WO2019182240A1 - Method for recovering surface oxide of catalyst - Google Patents

Method for recovering surface oxide of catalyst Download PDF

Info

Publication number
WO2019182240A1
WO2019182240A1 PCT/KR2019/001044 KR2019001044W WO2019182240A1 WO 2019182240 A1 WO2019182240 A1 WO 2019182240A1 KR 2019001044 W KR2019001044 W KR 2019001044W WO 2019182240 A1 WO2019182240 A1 WO 2019182240A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon dioxide
copper oxide
reoxidation
copper
Prior art date
Application number
PCT/KR2019/001044
Other languages
French (fr)
Korean (ko)
Inventor
계정일
김광헌
김동백
임은자
지광선
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019182240A1 publication Critical patent/WO2019182240A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general

Definitions

  • the present invention relates, in particular, to a method for recovering the surface oxides of copper oxide catalysts used in the electrodes for cathodes in electrochemical cells used when decomposing carbon dioxide to reduce them to useful conversions.
  • hydrocarbons including fossil fuels
  • All hydrocarbons are basically in a certain proportion of carbon and hydrogen, which inevitably generates carbon dioxide when they are burned.
  • Carbon dioxide is known to be a major cause of global warming. Accordingly, the reduction of carbon dioxide has emerged as a very important issue worldwide.
  • the method of using a catalyst has many advantages that the apparatus and the method itself are very simple, can use electricity produced from renewable energy as it is, and is very easy to scale up to a commercial scale.
  • the method using the catalyst has the advantage that it can selectively produce a variety of carbon compounds.
  • C2 or more useful hydrocarbons such as ethylene, ethanol, propanol and butanol having excellent practicality must be stably and continuously produced.
  • the pure Cu catalyst has a stable phase of Cu (111), and the Cu catalyst generates more C1 (carbon monovalent hydrocarbon) than C2 + (carbon bivalent hydrocarbon) among the products produced by the reduction of carbon dioxide. It is known.
  • the C2 + production rate is higher than the C1 production rate.
  • the reduction reaction proceeds in accordance with Cu 2 O in the catalyst from the monovalent Cu + 1 ions are to occur the reduction of the Cu atom thereby C2 + generation rate of carbon dioxide, there is a problem that continues to decrease.
  • the present invention seeks to invent a method of stably reoxidizing a Cu 2 O catalyst in order to decompose carbon dioxide so as to stably and continuously produce hydrocarbons of C 2 or more.
  • the present invention has a selectivity to react only with carbon dioxide while at the same time stably and continuously providing useful by-products such as C2 or more hydrocarbons. It is an object to provide a method for recovering the surface oxides of a Cu 2 O catalyst in order to be able to produce them.
  • the present invention is another object to provide a method for reducing the process time for restoring the surface oxide of the Cu 2 O catalyst. .
  • a method of recovering a surface oxide of a Cu 2 O catalyst comprising: preparing a metal oxide catalyst having a reduced surface; A method for recovering a catalyst comprising a; reoxidizing by applying a voltage above a copper oxidation potential to the reduced metal oxide catalyst by a predetermined charge amount or more.
  • the metal oxide catalyst is a copper oxide (Cu x O); may be provided with a catalyst recovery method.
  • the metal component of the metal oxide catalyst is Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Sc
  • the metal component of the metal oxide catalyst is Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Sc
  • the voltage in the reoxidation step is +0.8 to 1.5V; may be provided a catalyst recovery method characterized in that.
  • the amount of charge in the reoxidation step is 1 C / cm2 or more; may be provided a method for recovering the catalyst characterized in that.
  • the step of removing the hydrocarbon is applying a pulse of a current value of 5 to 10 times the normal reduction current at a voltage above the oxygen reduction reaction (ORR) potential; recovery of the catalyst, characterized in that A method may be provided.
  • the reoxidation step is initiated when the measured hydrocarbon fraction value is less than or equal to a set threshold value.
  • a catalyst recovery method may be provided.
  • the reoxidation step may be started when the current or power value measured in the electrochemical cell in which the catalyst is used is lower than a set threshold.
  • the metal oxide catalyst which is a catalyst for a negative electrode decomposing carbon dioxide, can be recovered repeatedly, reproducibly and very effectively.
  • the recovery method of the metal oxide catalyst of the present invention can shorten the recovery time of the metal oxide catalyst.
  • the recovery method of the metal oxide catalyst of the present invention can increase the total uptime of the electrochemical cell by increasing the uptime for the carbon dioxide decomposition and reducing the downtime for the catalyst reoxidation in the electrochemical cell for the reduction decomposition reaction of carbon dioxide. Can be.
  • FIG. 1 is a schematic diagram of a typical electrochemical cell for decomposing and reducing carbon dioxide.
  • FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
  • Figure 3 shows the crystal structure of the negative electrode measured by XRD before and after the carbon dioxide reduction reaction in the experimental example using Cu 2 O as the negative electrode catalyst in the electrochemical cell for carbon dioxide decomposition.
