WO2019184245A1 - 一种石油族组分自动分析仪及其分析方法 - Google Patents

一种石油族组分自动分析仪及其分析方法 Download PDF

Info

Publication number
WO2019184245A1
WO2019184245A1 PCT/CN2018/103729 CN2018103729W WO2019184245A1 WO 2019184245 A1 WO2019184245 A1 WO 2019184245A1 CN 2018103729 W CN2018103729 W CN 2018103729W WO 2019184245 A1 WO2019184245 A1 WO 2019184245A1
Authority
WO
WIPO (PCT)
Prior art keywords
petroleum
mass spectrometer
chromatographic
automatic analyzer
rod
Prior art date
Application number
PCT/CN2018/103729
Other languages
English (en)
French (fr)
Inventor
桂建业
Original Assignee
中国地质科学院水文地质环境地质研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国地质科学院水文地质环境地质研究所 filed Critical 中国地质科学院水文地质环境地质研究所
Publication of WO2019184245A1 publication Critical patent/WO2019184245A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6047Construction of the column with supporting means; Holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7246Nebulising, aerosol formation or ionisation by pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8854Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving hydrocarbons

Definitions

  • the invention relates to the field of instrumental analysis, in particular to an oil family component automatic analyzer and an analysis method thereof.
  • Petroleum is an important resource in today's world. It is widely used in energy, chemical, pharmaceutical, agricultural, aerospace and other fields. As we use more and more oil, how to use this non-renewable resource more effectively and reduce it Environmental and physical hazards are a major hot spot in today's petroleum research. In order to use oil effectively, we need to conduct detailed qualitative identification and composition analysis of petroleum to provide effective data to give instructions for rational use of the program. For example, in the study of organic petroleum geology, the analysis of petroleum components can describe the heavy and light organic matter in petroleum, which plays a crucial role in the research of petroleum exploitation schemes. In addition, the research on petroleum components is still It can provide evidence for the composition, evolution and maturity of crude oil. Biomarker compounds in petroleum can indicate the ancient sedimentary environment of petroleum, and it is also helpful for studying the formation of geological environment.
  • the identification of petroleum components is a very difficult task because the composition of petroleum is very complex, with a total number of tens of thousands and no obvious overall characteristics. Among them, the lighter petroleum hydrocarbons can be roughly classified into carbon nine or less, carbon ten to carbon forty, and carbon forty or more components according to the carbon number. At present, the more mature methods for the detection of petroleum hydrocarbons are mainly gravimetric, ultraviolet spectrophotometry, infrared photometry, fluorescence spectrophotometry, gas chromatography and gas chromatography mass spectrometry.
  • the present invention adopts a combination of chromatographic separation and mass spectrometry detection, and innovatively adopts an improved dielectric barrier discharge ion source as a group component analytical ionization device.
  • the mass spectrometer is designed by the interaction between the chromatographic rod moving device and the ionization device, and at the same time realizes the quantitative and qualitative analysis of the petroleum group components.
  • a petroleum family component automatic analyzer comprising: a dielectric barrier discharge ion source, ionizing a reaction gas under normal pressure and generating a plasma tail flame; a chromatographic bar, the chromatographic bar At the same level and perpendicular to the dielectric barrier discharge ion source, the chromatographic bar moves at a certain speed from the outside to the inside in a direction perpendicular to the plasma tail flame; the mass spectrometer maintains a certain angle with the plasma tail flame in the horizontal direction, and the chromatogram
  • the sample components on the rod are directly ion-sputtered by the plasma tail flame to the inlet of the mass spectrometer, and then enter the mass spectrometer under the electric field to sequentially detect.
