。
对于电压比较模块102,其包括:
第十一电阻R11、第二比较器IC11及第十二电阻R12;
第十一电阻R11的第一端为电压比较模块102的第一输入端,第十一电阻R11的第二端连接第二比较器IC11的反相输入端,第二比较器IC11的同相输入端为电压比较模块102的第二输入端,第二比较器IC11的正电源端和负电源端分别连接第一直流电源VCC1(如+3.3V直流电源)和地,第二比较器IC11的输出端连接第十二电阻R12的第一端,第十二电阻R12的第二端为电压比较模块102的输出端。
对于信号整形模块105,其包括:
第十三电阻R13、PNP型三极管Q2及第十四电阻R14;
第十三电阻R13的第一端与PNP型三极管Q2的基极的共接点为信号整形模块105的输入端,第十三电阻R13的第二端与PNP型三极管Q2的发射极共接于第一直流电源VCC1(如+3.3V直流电源),PNP型三极管Q2的集电极与第十四电阻R14的第一端的共接点为信号整形模块105的输出端,第十四电阻R14的第二端接地。
此外,在图16所示的基础上,电压比较模块102还可以进一步包括第五电容C5和第六电容C6,如图17所示,第五电容C5连接于第二比较器IC11的反相输入端与地之间,第六电容C6连接于第二比较器IC11的同相输入端与地之间;由第五电容C5和第六电容C6分别对第二比较器IC11的反相输入端和同相输入端所输入的信号进行延时和滤波处理。
以下结合具体实例对上述的压缩机退磁电路的工作原理进行说明:
假设第一电阻R1的阻值为10mΩ,第一直流电源VCC1的输出电压为3.3V,则第一比较器IC1的工作电压和第一基准电压源芯片IC4的工作电压均为3.3V,第二直流电源VCC2的输出电压为3V,则数模转换芯片IC3(此处采用型号为DAC081C081的8位DAC转换芯片)的参考电压为3V;压缩机200的型号为图3所示的压缩机3。
当压缩机200开始工作时,第一微控制器IC2通过第一温度传感器S1对室外环境温度进行检测,同时,第一微控制器IC2根据预设压缩机信号信息确定温度-退磁电流对应关系曲线,如果压缩机200的工作在A点,则此时的室外环境温度为70℃,对应的退磁电流为24A,当压缩机200的相电流不小于24A时,就需要对压缩机200实现退磁保护,在压缩机200以24A的相电流工作时,则第一电阻R1上产生的电压为24A×10mΩ=0.24V,由于数模转换芯片IC3的参考电压为3V,根据该芯片的内部工作原理,其输出电压可以是0~3V中的任意电压值,且最小单位电压为3V/28=0.0117V,根据上述24A在第一电阻R1上所形成的电压0.24V,则在第一微控制器IC2中预先设定的退磁电流-参考电压对应关系中,退磁电流24A对应20个最小单位电压,即0.0117V×20=0.234V,其是小于0.24V且最接近0.24V的电压值,所以在实际情况下,0.234V就是根据图3所示的压缩机3所设定的参考电压信号,第一微控制器IC2将发送数据(即20)至数模转换芯片IC3,从而使数模转换芯片IC3输出0.234V的参考电压信号至第二比较器IC11的同相输入端。因此,在压缩机200的运行过程中,如果第一电阻R1的电压不小于0.234V(即压缩机200工作时的相电流不小于退磁电流24A),则第二比较器IC11会输出低电平信号至信号整形模块105,经过信号整形模块105进行放大、隔离及反相处理后得到高电平信号,该高电平信号进入智能功率模块103的保护触发电压检测端口CIN,从而使智能功率模块103关闭压缩机,从而使压缩机200不出现退磁现象,实现了退磁保护,同时使压缩机200工作时的相电流可以处于不超过退磁电流的最大值,进而使压缩机200可以按照最大功率运行以达到输出能力最大化。
图18示出了图14所示的压缩机退磁保护电路的另一示例电路结构,其中,电流采样模块101、电压比较模块102、智能功率模块103均与图16所示的相同,因此不再赘述。