  • FIG. 5 shows the ratio of ethylene (C 2 H 4 ) in hydrocarbons produced when carbon dioxide is reduced using a catalyst composed of Cu x O and a catalyst composed of pure Cu, each of which is oxidized to the surface of pure Cu.
  • Figure 6 shows a three-electrode (anode electrode / reduction electrode / reference electrode) system used for the performance evaluation of the catalyst in the present invention.
  • Figure 7 shows the results of the analysis of the microstructure and surface components before and after the carbon dioxide reduction reaction in a catalyst consisting of copper oxide (Cu x O).
  • Figure 8 shows the results of the analysis of the microstructure and surface components before and after the carbon dioxide reduction reaction in a catalyst consisting of pure copper (Cu).
  • FIG. 11 shows a schematic of a two electrode carbon dioxide reactor for performance evaluation of a copper oxide (Cu x O) catalyst.
  • FIG. 12 shows the actual shape of a two-electrode carbon dioxide reactor for performance evaluation of a copper oxide (Cu x O) catalyst.
  • FIG. 13 illustrates a Faradaic efficiency of ethylene (C 2 H 4 ) generated by applying a copper oxide (Cu x O) catalyst to a cathode of a two-electrode reactor and reducing and decomposing carbon dioxide.
  • first, second, A, B, (a), and (b) can be used. These terms are only to distinguish the components from other components, and the terms are not limited in nature, order, order or number of the components. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected to or connected to that other component, but between components It is to be understood that the elements may be “interposed” or each component may be “connected”, “coupled” or “connected” through other components.
  • FIG. 1 is a schematic diagram of a typical electrochemical cell for decomposing and reducing carbon dioxide.
  • the electrochemical cell includes a cathode in which an oxidation reaction in which oxygen is generated and a cathode in which reduction of carbon dioxide occurs, a compartment for accommodating an electrolyte containing the anode and the cathode, and between the cathode and the anode And a membrane that selectively passes only the desired components on the electrolyte.
  • the cell includes an energy supply source for supplying energy from the outside to drive the cell.
  • an extractor for extracting the by-product generated from the reduction of the carbon dioxide is further included.
  • an electrolyte supply device may be added as necessary.
  • a secondary reactor for the reaction may optionally be included.
  • Cu 2 O when used as a catalyst, not only various kinds of hydrocarbons can be produced, but also there are advantages that C2 or more useful hydrocarbons such as ethylene, ethanol, propanol and butanol can be produced. For this reason, Cu 2 O has recently attracted much attention as a carbon dioxide catalyst.
  • FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
  • the reason for the difference in the hydrocarbons produced according to the type of catalyst is that if the catalyst of the cathode in which the reduction reaction of carbon dioxide occurs is Cu whose oxidation number is +1, the bonding strength between carbon dioxide and C1 hydrocarbon increases and as a result, the bond between C1-C1 It is presumed that this is because the reaction is encouraged to produce more useful hydrocarbon compounds of C2 or more.
  • the Cu 2 O catalyst is reduced to Cu of the metal by the reduction reaction at the negative electrode. Reduction of the Cu 2 O catalyst into Cu causes most of the hydrocarbons produced in the catalyst to be converted to C 1 hydrocarbons.
  • Figure 3 shows the crystal structure of the negative electrode measured by XRD before and after the carbon dioxide reduction reaction in the experimental example using Cu 2 O as the negative electrode catalyst in the electrochemical cell for carbon dioxide decomposition.
  • the cathode before the reduction reaction may be present in the Cu 2 O state over the entire thickness regardless of the thickness.
  • the cathodes measured by XRD after the reduction reaction were all present as Cu regardless of the thickness.
  • the XRD measurement result means that only the reduction of the reactant carbon dioxide should occur at the cathode in the electrochemical cell, but the reduction of the catalyst itself is also very active.
  • the reduction of the catalyst in the electrochemical cell for carbon dioxide decomposition is due to the electrochemical properties of the material itself of the Cu 2 O catalyst.
  • the Pourbaix diagram shows the relationship between the pH and the potential at which a metal or metal ion is stably present in an aqueous solution under atmospheric pressure (meaning 1 atm). In other words, the Pourbaix diagram shows the region of the metal or metal ion or metal compound in a stable state at pH and standard hydrogen potential conditions.
  • copper is a Cu atom itself in the range of -0.33 to -0.24 V, which are potential values at which hydrocarbons are generated by reduction of carbon dioxide. It can be seen that the presence is a thermodynamically stable state.
  • the copper is external or Under the condition that a potential of 0 V or less is applied by the electrochemical reaction, it means that it is present as a Cu atom by a reduction reaction from Cu oxide to Cu.
  • the first and easiest way to think of this is to continuously and stably supply oxygen to the reduced Cu atom inside or outside the converted metal to convert the Cu metal atoms back to Cu having +1 valence.
  • the present invention has been accomplished by regenerating the catalyst itself for the cathode of an electrochemical cell, which does not involve device cost or volume increase and further requires no additional materials and equipment.
