WO2019183934A1 - 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池 - Google Patents

晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池 Download PDF

Info

Publication number
WO2019183934A1
WO2019183934A1 PCT/CN2018/081377 CN2018081377W WO2019183934A1 WO 2019183934 A1 WO2019183934 A1 WO 2019183934A1 CN 2018081377 W CN2018081377 W CN 2018081377W WO 2019183934 A1 WO2019183934 A1 WO 2019183934A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
crystalline silicon
silicon solar
conductive paste
oxide etchant
Prior art date
Application number
PCT/CN2018/081377
Other languages
English (en)
French (fr)
Inventor
张�杰
刘小丽
孙丰振
李宇
黄玉平
李德林
Original Assignee
深圳市首骋新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市首骋新材料科技有限公司 filed Critical 深圳市首骋新材料科技有限公司
Priority to PCT/CN2018/081377 priority Critical patent/WO2019183934A1/zh
Priority to CN201880000358.0A priority patent/CN110603606B/zh
Publication of WO2019183934A1 publication Critical patent/WO2019183934A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to the field of solar cell technologies, and in particular, to a front side conductive paste of a crystalline silicon solar cell, a preparation method thereof, and a solar cell. Background technique
  • Solar energy is an inexhaustible clean energy source. With the depletion of non-renewable energy sources such as coal and oil, the development and use of solar energy has become a hot spot. Solar cells developed based on this idea are an important means of utilizing solar energy. At present, the realization of industrialized crystalline silicon solar cells has become a model for solar cell applications.
  • a cell sheet is a core component of a crystalline silicon solar cell.
  • a conductive paste is applied to the silicon wafer by screen printing, and a front electrode is formed on the front surface of the silicon wafer by sintering.
  • the front electrode of the sintered crystalline silicon solar cell needs to be firmly adhered on the silicon wafer, the gate line is narrow and high, the light shielding area is small, and the welding is easy, and the conductive paste for the front electrode of the silicon solar cell needs to have the silicon nitride penetrated during the sintering process.
  • a common conductive paste on the front side of a crystalline silicon solar cell contains silver powder, glass frit, and an organic carrier, and the conductive paste is sintered to form a front electrode.
  • the oxide etchant in the conductive paste etches and penetrates the anti-reflective insulating layer on the front side or the illuminated side of the crystalline silicon solar cell, such as silicon nitride, titanium oxide, aluminum oxide, silicon oxide, or oxidized osmium/oxidation. Titanium, the silver powder is brought into contact with the crystalline silicon solar cell substrate to form a front electrode.
  • the conventional front conductive paste and the used glass powder can not well etch the anti-reflection insulating layer on the surface of the cell, and the front electrode formed on the surface of the silicon wafer has high contact resistance, thereby affecting The photoelectric conversion efficiency of the battery sheet.
  • the technical problem to be solved by the present invention is to provide a front side conductive paste of a crystalline silicon solar cell and a preparation method thereof, so as to solve the problem that the existing front conductive paste cannot effectively perform the anti-reflection insulating layer on the surface of the cell sheet.
  • the etching causes an increase in the resistance value of the front electrode to contact the surface of the silicon wafer, and finally causes a problem that the photoelectric conversion efficiency of the battery sheet is lowered.
  • the present invention also provides a method for fabricating a front electrode of a crystalline silicon solar cell and a solar battery.
  • a front side conductive paste of a crystalline silicon solar cell in terms of 100 parts by weight, including the following raw material components
  • organic carrier 6.0 ⁇ 15.0 parts
  • oxide etchant 1.0 ⁇ 5.0 parts
  • the oxide etchant contains at least PbO, B 2 0 MgO ⁇ WO 3
  • weight ratio of MgO and ⁇ 0 3 is 0.1: 15 ⁇ 6 : 1; the weight ratio of B 2 0 3 and W0 3 is 0.1: 15 ⁇ 6:1; the weight ratio of W0 3 and PbO is 1:50 ⁇ 15:25.
  • a method for preparing a front side conductive paste of a crystalline silicon solar cell comprises at least the following steps: [0014] Step S01: melting an oxide etchant raw material component to obtain an oxide etchant melt And quenching the molten metal to obtain oxide etchant particles, and crushing to obtain an oxide etchant powder having a particle diameter of 0.1 to 5. (Vm;
  • Step S02. The organic carrier raw material is placed in an environment of 40 to 100 ° C for mixing treatment to obtain an organic carrier; [0016] Step S03.
  • the metal powder and the oxide etchant powder obtained in step S01, step S02 The obtained organic vehicle was subjected to a compounding treatment to obtain a front side conductive paste of a crystalline silicon solar cell.
  • a method for fabricating a front surface electrode of a crystalline silicon solar cell includes at least the following steps:
  • the present invention provides a front side conductive paste of a crystalline silicon solar cell, and the oxide etchant contains PbO, B 2 O 3 , MgO and W0 3 components, and these The components are present in a specific ratio, and the specific proportions of the components can exhibit excellent etching properties, so that the oxide etchant can dissolve enough silver during the sintering process, and the oxide etchant dissolves the silver.
  • Part of the liquid is used to wet the metal powder and promote it to sinter, and the other part flows to the surface of the solar cell to react with the anti-reflection layer, which can effectively etch the anti-reflection layer and dissolve in the oxide etchant liquid during the cooling process.
  • the silver precipitates to form tiny nano-silver particles, which makes the metal powder form a good ohmic contact with silicon, greatly reduces the resistance of the front electrode, and finally obtains a front electrode with low contact resistance, good electrical conductivity and strong adhesion.
  • the preparation method of the front side conductive paste of the crystalline silicon solar cell provided by the invention has simple process conditions, and the obtained front conductive paste component has uniform composition and good performance, and is suitable for industrial mass production.
  • the oxide etchant can dissolve enough silver during the sintering process to dissolve the silver.
  • One part of the oxide etchant liquid is used to wet the metal powder and promote sintering thereof, and the other part flows to the surface of the solar cell to react with the anti-reflection layer, which can effectively etch the anti-reflection layer and dissolve during cooling.
  • the silver in the oxide etchant liquid precipitates to form tiny nano-silver particles, which makes the metal powder form good ohmic contact with silicon, greatly reduces the resistance of the front electrode, and finally obtains low contact resistance, good electrical conductivity, and adhesion. Strong frontal electrode.
  • the crystalline silicon solar cell provided by the present invention adopts the above-mentioned front electrode structure of the crystalline silicon solar cell, the solar cell structure exhibits good adhesion, and the silver electrode and the silicon wafer have good ohmic contact, so that the solar cell The conversion efficiency is improved.
  • FIG. 1 is a schematic view showing a process flow for preparing a conductive paste on a front side of a crystalline silicon solar cell according to the present invention
  • 2 is a schematic view showing a process flow of a method for fabricating a front electrode of a crystalline silicon solar cell according to the present invention
  • FIG. 3 is a view showing the present invention for printing a crystalline silicon semiconductor device having an insulating film on its surface. Schematic diagram of the front conductive paste;
  • FIG. 4 is a schematic view showing the sintering of a crystalline silicon semiconductor device having front and back pastes printed in FIG. 3 of the present invention
  • FIG. 5 is a schematic diagram of a 180 degree tensile test.
  • the present invention provides a front side conductive paste of a crystalline silicon solar cell comprising, by weight parts, the following raw material components:
  • organic carrier 6.0 ⁇ 15.0 parts
  • the oxide etchant contains at least PbO, B 2 0 MgO ⁇ WO 3
  • weight ratio of MgO and ⁇ 0 3 is 0.1: 15 ⁇ 6 : 1; the weight ratio of B 2 0 3 and W0 3 is 0.1: 15 ⁇ 6:1; the weight ratio of W0 3 and PbO is 1:50 ⁇ 15:25.
  • the oxide etchant comprises the following components in terms of 100% by weight of the oxide etchant:
  • the oxide of the added element is 0 to 5.0%.
  • the oxide etchant contains PbO, B 2 O 3 , MgO, and WO 3 , and these components are present in a specific ratio, these specific ratio components can be expressed.
  • Excellent etching performance when the oxide etchant is melted into a liquid during the sintering process so that the amount of silver dissolved therein is sufficiently large, a part of the oxide etchant liquid in which silver is dissolved is used for the metal powder Wetting and promoting the sintering of the metal powder; another part of the oxide etchant liquid in which the silver is dissolved flows to the surface of the solar cell and reacts with the anti-reflection layer, which can effectively etch the anti-reflection layer, and dissolve in the cooling process after sintering.
  • the silver in the oxide etchant liquid precipitates to form minute nano silver particles, which makes the metal powder form a good ohmic contact with silicon, reduces the electric resistance, and forms a front electrode with low contact resistance, good
  • the added element in the oxide of the added element is titanium, smear, silver, chromium, bismuth, copper, bismuth, vanadium, sodium, ancestor, bismuth, bromine, cobalt, ruthenium, osmium, iridium, iron, One or two or more of ruthenium, manganese, tin, nickel, tin, arsenic, potassium, phosphorus, indium, gallium, antimony, and the like.
  • the oxide of the present invention includes not only an oxide prepared by a chemical method and an oxide obtained by a high temperature treatment, but also a carbonate, a phosphate, a fluoride or the like containing a cation, for example,
  • the oxide of lithium includes Li 2 0 and Li 2 CO 3
  • the oxide of copper includes CuO and Cu 2 (OH) 2 CO 3 CuO
  • the oxide of zinc includes ZnO and Zn 3 (PO 4 ) 2
  • the calcium oxide includes CaO and CaCO 3 .
  • the oxide etchant may be crystalline, amorphous or a mixture of amorphous and crystalline.
  • the metal powder is at least one of silver, gold, platinum, copper, iron, nickel, zinc, titanium, cobalt, chromium, molybdenum, manganese, palladium, and rhodium.
  • the metal powder is silver-coated copper, iron, nickel, zinc, titanium, cobalt, chromium, smear, manganese At least one of the silver coating layers has a thickness of 10 to 50 nm.
  • the metal powder is a mixture of a non-silver coated metal powder and a silver coated metal powder, wherein the weight ratio of the non-silver coated metal powder to the silver coated metal powder 5/95 ⁇ 95/5, the non-silver coated metal powder is at least one of silver, gold, platinum, copper, iron, nickel, zinc, titanium, cobalt, chromium, smear, manganese, ffi, bismuth;
  • the silver-coated metal powder is at least one of copper, iron, nickel, zinc, titanium, cobalt, chromium, titanium, and manganese, and the silver coating layer has a thickness of 10 to 50 nm.
  • the organic vehicle in the present invention includes an organic solvent, a polymer, a wetting and dispersing agent, a thixotropic agent, and other functional additives.
  • the weight of the organic vehicle is 100 parts, including the following components: organic solvent 50 ⁇ 95 parts; polymer 1 ⁇ 40 parts; wetting and dispersing agent 0.1 ⁇ 10 parts; thixotropic agent 1 ⁇ 20 parts; Other functional additives 0.1 ⁇ 20 parts.