对于参考电压生成模块104,其与图7所示的相同,其中,第二微控制器IC5具体可以是单片机、ARM处理器或者其他具备数据逻辑处理能力的可编程控制器;第二基准电压源芯片IC6具体可以是型号为TL431的基准电压源;开关管1041具体可以是NMOS管或NPN型三极管,当开关管1041为NMOS管N1,如图19所示,NMOS管N1的栅极、漏极及源极分别为开关管1041的输入端、输出端及接地端;当开关管1041为NPN型三极管Q1时,如图20所示,NPN型三极管Q1的基极、集电极及发射极分别为开关管1041的输入端、输出端及接地端。
另外,基于图18、图19及图20所示的压缩机退磁保护电路,电压比较模块102还包括第七电容C7,分别如图21、图22及图23所示(分别对应图18、图19及图20),第七电容C7连接于第二比较器IC11的反相输入端与地之间,由第七电容C7对第二比较器IC11的反相输入端所输入的信号进行延时和滤波处理。
以下结合具体实例对上述的压缩机退磁电路的工作原理进行说明:
假设第一电阻R1的阻值为20mΩ,第一直流电源VCC1的输出电压为3.3V,第二直流电源VCC2的输出电压为2.5V,压缩机200的型号为图2所示的压缩机1。当压缩机200开始工作时,第二微控制器IC5通过第二温度传感器S2对室外环境温度进行检测,同时,第二微控制器IC5根据预设压缩机信号信息确定温度-退磁电流对应关系曲线,如图2所示,如果室外环境温度为-10℃,则退磁电流为10A,第一电阻R1上产生的电压为10A×20mΩ=0.2V,所以,在出厂前,第二微控制器IC5中就会内置有I(退磁电流)×R1的电流电压对应算法以得到参考电压信号的电压值。那么,在室外环境温度为-10℃时,退磁电流10A对应0.2V的参考电压信号,则第二微控制器IC5根据0.2V从预设的电压-PWM对应关系中得到需要输出的脉宽调制信号的周期和脉宽值分别为1mS和50us,并以此输出该脉宽调制信号以驱动开关管1041(图19和图22中的NMOS管N1,图20和图23中的NPN型三极管Q1)按照50us的脉宽值实现开关动作,从而得以输出相应的脉冲信号,最后由第十电阻R10和第三电容C3组成的积分电路对该脉冲信号进行整形后得到0.2V的参考电压信号(脉宽调制信号与参考电压信号的波形如图13所示),并输出至第二比较器IC11的同相输入端。因此,在压缩机200的运行过程中,如果第一电阻R1的电压不小于0.2V(即压缩机200工作时的相电流不小于退磁电流10A),则第二比较器IC11会输出低电平信号至信号整形模块105,经过信号整形模块105进行放大、隔离及反相处理后得到高电平信号,该高电平信号进入智能功率模块103的保护触发电压检测端口CIN,从而使智能功率模块103关闭压缩机,从而使压缩机200不出现退磁现象,实现了退磁保护,同时使压缩机200工作时的相电流可以处于不超过退磁电流的最大值,进而使压缩机200可以按照最大功率运行以达到输出能力最大化。
基于上述的压缩机退磁保护电路对压缩机能够实现退磁保护的作用,本发明实施例还提供了一种空调器,其包括压缩机以及上述的压缩机退磁保护电路。
综上所述,本发明实施例通过在具有电流采样模块101、电压比较模块102及智能功率模块103的压缩机退磁保护电路100中采用参考电压生成模块104,由参考电压生成模块104根据室外环境温度输出相应的参考电压信号至电压比较模块102,电压比较模块102将电流采样模块101输出的采样电压信号与参考电压信号进行比较,并根据比较结果输出相应的保护电平信号以驱动智能功率模块103相应地控制压缩机运行或停机,从而在兼容不同压缩机型号的情况下,当压缩机在某个室外环境温度时的相电流不小于退磁电流,则会控制压缩机停机,以对压缩机实现有效的退磁保护。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (14)