  • the present invention can continuously maintain the conversion efficiency of carbon dioxide to C2 or more hydrocarbons by regenerating an oxide on the surface of the Cu 2 O catalyst used as a catalyst for a cathode while using the apparatus of a conventional electrochemical cell as it is. Method was developed.
  • FIG. 5 shows the ratio of ethylene (C 2 H 4 ) in hydrocarbons produced when carbon dioxide is reduced using a catalyst composed of Cu x O and a catalyst composed of pure Cu, each of which is oxidized to the surface of pure Cu.
  • FIG. 5 The results of FIG. 5 were measured through the three electrode (oxidation electrode / reduction electrode / reference electrode) system shown in FIG. 6.
  • the three-electrode system of an embodiment of the present invention includes a gas sealed quartz reactor and a reference electrode, a working electrode and a counter electrode located on top of the reactor as shown in FIG. Cu x O or pure Cu which oxidized the surface of pure Cu was used as a reduction electrode, and Pt and Ag / AgCl were used as an oxidation electrode and a reference electrode, respectively.
  • As an electrolyte 0.1 M KHCO 3 was used at pH 6.8, and a reaction gas generated by applying a charge amount of 4 to 10 coulombs (C) at -1.9 V (vs. Ag / AgCl) was collected. The collected reaction gases were analyzed using gas chromatography (GC).
  • Catalysts made of copper oxide (Cu x O) were determined to have higher ethylene (C 2 H 4 ) production efficiency over the entire reaction time than catalysts made of pure copper (Cu) (FIG. 5). And the result of FIG. 5 is in good agreement with the result of FIG. 2. On the other hand, as the reaction time of the carbon dioxide reduction reaction proceeds, it can be seen that the ethylene (C 2 H 4 ) production efficiency is reduced not only in the catalyst made of dms copper oxide (Cu x O) but also in the catalyst made of pure copper (Cu).
  • the catalyst composed of copper oxide (Cu x O) includes several micrometer-sized oxides on the surface at a rate of several tens at.% Before the carbon dioxide reduction reaction.
  • the photomicrograph shows that the fraction of oxides decreased on the surface of the catalyst, and furthermore, the proportion of oxygen on the surface of the catalyst decreased by several at.%. have.
  • the surface tissue photographs and the results of the component analysis in FIG. 8 are in good agreement with the results in previous FIGS. 2 to 4.
  • the catalyst consisting of copper oxide (Cu x O) used in the carbon dioxide reduction reaction includes a high portion of copper oxide (Cu x O) on the surface of the catalyst at the beginning of the reduction reaction. On the other hand, as the reduction reaction proceeds, the fraction of copper oxide and oxygen on the surface of the catalyst decreases.
  • the change in the catalyst surface made of copper oxide (Cu x O) causes a change in the microstructure and components on the catalyst surface as the reduction reaction proceeds, and as a result, as shown in FIG. Degradation of the conversion rate occurs.
  • the catalyst after 150 minutes of carbon dioxide reduction reaction was observed that the surface does not contain particles that can be identified as an oxide or the like, as shown in the microscopic image, but the oxygen is present at the catalyst surface by a few at.%. The analysis result confirmed.
  • the catalyst made of copper oxide (Cu x O) in FIGS. 9 and 10 is applied with + 1.5V from the outside (based on the standard hydrogen electrode, and all potential values are based on the standard hydrogen electrode). It is a reoxidized catalyst.
  • copper (Cu) is a thermodynamically more stable state of copper oxide (CuO) than pure copper (Cu) at a voltage condition of + 0.52V or more. If a voltage of more than + 0.52V is applied to the copper from the outside, pure copper is oxidized from the surface, and the proportion of oxygen on the surface increases with voltage application.
  • the copper oxide potential applied from the outside is preferably +0.8 to 1.5V based on the standard hydrogen potential.
  • the externally applied oxidation potential is +0.52 V or more
  • reoxidation of copper is thermodynamically possible at the catalyst surface made of copper oxide (Cu x O).
  • additional electrochemical energy must be supplied in addition to + 0.52V.
  • the oxidation potential is less than + 0.8V
  • the time for reoxidation on the surface of the copper oxide (Cu x O) catalyst becomes too long. If the reoxidation time at the catalyst surface is longer than the operating time of the electrochemical cell for carbon dioxide reduction, the long reoxidation time is undesirable since it does not meet the object of the invention of carbon dioxide decomposition.
  • the oxidation potential for reoxidation is preferably less than 1.5V. If the externally applied oxidation potential is higher than 1.5V, a peroxidation phenomenon occurs in which oxidation occurs not only on the surface of the catalyst but also on the inside thereof, causing a problem of deteriorating the life of the catalyst. Furthermore, an excessively high oxidation potential is not preferable because it is higher than the oxygen reduction reaction (ORR) potential, and as a result, oxygen may be generated to cause energy loss.
