WO2019182245A1 - Capsule endoscope device and method for operating same device - Google Patents

Capsule endoscope device and method for operating same device Download PDF

Info

Publication number
WO2019182245A1
WO2019182245A1 PCT/KR2019/001474 KR2019001474W WO2019182245A1 WO 2019182245 A1 WO2019182245 A1 WO 2019182245A1 KR 2019001474 W KR2019001474 W KR 2019001474W WO 2019182245 A1 WO2019182245 A1 WO 2019182245A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
light source
image
capsule endoscope
Prior art date
Application number
PCT/KR2019/001474
Other languages
French (fr)
Korean (ko)
Inventor
김광섭
Original Assignee
주식회사 인트로메딕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트로메딕 filed Critical 주식회사 인트로메딕
Publication of WO2019182245A1 publication Critical patent/WO2019182245A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Definitions

  • the present invention relates to a capsule endoscope, and more particularly, to a capsule endoscope device for efficiently photographing various images and a method of operating the same.
  • a method of inserting an endoscope attached to a cable through an examinee's mouth or anus is used. According to this method, since the endoscope can be directly controlled through a cable made of wire or optical fiber, it is easy to secure data inside the human body, but it causes great pain for the subject.
  • organs such as the small intestine are not only far from the examinee's mouth or anus, but also have a problem in that the body cavity diameter of the organ is small and difficult to be examined by the endoscope method described above.
  • a capsule endoscope has been used.
  • the capsule endoscope acquires the necessary data with a camera in the human body, and transmits the acquired data to a receiver outside the human body for output.
  • capsule endoscopes generally use an optical system that utilizes a wide angle of 100 degrees or more, and although the overall shape of the lesion can be known using the capsule endoscope, it is difficult to identify the precise lesion. In particular, in order to confirm the precise lesions, it was cumbersome, requiring additional procedures such as tissue collection.
  • An object according to an aspect of the present invention for solving the above problems is to capture an image using a wide-angle optical system and when an abnormal lesion is found, the capsule endoscope device capable of taking an image in units of cells by controlling the position and posture; It provides a method of operation thereof.
  • Capsule endoscope device for achieving the above object has a field of vision (FOV) than the reference value, the first optical system for observing the target area, nanometer (nm) to millimeters (mm) A second optical system for magnifying and observing a target portion having a size, and a transmission unit transmitting image data obtained from at least one of the first optical system and the second optical system to a receiver, wherein the first optical system is larger than the reference value.
  • FOV field of vision
  • nm nanometer
  • mm millimeters
  • a first lens having a wide viewing angle a first image sensor for capturing an image of the target region through the first lens, and a first light source operating in correspondence with the first lens and the first image sensor
  • the second optical system includes a second lens for observing a target portion in nanometer to millimeter units, and an image of the target portion through the second lens. It may include a second image sensor for photographing and a second light source that operates in correspondence with the second lens and the second image sensor.
  • the first lens has a viewing angle of 100 degrees or more, and a focal length of the first lens may have a depth of focus of 30 mm or less from a surface of an optical dome surrounding the first lens and the second lens.
  • the second lens has a focal region of less than 3 mm, and the focal length of the second lens may have a depth of focus of 2 mm or less from the surface of the dome surrounding the first lens and the second lens.
  • the second light source may be an LED or a laser diode aligned with a focal length and a focal region of the second lens.
  • the second light source may be a laser diode that is aligned with a focal length and a focal region of the lens to provide light of a fluorescent wavelength band.
  • the emission period of the second light source may be greater than the emission period of the first light source.
  • At least one of the first light source and the second light source may include a white LED.
  • At least one of the first image sensor and the second image sensor may be a complementary metal oxide semiconductor (CMOS) image sensor.
  • CMOS complementary metal oxide semiconductor
  • the capsule endoscope device may further include at least one of a color filter between the second image sensor and the second lens and a bandpass filter configured to pass only light of a specific wavelength band.
  • the capsule endoscope device may further include a magnetic element for controlling position and posture of the capsule endoscope device.
  • the first lens and the second lens may be disposed on the same plane.
  • a method of operating a capsule endoscope device in which a first optical system observes a target area with a field of vision (FOV) wider than a reference value, and the second optical system is nano Magnifying and observing an object portion of a size ranging from meters (nm) to millimeters (mm) and transmitting image data obtained from at least one of the first optical system and the second optical system to a receiver, wherein the first optical system Observing the target portion with a field of vision (FOV) wider than a reference value may include: generating light through a light emitted from a first light source interlocked with a first lens and a first image sensor having a wider viewing angle than the reference value; And taking an image of the target portion based on the first lens, wherein the second optical system has the target portion of the size of nanometer (nm) to millimeter (mm).
  • FOV field of vision
  • Magnifying observation is based on the second lens through the light irradiated from the second light source in conjunction with the second image sensor and the second lens for observing the target area in the nanometer to millimeter unit, the nanometer to millimeter unit Observing the target site of the may include.
  • the capsule endoscope device and its operation method it is possible to grasp the overall shape and position of an organ by using a wide-angle optical system, and to obtain a precise image by using a microscope optical system.
  • FIG. 1 is a view showing a capsule endoscope system according to an embodiment of the present invention
  • Figure 2 is a view showing the capsule endoscope device as a whole according to an embodiment of the present invention
  • FIG. 3 is a detailed block diagram showing in detail the configuration of the optical system of the capsule endoscope device according to an embodiment of the present invention
  • Figure 4 is a plan view showing the configuration when viewed from the front endoscope capsule capsule according to an embodiment of the present invention
  • FIG. 5 is a view showing the light emission period of the main light source and the negative light source of the capsule endoscope device according to an embodiment of the present invention
  • FIG. 6 is an exemplary view showing a process of performing posture and position control of a capsule endoscope device according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing in detail the configuration of the capsule endoscope device according to an embodiment of the present invention.
  • FIGS. 8A and 8B illustrate screens output from an image processing apparatus interoperating with a capsule endoscope apparatus according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the capsule endoscope system may include a capsule endoscope device 120, receiving electrodes 130a and 130b, and a receiver 150.
  • the capsule endoscope 120 passes the organs 110, for example, the esophagus, the stomach, the small intestine, or the large intestine, in the human body 100 of the examinee, information about the corresponding organs is obtained.
  • the information that the capsule endoscope 120 may obtain includes bio information obtained from a bio sensor such as predetermined image information, sound information, temperature, pressure, pH, and / or analysis information of a medium in the human body.
  • the capsule endoscope 120 may have the two or more image sensors and the two or more optical lenses to photograph the organ 110 of the human body 110 to generate a first image and a second image.
  • the first image and the second image may be images captured simultaneously in time.
  • the obtained information is converted into an electrical signal in the capsule endoscope 120, and detected by the receiving electrodes 130a and 130b attached to the human body of the examinee.
  • the receiving electrodes 130a and 130b transmit the received electrical signals to the receiver 150 through the conductive lines 140a and 140b.
  • the obtained information may be converted into an electrical signal in the capsule endoscope 120 and transferred directly to the receiver 150 using radio frequency (RF) or human body communication (HBC).
  • RF radio frequency
  • HBC human body communication
  • the method using the radio frequency transmits the converted electrical signal to the receiver 150 using a frequency range harmless to the human body.
  • RF radio frequency
  • HBC human body communication
  • an electrode provided on the outer surface of the capsule endoscope 120 contacts the human body according to the interlocking motion of the organ 110 of the human body 100 a current is generated, and the conversion is performed using the current.
  • the electrical signal is transmitted to the receiver 150.
  • the capsule endoscope 120 stores image data and other acquired information in a local memory (not shown) in the capsule endoscope 120, and after the photographing is finished, Information stored in the capsule can be delivered to the receiving device or PC.
  • the receiver 150 receiving the first image and the second image signal from the capsule endoscope 120 may play at least one of the two images through a user interface (GUI).
  • GUI user interface
  • the receiver 150 simply receives the first image and the second image, and connects the received image to another image processing device 160 (eg, the receiver 150 by wire or wirelessly). At least one image may be reproduced by transmitting the image data to another PC, a notebook computer, a smart phone, etc.) and performing image processing on the separate image processing apparatus 160.
  • another image processing device 160 eg, the receiver 150 by wire or wirelessly.
  • At least one image may be reproduced by transmitting the image data to another PC, a notebook computer, a smart phone, etc.
  • the capsule endoscope device is a view showing the capsule endoscope device as a whole according to an embodiment of the present invention.
  • the capsule endoscope device according to the embodiment of the present invention includes a first lens 210, a second lens 212, a first light source 220, a second light source 222, and a color filter. 230 and dome 240.
  • the capsule endoscope may be applied to two or more image sensors, lenses, and light sources.
  • One optical system may include an image sensor, a lens, and a light source, and may be classified into a wide-angle optical system and a microscope optical system according to the performance of the lens.
  • the first lens 210, the first light source 220, and the first image sensor may form a first optical system.
  • the first optical system may be an ultra wide-angle optical system of 100 degrees or more. However, it does not necessarily need to be 100 degrees or more, and may be a wide angle optical system of 110 degrees and 120 degrees or more. This is useful for observing a wide range of organ mucosa and identifying lesions.
  • the first light source 220 is preferably wide-angle illumination compared to the second light source 222.
  • the second light source 222 is preferably narrow angle illumination compared to the first light source 220.
  • the second lens 212, the second light source 222, and the second image sensor may form a second optical system.
  • the second optical system is an optical system having a microscope function capable of capturing the size of the nanometer (nm) to millimeters (mm) unit. It is arranged together with the first optical system.
  • the second lens 212 may be disposed on the same plane as the first lens 210, and the second light source 222 may also be disposed on the same plane as the first light source 220. The same applies to the positional relationship between the first image sensor and the second image sensor.
  • the capsule endoscope device including the first optical system and the second optical system as described above takes an image at a wide angle using the first optical system like a general capsule endoscope, and when an abnormal change occurs, the magnetic element
  • the capsule endoscope By controlling the position and posture of the capsule endoscope using the second optical system it is possible to take images in units of cells. That is, when the capsule endoscope detects an abnormal lesion by simultaneously photographing, the capsule endoscope is moved to a range where the microscope can be seen by controlling the position and position of the capsule endoscope.
  • the dome surrounds the lenses 210 and 212 in the form of a dome in a direction in which the capsule endoscope faces the target site.
  • the dome may be called an optical dome.
  • the first optical system for photographing at a wide angle can photograph at a considerable distance from the optical dome.
  • the second optical system is similar to the focal length of the microscope, which may preferably have a focal length of 2 mm or less from the surface of the optical dome.
  • only a part of the optical dome can capture an image of a microscope. As such, to capture an accurate microscopic image of the lesion, it is desirable to control the position and posture of the capsule endoscope so that the focal length can be adjusted in a specific area of the optical dome.
  • FIG. 3 is a detailed block diagram showing the configuration of the optical system of the capsule endoscope device according to an embodiment of the present invention in detail.
  • the first optical system includes a first lens 310 and a first image sensor 302 (a light source is omitted), and the second optical system includes a second lens 312 and a second image sensor ( 304 and a filter 330.
  • the first optical system is an optical system having a field of view (FOV) of 100 ° or more, and the light source 302 may include a white light source.
  • the focal length of the first optical system includes 30 mm from the surface of the optical dome.
  • the second optical system is an optical system capable of capturing an image of 0.1 to 100 ⁇ m, and the focal length photographs a disease at a distance between 0 and 2 mm of the optical dome surface.
  • the FOV focal region
  • the FOV focal region
  • the light source may be attached to the front end of the light source to minimize the angle of view. It may also be desirable to use a laser diode.
  • the LED and / or laser diode used as the second light source is preferably arranged to irradiate light to the focal length and the focal region.
  • the image sensor 302 of the first optical system may use a complementary metal oxide semiconductor (CMOS) image sensor to capture an image having a viewing angle of 100 ° or more.
  • CMOS complementary metal oxide semiconductor
  • CMOS complementary metal oxide semiconductor
  • CMOS image sensor with a color filter 330 (eg, an RGB color filter).
  • the filter 330 is not necessarily provided, and an image sensor having a high sensitivity may be used by removing the filter.
  • a bandpass filter may be used at the front of the filter 330 to receive only a specific wavelength band. Accordingly, it is possible to take a picture of a narrow band. By taking a narrowband image, you can take an image of a dialectic.
  • the wavelength band of the light source to irradiate a light source (Red, Green LED, or Green, Blue or Infra Red) in a special wavelength band.
  • a light source Red, Green LED, or Green, Blue or Infra Red
  • the color filter 330 is attached to the front of the image sensor 304 to receive only the self-fluorescence wavelength, a fluorescent image may be obtained.
  • the cells When the light source of the Anm wavelength band is irradiated, the cells may be irradiated with light of the Anm wavelength band to generate an image of the Bnm wavelength band.
  • it is preferable to use a band pass filter in the second optical system ie, the microscope optical system
  • Figure 4 is a plan view showing the configuration when viewed from the front endoscope capsule capsule according to an embodiment of the present invention.
  • four light sources 420-1, 420-2, 420-3, and 420-4 may be disposed around the first lens 410 and the second lens 412.
  • only one light source eg, the light source 420-1
  • only one light source is not necessarily associated with the second optical system, and may be two or three.
  • the light sources 420-2, 420-3, and 420-4 may be white LEDs as main light sources.
  • the main light source does not necessarily need to be a white LED, but may be a light source of another wavelength band.
  • the light source 420-1 may be illumination for a microscope for generating an image of a special wavelength band. Microscope illumination may utilize green LEDs or laser diodes of a particular wavelength band (such as Red, Green, Blue or Infra Red).
  • the light source 420-1 is for capturing the microscope image of the lens 412 of the second optical system, the light source 420-1 is considered to reflect the focus area of the second lens 412, so that the actual image is taken from the dome surface part.
  • the light source 420-1 properly focus the light of the special wavelength band toward the focus area.
  • the second light source may be two or more, and may include light sources of different wavelength bands.
  • a plurality of second image sensors may be provided, and the plurality of second image sensors and the plurality of second light sources may be matched, respectively, to periodically generate images of different wavelength bands.
  • FIG. 5 is a view showing the light emission period of the main light source and the negative light source of the capsule endoscope device according to an embodiment of the present invention.
  • the light source for the first image obtained through the first lens may be required to irradiate light also to the region associated with the second lens. have. That is, both the first light source and the second light source may be irradiated to the second lens (see FIG. 3). Accordingly, a plurality of first light sources may be arranged and may be arranged around the second lens (see FIG. 4).
  • a period of each of the first light source and the second light source may be set to allow the first light source to operate in the 1, 2, and 3 frames, and the second light source to operate in the 4 frames. have. That is, it is preferable to independently assign a time when the first light source is activated for the first image acquisition and a time when the second light source is activated for the second image acquisition.
  • the period setting may be a ratio of 1: 1, and in general, when the abnormality is found after the first image is continuously utilized, the second image is utilized, so that the period of the first light source is 3: 1, or 4 You can also make it more weight with a: 1.
  • the setting of these periods can be adjusted through user settings.
  • the capsule endoscope may be configured to receive an external signal so as to switch from the first light source to the second light source or from the second light source to the first light source in response to a signal from the outside.
  • FIG. 6 is an exemplary view showing a process of performing posture and position control of the capsule endoscope device according to an embodiment of the present invention.
  • the position and posture of the capsule endoscope may be required to examine the corresponding portion through the microscope optical system in detail. At this time, it is preferable to utilize magnetic force.
  • the capsule endoscope device 600 is inserted into the human body and positioned inside the organ inner wall 610.
  • the magnetic controller 650 and the monitoring terminal may be located outside the human body, and according to an aspect, the magnetic controller 650 may be located in close contact with the skin 630.
  • an image of a peripheral organ 620 other than the organ where the capsule endoscope device 600 is located may be acquired.
  • the magnetic controller 650 may release magnetic force for controlling the movement of the capsule endoscope device 600.
  • the magnetic force may be generated by providing the permanent magnet, and the magnetic force transmitted to the capsule endoscope device 600 may be adjusted by controlling the movement of the magnetic transmitter such as the permanent magnet by including the driving motor.
  • the magnetic controller 600 may adjust the strength of the magnetic force transmitted to the capsule endoscope device 600, and may adjust the speed of the movement (for example, rotation or movement) for acquiring the microscope image.
  • the capsule endoscope device 600 may also perform a linear repeating motion in response to the magnetic force emitted by the magnetic controller 650, and the capsule endoscope device 600. ) May obtain a general image and a microscope image based on light emitted through the light source and light reflected from the surrounding organs 620 and returned.
  • FIG. 7 is a block diagram showing in detail the configuration of the capsule endoscope device according to an embodiment of the present invention.
  • the capsule endoscope device 700 may include a first lens 710, a second lens 712, a first light source 720, and a second light source 722.
  • the first lens 710 is a lens of the first optical system. As described above, the first lens 710 has a viewing angle of 100 ° or more and a focal length is 30 mm or less from the dome surface.
  • the first light source 720 operates in correspondence with the first lens 710 and the first image sensor 740, and provides light for capturing a general capsule endoscope image.
  • white LEDs can be used.
  • Plural can be utilized.
  • the first image sensor 740 is a component for capturing an image of a target portion seen through the first lens 710.
  • the first image sensor 740 includes a CMOS image sensor.
  • the second lens 712 is a lens of the second optical system. As described above, the second lens 712 has a focal region of 30 mm or less, and a focal length (called depth of focus) is 2 mm or less from the dome surface.
  • the second light source 722 operates in correspondence with the second lens 712 and the second image sensor 742, and provides light for capturing a microscope image. At least one of a white LED, a special wavelength LED, an LED used with a lens, and a laser diode may be used.
  • the second image sensor 742 is a component for capturing an image of a target portion seen through the second lens 712.
  • the second image sensor 742 includes at least one of a CMOS image sensor, an image sensor including a color filter, and an image sensor including a band pass filter.
  • the controller 750 controls the first light source 720 and the second light source 722 according to the set operation period of the first light source 720 and the second light source 722.
  • the first image and the second image are obtained from the first image sensor 740 and the second image sensor 742 and transmitted to the transmitter 770.
  • the controller 750 may control at least one of the first light source 720 and the second light source 722, the first image sensor 740, and the second image sensor 742 based on a control signal received from the outside. have.
  • the controller 750 may be manufactured using an ASIC chip, and may be configured to transfer data generated by the first image sensor 740 and the second image sensor 742 into frames and transmit the data to the transmitter 770.
  • the controller 750 may also control the frame per second (FPS) of at least one of the first image sensor 740 and the second image sensor 742, and the position of the current capsule endoscope obtained from the inertial sensor 780. It is also possible to adaptively change the FPS according to the posture.
  • FPS frame per second
  • the magnetic element 730 may control to perform a movement for acquiring a microscope image in response to a magnetic force from the magnetic controller 750 external to the capsule endoscope device 700.
  • the magnetic element 730 may be composed of, for example, one or more permanent magnets.
  • the power supply unit 760 may be disposed between the permanent magnets, and the N pole and the S pole of the permanent magnet may be disposed as widely as possible.
  • the power supply unit 760 may supply power to the capsule endoscope device 700 and may include one or more batteries.
  • the one or more batteries may include a rechargeable battery.
  • the transmitter 770 transmits the first and second images acquired by the image sensors 740 and 742 to the receiver 715 outside the capsule endoscope device. Also, a control signal from an external device can be received.
  • the outside of the capsule endoscope device 700 may be, for example, a monitoring device (not shown), and may be any one of a separate external control device and an external display device according to the configuration of the capsule endoscope system. That is, the transmitter 770 supports a communication function with an external unit of the capsule endoscope device 700, and the communication method is a radio frequency (RF) method or a human body communication (HBC) as described above. At least one of the schemes may be used.
  • the transmitter 770 may be configured of one or more ASICs for implementing a communication function, and may include one or more antennas. Depending on the configuration of the capsule endoscope system, it may support one-way communication or two-way communication.
  • the inertial sensor 780 can be used to measure the orientation or posture and position of the capsule endoscope device 700. That is, the inertial sensor 780 may obtain information about the posture and the position of the capsule endoscope device 700, and the information about the posture and the position of the capsule endoscope device 700 may be adaptively controlled in the image capturing. Can be used for
  • FIGS. 8A and 8B illustrate screens output from an image processing apparatus interoperating with a capsule endoscope apparatus according to an embodiment of the present invention.
  • the image processing apparatus may receive a normal image (first image) and a microscope image (second image) from a capsule endoscope device.
  • the image processing apparatus may display the general image and the microscope image in real time together on a single screen.
  • the image processing apparatus basically displays a general image on the screen, and then a abnormal lesion is detected and a series of processes for acquiring a microscope image (for example, the position and posture of the capsule endoscope take a microscope image). Control, microscope imaging, and receiving the captured microscope image), the image may be switched to display the microscope image.
  • a control signal associated with microscopic image generation is transmitted to the capsule endoscope device, and the capsule endoscope device receiving the abnormal lesion is received.
  • the image processing apparatus may adaptively process the received image. That is, the user may automatically process the display of the microscope image by applying the abnormal lesion tracking algorithm in advance.

Abstract

One aspect of the present invention provides a capsule endoscope device. The device comprises: a first optical system having a field of vision (FOV) broader than a reference value to observe a target site; a second optical system for magnifying and observing a target site having a size from nanometer (nm) to millimeter (mm); and a transfer part for transmitting an image data acquired from at least one of the first optical system and the second optical system to a receiver.