1.一种压缩机退磁保护电路,包括电流采样模块、电压比较模块及智能功率模块,所述电流采样模块对压缩机的相电流进行采样并输出相应的采样电压信号至所述电压比较模块的第一输入端,所述智能功率模块对所述压缩机的工作状态进行控制;其特征在于,所述压缩机退磁保护电路还包括参考电压生成模块;
所述参考电压生成模块的输出端连接所述电压比较模块的第二输入端,所述电压比较模块的输出端连接所述智能功率模块的保护触发电压检测端口;
所述参考电压生成模块根据室外环境温度输出相应的参考电压信号至所述电压比较模块,所述电压比较模块将所述采样电压信号与所述参考电压信号进行比较,并根据比较结果输出相应的保护电平信号驱动所述智能功率模块相应地控制压缩机运行或停机;
所述参考电压生成模块对所述室外温度进行检测,并根据预设压缩机型号信息所对应的温度-退磁电流对应关系获取与当前室外环境温度相对应的退磁电流值,再根据所述退磁电流值生成所述参考电压信号。
2.如权利要求1所述的压缩机退磁保护电路,其特征在于,所述压缩机退磁保护电路还包括信号整形模块,所述信号整形模块的输入端和输出端分别连接所述电压比较模块的输出端和所述智能功率模块的保护触发电压检测端口,所述信号整形模块对所述电压比较模块输出的保护电平信号进行信号整形处理后输出至所述智能功率模块。
3.如权利要求1或2所述的压缩机退磁保护电路,其特征在于,所述参考电压生成模块包括:
第一温度传感器、第一微控制器、数模转换芯片、第四电阻、第五电阻、第一基准电压源芯片以及第六电阻;
所述第一温度传感器的输出端连接所述第一微控制器的输入输出端,所述第一微控制器的数据信号端和时钟信号端分别连接所述数模转换芯片的数据信号端和时钟信号端,所述数模转换芯片的地址端和接地端共接于地,所述数模转换芯片的输出端为所述参考电压生成模块的输出端,所述数模转换芯片的参考电压端与所述第一基准电压源芯片的阴极、所述第四电阻的第一端及所述第五电阻的第一端共接于第二直流电源,所述第四电阻的第二端连接第一直流电源,所述第五电阻的第二端与所述第六电阻的第一端共接于所述第一基准电压源芯片的调整极,所述第六电阻的第二端连接所述第一基准电压源芯片的阳极。
4.如权利要求1或2所述的压缩机退磁保护电路,其特征在于,所述参考电压生成模块包括:
第二温度传感器、第二微控制器、第七电阻、第八电阻、开关管、第二基准电压源芯片、第九电阻、第十电阻以及第三电容;
所述第二温度传感器的输出端连接所述第二微控制器的输入输出端,所述第二微控制器的数据信号端连接所述第七电阻的第一端,所述第七电阻的第二端与所述第八电阻的第一端共接于所述开关管的输入端,所述开关管的接地端与所述第八电阻的第二端及所述第二基准电压源芯片的阳极共接于地,所述开关管的输出端与所述第九电阻的第一端、所述第十电阻的第一端、所述第二基准电压源芯片的阴极和调整极共接于第二直流电源,所述第九电阻的第二端连接第一直流电源,所述第十电阻的第二端与所述第三电容的第一端的共接点为所述参考电压生成模块的输出端,所述第三电容的第二端接地。
5.如权利要求1或2所述的压缩机退磁保护电路,其特征在于,所述电流采样模块包括第一电阻,所述第一电阻的第一端接入所述压缩机的三相电流,并连接所述电压比较模块的第一输入端,所述第一电阻的第二端接等电势地。
6.如权利要求1所述的压缩机退磁保护电路,其特征在于,所述电压比较模块包括第二电阻、第一比较器及第三电阻,所述第二电阻的第一端为所述电压比较模块的第一输入端,所述第二电阻的第二端连接所述第一比较器的同相输入端,所述第一比较器的反相输入端为所述电压比较模块的第二输入端,所述第一比较器的正电源端和负电源端分别连接第一直流电源和地,所述第一比较器的输出端连接所述第三电阻的第一端,所述第三电阻的第二端为所述电压比较模块的输出端。
7.如权利要求2所述的压缩机退磁保护电路,其特征在于,所述电压比较模块包括:
第十一电阻、第二比较器及第十二电阻;
所述第十一电阻的第一端为所述电压比较模块的第一输入端,所述第十一电阻的第二端连接所述第二比较器的反相输入端,所述第二比较器的同相输入端为所述电压比较模块的第二输入端,所述第二比较器的正电源端和负电源端分别连接第一直流电源和地,所述第二比较器的输出端连接所述第十二电阻的第一端,所述第十二电阻的第二端为所述电压比较模块的输出端。
8.如权利要求2所述的压缩机退磁保护电路,其特征在于,所述信号整形模块包括:
第十三电阻、PNP型三极管及第十四电阻;
所述第十三电阻的第一端与所述PNP型三极管的基极的共接点为所述信号整形模块的输入端,所述第十三电阻的第二端与所述PNP型三极管的发射极共接于第一直流电源,所述PNP型三极管的集电极与所述第十四电阻的第一端的共接点为所述信号整形模块的输出端,所述第十四电阻的第二端接地。
9.一种空调器,包括压缩机,其特征在于,所述空调器还包括如权利要求1至8任一项所述的压缩机退磁保护电路。
10.一种基于权利要求1所述的压缩机退磁保护电路的压缩机退磁保护方法,其特征在于,所述压缩机退磁保护方法包括以下步骤:
参考电压生成模块根据室外环境温度输出相应的参考电压信号至电压比较模块;
所述电压比较模块将电流采样模块输出的采样电压信号与所述参考电压信号进行比较,并根据比较结果输出相应的保护电平信号驱动智能功率模块相应地控制压缩机运行或停机。
11.如权利要求10所述的压缩机退磁保护方法,其特征在于,所述根据比较结果输出相应的保护电平信号的步骤具体为:
当所述采样电压信号不小于所述参考电压信号时,电压比较模块输出高电平;
当所述采样电压信号小于所述参考电压信号时,电压比较模块输出低电平。
12.一种基于权利要求2所述的压缩机退磁保护电路的压缩机退磁保护方法,其特征在于,所述压缩机退磁保护方法包括以下步骤:
参考电压生成模块根据室外环境温度输出相应的参考电压信号至电压比较模块;
所述电压比较模块将电流采样模块输出的采样电压信号与所述参考电压信号进行比较,并根据比较结果输出相应的保护电平信号至信号整形模块;
所述信号整形模块对所述保护电平信号进行信号整形处理后输出以驱动智能功率模块相应地控制压缩机运行或停机。
13.如权利要求12所述的压缩机退磁保护方法,其特征在于,所述根据比较结果输出相应的保护电平信号的步骤具体为:
当所述采样电压信号不小于所述参考电压信号时,所述电压比较模块输出低电平;
当所述采样电压信号小于所述参考电压信号时,所述电压比较模块输出高电平。
14.如权利要求12所述的压缩机退磁保护方法,其特征在于,所述信号整形模块对所述保护电平信号进行信号整形处理后输出以驱动智能功率模块相应地控制压缩机运行或停机的步骤具体为:
如果所述电压比较模块输出低电平,则所述信号整形模块对所述低电平进行放大、隔离及反相处理后输出高电平以驱动智能功率模块相应地控制压缩机停机;
如果所述电压比较模块输出高电平,则所述信号整形模块对所述高电平进行放大、隔离及反相处理后输出低电平以驱动智能功率模块相应地控制压缩机运行。
CN201410132086.3A 2014-04-02 2014-04-02 一种空调器及其压缩机退磁保护电路和方法 Active CN103944143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410132086.3A CN103944143B (zh) 2014-04-02 2014-04-02 一种空调器及其压缩机退磁保护电路和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410132086.3A CN103944143B (zh) 2014-04-02 2014-04-02 一种空调器及其压缩机退磁保护电路和方法