  • ORR oxygen reduction reaction
  • the amount of charge required for reoxidation of the copper oxide (Cu x O) catalyst is preferably 1 C / cm 2 or more.
  • Electrochemical reactions including carbon dioxide reduction reactions, are typically surface reactions that occur on the surface of a catalyst (or an electrode comprising a catalyst). Therefore, the surface properties of the catalyst affect the electrochemical reaction, and the internal or bulk properties of the catalyst have little effect on the surface properties. It is known that the surface range from which the surface properties in the catalyst can be determined is typically up to several micrometers deep at the surface. Therefore, in the present invention, the amount of charge required for reoxidation of the copper oxide catalyst is calculated to be approximately 1 C / cm 2.
  • the amount of charge used for reoxidation of the copper oxide catalyst is less than 1 C / cm 2, there is a problem in that reoxidation of the catalyst surface does not occur sufficiently, and thus, recovery of the catalyst does not occur completely.
  • the upper limit of the amount of charge used for reoxidation of the copper oxide catalyst is not particularly limited. However, if the amount of charge is too large, energy consumption is increased, reoxidation occurs to the inside of the catalyst, and the reoxidation time is too long. Problems may occur in which the efficiency of the electrochemical cell for decomposition is lowered.
  • a process of removing hydrocarbon adsorbed on the surface of the catalyst immediately before the oxidation potential may be added.
  • the surface of the copper oxide (Cu x O) catalyst is a hydrocarbon produced through the carbon dioxide reduction reaction.
  • the hydrocarbons are physically or chemically adsorbed by the reaction with the catalyst on the surface of the catalyst. Therefore, if the adsorbed hydrocarbons are present on the surface of the catalyst, the surface reoxidation reaction of the catalyst is delayed due to the hydrocarbon adsorbed on the surface of the catalyst, thereby requiring the surface reoxidation of the copper oxide (Cu x O) catalyst. The time taken will increase.
  • a pulse having an oxygen reduction reaction (ORR) potential or more and a current value of 5-10 times or more of the normal reduction current is applied.
  • Hydrocarbons adsorbed on the surface of the catalyst through the pulse driving may be physically separated from the surface of the catalyst by the generated oxygen bubbles. As a result, the time required for reoxidation of the catalyst can be shortened.
  • the frequency for reoxidation of the copper oxide (Cu x O) catalyst in the embodiment of the present invention can be determined in various ways.
  • the reoxidation cycle may be determined to chemically measure the hydrocarbon fraction of C2 or higher among the hydrocarbons produced first and to reoxidize the catalyst when the measured hydrocarbon fraction of C2 or higher is below the threshold.
  • the method has the advantage of being able to determine the reoxidation time of the copper oxide (Cu x O) catalyst most accurately, while the disadvantage is that in-situ is difficult.
  • the electrochemical cell for carbon dioxide reduction decomposition is set and the characteristics of the cell are determined by the hydrocarbon fraction, the reoxidation time of the catalyst can be stably set and operated.
  • the timing of reoxidation of the catalyst may be determined by measuring the total power of the carbon dioxide electrochemical cell.
  • the method has the disadvantage that it cannot accurately determine the reoxidation time of the copper oxide (Cu x O) catalyst, but has the advantage that in-situ is possible.
  • the reoxidation time of the copper oxide (Cu x O) catalyst is determined in-situ by electrical measurement methods. It becomes possible.
  • the regeneration method of the catalyst for carbon dioxide reduction of the present invention is applicable to other types of metal oxide catalysts in addition to copper (Cu). Furthermore, the catalyst regeneration method of the present invention is applicable to a metal oxide catalyst in the form of an alloy containing copper (Cu) and other kinds of metals.
  • the catalyst regeneration method of the present invention is a non-limiting example, Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Application is also possible for catalysts comprising one or more metals of the Scs or alloys thereof.
  • 11 and 12 are two electrodes used to evaluate the performance of a copper oxide (Cu x O) catalyst reoxidized for 63 minutes by an externally applied oxidation potential of 1.5V, as shown previously in FIGS. 9 and 10 of the present invention.
  • a schematic and actual shape of a carbon dioxide reactor is shown.
  • a two-electrode reactor capable of injecting carbon dioxide in the gas phase and evaluating the performance of the system is located in the middle of the membrane in which H + or OH - ions are transferred to the catalyst by direct or indirect contact with the electrolyte, as shown in FIG. And a catalyst layer (reduction electrode or membrane electrode assembly, MEA) supported on a support such as carbon, and a gas diffusion electrode for introducing gases involved in the reaction into the catalyst and discharging the formed hydrocarbon.
  • a catalyst layer reduction electrode or membrane electrode assembly, MEA
  • MEA membrane electrode assembly
  • FIG. 12 shows the actual shape of the two-electrode reactor of FIG. 11.
  • FIG. 13 illustrates a Faradaic efficiency of ethylene (C 2 H 4 ) generated by applying a copper oxide (CuxO) catalyst to a cathode of the two-electrode reactor and reducing and decomposing carbon dioxide.