  • the dielectric barrier discharge ion source comprises a dielectric barrier discharge power source, a high voltage electrode sheet, a ground electrode sheet and a discharge tube, and the discharge tube is covered with an insulating sleeve, and the discharge tube is surrounded by a ring-shaped high voltage electrode.
  • the sheet and the ground electrode sheet are separated from each other by an annular insulating sheet between the high voltage electrode sheet and the ground electrode sheet.
  • the insulating sleeve is provided with two small holes through which the electrode wires pass, and the electrode wires respectively pass through the small holes to electrically connect the high voltage electrode sheets and the ground electrode sheets to the dielectric barrier discharge power source.
  • one end of the discharge tube is provided with an intake pipe, and the intake pipe is provided with a flow controller for adjusting the intake air amount to ensure the stability of the gas path.
  • the discharge tube is made of quartz or ceramic, has a length of 8-12 cm, an outer diameter of 3-8 mm, and an inner diameter of 0.3-3 mm.
  • the insulating sleeve is made of polytetrafluoroethylene, and the annular insulating sheet is composed of Made of ceramic.
  • the two ends of the chromatographic rod are fixedly connected to the moving slide rail by a bracket, and the moving slide rail is controlled by the stepping motor and can drive the chromatographic rod to move in the direction of the vertical discharge tube at a certain speed.
  • the moving rail and the chromatographic bar have a moving speed of 1-10 mm/s, and the chromatographic bar maintains a vertical distance of 2-5 mm from the tail end of the discharge tube.
  • the invention also provides an analysis method of an oil family component automatic analyzer, which comprises the following steps:
  • the reaction gas is helium gas and the flow rate is 10-2000 mL/min.
  • the invention utilizes a chromatographic rod to separate the components of the petroleum group, and innovatively adopts a dielectric barrier discharge ion source, so that the petroleum group components adsorbed on the chromatographic rod can be desorbed and ionized at the same time, and the chromatographic rod is driven by the stepping motor.
  • the plasma tail is passed through the plasma slide to achieve separation, desorption and ionization of the petroleum component.
  • the invention has the advantages that the precise certainty and the quantification of the petroleum group components are simultaneously realized, that is, the mass spectrometry fragment information of each petroleum group component is obtained while obtaining the concentration of each petroleum group component, and each of the chromatographic rods is separated.
  • the relative content of each component can be obtained by normalizing the area of the components.
  • the detailed composition of each petroleum group component can be inferred by mass spectrometry analysis of the fragment information in the mass spectrum, thereby providing a basis for detailed understanding of the composition information of the petroleum group components. .
  • FIG. 1 is a schematic structural view of an oil family component automatic analyzer according to the present invention.
  • Example 2 is a diagram showing total ion currents measured in Example 2 of the present invention.
  • Figure 3 is a mass spectrum of a saturated hydrocarbon measured in Example 2 of the present invention.
  • Figure 4 is a mass spectrum of the aromatic hydrocarbon detected in Example 2 of the present invention.
  • Figure 5 is a mass spectrum of the colloid measured in Example 2 of the present invention.
  • Figure 6 is a mass spectrum of asphaltenes measured in Example 2 of the present invention.
  • an automatic analyzer for a petroleum group component includes: a dielectric barrier discharge ion source that ionizes a reaction gas under normal pressure to generate a plasma tail flame; a chromatographic rod 21, the chromatographic rod 21 and the dielectric barrier discharge ion source are located in the same Horizontally and vertically, when detecting, the chromatographic rod 21 moves from the outside to the inside in a direction perpendicular to the plasma tail flame at a certain speed; the mass spectrometer 31 maintains a certain angle with the plasma tail flame in the horizontal direction, and the sample group on the chromatographic rod 21 The fraction is directly ion-sputtered to the mass spectrometer inlet 32 by the plasma tail flame, and then enters the mass spectrometer 31 and is sequentially detected by the electric field.
