WO2019184203A1 - Black phosphorus material-based all-optical phase modulator and application thereof - Google Patents

Black phosphorus material-based all-optical phase modulator and application thereof Download PDF

Info

Publication number
WO2019184203A1
WO2019184203A1 PCT/CN2018/101417 CN2018101417W WO2019184203A1 WO 2019184203 A1 WO2019184203 A1 WO 2019184203A1 CN 2018101417 W CN2018101417 W CN 2018101417W WO 2019184203 A1 WO2019184203 A1 WO 2019184203A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
phase modulator
optical phase
coupler
source
Prior art date
Application number
PCT/CN2018/101417
Other languages
French (fr)
Chinese (zh)
Inventor
张晗
王云征
Original Assignee
张晗
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张晗 filed Critical 张晗
Publication of WO2019184203A1 publication Critical patent/WO2019184203A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • G02F1/0115Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0126Opto-optical modulation, i.e. control of one light beam by another light beam, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Definitions

  • the coupling ratio of the first coupler 2 is determined according to the loss of the black phosphor material and the respective fiber optic devices to obtain maximum signal light utilization efficiency.
  • the coupling ratio is 90:10, such as the A output is a 90% output, and the B output is a 10% output.
  • the black phosphor-based all-optical phase modulator 100 further includes a pump light deriving element 7 connected to the second wavelength division multiplexer 6, and the pump light deriving element 7
  • the pump light filtered out by the second wavelength division multiplexer 6 is led out from the optical path.
  • the pump light directing element 7 comprises a material having a higher refractive index than the core of the optical fiber, such as a high refractive material having a refractive index of > 1.5.
  • the high refractive material is an ultraviolet curing high refractive optical adhesive.
  • the all-optical phase modulator based on black phosphorus material provided by the invention overcomes the problem of the electronic bottleneck of the conventional electro-optic modulator, realizes wide bandwidth operation, and greatly improves the applicable spectral range.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A black phosphorus material-based all-optical phase modulator (100), comprising a signal light source (1), a pump light source (3), a first coupler (2), a modulation arm (20), a reference arm (30), and a second coupler (11). The signal light source (1) and the pump light source (3) are used for producing signal light and pump light respectively; one path of signal light is input into the modulation arm (20) together with the pump light for processing, and the other path of signal light is input into the reference arm (30) for processing; the modulation arm (20) comprises a black phosphorus-optical fiber composite structure (5); the black phosphorus-optical fiber composite structure (5) comprises a functional optical fiber and a black phosphorus material layer disposed on the functional optical fiber; one path of signal light processed by the black phosphorus-optical fiber composite structure (5) and the other path of signal light processed by the reference arm (30) enter the second coupler (11) simultaneously so that the two paths of signal light converge and interfere. The all-optical phase modulator (100) implements low-loss and wide-broadband light modulation and information loading in the whole optical domain and can be applied to the fields of all-optical phase shifters, all-optical intensity modulators, all-optical signal loaders, or negative logical systems.