  • CuxO copper oxide
  • Faradaic Efficiency ⁇ (number of generated C 2 H 4 moles XC 2 H 4 number of electrons needed to produce X Faraday constant) / (total charge applied to the reducing electrode) ⁇ X 100%
  • the copper oxide (Cu x O) catalyst undergoes reduction at the surface, as is the surface microstructure on the right side in FIG. x O)
  • the content of oxygen in the catalyst is estimated to be greatly reduced.
  • the surface of the copper oxide catalyst was reoxidized and recovered by applying an oxidation potential of + 1.5V to the surface for about 60 minutes to the reduced copper oxide (Cu x O) catalyst.
  • the total decomposition time required for reduction decomposition of carbon dioxide in the initial copper oxide catalyst was determined to be about the same as the total decomposition time in the recovered copper oxide catalyst according to the embodiment of the present invention.
  • the recovered copper oxide catalyst is also the first copper oxide. It was measured to have substantially the same efficiency characteristics of the C 2 H 4 gas as the catalyst or recovered copper oxide catalyst.
  • the result of the embodiment of the present invention of FIG. 13 can be said to prove that the reoxidation method of the copper oxide catalyst developed in the present invention is a method of recovering the copper oxide catalyst repeatedly, reproducibly and very effectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to an electrochemical cell used when carbon dioxide is decomposed and reduced to a useful conversion product, and to a catalyst to be used in an electrode for a negative electrode within the cell. According to the present invention, a method for recovering a catalyst can be provided, the method comprising the steps of: preparing a metal oxide catalyst having a reduced surface; and applying a voltage greater than or equal to the copper oxidation potential to the reduced metal oxide catalyst by applying a predetermined charge amount or more to reoxidize the metal oxide catalyst. Thus, it is possible to reuse the metal oxide catalyst without additional materials and/or equipment.

Description

촉매의 표면 산화물을 회복시키는 방법How to recover the surface oxides of the catalyst
본 발명은 특히 이산화탄소를 분해하여 유용한 전환물로 환원할 때 이용되는 전기화학 셀 내의 음극용 전극에 사용되는 구리 산화물 촉매의 표면 산화물을 회복시키는 방법에 관한 것이다.The present invention relates, in particular, to a method for recovering the surface oxides of copper oxide catalysts used in the electrodes for cathodes in electrochemical cells used when decomposing carbon dioxide to reduce them to useful conversions.
산업이 발달함에 따라 에너지 사용이 크게 증가하고, 이에 따라 화석 연료를 포함한 탄화수소류의 사용량도 급격히 증가하고 있다. 모든 탄화수소류는 기본적으로 일정 비율의 탄소 및 수소로 되어 있어, 이들이 연소될 때는 필연적으로 이산화탄소를 발생시키게 된다.As the industry develops, energy use is greatly increased, and accordingly, the use of hydrocarbons including fossil fuels is also rapidly increasing. All hydrocarbons are basically in a certain proportion of carbon and hydrogen, which inevitably generates carbon dioxide when they are burned.
이산화탄소는 지구 온난화의 주요 요인으로 알려져 있다. 이에 따라 전세계적으로 이산화탄소 저감은 매우 중요한 이슈로 부각되어 왔다.Carbon dioxide is known to be a major cause of global warming. Accordingly, the reduction of carbon dioxide has emerged as a very important issue worldwide.
한편 국내에는 산업 기반시설인 화학공장, 제철소, 시멘트 공장들이 많이 소재하는데, 이러한 시설들은 특히 이산화탄소를 많이 배출시키고 있다.On the other hand, there are many industrial plants, chemical plants, steel mills, and cement plants, which emit a lot of carbon dioxide.
이산화탄소에 에너지를 인가하면 탄소화합물과 산소와 같은 유용한 자원으로 변환시켜주는 전환기술이 발생된 이산화탄소를 제거하는 방법으로 최근에 들어 큰 주목을 받고 있다. 고온에서 압력을 가하거나 촉매를 이용하는 방법 등이 이러한 전환기술에 포함된다.The application of energy to carbon dioxide has recently received a lot of attention as a method of removing carbon dioxide generated by the conversion technology that converts it into useful resources such as carbon compounds and oxygen. Pressure conversion at high temperatures or the use of catalysts include such conversion techniques.
상기 전환기술들 가운데 촉매를 사용하는 방법은 장치 및 방법 자체가 매우 간단하고 신재생 에너지로부터 생산된 전기를 그대로 사용할 수 있으며 상업적인 규모로까지 스케일 업(scale up)이 매우 쉽다는 많은 장점이 있다. 또한 촉매를 사용하는 방법은 다양한 종류의 탄소화합물들을 선택적으로 생성할 수 있다는 장점도 있다.Among the conversion techniques, the method of using a catalyst has many advantages that the apparatus and the method itself are very simple, can use electricity produced from renewable energy as it is, and is very easy to scale up to a commercial scale. In addition, the method using the catalyst has the advantage that it can selectively produce a variety of carbon compounds.
반면 상기 촉매를 사용하는 방법이 실용화까지 진행되기 위해서는 실용성이 우수한 에틸렌, 에탄올, 프로판올 및 부탄올과 같은 C2 이상의 유용한 탄화수소가 안정적이고 지속적으로 생산될 수 있어야 한다.On the other hand, in order for the method using the catalyst to be put into practical use, C2 or more useful hydrocarbons such as ethylene, ethanol, propanol and butanol having excellent practicality must be stably and continuously produced.
최근 들어 Cu계열 촉매들이 C2 이상의 탄화수소 생성에 효과를 보이는 것으로 보고되어 주목을 받고 있다.Recently, Cu-based catalysts have been reported to have an effect on the generation of C2 or more hydrocarbons have attracted attention.
이 중 순수 Cu 촉매는 안정상이 Cu (111)이며, Cu 촉매에서는 이산화탄소의 환원반응으로 생성되는 생성물들 중 C2+ (탄소가 2가 이상 탄화수소) 보다 C1 (탄소가 1가 탄화수소)이 더 많이 생성되는 것으로 알려져 있다.Among them, the pure Cu catalyst has a stable phase of Cu (111), and the Cu catalyst generates more C1 (carbon monovalent hydrocarbon) than C2 + (carbon bivalent hydrocarbon) among the products produced by the reduction of carbon dioxide. It is known.
한편 Cu2O 촉매의 경우 C2+ 생성 비율이 C1 생성 비율보다 높다. 그러나 이산화탄소의 환원 반응이 진행됨에 따라 Cu2O 촉매에서는 +1가의 Cu 이온으로부터 Cu 원자로의 환원이 일어나게 되고 그로 인해 C2+ 생성 비율이 지속적으로 감소되는 문제가 있다.Meanwhile, in the case of the Cu 2 O catalyst, the C2 + production rate is higher than the C1 production rate. However, the reduction reaction proceeds in accordance with Cu 2 O in the catalyst from the monovalent Cu + 1 ions are to occur the reduction of the Cu atom thereby C2 + generation rate of carbon dioxide, there is a problem that continues to decrease.
결국 Cu2O 촉매의 C2 이상의 탄화수소 생성 효율을 높게 유지하기 위해서는 Cu2O 촉매의 환원을 억제할 수 있는 내구성이 뛰어난 촉매를 개발하거나 또는 환원된 Cu2O 촉매를 회복시킬 수 있는 방법 등이 모색되어야 한다. End in order to maintain the hydrocarbon formation efficiency than C2 of the Cu 2 O catalyst high and a method which can develop or restore the reduced Cu 2 O catalyst has excellent durability that can suppress the reduction of the Cu 2 O Catalyst Catalyst seek Should be.
이에 따라 본 발명은 이산화탄소를 분해하여 C2 이상의 탄화수소를 안정적이고 지속적으로 생성할 수 있도록 하기 위해 Cu2O 촉매를 안정적으로 재산화할 수 있는 방법을 발명하고자 한다.Accordingly, the present invention seeks to invent a method of stably reoxidizing a Cu 2 O catalyst in order to decompose carbon dioxide so as to stably and continuously produce hydrocarbons of C 2 or more.
이산화탄소의 분해에 사용되는 전기화학적 셀(cell)의 환원 반응이 일어나는 음극(cathode)용 촉매에 있어서, 본 발명은 이산화탄소에만 반응하는 선택성을 가지면서 동시에 C2 이상의 탄화수소와 같은 유용한 부산물을 안정적이고 지속적으로 생성할 수 있도록 하기 위하여 Cu2O 촉매의 표면 산화물을 회복하는 방법을 제공하는 것을 목적으로 한다.In a catalyst for a cathode in which a reduction reaction of an electrochemical cell used for the decomposition of carbon dioxide occurs, the present invention has a selectivity to react only with carbon dioxide while at the same time stably and continuously providing useful by-products such as C2 or more hydrocarbons. It is an object to provide a method for recovering the surface oxides of a Cu 2 O catalyst in order to be able to produce them.
또한 Cu2O 촉매 표면에 존재하는 탄화수산화물을 보다 빠르게 제거하는 방법의 개발을 통해, 본 발명은 Cu2O 촉매의 표면 산화물을 회복시키는 공정 시간을 보다 줄이는 방법을 제공하는 것을 또 다른 목적으로 한다.In addition, through the development of a method for more quickly removing the hydrocarbons present on the surface of the Cu 2 O catalyst, the present invention is another object to provide a method for reducing the process time for restoring the surface oxide of the Cu 2 O catalyst. .
Cu2O 촉매의 표면 산화물을 회복하는 방법을 제공하기 위해, 본 발명의 하나의 실시예에 따르면, 표면이 환원된 금속 산화물 촉매를 준비하는 단계; 상기 환원된 금속 산화물 촉매에 구리 산화 전위 이상의 전압을 일정 전하량 이상 인가하여 재산화하는 단계;를 포함하는 것을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.According to one embodiment of the present invention, there is provided a method of recovering a surface oxide of a Cu 2 O catalyst, comprising: preparing a metal oxide catalyst having a reduced surface; A method for recovering a catalyst comprising a; reoxidizing by applying a voltage above a copper oxidation potential to the reduced metal oxide catalyst by a predetermined charge amount or more.
바람직하게는 상기 금속 산화물 촉매는 구리 산화물(CuxO)인 것;을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.Preferably the metal oxide catalyst is a copper oxide (Cu x O); may be provided with a catalyst recovery method.
바람직하게는 상기 금속 산화물 촉매의 금속 성분은 Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Sc 들 중 하나 또는 둘 이상의 금속 또는 이들의 합금 중 하나 이상인 것;을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.Preferably, the metal component of the metal oxide catalyst is Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Sc One or two or more of these metals or alloys thereof may be provided.
바람직하게는 상기 재산화 단계에서의 상기 전압은 +0.8 내지 1.5V 인 것;을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.Preferably, the voltage in the reoxidation step is +0.8 to 1.5V; may be provided a catalyst recovery method characterized in that.
바람직하게는 상기 재산화 단계에서의 상기 전하량은 1 C/㎠ 이상인 것;을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.Preferably the amount of charge in the reoxidation step is 1 C / ㎠ or more; may be provided a method for recovering the catalyst characterized in that.
Cu2O 촉매 표면에 존재하는 탄화수산화물을 보다 빠르게 제거하는 방법을 제공함으로써 Cu2O 촉매의 표면 산화물을 회복시키는 공정 시간을 보다 줄일 수 있는 본 발명의 다른 실시예에 따르면, 상기 재산화 단계 이전에 추가적으로 탄화수산화물을 촉매 표면으로부터 제거하는 단계;를 추가로 포함하는 촉매의 회복 방법이 제공될 수 있다.By providing a way to more quickly remove the carbide hydroxide present in the Cu 2 O catalyst surface according to another embodiment of the present invention it can more reduce the process time for restoring the surface oxide of the Cu 2 O catalyst, the re-oxidation step before In addition to the step of removing the hydrocarbon from the catalyst surface; there may be provided a method for recovering the catalyst further comprising.
이 때, 상기 탄화수산화물을 제거하는 단계는 산소환원반응(oxygen reduction reaction, ORR) 전위 이상의 전압에서 정상 환원전류의 5 내지 10배 이상의 전류 값의 펄스를 인가하는 것;을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.At this time, the step of removing the hydrocarbon is applying a pulse of a current value of 5 to 10 times the normal reduction current at a voltage above the oxygen reduction reaction (ORR) potential; recovery of the catalyst, characterized in that A method may be provided.
바람직하게는 상기 재산화 단계는 측정된 탄화수소 분율 값이 설정된 임계치 이하일 때 시작되는 것;을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.Preferably the reoxidation step is initiated when the measured hydrocarbon fraction value is less than or equal to a set threshold value. A catalyst recovery method may be provided.
바람직하게는 상기 재산화 단계는 상기 촉매가 사용되는 전기화학 셀에서 측정된 전류 또는 파워 값이 설정된 임계치 이하일 때 시작되는 것;을 특징으로 하는 촉매의 회복 방법이 제공될 수 있다.Preferably, the reoxidation step may be started when the current or power value measured in the electrochemical cell in which the catalyst is used is lower than a set threshold.
본 발명의 금속 산화물 촉매의 회복 방법에 따르면, 이산화탄소를 분해하는 음극용 촉매인 금속 산화물 촉매가 반복적이고 재현성이 있으며 매우 효과적으로 회복될 수 있다.According to the recovery method of the metal oxide catalyst of the present invention, the metal oxide catalyst, which is a catalyst for a negative electrode decomposing carbon dioxide, can be recovered repeatedly, reproducibly and very effectively.
이를 통해 별도의 재료 및/또는 장비 없이도 금속 산화물 촉매가 그대로 재사용될 수 있다.This allows the metal oxide catalyst to be reused as is without additional materials and / or equipment.
또한 본 발명의 금속 산화물 촉매의 회복 방법은 금속 산화물 촉매의 회복 시간을 단축시킬 수 있다. In addition, the recovery method of the metal oxide catalyst of the present invention can shorten the recovery time of the metal oxide catalyst.
이를 통해 본 발명의 금속 산화물 촉매의 회복 방법은 이산화탄소의 환원 분해 반응용 전기 화학 셀에서 이산화탄소 분해를 위한 가동시간을 늘리고 촉매 재산화를 위한 정지 시간을 단축시킴으로써 전기화학 셀의 전체 가동시간을 증가시킬 수 있다.In this way, the recovery method of the metal oxide catalyst of the present invention can increase the total uptime of the electrochemical cell by increasing the uptime for the carbon dioxide decomposition and reducing the downtime for the catalyst reoxidation in the electrochemical cell for the reduction decomposition reaction of carbon dioxide. Can be.