  • the dielectric barrier discharge ion source comprises a dielectric barrier discharge power source 14, a high voltage electrode sheet 12, a ground electrode sheet 13 and a discharge tube 11.
  • the discharge tube 11 is surrounded by an insulating sleeve 15, and the discharge tube 11 in the insulating sleeve 15 is surrounded by a ring shape.
  • the high voltage electrode sheet 12 and the ground electrode sheet 13, the high voltage electrode sheet 12 and the ground electrode sheet 13 are separated by an annular insulating sheet 16, and the insulating sleeve 15 is provided with two small holes for the electrode lines to pass through, and the electrode lines are worn.
  • the high-voltage electrode sheet 12 and the ground electrode sheet 13 are electrically connected to the dielectric barrier discharge power source 14 through the small holes, respectively.
  • the discharge tube 11 is provided with an intake pipe 17, and a flow controller 18 is disposed on the intake pipe 17, for adjusting the intake air amount to ensure the stability of the gas path.
  • the discharge tube 11 is made of quartz or ceramic, has a length of 8-12 cm, an outer diameter of 3-8 mm, and an inner diameter of 0.3-3 mm.
  • the insulating sleeve 15 is made of polytetrafluoroethylene, and the annular insulating sheet 16 is made of ceramic.
  • the two ends of the chromatographic rod 21 are fixedly connected to the moving slide rail 22 via a bracket 23, and the moving slide rail 22 is controlled by a stepping motor (not shown) and can drive the chromatographic rod 21 along the vertical discharge tube 11 at a certain speed. mobile.
  • the moving speed of the moving rail 22 and the chromatographic rod 21 is 1-10 mm/s, and the chromatographic rod 21 maintains a vertical distance of 2-5 mm from the trailing end of the discharge tube 11.
  • the instrument used is an automatic analyzer for petroleum group components involved in the invention, wherein the mass spectrometer involved is Thermo Company of the United States, and the production model is LTQ; in addition, the supporting device has one centrifuge, three chromatography cylinders, and constant humidity. 1 box, 1 electronic balance, micro-syringe and reagents, etc., including the following steps:
  • B-1 Prepare the chromatographic solution, and add the mixed organic solvent of n-hexane, toluene and dichloromethane:methanol in a volume ratio of 95:5 in each of the three chromatography cylinders, and the liquid level of the solvent in each cylinder is maintained at about 10 mm. , cover the cylinder head closed for 30min;
  • B-2 Use a micro-syringe to extract 1 ⁇ L of sample solution from the sample vial, and tap it 3-5 times to the activated silica gel chromatographic bar to control the spot height to be less than 2 mm. After the sample is placed, the chromatographic bar is placed in a fume hood to evaporate. Solvent 5-8min;
  • the total ion current diagram is shown in Figure 2.
  • the saturated hydrocarbons, aromatic hydrocarbons, colloids and asphaltenes separated by the chromatographic rods are detected by mass spectrometry, and four groups of corresponding peaks appear in the total ion current map. Enter each set of peaks to see the mass of the corresponding saturated hydrocarbon, aromatic hydrocarbon, colloidal and asphaltene components, the mass spectrum of the saturated hydrocarbon, aromatic hydrocarbon, colloid and asphaltene at the peak of the total ion chromatogram Figure 3-6 shows each.
  • the mass fraction of each component in the sample is calculated as follows:
  • a i the peak area of saturated hydrocarbons, aromatic hydrocarbons, colloids and asphaltenes, respectively;
  • the percentages of saturated hydrocarbons, aromatic hydrocarbons, colloids and asphaltenes in the soluble organic matter of the soil samples in this example were calculated to be 45.2%, 28.3%, 9.6%, and 16.9%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种石油族组分自动分析仪及其分析方法,所述石油族组分自动分析仪包括:介质阻挡放电离子源;色谱棒,所述色谱棒与介质阻挡放电离子源位于同一水平并垂直设置,检测时,色谱棒以一定速度沿垂直于等离子尾焰的方向由外向里移动;质谱仪,在水平方向上与等离子尾焰保持一定角度,色谱棒上的样品组分被等离子尾焰解析电离后直接溅射到质谱仪进口,然后在电场的带动下进入质谱仪中依次进行检测。

Description

一种石油族组分自动分析仪及其分析方法 技术领域
本发明涉及仪器分析领域,具体涉及一种石油族组分自动分析仪及其分析方法。
背景技术
石油是当今世界的重要资源,它广泛应用于能源、化工、制药、农业、航天等各个方面,随着我们对石油的利用越来越多,如何更有效的利用这种不可再生资源,同时减少对环境和身体的危害是当今石油研究的重大热点,为了有效利用石油,我们需要对石油进行详细的性质鉴定和组成分析,以提供有效的数据为合理利用方案做指示。例如,在有机石油地质研究中,通过对石油组分的分析能够对石油中重、轻有机质进行描述,这对于石油开采方案的研究起到至关重要的作用;此外,石油组分的研究还能能够为原油的成分、演化、成熟情况提供证据,石油中的生物标志化合物能够指示石油的古沉积环境,对于研究地质环境形成也有很大的帮助。
石油组分的鉴定是一项非常艰难的工作,因为石油的组分十分复杂,总数约有几万种之多,并且没有明显的总体特征。其中较轻的石油烃按照碳数的多少可以粗略地分为碳九以下、碳十到碳四十以及碳四十以上组分。目前,石油烃的检测方法中较为成熟的方法主要有重量法、紫外分光光度法、红外光度法、荧光分光光度法、气相色谱法和气相色谱质谱联用法等。2017年中华人民共和国环境保护部颁布了环境保护标准方法HJ 893-2017《水质 挥发性石油烃(C6-C9)的测定 吹扫捕集/气相色谱法》及HJ 894-2017《水质 可萃取性石油烃(C10-C40)的测定 气相色谱法》。
然而在已经公开报道的经典的石油族组分鉴定中,族组分的定量与详细定 性都是分开进行的,如SY/T 5119-2008《岩石中可溶有机物及原油族组成分析》,就是仅对四大组分饱和烃、芳香烃、胶质及沥青质的百分比含量进行测定,如果还想对每个族组分进行进一步的研究,鉴定其含氮、含硫、含氧、含氯溴等情况,还需要再分别对其进行色谱和质谱分析。
发明内容
针对现有技术中石油族组分鉴定时定量和定性不能同时进行的问题,本发明采用色谱分离与质谱检测联用的方式,创新地采用改进的介质阻挡放电离子源作为族组分的解析电离装置,质谱仪作为族组分的检测器,通过色谱棒移动装置与电离装置的交互设计,同时实现石油族组分的定量与定性分析。
为达到上述目的,本发明采用如下技术方案:一种石油族组分自动分析仪,包括:介质阻挡放电离子源,常压下使反应气体电离并产生等离子尾焰;色谱棒,所述色谱棒与介质阻挡放电离子源位于同一水平并垂直设置,检测时,色谱棒以一定速度沿垂直于等离子尾焰的方向由外向里移动;质谱仪,在水平方向上与等离子尾焰保持一定角度,色谱棒上的样品组分被等离子尾焰解析电离后直接溅射到质谱仪进口,然后在电场的带动下进入质谱仪中依次进行检测。
优选的,所述介质阻挡放电离子源包括介质阻挡放电电源、高压电极片、接地电极片和放电管,所述放电管外包有绝缘套管,所述绝缘套管内放电管外包有环形的高压电极片和接地电极片,所述高压电极片与接地电极片之间采用环形绝缘片隔开。
优选的,所述绝缘套管上设有两个供电极线穿过的小孔,所述电极线穿过小孔分别将高压电极片和接地电极片与介质阻挡放电电源电连接。
优选的,所述放电管一端设有进气管,所述进气管上设有流量控制器,用于调节进气量保证气路稳定。
优选的,所述放电管采用石英或陶瓷材质,长度为8-12cm,外径为3-8mm,内径为0.3-3mm,所述绝缘套管为聚四氟乙烯材质,所述环形绝缘片由陶瓷制成。
优选的,所述色谱棒两端通过支架固定连接在移动滑轨上,所述移动滑轨由步进电机控制并能带动色谱棒以一定速度沿垂直放电管方向移动。
优选的,所述移动滑轨和色谱棒的移动速度为1-10mm/s,所述色谱棒与放电管尾端保持2-5mm的垂直距离。