  • the organic solvent is selected from the group consisting of terpineol, ethylene glycol butyl ether acetate, ethylene glycol ethyl ether acetate, decadiol ester, diethylene glycol butyl ether, triethylene glycol butyl ether, three At least one of a high boiling point solvent such as propylene glycol methyl ether or decene.
  • the polymer is selected from at least one of ethyl cellulose, methyl cellulose, cellulose and derivatives thereof, acrylic resin, alkyd resin, and polyester resin.
  • the wetting and dispersing agent is selected from the group consisting of fatty acids (oleic acid, stearic acid, etc.), amide derivatives of fatty acids (oleic acid amide, stearic acid amide, etc.), ester derivatives of fatty acids, polyethylene wax, poly One or two or more kinds of ethylene glycol are mainly used to assist the dispersion of the inorganic powder in the organic vehicle.
  • the thixotropic agent is selected from one or more of hydrogenated castor oil derivatives, polyamide waxes, polyureas, fumed silicas, and is mainly used to improve the thixotropy of the slurry during printing.
  • the silver paste is sheared during the printing process, the consistency becomes small, and the screen printing is easy.
  • the shearing is stopped, the consistency is increased to ensure that the electrode has an excellent aspect ratio.
  • the organic vehicle may further include other functional assistants, and the other functional assistants are 0.1-20 parts by weight, selected from the group consisting of polymethylphenylsiloxane, polyphenylsiloxane, and adjacent Phthalate esters (such as diethyl phthalate, dibutyl phthalate, etc.), microcrystalline wax, polydimethylsiloxane, polyvinyl butyral (PVB), polyether One or more of an ester-modified organosiloxane and an alkyl-modified organosiloxane.
  • the other functional additives may be added according to requirements, such as adding microcrystalline wax to reduce surface tension, adding dibutyl phthalate (DBP), etc. to improve the flexibility of the slurry, adding polyvinyl butyral (PVB ) to improve adhesion.
  • the method for preparing a front side conductive paste of a crystalline silicon solar cell comprises the following steps:
  • the preparation step of the oxide etchant is as follows: the oxide etchant raw material is weighed according to the raw material ratio as described above and uniformly mixed; the uniformly mixed oxide etchant raw material is placed Heating the furnace to 900 ⁇ 1100 ° C, and maintaining at 900-1100 ° C for 60-180 min to obtain a molten liquid oxide etchant; quenching the molten liquid oxide etchant to obtain oxidation Etching agent particles; drying the oxide etchant particles at a temperature of 60-80 ° C; crushing the dried oxide etchant particles to obtain a particle size of 0.5-5. (Vm The oxide etchant powder is then dried at 80 to 100 ° C to obtain a dried oxide etchant powder.
  • the quenching method is that the molten liquid oxide etchant is poured into water at 5-25 ° C for cooling or cooled in flowing room temperature air, and the flowing room temperature air temperature is below 25 ° C and below. .
  • the above-mentioned crushing of the oxide etched particles may be performed by a ball mill for ball milling, or other methods may be used to make the particle size of the oxide etchant smaller.
  • the organic carrier is prepared as follows: The raw materials of the organic carrier are sequentially weighed according to the weight ratio of the organic carrier raw materials mentioned above, and the weighed organic carrier raw materials are placed in a container, and stirred and mixed at a temperature of 40 to 100 ° C. 100 ⁇ 1 60min, an organic carrier is obtained.
  • the method for fabricating the front side conductive paste of the crystalline silicon solar cell of the present invention further has the following alternative methods:
  • the oxide etchant and the metal powder are first mixed to obtain a first mixture, and the first mixture is mixed with an organic vehicle, and then subjected to a grinding treatment to obtain a front surface of the crystalline silicon solar cell. Electrode conductive paste.
  • the above oxide etchant and the organic carrier are first mixed to obtain a first mixture, and then the metal powder is added to the first mixture, followed by grinding treatment to obtain a crystalline silicon solar cell.
  • the front electrode is conductive paste.
  • the metal powder and the organic vehicle are first mixed to obtain a first mixture, and an oxide etchant is added to the first mixture, followed by grinding treatment to obtain a crystalline silicon solar battery.
  • the front side of the pool is electrically conductive paste.
  • 20 to 60 parts by weight of metal powder and 20 to 60 parts by weight of the organic vehicle are firstly used in terms of 100 parts by weight of the metal powder, the organic vehicle, and the oxide etchant, respectively. Mix, get the first
  • the mixture is then mixed with the first mixture and the second mixture, and subjected to a grinding treatment to obtain a conductive paste of the front electrode of the crystalline silicon solar cell.
  • the present invention also provides a method for fabricating a front electrode of a crystalline silicon solar cell.
  • the fabrication method relates to a crystalline silicon semiconductor device having an insulating film superposed on its surface, the structure of the crystalline silicon semiconductor device is as shown in FIG. 3, and 100 is a crystalline silicon cell having a first surface and a second surface. a P/N junction 200 and an insulating film 300 are sequentially stacked outwardly on the first surface, and a backside silver paste 500 and a back aluminum paste 600 are printed on the first surface, wherein the insulating film 300 may be a silicon nitride film, At least one of a titanium oxide film, an aluminum oxide film, and a silicon oxide film.
  • the method for fabricating the front electrode of the crystalline silicon solar cell includes at least the following steps:
  • Step S04. Providing a crystalline silicon semiconductor component having an insulating film 300 on its surface;
  • Step S05 The crystalline silicon solar cell front conductive paste 400 according to any one of the above aspects is printed (wherein 401 is metal powder, 402 is an organic carrier, and 403 is an oxide etchant). Printed on the surface of the insulating film 300;
  • Step S06 The crystalline silicon semiconductor device processed in step S05 is sequentially dried, sintered, and cooled to obtain a front surface electrode 700 of a crystalline silicon solar cell.
  • the drying temperature is 80 to 400 ° C
  • the sintering temperature is 700 to 820 ° C
  • the cooling condition is natural cooling.
  • the present invention still further provides a crystalline silicon solar cell using the front surface electrode of a crystalline silicon solar cell as described above.
  • a front side conductive paste of a crystalline silicon solar cell calculated according to a total weight of 100 parts, including the following formula ratio Examples of components: 88.5 parts of silver powder; 9.0 parts of organic vehicle; 2.5 parts of oxide etchant.
  • the method for preparing the oxide etchant is: weigh the oxide etchant raw material according to the ratio described above and perform uniform mixing; and put the uniformly mixed oxide etchant raw material into heating
  • the furnace is heated to 1 000 ° C and held at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; the molten liquid oxide etchant is poured into a normal temperature (25 ° C) water to obtain a cooling agent.
  • Oxide etchant particles; the oxide etchant particles are dried in a dry box at 80 ° C; the dried oxide etchant particles are placed in a ball mill for grinding to obtain a particle size of 0.5 ⁇ 7.
  • Vm oxide etchant powder then dried in a dry box at 100 ° C to obtain a dry oxide etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethylcellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell includes the following steps:
  • the front surface conductive paste of the crystalline silicon solar cell in Embodiment 1 is printed on the front surface of the crystalline silicon solar cell having the insulating film by screen printing, and the back surface of the solar cell is screen printed with back silver and back Aluminum was then sintered at 770 ° C to obtain the front electrode of the crystalline silicon solar cell.
  • a front side conductive paste of a crystalline silicon solar cell calculated on the basis of a total weight of 100 parts, comprising the components of the following formulation ratio: 88.5 parts of silver powder; 9.0 parts of an organic vehicle; 2.5 parts of an oxide etchant.
  • the preparation method of the oxide etchant is: weigh the oxide etchant raw material according to the ratio described above And uniformly mixing; the uniformly mixed oxide etchant raw material is heated to 1 000 ° C in a heating furnace, and is kept at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; The molten liquid oxide etchant is poured into water at room temperature (25 ° C) to obtain oxide etchant particles; the oxide etchant particles are placed in a dry box and dried at 80 ° C; The dried oxide etchant particles are placed in a ball mill and ground to obtain an oxide etchant powder having a particle size of 0.5 to 7. (Vm is then dried in a dry box at 100 ° C to obtain a dry oxidation. Etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethyl cellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell comprising the steps of:
  • the front surface conductive paste of the crystalline silicon solar cell of Embodiment 2 is printed on the front surface of the crystalline silicon solar cell having the insulating film by screen printing, and the back surface of the solar cell is screen printed with back silver and back Aluminum was then sintered at 800 ° C to obtain the front electrode of the crystalline silicon solar cell.
  • a conductive paste of a front side of a crystalline silicon solar cell calculated based on 100 parts by weight, comprises the components of the following formulation ratio: 88.5 parts of silver powder; 9.0 parts of organic vehicle; 2.5 parts of an oxide etchant.
  • the oxide etchant is prepared by: weighing an oxide etchant raw material according to the ratio described above and performing uniform mixing; and placing the uniformly mixed oxide etchant raw material into heating The furnace is heated to 1 000 ° C and held at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; the molten liquid oxide etchant is poured into a normal temperature (25 ° C) water to obtain a cooling agent.
  • Oxide etchant particles; the oxide etchant particles are dried in a dry box at 80 ° C; the dried oxide etchant particles are The granules were placed in a ball mill for grinding to obtain an oxide etchant powder having a particle size of 0.5 to 7. (Vm, and then dried in a drying oven at 100 ° C to obtain a dried oxide etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethylcellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell comprising the steps of:
  • the front surface conductive paste of the crystalline silicon solar cell in Embodiment 3 is printed on the front surface of the crystalline silicon solar cell having the insulating film by screen printing, and the back surface of the solar cell is screen printed with back silver and back Aluminum was then sintered at 780 ° C to obtain the front electrode of the crystalline silicon solar cell.
  • a front side conductive paste of a crystalline silicon solar cell calculated based on 100 parts by weight, comprising the components of the following formulation ratio: 88.5 parts of silver powder; 9.0 parts of organic carrier; 2.5 parts of an oxide etchant.
  • the method for preparing the oxide etchant is: weigh the oxide etchant raw material according to the ratio described above and perform uniform mixing; and put the uniformly mixed oxide etchant raw material into the heating
  • the furnace is heated to 1 000 ° C and held at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; the molten liquid oxide etchant is poured into a normal temperature (25 ° C) water to obtain a cooling agent.
  • Oxide etchant particles; the oxide etchant particles are dried in a dry box at 80 ° C; the dried oxide etchant particles are placed in a ball mill for grinding to obtain a particle size of 0.5 ⁇ 7.
  • Vm oxide etchant powder then dried in a dry box at 100 ° C to obtain a dry oxide etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethylcellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell comprising the steps of:
  • the front surface conductive paste of the crystalline silicon solar cell of Embodiment 4 is printed on the front surface of the crystalline silicon solar cell having the insulating film by screen printing, and the back surface of the solar cell is screen printed with back silver and back Aluminum was then sintered at 780 ° C to obtain the front electrode of the crystalline silicon solar cell.
  • a front side conductive paste of a crystalline silicon solar cell calculated based on 100 parts by total weight, comprising the components of the following formulation ratio: 88.5 parts of silver powder; 9.0 parts of organic vehicle; 2.5 parts of an oxide etchant.
  • the method for preparing the oxide etchant is: weigh the oxide etchant raw material according to the ratio described above and perform uniform mixing; and put the uniformly mixed oxide etchant raw material into the heating
  • the furnace is heated to 1 000 ° C and held at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; the molten liquid oxide etchant is poured into a normal temperature (25 ° C) water to obtain a cooling agent.
  • Oxide etchant particles; the oxide etchant particles are dried in a dry box at 80 ° C; the dried oxide etchant particles are placed in a ball mill for grinding to obtain a particle size of 0.5 ⁇ 7.
  • Vm oxide etchant powder then dried in a dry box at 100 ° C to obtain a dry oxide etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethyl cellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell comprising the steps of:
  • the front side conductive paste of the crystalline silicon solar cell in Example 5 was printed on the front side of the crystalline silicon solar cell having the insulating film by screen printing, and the back side of the solar cell screen was printed with the back silver and the back. Aluminum was then sintered at 790 ° C to obtain the front electrode of the crystalline silicon solar cell.
  • a front side conductive paste of a crystalline silicon solar cell calculated on the basis of a total weight of 100 parts, comprising the components of the following formulation ratio: 88.5 parts of silver powder; 9.0 parts of organic vehicle; 2.5 parts of an oxide etchant.
  • the method for preparing the oxide etchant is: weigh the oxide etchant raw material according to the ratio described above and perform uniform mixing; and put the uniformly mixed oxide etchant raw material into the heating
  • the furnace is heated to 1 000 ° C and held at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; the molten liquid oxide etchant is poured into a normal temperature (25 ° C) water to obtain a cooling agent.
  • Oxide etchant particles; the oxide etchant particles are dried in a dry box at 80 ° C; the dried oxide etchant particles are placed in a ball mill for grinding to obtain a particle size of 0.5 ⁇ 7.
  • Vm oxide etchant powder then dried in a dry box at 100 ° C to obtain a dry oxide etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethylcellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell comprising the steps of:
  • a front side conductive paste of a crystalline silicon solar cell calculated based on 100 parts by total weight, comprising the components of the following formulation ratio: 88.5 parts of silver powder; 9.0 parts of organic vehicle; 2.5 parts of an oxide etchant.
  • the method for preparing the oxide etchant is: weigh the oxide etchant raw material according to the ratio described above and perform uniform mixing; and put the uniformly mixed oxide etchant raw material into heating
  • the furnace is heated to 1 000 ° C and held at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; the molten liquid oxide etchant is poured into a normal temperature (25 ° C) water to obtain a cooling agent.
  • Oxide etchant particles; the oxide etchant particles are dried in a dry box at 80 ° C; the dried oxide etchant particles are placed in a ball mill for grinding to obtain a particle size of 0.5 ⁇ 7.
  • Vm oxide etchant powder then dried in a dry box at 100 ° C to obtain a dry oxide etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethylcellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell comprising the steps of:
  • the front side conductive paste of the crystalline silicon solar cell of Example 7 is printed on the front side of the crystalline silicon solar cell having the insulating film by screen printing, and the back surface of the solar cell is screen printed with back silver and back Aluminum was then sintered at 800 ° C to obtain the front electrode of the crystalline silicon solar cell.
  • a front side conductive paste of a crystalline silicon solar cell calculated according to the total weight of 100 parts, comprising the components of the following formulation ratio: 88.5 parts of silver powder; 9.0 parts of organic vehicle; 2.5 parts of an oxide etchant. [0161] wherein, based on the total weight of the oxide etchant is 100%, the following components are included:
  • the method for preparing the oxide etchant is: weigh the oxide etchant raw material according to the ratio described above and perform uniform mixing; and put the uniformly mixed oxide etchant raw material into the heating
  • the furnace is heated to 1 000 ° C and held at 1000 ° C for 120 min to obtain a molten liquid oxide etchant; the molten liquid oxide etchant is poured into a normal temperature (25 ° C) water to obtain a cooling agent.
  • Oxide etchant particles; the oxide etchant particles are dried in a dry box at 80 ° C; the dried oxide etchant particles are placed in a ball mill for grinding to obtain a particle size of 0.5 ⁇ 7.
  • Vm oxide etchant powder then dried in a dry box at 100 ° C to obtain a dry oxide etchant powder.
  • the organic vehicle contains the following components in an amount of 100% by weight of the organic vehicle: 70% of a mixture of terpineol, decadiol, and decene; ethylcellulose 10%, rosin resin 15%, 5% of polyamide wax.
  • the method for preparing the front side conductive paste of the crystalline silicon solar cell comprises the following steps:
  • a method for fabricating a front electrode of a crystalline silicon solar cell comprising the steps of:
  • the front side conductive paste of the crystalline silicon solar cell in Embodiment 8 is printed on the front surface of the crystalline silicon solar cell having the insulating film by screen printing, and the back surface of the solar cell is screen printed with back silver and back Aluminum was then sintered at 800 ° C to obtain the front electrode of the crystalline silicon solar cell.
  • a crystalline silicon solar cell front conductive paste PVM1B widely used on the market is screen-printed on the front side of a crystalline silicon solar cell having the same insulating film as the embodiment, and the back surface of the solar cell is screen-printed.
  • the back silver and the back aluminum were then sintered by heating to 800 ° C to obtain the front electrode of the crystalline silicon solar cell, and then the efficiency of the cell was tested.
  • the IV test results are summarized in Table 1.
  • the solder ribbon is soldered to the main grid for 180 degree tensile test tensile force, the main grid width is 0.7 mm, and a 0.9 mm wide solder ribbon is welded to the main grid, the strip width is 0.9 mm, and the thickness is 0.23 mm.
  • the ribbon material is 96.5% Sn 3.5% Ag.
  • 5 is a schematic diagram of a 180 degree tensile test, specifically, the solder ribbon 800 is first soldered to the surface of the main grid, and then the crystalline silicon cell sheet 100 is fixed to the stretching machine 900 by the first fixing bolt 901 and the second fixing bolt 902. The tensile test is performed in the direction of the pulling force F. The tensile test results are shown in Table 1.
  • the solar cell sheets of Examples 1 to 4 have the advantages of high conversion rate, high R JS , and high tensile force as compared with the comparative examples, and the oxide etchants used in Examples 1-4 have the advantages.
  • Excellent etch performance which not only effectively wets and sinters the silver powder, but also effectively etches away the insulating film on the surface of the solar cell sheet, so that the silver electrode and the surface of the solar cell sheet form a good ohmic contact, thereby making the solar cell sheet With It has the characteristics of high conversion efficiency, low contact electric ER S and high pulling force.
  • Oxide etching used in Examples 1-4 within 5:25, and WO 3 In the range of 0.5, its unique proportion of oxide component enables its oxide etchant to dissolve enough silver during the sintering process, which can fully etch the insulating layer on the surface of the cell without excessively etching the silicon cell.
  • the silver electrode and the silicon wafer not only form a good ohmic contact, but also have good adhesion.
  • the solar cell conversion rates of Examples 5-8 were lower than those of the comparative examples, and also lower than the cell sheet conversion rates of Examples 1-4, and the series resistance (11 5 ) was significantly higher than that of Examples 1-4. It is caused by the difference in the proportion of the oxide etchant used.
  • the low conversion rate of the cell sheet of Example 5 is due to the low content of PbO in the oxide etchant used, B 2 0 3
  • the low conversion rate of the cell sheet of Example 6 is due to the high content of PbO in the oxide etchant used, the high content of B 2 0 3 , the high content of MgO, and the high content of ⁇ 0 3 due to the oxide content. Deviating from the optimum range of contents described in the present invention, it is shown that these oxide contents have a great influence on the performance of the oxide etchant of the present invention, and it is necessary to maintain a proper ratio.
  • the low conversion rate of the cell of Example 7 is due to the low content of PbO in the oxide etchant used, B 2 0 3
  • the low conversion rate of the battery of Example 8 is due to the high content of PbO in the oxide etchant used, the high content of B 2 0 3 , the high content of MgO, and the low content of ⁇ 0 3 due to the oxide content. Deviating from the optimum range of contents described in the present invention, it is shown that these oxide contents have a great influence on the performance of the oxide etchant of the present invention, and it is necessary to maintain a proper ratio.
  • the optimum ratio range of the oxide etchant of the present invention is: B 2 0
  • the weight ratio of WO ⁇ PbO is 1:50 ⁇ 15:25.
  • the data of Example 1-4 shows that the battery has high conversion rate and low contact resistance, indicating that if the weight ratio of PbO, B 2 O 3 , MgO and WO 3 is within the above range, the oxide etchant can effectively corrode the cell sheet.
  • the insulating layer on the surface forms a good ohmic contact between the front electrode and the surface of the silicon wafer.
  • Example 5-8 data shows its battery conversion
  • the low rate and high contact resistance indicate that if the weight ratio of PbO, B 2 0 3 , MgO and ⁇ 0 3 is not in the above range, the oxide etchant cannot effectively etch the anti-reflection insulating layer on the surface of the cell sheet.
  • the front electrode formed thereon has a high contact resistance with the surface of the silicon wafer, which affects the photoelectric conversion efficiency of the battery sheet.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种晶硅太阳能电池正面导电浆料,按照重量份计,所述晶硅太阳能电池正面导电浆料包括以下原料组分:金属粉80.0~93.0份;有机载体6.0~15.0份;氧化物刻蚀剂1.0~5.0份;其中,所述氧化物刻蚀剂至少含有PbO、B2O3、MgO及WO3,且所述MgO和WO3重量比例为0.1:15~6:1;B2O3和WO3的重量比例0.1:15~6:1;WO3和PbO的重量比例为1:50~15:25。该正面导电浆料在烧结过程中可以使得金属粉与硅形成良好的欧姆接触,极大的降低电阻,最终获得接触电阻低,导电性能好,附着力强的正面电极。

Description

晶硅太阳能电池正面导电浆料及其制备方法和太阳能电 池 技术领域
[0001] 本发明属于太阳能电池技术领域, 特别涉及一种晶硅太阳能电池正面导电浆料 及其制备方法和太阳能电池。 背景技术
[0002] 太阳能是一种取之不尽, 用之不竭的清洁型能源。 随着煤炭、 石油等不可再生 能源的日益枯竭, 开发并利用太阳能成为大热点。 基于这种思路开发的太阳能 电池就是利用太阳能的一种重要手段。 目前, 实现产业化的晶硅太阳能电池已 经成为太阳能电池应用的典范。
[0003] 电池片作为晶硅太阳能电池的核心组成部分, 为了将光照下产生的电流收集并 导出, 需要在电池片的正面及背面上分别制作一个电极。 制造电极的方法多种 多样, 其中丝网印刷及共烧是目前最为普遍的一种生产工艺。 如正面电极的制 造中, 采用丝网印刷的方式将导电浆料涂覆于硅片上, 并通过烧结在硅片正面 上形成正面电极。 烧结后的晶硅太阳能电池正面电极需要在硅片上附着牢固, 栅线窄而高, 遮光面积小, 易于焊接, 硅太阳能电池正面电极用导电浆料要具 备在烧结过程中穿透氮化硅减反射膜的能力, 与硅电池片形成良好的欧姆接触
[0004] 常见的晶硅太阳能电池正面导电浆料含有银粉、 玻璃粉、 有机载体, 导电浆料 经过烧结形成正面电极。 在烧结过程中, 导电浆料中的氧化物刻蚀剂蚀刻并穿 透晶硅太阳能电池正面或光照面的减反射绝缘层如氮化硅、 氧化钛、 氧化铝、 氧化硅或氧化桂 /氧化钛, 使银粉与晶硅太阳能电池基体接触, 形成正面电极。 随着太阳能电池方阻的提升, 传统的正面导电浆料以及使用的玻璃粉不能很好 的刻蚀电池片表面的减反射绝缘层, 其形成的正面电极与硅片表面接触电阻高 , 从而影响了电池片的光电转化效率。 发明概述 技术问题
[0005] 本发明所要解决的技术问题是: 提供一种晶硅太阳能电池正面导电浆料及其制 备方法, 以解决现有正面导电浆料存在的不能有效对电池片表面的减反射绝缘 层进行刻蚀, 从而导致正面电极与硅片表面接触的电阻值升高, 最终使得电池 片光电转化效率降低等问题。
[0006] 进一步地, 本发明还提供一种晶硅太阳能电池正面电极的制作方法及太阳能电 池。
问题的解决方案
技术解决方案
[0007] 为了实现上述发明目的, 本发明采用的技术方案如下:
[0008] 一种晶硅太阳能电池正面导电浆料, 按照重量份为 100计, 包括以下原料组分
[0009] 金属粉 80.0~93.0份;
[0010] 有机载体 6.0~15.0份;
[0011] 氧化物刻蚀剂 1.0~5.0份;
[0012] 其中, 所述氧化物刻蚀剂至少含有 PbO、 B 20 MgO^WO 3
, 且所述 MgO和 \¥0 3重量比例为0.1: 15~6:1 ; B 20 3和 W0 3的重量比例 0.1: 15~6:1 ; W0 3和 PbO的重量比例为 1:50~15:25。
[0013] 相应地, 一种晶硅太阳能电池正面导电浆料的制备方法, 至少包括以下步骤: [0014] 步骤 S01.将氧化物刻蚀剂原料组分进行熔融得到氧化物刻蚀剂熔液, 对所述熔 液进行骤冷处理, 得到氧化物刻蚀剂颗粒, 并经过破碎获得粒径在 0.1~5.(Vm的 氧化物刻蚀剂粉末;
[0015] 步骤 S02.将有机载体原料置于 40~100°C环境中进行混合处理, 得到有机载体; [0016] 步骤 S03.将金属粉与步骤 S01得到的氧化物刻蚀剂粉末、 步骤 S02得到的有机载 体三者进行混料处理, 获得晶硅太阳能电池正面导电浆料。
[0017] 相应地, 一种晶硅太阳能电池正面电极的制作方法, 至少包括以下步骤:
[0018] 提供表面叠设有绝缘膜的晶体硅半导体元件;
[0019] 通过印制的方式将如上所述的晶硅太阳能电池正面导电浆料印制于所述绝缘膜 表面, 随后依次进行干燥、 烧结、 冷却处理, 得到晶硅太阳能电池正面电极。
[0020] 以及, 一种晶硅太阳能电池, 所述晶硅太阳能电池采用如上所述的晶硅太阳能 电池正面电极。
发明的有益效果
有益效果
[0021] 相对于现有技术, 本发明提供的晶硅太阳能电池正面导电浆料, 由于氧化物刻 蚀剂中含有 PbO、 B 20 3、 MgO及 W0 3这几种组分, 并且这几种组分以特定比例 存在, 这些特定比例的组分能表现出优异的刻蚀性能, 使得氧化物刻蚀剂在烧 结过程中能够溶解足够的银, 溶解了银的所述氧化物刻蚀剂液体一部分用于润 湿金属粉并促使其烧结, 另一部分则流动至太阳能电池表面与减反射层反应, 能够有效的刻蚀减反射层, 在冷却过程中, 溶解在氧化物刻蚀剂液体中的银析 出形成微小的纳米银颗粒, 使金属粉与硅形成良好的欧姆接触, 极大的降低正 面电极的电阻, 最终获得接触电阻低, 导电性能好, 附着力强的正面电极。
[0022] 本发明提供的晶硅太阳能电池正面导电浆料的制备方法, 工艺条件简单, 获得 的正面导电浆料组分均匀且性能良好, 适于工业大规模生产。
[0023] 本发明提供的晶硅太阳能电池正面电极的制作方法, 由于采用了上述提供的晶 硅太阳能电池正面导电浆料, 氧化物刻蚀剂在烧结过程中能够溶解足够的银, 溶解了银的所述氧化物刻蚀剂液体一部分用于润湿金属粉并促使其烧结, 另一 部分则流动至太阳能电池表面与减反射层反应, 能够有效的刻蚀减反射层, 在 冷却过程中, 溶解在氧化物刻蚀剂液体中的银析出形成微小的纳米银颗粒, 使 金属粉与硅形成良好的欧姆接触, 极大的降低正面电极的电阻, 最终获得接触 电阻低, 导电性能好, 附着力强的正面电极。
[0024] 本发明提供的晶硅太阳能电池, 由于采用了上述的晶硅太阳能电池正面电极结 构, 太阳能电池结构表现出良好的附着力, 同时银电极和硅片具有良好的欧姆 接触, 使得太阳能电池的转换效率得到提高。
对附图的简要说明
附图说明
[0025] 图 1为本发明提供的晶硅太阳能电池正面导电浆料的制备方法工艺流程示意图 [0026] 图 2为本发明提供的晶硅太阳能电池正面电极的制作方法工艺流程示意图; [0027] 图 3为本发明提供的在表面具有绝缘膜的晶体硅半导体元件上印刷了本发明所 述的正面导电浆料的示意图;
[0028] 图 4为本发明图 3中印刷了正面和背面浆料的晶体硅半导体元件烧结后的示意图
[0029] 图 5为 180度拉伸测试示意图。
[0030] 其中, 100-晶体硅电池片; 200-P/N结; 300 -绝缘膜; 400-印刷的正面导电浆料 , 401 -金属粉, 402 -有机载体, 403 -氧化物刻蚀剂; 500 -印刷的背面银浆; 600- 印刷的背面铝浆; 700 -正面电极; 800-焊带; 900 -拉伸机; 901 -拉伸机样品第一 固定螺栓; 902 -拉伸机样品第二固定螺栓; F-拉力方向。
发明实施例
本发明的实施方式
[0031] 为了使本发明要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下结 合实施例和附图, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具 体实施例仅仅用以解释本发明, 并不用于限定本发明。
[0032] 本发明提供一种晶硅太阳能电池正面导电浆料, 按照重量份计, 包括以下原料 组分:
[0033] 金属粉 80.0~93.0份;
[0034] 有机载体 6.0~15.0份;
[0035] 氧化物刻蚀剂 1.0~5.0份;
[0036] 其中, 所述氧化物刻蚀剂至少含有 PbO、 B 20 MgO^WO 3
, 且所述 MgO和 \¥0 3重量比例为0.1: 15~6:1 ; B 20 3和 W0 3的重量比例 0.1: 15~6:1 ; W0 3和 PbO的重量比例为 1:50~15:25。
[0037] 更为具体地, 以所述氧化物刻蚀剂重量为 100%计, 所述氧化物刻蚀剂包括以 下组分:
[0038] PbO 25-50%;
[0039] Te0 2 10-35%; [0040] Li 20 0.5-10.0%;
[0041] Si0 2 0.1-6.0%;
[0042] B 20 3 0.1-6.0%;
[0043] Bi 20 3 10.0-35.0%;
[0044] ZnO 0.1-6.0%;
[0045] WO 3 1.0-15.0%;
[0046] MgO 0.1-6.0%;
[0047] 添加元素的氧化物 0~5.0%。
[0048] 本发明的配方组分中, 由于氧化物刻蚀剂中含有 PbO、 B 20 3、 MgO及 WO 3, 并且这几种组分以特定比例存在, 这些特定比例的组分能表现出优异的刻蚀性 能, 当氧化物刻蚀剂在烧结过程中熔融为液体进而使得银在其中溶解的量足够 多, 溶解了银的所述氧化物刻蚀剂液体的一部分用于对金属粉进行润湿并促使 金属粉烧结; 另一部分溶解了银的氧化物刻蚀剂液体流动至太阳能电池表面与 减反射层反应, 能够有效的刻蚀减反射层, 烧结后在冷却过程中, 溶解在氧化 物刻蚀剂液体中的银析出形成微小的纳米银颗粒, 使金属粉与硅形成良好的欧 姆接触, 降低了电阻, 形成接触电阻低、 导电性能好、 附着力强的正面电极。
[0049] 优选地, 添加元素的氧化物中添加元素为钛、 招、 银、 铬、 钪、 铜、 铌、 钒、 钠、 祖、 徳、 溴、 钴、 給、 镧、 、 镱、 铁、 钡、 锰、 锡、 镍、 锡、 砷、 错、 钾、 磷、 铟、 镓、 锗等中的一种或者两种及以上。
[0050] 本发明所述的氧化物不仅包括使用化学方法制成的氧化物和经过高温处理后得 到的氧化物, 还包括其含有阳离子的碳酸盐, 磷酸盐, 氟化物等, 例如所述的 锂的氧化物包括 Li 20和 Li 2CO 3, 所述的铜的氧化物包括 CuO和 Cu 2(OH) 2CO 3 CuO, 所述的锌的氧化物包括 ZnO和 Zn 3(PO 4) 2
, 所述的钙的氧化物包括 CaO和 CaC0 3
[0051] 优选地, 氧化物刻蚀剂可以为晶体、 非晶体或者非晶体与晶体的混合物。
[0052] 优选地, 所述金属粉为银、 金、 铂、 铜、 铁、 镍、 锌、 钛、 钴、 铬、 招、 锰、 钯、 铑中的至少一种。
[0053] 进一步优选地, 所述金属粉为银包覆的铜、 铁、 镍、 锌、 钛、 钴、 铬、 招、 锰 中的至少一种, 其中, 银包覆层的厚度为 10~50nm。
[0054] 优选地, 所述金属粉为非银包覆的金属粉和银包覆的金属粉的混合体, 其中, 所述非银包覆的金属粉与银包覆的金属粉的重量比为 5/95~95/5, 非银包覆的金 属粉为银、 金、 铂、 铜、 铁、 镍、 锌、 钛、 钴、 铬、 招、 锰、 ffi、 铑中的至少 一种; 银包覆的金属粉为铜、 铁、 镍、 锌、 钛、 钴、 铬、 招、 锰中的至少一种 , 所述银包覆层的厚度为 10~50nm。
[0055] 本发明中所述有机载体包括有机溶剂、 聚合物、 润湿分散剂、 触变剂及其他功 能助剂等。
[0056] 以所述有机载体重量为 100份计, 包括以下组分: 有机溶剂 50~95份; 聚合物 1~ 40份; 润湿分散剂 0.1~10份; 触变剂 1~20份; 其他功能助剂 0.1~20份。
[0057] 其中, 所述有机溶剂选自松油醇、 乙二醇丁醚醋酸酯、 乙二醇乙醚醋酸酯、 十 二醇酯、 二乙二醇丁醚、 三乙二醇丁醚、 三丙二醇甲醚、 萜烯类等高沸点溶剂 中的至少一种。
[0058] 所述聚合物选自乙基纤维素、 甲基纤维素、 纤维素及其衍生物、 丙烯酸树脂、 醇酸树脂、 聚酯树脂中的至少一种。
[0059] 所述润湿分散剂选自脂肪酸(油酸、 硬酯酸等)、 脂肪酸的酰胺衍生物(油酸酰胺 、 硬脂酰胺等)、 脂肪酸的酯类衍生物、 聚乙烯蜡、 聚乙二醇中的一种或者两种 以上, 主要用于帮助无机粉体在有机载体中的分散。
[0060] 所述触变剂选自氢化蓖麻油衍生物、 聚酰胺蜡、 聚脲、 气相二氧化硅中的一种 或者两种以上, 主要用于提高浆料在印刷过程中的触变性, 使银浆在印刷过程 中受到剪切时, 稠度变小, 容易丝网印刷, 停止剪切时, 稠度又增加, 以保证 电极有优异的高宽比。
[0061] 进一步地, 有机载体还可以包括其他功能助剂, 所述其他功能助剂的重量份为 0.1-20份, 选自聚甲基苯基硅氧烷、 聚苯基硅氧烷、 邻苯二甲酸酯类(如邻苯二甲 酸二乙酯、 邻苯二甲酸二丁酯等)、 微晶蜡、 聚二甲基硅氧烷、 聚乙烯醇缩丁醛( PVB)、 聚醚聚酯改性有机硅氧烷、 烷基改性有机硅氧烷中的一种或者两种以上 。 所述其他功能助剂可根据需要选择添加, 如加入微晶蜡等以降低表面张力, 加入邻苯二甲酸二丁酯(DBP)等以改善浆料的柔韧性, 加入聚乙烯醇缩丁醛(PVB )等改善黏附力。
[0062] 如图 1所示, 本发明所述的晶硅太阳能电池正面导电浆料的制备方法包括以下 步骤:
[0063] S01.氧化物刻蚀剂的制备步骤如下: 按照如上所述的原料比例称取氧化物刻蚀 剂原料并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉 加热至 900~1100°C, 并在 900-1100°C下保温 60-180min, 得到熔融的液态氧化物 刻蚀剂; 将所述熔融的液态氧化物刻蚀剂进行骤冷处理, 得到氧化物刻蚀剂颗 粒; 将所述氧化物刻蚀剂颗粒置于 60~80°C温度中烘干; 对所述的干燥的氧化物 刻蚀剂颗粒进行破碎处理得到粒度 0.5-5.(Vm的氧化物刻蚀剂粉, 然后在 80~100 °C烘干得到干燥的氧化物刻蚀剂粉。
[0064] 优选地, 所述骤冷方式为将熔融的液态氧化物刻蚀剂倒入 5-25°C水中冷却或者 在流动的室温空气中冷却, 流动的室温空气温度在 25°C及以下。
[0065] 上述对氧化物刻蚀颗粒的破碎, 可以采用球磨机进行球磨处理, 也可以使用其 他方式使得氧化物刻蚀剂颗粒粒径变小。
[0066] S02.有机载体的制备如下: 按上所述有机载体原料重量比例依次称取有机载体 的原料, 将称取的有机载体原料放入容器, 在 40~100°C的温度下搅拌混合 100~1 60min, 得到有机载体。
[0067] S03.正面浆料的制备, 将金属粉与上述制备的氧化物刻蚀剂、 有机载体进行混 合、 研磨得到所述正面导电银浆。
[0068] 本发明所述晶硅太阳能电池正面导电浆料的制作方法还有如下替换方法:
[0069] 在一个实施方案中, 先将氧化物刻蚀剂和金属粉进行混合, 得到第一混合物, 再将该第一混合物与有机载体进行混合, 然后进行研磨处理, 得到晶硅太阳能 电池正面电极导电浆料。
[0070] 在另一个实施方案中, 先将上述氧化物刻蚀剂和有机载体进行混合, 得到第一 混合物, 再往该第一混合物中加入金属粉, 然后进行研磨处理, 得到晶硅太阳 能电池正面电极导电浆料。
[0071] 在又一个实施方案中, 先将金属粉和有机载体进行混合, 得到第一混合物, 再 向该第一混合物中加入氧化物刻蚀剂, 然后进行研磨处理, 得到晶硅太阳能电 池正面电极导电浆料。
[0072] 在再一个实施方案中, 分别以金属粉、 有机载体、 氧化物刻蚀剂各自重量份为 100计, 先将 20~60重量份的金属粉和 20~60重量份的有机载体进行混合, 得到第
Figure imgf000010_0001
混合物, 然后再将该第一混合物和第二混合物进行混合, 研磨处理, 得到晶硅 太阳能电池正面电极导电浆料。
[0073] 请参考图 2、 图 3及图 4, 本发明还提供一种晶硅太阳能电池正面电极的制作方 法。
[0074] 所述制作方法涉及表面叠设有绝缘膜的晶体硅半导体元件, 所述晶体硅半导体 元件的结构如图 3所示, 100为具有相对第一表面和第二表面的晶体硅电池片, 在第一表面向外依次叠设有 P/N结 200、 绝缘膜 300, 在第一表面上印刷有背面银 浆 500、 背面铝浆 600, 其中, 绝缘膜 300可以是氮化硅膜、 氧化钛膜、 氧化铝膜 、 氧化硅膜中的至少一种。
[0075] 具体地, 所述晶硅太阳能电池正面电极的制作方法, 至少包括以下步骤:
[0076] 步骤 S04.提供表面叠设有绝缘膜 300的晶体硅半导体元件;
[0077] 步骤 S05.通过印制的方式将如上任一种方案所述的晶硅太阳能电池正面导电浆 料 400(其中, 401为金属粉、 402为有机载体、 403为氧化物刻蚀剂)印制于所述绝 缘膜 300表面;
[0078] 步骤 S06.对步骤 S05处理后的晶体硅半导体元件依次进行干燥、 烧结、 冷却处 理, 得到晶硅太阳能电池正面电极 700。
[0079] 具体地, 干燥温度为 80~400°C, 烧结温度为 700~820°C, 冷却条件为自然冷却
[0080] 本发明还进一步地提供一种晶硅太阳能电池, 所述晶硅太阳能电池采用如上所 述的晶硅太阳能电池正面电极。
[0081] 为了更好的说明本发明实施例提供的晶硅太阳能电池正面导电浆料及其制备方 法, 下面通过多个实施例进一步解释说明。
[0082] 实施例 1
[0083] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。
[0084] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下重量组分:
[0085] Pb0 25%、 Te0 2 35%、 Li 20 0.5% ^ Si0 2 6%、 B 20 3 6%、 Bi 20 3 14.4%、 ZnO 6%、 WO 3 1%' Mg0 6%、 Al 2O 3 0.1%。
[0086] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C烘干得到干燥的氧化物刻蚀剂粉。
[0087] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。
[0088] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0089] 按照以上所述配方重量比例称取银粉 88.0份, 有机载体 9.0份和所述氧化物刻蚀 剂粉 3.0份, 均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆料。
[0090] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0091] 通过丝网印制的方式, 将实施例 1中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 770°C进行烧结, 得到所述的晶硅太阳能电池正面电极。
[0092] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0093] 实施例 2
[0094] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。
[0095] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下组分:
[0096] PbO 50%、 TeO 2 10%、 Li 20 10% ^ Si0 2 l%、 B 2O 3 0.1%、 Bi 20 3
13.2% . ZnO 0.1% ^ WO 3 15% ^ MgO O.l%、 TiO 2 0.5%。
[0097] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C烘干得到干燥的氧化物刻蚀剂粉。
[0098] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。
[0099] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0100] 按照以上所述配方重量比例称取银粉 88.5份, 有机载体 9.0份, 和所述氧化物刻 蚀剂粉 2.5份, 进行均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆 料。
[0101] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0102] 通过丝网印制的方式, 将实施例 2中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 800°C进行烧结, 得到所述的晶硅太阳能电池正面电极。
[0103] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0104] 实施例 3
[0105] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。
[0106] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下组分:
[0107] PbO 40%、 Te0 2 l l%、 Li 20 1.2% ^ SiO 2 0.5%、 B 20 3 2.2%、 Bi 20 3
26.3% ^ Zn0 4.5%、 W0 3 11%、 Mg0 3%、 Cr 2O 3 0.3%。
[0108] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C烘干得到干燥的氧化物刻蚀剂粉。
[0109] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。
[0110] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0111] 按照以上所述配方重量比例称取银粉 88.5份, 有机载体 9.0份, 和所述氧化物刻 蚀剂粉 2.5份, 进行均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆 料。
[0112] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0113] 通过丝网印制的方式, 将实施例 3中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 780°C进行烧结, 得到所述的晶硅太阳能电池正面电极。
[0114] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0115] 实施例 4
[0116] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。
[0117] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下组分:
[0118] Pb0 42%、 Te0 2 15%、 Li 20 1.3% ^ SiO 2 0.8%、 B 20 3 5%、 Bi 20 3
YLl%、 Zn0 5%、 WO 3 13%、 MgO 5%、 MoO 3 0.2%。
[0119] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C烘干得到干燥的氧化物刻蚀剂粉。
[0120] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。 [0121] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0122] 按照以上所述配方重量比例称取银粉 88.5份, 有机载体 9.0份, 和所述氧化物刻 蚀剂粉 2.5份, 进行均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆 料。
[0123] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0124] 通过丝网印制的方式, 将实施例 4中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 780°C进行烧结, 得到所述的晶硅太阳能电池正面电极。
[0125] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0126] 实施例 5
[0127] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。
[0128] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下组分:
[0129] Pb0 15%、 Te0 2 47.5%、 Li 20 1%、 SiO 2 10%、 B 20 3 7%、 Bi 20 3
11.9%、 ZnO O.l%、 WO 3 0.5% ^ MgO 7%。
[0130] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C烘干得到干燥的氧化物刻蚀剂粉。
[0131] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。
[0132] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0133] 按照以上所述配方重量比例称取银粉 88.5份, 有机载体 9.0份, 和所述氧化物刻 蚀剂粉 2.5份, 进行均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆 料。 [0134] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0135] 通过丝网印制的方式, 将实施例 5中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 790°C进行烧结, 得到所述的晶硅太阳能电池正面电极。
[0136] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0137] 实施例 6
[0138] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。
[0139] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下组分:
[0140] Pb0 51%、 Te0 2 5%、 Li 20 1.5% ^ SiO 2 0.1%、 B 20 3 9%、 Bi 20 3 5.6%、 ZnO 2.8% ^ WO 3 17%、 Mg0 8%。
[0141] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C烘干得到干燥的氧化物刻蚀剂粉。
[0142] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。
[0143] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0144] 按照以上所述配方重量比例称取银粉 88.5份, 有机载体 9.0份, 和所述氧化物刻 蚀剂粉 2.5份, 进行均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆 料。
[0145] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0146] 通过丝网印制的方式, 将实施例 6中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 800°C进行烧结, 得到所述的晶硅太阳能电池正面电极。 [0147] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0148] 实施例 7
[0149] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。
[0150] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下组分:
[0151] Pb0 17.6%、 Te0 2 27.1%、 Li 20 0.2% . SiO 2 0.5%、 B 20 3 11%、 Bi 20 3 9.9%
、 Zn0 3.7%、 WO 3 20%、 MgO 10%。
[0152] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C烘干得到干燥的氧化物刻蚀剂粉。
[0153] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。
[0154] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0155] 按照以上所述配方重量比例称取银粉 88.5份, 有机载体 9.0份, 和所述氧化物刻 蚀剂粉 2.5份, 进行均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆 料。
[0156] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0157] 通过丝网印制的方式, 将实施例 7中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 800°C进行烧结, 得到所述的晶硅太阳能电池正面电极。
[0158] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0159] 实施例 8
[0160] 一种晶硅太阳能电池正面导电浆料, 按总重量为 100份计算, 包括如下配方比 例的组分: 银粉 88.5份; 有机载体 9.0份; 氧化物刻蚀剂 2.5份。 [0161] 其中, 以所述氧化物刻蚀剂重量总量为 100%计, 包括以下组分:
[0162] Pb0 53%、 TeO 2 10%、 Li 20 2%、 Si0 2 2%、 B 20 3 13%、 Bi 20 3 3.9%、 ZnO 5%、 WO 3 0.1%、 MgO l l%。
[0163] 所述氧化物刻蚀剂的制备方法为: 按照以上所述的比例称取氧化物刻蚀剂原料 并且进行均匀混合; 将所述的均匀混合的氧化物刻蚀剂原料放入加热炉加热至 1 000°C, 并在 1000°C下保温 120min, 得到熔融的液态氧化物刻蚀剂; 将所述的熔 融的液态氧化物刻蚀剂倒入常温 (25°C)水中冷却得到氧化物刻蚀剂颗粒; 将所述 的氧化物刻蚀剂颗粒置于干燥箱中在 80°C烘干; 将所述的干燥的氧化物刻蚀剂颗 粒置于球磨机中进行研磨得到粒度 0.5~7.(Vm的氧化物刻蚀剂粉, 然后置于干燥 箱中在 100°C下进行烘干, 得到干燥的氧化物刻蚀剂粉。
[0164] 以所述有机载体重量为 100%计, 所述有机载体含有以下组分: 松油醇、 十二 醇醋、 萜烯三者的混合物 70% ; 乙基纤维素 10%、 松香树脂 15%、 聚酰胺蜡 5%。
[0165] 所述晶硅太阳能电池正面导电浆料的制备方法包括以下步骤:
[0166] 按照以上所述配方重量比例称取银粉 88.5份, 有机载体 9.0份, 和所述氧化物刻 蚀剂粉 2.5份, 进行均匀混合和研磨处理, 得到所述晶硅太阳能电池正面导电浆 料。
[0167] 一种晶硅太阳能电池正面电极的制作方法, 包括以下步骤:
[0168] 通过丝网印制的方式, 将实施例 8中晶硅太阳能电池正面导电浆料印制在具有 绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网印制了背银和背铝, 然 后于 800°C进行烧结, 得到所述的晶硅太阳能电池正面电极。
[0169] 测试获得的所述电池片的效率, I-V测试结果汇总在表 1中。
[0170] 对比例
[0171] 将市场上广泛使用的一种晶硅太阳能电池正面导电浆料 PVM1B丝网印制在和 实施例具有完全相同的绝缘膜的晶硅太阳能电池正面, 其太阳能电池背面丝网 印制了背银和背铝, 然后加热到 800°C进行烧结, 得到所述的晶硅太阳能电池正 面电极, 然后测试所述电池片的效率, I-V测试结果汇总在表 1中。
[0172] 性能测试:
[0173] (l)I-V测试 [0174] 将实施例 1~8的电池片和对比例的电池片在 HALM IV测试仪上进行了 I- V测试, 测试结果如表 1所示。
[0175] (2)拉力测试
[0176] 将焊带焊接到主栅上 180度拉伸测试拉力, 主栅宽度是 0.7mm, 将 0.9mm宽的焊 带焊接到主栅上, 焊带宽度为 0.9mm, 厚度为 0.23mm, 焊带材料是 96.5%Sn3.5% Ag。 图 5是 180度拉伸测试示意图, 具体是先将焊带 800焊接于主栅表面, 然后通 过第一固定螺栓 901和第二固定螺栓 902将晶体硅电池片 100固定于拉伸机 900上 , 按照拉力 F的方向进行拉力测试。 拉力测试结果如表 1所示。
[]
[]
[表 1]
Figure imgf000019_0001
[0177] 表 1实施例 1~8及对比例获得的晶硅太阳能电池性能测试数据统计
[0178] 从表 1可知, 与对比例相比较, 实施例 1-4的太阳能电池片具有转化率高, R JS , 拉力高的优点, 说明实施例 1-4使用的氧化物刻蚀剂具有优越的刻蚀性能, 它 不但有效的润湿烧结了银粉, 而且有效的刻蚀掉了太阳能电池片表面的绝缘膜 , 使银电极和太阳能电池片表面形成良好的欧姆接触, 从而使太阳能电池片具 有转换效率高, 接触电 ER S低, 拉力高的特点。 实施例 1-4使用的氧化物刻蚀刻
Figure imgf000020_0001
5:25范围内、 且 WO 3
Figure imgf000020_0002
0.5范围内, 其独特的氧化物组分比例使得其氧化 物刻蚀剂在烧结过程中能够溶解足够的银, 能够充分刻蚀透电池片表面的绝缘 层但是又不过分腐蚀硅电池片, 使得银电极和硅片不但形成很好的欧姆接触, 同时具有很好的附着力。 实施例 5-8的太阳能电池片转换率低于对比例的转换率 , 也低于实施例 1-4的电池片转换率, 其串联电阻 (11 5)明显高于实施例 1-4, 这是 因为其使用的氧化物刻蚀剂成分比例不同导致的。 实施例 5电池片转换率低是由 于其使用的氧化物刻蚀剂中 PbO的含量低、 B 20 3
的含量高、 MgO的含量高、 W0 3的含量低, 由于这些氧化物含量偏离本发明所 述的最佳含量范围, 显示这些氧化物含量对于本发明所述的氧化物刻蚀剂性能 影响很大, 必须保持合适的比例。 实施例 6电池片转换率低是由于其使用的氧化 物刻蚀剂中 PbO的含量高、 B 20 3的含量高、 MgO的含量高、 \¥0 3的含量高, 由 于这些氧化物含量偏离本发明所述的最佳含量范围, 显示这些氧化物含量对于 本发明所述的氧化物刻蚀剂性能影响很大, 必须保持合适的比例。 实施例 7电池 片转换率低是由于其使用的氧化物刻蚀剂中 PbO的含量低、 B 20 3
的含量高、 MgO的含量高、 W0 3的含量高, 由于这些氧化物含量偏离本发明所 述的最佳含量范围, 显示这些氧化物含量对于本发明所述的氧化物刻蚀剂性能 影响很大, 必须保持合适的比例。 实施例 8电池片转换率低是由于其使用的氧化 物刻蚀剂中 PbO的含量高、 B 20 3的含量高、 MgO的含量高、 \¥0 3的含量低, 由 于这些氧化物含量偏离本发明所述的最佳含量范围, 显示这些氧化物含量对于 本发明所述的氧化物刻蚀剂性能影响很大, 必须保持合适的比例。 本发明所述 的氧化物刻蚀剂中最佳比例范围为:
Figure imgf000020_0003
B 20
Figure imgf000020_0004
WO ^PbO的重量比例为 1:50~15:25。 实施例 1-4 数据显示其电池转化率高, 接触电阻低, 说明如果 PbO、 B 20 3、 MgO及 WO 3的 重量比例在以上范围内, 其氧化物刻蚀剂能够有效的腐蚀电池片表面的绝缘层 , 使正面电极与硅片表面形成良好的欧姆接触。 实施例 5-8数据显示其电池转化 率低, 接触电阻高, 说明如果 PbO、 B 20 3、 MgO及 \¥0 3的重量比例不在以上范 围内, 其氧化物刻蚀剂不能有效的刻蚀电池片表面的减反射绝缘层, 从而导致 其形成的正面电极与硅片表面接触电阻高, 影响了电池片的光电转化效率。
[0179] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种晶硅太阳能电池正面导电浆料, 其特征在于, 按照重量份为 100 计, 所述晶硅太阳能电池正面导电浆料包括以下原料组分: 金属粉 80.0~93.0份;
有机载体 6.0~15.0份;
氧化物刻蚀剂 1.0~5.0份;
其中, 所述氧化物刻蚀剂至少含有 PbO、 B 20 3、 MgO及 W0 3 ; 且所 述 MgO和 WO 3重量比例为 0.1:15~6:1 ; B 20 3和\¥0 3
的重量比例
Figure imgf000022_0001
WO 3和 PbO的重量比例为 1:50~15:25。
[权利要求 2] 如权利要求 1所述的晶硅太阳能电池正面导电浆料, 其特征在于, 以 所述氧化物刻蚀剂重量为 100%计, 所述氧化物刻蚀剂包括以下组分
PbO 25-50%;
Te0 2 10-35%;
Li 20 0.5-10.0%;
Si0 2 0.1-6.0%;
B 20 3 0.1-6.0%;
Bi 20 3 10.0-35.0%;
ZnO 0.1-6.0%;
WO 3 1.0-15.0%;
MgO 0.1-6.0%;
添加元素的氧化物 0~5.0%。
[权利要求 3] 如权利要求 2所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述氧化物刻蚀剂中 WO 3和 Li 20的重量比例为 1: 10~15:0.5。
[权利要求 4] 如权利要求 2所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述氧化物刻蚀剂中 B 20 3和 MgO的重量比例为 0.1:6~6:0.1。
[权利要求 5] 如权利要求 2所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述添加元素的氧化物中的添加元素为钛、 招、 银、 铬、 钪、 铜、 铌、 韦凡、 钠、 钽、 锶、 溴、 钴、 铪、 镧、 钇、 镱、 铁、 钡、 锰、 钨、 镍、 锡、 砷、 锆、 钾、 磷、 铟、 镓、 锗中的一种或者两种及以上。
[权利要求 6] 如权利要求 1或 2所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所述氧化物刻蚀剂为晶体、 非晶体中的至少一种。
[权利要求 7] 如权利要求 1所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述金属粉为银、 金、 铂、 铜、 铁、 镍、 锌、 钛、 钴、 铬、 招、 锰、 钯 、 铑中的至少一种。
[权利要求 8] 如权利要求 1所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述金属粉为银包覆的铜、 铁、 镍、 锌、 钛、 钴、 铬、 招、 锰中的至少 一种, 其中, 银包覆层的厚度为 10~50nm。
[权利要求 9] 如权利要求 1所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述金属粉为非银包覆的金属粉和银包覆的金属粉的混合体, 其中, 所 述非银包覆的金属粉与银包覆的金属粉的重量比为 5/95~95/5, 所述 非银包覆的金属粉为银、 金、 销、 铜、 铁、 辕、 铸、 钦、 钻、 絡、 招 、 锰、 ffi、 铑中的至少一种; 所述银包覆的金属粉为铜、 铁、 镍、 锌 、 钛、 钴、 铬、 招、 锰中的至少一种, 所述银包覆层的厚度为 10~200 nm。
[权利要求 10] 如权利要求 i所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述有机载体包括有机溶剂、 聚合物、 润湿分散剂、 触变剂、 其他功能 助剂;
以所述有机载体重量为 100份计, 有机溶剂 50~95份; 聚合物 1~40份; 润湿分散剂 0.1~10份; 触变剂 1~20份; 其他功能助剂 0.1-20份。
[权利要求 11] 如权利要求 10所述的晶硅太阳能电池正面导电浆料, 其特征在于, 所 述有机溶剂为松油醇、 乙二醇丁醚醋酸酯、 乙二醇乙醚醋酸酯、 十二 醇酯、 二乙二醇丁醚、 三乙二醇丁醚、 三丙二醇甲醚、 萜烯类等中的 至少一种;
所述聚合物选自乙基纤维素、 甲基纤维素、 纤维素及其衍生物、 丙烯 酸树脂、 醇酸树脂、 聚酯树脂中的至少一种; 所述润湿分散剂选自脂肪酸、 脂肪酸的酰胺衍生物、 脂肪酸的酯类衍 生物、 聚乙烯蜡、 聚乙二醇中的一种或者两种以上混合物; 所述触变剂选自氢化蓖麻油衍生物、 聚酰胺蜡、 聚脲、 气相二氧化硅 中的至少一种; 所述功能助剂选自聚甲基苯基硅氧烷、 聚苯基硅氧烷 、 邻苯二甲酸酯、 邻苯二甲酸二乙酯、 邻苯二甲酸二丁酯、 微晶蜡、 聚二甲基硅氧烷、 聚乙烯醇缩丁醛、 聚醚聚酯改性有机硅氧烷、 烷基 改性有机硅氧烷中的至少一种。
[权利要求 12] 如权利要求 1~11任一项所述的晶硅太阳能电池正面导电浆料的制备方 法, 其特征在于, 至少包括以下步骤:
步骤 S01.将氧化物刻蚀剂原料组分进行熔融得到氧化物刻蚀剂熔液, 对所述熔液进行骤冷处理, 得到氧化物刻蚀剂颗粒, 并经过破碎处理 获得粒径在 0.1~5.(Vm的氧化物刻蚀剂粉末;
步骤 S02.将有机载体原料置于 40~100°C环境中进行混合处理, 得到有 机载体;
步骤 S03.将金属粉与步骤 S01得到的氧化物刻蚀剂粉末、 步骤 S02得到 的有机载体三者进行混料处理, 获得晶硅太阳能电池正面导电浆料。
[权利要求 13] 如权利要求 12所述的晶硅太阳能电池正面导电浆料的制备方法, 其特 征在于, 所述骤冷处理为水冷处理或者冷空气处理。
[权利要求 14] 一种晶硅太阳能电池正面电极的制作方法, 其特征在于, 至少包括以 下步骤:
提供表面叠设有绝缘膜的晶体硅半导体元件;
通过印制的方式将如权利要求 1~11任一项所述的晶硅太阳能电池正面 导电浆料印制于所述绝缘膜表面, 依次进行干燥、 烧结、 冷却处理, 得到晶硅太阳能电池正面电极。
[权利要求 15] 如权利要求 14所述的晶硅太阳能电池正面电极的制作方法, 其特征在 于, 所述烧结温度为 700~820°C; 和 /或所述干燥温度为 80~400°C。
[权利要求 16] 如权利要求 14所述的晶硅太阳能电池正面电极的制作方法, 其特征在 于, 所述绝缘膜为氮化硅膜、 氧化钛膜、 氧化铝膜、 氧化硅膜中的至 少一种。
[权利要求 17] 一种晶硅太阳能电池, 其特征在于, 所述晶硅太阳能电池采用如权利 要求 14~ 16任一项所述的晶硅太阳能电池正面电极的制作方法制作的 晶硅太阳能电池正面电极。
PCT/CN2018/081377 2018-03-30 2018-03-30 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池 WO2019183934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/081377 WO2019183934A1 (zh) 2018-03-30 2018-03-30 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
CN201880000358.0A CN110603606B (zh) 2018-03-30 2018-03-30 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081377 WO2019183934A1 (zh) 2018-03-30 2018-03-30 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池

Publications (1)

Publication Number Publication Date
WO2019183934A1 true WO2019183934A1 (zh) 2019-10-03

Family

ID=68059410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081377 WO2019183934A1 (zh) 2018-03-30 2018-03-30 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池

Country Status (2)

Country Link
CN (1) CN110603606B (zh)
WO (1) WO2019183934A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035408B (zh) * 2020-03-17 2024-02-02 深圳市百柔新材料技术有限公司 太阳能电池栅线浆料及其制备方法,太阳能电池
CN114409248B (zh) * 2022-01-06 2023-04-07 江苏日御光伏新材料科技有限公司 一种低热损的碲-锂-硅-锆体系玻璃料及其导电浆料与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545016A (zh) * 2013-10-21 2014-01-29 深圳首创光伏有限公司 晶体硅太阳能电池正面电极导电浆料及其制备方法
JP2017162636A (ja) * 2016-03-09 2017-09-14 ナミックス株式会社 導電性ペースト及び太陽電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008789A (zh) * 2013-10-28 2014-08-27 苏州晶银新材料股份有限公司 晶硅太阳能电池的正面银导电浆料
JP5816738B1 (ja) * 2014-11-27 2015-11-18 株式会社ノリタケカンパニーリミテド 導電性組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545016A (zh) * 2013-10-21 2014-01-29 深圳首创光伏有限公司 晶体硅太阳能电池正面电极导电浆料及其制备方法
JP2017162636A (ja) * 2016-03-09 2017-09-14 ナミックス株式会社 導電性ペースト及び太陽電池

Also Published As

Publication number Publication date
CN110603606A (zh) 2019-12-20
CN110603606B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2019183932A1 (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
JP5362946B2 (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP5349738B2 (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
WO2019183931A1 (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
JP5536916B2 (ja) 半導体デバイス製造における微細線高アスペクト比スクリーン印刷のための導電性ペースト
CN104751942B (zh) 太阳能电池细线丝网印刷用无铅导电浆料及其制备方法
CN110040968A (zh) 一种玻璃粉及包括该玻璃粉的n型双面太阳能电池正面用银铝浆
TW201813937A (zh) 玻璃粉及應用該玻璃粉製得的正電極銀漿、太陽能電池
TWI778207B (zh) 玻璃、玻璃粉末、導電糊料及太陽能電池
EP2652749A1 (en) Conductive paste composition containing lithium, and articles made therefrom
TWI787872B (zh) 含釩電極及與透明導體之互連
WO2019205223A1 (zh) 晶硅太阳能电池正面导电银浆及其制备方法和太阳能电池
JP2016167444A (ja) 電気伝導性ペースト組成物用のガラス組成物
CN109961871B (zh) 一种用于丝印烧结形成透明导体的浆料和应用
CN111302638B (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN105637046B (zh) 包含纳米级化学熔料的导电糊料或导电油墨
WO2019183934A1 (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
WO2019183933A1 (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
CN107673624A (zh) 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极和太阳能电池
WO2023115716A1 (zh) 导电浆料组合物及其制备方法和应用、晶硅太阳能电池
WO2019085576A1 (zh) 用于制备太阳能电池电极的多元纳米材料、包括其的糊剂组合物及太阳能电池电极和电池
CN112585765B (zh) 用于半导体元件的导电浆料及其制备方法和perc太阳能电池
WO2019183930A1 (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
WO2024100947A1 (ja) 太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913197

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18913197

Country of ref document: EP

Kind code of ref document: A1