WO2019183812A1 - 一种终端设备及确定外部环境温度的方法 - Google Patents

一种终端设备及确定外部环境温度的方法 Download PDF

Info

Publication number
WO2019183812A1
WO2019183812A1 PCT/CN2018/080729 CN2018080729W WO2019183812A1 WO 2019183812 A1 WO2019183812 A1 WO 2019183812A1 CN 2018080729 W CN2018080729 W CN 2018080729W WO 2019183812 A1 WO2019183812 A1 WO 2019183812A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
temperature
temperature sensor
external ambient
value
Prior art date
Application number
PCT/CN2018/080729
Other languages
English (en)
French (fr)
Inventor
潘姣
吴丹
黄犊子
靳林芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/080729 priority Critical patent/WO2019183812A1/zh
Priority to CN201880091725.2A priority patent/CN111903111A/zh
Publication of WO2019183812A1 publication Critical patent/WO2019183812A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the present application relates to the field of computer technologies, and in particular, to a terminal device and a method for determining an external environment temperature.
  • the application of terminal devices has far exceeded the functions of the original clock display and call, and tends to be intelligent and diversified.
  • the ambient temperature is closely related to the user's life.
  • the use of terminal equipment to determine the external ambient temperature is a trend in current terminal equipment applications.
  • the present application discloses a terminal device and a method for determining an external ambient temperature.
  • the terminal device provided by the present application and a method for determining an external ambient temperature can determine an external ambient temperature of the terminal device.
  • the present application discloses a method for determining an external ambient temperature, comprising: collecting, by a terminal device, temperature information by a first temperature sensor, wherein the first temperature sensor is located in a cold area of the terminal device; The temperature information collected by the first temperature sensor determines an external ambient temperature of the terminal device; and the terminal device outputs the external ambient temperature.
  • the terminal device adopting the present application does not need to additionally add accessories inside or outside the terminal device, and the cost is low and easy to implement.
  • the cold area is an internal space of the terminal device, and the internal space is connected to an external environment of the terminal device; or the cold area is located at or adjacent to the terminal An area of the antenna headroom area of the device, and the antenna headroom area is free of a primary heat source of the terminal device; or the cold area is an area of the printed circuit board where there is no primary heat source.
  • the first temperature sensor located in the cold zone is used to determine the external ambient temperature of the terminal device, so that the obtained external environment temperature is relatively accurate.
  • the method further includes: the terminal device collecting temperature information by using a second temperature sensor, the second temperature sensor is configured to collect temperature information, and the second temperature sensor is located at the terminal device a heat source center connected to the first temperature sensor;
  • Determining, by the terminal device, the external environment temperature of the terminal device according to the temperature information collected by the first temperature sensor including: the temperature information collected by the terminal device according to the first temperature sensor, and the The temperature information collected by the temperature sensor determines the external ambient temperature of the terminal device.
  • the first temperature sensor and the second temperature sensor located in different regions are used to determine the external ambient temperature of the terminal device, and the temperature of the external environment of the terminal device is determined relative to the temperature sensor using only one region, The determined external ambient temperature is more precise.
  • the number of the second temperature sensors is one, and the second temperature sensor is located at a line connecting the center of the heat source and the first temperature sensor;
  • the distributed heat source includes N concentrated heat sources, the number of the second temperature sensors is N, and the ith second temperature sensor of the N second temperature sensors And being located at a connection between the i-th centralized heat source and the first temperature sensor, wherein N is an integer greater than or equal to 2, and the i is an integer greater than or equal to 1, less than or equal to N.
  • the method of the first aspect may further include: when the external environment temperature is greater than the first value, the terminal device performs a high temperature control policy; when the external environment temperature is less than the second value, the terminal The device performs a low temperature control strategy; when the external environment temperature is greater than or equal to the second value, less than or equal to the first value, the terminal device performs a normal temperature control strategy.
  • the method of the first aspect may further include: the terminal device determining a second difference, where the second difference is a difference between an external environment temperature of the terminal device and a case temperature of the terminal device a value; when the second difference is greater than the third value, the terminal device performs a high temperature control policy; when the second difference is less than the fourth value, the terminal device performs a low temperature control policy; When the two differences are greater than or equal to the fourth value and are less than or equal to the third value, the terminal device performs a normal temperature control strategy.
  • the method of the first aspect may further include: determining, by the terminal device, a cause of heat generation of the terminal device according to the external environment temperature; or: outputting, by the terminal device, the external environment temperature to a preset server
  • the preset server is configured to analyze a cause of fever of the terminal device.
  • the terminal device determines the external environment temperature of the terminal device according to the temperature information collected by the first temperature sensor, including: the terminal device acquires system parameters of the terminal device; The temperature information collected by the first temperature sensor and the system parameter determine an external ambient temperature of the terminal device.
  • the terminal device determines an external ambient temperature of the terminal device according to the temperature information collected by the first temperature sensor and the system parameter, where the terminal device is different according to the first temperature sensor. Determining a first parameter according to the temperature information collected at the moment and the time parameter of the temperature sensor; the terminal device determining the second parameter according to the low temperature correction coefficient and the temperature rise coefficient of the first temperature sensor; The first parameter, the second parameter, and temperature information collected by the first temperature sensor determine an external ambient temperature of the terminal device.
  • the system parameter includes at least one of a battery output current, a screen brightness, and a device operating state of the terminal device;
  • the terminal device determines a temperature rise coefficient of the first temperature sensor according to the following formula:
  • ⁇ T I ⁇ (pL t )+ ⁇ (I t -pL t )+b;
  • ⁇ T I represents a temperature rise coefficient of the first temperature sensor
  • the ⁇ , ⁇ , p, b are preset coefficients
  • the L t represents a screen brightness value of the terminal device
  • the I t Represents the battery current value of the terminal device.
  • the terminal device determines a low temperature correction coefficient of the first temperature sensor according to the following manner:
  • the low temperature correction coefficient of the first temperature sensor is 1,
  • the processor determines the low temperature correction coefficient of the first temperature sensor by using the following formula when there is an output of the external ambient temperature at a previous time adjacent to the current time;
  • the ⁇ represents a low temperature correction coefficient of the first temperature sensor
  • the T_L represents an external ambient temperature outputted at a previous time adjacent to the current time
  • the x represents the current time
  • the terminal device The external ambient temperature, and when the external ambient temperature is greater than or equal to x degrees Celsius, the heat dissipation capability of the terminal device is the same
  • the FCOEF represents a ratio of the first heat dissipation value to the second heat dissipation value
  • the first heat dissipation value is characterized by the terminal The heat dissipation capability of the terminal device when the external ambient temperature of the device is at x and above
  • the second heat dissipation value represents the heat dissipation capability of the terminal device when the external ambient temperature of the terminal device is at zero degrees Celsius.
  • the present application provides a terminal device, the terminal device comprising means or means for performing the various steps of the above first aspect.
  • the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the application provides a program for performing the method of any of the above aspects when executed by a processor.
  • the first temperature sensor can collect temperature information
  • the processor determines the external environment temperature of the terminal device according to the temperature information collected by the first temperature sensor, and finally outputs the device. Output external ambient temperature. It can be seen that the external environment temperature of the terminal device can be determined by using the method disclosed in the embodiment of the present application.
  • FIG. 1 to FIG. 3 are schematic diagrams showing the relative relationship between a first temperature sensor and a second temperature sensor according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a thermal resistance network according to an embodiment of the present application.
  • FIG. 8 are schematic flowcharts of determining an external environment temperature according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of determining an external ambient temperature according to an embodiment of the present application.
  • the first solution a temperature sensor is provided on an accessory (such as a pendant) of the terminal device, and the temperature sensor is used to collect the temperature of the external environment.
  • the second scheme an infrared temperature sensing module is added inside the terminal device, and the temperature of the external environment is obtained by infrared detection.
  • the third solution adding an opening to the outer casing of the terminal device, the opening can convect with the outside air, and then adding a temperature detecting module at the opening, and detecting the temperature of the external environment by using the temperature detecting module.
  • the embodiment of the present application discloses a terminal device and a method for determining an external environment temperature.
  • the method and the principle of the terminal device are: based on a first temperature sensor located in a cold zone that is carried when the terminal device is shipped from the factory.
  • the temperature information determines the temperature of the external environment of the terminal device, and it is not necessary to additionally add accessories inside or outside the terminal device, and the cost is low and easy to implement.
  • one or more temperature sensors are first selected in the terminal device, and then a thermal resistance network model is established based on the selected temperature sensor. Finally, based on the thermal resistance network model, a training algorithm is generated, and the training algorithm is configured to determine the temperature of the external environment of the terminal device according to the temperature information collected by the temperature sensor.
  • one or more first temperature sensors may be selected only in the cold zone of the terminal device.
  • the external ambient temperature of the terminal device is then determined based only on the temperature information collected by the first temperature transmitter.
  • the first temperature sensor may be selected in the cold zone of the terminal device, and then the one or more second temperature sensors may be selected based on the positional relationship of the first temperature sensor with the heat source within the terminal device. Finally, based on the temperature information collected by the first temperature sensor and the temperature information collected by the second temperature sensor, the external ambient temperature of the terminal device is determined.
  • first and second in the first temperature sensor and the second temperature sensor are only used to distinguish the description, and cannot be understood as indicating or implying relative importance, nor can It is understood as an indication or a hint of order.
  • the first temperature sensor may also be referred to as a primary temperature sensor
  • the second temperature sensor may also be referred to as a secondary temperature sensor.
  • the cold area of the terminal device may be determined in the following manner: First, an infrared temperature cloud image of the terminal device in a certain working state may be acquired, where the infrared cloud image includes a cold region and a heat The region finally uses the cold region in the infrared temperature cloud map as the cold region of the terminal device.
  • the second method is to determine a temperature cloud image of the terminal device running in different scenarios, and use the common cold region in the temperature cloud image running in the different scenarios as the cold region of the terminal device.
  • the first temperature cloud image of the terminal device running in the first scenario may be obtained.
  • the first scenario may be a scenario in which the terminal device runs the game.
  • the second scenario may be a scenario when the terminal device runs the camera or video program; and finally obtains a third temperature of the terminal device in the third scenario operation.
  • the cloud image for example, the third scenario may be a scenario when the terminal device is on the Internet.
  • the first cold region in the first temperature cloud image, the second cold region in the second temperature cloud image, and the third cold region in the third temperature cloud image are obtained, and the first cold region, the second cold region, and the third cold are obtained.
  • the following manner may be adopted: acquiring a temperature cloud image of the terminal device in different working states or different scenarios by using an infrared device.
  • the temperature cloud map of the terminal device in different working states or different scenarios is obtained through the simulation software.
  • the cold area of the terminal device may be located in the following area in the terminal device: 1) the cold area is located at an internal space of the terminal device, and the internal space is connected to the external environment of the terminal device, Or, the internal space is said to be convected with the external environment of the terminal device; 2) the cold area is located in an antenna clearance area of the terminal device, and the antenna clearance area is free of a main heat source of the terminal device,
  • the main heat source of the terminal device may refer to a device with a power consumption higher than 100 mW in the terminal device; 3) the cold region is adjacent to an antenna clearance region of the terminal device, and the antenna clearance region has no main heat source of the terminal device; .
  • the adjacent antenna clearance area indicates that the first distance of the first temperature sensor to the main heat source is greater than the second distance from the first temperature sensor to the antenna clearance area. The area within the distance. If there is no main heat source on the PCB of the terminal device, the adjacent antenna clearance area may represent the PCB area of the antenna clearance area in the terminal device.
  • the PCB board area in the antenna clearance area is already close to the antenna clearance area; 4)
  • the cold area is located in an area in the four corners of the terminal device; 5) the cold area is an area on the printed circuit board where there is no main heat source, and the printed circuit board includes a small board of the terminal device and a flexible printed board (flexible print board) At least one of , FPB).
  • heat sources there are generally three or more heat sources in the terminal device, for example, a system on chip (SOC), a power amplifier (PA), and a camera.
  • SOC system on chip
  • PA power amplifier
  • the heat sources may be concentrated or distributed in the terminal device.
  • the number of the second temperature sensors may be one.
  • the second temperature sensor is located on a line connecting the center of the heat source and the first temperature sensor, and may also be referred to as a heat source evenly distributed on a line connecting the first temperature sensor and the second temperature sensor.
  • the heat source of the terminal device is two, which are respectively a first heat source and a second heat source, and the first heat source and the second heat source are collectively distributed as an example, and how to select the second temperature sensor is described in detail.
  • the second temperature sensor may be located between the first temperature sensor and the heat source (for example, mode a in FIG. 1).
  • the second temperature sensor may also be located on the left side of the first temperature sensor and the heat source (eg, mode b in FIG. 1), and the second temperature sensor may also be located on the right side of the heat source and the first temperature sensor (eg, FIG. 1) Way c).
  • the second temperature sensor may also overlap the center of the first heat source and the second heat source (eg, mode d in FIG. 1).
  • the second temperature sensor when the first heat source and the second heat source are distributed left and right, the second temperature sensor may be located between the first temperature sensor and the first heat source and the second heat source (for example, in FIG. 2 Mode a), the second temperature sensor may also be located on the left side of the first temperature sensor and the first heat source and the second heat source (for example, mode b in FIG. 2), and the second temperature sensor may also be located at the first The temperature sensor is on the right side of the first heat source and the second heat source (eg, mode c in FIG.
  • the second temperature sensor may also overlap with the centers of the first heat source and the second heat source (eg, in FIG. 2 Mode d), the second temperature sensor may also overlap with the first heat source (for example, mode e in FIG. 2), and the second temperature sensor may also overlap with the second heat source (for example, the mode f in FIG. 2) ).
  • the positional relationship between the first temperature sensor and the first heat source and the second heat source is not limited.
  • only the first temperature sensor is located at the first The left side of a heat source and a second heat source are exemplified.
  • the first temperature sensor may be located on the left side of the first heat source and the second heat source, and the first temperature sensor may also be located in the first On the right side of a heat source and a second heat source, even the first temperature sensor may overlap with the centers of the first heat source and the second heat source, which is not limited herein.
  • the dispersed heat source when the heat source of the terminal device is dispersed, the dispersed heat source may be divided into a plurality of concentrated heat sources according to the concentration degree of the heat source, and then connected to the first temperature sensor at the center of each concentrated heat source. Selecting a second temperature sensor, the second temperature sensor is located on the line connecting the first temperature sensor and the center of the concentrated heat source, and may also be referred to as each of the distributed heat sources in the first temperature sensor and the second temperature sensor. Evenly distributed on the line.
  • the distributed heat source may include N concentrated heat sources, the number of the second temperature sensors is N, and the ith of the N second temperature sensors
  • the second temperature sensor is located on a line connecting the i-th centralized heat source and the first temperature sensor, wherein the N is an integer greater than or equal to 2, and the i is an integer greater than or equal to 1, less than or equal to N.
  • the terminal device includes nine heat sources, and nine heat sources are dispersed in the terminal device. Then, according to the concentration degree of the heat source, the nine distributed heat sources are divided into three concentrated heat sources, which are respectively concentrated.
  • the concentrated heat source 1 includes three heat sources, namely a heat source 1, a heat source 2, and a heat source 3.
  • the concentrated heat source 2 includes three heat sources, namely a heat source 4, a heat source 5, and a heat source 6.
  • the heat source 3 includes three heat sources, namely a heat source 7, a heat source 8, and a heat source 9, respectively, and then a second temperature sensor can be disposed on the line connecting the center of the concentrated heat source 1 and the main sensor, and the second temperature sensor can be located.
  • the concentrated heat source 1 and the first temperature sensor may also be located outside the concentrated heat source 1 and the first temperature sensor, and details are not described herein.
  • the second temperature sensor is located outside the concentrated heat source 1 and the first temperature sensor as an example.
  • a second temperature sensor may be disposed on the connection of the center of the concentrated heat source 2 to the first temperature sensor, and a second temperature sensor may be disposed on the line connecting the center of the concentrated heat source 3 and the first temperature sensor.
  • a thermal resistance network model is established.
  • the n temperature sensors are selected in the terminal device, respectively, the temperature sensor 1, the temperature sensor 2, the temperature sensor 3, and so on, until the temperature sensor n, the n is greater than or equal to 1.
  • the terminal device includes i heat sources, which are heat source 1, heat source 2, and so on, until the heat source i, the i is an integer greater than or equal to 1, and the established thermal resistance network model can be as shown in FIG. 4 .
  • the n temperature sensors shown in FIG. 4 may all be located in the cold region of the terminal device, that is, the n temperature sensors are all the first temperature sensors, or the n temperature sensors are all the above. The main temperature sensor. Alternatively, of the n temperature sensors shown in FIG.
  • one temperature sensor is located in a cold zone of the terminal device, and the remaining n-1 temperature sensors are located on a line connecting the heat source center and the cold zone temperature sensor. That is to say, among the n temperature sensors shown in FIG. 4, one of the temperature sensors is the first temperature sensor, or one of the n temperature sensors, and one of the temperature sensors is the main temperature sensor.
  • the remaining n-1 temperature sensors are the above second temperature sensors, or the remaining n-1 temperature sensors are auxiliary temperature sensors.
  • each temperature sensor is affected by the superposition of i heat sources, and the difference between the temperature of each temperature sensor and the external ambient temperature of the terminal device can be reflected by the thermal resistance R.
  • the R (T1-T2)/(P1+P2...+Pi, the T1 represents the temperature of the temperature sensor, the T2 represents the temperature of the external environment of the terminal device, and the Pi represents the ith heat source is transmitted to The power of the temperature sensor.
  • the training algorithm may determine the external environment temperature of the terminal device based on the temperature information of the selected temperature sensor and the system parameter in the terminal device, where the system parameter includes not limited to the terminal device.
  • the working state of the device includes a SOC frequency, a PA transmit power, a WIFI intensity, and a sound output (speaker) module power consumption.
  • the external environment temperature of the terminal device refers to the temperature of the external environment where the terminal device is located, or the external environment temperature of the terminal device refers to the temperature of the external atmosphere where the terminal device is located, or The external environment temperature of the terminal device refers to the temperature of the small environment in which the terminal device is located.
  • the external environment temperature of the terminal device may include when the terminal device is placed in a pocket, a quilt, or the like. The temperature inside the pocket or quilt. It should be noted that, in the embodiment of the present application, the external environment temperature of the terminal device does not refer to the temperature of the weather in an area that can be queried by means of weather forecasting or the like.
  • the present application provides a method for determining an external environment temperature. As shown in FIG. 5, the method includes:
  • Step S51 The terminal device collects temperature information by using the first temperature sensor.
  • the first temperature sensor is located in the cold area of the terminal device.
  • the cold area of the terminal device and the first temperature sensor refer to the above description, and details are not described herein again.
  • Step S52 The terminal device determines an external environment temperature of the terminal device according to the temperature information collected by the first temperature sensor.
  • the terminal device can also collect the temperature information by using the second temperature sensor.
  • the second temperature sensor For the introduction of the second temperature sensor, refer to the above description, and details are not described herein again.
  • the terminal device may determine the external environment temperature of the terminal device by using the temperature information collected by the first temperature sensor and the temperature information collected by the second temperature sensor.
  • Step S53 The terminal device outputs the external environment temperature.
  • the terminal device can output the external environment temperature by using a text, a voice, an image, and a video.
  • a prompt page may be popped up in the terminal device, and the external environment temperature may be included in the prompt page.
  • the terminal device can broadcast the external environment temperature by means of voice.
  • the terminal device may output an external ambient temperature to a weather forecasting program, and then display the external ambient temperature through a weather forecasting program.
  • the temperature of the external environment can be determined by using a temperature sensor preset in the terminal device, and no additional accessories need to be added inside or outside the terminal device, and the cost is low and easy to implement.
  • step S52 how to determine the external ambient temperature according to the temperature information collected by the first sensor, as shown in FIG. 6, specifically:
  • Step S61 The terminal device acquires system parameters of the terminal device.
  • Step S62 The terminal device determines the external environment temperature of the terminal device according to the temperature information collected by the first temperature sensor and the system parameter.
  • the terminal device may first determine, according to system parameters of the terminal device, a first difference between the temperature collected by the temperature sensor and the external environment temperature of the terminal device; and then based on the first difference and the temperature sensor.
  • the collected temperature information determines the external ambient temperature of the terminal device. For example, if the temperature sensor collects a temperature of 25 degrees Celsius and the first difference is 0.5 degrees Celsius, then the external ambient temperature of the terminal device can be determined to be 24.5 degrees Celsius.
  • the first difference between the temperature collected by the temperature sensor and the temperature of the external environment of the terminal device is mainly affected by two factors: the first factor is: the system parameter of the terminal device (such as the screen brightness) The effect of temperature rise of the temperature sensor, wherein the first factor may correspond to the first parameter.
  • the second factor is the effect of the external ambient temperature on the temperature rise of the temperature sensor, where Ts is the time constant of the temperature sensor's response to external temperature changes. Wherein, the second factor may correspond to the second parameter.
  • the terminal device may determine the first difference by: first determining, according to a temperature collected by the temperature sensor at different times and a time parameter of the temperature sensor, a parameter; determining the second parameter according to the system parameter of the terminal device; and finally determining the first difference according to the first parameter and the second parameter.
  • the first difference may be a sum of the first parameter and the second parameter.
  • the terminal device may determine the first parameter in the following manner:
  • Step S71 The terminal device determines the temperature change rate of the temperature sensor according to the temperature collected by the temperature sensor at different times.
  • the temperature value collected by the temperature sensor at time T1 is T NTC (T1)
  • the temperature value collected at time T2 is T NTC (T2)
  • Step S72 The temperature change rate of the temperature sensor based on the temperature of the terminal device And determining a time parameter Ts of the temperature sensor.
  • the Ts is a parameter inside the temperature sensor and is related to the temperature sensor.
  • the calculation of the first parameter may satisfy the following formula (1.2).
  • the terminal device may determine the foregoing second parameter in the following manner:
  • Step S81 The terminal device determines a low temperature correction coefficient ⁇ of the temperature sensor.
  • the terminal device can calculate the temperature of the external environment once by a certain period of time. For example, if the temperature sensor collects the temperature every 5 seconds, the terminal device can output the temperature of the external environment every 5 seconds based on the temperature collected by the temperature sensor and the current system parameters of the terminal device. In an example of the present application, if the external environment temperature of the output terminal device does not exist at the previous time adjacent to the current time, the value of the low temperature correction coefficient ⁇ of the temperature sensor may be 1; The adjacent terminal device may determine the low temperature correction coefficient ⁇ of the temperature sensor by using the following formula (1.3) when there is an external ambient temperature of the output terminal device.
  • the ⁇ represents a low temperature correction coefficient of the temperature sensor
  • the T_L represents an external environment temperature of the terminal device outputted at a previous time adjacent to the current time
  • the x represents The external environment temperature of the terminal device, and when the external environment temperature of the terminal device is greater than or equal to x degrees Celsius, the heat dissipation capability of the terminal device is the same
  • the FCOEF represents that the external environment temperature of the terminal device is at x and above degrees Celsius
  • the value of x in the above formula (1.3) may be 25.
  • Step S82 The terminal device determines a temperature rise coefficient ⁇ T I of the temperature sensor according to the system parameter.
  • the system parameters include battery current, screen brightness, and device working status of the terminal device, such as SOC frequency, PA transmit power, WIFI strength, and Speaker module power consumption.
  • the terminal device determines a temperature rise coefficient ⁇ T I of the temperature sensor according to the following formula (1.4):
  • the ⁇ T I represents a temperature rise coefficient of the temperature sensor
  • the ⁇ , ⁇ , p, b are preset coefficients
  • the L t represents a screen brightness of the terminal device a value
  • the I t representing a battery current value of the terminal device.
  • Step S83 The terminal device determines the second parameter according to the low temperature correction coefficient ⁇ of the temperature sensor and the temperature rise coefficient ⁇ T I of the temperature sensor.
  • the calculation of the second parameter may satisfy the following formula (1.5):
  • the second parameter - ⁇ ⁇ T I ; formula (1.5)
  • T 0 the temperature of the external environment
  • T NTC the temperature collected by the temperature sensor
  • the terminal device may first determine the first parameter according to the temperature information collected by the first temperature sensor at different times and the time parameter of the temperature sensor; Determining a second parameter by the low temperature correction coefficient and the temperature rise coefficient of the first temperature sensor; and finally determining the terminal device according to the first parameter, the second parameter, and temperature information collected by the first temperature sensor External ambient temperature.
  • a temperature sensor (the temperature sensor may be the first sensor) may be set in the terminal device for calculating the external environment temperature of the terminal device, or multiple temperature sensors may be set inside the terminal device.
  • One of the plurality of temperature sensors includes a first temperature sensor and at least one second temperature sensor) for calculating an external ambient temperature of the terminal device.
  • the temperature information collected by the terminal device at one time can be calculated by using the methods shown in FIG. 5, FIG. 6, and FIG. The external ambient temperature of the terminal device.
  • the external environment temperature of the terminal device may be determined by the following methods:
  • the terminal device determines the external ambient temperature corresponding to each temperature sensor according to the temperature information collected by each temperature sensor and the system parameter; and how each temperature sensor determines the corresponding external ambient temperature, see The above description of FIG. 5, FIG. 6, and FIG. 7 will not be described here.
  • the terminal device determines an external ambient temperature of the terminal device according to an external ambient temperature corresponding to the plurality of temperature sensors.
  • the terminal device may perform an average operation on an external ambient temperature corresponding to the plurality of temperature sensors to obtain a final external ambient temperature.
  • three temperature sensors are reserved in the terminal for calculating the external environment temperature of the smart terminal, namely, the temperature sensor 1, the temperature sensor 2, and the temperature sensor 3.
  • the calculated external temperature corresponding to the temperature sensor 1 is 26 degrees Celsius
  • the calculated external temperature corresponding to the temperature sensor 2 is 27 degrees Celsius, which is calculated.
  • the external temperature of the temperature sensor 3 corresponds to 28 degrees Celsius.
  • the average calculation can be performed at three temperatures of 26 degrees Celsius, 27 degrees Celsius, and 28 degrees Celsius, and the average temperature of the three temperatures is 27 degrees Celsius, and 27 degrees Celsius is taken as the temperature of the external environment of the terminal device.
  • the temperature sensor may collect temperature information once every n intervals.
  • the temperature sensor 1 can collect the temperature information once at time A, and then obtain the external ambient temperature corresponding to the sensor 1 at time A by the method described above.
  • the external ambient temperature corresponding to the sensor A at time A, and the external ambient temperature corresponding to sensor A at time A can also be obtained.
  • the average temperature of the external temperature corresponding to the time sensor A can be averaged as the external environment temperature corresponding to the time A.
  • the external environment temperature corresponding to time B, the external environment temperature corresponding to time C, and the like can be obtained.
  • the external environment temperature corresponding to the plurality of times is used as the external environment temperature of the terminal device at the current time.
  • the external environment temperature of the terminal device may be calculated in the following manner:
  • T0_TMP Mean(T0_ALL_NTC);Formula (1.8)
  • the ambient temperature output history table is updated according to the T0_TMP.
  • the ambient temperature output history table may include N rows, and each row may store an ambient temperature corresponding to one moment.
  • the ambient temperatures stored in the second to N rows in the ambient temperature output history table may be assigned to the first row to the N-1th row in the ambient temperature output history table, respectively.
  • the ambient temperature calculated by equation (1.8) is stored in the Nth row in the ambient temperature output history table.
  • the final ambient temperature of the terminal device can be calculated by using the following formula (1.9) and formula (2.0):
  • T out (NOUT) ⁇ T out (1:NOUT).*weight 1:NOUT)/ ⁇ weight 1:NOUT);Formula (1.9)
  • the Tout (NOUT) represents an external ambient temperature of the terminal device, and the Tout (1:NOUT). represents the first row to the Nth row in the ambient temperature output history table.
  • the stored ambient temperature, the weight (1:NOUT) represents a weighted average of the ambient temperatures stored in rows 1 through N of the ambient temperature output history table.
  • the weighted average of the ambient temperature stored in the i-th row in the ambient temperature history table is satisfied, and the following formula (2.0) is satisfied.
  • the weight(i) represents a weighted average of the ambient temperature stored in the i-th row in the ambient temperature output history table
  • the time(i) represents an ambient temperature output history table.
  • the ambient temperature stored in the i-th row, the time (NOUT) represents the ambient temperature stored in the Nth row in the ambient temperature output history table
  • the Tf represents the output external ambient temperature smoothing filter parameter for a specific
  • the terminal device, the Tf is a fixed constant.
  • the external environment temperature of the terminal device can be obtained by using the temperature sensor and the system parameter in the terminal device, and the accessory is not required to be added inside or outside the terminal device, and the cost is low and easy to implement.
  • the terminal device may display or pop up the prompt information, where the prompt information includes at least the external environment temperature of the terminal device.
  • the prompt information may remind the user of the temperature state of the external environment in which the terminal device is located. For example, when the temperature of the external environment of the terminal device is detected to be too low, the user can inform the user that the ambient temperature of the terminal device is too low, and remind the user to stop using it to avoid the use of the terminal device under low temperature conditions.
  • the problem of low temperature shutdown of the terminal equipment For example, when it is detected that the external environment temperature of the terminal device is too high, the user can be informed in advance that the ring temperature of the mobile phone is high, which may affect the use of the mobile phone.
  • the terminal device can display the external environment temperature in the preset software.
  • the preset software is weather forecasting software.
  • the terminal device can display the temperature of the external environment in the built-in hardware detection result, and display the external environment temperature in the mobile phone log file.
  • the terminal device when the detected external environment temperature of the terminal device is greater than a first value, the terminal device performs a high temperature control policy.
  • the first value can be, but is not limited to, a temperature of 35 degrees Celsius and above.
  • the terminal device When the detected external environment temperature of the terminal device is less than the second value, the terminal device performs a low temperature control strategy; for example, the second value may be, but is not limited to, a temperature of 5 degrees Celsius or less.
  • the terminal device When the detected external environment temperature of the terminal device is greater than or equal to the second value and less than or equal to the first value, the terminal device performs a normal temperature control policy.
  • the second difference when the terminal device detects the temperature of the external environment, the second difference may be determined, where the second difference is an external ambient temperature of the terminal device and a case temperature of the terminal device The difference between the two; and when the second difference is greater than the third value, the terminal device performs a high temperature control policy, and when the second difference is less than the fourth value, the terminal device performs a low temperature control strategy, When the second difference is greater than or equal to the fourth value and less than or equal to the third value, the terminal device performs a normal temperature control policy.
  • the correspondence table between the temperature information collected by the temperature sensing and the temperature of the outer casing may be pre-stored in the terminal device, and the terminal device may use the corresponding correspondence table after the temperature information is collected by the temperature sensor.
  • the temperature to the outer casing of the terminal equipment may be pre-stored in the terminal device, and the terminal device may use the corresponding correspondence table after the temperature information is collected by the temperature sensor. The temperature to the outer casing of the terminal equipment.
  • the high temperature control strategy may include switching to a high temperature temperature control scheme in advance, and the high temperature temperature control scheme prohibits enabling the camera 4K camera, prohibiting the flash from being turned on, prohibiting the game high frame rate mode, and adjusting the CPU/ GPU clock frequency, adjusting display module brightness, adjusting PA transmit power, adjusting charging current, limiting battery discharge, flash off, Camera effect mode, network download rate, and bullet box reminding temperature control threshold are more strict than normal temperature control and thus balanced high The duration of use, performance experience and thermal experience at ambient temperature.
  • the low temperature control strategy may include that the battery power and the temperature threshold of the battery are configured one by one from low to high, and the lower the temperature, the control is about strict, such as not turning on the flash when the temperature is -5 ° C, and prompting the user to " If the temperature is too low, the flash is forbidden.
  • the frequency limit is determined according to the power/temperature. During the use, the power and temperature are actively queried.
  • the external environment temperature of the terminal device and the outer casing temperature of the terminal device may be combined to ensure that the terminal device satisfies the user thermal experience in a light load scenario.
  • the terminal device may determine a cause of heat generation of the terminal device according to the detected external environment temperature, and output an analysis report to notify the user whether the terminal device is currently usable.
  • the terminal device may also output an external environment temperature detected by the terminal device to a preset server, and the preset server may analyze a cause of heat generation of the terminal device according to an external environment temperature of the terminal device device.
  • the present application further provides a terminal device 900, which includes a first temperature sensor 901, a processor 902, and an output device 903;
  • the first temperature sensor 901 is configured to collect temperature information, where the first temperature sensor is located in a cold area of the terminal device;
  • the processor 902 is configured to determine an external ambient temperature of the terminal device according to the temperature information collected by the first temperature sensor;
  • the output device 903 is configured to output the external ambient temperature.
  • the output device may be an audio output device or a display.
  • the audio output device can output an external ambient temperature by sound or the like.
  • the display may output an external ambient temperature through a pop-up interface including an external ambient temperature.
  • the terminal device 900 may further include: a second temperature sensor 904, configured to collect temperature information.
  • the terminal device 900 may further include: a memory 905, where the memory 905 stores computer execution instructions, and the processor 902 specifically executes the computer stored by the memory. Executing an instruction to cause the processor 902 to perform the above-described scheme of determining an external ambient temperature of the terminal device according to the temperature information collected by the first temperature sensor.
  • the present application further provides an apparatus 100 for determining an external ambient temperature, including:
  • the collecting unit 101 is configured to collect temperature information by using a first temperature sensor, where the first temperature sensor is located in a cold area of the terminal device;
  • a determining unit 102 configured to determine an external ambient temperature of the terminal device according to the temperature information collected by the first temperature sensor
  • the output unit 103 is configured to output the external environment temperature.
  • the present application also provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform the above-described method of determining an external ambient temperature.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请公开了一种终端设备及确定外部环境温度的方法,其中,所述终端设备包括,第一温度传感器,处理器和输出装置;其中,所述第一温度传感器,用于采集温度信息,所述第一温度传感器位于所述终端设备的冷区域;所述处理器,用于根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度;所述输出装置,用于输出所述外部环境温度;采用本申请的终端设备及方法,可确定终端设备的外部环境温度。

Description

一种终端设备及确定外部环境温度的方法 技术领域
本申请涉及计算机技术领域,尤其涉及一种终端设备及确定外部环境温度的方法。
背景技术
随着互联网的飞速发展,终端设备的应用已经远远超出最初的时钟显示和通话等功能,趋于智能化和应用多样化。环境温度与用户的生活息息相关。利用终端设备确定外部环境温度是目前终端设备应用的一种趋势。但在现有技术中,关于如何获取终端设备的外部环境温度,并没有相关的解决方案。
发明内容
本申请公开了一种终端设备及确定外部环境温度的方法,采用本申请所提供的终端设备及确定外部环境温度的方法,可确定终端设备的外部环境温度。
第一方面,本申请公开了一种确定外部环境温度的方法,包括:终端设备通过第一温度传感器采集温度信息,所述第一温度传感器位于所述终端设备的冷区域;所述终端设备根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度;所述终端设备输出所述外部环境温度。
采用本申请的终端设备无需在终端设备的内部或外部额外增加配件,成本较低,易于实现。
在一种可能的设计中,所述冷区域为所述终端设备的内部空隙处,所述内部空隙处与所述终端设备的外部环境连通;或者,所述冷区域为位于或者邻近所述终端设备的天线净空区域的区域,且所述天线净空区域无所述终端设备的主热源;或者,所述冷区域为印刷电路板上的不存在主热源的区域。
在本申请实施例中,由于终端设备的冷区域受热源的影响较小,因此,采用位于冷区的第一温度传感器,确定终端设备的外部环境温度,可使得所获得的外部环境温度较精准。
在一种可能的设计中,所述方法还包括:所述终端设备通过第二温度传感器采集温度信息,所述第二温度传感器用于采集温度信息,所述第二温度传感器位于所述终端设备的热源中心与所述第一温度传感器的连线上;
所述终端设备根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度,包括:所述终端设备根据所述第一温度传感器所采集的温度信息,以及所述第二温度传感器所采集的温度信息,确定所述终端设备的外部环境温度。
由于在实际应用中,采用位于不同区域的第一温度传感器和第二温度传感器,确定终端设备的外部环境温度,相对于仅采用一个区域的温度传感器,确定终端设备的外部环境温度,可使得所确定的外部环境温度较精准。
具体的,当所述终端设备的热源集中分布时,所述第二温度传感器的数量为1个,所述第二温度传感器位于所述热源的中心与所述第一温度传感器的连线上;
当所述终端设备的热源分散分布时,所述分散分布的热源包括N个集中热源,所述第二温度传感器的数量为N个,N个第二温度传感器中的第i个第二温度传感器,位于第i 个集中热源与所述第一温度传感器的连接上,所述N为大于或者等于2的整数,所述i为大于或者等于1,小于或者等于N的整数。
可选的,第一方面所述方法还可包括:当所述外部环境温度大于第一值时,所述终端设备执行高温控制策略;当所述外部环境温度小于第二值时,所述终端设备执行低温控制策略;当所述外部环境温度大于或者等于所述第二值,小于或者等于所述第一值时,所述终端设备执行常温控制策略。
可选的,第一方面所述方法还可包括:所述终端设备确定第二差值,所述第二差值为所述终端设备的外部环境温度与所述终端设备的外壳温度间的差值;当所述第二差值大于第三值时,所述终端设备执行高温控制策略;当所述第二差值小于第四值时,所述终端设备执行低温控制策略;当所述第二差值大于或者等于所述第四值,小于或者等于所述第三值时,所述终端设备执行常温控制策略。
可选的,第一方面所述方法还可包括:所述终端设备根据所述外部环境温度,确定所述终端设备的发热原因;或者,所述终端设备输出所述外部环境温度至预设服务器,所述预设服务器用于分析所述终端设备的发热原因。
具体的,所述终端设备根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度,包括:所述终端设备获取所述终端设备的系统参数;所述终端设备根据所述第一温度传感器所采集的温度信息以及所述系统参数,确定所述终端设备的外部环境温度。
更具体的,所述终端设备根据所述第一温度传感器所采集的温度信息以及所述系统参数,确定所述终端设备的外部环境温度,包括所述终端设备根据所述第一温度传感器在不同时刻所采集的温度信息以及所述温度传感器的时间参数,确定第一参数;所述终端设备根据所述第一温度传感器的低温修正系数和温升系数,确定第二参数;所述终端设备根据所述第一参数、第二参数以及所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度。
更具体的,所述系统参数包括所述终端设备的电池输出电流、屏幕亮度和器件工作状态中的至少一个;
当所述系统参数包括所述终端设备的电池输出电流和屏幕亮度时,所述终端设备根据以下公式,确定所述第一温度传感器的温升系数:
ΔT I=α(pL t)+β(I t-pL t)+b;
其中,所述ΔT I代表所述第一温度传感器的温升系数,所述α,β,p,b为预设系数,所述L t代表所述终端设备的屏幕亮度值,所述I t代表所述终端设备的电池电流值。
更具体的,所述终端设备根据以下方式,确定所述第一温度传感器的低温修正系数:
当在当前时刻相邻的上一时刻,不存在输出的所述外部环境温度时,所述第一温度传感器的低温修正系数为1,;
当在当前时刻相邻的上一时刻,存在输出的所述外部环境温度时,所述处理器采用以下公式,确定所述第一温度传感器的低温修正系数;
Υ=1+(FCOEF-1)*(x-min(T_L,x))
其中,所述Υ代表所述第一温度传感器的低温修正系数,所述T_L代表在当前时刻相邻的上一时刻所输出的外部环境温度,所述x代表在当前时刻,所述终端设备的外部环境温度,且当外部环境温度大于或者等于x摄氏度时,所述终端设备的散热能力相同,所述 FCOEF代表第一散热值与第二散热值的比值,所述第一散热值表征当终端设备的外部环境温度在处于x及以上摄氏度时,所述终端设备的散热能力,所述第二散热值表征当所述终端设备的外部环境温度处于零摄氏度时,所述终端设备的散热能力。
第二方面,本申请提供一种终端设备,所述终端设备包括用于执行以上第一方面各个步骤的单元或手段(means)。
第三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面任一项所述的方法。
第四方面,本申请提供一种程序,该程序在被处理器执行时用于执行以上任一方面的方法。
由上可见,在本申请实施例中,首先第一温度传感器可采集温度信息,然后处理器根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度,最后输出装置输出外部环境温度。可见,采用本申请实施例所公开的方式,可确定终端设备的外部环境温度。
附图说明
图1至图3为本申请实施例提供的第一温度传感器和第二温度传感器相对关系的示意图;
图4为本申请实施例提供的热阻网络示意图;
图5至图8为本申请实施例提供的确定外部环境温度的流程示意图;
图9为本申请实施例提供的终端设备的结构示意图;
图10为本申请实施例提供的确定外部环境温度的示意图。
具体实施方式
目前,通常采用以下三种方案,获取终端设备的外部环境温度:
第一种方案:在终端设备的配件(比如挂饰)上设置温度传感器,所述温度传感器用于采集外部环境的温度。
第二种方案:在终端设备的内部新增红外线温度传感模块,利用红外探测获取外部环境的温度。
第三种方案:在终端设备的外壳上增加开孔,该开孔可与外界空气对流,然后在该开孔处增加温度检测模块,利用该温度检测模块检测外部环境的温度。
可见,在上述三种方案中,均会破环终端设备外观,额外增加配件,成本较高。
针对以上,本申请实施例公开了一种终端设备及确定外部环境温度的方法,该方法及终端设备的原理为:基于终端设备出厂时即携带的,位于冷区域的第一温度传感器所采集的温度信息,确定终端设备外部环境的温度,无需在终端设备的内部或外部额外增加配件,成本较低,易于实现。
在本申请实施例中,首先在终端设备内选择一个或多个温度传感器,然后基于所选择的温度传感器,建立热阻网络模型。最后基于所述热阻网络模型,生成训练算法,所述训练算法,用于根据温度传感器所采集的温度信息,确定终端设备外部环境的温度。
首先介绍,如何在终端设备内部选择一个或多个温度传感器;
在本申请的一示例中,可仅在终端设备的冷区域选择一个或多个第一温度传感器。然后仅基于所述第一温度传器所采集的温度信息,确定所述终端设备的外部环境温度。
在本申请的另一示例中,可在终端设备的冷区域选择第一温度传感器,然后根据第一温度传感器与终端设备内热源的位置关系,再选择一个或多个第二温度传感器。最后,基于第一温度传感器所采集的温度信息以及第二温度传感器所采集的温度信息,确定终端设备的外部环境温度。
在本申请实施例中,所述第一温度传感器与第二温度传感器中的“第一”以及“第二”等词汇,仅用于区分描述,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。所述第一温度传感器也可称为主温度传感器,所述第二温度传感器也可称为辅温度传感器。
在本申请实施例中,可通过以下方式,确定终端设备的冷区域:第一种方式:可首先获取终端设备在某一工作状态下的红外温度云图,所述红外云图中包括冷区域和热区域,最后将所述红外温度云图中的冷区域,作为终端设备的冷区域。第二种方式:确定终端设备在不同场景下运行的温度云图,将所述不同场景下运行的温度云图中的共同冷区域,作为终端设备的冷区域。比如,可获取终端设备在第一场景运行下的第一温度云图,比如,所述第一场景可为终端设备运行游戏的场景。然后获取终端设备在第二场景运行下的第二温度云图,比如,所述第二场景可为终端设备运行摄像或录像程序时的场景;最后获取终端设备在第三场景运行下的第三温度云图,比如,所述第三场景可为终端设备在上网时的场景。最后获取上述第一温度云图中的第一冷区域、第二温度云图中的第二冷区域和第三温度云图中的第三冷区域,将第一冷区域、第二冷区域以及第三冷区域中的重叠区域或公共区域,称为终端设备的冷区域。
在本申请实施例中,关于如何获取终端设备在不同工作场景或不同场景下的温度云图,可采用以下方式:通过红外仪拍摄获取终端设备在不同工作状态或不同场景下的温度云图。或者,通过仿真软件获取终端设备在不同工作状态或不同场景下的温度云图。
在本申请实施例中,所述终端设备的冷区域可位于终端设备内的以下区域:1)冷区域位于终端设备的内部空隙处,所述内部空隙处与所述终端设备的外部环境连通,或者,称所述内部空隙处与所述终端设备的外部环境有对流;2)所述冷区域位于所述终端设备的天线净空区域,且所述天线净空区域无所述终端设备的主热源,所述终端设备的主热源可指终端设备内功耗高于100mW的器件;3)所述冷区域邻近所述终端设备的天线净空区域,且所述天线净空区域无所述终端设备的主热源。当终端设备的印刷电路板(printed circuit board,PCB)上存在主热源时,邻近天线净空区域表示所述第一温度传感器到主热源的第一距离大于第一温度传感器到天线净空区域的第二距离内的区域。若终端设备的PCB上无主热源,则邻近天线净空区域可表示终端设备内天线净空区域的PCB板区域,此时天线净空区域内的PCB板区域本身已经在靠近天线净空区的位置;4)所述冷区域位于终端设备四角中的区域;5)所述冷区域为印刷电路板上的不存在主热源的区域,所述印刷电路板包括终端设备的小板和柔性电路板(flexible print board,FPB)中的至少一个。
在本申请实施例中,关于如何根据第一温度传感器与热源的位置关系,确定第二温度传感器,可采用以下方式:
由于终端设备内的热源一般会有三个及以上,比如,系统级芯片(System on Chip,SOC)、功率放大器(power amplifier,PA)以及照相机(camera)等。所述热源在终端设备内可 集中分布,也可分散分布。
因此,在本申请实施例中,当终端设备内的热源集中分布时,所述第二温度传感器的数量可为1个。所述第二温度传感器位于所述热源的中心与所述第一温度传感器的连线上,也可称为热源在第一温度传感器与第二温度传感器的连线上均匀分布。在本申请实施例中,以终端设备的热源为两个,分别为第一热源和第二热源,且第一热源和第二热源集中分布为例,详细说明如何选择第二温度传感器。可首先确定第一热源与第二热源的中心,然后连接第一温度传感器与第一热源和第二热源的中心,最后,在所述第一温度传感器与第一热源和第二热源中心的连接线上,选择第二温度传感器。比如,如图1所示,当第一热源与第二热源上下分布时,所述第二温度传感器可位于第一温度传感器与热源之间(比如,图1中的方式a),所述第二温度传感器也可位于第一温度传感器和热源的左侧(比如,图1中的方式b),所述第二温度传感器也可位于热源和第一温度传感器的右侧(比如,图1中的方式c)。所述第二温度传感器也可与第一热源和第二热源的中心重叠(比如,图1中的方式d)。再比如,如图2所示,当第一热源与第二热源左右分布时,所述第二温度传感器可位于第一温度传感器与第一热源和第二热源之间(比如,图2中的方式a),所述第二温度传感器也可位于第一温度传感器与第一热源和第二热源的左侧(比如,图2中的方式b),所述第二温度传感器也可位于第一温度传感器与第一热源和第二热源的右侧(比如,图2中的方式c),所述第二温度传感器也可与第一热源和第二热源的中心重叠(比如,图2中的方式d),所述第二温度传感器也可与第一热源重叠(比如,图2中的方式e),所述第二温度传感器也可与第二热源重叠(比如,图2中的方式f)。
需要说明的是,在本申请实施例中,并不限定第一温度传感器与第一热源和第二热源的位置关系,在图1和图2的示例中,仅是以第一温度传感器位于第一热源和第二热源的左侧为例进行举例说明,在本申请的实施例中,第一温度传感器可位于第一热源和第二热源的左侧,所述第一温度传感器也可位于第一热源和第二热源的右侧,甚至所述第一温度传感器也可与第一热源和第二热源的中心重叠,在此不再限定。
在本申请实施例中,当终端设备的热源分散时,可按热源的集中程度,将分散的热源划分为多个集中热源,然后在每个集中热源的中心与第一温度传感器的连线上选择一个第二温度传感器,所述第二温度传感器位于第一温度传感器与集中热源中心的连线上,也可称为分散热源中的每个集中热源在第一温度传感器与第二温度传感器的连线上均匀分布。比如,当所述终端设备的热源分散分布时,所述分散分布的热源可包括N个集中热源,所述第二温度传感器的数量为N个,N个第二温度传感器中的第i个第二温度传感器,位于第i个集中热源与所述第一温度传感器的连线上,所述N为大于或者等于2的整数,所述i为大于或者等于1,小于或者等于N的整数。
比如,如图3所示,终端设备内包括9个热源,且9个热源在终端设备内分散,那么可按照热源的集中程度,将9个分散热源,划分为3个集中热源,分别为集中热源1、集中热源2以及集中热源3。其中,集中热源1内包括3个热源,分别为热源1、热源2以及热源3。集中热源2内包括3个热源,分别为热源4、热源5以及热源6。集中热源3内包括3个热源,分别为热源7、热源8以及热源9,那么可在集中热源1的中心与主传感器的连线上设置一第二温度传感器,所述第二温度传感器可位于集中热源1与第一温度传感器之间,也可位于集中热源1与第一温度传感器的外侧,在此不再赘述。在图3中,是以第二温度传感器位于集中热源1与第一温度传感器的外侧为例,进行说明的。同理,可 在集中热源2的中心与第一温度传感器的连接上设置一个第二温度传感器,在集中热源3的中心与第一温度传感器的连线上设置一个第二温度传感器。
然后介绍,基于所选择的温度传感器,建立热阻网络模型。
在本申请实施例中,设定在终端设备内选定n个温度传感器,分别为温度传感器1、温度传感器2、温度传感器3,依次类推,直至温度传感器n,所述n为大于等于1的整数。终端设备内包括i个热源,分别为热源1、热源2,依次类推,直至热源i,所述i为大于等于1的整数,所建立的热阻网络模型,可如图4所示。需要说明的是,图4所示的n个温度传感器,可均位于终端设备的冷区域,即所述n个温度传感器均为上述所述第一温度传感器,或n个温度传感器均为上述所述主温度传感器。或者,图4所示的n个温度传感器中,一个温度传感器位于终端设备的冷区域,其余n-1个温度传感器位于所述热源中心与上述冷区域温度传感器的连线上。也就是说,图4所示的n个温度传感器中,一个温度传感器为上述第一温度传感器,或称n个温度传感器中,一个温度传感器为上述主温度传感器。其余n-1个温度传感器为上述第二温度传感器,或者称其余n-1个温度传感器为辅温度传感器。
通过图4可以看出,每个温度传感器的温度,受i个热源的叠加影响,且每个温度传感器的温度与终端设备的外部环境温度的差值,可通过热阻R体现。所述R=(T1-T2)/(P1+P2...+Pi,所述T1代表温度传感器的温度,所述T2代表终端设备外部环境的温度,所述Pi代表第i个热源传递到该温度传感器的功率。
最后介绍,基于如图4所示的热阻网络模型,建立训练算法。
在本申请实施例中,所述训练算法,可基于所选定温度传感器的温度信息,以及终端设备内的系统参数,来确定终端设备的外部环境温度,所述系统参数包括不限于终端设备的电池输出电流、屏幕亮度和器件工作状态。其中,所述器件工作状态包括SOC频点、PA发射功率、WIFI强度以及声音输出(speaker)模块功耗等。
在本申请实施例中,所述终端设备的外部环境温度指终端设备整体所处外部环境的温度,或者,所述终端设备的外部环境温度指终端设备所处外部大气的温度,或者,所述终端设备的外部环境温度指终端设备所处小环境的温度,比如,对于可随身携带的移动终端设备,所述终端设备的外部环境温度可包括所述终端设备置于口袋、被子内等时,口袋内或被子等内的温度。需要说明的是,在本申请实施例中,所述终端设备的外部环境温度不是指通过天气预报等方式可以查询的某地区所处天气的温度。
基于以上思路,本申请提供一种确定外部环境温度的方法,如图5所示,所述方法包括:
步骤S51:终端设备通过第一温度传感器采集温度信息。
其中,所述第一温度传感器位于所述终端设备的冷区域,关于终端设备的冷区域,以及第一温度传感器的说明,可参见上述记载,在此不再赘述。
步骤S52:所述终端设备根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度。
在本申请实施例中,终端设备还可通过第二温度传感器采集温度信息,关于第二温度传感器的介绍,可参见上述记载,在此不再赘述。
在本申请的一示例中,所述终端设备可通过第一温度传感器所采集的温度信息以及第二温度传感器所采集的温度信息,确定终端设备的外部环境温度。
步骤S53:所述终端设备输出所述外部环境温度。
在本申请实施例中,终端设备可以文字、语音、图像以及视频等发式输出外部环境温度。比如,在本申请的一示例中,终端设备可中可弹出一提示页面,所述提示页中可包括所述外部环境温度。再如,在本申请实施例中,所述终端设备可通过语音的方式,播报外部环境温度。再如,在本申请实施例中,所述终端设备可输出外部环境温度,至天气预报程序,然后通过天气预报程序显示所述外部环境温度。
由上可见,在本申请实施例中,利用终端设备内部预先设置的温度传感器,即可确定外部环境的温度,无需在终端设备的内部或外部额外增加配件,成本较低,易于实现。
以下将详细介绍步骤S52中,如何根据第一传感器所采集的温度信息,确定外部环境温度,如图6所示,具体为:
步骤S61:终端设备获取所述终端设备的系统参数。
步骤S62:终端设备根据所述第一温度传感器所采集的温度信息以及所述系统参数,确定所述终端设备的外部环境温度。
在本申请实施例中,终端设备可首先基于终端设备的系统参数,确定温度传感器所采集的温度与终端设备的外部环境温度的第一差值;然后基于所述第一差值与温度传感器所采集的温度信息,确定终端设备的外部环境温度。比如,温度传感器所采集的温度为25摄氏度,第一差值为0.5摄氏度,那么可确定终端设备的外部环境温度为24.5摄氏度。
在本申请实施例中,温度传感器所采集的温度与终端设备外部环境的温度间的第一差值,主要受两个因素影响,第一因素为:终端设备的系统参数(比如屏幕亮度)对温度传感器温升的影响,其中,第一因素可对应于第一参数。第二因素为:外部环境温度对温度传感器温升的影响,其中Ts为温度传感器对外部温度变化响应的时间常数。其中,所述第二因素可对应于第二参数。
在本申请实施例中,所述终端设备可采用以下方式,确定所述第一差值:首先根据所述温度传感器在不同时刻所采集的温度以及所述温度传感器的时间参数,确定所述第一参数;然后根据所述终端设备的系统参数,确定所述第二参数;最后根据所述第一参数以及所述第二参数,确定所述第一差值。在本申请的一示例中,所述第一差值可为第一参数与第二参数之和。
在本申请实施例中,如图7所示,终端设备可采用以下方式,确定上述第一参数:
步骤S71:终端设备根据所述温度传感器在不同时刻采集的温度,确定所述温度传感器的温度随时间变化率
Figure PCTCN2018080729-appb-000001
比如,在本申请实施例中,设定温度传感器在在T1时刻所采集的温度值为T NTC(T1),在T2时刻所采集的温度值为T NTC(T2),那么
Figure PCTCN2018080729-appb-000002
的计算满足以下公式(1.1):
Figure PCTCN2018080729-appb-000003
步骤S72:终端设备基于温度传感器的温度随时间变化率
Figure PCTCN2018080729-appb-000004
以及所述温度传感器的时间参数Ts,确定所述第一参数。所述Ts为温度传感器内部的参数,与温度传感器相关。
比如,在本申请的一示例中,所述第一参数的计算可满足以下公式(1.2)。
Figure PCTCN2018080729-appb-000005
在本申请实施例中,如图8所示,终端设备可采用以下方式,确定上述第二参数:
步骤S81:终端设备确定所述温度传感器的低温修正系数Υ。
采用本申请实施例中的方法,终端设备可间隔一定时长,计算一次外部环境的温度。 比如,温度传感器每间隔5秒采集一次温度,那么,终端设备可基于温度传感器所采集的温度以及终端设备当前的系统参数,每间隔5s输出一次外部环境的温度。在本申请的一示例中,如果当前时刻相邻的上一时刻,不存在所输出的终端设备的外部环境温度时,所述温度传感器的低温修正系数Υ的取值可为1;如果当前时刻相邻的上一时刻,存在所输出的终端设备的外部环境温度时,所述终端设备可采用下述公式(1.3),确定所述温度传感器的低温修正系数Υ。
Υ=1+(FCOEF-1)*(x-min(T_L,x));公式(1.3)
其中,在上述公式(1.3)中,所述Υ代表所述温度传感器的低温修正系数,所述T_L代表在当前时刻相邻的上一时刻所输出的终端设备的外部环境温度,所述x代表所述终端设备的外部环境温度,且当终端设备的外部环境温度大于或等于x摄氏度时,所述终端设备的散热能力相同,所述FCOEF代表当终端设备的外部环境温度在处于x及以上摄氏度时,所述终端设备的散热能力,与所述终端设备处于零摄氏度时,所述终端设备散热能力的比值。在本申请的一示例中,如果当终端设备处于25摄氏度及以上温度时,终端设备的散热能力相同,那么上述公式(1.3)中的x中的取值可为25。
步骤S82:终端设备根据所述系统参数,确定所述温度传感器的温升系数ΔT I
在本申请的实施例中,述系统参数包括所述终端设备的电池电流、屏幕亮度、器件工作状态,比如,SOC频点、PA发射功率、WIFI强度以及Speaker模块功耗等个。
在本申请的一示例中,当所述系统参数中包括所述终端设备的电池电流和屏幕亮度时,所述终端设备根据以下公式(1.4),确定所述温度传感器的温升系数ΔT I
ΔT I=α(pL t)+β(I t-pL t)+b;公式(1.4)
其中,在上述公式(1.4)中,所述ΔT I代表所述温度传感器的温升系数,所述α,β,p,b为预设系数,所述L t代表所述终端设备的屏幕亮度值,所述I t代表所述终端设备的电池电流值。需要说明的是,在本申请实施例中,如果在终端设备内部所选择的用于计算外部环境温度的温度传感器包括主传感器和辅传感器时,主传感器与辅传感器的预设系数α,β,p,b,的取值不同。
步骤S83:终端设备根据所述温度传感器的低温修正系数Υ以及所述温度传感器的温升系数ΔT I,确定所述第二参数。
在本申请的一示例中,所述第二参数的计算可满足以下公式(1.5):
第二参数=-ΥΔT I;公式(1.5)
通过上述论述可知,终端设备的外部环境温度的计算,可满足下述公式(1.6):
终端设备的外部环境温度=温度传感器所采集的温度信息+第一差值=温度传感器所采集的温度+第一参数+第二参数;公式(1.6)
在本申请实施例中,将上述公式(1.2):
Figure PCTCN2018080729-appb-000006
和上述公式(1.5)第二参数=-ΥΔT I,代入至上述公式(1.6)。同时将外部环境的温度用T 0表示,将温度传感器所采集的温度用T NTC表示,可以得到下述公式(1.7):
Figure PCTCN2018080729-appb-000007
通过上述可以看出,在本申请实施例中,所述终端设备可首先根据所述第一温度传感器在不同时刻所采集的温度信息以及所述温度传感器的时间参数,确定第一参数;然后根据所述第一温度传感器的低温修正系数和温升系数,确定第二参数;最后,根据所述第一 参数、第二参数以及所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度。
在本申请实施例中,在终端设备内可设定一个温度传感器(所述温度传感器可为第一传感器)用于计算终端设备的外部环境温度,也可在终端设备内部设定多个温度传感器(多个温度传感器中包括一个第一温度传感器和至少一个第二温度传感器)用于计算终端设备的外部环境温度。当在终端设备内设定一个温度传感器用于计算终端设备的外部环境温度时,针对终端设备在一个时刻所采集的温度信息,可利用上述图5、图6以及图7所示的方法,计算终端设备的外部环境温度。
而当终端设备内部设定多个温度传感器时,可采用以下方式,确定终端设备的外部环境温度:
所述终端设备根据每个温度传感器所采集的温度信息以及所述系统参数,确定每个温度传感器所对应的外部环境温度;关于,每个温度传感器如何确定其所对应的外部环境温度,可参见上述图5、图6以及图7的介绍,在此不再介绍。
所述终端设备根据多个温度传感器所对应的外部环境温度,确定所述终端设备的外部环境温度。
在本申请的一示例中,所述终端设备可对多个温传感器所对应的外部环境温度进行均值运算,获得最终的外部环境温度。比如,在终端内预定3个温度传感器用于计算智能终端的外部环境温度,分别为温度传感器1、温度传感器2、温度传感器3。且采用上述图5、图6以及图7所示的方法,所计算的温度传感器1所对应的外部环境温度为26摄氏度,所计算的温度传感器2所对应的外部环境温度为27摄氏度,所计算的温度传感器3所对应的外部环境温度为28摄氏度。那么,可在26摄氏度、27摄氏度以及28摄氏度三个温度间进行平均计算,获得三个温度的平均温度27摄氏度,并将27摄氏度作为终端设备外部环境的温度。
在本申请的另一示例中,温度传感器可每间隔n时长,采集一次温度信息。比如,温度传感器1可在时刻A采集一次温度信息,然后采用上述记载的方法,获得在时刻A传感器1所对应的外部环境温度。同理,也可获得在时刻A传感器2所对应的外部环境温度,在时刻A传感器3所对应的外部环境温度。最后,可将可将3个温度传感器在时刻A所对应的外部环境温度求均值,作为时刻A所对应的外部环境温度。同理,也可获得时刻B所对应的外部环境温度,时刻C所对应的外部环境温度等。最后,再将多个时刻所对应的外部环境温度,求均值,作为当前时刻终端设备的外部环境温度。
在本申请的又一示例中,可具体采用以下方式,计算终端设备的外部环境温度:
首先,对所有温度传感所对应的环境温度进行平均运算,可参见下述公式(1.8)
T0_TMP=Mean(T0_ALL_NTC);公式(1.8)
然后,根据所述T0_TMP更新环境温度输出历史表。在本申请实施例中,所述环境温度输出历史表中可包括N行,每行可存储一个时刻所对应的环境温度。在本申请实施例中,可将环境温度输出历史表中的第2至N行所存储的环境温度,分别赋于到所述环境温度输出历史表中的第1行至第N-1行,最后,将利用公式(1.8)所计算出的环境温度,存储至环境温度输出历史表中的第N行。
在本申请实施例中,可利用下述公式(1.9)和公式(2.0),计算终端设备的最终环境温度:
T out(NOUT)=∑T out(1:NOUT).*weight 1:NOUT)/∑weight 1:NOUT);公式(1.9)
其中,在所述公式(1.9)中,所述T out(NOUT)代表终端设备的外部环境温度,所述T out(1:NOUT).代表环境温度输出历史表中第1行至第N行所存储的环境温度,所述weight(1:NOUT)代表对环境温度输出历史表中的第1行至第N行所存储的环境温度进行加权平均。
其中,针对环境温度历史表中的第i行所存储的环境温度进行加权平均,满足下述公式(2.0)
Figure PCTCN2018080729-appb-000008
其中,在所述公式(2.0)中,所述weight(i)代表对环境温度输出历史表中的第i行所存储的环境温度进行加权平均,所述time(i)代表环境温度输出历史表中的第i行所存储的环境温度,所述time(NOUT)代表环境温度输出历史表中的第N行所存储的环境温度,所述T f代表输出外部环境温度平滑过滤参数,对于一特定终端设备而方,所述T f为一固定常数。
由上可见,在本申请实施例中,利用终端设备内的温度传感器以及系统参数即可获取终端设备的外部环境温度,无需在终端设备内部或外部额外增加配件,成本较低,易于实现。
在本申请的一示例中,在终端设备获取到外部环境的温度后,所述终端设备可显示或弹出提示信息,所述提示信息中至少包括终端设备的外部环境温度。所述提示信息可提醒用户终端设备所处外部环境的温度状态。比如,当检测到终端设备的外部环境温度过低时,可通过弹框提醒告知用户终端设备所处的环境温度过低,提醒用户停止使用,以避免由于终端设备在低温状况下使用,所引用的终端设备低温关机的问题。再如,当检测到终端设备的外部环境温度过高时,可提前告知用户手机所处的环温较高,可能影响手机使用。再比如,所述终端设备可在预设软件中显示外部环境温度,比如,预设软件为天气预报软件。再比如,所述终端设备可在自带的硬件检测结果中显示外部环境的温度,在手机日志(log)文件中显示外部环境温度等。
在本申请的又一示例中,当检测的所述终端设备的外部环境温度大于第一值时,所述终端设备执行高温控制策略。比如,所述第一值可但不限于为35摄氏度及其以上温度。当检测的所述终端设备的外部环境温度小于第二值时,所述终端设备执行低温控制策略;比如,所述第二值可但不限于为5摄氏度及其以下温度。当检测的所述终端设备的外部环境温度大于等于所述第二值,小于等于所述第一值时,所述终端设备执行常温控制策略。
在本申请的另一示例中,当终端设备检测到外部环境的温度时,可确定第二差值,所述第二差值为所述终端设备的外部环境温度与所述终端设备的外壳温度间的差值;且当所述第二差值大于第三值时,所述终端设备执行高温控制策略,当所述第二差值小于第四值时,所述终端设备执行低温控制策略,当所述第二差值大于等于所述第四值,小于等于所述第三值时,所述终端设备执行常温控制策略。
在本申请实施例中,终端设备内可预先存储温度传感所采集的温度信息与外壳温度间 的对应表,所述终端设备可在温度传感器所采集到温度信息后,利用上述对应表,查询到终端设备的外壳温度。
在本申请实施例中,所述高温控制策略可包括提前切换到高环温温控方案,高温温控方案禁止启用camera的4K摄像,禁止开启闪光灯,禁止游戏高帧率模式,且调整CPU/GPU时钟频率、调整显示模组亮度、调整PA发射功率、调整充电电流、限制电池放电、闪光灯关闭、Camera特效模式、网络下载速率、弹框提醒温控门限相比常温温控更加严格从而均衡高环温下的使用时长、性能体验和热感受。
在本申请实施例中,所述低温温控制策略可包括电池电量和电池的温度阈值由低到高逐个配置,温度越低,控制约严格,如-5℃时不开启闪光灯,并提示用户“温度过低,禁止使用闪光灯”,此外根据电量/温度判断限频,使用过程中主动查询电量和温度,根据电量变化再调整限频机制,如-5度~0度时,如果电量>=60%,CPU不做限制,如果60%>电量>=45%,CPU大核1.6G,小核不做限制,如果45%>电量>=30%,CPU大核1.0G,小核不做限制,如果30%>电量>=10%,如果10%>电量,弹出警告“温度过低,继续使用可能导致异常关机”,请用户进行确认。这样即使设备外壳温度不高,也能采取缓解措施降低电池输出电流,防止低温下大电流导致低压关机等问题。
在本申请实施例中,在所述常温控制策略下,可结合终端设备的外部环境温度和终端设备的外壳温度进行控制,从而确保终端设备在轻负载场景下满足用户热体验。
在本申请的又一示例中,所述终端设备可根据检测到的外部环境温度,确定终端设备的发热原因,且输出分析报告,以告知用户终端设备当前是否可正常使用。或者,所述终端设备也可输出所述终端设备检测的外部环境温度至预设服务器,所述预设服务器将根据所述终端设备设备的外部环境温度,分析所述终端设备的发热原因。
基于相同构思,如图9所示,本申请还提供一种终端设备900,所述终端设备包括第一温度传感器901、处理器902和输出装置903;
其中,所述第一温度传感器901,用于采集温度信息,所述第一温度传感器位于所述终端设备的冷区域;
所述处理器902,用于根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度;
所述输出装置903,用于输出所述外部环境温度。
在本申请实施例中,所述输出装置可为音频输出装置,也可为显示器。所述音频输出装置可通过声音等方式输出外部环境温度。所述显示器可通过弹出界面,所述弹出界面中包括外部环境温度等方式,输出外部环境温度。
可选的,在本申请实施例中,所述终端设备900还可包括:第二温度传感器904,用于采集温度信息。
可选的,在本申请实施例中,所述终端设备900中还可包括:存储器905,所述存储器中905存储有计算机执行指令,所述处理器902具体通过执行所述存储器所存储的计算机执行指令,以使得所述处理器902执行上述根据所述第一温度传感器所采集的温度信息,确定终端设备的外部环境温度的方案。
基于相同构思,如图10所示,本申请还提供一种确定外部环境温度的装置100,包括:
采集单元101,用于通过第一温度传感器采集温度信息,所述第一温度传感器位于所述终端设备的冷区域;
确定单元102,用于根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度;
输出单元103,用于输出所述外部环境温度。
关于上述采集单元101、确定单元102以及输出单元103的具体实现过程,可参见上述实施例的介绍,在此不再赘述。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述确定外部环境温度的方法。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (23)

  1. 一种终端设备,其特征在于,所述终端设备包括第一温度传感器,处理器和输出装置;
    其中,所述第一温度传感器,用于采集温度信息,所述第一温度传感器位于所述终端设备的冷区域;
    所述处理器,用于根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度;
    所述输出装置,用于输出所述外部环境温度。
  2. 根据权利要求1所述的设备,其特征在于,所述冷区域为所述终端设备的内部空隙处,所述内部空隙处与所述终端设备的外部环境连通;或者,所述冷区域为位于或者邻近所述终端设备的天线净空区域的区域,且所述天线净空区域无所述终端设备的主热源;或者,所述冷区域为印刷电路板上的不存在主热源的区域。
  3. 根据权利要求1或2所述的设备,其特征在于,所述终端设备还包括第二温度传感器;
    所述第二温度传感器,用于采集温度信息,所述第二温度传感器位于所述终端设备的热源中心与所述第一温度传感器的连线上;
    所述处理器在根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度时,具体用于:
    根据所述第一温度传感器所采集的温度信息和所述第二温度传感器所采集的温度信息,确定所述外部环境温度。
  4. 根据权利要求3所述的设备,其特征在于,当所述终端设备的热源集中分布时,所述第二温度传感器的数量为1个,所述第二温度传感器位于所述热源的中心与所述第一温度传感器的连线上;
    当所述终端设备的热源分散分布时,所述分散分布的热源可包括N个集中热源,所述第二温度传感器的数量为N个,N个第二温度传感器中的第i个第二温度传感器,位于第i个集中热源与所述第一温度传感器的连线上,所述N为大于或者等于2的整数,所述i为大于或者等于1,小于或者等于N的整数。
  5. 根据权利要求1至4任一项所述的设备,其特征在于,所述处理器还用于:
    当所述外部环境温度大于第一值时,执行高温控制策略;
    当所述外部环境温度小于第二值时,执行低温控制策略;
    当所述外部环境温度大于或者等于所述第二值,小于或者等于所述第一值时,执行常温控制策略。
  6. 根据权利要求1至4任一项所述的设备,其特征在于,所述处理器还用于:
    确定第二差值,所述第二差值为所述终端设备的外部环境温度与所述终端设备的外壳温度间的差值;
    当所述第二差值大于第三值时,执行高温控制策略;
    当所述第二差值小于第四值时,执行低温控制策略;
    当所述第二差值大于或者等于所述第四值,小于或者等于所述第三值时,执行常温控制策略。
  7. 根据权利要求1至6任一项所述的设备,其特征在于,所述处理器还用于:
    根据所述外部环境温度,确定所述终端设备的发热原因;
    或者,所述输出装置还用于:
    输出所述外部环境温度至预设服务器,所述预设服务器用于分析所述终端设备的发热原因。
  8. 根据权利要求1至7任一项所述的设备,其特征在于,所述处理器在根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度时,具体用于:
    获取所述终端设备的系统参数;
    根据所述第一温度传感器所采集的温度信息以及所述系统参数,确定所述终端设备的外部环境温度。
  9. 根据权利要求8所述的设备,其特征在于,所述处理器在根据所述第一温度传感器所采集的温度信息以及所述系统参数,确定所述终端设备的外部环境温度时,具体用于:
    根据所述第一温度传感器在不同时刻所采集的温度信息以及所述温度传感器的时间参数,确定第一参数;
    根据所述第一温度传感器的低温修正系数和温升系数,确定第二参数;
    根据所述第一参数、第二参数以及所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度。
  10. 根据权利要求8或9所述的设备,其特征在于,所述系统参数包括所述终端设备的电池输出电流、屏幕亮度和器件工作状态中的至少一个;
    当所述系统参数包括所述终端设备的电池输出电流和屏幕亮度时,所述处理器根据以下公式,确定所述第一温度传感器的温升系数:
    ΔT I=α(pL t)+β(I t-pL t)+b;
    其中,所述ΔT I代表所述第一温度传感器的温升系数,所述α,β,p,b为预设系数,所述L t代表所述终端设备的屏幕亮度值,所述I t代表所述终端设备的电池电流值。
  11. 根据权利要求8至10任一项所述的设备,其特征在于,所述处理器根据以下方式,确定所述第一温度传感器的低温修正系数:
    当在当前时刻相邻的上一时刻,所述输出装置未输出外部环境温度时,所述第一温度传感器的低温修正系数为1,;
    当在当前时刻相邻的上一时刻,所述输出装置输出外部环境温度时,所述处理器采用以下公式,确定所述第一温度传感器的低温修正系数;
    γ=1+(FCOEF-1)*(x-min(T_L,x))
    其中,所述γ代表所述第一温度传感器的低温修正系数,所述T_L代表在当前时刻相邻的上一时刻所述输出装置所输出的外部环境温度,所述x代表在当前时刻,所述终端设备的外部环境温度,且当外部环境温度大于或者等于x摄氏度时,所述终端设备的散热能力相同,所述FCOEF代表第一散热值与第二散热值的比值,所述第一散热值表征当终端设备的外部环境温度在处于x及以上摄氏度时,所述终端设备的散热能力,所述第二散热值表征当所述终端设备的外部环境温度处于零摄氏度时,所述终端设备的散热能力。
  12. 一种确定外部环境温度的方法,其特征在于,包括:
    终端设备通过第一温度传感器采集温度信息,所述第一温度传感器位于所述终端设备的冷区域;
    所述终端设备根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度;
    所述终端设备输出所述外部环境温度。
  13. 根据权利要求12所述的方法,其特征在于,所述冷区域为所述终端设备的内部空隙处,所述内部空隙处与所述终端设备的外部环境连通;或者,所述冷区域为位于或者邻近所述终端设备的天线净空区域的区域,且所述天线净空区域无所述终端设备的主热源;或者,所述冷区域为印刷电路板上的不存在主热源的区域。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过第二温度传感器采集温度信息,所述第二温度传感器用于采集温度信息,所述第二温度传感器位于所述终端设备的热源中心与所述第一温度传感器的连线上;
    所述终端设备根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度,包括:
    所述终端设备根据所述第一温度传感器所采集的温度信息,以及所述第二温度传感器所采集的温度信息,确定所述终端设备的外部环境温度。
  15. 根据权利要求14所述的方法,其特征在于,当所述终端设备的热源集中分布时,所述第二温度传感器的数量为1个,所述第二温度传感器位于所述热源的中心与所述第一温度传感器的连线上;
    当所述终端设备的热源分散分布时,所述分散分布的热源包括N个集中热源,所述第二温度传感器的数量为N个,N个第二温度传感器中的第i个第二温度传感器,位于第i个集中热源与所述第一温度传感器的连接上,所述N为大于或者等于2的整数,所述i为大于或者等于1,小于或者等于N的整数。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述方法还包括:
    当所述外部环境温度大于第一值时,所述终端设备执行高温控制策略;
    当所述外部环境温度小于第二值时,所述终端设备执行低温控制策略;
    当所述外部环境温度大于或者等于所述第二值,小于或者等于所述第一值时,所述终端设备执行常温控制策略。
  17. 根据权利要求12至15任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定第二差值,所述第二差值为所述终端设备的外部环境温度与所述终端设备的外壳温度间的差值;
    当所述第二差值大于第三值时,所述终端设备执行高温控制策略;
    当所述第二差值小于第四值时,所述终端设备执行低温控制策略;
    当所述第二差值大于或者等于所述第四值,小于或者等于所述第三值时,所述终端设备执行常温控制策略。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述外部环境温度,确定所述终端设备的发热原因;
    或者,所述终端设备输出所述外部环境温度至预设服务器,所述预设服务器用于分析所述终端设备的发热原因。
  19. 根据权利要求12至18任一项所述的方法,其特征在于,所述终端设备根据所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度,包括:
    所述终端设备获取所述终端设备的系统参数;
    所述终端设备根据所述第一温度传感器所采集的温度信息以及所述系统参数,确定所述终端设备的外部环境温度。
  20. 根据权利要求19所述的方法,其特征在于,所述终端设备根据所述第一温度传感器所采集的温度信息以及所述系统参数,确定所述终端设备的外部环境温度,包括
    所述终端设备根据所述第一温度传感器在不同时刻所采集的温度信息以及所述温度传感器的时间参数,确定第一参数;
    所述终端设备根据所述第一温度传感器的低温修正系数和温升系数,确定第二参数;
    所述终端设备根据所述第一参数、第二参数以及所述第一温度传感器所采集的温度信息,确定所述终端设备的外部环境温度。
  21. 根据权利要求19或20所述的方法,其特征在于,所述系统参数包括所述终端设备的电池输出电流、屏幕亮度和器件工作状态中的至少一个;
    当所述系统参数包括所述终端设备的电池输出电流和屏幕亮度时,所述终端设备根据以下公式,确定所述第一温度传感器的温升系数:
    ΔT I=α(pL t)+β(I t-pL t)+b;
    其中,所述ΔT I代表所述第一温度传感器的温升系数,所述α,β,p,b为预设系数,所述L t代表所述终端设备的屏幕亮度值,所述I t代表所述终端设备的电池电流值。
  22. 根据权利要求19至21任一项所述的方法,其特征在于,所述终端设备根据以下方式,确定所述第一温度传感器的低温修正系数:
    当在当前时刻相邻的上一时刻,不存在输出的所述外部环境温度时,所述第一温度传感器的低温修正系数为1,;
    当在当前时刻相邻的上一时刻,存在输出的所述外部环境温度时,所述处理器采用以下公式,确定所述第一温度传感器的低温修正系数;
    γ=1+(FCOEF-1)*(x-min(T_L,x))
    其中,所述γ代表所述第一温度传感器的低温修正系数,所述T_L代表在当前时刻相邻的上一时刻所输出的外部环境温度,所述x代表在当前时刻,所述终端设备的外部环境温度,且当外部环境温度大于或者等于x摄氏度时,所述终端设备的散热能力相同,所述FCOEF代表第一散热值与第二散热值的比值,所述第一散热值表征当终端设备的外部环境温度在处于x及以上摄氏度时,所述终端设备的散热能力,所述第二散热值表征当所述终端设备的外部环境温度处于零摄氏度时,所述终端设备的散热能力。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述权利要求12至22任一项所述的方法。
PCT/CN2018/080729 2018-03-27 2018-03-27 一种终端设备及确定外部环境温度的方法 WO2019183812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/080729 WO2019183812A1 (zh) 2018-03-27 2018-03-27 一种终端设备及确定外部环境温度的方法
CN201880091725.2A CN111903111A (zh) 2018-03-27 2018-03-27 一种终端设备及确定外部环境温度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080729 WO2019183812A1 (zh) 2018-03-27 2018-03-27 一种终端设备及确定外部环境温度的方法

Publications (1)

Publication Number Publication Date
WO2019183812A1 true WO2019183812A1 (zh) 2019-10-03

Family

ID=68058547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080729 WO2019183812A1 (zh) 2018-03-27 2018-03-27 一种终端设备及确定外部环境温度的方法

Country Status (2)

Country Link
CN (1) CN111903111A (zh)
WO (1) WO2019183812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029387A (zh) * 2021-02-09 2021-06-25 北京小米移动软件有限公司 测温方法、装置以及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113342085B (zh) * 2021-06-17 2022-11-08 南昌黑鲨科技有限公司 一种识别外置辅助散热设备的方法及系统
CN113720494A (zh) * 2021-08-09 2021-11-30 Oppo广东移动通信有限公司 温度检测方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080096609A1 (en) * 2006-10-23 2008-04-24 Cory Lam Temperature Sensing and Transmission Apparatus and Protocol for Mobile Phone
CN103414832A (zh) * 2013-08-30 2013-11-27 深圳市中兴移动通信有限公司 调节终端屏幕亮度的方法及装置
CN105245686A (zh) * 2014-07-01 2016-01-13 恩智浦有限公司 一种操作移动设备的方法和移动设备
CN105403325A (zh) * 2014-09-05 2016-03-16 恩智浦有限公司 预测移动设备附近的环境温度的方法、计算机程序产品和移动设备
CN107450666A (zh) * 2017-07-24 2017-12-08 深圳职业技术学院 一种便携式电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2865152Y (zh) * 2005-09-21 2007-01-31 吴立仁 一种带测温功能的手机
CN2884723Y (zh) * 2005-11-02 2007-03-28 上海甲秀工业设计有限公司 具有测温功能的手机
CN101820470A (zh) * 2009-02-27 2010-09-01 深圳富泰宏精密工业有限公司 便携式电子装置
EP2728327B1 (en) * 2012-11-02 2020-02-19 Sensirion AG Portable electronic device
CN203563111U (zh) * 2012-11-13 2014-04-23 广东欧珀移动通信有限公司 一种手机
EP2801804B1 (en) * 2013-05-06 2018-07-11 Sensirion AG Self-calibrating temperature sensor within a mobile terminal device
CN103389749B (zh) * 2013-07-01 2015-12-23 浙江大学 一种温度控制系统
WO2016070376A1 (zh) * 2014-11-06 2016-05-12 华为技术有限公司 热控制装置和方法
KR20170004160A (ko) * 2015-07-01 2017-01-11 엘지전자 주식회사 이동단말기 및 그 제어방법
CN106933186A (zh) * 2015-12-31 2017-07-07 沈阳高精数控智能技术股份有限公司 一种基于arm处理器的数控系统精度保持设计方法
CN106774508A (zh) * 2016-12-27 2017-05-31 深圳市金立通信设备有限公司 一种温度控制方法及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080096609A1 (en) * 2006-10-23 2008-04-24 Cory Lam Temperature Sensing and Transmission Apparatus and Protocol for Mobile Phone
CN103414832A (zh) * 2013-08-30 2013-11-27 深圳市中兴移动通信有限公司 调节终端屏幕亮度的方法及装置
CN105245686A (zh) * 2014-07-01 2016-01-13 恩智浦有限公司 一种操作移动设备的方法和移动设备
CN105403325A (zh) * 2014-09-05 2016-03-16 恩智浦有限公司 预测移动设备附近的环境温度的方法、计算机程序产品和移动设备
CN107450666A (zh) * 2017-07-24 2017-12-08 深圳职业技术学院 一种便携式电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029387A (zh) * 2021-02-09 2021-06-25 北京小米移动软件有限公司 测温方法、装置以及存储介质

Also Published As

Publication number Publication date
CN111903111A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2019183812A1 (zh) 一种终端设备及确定外部环境温度的方法
US10394293B2 (en) Method for preventing over-heating of a device within a data processing system
US8386824B2 (en) System and method for adapting a power usage of a server during a data center cooling failure
KR101444925B1 (ko) 디바이스의 상황을 결정하기 위한 방법 및 시스템
US10663991B2 (en) Determining parameters of air-cooling mechanisms
US20150148981A1 (en) System and method for multi-correlative learning thermal management of a system on a chip in a portable computing device
CN102612708B (zh) 用于检测和警告灾难的系统和方法
KR102379479B1 (ko) 기압 기반 배터리 상태 결정 방법 및 전자 장치
US20140371944A1 (en) System and method for estimating ambient temperature of a portable computing device using a voice coil
US11493967B2 (en) Thermal shutdown with hysteresis
CN108958429A (zh) 一种散热控制方法、系统及设备和存储介质
EP3633643A1 (en) Drowsiness estimating device, awakening-induction control device, and awakening induction system
CN115915734B (zh) 风扇运行控制方法、装置、电子设备及存储介质
CN110214298B (zh) 用于便携式计算设备中的情境感知热管理和工作负荷调度的系统和方法
JP2016019101A (ja) タイミング決定装置、タイミング決定方法およびコンピュータプログラム
CN103905739A (zh) 电子设备控制方法及电子设备
US20090251108A1 (en) Portable electronic device and method of adjusting charging current for a rechargeable battery unit thereof
JP2011119428A (ja) 余寿命推定方法及び余寿命推定システム
CN111007932A (zh) 温控系统、基于温控系统的温控方法及电子设备
US9576328B2 (en) Information processing apparatus, information processing method, and non-transitory computer readable medium
TWI704859B (zh) 智慧風扇轉速調整方法、電腦裝置及伺服器
JP7244148B1 (ja) 換気制御システム、換気制御装置、及び換気制御プログラム
US20190369705A1 (en) Microprocessor power logging at a sub-process level
CN109885116B (zh) 一种基于云计算的物联网平台监测系统及其方法
JP2021097555A (ja) 端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912830

Country of ref document: EP

Kind code of ref document: A1