本发明还提供了一种石油族组分自动分析仪的分析方法,具体包括以下步骤:
A、准备样品溶液;
B、点样,利用色谱棒对石油族组分进行分离;
C、将色谱棒安装在移动滑轨上,打开介质阻挡放电电源开关,调节好电压和频率;打开反应气体开关,调节好气体流速,点火使等离子尾焰稳定;
D、打开移动滑轨电机,设定好移动距离和移动速度;
E、打开质谱仪,使真空达到指定状态,设定质量扫描范围为50-2000u;
F、同时启动移动滑轨电机及质谱仪分析采集系统,记录并输出检测结果。
优选的,所述反应气体为氦气,流速为10-2000mL/min。
本发明利用色谱棒将石油组组分进行分离,并创新的采用介质阻挡放电离子源,使得吸附在色谱棒上的石油族组分能够同时被解吸和电离,在步进电机的带动下色谱棒沿着移动滑轨匀速通过等离子尾焰,从而实现石油族组分的分离、解吸和电离,通过离子源与质谱位置的精确调整,可以使得被电离的组分离子被质谱仪探测。本发明的优势在于同时实现了石油族组分的精确定性与定量,即在获得各石油族组分浓度的同时也获得了各石油族组分的质谱碎片信息,通过对色谱棒上分离的各组分的面积归一可以得到各组分的相对含量,通过对质谱图中碎片信息的质谱解析可以推测各石油族组分的详细组成,从而为详细了解石油族组分的组成信息提供了依据。
附图说明
图1为本发明所涉及的石油族组分自动分析仪结构示意图;
图2为本发明实施例2测出的总离子流图;
图3为本发明实施例2测出的饱和烃的质谱图;
图4为本发明实施例2测出的芳香烃的质谱图;
图5为本发明实施例2测出的胶质的质谱图;
图6为本发明实施例2测出的沥青质的质谱图。
图中:11、放电管;12、高压电极片;13、接地电极片;14、介质阻挡放电电源;15、绝缘套管;16、环形绝缘片;17、进气管;18、流量控制器;21、色谱棒;22、移动滑轨;23、支架;31、质谱仪;32、质谱仪进口。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
参阅图1,一种石油族组分自动分析仪,包括:介质阻挡放电离子源,常压下使反应气体电离并产生等离子尾焰;色谱棒21,色谱棒21与介质阻挡放电离子源位于同一水平并垂直设置,检测时,色谱棒21以一定速度沿垂直于等离子尾焰的方向由外向里移动;质谱仪31,在水平方向上与等离子尾焰保持一定角度,色谱棒21上的样品组分被等离子尾焰解析电离后直接溅射到质谱仪进口32,然后在电场的带动下进入质谱仪31中依次进行检测。具体的:
所述介质阻挡放电离子源包括介质阻挡放电电源14、高压电极片12、接地电极片13和放电管11,放电管11外包有绝缘套管15,绝缘套管15内放电 管11外包有环形的高压电极片12和接地电极片13,高压电极片12与接地电极片13之间采用环形绝缘片16隔开,绝缘套管15上设有两个供电极线穿过的小孔,电极线穿过小孔分别将高压电极片12和接地电极片13与介质阻挡放电电源14电连接。另外,放电管11一端设有进气管17,进气管17上设有流量控制器18,用于调节进气量保证气路稳定。其中,放电管11采用石英或陶瓷材质,长度为8-12cm,外径为3-8mm,内径为0.3-3mm,绝缘套管15为聚四氟乙烯材质,环形绝缘片16由陶瓷制成。
所述色谱棒21两端通过支架23固定连接在移动滑轨22上,移动滑轨22由步进电机(图中未示出)控制并能带动色谱棒21以一定速度沿垂直放电管11方向移动。移动滑轨22和色谱棒21的移动速度为1-10mm/s,色谱棒21与放电管11尾端保持2-5mm的垂直距离。
实施例2