Description

一种基于黑磷材料的全光相位调制器及其应用All-optical phase modulator based on black phosphorus material and its application
本发明要求于2018年03月30日递交的申请号为201810294899.0,发明名称为“一种基于黑磷材料的全光相位调制器及其应用”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。The present invention claims the priority of the prior application filed on Mar. 30, 2018, the disclosure of which is incorporated herein by reference. The content is incorporated into this text by way of introduction.
技术领域Technical field
本发明涉及全光通信和全光信息处理领域,具体涉及一种基于黑磷材料的全光相位调制器及其应用。The invention relates to the field of all-optical communication and all-optical information processing, in particular to an all-optical phase modulator based on black phosphorus material and an application thereof.
背景技术Background technique
随着通信容量和信息处理速度的不断提升,传统的电调制器由于其带宽有限,功耗大等缺点,已经无法满足日益增长的通信需求。而光调制器可以将调制信号加载到光波的振幅、相位、偏振或波长等参数上,由于其带宽较宽,速度较快,因此成为光通信系统和光信息处理领域中的关键器件。目前光调制器主要有电光调制器和全光调制器,其中全光调制器是通过一束光来控制另一束光的通断或转换,它完全工作于光子学范畴中,而不需要外界施加电、热、磁等物理影响,并且可以在光纤或波导结构中实现超快、低损耗和宽带宽的信号加载,因此受到了越来越多的关注和研究。With the continuous improvement of communication capacity and information processing speed, the traditional electric modulator has been unable to meet the increasing communication requirements due to its shortcomings such as limited bandwidth and high power consumption. The optical modulator can load the modulated signal into parameters such as amplitude, phase, polarization or wavelength of the light wave. Because of its wide bandwidth and high speed, it becomes a key component in the field of optical communication systems and optical information processing. At present, the optical modulator mainly has an electro-optic modulator and an all-optical modulator, wherein the all-optical modulator controls the on-off or conversion of another beam through one beam of light, and it completely works in the field of photonics without the need for the outside world. Applying electrical, thermal, magnetic and other physical influences, and achieving ultra-fast, low-loss and wide-bandwidth signal loading in fiber or waveguide structures, has received more and more attention and research.
全光调制器根据信号光的被控参量可以分为强度调制器、相位调制器和波长转换器等,根据工作机理可以分为基于材料的饱和吸收特性、光学克尔效应、热光效应、四波混频效应和空间自相位调制等。其中,相位调制器能够获得更高的整体透过率和更大的调制深度,并且基于热光效应的相位调制器具有操作 简单,全光纤化等优点。The all-optical modulator can be divided into an intensity modulator, a phase modulator and a wavelength converter according to the controlled parameters of the signal light, and can be classified into a material based saturation absorption characteristic, an optical Kerr effect, a thermo-optic effect, and the fourth according to the working mechanism. Wave mixing effects and spatial self-phase modulation. Among them, the phase modulator can obtain higher overall transmittance and greater modulation depth, and the phase modulator based on the thermo-optic effect has the advantages of simple operation and full fiber.
目前有文章分别报道了基于石墨烯材料和过渡金属硫族化物MoS 2的热光效应的全光相位调制器。由于石墨烯的能带结构是一个零带隙的狄拉克锥,具有宽带吸收的特点,因此对信号光的损耗比较大,不适合用于相位型光器件。而MoS 2只有在单层时才是直接带隙半导体,而块体和少层时均为间接带隙半导体,并且光响应主要为可见光波段,这就限制了其在红外波段尤其是光通信波段的应用。此外,MoS 2也具有较强的光吸收,因此会引入较大的插入损耗。 At present, an all-optical phase modulator based on the thermo-optic effect of graphene material and transition metal chalcogenide MoS 2 is reported separately. Since the energy band structure of graphene is a zero band gap Dirac cone, which has the characteristics of broadband absorption, the loss of signal light is relatively large, and it is not suitable for phase type optical devices. However, MoS 2 is a direct bandgap semiconductor only in a single layer, and an indirect bandgap semiconductor in both bulk and small layers, and the photoresponse is mainly in the visible light band, which limits its in the infrared band, especially the optical communication band. Applications. In addition, MoS 2 also has a strong light absorption and therefore introduces a large insertion loss.
因此,有必要提供一种新的全光相位调制器。Therefore, it is necessary to provide a new all-optical phase modulator.
发明内容Summary of the invention
为解决上述问题,本发明提供了一种基于黑磷材料的全光相位调制器,目的是为了实现低损耗、宽带宽的全光域内的光调制和信息加载。In order to solve the above problems, the present invention provides an all-optical phase modulator based on a black phosphorus material for the purpose of realizing light modulation and information loading in a low-loss, wide-bandwidth all-optical region.
本发明第一方面提供了一种基于黑磷材料的全光相位调制器,包括信号光源、泵浦光源、第一耦合器、调制臂、参考臂以及与所述调制臂和所述参考臂连接的第二耦合器;A first aspect of the present invention provides an all-optical phase modulator based on a black phosphor material, comprising a signal light source, a pump light source, a first coupler, a modulation arm, a reference arm, and a connection with the modulation arm and the reference arm Second coupler;
所述第一耦合器包括输入端、A输出端和B输出端,所述输入端与所述信号光源连接,所述A输出端与所述调制臂连接,所述B输出端与所述参考臂连接;所述信号光源和泵浦光源分别用于产生信号光和泵浦光;所述信号光通过所述输入端进入所述第一耦合器,所述第一耦合器用于将所述信号光分成两路;其中一路信号光通过所述A输出端与所述泵浦光共同输入所述调制臂进行处理,另一路信号光通过所述B输出端输入所述参考臂进行处理;所述调制臂包括黑磷-光纤复合结构,所述黑磷-光纤复合结构包括功能化光纤和设置在所 述功能化光纤上的黑磷材料层,所述黑磷-光纤复合结构用于吸收所述泵浦光产生热量,通过热光效应改变所述信号光的相位;经过所述黑磷-光纤复合结构处理的一路信号光和经过所述参考臂处理的另一路信号光同时进入第二耦合器中用于使两路信号光会合并发生干涉。The first coupler includes an input end, an A output end, and a B output end, the input end is connected to the signal light source, the A output end is connected to the modulation arm, and the B output end is connected with the reference An arm connection; the signal source and the pump source are respectively configured to generate signal light and pump light; the signal light enters the first coupler through the input, the first coupler is configured to transmit the signal The light is divided into two paths; one of the signal lights is input to the modulation arm through the A output terminal and the pump light for processing, and the other signal light is input to the reference arm through the B output terminal for processing; The modulation arm comprises a black phosphorus-fiber composite structure comprising a functionalized fiber and a layer of black phosphor material disposed on the functionalized fiber, the black phosphorus-fiber composite structure for absorbing the The pump light generates heat, and the phase of the signal light is changed by a thermo-optic effect; one signal light processed by the black phosphorus-fiber composite structure and another signal light processed by the reference arm simultaneously enter the second coupler For two optical signals will interfere combined.
其中,所述功能化光纤包括微纳光纤、D形光纤或光纤头。Wherein, the functionalized fiber comprises a micro-nano fiber, a D-shaped fiber or a fiber head.
其中,所述黑磷材料层中包括经共价功能化的、表面配位的、保护性封装的、金属离子修饰的或氟化的黑磷材料。Wherein the black phosphorus material layer comprises a covalently functionalized, surface-coordinated, protectively encapsulated, metal ion-modified or fluorinated black phosphorus material.
其中,所述黑磷材料层中包括黑磷纳米薄片,所述黑磷纳米薄片的厚度为0.5-5nm。Wherein, the black phosphorus material layer comprises black phosphorus nanosheets, and the black phosphorus nanosheets have a thickness of 0.5-5 nm.
其中,所述调制臂还包括第一波分复用器和第二波分复用器,所述第一波分复用器、所述黑磷-光纤复合结构和所述第二波分复用器依次连接,所述第一波分复用器用于将所述一路信号光与所述泵浦光导入到所述黑磷-光纤复合结构中;所述第二波分复用器用于将未被吸收的剩余泵浦光从光路中滤除。Wherein the modulation arm further includes a first wavelength division multiplexer and a second wavelength division multiplexer, the first wavelength division multiplexer, the black phosphorus-fiber composite structure, and the second wave division Connected in sequence, the first wavelength division multiplexer is configured to introduce the one signal light and the pump light into the black phosphorus-fiber composite structure; the second wavelength division multiplexer is used to The remaining pump light that is not absorbed is filtered out of the optical path.
其中,所述参考臂包括可变光衰减器和可变光延迟线,所述可变光衰减器用于调节所述调制臂和所述参考臂中的光强比例;所述可变光延迟线用于调节所述调制臂和所述参考臂的长度差。Wherein the reference arm includes a variable optical attenuator for adjusting a ratio of light in the modulation arm and the reference arm; and a variable optical delay line; the variable optical delay line For adjusting the length difference between the modulation arm and the reference arm.
其中,所述B输出端与所述可变光衰减器连接,所述可变光衰减器与所述可变光延迟线的一端连接,所述可变光延迟线的另一端与所述第二耦合器连接。Wherein the B output end is connected to the variable optical attenuator, the variable optical attenuator is connected to one end of the variable optical delay line, and the other end of the variable optical delay line is opposite to the first Two coupler connections.
其中,所述可变光衰减器包括手动型、电动型、或通过弯曲光纤或调节光纤接头构成的等效型光衰减器。Wherein, the variable optical attenuator comprises a manual type, an electric type, or an equivalent type optical attenuator formed by bending an optical fiber or adjusting an optical fiber joint.
其中,所述可变光延迟线包括手动型、电动型,或通过多次裁剪光纤长度 构成的等效型光延迟线。Wherein, the variable optical delay line comprises a manual type, an electric type, or an equivalent type optical delay line formed by cutting the length of the optical fiber a plurality of times.
其中,所述基于黑磷材料的全光相位调制器还包括偏振控制器,所述偏振控制器包括第一端和第二端,所述第一端分别与所述调制臂和所述参考臂连接,所述第二端与所述第二耦合器连接,所述偏振控制器用于调节将要入射到所述第二耦合器的两路信号光的偏振态。Wherein the black phosphor-based all-optical phase modulator further includes a polarization controller, the polarization controller including a first end and a second end, the first end and the modulation arm and the reference arm, respectively Connected, the second end is coupled to the second coupler, and the polarization controller is configured to adjust a polarization state of two signal lights to be incident on the second coupler.
其中,所述偏振控制器包括扭曲型、挤压型或波片式偏振控制器。Wherein, the polarization controller comprises a twisted, extruded or wave plate type polarization controller.
其中,所述基于黑磷材料的全光相位调制器还包括分别与所述第二耦合器连接的第一输出端和第二输出端,经干涉后的信号光分别从所述第一输出端和所述第二输出端输出。The all-optical phase modulator based on the black phosphor material further includes a first output end and a second output end respectively connected to the second coupler, and the interfered signal light is respectively from the first output end And outputting the second output.
其中,所述第一输出端和所述第二输出端为设置在所述第二耦合器上的两个端口,或者为与第二耦合器端口连接的独立的元件。Wherein the first output end and the second output end are two ports disposed on the second coupler or are independent components connected to the second coupler port.
其中,所述泵浦光源包括连续激光器、脉冲激光器或带有信息编码的调制激光器。Wherein, the pumping source comprises a continuous laser, a pulsed laser or a modulated laser with information coding.
其中,所述泵浦光源为980nm连续光源、980nm脉冲光源或980nm调制光源。Wherein, the pumping source is a 980 nm continuous light source, a 980 nm pulse light source or a 980 nm modulated light source.
其中,所述信号光源包括超连续谱光源、宽带ASE光源、窄带连续激光器或窄带DFB光源。Wherein, the signal light source comprises a supercontinuum source, a broadband ASE source, a narrowband continuous laser or a narrowband DFB source.
其中,所述信号光源为1550nm ASE光源或1550nm DFB光源。Wherein, the signal light source is a 1550 nm ASE light source or a 1550 nm DFB light source.
其中,所述基于黑磷材料的全光相位调制器还包括与所述第二波分复用器连接的泵浦光导出元件,所述泵浦光导出元件用于将所述第二波分复用器滤除掉的泵浦光从光路中导出。Wherein the all-optical phase modulator based on black phosphorus material further comprises a pump light deriving element connected to the second wavelength division multiplexer, the pump light deriving element for dividing the second wavelength The pump light filtered by the multiplexer is led out of the optical path.
其中,所述黑磷-光纤复合结构的损耗为3-10dB。Wherein, the black phosphorus-fiber composite structure has a loss of 3-10 dB.
本发明第二方面提供了一种全光相位调制器的应用,所述全光相位调制器可应用于全光相移器、全光强度调制器、全光信号加载器或负逻辑系统中。A second aspect of the invention provides the use of an all-optical phase modulator that can be applied to an all-optical phase shifter, a full light intensity modulator, an all-optical signal loader, or a negative logic system.
综上,本发明有益效果包括以下几个方面:In summary, the beneficial effects of the present invention include the following aspects:
本发明提供的一种基于黑磷材料的全光相位调制器克服了传统电光调制器的电子瓶颈这一难题,实现了宽带宽工作,适用的光谱范围大大提高。此外,所述全光相位调制器可使信号光获得较大的相位移动。同时所述全光相位调制器结构简单,易于操作,具有较低的传输损耗,并且能够与现有的光纤通信系统兼容。本发明提供的一种基于黑磷材料的全光相位调制器可用于全光相移器、全光强度调制器和全光信号加载器等领域,并且能够用于负逻辑系统中。The all-optical phase modulator based on black phosphorus material provided by the invention overcomes the problem of the electronic bottleneck of the conventional electro-optic modulator, realizes wide bandwidth operation, and the applicable spectral range is greatly improved. In addition, the all-optical phase modulator can achieve greater phase shifting of the signal light. At the same time, the all-optical phase modulator is simple in structure, easy to operate, has low transmission loss, and is compatible with existing fiber-optic communication systems. The all-optical phase modulator based on black phosphorus material provided by the invention can be used in the fields of all-optical phase shifter, all-optical intensity modulator and all-optical signal loader, and can be used in a negative logic system.
附图说明DRAWINGS
图1为本发明一实施方式提供的基于黑磷材料的全光相位调制器的结构示意图;1 is a schematic structural diagram of an all-optical phase modulator based on a black phosphorus material according to an embodiment of the present invention;
图2为实施例1得到的相移量与泵浦功率的关系图;2 is a graph showing the relationship between the phase shift amount and the pump power obtained in Example 1;
图3为实施例2得到的信号光强度被调制后的波形图;3 is a waveform diagram of the signal light intensity obtained in Embodiment 2 after being modulated;
图4为实施例3得到的泵浦光所载信息被加载到信号光的波形图。Fig. 4 is a waveform diagram in which the information of the pump light obtained in the third embodiment is loaded to the signal light.
附图标记Reference numeral
100-基于黑磷材料的全光相位调制器,1-信号光源,2-第一耦合器,3-泵浦光源,20-调制臂,30-参考臂,4-第一波分复用器(第一WDM),5-黑磷-光纤复合结构,6-第二波分复用器(第二WDM),7-泵浦光导出元件,8-可变光衰减器,9-可变光延迟线,10-偏振控制器,11-第二耦合器,12-第一输出端,13-第二输出端。所述各个元件之间均通过普通光纤(如普通单模 光纤)连接。图1中箭头表示光传输方向。100-All-optical phase modulator based on black phosphorus material, 1-signal source, 2-first coupler, 3-pump source, 20-modulation arm, 30-reference arm, 4-first wavelength division multiplexer (first WDM), 5-black phosphorus-fiber composite structure, 6-second wavelength division multiplexer (second WDM), 7-pump light derivation element, 8-variable optical attenuator, 9-variable Optical delay line, 10-polarization controller, 11-second coupler, 12-first output, 13-second output. The respective components are connected by a common optical fiber such as a common single mode fiber. The arrows in Fig. 1 indicate the direction of light transmission.
具体实施方式detailed description
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The following is a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. It is the scope of protection of the present invention.
参阅图1,本发明一实施方式提供了一种基于黑磷材料的全光相位调制器100,包括信号光源1、泵浦光源3、第一耦合器2、调制臂20、参考臂30以及与所述调制臂20和所述参考臂30连接的第二耦合器11;Referring to FIG. 1 , an embodiment of the present invention provides an all-optical phase modulator 100 based on a black phosphor material, including a signal light source 1 , a pump light source 3 , a first coupler 2 , a modulation arm 20 , a reference arm 30 , and The modulation arm 20 and the second coupler 11 connected to the reference arm 30;
所述第一耦合器2包括输入端、A输出端和B输出端(图中未示出),所述输入端与所述信号光源1连接,所述A输出端与所述调制臂20连接,所述B输出端与所述参考臂30连接;所述信号光源1和泵浦光源3分别用于产生信号光和泵浦光;所述信号光通过所述输入端进入所述第一耦合器2,所述第一耦合器2用于将所述信号光分成两路;其中一路信号光通过所述A输出端与所述泵浦光共同输入所述调制臂20进行处理,另一路信号光通过所述B输出端输入所述参考臂30进行处理;所述调制臂20包括黑磷-光纤复合结构5,所述黑磷-光纤复合结构5包括功能化光纤和设置在所述功能化光纤上的黑磷材料层,所述黑磷-光纤复合结构5用于吸收所述泵浦光产生热量,通过热光效应改变所述信号光的相位;经过所述黑磷-光纤复合结构5处理的一路信号光和经过所述参考臂30处理的另一路信号光同时进入第二耦合器11中用于使两路信号光会合并发生干涉。The first coupler 2 includes an input end, an A output end and a B output end (not shown), the input end is connected to the signal light source 1, and the A output end is connected to the modulation arm 20 The B output terminal is connected to the reference arm 30; the signal light source 1 and the pump light source 3 are respectively used for generating signal light and pump light; the signal light enters the first coupling through the input end The first coupler 2 is configured to divide the signal light into two paths; one of the signal lights is input to the modulation arm 20 through the A output end and the pump light for processing, and the other signal is Light is input through the B output terminal to the reference arm 30; the modulation arm 20 includes a black phosphorus-fiber composite structure 5, the black phosphorus-fiber composite structure 5 includes a functionalized fiber and is disposed in the functionalized a black phosphorous material layer on the optical fiber, the black phosphorus-fiber composite structure 5 for absorbing the pump light to generate heat, and changing the phase of the signal light by a thermo-optic effect; passing through the black phosphorus-fiber composite structure 5 The processed signal light and the other path processed by the reference arm 30 The signal light enters the second coupler 11 at the same time for combining the two signal lights to interfere.
本发明实施例提供的一种基于黑磷材料的全光相位调制器,其整体结构是 一个Mach-Zehnder干涉仪(马赫-增德尔干涉仪)。An all-optical phase modulator based on a black phosphorus material provided by an embodiment of the present invention has a monolithic structure of a Mach-Zehnder interferometer (Mach-Zehnder interferometer).
本发明实施方式中,所述信号光源1包括超连续谱光源、宽带ASE光源(宽带放大自发辐射光源)、窄带连续激光器或窄带DFB光源。可选地,所述信号光源1为1550nm ASE光源或1550nm DFB光源。In the embodiment of the present invention, the signal light source 1 comprises a supercontinuum source, a broadband ASE source (wideband amplified spontaneous emission source), a narrowband continuous laser or a narrowband DFB source. Optionally, the signal light source 1 is a 1550 nm ASE light source or a 1550 nm DFB light source.
本发明实施方式中,所述泵浦光源3与所述调制臂20连接。所述泵浦光源3为连续激光器、脉冲激光器或带有信息编码的调制激光器。可选地,所述泵浦光源3为980nm连续光源、980nm脉冲光源或980nm调制光源。In the embodiment of the invention, the pumping light source 3 is connected to the modulation arm 20. The pumping source 3 is a continuous laser, a pulsed laser or a modulated laser with information coding. Optionally, the pumping source 3 is a 980 nm continuous light source, a 980 nm pulsed light source or a 980 nm modulated light source.
本发明实施方式中,所述第一耦合器2的耦合比根据黑磷材料和各光纤器件的损耗来确定以获得最大的信号光利用效率。可选地,所述耦合比为90∶10,如所述A输出端为90%输出端,所述B输出端为10%输出端。In an embodiment of the invention, the coupling ratio of the first coupler 2 is determined according to the loss of the black phosphor material and the respective fiber optic devices to obtain maximum signal light utilization efficiency. Optionally, the coupling ratio is 90:10, such as the A output is a 90% output, and the B output is a 10% output.
本发明实施方式中,所述黑磷-光纤复合结构5的工作原理为:所述黑磷材料用于吸收泵浦光产生热量并将自身和光纤的温度升高,由于热光效应,造成黑磷材料及光纤的折射率发生改变,从而改变信号光的相位。In the embodiment of the present invention, the working principle of the black phosphorus-fiber composite structure 5 is that the black phosphorus material is used for absorbing pump light to generate heat and raising the temperature of itself and the optical fiber, which causes black due to the thermo-optic effect. The refractive index of the phosphor material and the fiber changes to change the phase of the signal light.
本发明实施方式中,所述黑磷-光纤复合结构5中的功能化光纤包括微纳光纤、D形光纤或光纤头。所述黑磷材料层是通过沉积或旋涂的方式将黑磷材料如黑磷纳米薄片堆积在所述微纳光纤、D形光纤或光纤头上形成的。可选地,所述微纳光纤由普通的单模光纤(SMF-28E)拉锥制备成。微纳光纤的直径为业界常规选择,在此不做特殊限定。可选地,所述D型光纤是在标准单模通信光纤上,利用光学微加工技术,将一定长度的圆柱形的光纤包层抛磨掉一部分,制成D型光纤。可选地,所述光纤头可选择常规使用的光纤接头,在此不做特殊限定。可选地,所述沉积或旋涂的具体工艺为常规选择,在此不做特殊限定。In the embodiment of the invention, the functionalized fiber in the black phosphorus-fiber composite structure 5 comprises a micro/nano fiber, a D-shaped fiber or a fiber tip. The black phosphor material layer is formed by depositing a black phosphorus material such as black phosphorus nanosheet on the micro/nano fiber, the D-shaped fiber or the fiber tip by deposition or spin coating. Optionally, the micro/nano fiber is prepared from a common single mode fiber (SMF-28E) taper. The diameter of the micro-nano fiber is a conventional choice in the industry, and is not particularly limited herein. Optionally, the D-type optical fiber is on a standard single-mode communication optical fiber, and a part of the cylindrical optical fiber cladding is polished away by using optical micro-machining technology to form a D-type optical fiber. Optionally, the fiber optic head may select a fiber optic connector that is conventionally used, and is not particularly limited herein. Optionally, the specific process of the deposition or spin coating is a conventional selection, and is not particularly limited herein.
本发明实施方式中,所述黑磷材料层中包括修饰或未修饰的黑磷材料。可选地,所述黑磷材料包括经共价功能化、表面配位、保护性封装、金属离子修饰或氟化等修饰手段修饰的黑磷。经过修饰的黑磷材料性能更加稳定,不容易被氧化。可选地,所述黑磷材料可以为如金离子、银离子、铁离子、镁离子、汞离子和钙离子中的至少一种修饰的黑磷材料。具体的黑磷材料的选择根据实际情况进行选择。对所述黑磷-光纤复合结构中设置在所述功能化光纤上的所述黑磷材料层的厚度没有特殊限定,如可以为纳米级或者为微米级。如通过旋涂的方式设置在所述功能化光纤上的黑磷材料层的厚度为1-10μm,通过沉积的方式设置在所述功能化光纤上的黑磷材料层的厚度为10-20μm。可选地,所述黑磷材料层中包括黑磷纳米薄片,所述黑磷纳米薄片的厚度为0.5-5nm,所述黑磷纳米薄片的原子层数一般是1-10层,对于所述黑磷纳米薄片的横向尺寸没有要求。可选地,所述黑磷-光纤复合结构的损耗在3-10dB之间,具体地,损耗为10dB。In an embodiment of the invention, the black phosphorus material layer includes a modified or unmodified black phosphorus material. Optionally, the black phosphorus material comprises black phosphorus modified by a modification means such as covalent functionalization, surface coordination, protective encapsulation, metal ion modification or fluorination. The modified black phosphorus material is more stable and is not easily oxidized. Alternatively, the black phosphorus material may be a black phosphorus material modified with at least one of gold ions, silver ions, iron ions, magnesium ions, mercury ions, and calcium ions. The choice of specific black phosphorus materials is selected according to the actual situation. The thickness of the black phosphor material layer disposed on the functionalized fiber in the black phosphorus-fiber composite structure is not particularly limited, and may be nanoscale or micron. The thickness of the black phosphor material layer disposed on the functionalized fiber by spin coating is 1-10 μm, and the thickness of the black phosphor material layer disposed on the functionalized fiber by deposition is 10-20 μm. Optionally, the black phosphorus material layer comprises black phosphorus nanosheets, the black phosphorus nanosheets have a thickness of 0.5-5 nm, and the black phosphorus nanosheets generally have a number of atomic layers of 1-10 layers. The lateral dimensions of the black phosphorus nanoflakes are not required. Optionally, the black phosphorus-fiber composite structure has a loss between 3-10 dB, specifically, a loss of 10 dB.
本发明实施方式中,所述调制臂20还包括第一波分复用器4(第一WDM)和第二波分复用器6(第二WDM),所述第一波分复用器4、所述黑磷-光纤复合结构5和所述第二波分复用器6依次连接形成所述调制臂20,所述第一波分复用器4用于将其中所述一路信号光与所述泵浦光导入到所述黑磷-光纤复合结构5中;所述第二波分复用器6用于将未被吸收的剩余泵浦光从光路中滤除。可选地,所述第二波分复用器6是使泵浦光滤除而信号光通过的波分复用器或滤波器。In the embodiment of the present invention, the modulation arm 20 further includes a first wavelength division multiplexer 4 (first WDM) and a second wavelength division multiplexer 6 (second WDM), the first wavelength division multiplexer 4. The black phosphorus-fiber composite structure 5 and the second wavelength division multiplexer 6 are sequentially connected to form the modulation arm 20, and the first wavelength division multiplexer 4 is configured to transmit the one signal light therein. The pump light is introduced into the black phosphorus-fiber composite structure 5; the second wavelength division multiplexer 6 is configured to filter the unabsorbed residual pump light from the optical path. Optionally, the second wavelength division multiplexer 6 is a wavelength division multiplexer or filter that filters the pump light and passes the signal light.
本发明实施方式中,所述第二耦合器11为3dB耦合器。In the embodiment of the invention, the second coupler 11 is a 3dB coupler.
本发明实施方式中,所述基于黑磷材料的全光相位调制器100还包括与所 述第二波分复用器6连接的泵浦光导出元件7,所述泵浦光导出元件7用于将所述第二波分复用器6滤除掉的泵浦光从光路中导出。可选地,所述泵浦光导出元件7包括比光纤芯层折射率大的材料,如折射率为>1.5的高折射材料。具体地,所述高折射材料为紫外固化高折射光学胶。In the embodiment of the present invention, the black phosphor-based all-optical phase modulator 100 further includes a pump light deriving element 7 connected to the second wavelength division multiplexer 6, and the pump light deriving element 7 The pump light filtered out by the second wavelength division multiplexer 6 is led out from the optical path. Optionally, the pump light directing element 7 comprises a material having a higher refractive index than the core of the optical fiber, such as a high refractive material having a refractive index of > 1.5. Specifically, the high refractive material is an ultraviolet curing high refractive optical adhesive.
本发明实施方式中,所述参考臂30包括依次连接的可变光衰减器8和可变光延迟线9,所述可变光衰减器8用于调节所述调制臂20和所述参考臂30中的光强比例;所述可变光延迟线9用于调节所述调制臂20和所述参考臂30的长度差。可选地,所述B输出端与所述可变光衰减器8连接,所述可变光衰减器8与所述可变光延迟线9的一端连接,所述可变光延迟线9的另一端与所述第二耦合器11连接。可选地,所述可变光衰减器8包括手动型、电动型、或通过弯曲光纤或调节光纤接头构成的等效型光衰减器。可选地,所述可变光延迟线9包括手动型、电动型,或通过多次裁剪光纤长度构成的等效型光延迟线。In the embodiment of the present invention, the reference arm 30 includes a variable optical attenuator 8 and a variable optical delay line 9 connected in sequence, and the variable optical attenuator 8 is used to adjust the modulation arm 20 and the reference arm The intensity ratio in 30; the variable optical delay line 9 is used to adjust the difference in length between the modulation arm 20 and the reference arm 30. Optionally, the B output terminal is connected to the variable optical attenuator 8 , and the variable optical attenuator 8 is connected to one end of the variable optical delay line 9 , and the variable optical delay line 9 The other end is connected to the second coupler 11. Optionally, the variable optical attenuator 8 comprises a manual type, an electric type, or an equivalent type optical attenuator constructed by bending an optical fiber or adjusting an optical fiber joint. Alternatively, the variable optical delay line 9 includes a manual type, an electric type, or an equivalent type optical delay line formed by cutting the length of the fiber a plurality of times.
本发明实施方式中,所述基于黑磷材料的全光相位调制器100还包括偏振控制器10,所述偏振控制器10包括第一端和第二端(图中未示出),所述偏振控制器10第一端与所述调制臂20和所述参考臂30连接,所述偏振控制器10第二端与所述第二耦合器11连接,所述偏振控制器10用于调节将要入射到所述第二耦合器11的两路信号光的偏振态。可选地,所述偏振控制器10包括扭曲型、挤压型或波片式偏振控制器。In the embodiment of the present invention, the black phosphor-based all-optical phase modulator 100 further includes a polarization controller 10, the polarization controller 10 including a first end and a second end (not shown), a first end of the polarization controller 10 is coupled to the modulation arm 20 and the reference arm 30, a second end of the polarization controller 10 is coupled to the second coupler 11, and the polarization controller 10 is used to adjust a desired The polarization state of the two signal lights incident on the second coupler 11. Optionally, the polarization controller 10 comprises a twisted, extruded or wave plate type polarization controller.
本发明实施方式中,所述基于黑磷材料的全光相位调制器100还包括分别与所述第二耦合器11连接的第一输出端12和第二输出端13,经干涉后的信号光分别从所述第一输出端12和所述第二输出端13输出。可选地,所述第一输出端12和所述第二输出端13可以为设置在所述第二耦合器11上的两个端口,或者可 以与第二耦合器11端口连接的独立的元件。In the embodiment of the present invention, the black phosphor-based all-optical phase modulator 100 further includes a first output end 12 and a second output end 13 respectively connected to the second coupler 11, and the interfered signal light Outputted from the first output terminal 12 and the second output terminal 13, respectively. Optionally, the first output end 12 and the second output end 13 may be two ports disposed on the second coupler 11 or independent components that may be connected to the second coupler 11 port .
具体地,如图1所示,本发明实施例提供的一种基于黑磷材料的全光相位调制器100,其整体结构是一个Mach-Zehnder干涉仪,包括信号光源1、第一耦合器2、泵浦光源3、第一WDM 4、黑磷-光纤复合结构5、第二WDM 6、泵浦光导出元件7、可变光衰减器8、可变光延迟线9、偏振控制器10、第二耦合器11、第一输出端12和第二输出端13。其中,第一WDM 4、黑磷-光纤复合结构5和第二WDM 6形成调制臂20,可变光衰减器8和可变光延迟线9形成参考臂30;具体地,信号光源1与第一耦合器2的输入端连接,第一耦合器2的A输出端与第一波分复用器4的一输入端连接,泵浦光源2与第一波分复用器4的另一输入端连接,第一波分复用器4的输出端与黑磷-光纤复合结构5连接。第二波分复用器6包括一输入端和两个输出端,第二波分复用器6的输入端与黑磷-光纤复合结构5连接,第二波分复用器6其中一个输出端与泵浦光导出元件7连接,另外一个输出端与偏振控制器10的一输入端连接。第一耦合器2的B输出端与可变光衰减器8连接,可变光衰减器8与可变光延迟线9连接,可变光延迟线9与偏振控制器10的另一输入端连接,偏振控制器10与第二耦合器11连接。第二耦合器11的一输出端与第一输出端12连接,第二耦合器11的另一输出端与第二输出端13连接。Specifically, as shown in FIG. 1 , an all-optical phase modulator 100 based on a black phosphorus material provided by an embodiment of the present invention is a Mach-Zehnder interferometer, including a signal light source 1 and a first coupler 2 . a pumping light source 3, a first WDM 4, a black phosphorus-fiber composite structure 5, a second WDM 6, a pump light deriving element 7, a variable optical attenuator 8, a variable optical delay line 9, a polarization controller 10, The second coupler 11, the first output terminal 12 and the second output terminal 13. Wherein, the first WDM 4, the black phosphorus-fiber composite structure 5 and the second WDM 6 form a modulation arm 20, and the variable optical attenuator 8 and the variable optical delay line 9 form a reference arm 30; specifically, the signal light source 1 and The input end of a coupler 2 is connected, the A output of the first coupler 2 is connected to an input of the first wavelength division multiplexer 4, and the pump light source 2 and the other input of the first wavelength division multiplexer 4 are connected. The terminal is connected, and the output of the first wavelength division multiplexer 4 is connected to the black phosphorus-fiber composite structure 5. The second wavelength division multiplexer 6 includes an input end and two output ends. The input end of the second wavelength division multiplexer 6 is connected to the black phosphorus-fiber composite structure 5, and one of the second wavelength division multiplexer 6 outputs The end is connected to the pump light directing element 7 and the other output is connected to an input of the polarization controller 10. The B output of the first coupler 2 is connected to the variable optical attenuator 8, the variable optical attenuator 8 is connected to the variable optical delay line 9, and the variable optical delay line 9 is connected to the other input of the polarization controller 10. The polarization controller 10 is connected to the second coupler 11. An output of the second coupler 11 is connected to the first output 12, and the other output of the second coupler 11 is connected to the second output 13.
信号光源1和泵浦光源3分别用于产生信号光和泵浦光。第一耦合器2和第二耦合器11分别用于将信号光分成两路和将分开的信号光重新会合发生干涉后从第一输出端12和第二输出端13导出。第一WDM 4和第二WDM 6分别用于将泵浦光导入到黑磷-光纤复合结构5中和将未吸收的剩余泵浦光从光路中滤除。黑磷材料用于吸收泵浦光产生热量并将自身和光纤的温度升高, 从而通过热光效应改变信号光的相位。泵浦光导出元件7用于有效的将剩余泵浦光从光路中导出。可变光衰减器8用于调节Mach-Zehnder干涉仪的两个臂中的光强比例以获得高的干涉对比度。可变光延迟线9用于调节Mach-Zehnder干涉仪的两个臂的长度差以改变自由光谱范围的大小。偏振控制器10用于调节入射到第二耦合器11的两路信号光的偏振态以得到高的干涉对比度。The signal light source 1 and the pump light source 3 are used to generate signal light and pump light, respectively. The first coupler 2 and the second coupler 11 are respectively used to split the signal light into two paths and to separate the separated signal light from the first output terminal 12 and the second output terminal 13 after recombination. The first WDM 4 and the second WDM 6 are respectively used to introduce pump light into the black phosphorus-fiber composite structure 5 and to filter out unabsorbed residual pump light from the optical path. The black phosphor material is used to absorb the pump light to generate heat and raise the temperature of itself and the fiber, thereby changing the phase of the signal light by the thermo-optic effect. The pump light directing element 7 serves to effectively direct the remaining pump light out of the optical path. The variable optical attenuator 8 is used to adjust the intensity ratio in the two arms of the Mach-Zehnder interferometer to obtain a high interference contrast. The variable optical delay line 9 is used to adjust the length difference of the two arms of the Mach-Zehnder interferometer to vary the size of the free spectral range. The polarization controller 10 is for adjusting the polarization states of the two signal lights incident to the second coupler 11 to obtain a high interference contrast.
本发明的有益效果包括:Advantageous effects of the present invention include:
1、本发明提供的一种基于黑磷材料的全光相位调制器克服了传统电光调制器的电子瓶颈这一难题,实现了宽带宽工作,适用的光谱范围大大提高。1. The all-optical phase modulator based on black phosphorus material provided by the invention overcomes the problem of the electronic bottleneck of the conventional electro-optic modulator, realizes wide bandwidth operation, and greatly improves the applicable spectral range.
2、本发明提供的一种基于黑磷材料的全光相位调制器结构简单,易于操作,具有较低的传输损耗,并且能够与现有的光纤通信系统兼容。2. The all-optical phase modulator based on black phosphorus material provided by the invention has simple structure, is easy to operate, has low transmission loss, and can be compatible with existing optical fiber communication systems.
3、本发明采用的黑磷材料具有较强的光热性能,吸收泵浦光以后能够产生较高的温升,从而使信号光获得较大的相位移动。3. The black phosphorus material used in the invention has strong photothermal performance, and can absorb a pumping light to generate a higher temperature rise, thereby obtaining a larger phase shift of the signal light.
4、本发明采用的黑磷材料是一种直接带隙半导体,其带隙与厚度有关,通过改变其带隙大小可以很方便的调节其性能,并能够覆盖红外波段尤其是光通信波段。4. The black phosphorus material used in the present invention is a direct bandgap semiconductor whose band gap is related to thickness. The performance of the band gap can be easily adjusted by changing the band gap size, and can cover the infrared band, especially the optical communication band.
5、本发明提供的一种基于黑磷材料的全光相位调制器可用于全光相移器、全光强度调制器和全光信号加载器等领域,并且能够用于负逻辑系统中。5. The all-optical phase modulator based on black phosphorus material provided by the invention can be used in the fields of all-optical phase shifter, all-optical intensity modulator and all-optical signal loader, and can be used in a negative logic system.
实施例1:Example 1:
如图1所示,本实施例1提供了一种基于黑磷材料的全光相位调制器,其中,本实施例1的信号光源1为1550nm ASE光源;泵浦光源3为980nm连续光源;黑磷-光纤复合结构4包括微纳光纤和设置在微纳光纤上的黑磷材料 层,黑磷材料层中的材料为氟化黑磷纳米薄片;可变光衰减器8为手动型可变光衰减器,可变光延迟线9为通过多次裁剪光纤长度构成的等效型光延迟线。As shown in FIG. 1 , the first embodiment provides an all-optical phase modulator based on a black phosphor material, wherein the signal light source 1 of the first embodiment is a 1550 nm ASE light source; the pump light source 3 is a 980 nm continuous light source; The phosphorus-fiber composite structure 4 comprises a micro/nano fiber and a black phosphorus material layer disposed on the micro/nano fiber, the material in the black phosphorus material layer is a fluorinated black phosphorus nanosheet; the variable optical attenuator 8 is a manual type variable light. The attenuator, the variable optical delay line 9 is an equivalent type optical delay line formed by cutting the length of the fiber a plurality of times.
1550nm ASE光被第一耦合器2分成两路,一路通过由可变光衰减器8、可变光延迟线9和普通光纤构成的参考臂30,一路通过由第一DWM4、黑磷-光纤复合结构5和第二WDM6构成的调制臂20,偏振控制器10用于调节入射到第二耦合器11的两路信号光的偏振态以得到高的干涉对比度,最后在第二耦合器11处产生干涉并从第一输出端12和第二输出端13输出。通过调节980nm连续光的功率就可以改变调制臂中1550nm ASE光的相移量,从而使干涉效应发生变化,使得两个输出端的透射谱发生左右移动,从而达到全光相位调制的目的。透射谱为一个余弦函数,即(1+cos(Δφ+φs))/2,其中Δφ是两臂之间由于长度差造成的相位差,φs是调制臂中热光效应造成的相移。The 1550 nm ASE light is split into two paths by the first coupler 2, one pass through the reference arm 30 composed of the variable optical attenuator 8, the variable optical delay line 9 and the ordinary optical fiber, all passing through the first DWM4, black phosphorus-fiber composite The modulation arm 20 composed of the structure 5 and the second WDM6, the polarization controller 10 is for adjusting the polarization states of the two signal lights incident on the second coupler 11 to obtain a high interference contrast, and finally generated at the second coupler 11. Interference and output from the first output terminal 12 and the second output terminal 13. By adjusting the power of 980nm continuous light, the phase shift of the 1550nm ASE light in the modulation arm can be changed, so that the interference effect changes, and the transmission spectrum of the two outputs is shifted left and right, thereby achieving the purpose of all-optical phase modulation. The transmission spectrum is a cosine function, ie (1+cos(Δφ+φs))/2, where Δφ is the phase difference between the two arms due to the difference in length, and φs is the phase shift caused by the thermo-optic effect in the modulation arm.
1550nm ASE光的相移量与980nm连续光的功率之间的关系如图2所示,当功率为290mW时获得了8π的相移量。相移量与功率近似成线性关系,斜率为0.029π/mW。The relationship between the phase shift amount of 1550 nm ASE light and the power of 980 nm continuous light is as shown in Fig. 2. When the power is 290 mW, a phase shift amount of 8π is obtained. The phase shift amount is approximately linear with the power, and the slope is 0.029π/mW.
实施例2:Example 2:
如图1所示,本实施例2提供了一种类似实施例1所述的一种基于黑磷材料的全光相位调制器,所不同的是,实施例2中信号光源1为1550nm DFB光源;泵浦光源3为980nm脉冲光源。As shown in FIG. 1, this embodiment 2 provides a black phosphor-based all-optical phase modulator similar to that described in Embodiment 1, except that the signal light source 1 in Embodiment 2 is a 1550 nm DFB light source. The pumping source 3 is a 980 nm pulsed light source.
由于本实施例的一种基于黑磷材料的全光相位调制器其整体结构为Mach-Zehnder干涉仪,并且其透射曲线受980nm光的控制,因此当其透射曲线的峰值波长与1550nm DFB光的中心波长重合时透过率较高;而当其透射 曲线的谷值波长与1550nm DFB光的中心波长重合时透过率较低。因此改变980nm光的强弱就可以控制1550nm DFB光的透射功率,从而达到将相位调制转换为强度调制的目的。Since the black phosphor-based all-optical phase modulator of the present embodiment has an overall structure of a Mach-Zehnder interferometer, and its transmission curve is controlled by 980 nm light, when the peak wavelength of the transmission curve is 1550 nm DFB light The transmittance is higher when the center wavelengths coincide; and the transmittance is lower when the valley wavelength of the transmission curve coincides with the center wavelength of the 1550 nm DFB light. Therefore, by changing the intensity of 980 nm light, the transmission power of 1550 nm DFB light can be controlled, thereby achieving the purpose of converting phase modulation into intensity modulation.
980nm泵浦光以及两输出端获得调制后的1550nm信号光的波形如图3所示,信号光被调制成频率、脉宽、占空比均与泵浦光相同的脉冲光。由于热积累和耗散过程响应较慢,因此信号光波形的上升沿和下降沿变得平缓。根据能量守恒定律,第一输出端和第二输出端的波形满足互补关系,即一个波形的升高伴随着另一个波形的降低。The waveform of the 980 nm pump light and the 1550 nm signal light modulated at the two output terminals is shown in Fig. 3. The signal light is modulated into pulse light having the same frequency, pulse width and duty ratio as the pump light. Since the heat accumulation and dissipation processes are slow to respond, the rising and falling edges of the signal light waveform become gentle. According to the law of conservation of energy, the waveforms of the first output and the second output satisfy a complementary relationship, that is, the rise of one waveform is accompanied by the decrease of the other waveform.
实施例3:Example 3:
如图1所示,本实施例3提供了一种类似实施例1所述的一种基于黑磷材料的全光相位调制器,所不同的是,实施例3中信号光源1为1550nm DFB光源;泵浦光源3为980nm调制光源。As shown in FIG. 1 , this embodiment 3 provides a black phosphor-based all-optical phase modulator similar to that described in Embodiment 1, except that the signal light source 1 in Embodiment 3 is a 1550 nm DFB light source. The pumping source 3 is a 980 nm modulated light source.
980nm调制光源输出的光被预先加载‘SZU’的ASCII码信号,氟化黑磷吸收980nm调制光后其产生的热量也按照相同的码位规律进行变化,从而使1550nm DFB光的相位也发生相同规律的改变。当1550nm DFB光在第二耦合器处发生干涉时两个输出端输出光的强度也会被调制成按照‘SZU’的ASCII码变化。图4显示了实测的泵浦光和两个输出端的信号光的波形,可以看到信息已经从泵浦光成功地加载到信号光,并且两输出端的光信号具有位翻转的关系,适用于负逻辑链路系统中。The light output from the 980nm modulated light source is preloaded with the ASCII signal of 'SZU'. The heat generated by the fluorinated black phosphorus after absorbing the 980nm modulated light is also changed according to the same code position law, so that the phase of the 1550nm DFB light is also the same. Regular changes. When the 1550 nm DFB light interferes at the second coupler, the intensity of the output light of the two outputs is also modulated to vary according to the ASCII code of 'SZU'. Figure 4 shows the measured pump light and the signal light of the two outputs. It can be seen that the information has been successfully loaded from the pump light to the signal light, and the optical signals at the two outputs have a bit flip relationship, which is suitable for negative In a logical link system.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本 领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments are merely illustrative of several embodiments of the present invention, and the description thereof is more specific and detailed, but is not to be construed as limiting the scope of the invention. It should be noted that a number of variations and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be determined by the appended claims.

Claims (20)

  1. 一种基于黑磷材料的全光相位调制器,其中,包括信号光源、泵浦光源、第一耦合器、调制臂、参考臂以及与所述调制臂和所述参考臂连接的第二耦合器;An all-optical phase modulator based on a black phosphor material, comprising a signal light source, a pump light source, a first coupler, a modulation arm, a reference arm, and a second coupler coupled to the modulation arm and the reference arm ;
    所述第一耦合器包括输入端、A输出端和B输出端,所述输入端与所述信号光源连接,所述A输出端与所述调制臂连接,所述B输出端与所述参考臂连接;所述信号光源和泵浦光源分别用于产生信号光和泵浦光;所述信号光通过所述输入端进入所述第一耦合器,所述第一耦合器用于将所述信号光分成两路;其中一路信号光通过所述A输出端与所述泵浦光共同输入所述调制臂进行处理,另一路信号光通过所述B输出端输入所述参考臂进行处理;所述调制臂包括黑磷-光纤复合结构,所述黑磷-光纤复合结构包括功能化光纤和设置在所述功能化光纤上的黑磷材料层,所述黑磷-光纤复合结构用于吸收所述泵浦光产生热量,通过热光效应改变所述信号光的相位;经过所述黑磷-光纤复合结构处理的一路信号光和经过所述参考臂处理的另一路信号光同时进入所述第二耦合器中用于使两路信号光会合并发生干涉。The first coupler includes an input end, an A output end, and a B output end, the input end is connected to the signal light source, the A output end is connected to the modulation arm, and the B output end is connected with the reference An arm connection; the signal source and the pump source are respectively configured to generate signal light and pump light; the signal light enters the first coupler through the input, the first coupler is configured to transmit the signal The light is divided into two paths; one of the signal lights is input to the modulation arm through the A output terminal and the pump light for processing, and the other signal light is input to the reference arm through the B output terminal for processing; The modulation arm comprises a black phosphorus-fiber composite structure comprising a functionalized fiber and a layer of black phosphor material disposed on the functionalized fiber, the black phosphorus-fiber composite structure for absorbing the The pump light generates heat, and the phase of the signal light is changed by a thermo-optic effect; one signal light processed by the black phosphorus-fiber composite structure and another signal light processed by the reference arm simultaneously enter the second coupling It is used to make two signals light merge and interfere.
  2. 如权利要求1所述的全光相位调制器,其中,所述功能化光纤包括微纳光纤、D形光纤或光纤头。The all-optical phase modulator of claim 1 wherein said functionalized fiber comprises a micro/nano fiber, a D-shaped fiber or a fiber optic head.
  3. 如权利要求1所述的全光相位调制器,其中,所述黑磷材料层中包括经共价功能化的、表面配位的、保护性封装的、金属离子修饰的或氟化的黑磷材 料。The all-optical phase modulator of claim 1 wherein said black phosphor material layer comprises covalently functionalized, surface coordinated, protectively encapsulated, metal ion modified or fluorinated black phosphorus material.
  4. 如权利要求1或3所述的全光相位调制器,其中,所述黑磷材料层中包括黑磷纳米薄片,所述黑磷纳米薄片的厚度为0.5-5nm。The all-optical phase modulator according to claim 1 or 3, wherein the black phosphor material layer comprises black phosphorus nanoflakes, and the black phosphorus nanoflakes have a thickness of 0.5 to 5 nm.
  5. 如权利要求1所述的全光相位调制器,其中,所述调制臂还包括第一波分复用器和第二波分复用器,所述第一波分复用器、所述黑磷-光纤复合结构和所述第二波分复用器依次连接,所述第一波分复用器用于将所述一路信号光与所述泵浦光导入到所述黑磷-光纤复合结构中;所述第二波分复用器用于将未被吸收的剩余泵浦光从光路中滤除。The all-optical phase modulator of claim 1 wherein said modulation arm further comprises a first wavelength division multiplexer and a second wavelength division multiplexer, said first wavelength division multiplexer, said black a phosphor-fiber composite structure and the second wavelength division multiplexer are sequentially connected, and the first wavelength division multiplexer is configured to introduce the one signal light and the pump light into the black phosphorus-fiber composite structure The second wavelength division multiplexer is configured to filter the remaining pump light that is not absorbed from the optical path.
  6. 如权利要求1所述的全光相位调制器,其中,所述参考臂包括可变光衰减器和可变光延迟线,所述可变光衰减器用于调节所述调制臂和所述参考臂中的光强比例;所述可变光延迟线用于调节所述调制臂和所述参考臂的长度差。The all-optical phase modulator of claim 1 wherein said reference arm comprises a variable optical attenuator and said variable optical delay line for adjusting said modulation arm and said reference arm The intensity ratio in the medium; the variable optical delay line is used to adjust the difference in length between the modulation arm and the reference arm.
  7. 如权利要求6所述的全光相位调制器,其中,所述B输出端与所述可变光衰减器连接,所述可变光衰减器与所述可变光延迟线的一端连接,所述可变光延迟线的另一端与所述第二耦合器连接。The all-optical phase modulator of claim 6 wherein said B output is coupled to said variable optical attenuator, said variable optical attenuator being coupled to one end of said variable optical delay line, The other end of the variable optical delay line is connected to the second coupler.
  8. 如权利要求6所述的全光相位调制器,其中,所述可变光衰减器包括手动型、电动型、或通过弯曲光纤或调节光纤接头构成的等效型光衰减器。The all-optical phase modulator of claim 6 wherein said variable optical attenuator comprises a manual type, an electric type, or an equivalent type optical attenuator constructed by bending an optical fiber or adjusting an optical fiber joint.
  9. 如权利要求6所述的全光相位调制器,其中,所述可变光延迟线包括手动型、电动型、或通过多次裁剪光纤长度构成的等效型光延迟线。The all-optical phase modulator of claim 6 wherein said variable optical delay line comprises a manual type, an electric type, or an equivalent type optical delay line constructed by cutting a length of the fiber a plurality of times.
  10. 如权利要求1所述的全光相位调制器,其中,所述基于黑磷材料的全光相位调制器还包括偏振控制器,所述偏振控制器包括第一端和第二端,所述第一端分别与所述调制臂和所述参考臂连接,所述第二端与所述第二耦合器连接,所述偏振控制器用于调节将要入射到所述第二耦合器的两路信号光的偏振态。The all-optical phase modulator of claim 1 wherein said black phosphor-based all-optical phase modulator further comprises a polarization controller, said polarization controller comprising a first end and a second end, said One end is respectively connected to the modulation arm and the reference arm, the second end is connected to the second coupler, and the polarization controller is used for adjusting two signal lights to be incident on the second coupler Polarization state.
  11. 如权利要求10所述的全光相位调制器,其中,所述偏振控制器包括扭曲型、挤压型或波片式偏振控制器。The all-optical phase modulator of claim 10 wherein said polarization controller comprises a twisted, extruded or wave plate polarization controller.
  12. 如权利要求1所述的全光相位调制器,其中,所述基于黑磷材料的全光相位调制器还包括分别与所述第二耦合器连接的第一输出端和第二输出端,经干涉后的信号光分别从所述第一输出端和所述第二输出端输出。The all-optical phase modulator of claim 1 wherein said black phosphor-based all-optical phase modulator further comprises a first output and a second output coupled to said second coupler, respectively The interfered signal light is output from the first output end and the second output end, respectively.
  13. 如权利要求12所述的全光相位调制器,其中,所述第一输出端和所述第二输出端为设置在所述第二耦合器上的两个端口,或者为与第二耦合器端口连接的独立的元件。The all-optical phase modulator of claim 12 wherein said first output and said second output are two ports disposed on said second coupler or are coupled to said second coupler A separate component to which the port is connected.
  14. 如权利要求1所述的全光相位调制器,其中,所述泵浦光源包括连续激光器、脉冲激光器或带有信息编码的调制激光器。The all-optical phase modulator of claim 1 wherein said pumping source comprises a continuous laser, a pulsed laser or a modulated laser with information encoding.
  15. 如权利要求14所述的全光相位调制器,其中,所述泵浦光源为980nm连续光源、980nm脉冲光源或980nm调制光源。The all-optical phase modulator of claim 14 wherein said pumping source is a 980 nm continuous source, a 980 nm pulse source or a 980 nm modulation source.
  16. 如权利要求1所述的全光相位调制器,其中,所述信号光源包括超连续谱光源、宽带ASE光源、窄带连续激光器或窄带DFB光源。The all-optical phase modulator of claim 1 wherein said signal source comprises a supercontinuum source, a broadband ASE source, a narrowband continuous laser or a narrowband DFB source.
  17. 如权利要求16所述的全光相位调制器,其中,所述信号光源为1550nm ASE光源或1550nm DFB光源。The all-optical phase modulator of claim 16 wherein said signal source is a 1550 nm ASE source or a 1550 nm DFB source.
  18. 如权利要求5所述的全光相位调制器,其中,所述基于黑磷材料的全光相位调制器还包括与所述第二波分复用器连接的泵浦光导出元件,所述泵浦光导出元件用于将所述第二波分复用器滤除掉的泵浦光从光路中导出。The all-optical phase modulator of claim 5 wherein said black phosphor-based all-optical phase modulator further comprises a pump light directing element coupled to said second wavelength division multiplexer, said pump The pump light deriving element is used to derive the pump light filtered by the second wavelength division multiplexer from the optical path.
  19. 如权利要求1所述的全光相位调制器,其中,所述黑磷-光纤复合结构的损耗为3-10dB。The all-optical phase modulator of claim 1 wherein said black phosphorus-fiber composite structure has a loss of 3-10 dB.
  20. 如权利要求1-19中任一项所述的全光相位调制器在全光相移器、全光强度调制器、全光信号加载器或负逻辑系统中的应用。Use of an all-optical phase modulator according to any of claims 1-19 in an all-optical phase shifter, all-optical intensity modulator, all-optical signal loader or negative logic system.
PCT/CN2018/101417 2018-03-30 2018-08-21 Black phosphorus material-based all-optical phase modulator and application thereof WO2019184203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810294899.0 2018-03-30
CN201810294899.0A CN108594479A (en) 2018-03-30 2018-03-30 It is a kind of based on the full optical phase modulator of black phosphorus material and its application

Publications (1)

Publication Number Publication Date
WO2019184203A1 true WO2019184203A1 (en) 2019-10-03

Family

ID=63625395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101417 WO2019184203A1 (en) 2018-03-30 2018-08-21 Black phosphorus material-based all-optical phase modulator and application thereof

Country Status (2)

Country Link
CN (1) CN108594479A (en)
WO (1) WO2019184203A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109877445B (en) * 2019-04-12 2020-01-21 北京理工大学 Method for efficiently processing curved surface structure of adjustable femtosecond laser non-diffraction beam
CN115200618A (en) * 2022-05-07 2022-10-18 香港理工大学深圳研究院 All-optical phase modulation system based on gas photothermal effect in micro-nano optical fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004411A1 (en) * 1999-12-07 2001-06-21 California Institute Of Technology Optical routing/switching based on control of waveguide-ring resonator coupling6/023
CN105388637A (en) * 2015-12-17 2016-03-09 东南大学 SOI-based MZI type 1*2 thermo-optical switch based on medium sedimentary type surface plasma waveguides
CN105589195A (en) * 2016-03-16 2016-05-18 电子科技大学 All-optical modulator apparatus based on black phosphorus
CN106226970A (en) * 2016-08-09 2016-12-14 深圳大学 A kind of full photo threshold device based on two-dimensional material wavelength convert function and its preparation method and application
CN107104351A (en) * 2017-05-23 2017-08-29 西北大学 A kind of black phosphorus saturable absorber and the laser based on black phosphorus saturable absorber
CN107229138A (en) * 2017-07-17 2017-10-03 上海交通大学 Full light opens the light device and its operating method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025436A1 (en) * 2006-05-31 2007-12-20 Symeo Gmbh Method and device for generating frequency and / or phase modulated signals
CN102571144B (en) * 2012-01-11 2013-11-06 中国科学院半导体研究所 Optical-carrier ultra wideband radio signal generator with tunable frequency band
CN103023531A (en) * 2012-11-22 2013-04-03 湖南大学 Full-gloss ultra wide band pulse generation method based on semiconductor light amplifier and light time delay line
US10382159B2 (en) * 2015-04-27 2019-08-13 Mitsubishi Electric Corporation Dummy-light generating device, optical transmission apparatus, and dummy-light generating method
CN106366121B (en) * 2015-12-18 2017-07-14 中国科学院深圳先进技术研究院 Through ligand modified black phosphorus of titanium and preparation method and application
CN105634540B (en) * 2016-01-12 2018-12-18 上海交通大学 Radio frequency system applied to co-channel full duplex system simultaneously
CN106185848B (en) * 2016-07-13 2017-12-01 深圳先进技术研究院 A kind of black phosphorus of Metal Ions Modification and preparation method and application
CN106348263A (en) * 2016-09-28 2017-01-25 成都新柯力化工科技有限公司 Multilayer stable black phosphorene and preparation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004411A1 (en) * 1999-12-07 2001-06-21 California Institute Of Technology Optical routing/switching based on control of waveguide-ring resonator coupling6/023
CN105388637A (en) * 2015-12-17 2016-03-09 东南大学 SOI-based MZI type 1*2 thermo-optical switch based on medium sedimentary type surface plasma waveguides
CN105589195A (en) * 2016-03-16 2016-05-18 电子科技大学 All-optical modulator apparatus based on black phosphorus
CN106226970A (en) * 2016-08-09 2016-12-14 深圳大学 A kind of full photo threshold device based on two-dimensional material wavelength convert function and its preparation method and application
CN107104351A (en) * 2017-05-23 2017-08-29 西北大学 A kind of black phosphorus saturable absorber and the laser based on black phosphorus saturable absorber
CN107229138A (en) * 2017-07-17 2017-10-03 上海交通大学 Full light opens the light device and its operating method

Also Published As

Publication number Publication date
CN108594479A (en) 2018-09-28

Similar Documents

Publication Publication Date Title
US9568801B2 (en) Optical modulator
CN104977733B (en) Silicon-based nonreciprocal device structure and electric control nonreciprocal implementation method
CN101794053B (en) Full-gloss logic XNOR gate structure based on micro-ring resonator structure
US20080199124A1 (en) OPTICAL DEVICE FOR GENERATING AND MODULATING THz AND OTHER HIGH FREQUENCY SIGNALS
WO2019184203A1 (en) Black phosphorus material-based all-optical phase modulator and application thereof
CN105372851A (en) Optical fiber absorption enhanced electro-optical modulator based on graphene/molybdenum disulfide heterojunction
CN108717237A (en) A kind of modulator of the multi-layer graphene multi output mode based on D type twin-core fibers
Hossain et al. Modelling of silicon micro-ring resonator based all-optical precoder circuit for differential quadrature phase-shift keying
CN112596155B (en) Low insertion loss end face coupler based on LNOI material
CN107102454A (en) Unrelated absorption-type electrooptic modulator is polarized based on tin indium oxide optical-fiber type
CN103439806A (en) Reflective thermo-optic variable optical attenuator
CN211669401U (en) Active polarization rotator realized based on mixed surface plasma groove waveguide
CN101261418B (en) Optical wavelength converter
CN110784194B (en) All-optical D trigger based on single micro-ring resonator optical switch
CN104583856B (en) A kind of optical modulator and optical signal launcher
CN108459449B (en) All-optical modulator based on graphene optical fiber and modulation method thereof
CN108627919B (en) Polarization insensitive silicon-based optical switch
CN111239896A (en) Active polarization rotator realized based on mixed surface plasma groove waveguide
KR102672675B1 (en) All-optical switch based on fabry-perot interferometer and method of modulating signal
CN105449494A (en) Internal modulation terahertz source based on waveguide structure and internal modulation method thereof
JPWO2004086126A1 (en) Waveguide type optical modulator
JP2008009314A (en) Optical waveguide element, optical modulator, and optical communication device
CN115441300A (en) Random fiber laser based on random phase shift grating
Choudhary et al. Design and analysis of an optical one to two data distributor using plasmonic waveguide-based Mach–Zehnder interferometers
JP6915452B2 (en) Optical logic elements and optical logic circuits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912851

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18912851

Country of ref document: EP

Kind code of ref document: A1