Publications (2)

Publication Number Publication Date
CN103944143A CN103944143A (zh) 2014-07-23
CN103944143B true CN103944143B (zh) 2017-06-06

Family

ID=51191693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410132086.3A Active CN103944143B (zh) 2014-04-02 2014-04-02 一种空调器及其压缩机退磁保护电路和方法

Country Status (1)

Country Link
CN (1) CN103944143B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4142082A3 (en) * 2021-08-12 2023-03-08 Guangdong Giwee Technology Co. Ltd Adjustable overcurrent protection circuit

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105471363B (zh) * 2015-12-21 2018-11-09 珠海格力电器股份有限公司 压缩机退磁电流保护方法和系统以及压缩机
CN105822535B (zh) * 2016-04-19 2018-06-29 广东美的制冷设备有限公司 压缩机的控制方法、装置及空调器
CN106786390A (zh) * 2017-02-20 2017-05-31 广东美的制冷设备有限公司 压缩机保护电路和空调器
CN106849015A (zh) * 2017-02-20 2017-06-13 广东美的制冷设备有限公司 一种压缩机保护电路和空调器
CN106849631B (zh) * 2017-03-13 2024-03-15 广东美的制冷设备有限公司 智能功率模块、空调器
CN108336718B (zh) * 2018-01-03 2019-09-27 广东美芝制冷设备有限公司 压缩机过流保护电路、压缩机和空调器
CN108233824B (zh) * 2018-01-03 2020-12-18 广东美芝制冷设备有限公司 压缩机过流保护电路、压缩机和空调器
CN108662730B (zh) * 2018-03-30 2021-02-12 广东美芝制冷设备有限公司 制冷设备的防护系统和用于压缩机安全运行的保护方法
CN109059375B (zh) * 2018-07-30 2020-12-01 广东斯科曼制冷设备有限公司 一种压缩机的自适应电流值控制方法
CN111059038A (zh) * 2018-10-16 2020-04-24 安徽美芝制冷设备有限公司 压缩机的温度保护装置和方法、压缩机系统及制冷设备
CN109458695A (zh) * 2018-10-31 2019-03-12 奥克斯空调股份有限公司 一种断电压缩机退磁保护方法及装置
CN111464110B (zh) * 2019-01-21 2021-09-21 广东美的制冷设备有限公司 电机驱动控制模组、压缩机及空调器
CN110159517A (zh) * 2019-05-29 2019-08-23 深圳市深蓝新能源电气有限公司 可实现变频压缩机保温功能的变频驱动器及保温方法
CN111780380A (zh) * 2020-06-15 2020-10-16 珠海格力电器股份有限公司 压缩机运行状态的控制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761103A (zh) * 2012-02-24 2012-10-31 珠海格力电器股份有限公司 压缩机退磁保护电路及退磁保护方法和空调器
JP5098599B2 (ja) * 2007-11-29 2012-12-12 パナソニック株式会社 空気調和機の圧縮機用ブラシレスモータ駆動装置
CN203026916U (zh) * 2012-12-12 2013-06-26 安徽美芝精密制造有限公司 一种压缩机的防退磁保护装置
CN103326664A (zh) * 2012-03-19 2013-09-25 日立空调·家用电器株式会社 电动机控制装置及利用其的电动机驱动装置、压缩机、冷冻装置、空气调节器、以及电动机控制方法
CN203859495U (zh) * 2014-04-02 2014-10-01 美的集团股份有限公司 一种空调器及其压缩机退磁保护电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098599B2 (ja) * 2007-11-29 2012-12-12 パナソニック株式会社 空気調和機の圧縮機用ブラシレスモータ駆動装置
CN102761103A (zh) * 2012-02-24 2012-10-31 珠海格力电器股份有限公司 压缩机退磁保护电路及退磁保护方法和空调器
CN103326664A (zh) * 2012-03-19 2013-09-25 日立空调·家用电器株式会社 电动机控制装置及利用其的电动机驱动装置、压缩机、冷冻装置、空气调节器、以及电动机控制方法
CN203026916U (zh) * 2012-12-12 2013-06-26 安徽美芝精密制造有限公司 一种压缩机的防退磁保护装置
CN203859495U (zh) * 2014-04-02 2014-10-01 美的集团股份有限公司 一种空调器及其压缩机退磁保护电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4142082A3 (en) * 2021-08-12 2023-03-08 Guangdong Giwee Technology Co. Ltd Adjustable overcurrent protection circuit

Also Published As

Publication number Publication date
CN103944143A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
CN103944143B (zh) 一种空调器及其压缩机退磁保护电路和方法
CN104617544A (zh) 空调器及其压缩机保护电路
CN103855678B (zh) 驱动电源的过压欠压保护电路
CN106786390A (zh) 压缩机保护电路和空调器
CN103983836B (zh) 电能表全失压检测方法
CN109779892A (zh) 电控组件及空调器
CN209329672U (zh) 一种用于高压系统的电流保护电路
CN103973134B (zh) 直流电源装置及提高其功率因数的pwm脉冲控制方法
CN106992668A (zh) 一种交直流混合输入直流电源
CN203859488U (zh) 一种空调器及其压缩机保护电路
CN106997829A (zh) 一种带电压保护的磁保持继电器驱动电路
CN107994636A (zh) 一种路边广告片蓄电池充放电状态检测装置
CN106849015A (zh) 一种压缩机保护电路和空调器
CN206506284U (zh) 一种压缩机保护电路和空调器
CN204103885U (zh) 自举电路、逆变器和空调器
CN203859495U (zh) 一种空调器及其压缩机退磁保护电路
CN206506283U (zh) 压缩机保护电路和空调器
CN102638211A (zh) 一种自适应电源pg电机控制系统及其控制方法
CN103375850B (zh) 便携式空调器
CN208522670U (zh) 一种无刷直流电机风扇软开关驱动电路
CN104467386A (zh) 一种高稳定性的低通滤波逆变系统
CN203522150U (zh) 用于无刷直流电机的保护电路及无刷直流电机
CN104901571A (zh) 一种基于脉冲放大触发电路的高效逆变系统
CN207637713U (zh) 一种适用于电力机车接触器的电源控制电路
CN202940734U (zh) 开关电源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant