WO2019184177A1 - 一种便携式热电势检测仪 - Google Patents

一种便携式热电势检测仪 Download PDF

Info

Publication number
WO2019184177A1
WO2019184177A1 PCT/CN2018/098453 CN2018098453W WO2019184177A1 WO 2019184177 A1 WO2019184177 A1 WO 2019184177A1 CN 2018098453 W CN2018098453 W CN 2018098453W WO 2019184177 A1 WO2019184177 A1 WO 2019184177A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
thermoelectric potential
calibration
probe assembly
sample
Prior art date
Application number
PCT/CN2018/098453
Other languages
English (en)
French (fr)
Inventor
薛飞
史芳杰
杨宇盟
遆文新
杨广宇
黄飞
Original Assignee
苏州热工研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州热工研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 苏州热工研究院有限公司
Priority to US16/462,574 priority Critical patent/US11067615B2/en
Priority to JP2019512001A priority patent/JP6731544B2/ja
Priority to EP18847184.1A priority patent/EP3567386B1/en
Publication of WO2019184177A1 publication Critical patent/WO2019184177A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential

Definitions

  • the invention relates to the field of non-destructive testing of materials, in particular to a portable thermoelectric potential detector used in the field of nuclear power .
  • thermoelectric potential method can be used to evaluate the material embrittlement caused by neutron irradiation and heat aging in the nuclear power plant, so as to provide reference for the aging management of the power station.
  • thermoelectric potential The measurement of metal thermoelectric potential is based on Seebeck effect. Seebeck The effect is in two metals A , B Or a circuit composed of different parts of the same metal, because the temperature of the two contact points is different, a current is generated, which is called a temperature difference current, and a corresponding potential difference ⁇ V AB .
  • the potential difference ⁇ V AB Proportional to temperature difference ⁇ T Ratio S AB ⁇ V AB / ⁇ T It is a function that depends on the temperature difference and the two materials, and is completely independent of the shape of the material, the connection method, etc. and has linear superposition. therefore S AB Is a basic property of materials, called material Seebeck Coefficient, also known as thermoelectric potential (TEP) .
  • TEP thermoelectric potential
  • a metal thermoelectric potential detecting instrument for use in the field is disclosed, which is composed of a measuring device and a control device.
  • the measuring device is provided with a X Axis direction and Z
  • the first probe assembly that moves in the axial direction can Z
  • the control device is mainly used to control the temperature and displacement of the probe.
  • the device has a certain level of portability and automation, but has the following problems: 1
  • the equipment is controlled by electric sliding table and ball screw structure.
  • the structure is complex, the volume is large, and it is not convenient for on-site use; 2 No probe cooling device, the probe needs to be naturally cooled during actual use, and the speed is slow, which affects the measurement efficiency; 3
  • the force sensor in the probe is installed in the instrument case together with the electric slide table, and the force calibration cannot be performed without disassembly. 4
  • the equipment temperature and voltage measurement uses a commercial nanovoltmeter, which is bulky and inconvenient to carry.
  • a metal thermoelectric force measuring instrument which controls a first probe assembly and a second probe assembly to move toward a metal sample to be tested and close the metal sample to be tested by rotating a screw handle of the feed mechanism. It can be seen that the metal thermoelectric force measuring instrument drives the probe to move by a manual method, and has a complicated structure and a large volume.
  • thermoelectric potential detector In view of at least one of the above problems, it is necessary to propose an improved portable thermoelectric potential detector .
  • an object of the present invention is to provide a portable thermoelectric potential detector which is small in size and easy to carry .
  • thermoelectric potential detector comprising a test fixture for fixing a sample to be tested, a probe assembly unit for detecting a test sample, and a voltage signal for controlling the probe assembly for detecting and collecting the probe assembly Acquisition control unit,
  • the probe assembly unit includes two probe assemblies, each of which includes a probe for loading on a surface of a sample to be tested and a linear motor for driving the probe to move and load on a surface of the sample to be tested. An output end of the linear motor is connected to the probe;
  • the acquisition control unit is electrically connected to the linear motor, and is further configured to send, to the linear motor, a first control signal for controlling a moving distance and a loading force of the linear motor.
  • the acquisition control unit comprises FPGA microprocessor.
  • the probe assembly further includes a heater for heating the probe and a temperature sensor for measuring the temperature of the probe,
  • the acquisition control unit is electrically connected to the temperature sensor, and is further configured to receive temperature information detected by the temperature sensor, and send a second control signal for adjusting the heating temperature to the heater according to the temperature information. ;
  • the heater, and the acquisition control unit are electrically connected for adjusting a heating temperature in response to the second control signal.
  • the temperature sensor is a platinum electrode embedded within the probe.
  • the probe assembly unit includes a component box, a motor mount fixedly disposed in the component box, and linear motors of the two probe assemblies are respectively disposed on the motor mount, the two The minimum spacing of the probes of the probe assemblies is 40mm .
  • the test fixture includes a bench clamp for securing a small diameter specimen and a pipeline clamp for securing a large diameter specimen;
  • the table fixture includes a first bracket, a pair of connectors disposed on the first bracket, the component cartridge being detachably and slidably coupled between the pair of connectors;
  • the duct type clamp includes a second bracket, a pair of connecting members disposed on the second bracket, and the assembly box is detachably and slidably coupled between the pair of connecting members.
  • the table fixture further includes a support block fixedly disposed on the first bracket, and the support block is provided with a groove for placing a sample to be tested;
  • the duct type fixture includes a fixing device for fixing the sample to be tested under the second bracket, the second bracket includes a verticality adjusting plate and a bottom plate, and the verticality adjusting plate is provided with a connecting member.
  • the fixing device is connected to the bottom plate, and the verticality adjusting plate and the bottom plate are movably connected by a plurality of mutually spaced screws.
  • the portable thermoelectric potential detector further includes a thermoelectric potential calibration for the probe assembly and / Or a pressure calibrated calibration unit, the probe assembly being detachably coupled to the calibration unit, the probe assembly being in a calibrated state when the probe assembly is coupled to the calibration unit.
  • the calibration unit includes a force calibration component and / Or a thermoelectricity calibration assembly, the force calibration assembly comprising a force sensor having a plug connectable to a socket at the bottom of the probe assembly; the thermoelectric potential calibration assembly comprising a standard copper rod of the same material as the probe .
  • the portable thermoelectric potential detector further includes a probe cooling unit, the probe cooling unit including a cooling module, the probe assembly being detachably coupled to the probe cooling unit, when the probe assembly is coupled to When the probe cools the unit, the probe assembly is in a cooled state .
  • the present invention adopts the above technical solutions, and has the following advantages compared with the prior art:
  • the linear motor drives the probe to move and is loaded on the sample to be tested.
  • the loading current of the linear motor By adjusting the loading current of the linear motor, the pressure of the probe on the sample to be tested can be adjusted, so that the driving structure for driving the probe assembly is simplified and reduced. Small size and easy to carry .
  • Figure 1 Is a structural block diagram of a portable thermoelectric potential detector according to the present invention
  • Figure 2a a schematic view of a probe assembly unit in accordance with the present invention
  • Figure 2b a cross-sectional view of a probe according to the present invention
  • Figure 3a a front view of a table clamp according to the present invention
  • Figure 3b a side view of a table clamp according to the present invention.
  • Figure 4a a front view of a ducted fixture according to the present invention
  • Figure 4b a side view of a ducted fixture according to the present invention
  • Figure 4c a top view of a ducted fixture according to the present invention.
  • Figure 5a a cross-sectional view of a force calibration assembly in accordance with the present invention
  • Figure 5b a top view of a force calibration assembly in accordance with the present invention.
  • FIG. 6a a front view of a thermoelectric potential calibration assembly in accordance with the present invention
  • FIG. 6b a side view of a thermoelectric potential calibration assembly in accordance with the present invention.
  • Figure 7a a cross-sectional view of a probe cooling unit in accordance with the present invention.
  • Figure 7b A top view of a probe cooling unit in accordance with the present invention.
  • a computer 2, collection control unit; 3, the probe assembly unit; 4, the test fixture; 5, calibration unit; 6, the probe cooling unit; 31, terminals; 32, assembly of the cartridge; 33, trapezoidal guide rails; 34 , motor mount; 35 , linear motor; 36 , probe bracket; 37 , heater; 38 , probe; 39 , windproof cap; 310 , connecting pin; 311 , platinum resistance; 312 , connecting socket; 41 , the first bracket; 411, connecting member; 412, connecting member; 42, locking handle; 421, locking portion; 422, hole; 43, support block; 44, test sample; 45, a second holder; 451, connecting member; 452, connector; 453, vertical adjustment plate; 454, bottom plate; 46, locking handle; 47, screw; 48, strap; 49, test pipe; 51, plugs; 52, force sensors; 53, a housing; 54, Standard copper rod; 55 , support; 61 , plug; 62 , cooling module; 63 , housing .
  • This embodiment provides a portable thermoelectric potential detector for use in metal components in a nuclear power plant, such as a main pipeline, RPV Metal bolts for tightening, valve stems, etc., and metal thermoelectric potential testing at the nuclear power site to assess material embrittlement due to neutron radiation and heat aging.
  • Reference map 1 As shown, portable thermoelectric detectors, including computers 1 Acquisition control unit 2 Probe assembly unit 3 ,Test Fixture 4 Calibration unit 5 And probe cooling unit 6 .
  • the computer 1 Equipped with test software; test fixture 4 Including at least one of a table clamp and a pipe clamp, the present embodiment preferably includes two types of a table clamp and a pipe clamp to enable fixing of a small diameter member and a large diameter member at the nuclear power site.
  • the portable thermoelectric detector has three operating states, a detection state, a calibration state, and a cooling state.
  • Probe assembly unit when in working condition 3 Loaded on the sample to be tested, collecting voltage signals; in the calibration state, the probe component unit 3 And calibration unit 5 Connected to perform thermoelectric potential calibration and pressure calibration; in the cooled state, the probe assembly unit 3 And probe cooling unit 6 Connected to make the probe cool down quickly.
  • Probe assembly unit 3 including two probe assemblies of identical construction.
  • Reference map 2a with 2b Probe assembly unit 3 also includes a component box 32 Fixed setting in the component box 32 Motor mount inside 34 , the two probe assemblies are movably disposed in the component box 32 Inside.
  • Each probe assembly includes a probe for loading the surface of the sample to be tested 38 And for driving the probe 38 a linear motor that moves and loads the surface of the sample to be tested 35 ,Linear Motor 35 Output and probe 38 Connected, said linear motor 35 Specifically, it is a high-precision micro-stepping linear motor, which is a transmission device that directly converts electric energy into linear motion mechanical energy without any intermediate conversion mechanism.
  • Linear motor with two probe assemblies 35 Arranged at the left and right intervals in the motor mount 34 Up and make the probes of the two probe assemblies 38 Minimum spacing is 40mm .
  • Acquisition control unit 2 And two linear motors as described 35 Phase connection .
  • the component box 32 Top with two linear motors 35 Connect the connected terminals separately 31 , the terminal block 31 Acquisition control unit via cable connection 2 .
  • Acquisition control unit 2 For use with two linear motors 35 Synchronous transmission for controlling linear motors 35 The first control signal of the moving distance and the loading force, specifically by adjusting the linear motor 35 Load current to control linear motor 35 Moving distance and load current size; linear motor 35 Driving the probe in response to the first control signal 38 Move the corresponding distance and load it on the sample to be tested with the corresponding pressure. That is, the acquisition control unit 2 By adjusting the linear motor 35 Record current with control probe 38 The function of the pressure recorded on the sample to be tested.
  • Probe 38 Specifically for the copper probe, the probe assembly also includes a probe holder 36 Heater 37 And windproof cap 39 .
  • Probe holder 36 Made of polytetrafluoroethylene, it acts as insulation and insulation.
  • the upper end of the Teflon bracket passes the connecting pin 310 And linear motor 35 Fixed connection of the protruding end; probe holder 36 Lower end fixed connection heater 37 And windproof cap 39 .
  • Heater 37 Specifically ceramic heater 37 , copper probe is set in ceramic heater 37 Ceramic heater 37 Used to heat copper probes.
  • Wind cap 39 It is a corrugated silicone rubber windproof thermal cap, which is placed around the copper probe to reduce the environment to the probe during the measurement process. 38 Impact.
  • Probe assembly unit 3 It also includes a temperature sensor for measuring the temperature of the copper probe. Heater 37 And the temperature sensor passes through the terminal 31 Acquisition control unit 2 They are connected separately. Acquisition control unit 2 , also used to receive temperature information measured by the temperature sensor and to the heater according to the temperature information 37 Sending a second control signal for adjusting the heating temperature; the heater 37 And for adjusting the heating temperature in response to the second control signal.
  • the temperature sensor is specifically a platinum electrode embedded in a copper probe 311 .
  • Component box 32 A guide rail is arranged on the rail, and the guide rail is specifically a trapezoidal guide rail 33 For use with test fixtures 4 Connected in a sliding fit. Component box 32 Also used for force calibration components and probe cooling units 6 Phase-connected connector jack 312 .
  • Bench fixture includes first bracket 41 Set in the first bracket 41 Upper support block 43 .
  • First bracket 41 There is a pair of connectors on the top 411 , 412 , the connector 411 , 412 Interval and relative setting, this pair of connectors 411 , 412 Formed between the unit for accommodating and fixing the probe assembly 3 Space, probe assembly unit 3
  • Component box 32 Removably and slidably coupled to a pair of connectors 411 , 412 between.
  • the connector 411 , 412 Specifically with the component box 32 Trapezoidal guide 33 A sliding-fitted dovetail slot assembly.
  • the table fixture also includes a kit for assembly 32 a locking locking mechanism, in particular, the locking mechanism comprises a first bracket 41 And one of the connectors 412 Upper and trapezoidal guide rails 33 Removably attached locking handle 42 , another connector 411 And the first bracket 41 For a fixed connection.
  • the right connector 412 And right trapezoidal guide 33 Separately opened and locked handles 42 Locking hole 422 , locking handle 42 Locking department 421 Through the right connector 411 , 412 Hole on 422 Then inserted in the right trapezoidal guide rail 33 Hole 422 Component box 32 locking.
  • Support block 43 Preferably, it is a pair and is arranged along the left and right sides, and the support block 43 Set on the connector 411 , 412 Below the bottom to ensure that it is placed on the support block during inspection 43 Test sample 44 Can be located in a pair of probes 38 Just below. Specifically, the support block 43 Open and set to be tested 44 Cooperate to place the sample to be tested 44 Groove, to be tested 44 Placed in the groove to be fixed, the shape of the groove is preferably as shown in the figure 3b Shown V shape.
  • Probe unit 3 Component box 32 Insert a pair of connectors from top to bottom 411 , 412 Trapezoidal guide 33 And connectors 411 , 412 Interacting to allow component boxes 32 Slide down to adjust the probe 38 And samples to be tested 44 Between the distances, after adjusting the position, tighten the locking handle 42 , the probe assembly unit can be fixed 3 .
  • Pipe clamp includes second bracket 45 For the pipeline to be tested 49 Fixed to the second bracket 45 Fixing device below. Second bracket 45 There are a pair of connectors on the top 451 , 452 , the connector 451 , 452 Interval and relative setting, this pair of connectors 451 , 452 Formed between the unit for accommodating and fixing the probe assembly 3 Space, probe assembly unit 3 Component box 32 Removably and slidably coupled to a pair of connectors 451 , 452 between.
  • the connector 451 , 452 Specifically with the component box 32 Trapezoidal guide 33 A sliding-fitted dovetail slot assembly.
  • the table fixture also includes a kit for assembly 32 a locking locking mechanism, in particular, the locking mechanism comprises a second bracket 45 And one of the connectors 452 Upper and trapezoidal guide rails 33 Removably attached locking handle 46 , another connector 451 And the second bracket 45 For a fixed connection.
  • the fixing device specifically includes a strap 48 , the pipeline to be tested 49 Tied to the second bracket 45 on.
  • Probe unit 3 Component box 32 Insert a pair of connectors from top to bottom 451 , 452 Trapezoidal guide 33 And connectors 451 , 452 Interacting to allow component boxes 32 Slide down to adjust the probe 38 With the pipeline to be tested 49 Between the distances, after adjusting the position, tighten the locking handle 46 , the probe assembly unit can be fixed 3 .
  • the second bracket 45 Including verticality adjustment board 453 And bottom plate 454 , the pair of connectors described 451 , 452 Set on the vertical adjustment plate 453 Upper, pipeline to be tested 49 Fixed to the bottom plate 454 on.
  • Verticality adjustment board 453 And bottom plate 454 Through multiple spaced screws 47 Active connection, by adjusting each screw separately 47 Located in the adjustment vertical adjustment plate 453 And bottom plate 454 The height between the floors can be adjusted 454 Relative verticality adjustment plate 453 Angle; the multiple screws 47 Preferably, they are respectively located at the four apex portions of the two plates.
  • the verticality adjustment board 453 And bottom plate 454 Separately opened for the probe 38 Pass through to contact the through hole of the sample to be tested below.
  • Bottom plate 454 Can also be used for straps 48 Connected slots.
  • the calibration unit 5 Providing a probe to the probe assembly in a calibrated state 38
  • Two functions of pressure calibration and thermoelectric calibration correspondingly, calibration unit 5 It includes both force calibration components and thermoelectric calibration components.
  • Force calibration component is designed to read the probe 38 Loading force to interpret the accuracy of the loading force; the thermoelectric calibration component is intended to determine the probe 38 Is the thermoelectric potential measurement accurate?
  • the force calibration component includes a read probe 38 Loading force Force sensor 52 .
  • Force sensor 52 Specifically set in a shell 53 Inside, outer casing 53 With unit for probe assembly 3 Connected plug 51 , the plug 51 Specific and component box 32 Connection socket 312 Match the connection.
  • Force calibration components use indirect calibration, first use external instrument to force sensor 52 Calibrate and then plug 51 Connect to the component box 32 Connection socket 312 , set the linear motor of the probe assembly 35 Load current 38 Loading force, reading force sensor 52 Display value, with set probe 38 Loading force Compare and judge the accuracy of the loading force.
  • the thermoelectric calibration component includes a standard copper rod 54 , the standard copper rod 54 Same material as copper probes.
  • Standard copper rod 54 Specifically set in a support 55 on. Probe component unit when performing thermoelectric calibration 3 Mounted on the above table fixture, standard copper rod 54 Placed on the support block 43 of V Inside the groove, make the probe 38 Extending with standard copper rods 54 Contact, measured is the thermoelectric potential in the system, the thermoelectric potential value should be a stable value, the thermoelectric potential calibration component is measured before each measurement of the sample to determine whether the thermoelectric potential measurement is stable.
  • Probe cooling unit 6 Including housing 63 Set in the housing 63
  • Two cooling modules inside 62 Set in the housing 63 Plug on 61 two cooling modules 62 Corresponding to two probes 38 , each cooling module 62
  • the upper surfaces are respectively disposed on the grooves matching the lower portion of the copper probe.
  • plug 61 For connecting the probe assembly unit 3 , specific and component box 32 Connection socket 312 Match the connection. Plug in the cool state 61 Insert component box 32 Connection socket 312 To make the probe 38 Insert the corresponding cooling module 62
  • the groove is fully fitted and given to the cooling module 62 Power supply, make the probe 38 Quickly cool down.
  • thermoelectric potential detector The thermoelectric potential detector is in a calibrated state, and the force calibration and the thermoelectric potential calibration are performed; S101 , perform force calibration, and probe component unit 3 Component box 32 Connection socket 312 And force calibration component plug 51 Connection through the acquisition control unit 2 Set two linear motors 35 Load current to make the probe 38 Loaded into the force sensor with the set loading force 52 Upper, read force sensor 52 Display value to determine whether the loading force is accurate; S102 , performing thermoelectric potential calibration, standard copper rods 54 Support block placed on a table fixture 43 On, make the probe 38 Extend loading to standard copper rod 54 Upper, measuring the thermoelectric potential value, determining whether it is a stable value, to determine whether the thermoelectric potential measurement is stable; S2 The thermoelectric potential detector is in a measuring state, and the sample to be tested is fixed on a desktop fixture or a pipeline fixture, and the thermoelectric potential of the sample to be tested is measured; S3 , the thermoelectric potential detector
  • step S2 Specifically include: S21 , measuring the thermoelectric potential of small diameter components at the nuclear power site; or, S22 Thermoelectric potential measurement of large diameter components at the nuclear power site.
  • Thermoelectric potential detection of a small-diameter component (such as a valve stem) at a nuclear power site using the portable thermoelectric potential detector of the present invention mainly includes the following steps: S211 Place the sample to be tested on the support block of the desktop fixture 43 of V On the groove S212 Probe assembly unit 3 Mounted in the dovetail slot assembly of the table fixture, adjust the probe assembly unit 3 Tighten the locking handle with the distance from the sample to be tested; S213 Connect the acquisition control unit 2 Probe unit 3 And computer 1 Cable between S214 Open the computer 1 , start the test software and start the test.
  • Thermoelectric potential detection of large-diameter components (such as pipes) on nuclear power sites using the portable thermoelectric potential detector of the present invention mainly includes the following steps: S221 Install the pipe clamp on the outer wall of the pipe and pass the strap 48 Tied up firmly; S222 Probe assembly unit 3 Mounted in the dovetail slot assembly of the pipe clamp, adjust the probe assembly unit 3 Tighten the locking handle with the distance from the outer surface of the pipe; S223 Connect the acquisition control unit 2 Probe unit 3 And computer 1 Cable between S224 Open the computer 1 , start the test software and start the test.
  • the portable thermoelectric potential detector provided by the invention has the following advantages: 1 The modular design of each unit, each unit is small in size and easy to carry; 2 The functions of thermoelectric potential test, thermoelectric potential calibration, probe pressure calibration and probe cooling can be realized by different combinations of units; 3 There are two types of fixtures available for different sizes of specimen inspection.

Abstract

本发明公开了一种便携式热电势检测仪,其体积小、便于携带。一种便携式热电势检测仪,包括用于将待测试样固定的测试夹具、用于对测试样件进行检测的探头组件单元以及用于控制所述探头组件进行检测和采集探头组件的电压信号的采集控制单元,所述探头组件单元包括两个探头组件,每个所述探头组件分别包括用于加载在待测试样表面的探头以及用于驱动所述探头移动并加载在待测试样表面的直线电机,所述直线电机的输出端和所述探头相连;所述采集控制单元,分别和所述直线电机相电连,还用于向所述直线电机发送用于控制直线电机移动距离及加载力的第一控制信号。

Description

一种便携式热电势检测仪 技术领域
本发明涉及材料无损检测领域,特别涉及一种核电现场使用的便携式热电势检测仪
背景技术
核电厂中的关键设备用钢在长期运行后,由于热老化、中子辐照等老化效应的作用,材料的力学性能会发生改变。如回路主管道所用的铸造奥氏体不锈钢、紧固用低合金高强度钢螺栓、阀门阀杆用沉淀硬化不锈钢等在压水堆环境温度下长期服役均会发生强度硬度的上升及塑性韧性地下降,即热老化,导致材料性能降级,存在安全隐患;此外,反应堆压力容器( RPV )在服役过程中受中子辐照发生脆化是其最主要的老化机理之一,也是限制电厂安全运行的因素之一。
和主管道都是核电厂的重要组成部分,从压力边界完整性考虑,不适合对其做破坏性检测,因此对其性能的评估一般都采用计算和模拟方法,缺乏现场直接检测数据和方法。基于已有现场数据及实验室模拟数据的无损检测研究受到了广泛关注。金属材料力学性能的变化 ( 老化劣化 ) 通常伴随着电学性能 ( 热电势 ) 的变化,因此,通过测量服役后材料的热电势的变化可以间接表征材料的力学性能,完成对材料的无损检测。利用热电势法可以对核电厂中由于中子辐照和热老化造成的材料脆化作出实时评估,从而为电站的老化管理提供参考。
金属热电势的测量基于 Seebeck 效应。 Seebeck 效应是在两种金属 A B 或同一种金属不同部位组成的回路中,由于两个接触点温度不同,会产生电流,称之为温差电流,同时有一相应的电位差Δ V AB 。实验发现,电位差Δ V AB 正比于温差Δ T ,其比值 S AB= Δ V AB/ Δ T 是一个取决于温度差和两种材料的函数,与材料的形状,连接方式等完全无关且具有线性可叠加性。因此 S AB 是材料的一个基本性质,称之为材料的 Seebeck 系数,也就是通常所说的热电势 (TEP)
中国专利 CN201510546773 中公开了一种现场使用的金属热电势检测仪器,该仪器由测量装置和控制装置组成。测量装置内设置有能够沿 X 轴方向和 Z 轴方向移动的第一探头组件、能够沿 Z 轴方向移动的第二探头组件和相应的驱动机构,控制装置主要用于控制探头的温度和位移。该装置具有一定的便携性和自动化水平,但有以下问题: 1 、设备采用电动滑台和滚珠丝杠结构控制 X 轴和 Z 轴方向的进给,结构复杂,体积较大,不便于现场使用; 2 、无探头冷却装置,实际使用过程中探头需自然冷却,速度较慢,影响测量效率; 3 、探头中的力传感器与电动滑台一起安装在仪器箱内,在不进行拆卸的情况下无法进行力校准。 4 、设备温度和电压测量使用商业纳伏表,体积较大,携带不便。
还如中国专利 CN10699619A 公开的一种金属热电势测量仪器,其通过转动进给机构的螺旋手柄,控制第一探头组件和第二探头组件向待测金属试样移动并贴紧待测金属试样。可知,该金属热电势测量仪器采用手动的方式驱动探头移动,结构复杂,体积较大。
考虑到上述问题中的至少一个方面,有必要提出一种改进的便携式热电势检测仪
技术问题
针对上述问题,本发明的目的是提供一种便携式热电势检测仪,其体积小、便于携带
技术解决方案
为达到上述目的,本发明采用如下技术方案:
一种便携式热电势检测仪,包括用于将待测试样固定的测试夹具、用于对测试样件进行检测的探头组件单元以及用于控制所述探头组件进行检测和采集探头组件的电压信号的采集控制单元,
所述探头组件单元包括两个探头组件,每个所述探头组件分别包括用于加载在待测试样表面的探头以及用于驱动所述探头移动并加载在待测试样表面的直线电机,所述直线电机的输出端和所述探头相连;
所述采集控制单元,分别和所述直线电机相电连,还用于向所述直线电机发送用于控制直线电机移动距离及加载力的第一控制信号。
在一些实施例中,所述采集控制单元包括 FPGA 微处理器。
在一些实施例中,所述探头组件还包括用于对所述探头加热的加热器以及用于测量探头温度的温度传感器,
所述采集控制单元,和所述温度传感器相电连,还用于接收所述温度传感器检测的温度信息,并根据所述温度信息向所述加热器发出用于调节加热温度的第二控制信号;
所述加热器,和所述采集控制单元向电连,用于响应于所述第二控制信号而调节加热温度。
在一些实施例中,所述温度传感器为嵌设于所述探头内的铂电极。
在一些实施例中,所述探头组件单元包括组件盒、固定设置于所述组件盒内的电机安装座,所述两个探头组件的直线电机分别设于所述电机安装座上,所述两个探头组件的探头的最小间距为 40mm
在一些实施例中,所述测试夹具包括用于固定小直径试样的台式夹具和用于固定大直径试样的管道式夹具;
所述台式夹具包括第一支架、设置于所述第一支架上的一对连接件,所述组件盒可拆卸并可滑动地连接所述一对连接件之间;
所述管道式夹具包括第二支架、设置于所述第二支架上的一对连接件,所述组件盒可拆卸并可滑动地连接所述一对连接件之间。
在一些实施例中,所述台式夹具还包括固定设置于所述第一支架的支撑块,所述支撑块上开设有用于放置待测试样的凹槽;
/ 或,所述管道式夹具包括用于将待测试样固定在第二支架下方的固定装置,所述第二支架包括垂直度调整板和底板,所述垂直度调整板上设有连接件,所述固定装置连接于底板上,所述垂直度调整板和底板通过多个相互间隔的螺钉活动连接。
在一些实施例中,所述便携式热电势检测仪还包括用于对探头组件进行热电势校准和 / 或压力校准的校准单元,所述探头组件与所述校准单元可拆卸地连接,当所述探头组件连接于所述校准单元时,所述探头组件处于校准状态。
在一些实施例中,所述校准单元包括力校准组件和 / 或热电势校准组件,所述力校准组件包括力传感器,所述力传感器具有可与所述探头组件底部的插口相连的插头;所述热电势校准组件包括材质与所述探头相同的标准铜棒。
在一些实施例中,所述便携式热电势检测仪还包括探头冷却单元,所述探头冷却单元包括冷却模块,所述探头组件与所述探头冷却单元可拆卸地连接,当所述探头组件连接于所述探头冷却单元时,所述探头组件处于冷却状态
有益效果
本发明采用以上技术方案,相比现有技术具有如下优点:
通过直线电机驱动探头移动并加载在待测试样上,通过调节直线电机的加载电流大小即可调节探头加载在待测试样上的压力,使得用于来驱动探头组件的驱动结构简化,减小了体积,便于携带
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
1 为根据本发明的一种便携式热电势检测仪的结构框图;
2a 为根据本发明的一种探头组件单元的示意图;
2b 为根据本发明的一种探头的剖视图;
3a 为根据本发明的一种台式夹具的主视图;
3b 为根据本发明的一种台式夹具的侧视图;
4a 为根据本发明的一种管道式夹具的主视图;
4b 为根据本发明的一种管道式夹具的侧视图;
4c 为根据本发明的一种管道式夹具的俯视图;
5a 为根据本发明的一种力校准组件的剖视图;
5b 为根据本发明的一种力校准组件的俯视图;
6a 为根据本发明的一种热电势校准组件的主视图;
6b 为根据本发明的一种热电势校准组件的侧视图;
7a 为根据本发明的一种探头冷却单元的剖视图;
7b 为根据本发明的一种探头冷却单元的俯视图。
其中, 1 、计算机; 2 、采集控制单元; 3 、探头组件单元; 4 、测试夹具; 5 、校准单元; 6 、探头冷却单元; 31 、接线端子; 32 、组件盒; 33 、梯形导轨; 34 、电机安装座; 35 、直线电机; 36 、探头支架; 37 、加热器; 38 、探头; 39 、防风帽; 310 、连接销; 311 、铂电阻; 312 、连接插口; 41 、第一支架; 411 、连接件; 412 、连接件; 42 、锁紧手柄; 421 、锁定部; 422 、孔; 43 、支撑块; 44 、待测试样; 45 、第二支架; 451 、连接件; 452 、连接件; 453 、垂直度调整板; 454 、底板; 46 、锁紧手柄; 47 、螺钉; 48 、绑带; 49 、待测管道; 51 、插头; 52 、力传感器; 53 、外壳; 54 、标准铜棒; 55 、支座; 61 、插头; 62 、冷却模块; 63 、壳体
本发明的实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
本实施例提供一种便携式热电势检测仪,其用于对核电厂中的金属部件,如主管道、 RPV 、紧固用钢螺栓、阀门阀杆等,在核电现场进行金属热电势检测,以评估由于中子辐射和热老化造成的材料脆化。参照图 1 所示,便携式热电势检测仪,包括计算机 1 、采集控制单元 2 、探头组件单元 3 、测试夹具 4 、校准单元 5 和探头冷却单元 6 。其中,计算机 1 上搭载测试软件;测试夹具 4 包括台式夹具、管道式夹具中的至少一种,本实施例中优选包括台式夹具和管道式夹具两种,以能够对核电现场的小直径部件和大直径部件都可进行固定。该便携式热电势检测仪具有三种工作状态,即检测状态、校准状态和冷却状态。在工作状态时,探头组件单元 3 加载在待测试样上,采集电压信号;在校准状态时,探头组件单元 3 和校准单元 5 相接,进行热电势校准和压力校准;在冷却状态时,探头组件单元 3 和探头冷却单元 6 相接,使探头快速降温。
采集控制单元 2 ,具体采用 FPGA 微处理器,基于 FPGA 技术开发,能够完成探头组件的压力和温度控制、探头温度和电压数据采集,其电源较小,因而减小了检测仪整机的体积。
探头组件单元 3 ,包括两个结构完全相同的探头组件。参照图 2a 2b 所示,探头组件单元 3 还包括组件盒 32 、固定设置于组件盒 32 内的电机安装座 34 ,两个所述的探头组件可移动地设置于组件盒 32 内。每个探头组件分别包括用于加载在待测试样表面的探头 38 以及用于驱动探头 38 移动并加载在待测试样表面的直线电机 35 ,直线电机 35 的输出端和探头 38 相连,所述的直线电机 35 具体为高精度微型步进直线电机,是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。两个探头组件的直线电机 35 左右间隔地设置在电机安装座 34 上,并使得两个探头组件的探头 38 的最小间距为 40mm
所述的采集控制单元 2 和两个所述的直线电机 35 相电连 。具体地,组件盒 32 的顶部具有与两个直线电机 35 分别导通连接的接线端子 31 ,该接线端子 31 通过线缆连接采集控制单元 2 。采集控制单元 2 ,用于向两个直线电机 35 同步发送用于控制直线电机 35 移动距离及加载力的第一控制信号,具体是通过调节直线电机 35 加载电流大小来控制直线电机 35 移动距离和加载电流大小;直线电机 35 ,响应于第一控制信号而驱动探头 38 移动相应距离并以相应压力加载在待测试样上。也就是说,采集控制单元 2 通过调整直线电机 35 记载电流而具有控制探头 38 记载在待测试样上的压力的功能。
探头 38 具体为铜探头,探头组件还包括探头支架 36 、加热器 37 以及防风帽 39 。探头支架 36 由聚四氟乙烯制成,起到绝缘和保温的作用。聚四氟乙烯支架的上端部通过连接销 310 和直线电机 35 的伸出端固定连接;探头支架 36 的下端部固定连接加热器 37 和防风帽 39 。加热器 37 具体为陶瓷加热器 37 ,铜探头设置在陶瓷加热器 37 上,陶瓷加热器 37 用于对铜探头进行加热。防风帽 39 为波纹状的硅橡胶防风保温帽,罩设在铜探头四周,可在测量过程中减小环境对探头 38 的影响。
探头组件单元 3 还包括用于测量铜探头温度的温度传感器。加热器 37 以及该温度传感器均通过所述接线端子 31 与采集控制单元 2 分别相电连。采集控制单元 2 ,还用于接收温度传感器测量的温度信息,并根据温度信息向加热器 37 发送用于调节加热温度的第二控制信号;加热器 37 ,用于响应于第二控制信号而调节加热温度。所述的温度传感器具体为嵌设在铜探头内的铂电极 311
组件盒 32 上设置有导轨,导轨具体为梯形导轨 33 ,用于与测试夹具 4 滑动配合地连接。组件盒 32 上还设有用于与力校准组件和探头冷却单元 6 相插接配合的连接插口 312
3a 3b 示出了一种台式夹具。台式夹具包括第一支架 41 、设置在所述第一支架 41 上的支撑块 43 。第一支架 41 上设置有一对连接件 411 412 ,该连接件 411 412 间隔且相对设置,这一对连接件 411 412 之间形成用于容纳并固定探头组件单元 3 的空间,探头组件单元 3 的组件盒 32 可拆卸并可滑动地连接于一对连接件 411 412 之间。该连接件 411 412 具体为与组件盒 32 的梯形导轨 33 相滑动配合的燕尾槽组件。该台式夹具还包括用于将组件盒 32 锁紧的锁紧机构,具体地,锁紧机构包括设于第一支架 41 和其中一个连接件 412 上并和梯形导轨 33 可拆卸地连接的锁紧手柄 42 ,另一个连接件 411 则和第一支架 41 为固定连接。如图 3a 所示,右侧连接件 412 和右侧梯形导轨 33 上分别开设有与锁紧手柄 42 的锁定部相配合的孔 422 ,锁紧手柄 42 的锁定部 421 穿过右侧连接件 411 412 上的孔 422 后又插设在右侧梯形导轨 33 的孔 422 中,从而将组件盒 32 锁定。支撑块 43 优选为一对且沿左右间隔设置,支撑块 43 设置于连接件 411 412 的下方从而保证在检测时放置在支撑块 43 上的待测试样 44 能够位于一对探头 38 的正下方。具体地,支撑块 43 上开设有与待测试样 44 相配合以放置待测试样 44 的凹槽,待测试样 44 放置在凹槽中从而被固定,凹槽的形状优选为如图 3b 所示的 V 形。在对直径较小的试样进行检测时,松开锁紧手柄 42 ,将探头组件单元 3 的组件盒 32 自上至下插入一对连接件 411 412 之间,梯形导轨 33 与连接件 411 412 相互配合从而允许组件盒 32 向下滑动,从而调节探头 38 与待测试样 44 之间的距离,调整到位后,旋紧锁紧手柄 42 ,即可固定探头组件单元 3
4a 4b 4c 示出了一种管道式夹具。管道式夹具包括第二支架 45 、用于将待测管道 49 固定在第二支架 45 下方的固定装置。第二支架 45 上设有一对连接件 451 452 ,该连接件 451 452 间隔且相对设置,这一对连接件 451 452 之间形成用于容纳并固定探头组件单元 3 的空间,探头组件单元 3 的组件盒 32 可拆卸并可滑动地连接于一对连接件 451 452 之间。该连接件 451 452 具体为与组件盒 32 的梯形导轨 33 相滑动配合的燕尾槽组件。该台式夹具还包括用于将组件盒 32 锁紧的锁紧机构,具体地,锁紧机构包括设于第二支架 45 和其中一个连接件 452 上并和梯形导轨 33 可拆卸地连接的锁紧手柄 46 ,另一个连接件 451 则和第二支架 45 为固定连接。固定装置具体包括绑带 48 ,将待测管道 49 绑在第二支架 45 上。在对直径较大的试样进行检测时,松开锁紧手柄 46 ,将探头组件单元 3 的组件盒 32 自上至下插入一对连接件 451 452 之间,梯形导轨 33 与连接件 451 452 相互配合从而允许组件盒 32 向下滑动,从而调节探头 38 与待测管道 49 之间的距离,调整到位后,旋紧锁紧手柄 46 ,即可固定探头组件单元 3
在一优选的方式中,第二支架 45 包括垂直度调整板 453 和底板 454 ,所述的一对连接件 451 452 设于垂直度调整板 453 上,待测管道 49 则固定于底板 454 上。垂直度调整板 453 和底板 454 通过多个相互间隔的螺钉 47 活动连接,通过分别调节各螺钉 47 位于调节垂直度调整板 453 和底板 454 之间的高度可以调节底板 454 相对垂直度调整板 453 的角度;该多个螺钉 47 优选分别位于两板的四个顶角部位处。此外,垂直度调整板 453 和底板 454 上分别贯通开设有供探头 38 穿过以接触下方的待测试样的通孔。底板 454 还可设有用于供绑带 48 连接的槽。
本实施例中,校准单元 5 在校准状态下为探头组件提供探头 38 压力校准和热电势校准两种功能,对应地,校准单元 5 包括力校准组件和热电势校准组件两种。力校准组件旨在用于读取探头 38 的加载力以判读加载力的准确性;热电势校准组件旨在用于判断探头 38 的热电势测量是否准确。
如图 5a 5b 所示,力校准组件包括用于读取探头 38 加载力 的力传感器 52 。力传感器 52 具体设置于一个外壳 53 内,外壳 53 设有用于与探头组件单元 3 连接的插头 51 ,该插头 51 具体与组件盒 32 的连接插口 312 配合连接。力校准组件采用间接校准方式,先用外接仪表对力传感器 52 进行校准,然后将插头 51 连接到组件盒 32 的连接插口 312 ,设置探头组件的直线电机 35 的加载电流,即设定探头 38 加载力,读取力传感器 52 的显示值,与设定的探头 38 加载力 比对,判断加载力的准确性。
如图 6a 6b 所示,热电势校准组件包括标准铜棒 54 ,该标准铜棒 54 与铜探头的材质相同。标准铜棒 54 具体设于一个支座 55 上。在进行热电势校准时,将探头组件单元 3 安装在上述台式夹具上,将标准铜棒 54 放置在支撑块 43 V 形槽内,使探头 38 伸出后与标准铜棒 54 接触,测量得到的即为系统中的热电势,该热电势数值应该是一个稳定值,每次测量试样之前先测量热电势校准组件,来判断热电势测量是否稳定。
7a 7b 示出了本实施例中的探头冷却单元 6 。探头冷却单元 6 包括壳体 63 、设于壳体 63 内的两个冷却模块 62 、设于壳体 63 上的插头 61 ,两个冷却模块 62 分别对应于两个探头 38 ,各冷却模块 62 上分别设于与铜探头的下部相配合的凹槽。插头 61 用于连接探头组件单元 3 ,具体与组件盒 32 的连接插口 312 配合连接。在冷却状态时,将插头 61 插入组件盒 32 的连接插口 312 ,使探头 38 插入对应冷却模块 62 的凹槽中,并充分贴合,给冷却模块 62 供电,使探头 38 快速降温。
下面对上述的便携式热电势检测仪的工作过程进行说明,依次包括如下步骤: S1 、使该热电势检测仪处于校准状态,进行力校准和热电势校准; S101 、进行力校准,将探头组件单元 3 的组件盒 32 的连接插口 312 和力校准组件的插头 51 连接,通过采集控制单元 2 设定两个直线电机 35 的加载电流,使探头 38 以设定的加载力加载到力传感器 52 上,读取力传感器 52 的显示值,来判断加载力是否准确; S102 、进行热电势校准,将标准铜棒 54 放置在台式夹具的支撑块 43 上,使探头 38 伸出加载到标准铜棒 54 上,测量热电势值,判断其是否为稳定值,来判断热电势测量是否稳定; S2 、使热电势检测仪处于测量状态,将待测试样固定在台式夹具或管道式夹具上,测量待测试样的热电势; S3 、使热电势检测仪处于冷却状态,对探头 38 进行冷却;具体为将探头冷却单元 6 的插头 61 和探头组件单元 3 的连接插口 312 连接,将铜探头插入冷却模块 62 的凹槽内,冷却模块 62 通电对铜探头进行快速降温。
其中, S1 S2 S3 顺序进行;步骤 S101 S102 的顺序可以互换。
步骤 S2 具体包括: S21 、对核电现场小直径部件进行热电势测量;或, S22 、对核电现场大直径部件进行热电势测量。
采用本发明的便携式热电势检测仪对核电现场小直径部件(如:阀杆)进行热电势检测(步骤 S21 )主要包括以下步骤: S211 、将待测试样放置在台式夹具的支撑块 43 V 形槽上; S212 、将探头组件单元 3 安装在台式夹具的燕尾槽组件中,调整探头组件单元 3 与待测试样之间的距离,拧紧锁紧手柄; S213 、连接采集控制单元 2 与探头组件单元 3 和计算机 1 之间的线缆; S214 、打开计算机 1 ,启动测试软件,开始测试。
采用本发明的便携式热电势检测仪对核电现场大直径部件(如:管道)进行热电势检测(步骤 S22 )主要包括以下步骤: S221 、将管道式夹具安装在管道外壁上,通过绑带 48 绑扎牢靠; S222 、将探头组件单元 3 安装在管道式夹具的燕尾槽组件中,调整探头组件单元 3 与管道外表面之间的距离,拧紧锁紧手柄; S223 、连接采集控制单元 2 与探头组件单元 3 和计算机 1 之间的线缆; S224 、打开计算机 1 ,启动测试软件,开始测试。
本发明提供的便携式热电势检测仪具有以下优点: 1 、各个单元模块化设计,各单元体积小,便于携带; 2 、可以通过单元间的不同组合实现热电势测试、热电势校准、探头压力校准和探头冷却等功能; 3 、配置有两种夹具形式适用于不同尺寸的试样检测。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限定本发明的保护范围。凡根据本发明的精神实质所作的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1.  一种便携式热电势检测仪,包括用于将待测试样固定的测试夹具、用于对测试样件进行检测的探头组件单元以及用于控制所述探头组件进行检测和采集探头组件的电压信号的采集控制单元,其特征在于:
    所述探头组件单元包括两个探头组件,每个所述探头组件分别包括用于加载在待测试样表面的探头以及用于驱动所述探头移动并加载在待测试样表面的直线电机,所述直线电机的输出端和所述探头相连;
    所述采集控制单元,分别和所述直线电机相电连,还用于向所述直线电机发送用于控制直线电机移动距离及加载力的第一控制信号。
  2. 根据权利要求1所述的便携式热电势检测仪,其特征在于,所述采集控制单元包括FPGA微处理器。
  3. 根据权利要求1所述的便携式热电势检测仪,其特征在于,所述探头组件还包括用于对所述探头加热的加热器以及用于测量探头温度的温度传感器,
    所述采集控制单元,和所述温度传感器相电连,还用于接收所述温度传感器检测的温度信息,并根据所述温度信息向所述加热器发出用于调节加热温度的第二控制信号;
    所述加热器,和所述采集控制单元向电连,用于响应于所述第二控制信号而调节加热温度。
  4. 根据权利要求4所述的便携式热电势检测仪,其特征在于,所述温度传感器为嵌设于所述探头内的铂电极。
  5. 根据权利要求1所述的便携式热电势检测仪,其特征在于,所述探头组件单元包括组件盒、固定设置于所述组件盒内的电机安装座,所述两个探头组件的直线电机分别设于所述电机安装座上,所述两个探头组件的探头的最小间距为40mm。
  6. 根据权利要求5所述的便携式热电势检测仪,其特征在于,所述测试夹具包括用于固定小直径试样的台式夹具和用于固定大直径试样的管道式夹具;
    所述台式夹具包括第一支架、设置于所述第一支架上的一对连接件,所述组件盒可拆卸并可滑动地连接所述一对连接件之间;
    所述管道式夹具包括第二支架、设置于所述第二支架上的一对连接件,所述组件盒可拆卸并可滑动地连接所述一对连接件之间。
  7. 根据权利要求6 所述的便携式热电势检测仪,其特征在于,所述台式夹具还包括固定设置于所述第一支架的支撑块,所述支撑块上开设有用于放置待测试样的凹槽;
    和/ 或,所述管道式夹具包括用于将待测试样固定在第二支架下方的固定装置,所述第二支架包括垂直度调整板和底板,所述垂直度调整板上设有连接件,所述固定装置连接于底板上,所述垂直度调整板和底板通过多个相互间隔的螺钉活动连接
  8. 根据权利要求1所述的便携式热电势检测仪,其特征在于,所述便携式热电势检测仪还包括用于对探头组件进行热电势校准和/或压力校准的校准单元,所述探头组件与所述校准单元可拆卸地连接,当所述探头组件连接于所述校准单元时,所述探头组件处于校准状态。
  9. 根据权利要求8所述的便携式热电势检测仪,其特征在于,所述校准单元包括力校准组件和/或热电势校准组件,所述力校准组件包括力传感器,所述力传感器具有可与所述探头组件底部的插口相连的插头;所述热电势校准组件包括材质与所述探头相同的标准铜棒。
  10. 根据权利要求1所述的便携式热电势检测仪,其特征在于,所述便携式热电势检测仪还包括探头冷却单元,所述探头冷却单元包括冷却模块,所述探头组件与所述探头冷却单元可拆卸地连接,当所述探头组件连接于所述探头冷却单元时,所述探头组件处于冷却状态。
PCT/CN2018/098453 2018-03-26 2018-08-03 一种便携式热电势检测仪 WO2019184177A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/462,574 US11067615B2 (en) 2018-03-26 2018-08-03 Portable thermoelectric potential detector
JP2019512001A JP6731544B2 (ja) 2018-03-26 2018-08-03 携帯型熱起電力検出器
EP18847184.1A EP3567386B1 (en) 2018-03-26 2018-08-03 Portable thermoelectric potential detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810250607.3 2018-03-26
CN201810250607.3A CN108459191B (zh) 2018-03-26 2018-03-26 一种便携式热电势检测仪

Publications (1)

Publication Number Publication Date
WO2019184177A1 true WO2019184177A1 (zh) 2019-10-03

Family

ID=63237787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098453 WO2019184177A1 (zh) 2018-03-26 2018-08-03 一种便携式热电势检测仪

Country Status (5)

Country Link
US (1) US11067615B2 (zh)
EP (1) EP3567386B1 (zh)
JP (1) JP6731544B2 (zh)
CN (1) CN108459191B (zh)
WO (1) WO2019184177A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725183B (zh) * 2018-11-21 2021-12-17 苏州热工研究院有限公司 一种便携式热电势检测仪器用探头
CN113758966A (zh) * 2021-09-08 2021-12-07 英业达科技有限公司 可调式模拟热源测试平台
CN114623946A (zh) * 2022-03-11 2022-06-14 苏州热工研究院有限公司 一种热电势探头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258032A (ja) * 2008-04-21 2009-11-05 Ulvac-Riko Inc ゼーベック係数及び熱浸透率の計測装置、熱浸透率の計測装置
CN203858222U (zh) * 2014-04-22 2014-10-01 上海大学 测量金属塞贝克系数的装置
CN105158542A (zh) * 2015-08-31 2015-12-16 苏州热工研究院有限公司 金属热电势检测仪器
CN105628732A (zh) * 2015-12-23 2016-06-01 华中科技大学 一种测量Seebeck系数的装置及其方法
CN105699619A (zh) 2016-02-29 2016-06-22 苏州热工研究院有限公司 一种金属热电势测量仪器
CN106950484A (zh) * 2017-03-14 2017-07-14 华中科技大学 一种同时测量霍尔系数和塞贝克系数的装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1548731A1 (ru) * 1987-05-04 1990-03-07 Институт Прикладной Физики Ан Бсср Термоэлектрический датчик
CN2037477U (zh) * 1988-11-01 1989-05-10 中国地质大学(北京) 一种携带式热电测量仪
DE19635264C1 (de) * 1996-08-30 1998-04-16 Max Planck Gesellschaft Thermoelektrische Mikrosonde
CN101285788B (zh) * 2008-05-20 2011-10-12 中山大学 一种热电材料测量仪
CN201640219U (zh) * 2010-03-15 2010-11-24 吴光志 一种鱼捞
CN201601014U (zh) * 2010-03-19 2010-10-06 新疆伊能众诚高科有限公司 中压电子式电压互感器
CN102721857A (zh) * 2012-06-27 2012-10-10 苏州热工研究院有限公司 一种热电势快速测量系统及测量方法
CN202753007U (zh) * 2012-07-06 2013-02-27 北京信泰德利华自动化技术有限公司 一种轧辊磨床探伤仪探头校准装置
CN103472087B (zh) * 2013-03-15 2016-06-08 深圳市彩煌实业发展有限公司 热电材料塞贝克系数测量装置及方法
CN203858219U (zh) * 2014-01-02 2014-10-01 上海大学 一种温差电材料塞贝克系数及电阻率的测量装置
EP3070446B1 (en) * 2015-03-18 2019-02-13 ENDRESS + HAUSER WETZER GmbH + Co. KG Thermo wire testing circuit and method
CN108490237A (zh) * 2018-03-08 2018-09-04 华中科技大学 一种便携式金属管道热电势无损测量的装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258032A (ja) * 2008-04-21 2009-11-05 Ulvac-Riko Inc ゼーベック係数及び熱浸透率の計測装置、熱浸透率の計測装置
CN203858222U (zh) * 2014-04-22 2014-10-01 上海大学 测量金属塞贝克系数的装置
CN105158542A (zh) * 2015-08-31 2015-12-16 苏州热工研究院有限公司 金属热电势检测仪器
CN105628732A (zh) * 2015-12-23 2016-06-01 华中科技大学 一种测量Seebeck系数的装置及其方法
CN105699619A (zh) 2016-02-29 2016-06-22 苏州热工研究院有限公司 一种金属热电势测量仪器
CN106950484A (zh) * 2017-03-14 2017-07-14 华中科技大学 一种同时测量霍尔系数和塞贝克系数的装置及方法

Also Published As

Publication number Publication date
CN108459191B (zh) 2020-10-23
EP3567386A4 (en) 2019-12-25
US20200241061A1 (en) 2020-07-30
EP3567386B1 (en) 2020-12-09
EP3567386A1 (en) 2019-11-13
JP6731544B2 (ja) 2020-07-29
US11067615B2 (en) 2021-07-20
JP2020515807A (ja) 2020-05-28
CN108459191A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN105572027B (zh) 混凝土开裂全过程仿真试验机
CN102519803B (zh) 一种多头微型试样蠕变试验装置及测试方法
WO2019184177A1 (zh) 一种便携式热电势检测仪
CN101285788B (zh) 一种热电材料测量仪
CN103293182B (zh) 防护热流计法导热系数自动测定仪及检测方法
CN102798645A (zh) 一种导热系数及接触热阻测试装置
CN206192402U (zh) 一种sf6气体微水、密度在线监测系统
CN102768224B (zh) 正反双向热流法测固-固接触热阻的测试方法
CN102768225A (zh) 一种高精度热界面材料测试方法
CN108459035A (zh) 一种用于中子散射的便携式原位多场耦合加载装置
CN108490237A (zh) 一种便携式金属管道热电势无损测量的装置及方法
CN109342053B (zh) 盘轴联接转子系统热分析试验台及其热变形的测量方法
CN201707270U (zh) 混凝土开裂试验架
CN215599052U (zh) 一种测量中温情况下的防护热平板导热仪
CN105699619A (zh) 一种金属热电势测量仪器
CN115508221A (zh) 金属密封圈高温密封性试验装置
CN114623946A (zh) 一种热电势探头
CN115372391A (zh) 一种原位中子测试装置和电池原位充放电中子测试系统
CN216900318U (zh) 一种热扩散系数测量装置
CN220366933U (zh) 一种电池模组的膨胀力测试装置
CN218848022U (zh) 一种基于稳态热流法的导热系数测量装置
CN213633248U (zh) 一种导热系数测试用的试验装置
CN219777548U (zh) 热导率测定装置
CN212967153U (zh) 一种同位素温差电池壁面温度控制装置
CN220289471U (zh) 一种混凝土电阻率仪

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512001

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018847184

Country of ref document: EP

Effective date: 20190226

NENP Non-entry into the national phase

Ref country code: DE