土壤样品可溶性有机质中石油族组分自动的分析方法。所用仪器为本发明所涉及的石油族组分自动分析仪,其中所涉及的质谱仪为美国Thermo公司,生产型号为LTQ;另外,配套装置有离心机1台,层析缸3个,恒湿箱1个,电子天平1台,微量注射器和试剂等若干,具体包括以下步骤:
A、准备样品溶液;称取5g土壤样品,采用氯仿萃取离心后,取上清液5-10mg于样品瓶中,用微量注射器加入500μL二氯甲烷,盖紧瓶盖轻摇使样品充分溶解;
B、点样,利用色谱棒对石油族组分进行分离;
B-1:准备层析液,在三个层析缸中分别加入正已烷、甲苯和二氯甲烷:甲醇体积比为95:5的混合有机溶剂,各缸中溶剂液面高度保持10mm左右,盖上缸盖密闭30min;
B-2:用微量注射器从样品瓶中抽取1μL样液,分3-5次点到活化过的硅胶色谱棒上,控制样斑高度小于2mm,点样后将色谱棒置于通风橱内挥发溶 剂5-8min;
B-3:将色谱棒置于恒湿箱内保持10min后,将色谱棒放入第一层析缸内,用正已烷展开30min,使溶剂前沿上升至距点样点85-90mm后取出,在室温下于通风橱内放置3min;
B-4:重新置于恒湿箱内保持10min后,放入第二层析缸内用甲苯展开10min,至溶剂前沿到达点样点上部45-50mm处后,取出并于通风橱内在开放的室温下放置3min;
B-5:再次置于恒湿箱内保持10min,放入第三个层析缸内,以二氯甲烷:甲醇体积比为95:5混合溶剂展开5min,至溶剂前沿到达点样点上部15-20mm处后,取出在通风橱内室温下放置5min,挥发尽溶剂;
C、将色谱棒安装在移动滑轨上,打开介质阻挡放电电源开关,调节电压至3800V,频率为25kHz;打开氦气开关,调节氦气流速为550mL/min,点火使等离子尾焰稳定;
D、打开移动滑轨电机,设定移动距离为160mm,移动速度为1.8mm/s;
E、打开质谱仪,使真空达到指定状态,设定质量扫描范围为50-2000u;
F、同时启动移动滑轨电机及质谱仪分析采集系统,记录并输出检测结果;
其总离子流图如图2所示,被色谱棒分离的饱和烃、芳香烃、胶质和沥青质依次经质谱仪进行检测,并在总离子流图中先后出现4组相应的峰,点击进入每组峰可查看对应的饱和烃、芳香烃、胶质和沥青质组分的质量数情况,所述饱和烃、芳香烃、胶质和沥青质在总离子流图中峰值处的质谱图分别如图3-6所示。
样品中各组分质量分数按照下式计算:
Figure PCTCN2018103729-appb-000001
式中:
i用S,A,N和B代替,则:
X i——分别表示饱和烃、芳香烃、胶质和沥青质的质量分数,以百分数表示;
A i——分别表示饱和烃、芳香烃、胶质和沥青质的峰面积;
F i——分别表示饱和烃、芳香烃、胶质和沥青质的质量校正系数;
A S,A A,A N和A B——饱和烃、芳香烃、胶质和沥青质的峰面积;
F S,F A,F N和F B——饱和烃、芳香烃、胶质和沥青质的质量校正系数。
试样各族组分质量校正系数的测定方法参见SY/T 5119-2008《岩石中可溶有机物及原油族组成分析》的附录A。
当饱和烃、芳香烃、胶质和沥青质的质量相同,而且饱和烃的质量校正系数F S=1时,则:
芳香烃的质量校正系数:
Figure PCTCN2018103729-appb-000002
胶质的质量校正系数:
Figure PCTCN2018103729-appb-000003
沥青质的质量校正系数:
Figure PCTCN2018103729-appb-000004
经计算本实施例土壤样品可溶性有机质中饱和烃、芳香烃、胶质、沥青质的百分含量分别为:45.2%,28.3%,9.6%,16.9%。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (9)

  1. 一种石油族组分自动分析仪,其特征在于,包括:
    介质阻挡放电离子源,常压下使反应气体电离并产生等离子尾焰;
    色谱棒,所述色谱棒与介质阻挡放电离子源位于同一水平并垂直设置,检测时,色谱棒以一定速度沿垂直于等离子尾焰的方向由外向里移动;
    质谱仪,在水平方向上与等离子尾焰保持一定角度,色谱棒上的样品组分被等离子尾焰解析电离后直接溅射到质谱仪进口,然后在电场的带动下进入质谱仪中依次进行检测。
  2. 根据权利要求1所述的一种石油族组分自动分析仪,其特征在于,所述介质阻挡放电离子源包括介质阻挡放电电源、高压电极片、接地电极片和放电管,所述放电管外包有绝缘套管,所述绝缘套管内放电管外包有环形的高压电极片和接地电极片,所述高压电极片与接地电极片之间采用环形绝缘片隔开。
  3. 根据权利要求2所述的一种石油族组分自动分析仪,其特征在于,所述绝缘套管上设有两个供电极线穿过的小孔,所述电极线穿过小孔分别将高压电极片和接地电极片与介质阻挡放电电源电连接。
  4. 根据权利要求3所述的一种石油族组分自动分析仪,其特征在于,所述放电管一端设有进气管,所述进气管上设有流量控制器,用于调节进气量保证气路稳定。
  5. 根据权利要求4所述的一种石油族组分自动分析仪,其特征在于,所述放电管采用石英或陶瓷材质,长度为8-12cm,外径为3-8mm,内径为0.3-3mm,所述绝缘套管为聚四氟乙烯材质,所述环形绝缘片由陶瓷制成。
  6. 根据权利要求1-5任一所述的一种石油族组分自动分析仪,其特征在于,所述色谱棒两端通过支架固定连接在移动滑轨上,所述移动滑轨由步进电机控制并能带动色谱棒以一定速度沿垂直放电管方向移动。
  7. 根据权利要求6所述的一种石油族组分自动分析仪,其特征在于,所述移动滑轨和色谱棒的移动速度为1-10mm/s,所述色谱棒与放电管尾端保持2-5mm的垂直距离。
  8. 权利要求1-7任一所述的石油族组分自动分析仪的分析方法,具体包括以下步骤:
    A、准备样品溶液;
    B、点样,利用色谱棒对石油族组分进行分离;
    C、将色谱棒安装在移动滑轨上,打开介质阻挡放电电源开关,调节好电压和频率;打开反应气体开关,调节好气体流速,点火使等离子尾焰稳定;
    D、打开移动滑轨电机,设定好移动距离和移动速度;
    E、打开质谱仪,使真空达到指定状态,设定质量扫描范围为50-2000u;
    F、同时启动移动滑轨电机及质谱仪分析采集系统,记录并输出检测结果。
  9. 根据权利要求8所述的一种石油族组分自动分析仪的分析方法,其特征在于,所述反应气体为氦气,流速为10-2000mL/min。
PCT/CN2018/103729 2018-03-29 2018-09-03 一种石油族组分自动分析仪及其分析方法 WO2019184245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810273997.6 2018-03-29
CN201810273997.6A CN108593788B (zh) 2018-03-29 2018-03-29 一种石油族组分自动分析仪及其分析方法