Description

캡슐 내시경 장치 및 상기 장치의 동작 방법Capsule Endoscopy Device and Operation Method
본 발명은 캡슐 내시경에 관한 것으로, 보다 상세하게는, 다양한 영상을 효율적으로 촬영하는 캡슐 내시경 장치 및 그의 동작방법에 관한 것이다.The present invention relates to a capsule endoscope, and more particularly, to a capsule endoscope device for efficiently photographing various images and a method of operating the same.
인체 내부의 정보, 특히 의학적 정보를 획득하기 위해 피검사자의 입 또는 항문을 통해 케이블에 부착된 내시경을 삽입하는 방법이 이용되고 있다. 이 방법에 의하며, 도선 또는 광섬유로 이루어진 케이블을 통해 내시경을 직접 제어할 수 있으므로, 인체 내부의 데이터를 확보하기 용이하지만 피검사자에게는 큰 고통이 따른다. 또한, 소장과 같은 장기는 피검사자의 입 또는 항문으로부터 멀리 떨어져 있을뿐더러, 장기의 체강 직경이 작아서 상술한 내시경 방법으로 검사하기 곤란하다는 문제가 있다.In order to obtain information inside the human body, especially medical information, a method of inserting an endoscope attached to a cable through an examinee's mouth or anus is used. According to this method, since the endoscope can be directly controlled through a cable made of wire or optical fiber, it is easy to secure data inside the human body, but it causes great pain for the subject. In addition, organs such as the small intestine are not only far from the examinee's mouth or anus, but also have a problem in that the body cavity diameter of the organ is small and difficult to be examined by the endoscope method described above.
이를 고려하여, 캡슐형 내시경이 이용되고 있다. 피검사자가 캡슐형 내시경을 구강을 통해 삼키면, 캡슐형 내시경은 인체 내에서 카메라 등으로 필요한 데이터를 획득하고, 획득한 데이터를 인체 외부의 수신기(receiver)로 전송하여 출력할 수 있도록 한다. In view of this, a capsule endoscope has been used. When the examinee swallows the capsule endoscope through the oral cavity, the capsule endoscope acquires the necessary data with a camera in the human body, and transmits the acquired data to a receiver outside the human body for output.
하지만, 캡슐 내시경은 100도 이상의 광각을 활용하는 광학계를 사용하는 것이 일반적이고, 이를 이용하여 병변의 전반적인 형태를 알 수 있었으나, 정밀한 병변을 확인하기 어렵다는 문제점이 있다. 특히, 정밀 병변의 확증을 위해서는, 조직 채취를 위한 시술 등을 추가로 요구되는 등 번거로움이 뒤따랐다.However, capsule endoscopes generally use an optical system that utilizes a wide angle of 100 degrees or more, and although the overall shape of the lesion can be known using the capsule endoscope, it is difficult to identify the precise lesion. In particular, in order to confirm the precise lesions, it was cumbersome, requiring additional procedures such as tissue collection.
상술한 문제점을 해결하기 위한 본 발명의 일 양태에 따른 목적은 광각의 광학계를 사용하여 영상을 촬영하다가 이상병변이 발견되었을 때, 위치 및 자세를 제어하여 세포단위로 영상을 촬영가능한 캡슐 내시경 장치 및 그의 동작방법을 제공하는 것이다.An object according to an aspect of the present invention for solving the above problems is to capture an image using a wide-angle optical system and when an abnormal lesion is found, the capsule endoscope device capable of taking an image in units of cells by controlling the position and posture; It provides a method of operation thereof.
상기한 목적을 달성하기 위한 본 발명의 일 양태에 따른 캡슐 내시경 장치는 기준값보다 넓은 시야각(FOV: Field Of Vision)을 가지고 대상부위를 관찰하기 위한 제 1 광학계, 나노미터(nm)부터 밀리미터(mm) 크기의 대상부위를 확대관찰하기 위한 제 2 광학계, 및 상기 제 1 광학계 및 상기 제 2 광학계 중 적어도 하나로부터 획득된 영상 데이터를 수신기로 전송하는 전송부를 포함하되, 상기 제 1 광학계는 상기 기준값보다 넓은 시야각을 갖는 제 1 렌즈, 상기 제 1 렌즈를 통해 상기 대상부위에 대한 영상을 촬영하는 제 1 이미지 센서 및 상기 제 1 렌즈 및 상기 제 1 이미지 센서와 대응하여 동작하는 제 1 광원을 포함하고, 상기 제 2 광학계는 나노미터 내지 밀리미터 단위의 대상부위를 관찰하기 위한 제 2 렌즈, 상기 제 2 렌즈를 통해 상기 대상부위에 대한 영상을 촬영하는 제 2 이미지 센서 및 상기 제 2 렌즈 및 상기 제 2 이미지 센서와 대응하여 동작하는 제 2 광원을 포함할 수 있다.Capsule endoscope device according to an aspect of the present invention for achieving the above object has a field of vision (FOV) than the reference value, the first optical system for observing the target area, nanometer (nm) to millimeters (mm) A second optical system for magnifying and observing a target portion having a size, and a transmission unit transmitting image data obtained from at least one of the first optical system and the second optical system to a receiver, wherein the first optical system is larger than the reference value. A first lens having a wide viewing angle, a first image sensor for capturing an image of the target region through the first lens, and a first light source operating in correspondence with the first lens and the first image sensor, The second optical system includes a second lens for observing a target portion in nanometer to millimeter units, and an image of the target portion through the second lens. It may include a second image sensor for photographing and a second light source that operates in correspondence with the second lens and the second image sensor.
상기 제 1 렌즈는 100도 이상의 시야각을 가지며, 상기 제 1 렌즈의 초점거리는 상기 제 1 렌즈 및 상기 제 2 렌즈를 둘러싸고 있는 돔(Optical Dome)의 표면으로부터 30mm 이하의 초점심도를 가질 수 있다.The first lens has a viewing angle of 100 degrees or more, and a focal length of the first lens may have a depth of focus of 30 mm or less from a surface of an optical dome surrounding the first lens and the second lens.
상기 제 2 렌즈는 3mm 미만의 초점 영역을 가지며, 상기 제 2 렌즈의 초점거리는 상기 제 1 렌즈 및 상기 제 2 렌즈를 둘러싸고 있는 돔의 표면으로부터 2mm 이하의 초점심도를 가질 수 있다.The second lens has a focal region of less than 3 mm, and the focal length of the second lens may have a depth of focus of 2 mm or less from the surface of the dome surrounding the first lens and the second lens.
상기 제 2 광원은 상기 제 2 렌즈의 초점거리 및 초점영역과 정렬되어 있는 LED 또는 레이저 다이오드일 수 있다.The second light source may be an LED or a laser diode aligned with a focal length and a focal region of the second lens.
상기 제 2 광원은 상기 렌즈의 초점거리 및 초점영역과 정렬되어 형광 파장대의 광을 제공하는 레이저 다이오드(Laser Diode)일 수 있다.The second light source may be a laser diode that is aligned with a focal length and a focal region of the lens to provide light of a fluorescent wavelength band.
상기 제 2 광원의 발광 주기는 상기 제 1 광원의 발광 주기보다 클 수 있다.The emission period of the second light source may be greater than the emission period of the first light source.
상기 제 1 광원 및 제 2 광원 중 적어도 하나는 화이트 LED(white LED)를 포함할 수 있다.At least one of the first light source and the second light source may include a white LED.
상기 제 1 이미지 센서 및 상기 제 2 이미지 센서 중 적어도 하나는 CMOS(Complementary Metal Oxide Semiconductor) 이미지 센서일 수 있다.At least one of the first image sensor and the second image sensor may be a complementary metal oxide semiconductor (CMOS) image sensor.
상기 캡슐 내시경 장치는 상기 제 2 이미지 센서와 상기 제 2 렌즈 사이에 컬러필터(color filter) 및 특정 파장대의 광만 통과시키는 대역 통과 필터(bandpass filter) 중 적어도 하나를 더 포함할 수 있다.The capsule endoscope device may further include at least one of a color filter between the second image sensor and the second lens and a bandpass filter configured to pass only light of a specific wavelength band.
상기 캡슐 내시경 장치는 상기 캡슐 내시경 장치의 위치 및 자세 제어를 위한 마그네틱 요소(magnetic element)를 더 포함할 수 있다.The capsule endoscope device may further include a magnetic element for controlling position and posture of the capsule endoscope device.
상기 제 1 렌즈 및 상기 제 2 렌즈는 동일 평면 상에 배치될 수 있다.The first lens and the second lens may be disposed on the same plane.
상기한 목적을 달성하기 위한 본 발명의 다른 양태에 따른 캡슐 내시경 장치의 동작 방법은 제 1 광학계가 기준값보다 넓은 시야각(FOV: Field Of Vision)을 가지고 대상부위를 관찰하는 단계, 제 2 광학계가 나노미터(nm)부터 밀리미터(mm) 크기의 대상부위를 확대관찰하는 단계 및 상기 제 1 광학계 및 상기 제 2 광학계 중 적어도 하나로부터 획득된 영상 데이터를 수신기로 전송하는 단계를 포함하되, 제 1 광학계가 기준값보다 넓은 시야각(FOV: Field Of Vision)을 가지고 대상부위를 관찰하는 단계는 상기 기준값보다 넓은 시야각을 갖는 제 1 렌즈와 제 1 이미지 센서와 연동하는 제 1 광원으로부터 조사되는 광을 통해, 상기 제 1 렌즈를 기반으로 상기 대상부위에 대한 영상을 촬영하는 단계를 포함하고, 제 2 광학계가 나노미터(nm)부터 밀리미터(mm) 크기의 대상부위를 확대관찰하는 단계는 나노미터 내지 밀리미터 단위의 대상부위를 관찰하기 위한 제 2 렌즈와 제 2 이미지 센서와 연동하는 제 2 광원으로부터 조사되는 광을 통해, 상기 제 2 렌즈를 기반으로 나노미터 내지 밀리미터 단위의 대상부위를 관찰하는 단계를 포함할 수 있다.According to another aspect of the present invention, there is provided a method of operating a capsule endoscope device, in which a first optical system observes a target area with a field of vision (FOV) wider than a reference value, and the second optical system is nano Magnifying and observing an object portion of a size ranging from meters (nm) to millimeters (mm) and transmitting image data obtained from at least one of the first optical system and the second optical system to a receiver, wherein the first optical system Observing the target portion with a field of vision (FOV) wider than a reference value may include: generating light through a light emitted from a first light source interlocked with a first lens and a first image sensor having a wider viewing angle than the reference value; And taking an image of the target portion based on the first lens, wherein the second optical system has the target portion of the size of nanometer (nm) to millimeter (mm). Magnifying observation is based on the second lens through the light irradiated from the second light source in conjunction with the second image sensor and the second lens for observing the target area in the nanometer to millimeter unit, the nanometer to millimeter unit Observing the target site of the may include.
본 발명의 일 양태에 따른 캡슐 내시경 장치 및 그의 동작방법에 따르면, 장기의 전체적인 형태나 위치 등을 광각 광학계를 활용하여 파악하고, 현미경 광학계를 활용하여 정밀 영상을 확보하는 효과가 있다.According to the capsule endoscope device and its operation method according to an aspect of the present invention, it is possible to grasp the overall shape and position of an organ by using a wide-angle optical system, and to obtain a precise image by using a microscope optical system.
도 1은 본 발명의 일 실시예에 따른 캡슐 내시경 시스템을 나타낸 도면,1 is a view showing a capsule endoscope system according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 캡슐 내시경 장치을 전체적으로 나타낸 도면,Figure 2 is a view showing the capsule endoscope device as a whole according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 광학계의 구성을 구체적으로 나타낸 상세블록도,Figure 3 is a detailed block diagram showing in detail the configuration of the optical system of the capsule endoscope device according to an embodiment of the present invention,
도 4는 본 발명의 일 실시예에 따른 캡슐 내시경 장치를 전방에서 바라봤을 때의 구성을 나타낸 평면도,Figure 4 is a plan view showing the configuration when viewed from the front endoscope capsule capsule according to an embodiment of the present invention,
도 5는 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 주광원과 부광원의 발광주기를 나타낸 도면,5 is a view showing the light emission period of the main light source and the negative light source of the capsule endoscope device according to an embodiment of the present invention,
도 6은 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 자세 및 위치 제어를 수행하는 과정을 나타낸 예시도,6 is an exemplary view showing a process of performing posture and position control of a capsule endoscope device according to an embodiment of the present invention;
도 7은 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 구성을 구체적으로 나타낸 블록도,Figure 7 is a block diagram showing in detail the configuration of the capsule endoscope device according to an embodiment of the present invention,
도 8a 및 도 8b는 본 발명의 일 실시예에 따른 캡슐 내시경 장치와 연동하는 영상 처리 장치에서 출력되는 화면을 나타낸 도면이다.8A and 8B illustrate screens output from an image processing apparatus interoperating with a capsule endoscope apparatus according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다. Hereinafter, with reference to the accompanying drawings, it will be described in detail a preferred embodiment of the present invention. In the following description of the present invention, the same reference numerals are used for the same elements in the drawings and redundant descriptions of the same elements will be omitted.
도 1은 본 발명의 일 실시예에 따른 캡슐 내시경 시스템을 나타낸 도면이다. 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 캡슐 내시경 시스템은 캡슐 내시경 장치(120), 수신전극(130a, 130b) 및 수신기(150)를 포함할 수 있다.1 is a view showing a capsule endoscope system according to an embodiment of the present invention. As shown in FIG. 1, the capsule endoscope system according to the exemplary embodiment of the present invention may include a capsule endoscope device 120, receiving electrodes 130a and 130b, and a receiver 150.
도 1을 참조하면, 피검사자의 인체 내부(100)의 장기(110), 예컨대 식도, 위장, 소장 또는 대장 등을 캡슐형 내시경(120)이 지나가면서 해당 장기의 정보를 획득한다. 캡슐형 내시경(120)이 획득할 수 있는 정보는 소정의 영상 정보, 음향 정보, 온도, 압력, pH 등 바이오 센서에서 획득된 바이오 정보 및/또는 인체 내 매질의 분석 정보 등을 포함한다. 이때, 캡슐 내시경(120)은 두 개 이상의 이미지 센서와 두 개 이상의 광학 렌즈를 가지고 인체 내부(110)의 장기(110)를 촬영하여 제 1 영상과 제 2 영상을 생성할 수 있다. 제 1 영상과 제 2 영상은 시간적으로 동시에 촬영된 영상일 수 있다. Referring to FIG. 1, as the capsule endoscope 120 passes the organs 110, for example, the esophagus, the stomach, the small intestine, or the large intestine, in the human body 100 of the examinee, information about the corresponding organs is obtained. The information that the capsule endoscope 120 may obtain includes bio information obtained from a bio sensor such as predetermined image information, sound information, temperature, pressure, pH, and / or analysis information of a medium in the human body. In this case, the capsule endoscope 120 may have the two or more image sensors and the two or more optical lenses to photograph the organ 110 of the human body 110 to generate a first image and a second image. The first image and the second image may be images captured simultaneously in time.
획득한 정보는 캡슐 내시경(120)에서 전기적 신호로 변환되고, 피검사자의 인체에 부착된 수신 전극(130a, 130b)에서 감지된다. 수신 전극(130a, 130b)은 수신한 전기적 신호를 도선(140a, 140b)을 통해서 수신기(150)에 전달한다. The obtained information is converted into an electrical signal in the capsule endoscope 120, and detected by the receiving electrodes 130a and 130b attached to the human body of the examinee. The receiving electrodes 130a and 130b transmit the received electrical signals to the receiver 150 through the conductive lines 140a and 140b.
또는, 획득한 정보는 캡슐형 내시경(120)에서 전기적 신호로 변환되어 무선 주파수(Radio Frequency; RF) 또는 인체 통신(Human Body Communication; HBC) 등을 이용하여 직접 수신기(150)에 전달될 수도 있다. 무선 주파수를 이용하는 방법은 인체에 무해한 주파수 영역을 이용하여 상기 변환된 전기적 신호를 수신기(150)로 전달한다. 인체 통신을 이용하는 방법은 인체 내부(100)의 장기(110)의 연동 운동에 따라 캡슐형 내시경(120)의 외면에 구비된 전극이 인체와 접촉하면 전류가 발생하고, 이러한 전류를 이용하여 상기 변환된 전기적 신호를 수신기(150)로 전달한다. Alternatively, the obtained information may be converted into an electrical signal in the capsule endoscope 120 and transferred directly to the receiver 150 using radio frequency (RF) or human body communication (HBC). . The method using the radio frequency transmits the converted electrical signal to the receiver 150 using a frequency range harmless to the human body. In the method using the human body communication, when an electrode provided on the outer surface of the capsule endoscope 120 contacts the human body according to the interlocking motion of the organ 110 of the human body 100, a current is generated, and the conversion is performed using the current. The electrical signal is transmitted to the receiver 150.
또는, 본 발명의 다른 실시예에 따르면, 캡슐형 내시경(120)은 캡슐형 내시경(120) 내의 로컬 메모리(미도시)에 영상 데이터 및 그 밖의 취득된 정보를 저장하여 촬영이 종료되고 난 뒤에, 캡슐에 저장된 정보를 수신 장치 또는 PC로 전달할 수 있다.Alternatively, according to another embodiment of the present invention, the capsule endoscope 120 stores image data and other acquired information in a local memory (not shown) in the capsule endoscope 120, and after the photographing is finished, Information stored in the capsule can be delivered to the receiving device or PC.
캡슐 내시경(120)으로부터 제 1 영상 및 제 2 영상 신호를 수신하는 수신기(150)는 사용자 인터페이스(GUI)를 통해 상기 두 개의 영상 중 적어도 하나를 재생할 수 있다.The receiver 150 receiving the first image and the second image signal from the capsule endoscope 120 may play at least one of the two images through a user interface (GUI).
본 발명의 다른 실시예에 따르면, 수신기(150)는 단순히 제 1 영상과 제 2 영상을 수신하고, 수신된 영상을 다른 영상 처리 장치(160)(예컨대, 수신기(150)와 유선 또는 무선으로 연결된 다른 PC, 노트북, 스마트 폰 등의 장치)로 전송하여 별도의 영상 처리 장치(160)에서 영상처리를 수행함으로써 적어도 하나의 영상을 재생할 수 있다. According to another embodiment of the present invention, the receiver 150 simply receives the first image and the second image, and connects the received image to another image processing device 160 (eg, the receiver 150 by wire or wirelessly). At least one image may be reproduced by transmitting the image data to another PC, a notebook computer, a smart phone, etc.) and performing image processing on the separate image processing apparatus 160.
도 2는 본 발명의 일 실시예에 따른 캡슐 내시경 장치을 전체적으로 나타낸 도면이다. 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 캡슐 내시경 장치는 제 1 렌즈(210), 제 2 렌즈(212), 제 1 광원(220), 제 2 광원(222), 컬러필터(230) 및 돔(240)을 포함할 수 있다. 2 is a view showing the capsule endoscope device as a whole according to an embodiment of the present invention. As shown in FIG. 2, the capsule endoscope device according to the embodiment of the present invention includes a first lens 210, a second lens 212, a first light source 220, a second light source 222, and a color filter. 230 and dome 240.
도 2를 참조하면, 캡슐 내시경은 이미지 센서 및 렌즈, 광원이 두 개 이상씩, 또는 두 종류 이상씩 적용될 수 있다. 하나의 광학계는 이미지 센서, 렌즈 및 광원을 포함할 수 있고, 렌즈의 성능에 따라 광각 광학계와 현미경 광학계로 구분될 수 있다.Referring to FIG. 2, the capsule endoscope may be applied to two or more image sensors, lenses, and light sources. One optical system may include an image sensor, a lens, and a light source, and may be classified into a wide-angle optical system and a microscope optical system according to the performance of the lens.
먼저, 제 1 렌즈(210), 제 1 광원(220), 제 1 이미지 센서(미도시: 장치 내부에 있어 도면에 표현되지 않음)는 제 1 광학계를 형성할 수 있다. 제 1 광학계는 100도 이상의 초 광각 광학계일 수 있다. 다만, 반드시 100도 이상일 필요는 없고, 110도, 120도 이상의 광각 광학계여도 무방하다. 이를 통해 넓은 범위의 장기 점막을 관찰하는데 유용하고, 병변을 확인할 수 있다. 넓은 범위를 관찰하기 위해, 제 1 광원(220)은 제 2 광원(222)에 비해 광각조명인 것이 바람직하다. 제 2 광원(222)은 제 1 광원(220)에 비해 협각조명인 것이 바람직하다. First, the first lens 210, the first light source 220, and the first image sensor (not shown in the drawing, not shown in the drawing) may form a first optical system. The first optical system may be an ultra wide-angle optical system of 100 degrees or more. However, it does not necessarily need to be 100 degrees or more, and may be a wide angle optical system of 110 degrees and 120 degrees or more. This is useful for observing a wide range of organ mucosa and identifying lesions. In order to observe a wide range, the first light source 220 is preferably wide-angle illumination compared to the second light source 222. The second light source 222 is preferably narrow angle illumination compared to the first light source 220.
또한, 제 2 렌즈(212), 제 2 광원(222), 제 2 이미지 센서(미도시: 장치 내부에 존재)는 제 2 광학계를 형성할 수 있다. 제 2 광학계는 나노미터(nm) 내지 밀리미터(mm) 단위의 크기를 촬영할 수 있는 현미경(microscope) 기능을 갖는 광학계이다. 이를 제 1 광학계와 함께 배치한다. 이때, 제 2 렌즈(212)는 제 1 렌즈(210)와 동일 평면에 배치될 수 있고, 제 2 광원(222) 역시 제 1 광원(220)과 동일 평면에 배치될 수 있다. 제 1 이미지 센서와 제 2 이미지 센서의 위치관계도 마찬가지이다. In addition, the second lens 212, the second light source 222, and the second image sensor (not shown in the device) may form a second optical system. The second optical system is an optical system having a microscope function capable of capturing the size of the nanometer (nm) to millimeters (mm) unit. It is arranged together with the first optical system. In this case, the second lens 212 may be disposed on the same plane as the first lens 210, and the second light source 222 may also be disposed on the same plane as the first light source 220. The same applies to the positional relationship between the first image sensor and the second image sensor.
위와 같이 제 1 광학계와 제 2 광학계를 포함하는 본 발명의 일 실시예에 따른 캡슐 내시경 장치는 일반 캡슐내시경과 같이 제 1 광학계를 이용하여 광각으로 영상을 촬영하다가, 이상변변이 생겼을 때, 마그네틱 요소를 이용하여 캡슐내시경의 위치 및 자세를 제어함으로써 제 2 광학계를 통해 세포단위로 영상을 촬영할 수 있다. 즉, 동시에 촬영을 진행하여 캡슐내시경이 이상병변을 발견하였을 때, 캡슐내시경의 자세 및 위치를 제어하여 현미경이 볼 수 있는 범위로 캡슐내시경을 이동시킨다. The capsule endoscope device according to the embodiment of the present invention including the first optical system and the second optical system as described above takes an image at a wide angle using the first optical system like a general capsule endoscope, and when an abnormal change occurs, the magnetic element By controlling the position and posture of the capsule endoscope using the second optical system it is possible to take images in units of cells. That is, when the capsule endoscope detects an abnormal lesion by simultaneously photographing, the capsule endoscope is moved to a range where the microscope can be seen by controlling the position and position of the capsule endoscope.
돔은 캡슐내시경이 대상부위를 바라보는 방향으로 돔 형태로 렌즈들(210, 212)을 둘러싸고 있다. 돔은 광학 돔(optical dome)으로 불릴 수 있다. 이때, 광각으로 촬영하기 위한 제 1 광학계는 광학 돔으로부터 상당한 거리까지 촬영이 가능하다. 다만, 제 2 광학계는 현미경의 초점거리(focal length)와 유사하고, 이는 광학 돔 표면으로부터 2mm 이하의 초점거리를 갖는 것이 바람직할 수 있다. 또한, 광학 돔의 일부에서만 현미경의 영상을 촬영할 수 있다. 그렇기 때문에, 병변의 정확한 현미경 영상을 촬영하기 위해, 광학 돔의 특정 영역에서 초점거리가 맞춰질 수 있도록 캡슐내시경의 위치 및 자세를 제어하는 것이 바람직하다.The dome surrounds the lenses 210 and 212 in the form of a dome in a direction in which the capsule endoscope faces the target site. The dome may be called an optical dome. At this time, the first optical system for photographing at a wide angle can photograph at a considerable distance from the optical dome. However, the second optical system is similar to the focal length of the microscope, which may preferably have a focal length of 2 mm or less from the surface of the optical dome. In addition, only a part of the optical dome can capture an image of a microscope. As such, to capture an accurate microscopic image of the lesion, it is desirable to control the position and posture of the capsule endoscope so that the focal length can be adjusted in a specific area of the optical dome.
도 3은 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 광학계의 구성을 구체적으로 나타낸 상세블록도이다. Figure 3 is a detailed block diagram showing the configuration of the optical system of the capsule endoscope device according to an embodiment of the present invention in detail.
도 3을 참조하면, 제 1 광학계는 제 1 렌즈(310) 및 제 1 이미지 센서(302)를 포함하고(광원은 생략함), 제 2 광학계는 제 2 렌즈(312) 및 제 2 이미지 센서(304) 및 필터(330)를 포함할 수 있다. Referring to FIG. 3, the first optical system includes a first lens 310 and a first image sensor 302 (a light source is omitted), and the second optical system includes a second lens 312 and a second image sensor ( 304 and a filter 330.
제 1 광학계는 100° 이상의 시야각(FOV: Field Of View)를 갖는 광학계로, 광원(302)은 백색(white) 광원을 포함할 수 있다. 제 1 광학계의 초점거리는 광학 돔의 표면부터 30mm를 포함한다. 이러한 제 1 광학계를 통해 장기의 전체적인 형태나 위치 등을 가능할 수 있고, 위치 제어 시스템(도 6 참조)을 이용하여 캡슐의 위치 및 자세를 제어할 수 있다. The first optical system is an optical system having a field of view (FOV) of 100 ° or more, and the light source 302 may include a white light source. The focal length of the first optical system includes 30 mm from the surface of the optical dome. Through such a first optical system, the overall shape or position of the organ may be possible, and the position and posture of the capsule may be controlled using a position control system (see FIG. 6).
제 2 광학계는 0.1~100μm 크기의 영상을 촬영할 수 있는 광학계로, 초점거리는 광학 돔 표면 0~2mm 사이의 거리에 있는 병증을 촬영한다. FOV(초점영역)는 3mm 미만으로, 초점거리 부분(예컨대, 돔 표면 부근)에서 매우 작은 면적의 초첨 영역을 갖는다. 세포 단위로 현미경을 활용하는데 특화시키는 것이 바람직하다. 이때, 0.1~100㎛의 영상을 촬영하기 위해, 광원은 화각을 최소화할 수 있도록 광원의 전단부에 렌즈를 달 수 있다. 또한, 레이저 다이오드(laser diode)를 사용하는 것도 바람직할 수 있다. 제 2 광원으로 사용되는 LED 및/또는 레이저 다이오드는 상기 초점 거리와 초점 영역에 빛을 조사할 수 있도록 정렬되어 있는 것이 바람직하다. The second optical system is an optical system capable of capturing an image of 0.1 to 100 μm, and the focal length photographs a disease at a distance between 0 and 2 mm of the optical dome surface. The FOV (focal region) is less than 3mm and has a very small area of focus in the focal length portion (eg near the dome surface). It is desirable to specialize in using a microscope on a cell basis. At this time, in order to take an image of 0.1 ~ 100㎛, the light source may be attached to the front end of the light source to minimize the angle of view. It may also be desirable to use a laser diode. The LED and / or laser diode used as the second light source is preferably arranged to irradiate light to the focal length and the focal region.
제 1 광학계의 이미지 센서(302)는 100° 이상의 시야각을 갖는 영상을 촬영하기 위해 CMOS(Complementary Metal Oxide Semiconductor) 이미지 센서를 사용할 수 있다. The image sensor 302 of the first optical system may use a complementary metal oxide semiconductor (CMOS) image sensor to capture an image having a viewing angle of 100 ° or more.
제 2 광학계의 이미지 센서(304)로, 다른 종류의 CMOS(Complementary Metal Oxide Semiconductor) 센서를 사용할 수 있다. 또한 컬러 필터(330: color filter)(예컨대, RGB 컬러필터)가 있는 CMOS 이미지 센서를 사용할 수도 있다. 다만, 필터(330)는 반드시 구비되어야 하는 것은 아니고, 필터를 제거하고 감도를 높인 이미지 센서를 사용할 수도 있다. 또한, 전방에 필터(330)에 대역통과필터(bandpass filter)를 사용하여 특수 파장대만 수광할 수 있도록 할 수 있다. 이에 따라 협대역의 영상을 촬영할 수 있다. 협대역 영상을 촬영하게 되면, 변증이 도드라지는 영상을 촬영할 수 있다. 또한, 광원의 파장대를 조정하여 특수 파장대의 광원(레드(Red), 그린(Green) LED, 또는 그린(Green) 또는 블루(Blue) 또는 적외선(Infra Red))을 조사하게 되면, 점막 내에서 자가형광 파장이 여기될 수 있다. 이때, 자가형광 파장만 수광할 수 있도록 컬러필터(330)를 이미지 센서(304) 전방에 부착하면 형광 영상을 획득할 수 있다. Anm 파장대의 광원 조사하면, 세포에 상기 Anm 파장대의 광이 조사되어, Bnm 파장대의 영상이 생성될 수 있다. 이때, 제 2 광학계(즉, 현미경 광학계)에서는 반사되는 빛만 잘 수광되도록 하는 밴드패스필터를 사용하는 것이 바람직하다. 즉, Anm 파장은 걸러내는 것이 바람직하다. As the image sensor 304 of the second optical system, another type of complementary metal oxide semiconductor (CMOS) sensor may be used. It is also possible to use a CMOS image sensor with a color filter 330 (eg, an RGB color filter). However, the filter 330 is not necessarily provided, and an image sensor having a high sensitivity may be used by removing the filter. In addition, a bandpass filter may be used at the front of the filter 330 to receive only a specific wavelength band. Accordingly, it is possible to take a picture of a narrow band. By taking a narrowband image, you can take an image of a dialectic. In addition, by adjusting the wavelength band of the light source to irradiate a light source (Red, Green LED, or Green, Blue or Infra Red) in a special wavelength band, The fluorescence wavelength can be excited. In this case, when the color filter 330 is attached to the front of the image sensor 304 to receive only the self-fluorescence wavelength, a fluorescent image may be obtained. When the light source of the Anm wavelength band is irradiated, the cells may be irradiated with light of the Anm wavelength band to generate an image of the Bnm wavelength band. In this case, it is preferable to use a band pass filter in the second optical system (ie, the microscope optical system) so that only the reflected light is well received. That is, it is preferable to filter out Anm wavelength.
도 4는 본 발명의 일 실시예에 따른 캡슐 내시경 장치를 전방에서 바라봤을 때의 구성을 나타낸 평면도이다. Figure 4 is a plan view showing the configuration when viewed from the front endoscope capsule capsule according to an embodiment of the present invention.
도 4를 참조하면, 제 1 렌즈(410)와 제 2 렌즈(412) 주변에 4개의 광원(420-1, 420-2, 420-3, 420-4)가 배치될 수 있다. 이때, 하나의 광원(예컨대, 광원(420-1))만 특수 파장대로써 제 2 광학계를 위한 것일 수 있다. 여기서, 반드시 하나의 광원만 제 2 광학계와 연관되어야 하는 것은 아니고, 2개 또는 3개여도 무방하다. 4, four light sources 420-1, 420-2, 420-3, and 420-4 may be disposed around the first lens 410 and the second lens 412. In this case, only one light source (eg, the light source 420-1) may be for the second optical system as a special wavelength band. Here, only one light source is not necessarily associated with the second optical system, and may be two or three.
광원(420-2, 420-3, 420-4)은 주광원으로 white LED일 수 있다. 이때, 주광원이 반드시 white LED여야만 하는 것은 아니고, 다른 파장대의 광원일 수도 있다. 광원(420-1)은 특수 파장대의 영상을 생성하기 위한 현미경용 조명일 수 있다. 현미경용 조명은 그린(green) LED, 또는 특수 파장대(레드(Red), 그린(Green), 블루(Blue) 또는 적외선(Infra Red) 등)의 레이저 다이오드를 활용하는 것이 바람직할 수 있다. 이때, 광원(420-1)은 제 2 광학계의 렌즈(412)의 현미경 영상 촬영을 위한 것이므로, 제 2 렌즈(412)의 초점 영역을 고려하여, 돔 표면 부분에서 실제 영상이 촬영되는 부분을 비춰줄 수 있어야 한다. 즉, 초점 영역과 연관된 위치관계를 고려하여 광원(420-1)이 적절하게 특수 파장대의 광을 초점영역을 향해 포커싱해주는 것이 바람직하다. 또한, 제 2 광원은 두 개 이상일 수 있고, 서로 다른 파장대의 광원을 포함할 수 있다. 또한, 제 2 이미지 센서가 복수 개일 수 있고, 복수 개의 제 2 이미지 센서와 복수 개의 제 2 광원은 각각 매칭이 되어, 서로 다른 파장대의 영상을 주기적으로 생성할 수 있다. The light sources 420-2, 420-3, and 420-4 may be white LEDs as main light sources. In this case, the main light source does not necessarily need to be a white LED, but may be a light source of another wavelength band. The light source 420-1 may be illumination for a microscope for generating an image of a special wavelength band. Microscope illumination may utilize green LEDs or laser diodes of a particular wavelength band (such as Red, Green, Blue or Infra Red). In this case, since the light source 420-1 is for capturing the microscope image of the lens 412 of the second optical system, the light source 420-1 is considered to reflect the focus area of the second lens 412, so that the actual image is taken from the dome surface part. I should be able to give That is, in consideration of the positional relationship associated with the focus area, it is preferable that the light source 420-1 properly focus the light of the special wavelength band toward the focus area. In addition, the second light source may be two or more, and may include light sources of different wavelength bands. In addition, a plurality of second image sensors may be provided, and the plurality of second image sensors and the plurality of second light sources may be matched, respectively, to periodically generate images of different wavelength bands.
도 5는 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 주광원과 부광원의 발광주기를 나타낸 도면이다. 5 is a view showing the light emission period of the main light source and the negative light source of the capsule endoscope device according to an embodiment of the present invention.
제 1 렌즈의 넓은 시야각에 따른 초점 영역이 제 2 렌즈의 초점 영역을 포함하므로, 제 1 렌즈를 통해 획득되는 제 1 영상을 위한 광원은 제 2 렌즈와 연관된 영역에도 광을 조사하는 것이 요구될 수 있다. 즉, 제 2 렌즈에는 제 1 광원과 제 2 광원이 모두 조사되어야 할 수 있다(도 3 참조). 이에 따라 제 1 광원은 복수 개 배치될 수 있고, 제 2 렌즈의 주변에도 배치될 수 있다(도 4 참조). Since the focal region according to the wide viewing angle of the first lens includes the focal region of the second lens, the light source for the first image obtained through the first lens may be required to irradiate light also to the region associated with the second lens. have. That is, both the first light source and the second light source may be irradiated to the second lens (see FIG. 3). Accordingly, a plurality of first light sources may be arranged and may be arranged around the second lens (see FIG. 4).
다만, 이러한 상황에서, 제 2 광학계에 따른 현미경 영상을 획득하기 위해서는, 제 1 영상을 위한 제 1 광원, 즉, 일반적인 white LED 광원은 오프(off)된 상태에서 제 2 영상을 위한 제 2 광원만이 제 2 렌즈의 초점 영역에 광을 조사하고 있어야 한다. 이를 위해, 도 5에 도시된 바와 같이, 제 1 광원과 제 2 광원 각각의 주기를 설정하여 1, 2, 3 프레임에는 제 1 광원이 동작하도록 하고, 4 프레임에는 제 2 광원이 동작하도록 할 수 있다. 즉, 제 1 영상 획득을 위해 제 1 광원이 활성화되는 시간과 제 2 영상 획득을 위해 제 2 광원이 활성화되는 시간을 독립적으로 부여하는 것이 바람직하다. 이러한 주기 설정은 1:1의 비율이 되도록 할 수도 있고, 일반적으로 제 1 영상이 계속 활용되다가 이상병변이 발견될 경우, 제 2 영상이 활용되므로, 제 1 광원의 주기가 3:1, 또는 4:1로 보다 많은 비중을 차지하도록 할 수도 있다. 이러한 주기의 설정은 사용자 설정을 통해 조정할 수 있다. 또는 캡슐내시경을 외부 신호를 수신가능하도록 구성하여, 외부로부터의 신호에 반응하여 제 1 광원에서 제 2 광원으로, 또는 제 2 광원에서 제 1 광원으로 스위칭하도록 할 수 있다. However, in such a situation, in order to acquire a microscope image according to the second optical system, only the second light source for the second image in a state in which the first light source for the first image, that is, the general white LED light source is turned off. Light should be irradiated to the focal region of this second lens. To this end, as shown in FIG. 5, a period of each of the first light source and the second light source may be set to allow the first light source to operate in the 1, 2, and 3 frames, and the second light source to operate in the 4 frames. have. That is, it is preferable to independently assign a time when the first light source is activated for the first image acquisition and a time when the second light source is activated for the second image acquisition. The period setting may be a ratio of 1: 1, and in general, when the abnormality is found after the first image is continuously utilized, the second image is utilized, so that the period of the first light source is 3: 1, or 4 You can also make it more weight with a: 1. The setting of these periods can be adjusted through user settings. Alternatively, the capsule endoscope may be configured to receive an external signal so as to switch from the first light source to the second light source or from the second light source to the first light source in response to a signal from the outside.
도 6은 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 자세 및 위치 제어를 수행하는 과정을 나타낸 예시도이다. 6 is an exemplary view showing a process of performing posture and position control of the capsule endoscope device according to an embodiment of the present invention.
일반 영상에서 이상병변이 발견되면, 해당 부분을 보다 자세히 현미경 광학계를 통해 살펴보기 위해, 캡슐 내시경의 위치 및 자세변경이 요구될 수 있다. 이때, 자력을 활용하는 것이 바람직하다. If abnormal lesions are found in the general image, the position and posture of the capsule endoscope may be required to examine the corresponding portion through the microscope optical system in detail. At this time, it is preferable to utilize magnetic force.
도 6에 도시된 바와 같이, 캡슐 내시경 장치(600)는 인체 내부로 투입되어 장기 내벽(610)의 안쪽에 위치하게 된다. 마그네틱 제어기(650)와 모니터링 단말기(미도시)는 인체의 외부에 위치하게 되며, 일 측면에 따르면 마그네틱 제어기(650)는 피부(630)에 밀착하여 위치할 수 있다. 마그네틱 제어기(650)의 제어에 따라 캡슐 내시경 장치(600)가 동작하는 것에 의해 캡슐 내시경 장치(600)가 위치한 장기 이외의 주변 장기(620)에 대한 영상을 획득할 수 있다. As shown in FIG. 6, the capsule endoscope device 600 is inserted into the human body and positioned inside the organ inner wall 610. The magnetic controller 650 and the monitoring terminal (not shown) may be located outside the human body, and according to an aspect, the magnetic controller 650 may be located in close contact with the skin 630. By operating the capsule endoscope device 600 under the control of the magnetic controller 650, an image of a peripheral organ 620 other than the organ where the capsule endoscope device 600 is located may be acquired.
마그네틱 제어기(650)는 캡슐 내시경 장치(600)의 움직임을 제어하기 위한 자력을 방출할 수 있다. 영구 자석을 구비하는 것에 의해 자력을 발생할 수 있으며, 구동 모터를 구비하여 영구 자석과 같은 마그네틱 송신부의 움직임을 제어하는 것에 의해 캡슐 내시경 장치(600)로 전달되는 자력을 조절할 수 있다. 또한 마그네틱 제어기(600)는 캡슐 내시경 장치(600)로 전달되는 자력의 세기를 조절할 수 있으며, 현미경 영상을 획득하기 위한 움직임(예를 들어, 회전 또는 이동)의 속도를 조절할 수도 있다. The magnetic controller 650 may release magnetic force for controlling the movement of the capsule endoscope device 600. The magnetic force may be generated by providing the permanent magnet, and the magnetic force transmitted to the capsule endoscope device 600 may be adjusted by controlling the movement of the magnetic transmitter such as the permanent magnet by including the driving motor. In addition, the magnetic controller 600 may adjust the strength of the magnetic force transmitted to the capsule endoscope device 600, and may adjust the speed of the movement (for example, rotation or movement) for acquiring the microscope image.
예를 들어, 마그네틱 제어기(650)가 직선 반복 운동을 수행하면, 마그네틱 제어기(650)가 방출하는 자력에 응답하여 캡슐 내시경 장치(600) 역시 직선 반복 운동을 수행할 수 있으며, 캡슐 내시경 장치(600)는 광원을 통해 방출되는 빛 및 주변 장기(620)로부터 반사되어 돌아오는 빛를 기반으로 일반 영상 및 현미경 영상을 획득할 수 있다. For example, when the magnetic controller 650 performs a linear repeating motion, the capsule endoscope device 600 may also perform a linear repeating motion in response to the magnetic force emitted by the magnetic controller 650, and the capsule endoscope device 600. ) May obtain a general image and a microscope image based on light emitted through the light source and light reflected from the surrounding organs 620 and returned.
도 7은 본 발명의 일 실시예에 따른 캡슐 내시경 장치의 구성을 구체적으로 나타낸 블록도이다. 도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 캡슐 내시경 장치(700)는 제 1 렌즈(710), 제 2 렌즈(712), 제 1 광원(720), 제 2 광원(722), 마그네틱 요소(730), 제 1 이미지 센서(740), 제 2 이미지 센서(742), 제어부(750), 전원부(760), 전송부(770), 관성 센서(780)를 포함할 수 있다.Figure 7 is a block diagram showing in detail the configuration of the capsule endoscope device according to an embodiment of the present invention. As shown in FIG. 7, the capsule endoscope device 700 according to the exemplary embodiment of the present invention may include a first lens 710, a second lens 712, a first light source 720, and a second light source 722. , The magnetic element 730, the first image sensor 740, the second image sensor 742, the controller 750, the power supply unit 760, the transmitter 770, and the inertial sensor 780.
도 7을 참조하면, 제 1 렌즈(710)는 제 1 광학계의 렌즈로써, 앞서 설명한 바와 같이, 100° 이상의 시야각을 가지며, 초점거리는 돔 표면으로부터 30mm 이하를 갖는 렌즈이다. Referring to FIG. 7, the first lens 710 is a lens of the first optical system. As described above, the first lens 710 has a viewing angle of 100 ° or more and a focal length is 30 mm or less from the dome surface.
제 1 광원(720)은 제 1 렌즈(710)와 제 1 이미지 센서(740)와 대응하여 동작하며, 일반 캡슐 내시경 영상을 촬영하기 위해 광을 제공한다. 일반적으로 white LED가 사용될 수 있다. 복수 개 활용될 수 있다. The first light source 720 operates in correspondence with the first lens 710 and the first image sensor 740, and provides light for capturing a general capsule endoscope image. Typically white LEDs can be used. Plural can be utilized.
제 1 이미지 센서(740)는 제 1 렌즈(710)를 통해 보여지는 대상부위에 대한 영상을 촬영하는 구성요소이다. 제 1 이미지 센서(740)는 CMOS 이미지 센서를 포함한다. The first image sensor 740 is a component for capturing an image of a target portion seen through the first lens 710. The first image sensor 740 includes a CMOS image sensor.
제 2 렌즈(712)는 제 2 광학계의 렌즈로써, 앞서 설명한 바와 같이, 30mm 이하의 초점영역을 가지며, 초점거리(초점심도라고 부를 수 있음)는 돔 표면으로부터 2mm 이하를 갖는 렌즈이다. The second lens 712 is a lens of the second optical system. As described above, the second lens 712 has a focal region of 30 mm or less, and a focal length (called depth of focus) is 2 mm or less from the dome surface.
제 2 광원(722)은 제 2 렌즈(712)와 제 2 이미지 센서(742)와 대응하여 동작하며, 현미경 영상을 촬영하기 위해 광을 제공한다. white LED, 특수 파장대 LED, 렌즈와 함께 사용되는 LED, 및 레이저 다이오드 중 적어도 하나가 사용될 수 있다. The second light source 722 operates in correspondence with the second lens 712 and the second image sensor 742, and provides light for capturing a microscope image. At least one of a white LED, a special wavelength LED, an LED used with a lens, and a laser diode may be used.
제 2 이미지 센서(742)는 제 2 렌즈(712)를 통해 보여지는 대상부위에 대한 영상을 촬영하는 구성요소이다. 제 2 이미지 센서(742)는 CMOS 이미지 센서, 컬러필터를 포함하는 이미지 센서, 밴드패스필터를 포함하는 이미지 센서 중 적어도 하나를 포함한다. The second image sensor 742 is a component for capturing an image of a target portion seen through the second lens 712. The second image sensor 742 includes at least one of a CMOS image sensor, an image sensor including a color filter, and an image sensor including a band pass filter.
제어부(750)는 제 1 광원(720) 및 제 2 광원(722)의 설정된 동작주기에 따라 제 1 광원(720) 및 제 2 광원(722)을 제어한다. 또한, 제 1 이미지 센서(740) 및 제 2 이미지 센서(742)로부터 제 1 영상과 제 2 영상을 획득하여 전송부(770)로 전달한다. The controller 750 controls the first light source 720 and the second light source 722 according to the set operation period of the first light source 720 and the second light source 722. In addition, the first image and the second image are obtained from the first image sensor 740 and the second image sensor 742 and transmitted to the transmitter 770.
제어부(750)는 외부로부터 수신되는 제어신호를 기반으로 제 1 광원(720) 및 제 2 광원(722), 제 1 이미지 센서(740) 및 제 2 이미지 센서(742) 중 적어도 하나를 제어할 수 있다. The controller 750 may control at least one of the first light source 720 and the second light source 722, the first image sensor 740, and the second image sensor 742 based on a control signal received from the outside. have.
제어부(750)는 ASIC 칩으로 제작될 수 있으며, 제 1 이미지 센서(740) 및 제 2 이미지 센서(742)에서 생성된 데이터를 프레임으로 구성하여 전송부(770)로 전달하도록 구성될 수 있다. The controller 750 may be manufactured using an ASIC chip, and may be configured to transfer data generated by the first image sensor 740 and the second image sensor 742 into frames and transmit the data to the transmitter 770.
제어부(750)는 제 1 이미지 센서(740)와 제 2 이미지 센서(742) 중 적어도 하나에 대한 FPS(Frame Per Second) 제어도 가능하며, 관성 센서(780)로부터 획득되는 현재 캡슐내시경의 위치 및 자세에 따라 FPS를 적응적으로 변경시키는 것도 가능하다.The controller 750 may also control the frame per second (FPS) of at least one of the first image sensor 740 and the second image sensor 742, and the position of the current capsule endoscope obtained from the inertial sensor 780. It is also possible to adaptively change the FPS according to the posture.
마그네틱 요소(730)는 캡슐 내시경 장치(700) 외부의 마그네틱 제어기(750) 로부터의 자력에 응답하여 현미경 영상을 획득하기 위한 움직임을 수행하도록 제어할 수 있다. 여기서, 마그네틱 요소(730)는 예를 들어 하나 이상의 영구 자석으로 구성될 수 있다. 영구 자석 사이에는 전원부(760) 등이 배치될 수 있으며, 영구 자석의 N 극과 S 극은 가능한 사이가 넓게 배치될 수 있다. The magnetic element 730 may control to perform a movement for acquiring a microscope image in response to a magnetic force from the magnetic controller 750 external to the capsule endoscope device 700. Here, the magnetic element 730 may be composed of, for example, one or more permanent magnets. The power supply unit 760 may be disposed between the permanent magnets, and the N pole and the S pole of the permanent magnet may be disposed as widely as possible.
전원부(760)는 캡슐 내시경 장치(700)에 전원을 공급할 수 있으며, 하나 이상의 배터리로 구성될 수 있다. 또한, 상기 하나 이상의 배터리는 충전 가능한 배터리를 포함할 수 있다. The power supply unit 760 may supply power to the capsule endoscope device 700 and may include one or more batteries. In addition, the one or more batteries may include a rechargeable battery.
전송부(770)는 이미지 센서(740, 742)에 의해 획득된 제 1 및 제 2 영상을 캡슐 내시경 장치 외부의 수신기(715)로 송신한다. 또한, 외부 장치로부터의 제어신호를 수신할 수도 있다. 여기서, 캡슐 내시경 장치(700) 외부는, 예를 들어 모니터링 장치(미도시)일 수 있으며, 캡슐 내시경 시스템의 구성에 따라 별개의 외부 제어 장치, 외부 디스플레이 장치 중 어느 하나일 수도 있다. 즉, 전송부(770)는 캡슐 내시경 장치(700) 외부 유닛과의 통신 기능을 지원하며, 통신 방식은 전술한 바와 같이 무선 주파수 (Radio Frequancy, RF) 방식 또는 인체 통신(Human Body Communication, HBC) 방식 중 적어도 하나가 사용될 수 있다. 전송부(770)는 통신 기능을 구현하는 하나 이상의 ASIC로 구성될 수 있으며, 하나 이상의 안테나를 포함할 수 있다. 캡슐 내시경 시스템의 구성에 따라 단방향 통신 또는 양방향 통신을 지원할 수 있다. The transmitter 770 transmits the first and second images acquired by the image sensors 740 and 742 to the receiver 715 outside the capsule endoscope device. Also, a control signal from an external device can be received. The outside of the capsule endoscope device 700 may be, for example, a monitoring device (not shown), and may be any one of a separate external control device and an external display device according to the configuration of the capsule endoscope system. That is, the transmitter 770 supports a communication function with an external unit of the capsule endoscope device 700, and the communication method is a radio frequency (RF) method or a human body communication (HBC) as described above. At least one of the schemes may be used. The transmitter 770 may be configured of one or more ASICs for implementing a communication function, and may include one or more antennas. Depending on the configuration of the capsule endoscope system, it may support one-way communication or two-way communication.
관성 센서(780)는 캡슐 내시경 장치(700)의 방향 또는 자세 및 위치를 측정하기 위해 사용할 수 있다. 즉, 관성 센서(780)는 캡슐 내시경 장치(700)의 자세 및 위치에 대한 정보를 획득할 수 있으며, 이러한 캡슐 내시경 장치(700)의 자세 및 위치에 대한 정보는 획득되는 영상 촬영의 적응적 제어에 사용될 수 있다.The inertial sensor 780 can be used to measure the orientation or posture and position of the capsule endoscope device 700. That is, the inertial sensor 780 may obtain information about the posture and the position of the capsule endoscope device 700, and the information about the posture and the position of the capsule endoscope device 700 may be adaptively controlled in the image capturing. Can be used for
도 8a 및 도 8b는 본 발명의 일 실시예에 따른 캡슐 내시경 장치와 연동하는 영상 처리 장치에서 출력되는 화면을 나타낸 도면이다.8A and 8B illustrate screens output from an image processing apparatus interoperating with a capsule endoscope apparatus according to an embodiment of the present invention.
도 8a를 참조하면, 영상 처리 장치는 캡슐 내시경 장치로부터 일반 영상(제 1 영상)과 현미경 영상(제 2 영상)을 수신할 수 있다. 이때, 영상 처리 장치는 일반 영상과 현미경 영상을 실시간으로 수신하면서 듀얼(dual)로 하나의 화면에 함께 디스플레이할 수 있다.Referring to FIG. 8A, the image processing apparatus may receive a normal image (first image) and a microscope image (second image) from a capsule endoscope device. In this case, the image processing apparatus may display the general image and the microscope image in real time together on a single screen.
도 8b를 참조하면, 영상 처리 장치는 기본적으로 일반 영상을 메인으로 화면에 띄우고 있다가, 이상 병변이 발견되어 현미경 영상 획득을 위한 일련의 과정(예컨대, 캡슐 내시경의 위치 및 자세가 현미경 영상을 촬영하도록 제어, 현미경 영상 촬영, 촬영된 현미경 영상 수신)을 거치고 나면, 영상을 스위칭하여, 현미경 영상이 표시되도록 할 수 있다. 이는 이상 병변 트랙킹(tracking)을 위한 알고리즘을 사용하여 이상병변이 검출되면, 검출된 이상병변에 대한 응답으로, 현미경 영상 생성과 연관된 제어신호를 캡슐 내시경 장치로 전송하고, 이를 수신한 캡슐 내시경 장치가 자세 및 위치 제어를 통해 현미경 영상을 생성하면, 이를 영상처리장치가 수신하는 과정을 거려 적응적으로 처리될 수 있다. 즉, 미리 사용자가 이상병변 트랙킹 알고리즘을 적용하여 현미경 영상의 표시까지 자동으로 처리될 수 있는 부분이다. Referring to FIG. 8B, the image processing apparatus basically displays a general image on the screen, and then a abnormal lesion is detected and a series of processes for acquiring a microscope image (for example, the position and posture of the capsule endoscope take a microscope image). Control, microscope imaging, and receiving the captured microscope image), the image may be switched to display the microscope image. When an abnormal lesion is detected using an algorithm for tracking abnormal lesions, in response to the detected abnormal lesion, a control signal associated with microscopic image generation is transmitted to the capsule endoscope device, and the capsule endoscope device receiving the abnormal lesion is received. When the microscope image is generated through posture and position control, the image processing apparatus may adaptively process the received image. That is, the user may automatically process the display of the microscope image by applying the abnormal lesion tracking algorithm in advance.
이상 도면 및 실시예를 참조하여 설명하였지만, 본 발명의 보호범위가 상기 도면 또는 실시예에 의해 한정되는 것을 의미하지는 않으며 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although described above with reference to the drawings and embodiments, it does not mean that the scope of protection of the present invention is limited by the above drawings or embodiments, and those skilled in the art to the spirit of the present invention described in the claims It will be understood that various modifications and variations can be made in the present invention without departing from the scope of the invention.

Claims (12)

  1. 캡슐 내시경 장치에 있어서,In a capsule endoscope device,
    기준값보다 넓은 시야각(FOV: Field Of Vision)을 가지고 대상부위를 관찰하기 위한 제 1 광학계;A first optical system for observing a target site with a field of vision (FOV) wider than a reference value;
    나노미터(nm)부터 밀리미터(mm) 크기의 대상부위를 확대관찰하기 위한 제 2 광학계; 및A second optical system for enlarging and observing an object portion of a size ranging from nanometer (nm) to millimeter (mm); And
    상기 제 1 광학계 및 상기 제 2 광학계 중 적어도 하나로부터 획득된 영상 데이터를 수신기로 전송하는 전송부를 포함하되, Including a transmitter for transmitting the image data obtained from at least one of the first optical system and the second optical system to the receiver,
    상기 제 1 광학계는 상기 기준값보다 넓은 시야각을 갖는 제 1 렌즈, 상기 제 1 렌즈를 통해 상기 대상부위에 대한 영상을 촬영하는 제 1 이미지 센서 및 상기 제 1 렌즈 및 상기 제 1 이미지 센서와 대응하여 동작하는 제 1 광원을 포함하고,The first optical system operates in response to a first lens having a wider viewing angle than the reference value, a first image sensor for capturing an image of the target region through the first lens, and the first lens and the first image sensor. Including a first light source,
    상기 제 2 광학계는 나노미터 내지 밀리미터 단위의 대상부위를 관찰하기 위한 제 2 렌즈, 상기 제 2 렌즈를 통해 상기 대상부위에 대한 영상을 촬영하는 제 2 이미지 센서 및 상기 제 2 렌즈 및 상기 제 2 이미지 센서와 대응하여 동작하는 제 2 광원을 포함하는 캡슐 내시경 장치.The second optical system includes a second lens for observing a target portion in nanometer to millimeter units, a second image sensor for capturing an image of the target portion through the second lens, and the second lens and the second image. A capsule endoscope device comprising a second light source operating in correspondence with a sensor.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 렌즈는 100도 이상의 시야각을 가지며,The first lens has a viewing angle of 100 degrees or more,
    상기 제 1 렌즈의 초점거리는 상기 제 1 렌즈 및 상기 제 2 렌즈를 둘러싸고 있는 돔(Optical Dome)의 표면으로부터 30mm 이하의 초점심도를 갖는 캡슐 내시경 장치.The focal length of the first lens has a depth of focus of less than 30mm from the surface of the optical dome surrounding the first lens and the second lens.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 렌즈는 3mm 미만의 초점 영역을 가지며,The second lens has a focal region of less than 3 mm,
    상기 제 2 렌즈의 초점거리는 상기 제 1 렌즈 및 상기 제 2 렌즈를 둘러싸고 있는 돔의 표면으로부터 2mm 이하의 초점심도를 갖는 캡슐 내시경 장치.The focal length of the second lens has a depth of focus of less than 2mm from the surface of the dome surrounding the first lens and the second lens.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제 2 광원은 상기 제 2 렌즈의 초점거리 및 초점영역과 정렬되어 있는 LED 또는 레이저 다이오드인 캡슐 내시경 장치.And the second light source is an LED or a laser diode aligned with the focal length and the focal region of the second lens.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 2 광원은 상기 렌즈의 초점거리 및 초점영역과 정렬되어 형광 파장대의 광을 제공하는 레이저 다이오드(Laser Diode)인 캡슐 내시경 장치.And the second light source is a laser diode that is aligned with a focal length and a focal region of the lens to provide light of a fluorescent wavelength band.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 제 2 광원의 발광 주기는 상기 제 1 광원의 발광 주기보다 큰 캡슐 내시경 장치.The light emitting period of the second light source is larger than the light emitting period of the first light source capsule endoscope device.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 광원 및 상기 제 2 광원 중 적어도 하나는 화이트 LED(white LED)를 포함하는 캡슐 내시경 장치.At least one of the first light source and the second light source includes a capsule endoscope device.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 이미지 센서 및 상기 제 2 이미지 센서 중 적어도 하나는 CMOS(Complementary Metal Oxide Semiconductor) 이미지 센서인 캡슐 내시경 장치.At least one of the first and second image sensors is a Complementary Metal Oxide Semiconductor (CMOS) image sensor.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 이미지 센서와 상기 제 2 렌즈 사이에, 컬러필터(color filter) 및 특정 파장대의 광만 통과시키는 대역 통과 필터(bandpass filter) 중 적어도 하나를 더 포함하는 캡슐 내시경 장치.And at least one of a color filter and a bandpass filter for passing only light of a specific wavelength band between the second image sensor and the second lens.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 캡슐 내시경 장치의 위치 및 자세 제어를 위한 마그네틱 요소(magnetic element)를 더 포함하는 캡슐 내시경 장치.A capsule endoscope device further comprising a magnetic element for position and posture control of the capsule endoscope device.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 렌즈 및 상기 제 2 렌즈는 동일 평면 상에 배치되는 캡슐 내시경 장치.And the first lens and the second lens are disposed on the same plane.
  12. 캡슐 내시경 장치의 동작 방법에 있어서,In the operating method of the capsule endoscope device,
    제 1 광학계가 기준값보다 넓은 시야각(FOV: Field Of Vision)을 가지고 대상부위를 관찰하는 단계; Observing the target site by the first optical system having a field of vision (FOV) wider than a reference value;
    제 2 광학계가 나노미터(nm)부터 밀리미터(mm) 크기의 대상부위를 확대관찰하는 단계; 및The second optical system magnifies and observes a target portion of a size ranging from nanometers (nm) to millimeters (mm); And
    상기 제 1 광학계 및 상기 제 2 광학계 중 적어도 하나로부터 획득된 영상 데이터를 수신기로 전송하는 단계를 포함하되, Transmitting image data obtained from at least one of the first optical system and the second optical system to a receiver,
    제 1 광학계가 기준값보다 넓은 시야각(FOV: Field Of Vision)을 가지고 대상부위를 관찰하는 단계는 상기 기준값보다 넓은 시야각을 갖는 제 1 렌즈와 제 1 이미지 센서와 연동하는 제 1 광원으로부터 조사되는 광을 통해, 상기 제 1 렌즈를 기반으로 상기 대상부위에 대한 영상을 촬영하는 단계를 포함하고,Observing the target area with the field of vision (FOV) wider than the reference value by the first optical system may include light emitted from a first lens having a wider viewing angle than the reference value and a first light source interlocked with the first image sensor. And photographing an image of the target portion based on the first lens.
    제 2 광학계가 나노미터(nm)부터 밀리미터(mm) 크기의 대상부위를 확대관찰하는 단계는 나노미터 내지 밀리미터 단위의 대상부위를 관찰하기 위한 제 2 렌즈와 제 2 이미지 센서와 연동하는 제 2 광원으로부터 조사되는 광을 통해, 상기 제 2 렌즈를 기반으로 나노미터 내지 밀리미터 단위의 대상부위를 관찰하는 단계를 포함하는 캡슐 내시경 장치의 동작방법.The step of enlarging and observing the target area of the nanometer (nm) to the millimeter (mm) size by the second optical system may include a second light source that is interlocked with the second image sensor and the second lens for observing the target area in nanometer to millimeter units. The method of operating the capsule endoscope device comprising the step of observing the target site in the unit of nanometers to millimeters based on the second lens through the light irradiated from the.
PCT/KR2019/001474 2018-03-19 2019-02-01 Capsule endoscope device and method for operating same device WO2019182245A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180031469A KR102097445B1 (en) 2018-03-19 2018-03-19 Capsule endoscope apparatus and operation method of said apparatus
KR10-2018-0031469 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019182245A1 true WO2019182245A1 (en) 2019-09-26

Family

ID=67987871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001474 WO2019182245A1 (en) 2018-03-19 2019-02-01 Capsule endoscope device and method for operating same device

Country Status (2)

Country Link
KR (1) KR102097445B1 (en)
WO (1) WO2019182245A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102388737B1 (en) 2021-03-29 2022-04-21 주식회사 우영메디칼 Capsule Endoscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050124858A1 (en) * 2003-09-01 2005-06-09 Hirohiko Matsuzawa Capsule type endoscope
US20080045789A1 (en) * 2006-07-06 2008-02-21 Fujifilm Corporation Capsule endoscope
KR20100037948A (en) * 2008-10-02 2010-04-12 주식회사 인트로메딕 Optical system of capsule endoscope
KR20120113545A (en) * 2011-04-05 2012-10-15 주식회사 인트로메딕 Capsule-type endoscope, imaging method for capsule-type endoscope and apparatus for processing image transmitted from capsule-type endoscope
KR20160046963A (en) * 2014-10-20 2016-05-02 삼성전자주식회사 An electronic apparatus for detecting heart pulse information, and a method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050124858A1 (en) * 2003-09-01 2005-06-09 Hirohiko Matsuzawa Capsule type endoscope
US20080045789A1 (en) * 2006-07-06 2008-02-21 Fujifilm Corporation Capsule endoscope
KR20100037948A (en) * 2008-10-02 2010-04-12 주식회사 인트로메딕 Optical system of capsule endoscope
KR20120113545A (en) * 2011-04-05 2012-10-15 주식회사 인트로메딕 Capsule-type endoscope, imaging method for capsule-type endoscope and apparatus for processing image transmitted from capsule-type endoscope
KR20160046963A (en) * 2014-10-20 2016-05-02 삼성전자주식회사 An electronic apparatus for detecting heart pulse information, and a method therefor

Also Published As

Publication number Publication date
KR102097445B1 (en) 2020-04-07
KR20190109866A (en) 2019-09-27

Similar Documents

Publication Publication Date Title
EP1423042B1 (en) Endoscopic system with a solid-state light source
US8556806B2 (en) Wavelength multiplexing endoscope
CN104756093B (en) For mobile or network equipment interchangeable wireless sensing device
CN101296647B (en) In vivo image acquisition device, receive device, and in vivo information acquisition system
US7316647B2 (en) Capsule endoscope and a capsule endoscope system
EP3692887B1 (en) Imaging apparatus which utilizes multidirectional field of view endoscopy
JPWO2004096028A1 (en) Capsule endoscope and capsule endoscope system
CN102100518B (en) Capsule enteroscopy system with thermal-infrared scanning function
WO2015186930A1 (en) Apparatus for real-time interactive transmission of medical image and information and for remote support
WO2019182245A1 (en) Capsule endoscope device and method for operating same device
JP2007044214A (en) In vivo information acquisition device
JP3353949B2 (en) Imaging system
JP4526245B2 (en) Video signal processing device
CN102100517A (en) Two-way infrared thermally scanning capsule enteroscopy system
CN102525394A (en) Capsule enteroscopy system with electronic charge coupled device (CCD) camera system and night vision camera
WO2022034971A1 (en) Wired/wireless composite endoscope for diagnosing digestive system
WO2019190057A1 (en) Capsule endoscope
JPH05228109A (en) Narrow place insertion type observing device
CN201912041U (en) Bidirectional infrared-ray thermal scanning capsule enteroscope system
JP3270106B2 (en) Endoscope device
CN202408818U (en) Capsule enteroscope system with electronic CCD (charge coupled device) image pickup system and night vision camera
JP3714636B2 (en) Endoscope device
CN202408823U (en) Capsulate small enteroscope system with night vision function
CN202408847U (en) Capsule enteroscopy system with bidirectional night vision camera
CN202426489U (en) Capsule enteroscope system with CCD (Charge Coupled Device) function and optical coherence tomography function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771088

Country of ref document: EP

Kind code of ref document: A1