Publications (1)

Publication Number Publication Date
WO2019184245A1 true WO2019184245A1 (zh) 2019-10-03

Family

ID=63624946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103729 WO2019184245A1 (zh) 2018-03-29 2018-09-03 一种石油族组分自动分析仪及其分析方法

Country Status (2)

Country Link
CN (1) CN108593788B (zh)
WO (1) WO2019184245A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860016B (zh) * 2019-02-28 2021-04-06 苏州大学 一种电离源装置
CN113933378A (zh) * 2021-09-01 2022-01-14 南水北调中线干线工程建设管理局河北分局 一种水体特征值分析方法
CN113899806A (zh) * 2021-09-01 2022-01-07 中国地质科学院水文地质环境地质研究所 一种适合投放的新型人工示踪剂及其示踪分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101510493A (zh) * 2008-11-18 2009-08-19 清华大学 一种低温等离子体直接离子化样品的方法及其离子源
CN101644698A (zh) * 2009-08-27 2010-02-10 国家海洋局第一海洋研究所 一种原油sara族组分棒状薄层色谱分析方法及应用
CN102103039A (zh) * 2009-12-18 2011-06-22 中国科学院大连化学物理研究所 一种表面解吸附采样的方法和装置
CN106483186A (zh) * 2016-10-11 2017-03-08 清华大学 一种离子化质谱检测装置及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931641B (zh) * 2015-06-15 2017-01-11 中国石油天然气股份有限公司广西石化分公司 一种石油沥青质组分的分析方法
CN106714435B (zh) * 2016-11-15 2019-06-14 北京理工大学 一种大面积大气压等离子体射流产生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101510493A (zh) * 2008-11-18 2009-08-19 清华大学 一种低温等离子体直接离子化样品的方法及其离子源
CN101644698A (zh) * 2009-08-27 2010-02-10 国家海洋局第一海洋研究所 一种原油sara族组分棒状薄层色谱分析方法及应用
CN102103039A (zh) * 2009-12-18 2011-06-22 中国科学院大连化学物理研究所 一种表面解吸附采样的方法和装置
CN106483186A (zh) * 2016-10-11 2017-03-08 清华大学 一种离子化质谱检测装置及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOU, . AIXIAN ET AL.: "Application of TLC/FID Method in Analysis of Heavy Oil Family Composition", PROCEEDINGS OF THE 6TH PETROLEUM REFINING ACADEMIC ANNUAL CONFERENCE OF CHINA PETROLEUM INSTITUTE, 30 May 2011 (2011-05-30) *

Also Published As

Publication number Publication date
CN108593788A (zh) 2018-09-28
CN108593788B (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2019184245A1 (zh) 一种石油族组分自动分析仪及其分析方法
Skeen et al. Near-threshold photoionization mass spectra of combustion-generated high-molecular-weight soot precursors
CN110187037A (zh) 环境空气中57种挥发性有机物含量的测定系统及方法
Johnston et al. Molecular characterization of atmospheric organic aerosol by mass spectrometry
US20180102241A1 (en) Automated beam check
CN104198573B (zh) 一种卷烟主流烟气在线分析方法及其专用的在线分析装置
Galmiche et al. Environmental analysis of polar and non-polar Polycyclic Aromatic Compounds in airborne particulate matter, settled dust and soot: Part II: Instrumental analysis and occurrence
EP2936134B1 (en) Analysis of hydrocarbon solid samples
Li et al. Atomic spectrometric detectors for gas chromatography
Rodríguez‐González et al. Species‐specific stable isotope analysis by the hyphenation of chromatographic techniques with MC‐ICPMS
Liu et al. Application of thermal desorption methods for airborne polycyclic aromatic hydrocarbon measurement: A critical review
Van Berkel et al. Geoporphyrin analysis using electrospray ionization-mass spectrometry
WO2015107688A1 (ja) ガス状試料の分析装置
Lien et al. Analysis of polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray ionization with tropylium post‐column derivatization
Chen et al. Rapid analysis of SVOC in aerosols by desorption electrospray ionization mass spectrometry
US20140370613A1 (en) Atmospheric Pressure Chemical Ionization Detection
He et al. Nebulization dielectric barrier discharge ionization mass spectrometry: rapid and sensitive analysis of acenaphthene
Salvi et al. Bulk analysis of volatiles in fluid inclusions
CN107870194A (zh) 基质辅助激光解吸‑气相极化诱导质子转移质谱
Ni et al. Rapid profiling of carboxylic acids in reservoir biodegraded crude oils using gas purge microsyringe extraction coupled to comprehensive two-dimensional gas chromatography-mass spectrometry
Xie et al. Determination of nicotine in mainstream smoke on the single puff level by liquid‐phase microextraction coupled to matrix‐assisted laser desorption/ionization Fourier transform mass spectrometry
Zhao et al. Rapid determination of acrolein and crotonaldehyde in tobacco smoke with water-assisted APCI-MS/MS
Li et al. Online detection of airborne nanoparticle composition with mass spectrometry: Recent advances, challenges, and opportunities
Gonser et al. A chemical analyzer for charged ultrafine particles
US10041907B2 (en) Accurate mobility chromatograms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912015

Country of ref document: EP

Kind code of ref document: A1