도 1은 이산화탄소를 분해하여 환원시키기 위한 일반적인 전기화학적 셀의 모식도이다.1 is a schematic diagram of a typical electrochemical cell for decomposing and reducing carbon dioxide.
도 2는 Cu 촉매 및 산화수가 +1가인 Cu 이온으로 구성된 구리 산화물 촉매의 표면에서 이산화탄소가 분해될 때 생성되는 탄화수소의 종류별 비율을 도시한 것이다.FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
도 3은 이산화탄소 분해용 전기화학적 셀에서 음극 촉매로써 Cu2O를 사용한 실험예에서 이산화탄소 환원반응 전/후 XRD로 측정된 음극의 결정구조를 나타낸다.Figure 3 shows the crystal structure of the negative electrode measured by XRD before and after the carbon dioxide reduction reaction in the experimental example using Cu 2 O as the negative electrode catalyst in the electrochemical cell for carbon dioxide decomposition.
도 4는 Cu2O의 Pourbaix 다이어그램(전위-pH 다이어그램)이다.4 is a Pourbaix diagram (potential-pH diagram) of Cu 2 O.
도 5는 각각 순수한 Cu의 표면을 산화 처리한 CuxO로 이루어진 촉매와 순수한 Cu로 이루어진 촉매를 이용하여 이산화탄소를 환원시킬 때 생성되는 탄화수소 중 에틸렌(C2H4)의 비율을 측정한 것이다.FIG. 5 shows the ratio of ethylene (C 2 H 4 ) in hydrocarbons produced when carbon dioxide is reduced using a catalyst composed of Cu x O and a catalyst composed of pure Cu, each of which is oxidized to the surface of pure Cu.
도 6은 본 발명에서 촉매의 성능 평가를 위해 사용된 3전극(산화전극/환원전극/기준전극) 시스템을 도시한 것이다.Figure 6 shows a three-electrode (anode electrode / reduction electrode / reference electrode) system used for the performance evaluation of the catalyst in the present invention.
도 7은 구리 산화물(CuxO)로 이루어진 촉매에서의 이산화탄소 환원 반응 전/후의 미세조직 및 표면 성분 분석 결과를 도시한 것이다.Figure 7 shows the results of the analysis of the microstructure and surface components before and after the carbon dioxide reduction reaction in a catalyst consisting of copper oxide (Cu x O).
도 8은 순수한 구리(Cu)로 이루어진 촉매에서의 이산화탄소 환원 반응 전/후의 미세조직 및 표면 성분 분석 결과를 도시한 것이다.Figure 8 shows the results of the analysis of the microstructure and surface components before and after the carbon dioxide reduction reaction in a catalyst consisting of pure copper (Cu).
도 9 및 10은 구리 산화물(CuxO)로 이루어진 촉매가 이산화탄소 환원 반응을 100분 이상 진행하여 이산화탄소로부터 C2 이상의 탄화수소로의 전환 비율이 퇴화된 후 상기 촉매에 다시 산화전위를 인가하여 재산화된 촉매의 표면을 전자 현미경으로 관찰한 전자현미경 사진이다.9 and 10 show that the catalyst composed of copper oxide (Cu x O) undergoes a carbon dioxide reduction reaction for at least 100 minutes, and the conversion rate from carbon dioxide to C 2 or more hydrocarbon is deteriorated, and then the oxidation potential is applied to the catalyst again. It is the electron microscope photograph which observed the surface of the catalyst with the electron microscope.
도 11은 구리 산화물(CuxO) 촉매의 성능 평가를 위한 2 전극 이산화탄소 반응기의 개략도를 나타낸 것이다.11 shows a schematic of a two electrode carbon dioxide reactor for performance evaluation of a copper oxide (Cu x O) catalyst.
도 12는 구리 산화물(CuxO) 촉매의 성능 평가를 위한 2 전극 이산화탄소 반응기의 실제 형상을 나타낸 것이다.FIG. 12 shows the actual shape of a two-electrode carbon dioxide reactor for performance evaluation of a copper oxide (Cu x O) catalyst.
도 13은 2 전극 반응기의 환원전극에 구리 산화물(CuxO) 촉매를 적용하고 이산화탄소를 환원 분해하여 생성된 에틸렌(C2H4)의 패러데이 효율(Faradaic efficiency)을 도시한 것이다.FIG. 13 illustrates a Faradaic efficiency of ethylene (C 2 H 4 ) generated by applying a copper oxide (Cu x O) catalyst to a cathode of a two-electrode reactor and reducing and decomposing carbon dioxide.
이하, 본원에 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 촉매와 이를 제조하는 방법을 상세히 설명하기로 한다.Hereinafter, a catalyst and a method of preparing the same according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.The present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only this embodiment to make the disclosure of the present invention complete and to those skilled in the art to fully understand the scope of the invention It is provided to inform you.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 본 발명의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and like reference numerals designate like elements throughout the specification. In addition, some embodiments of the invention will be described in detail with reference to exemplary drawings. In adding reference numerals to components of each drawing, the same components may have the same reference numerals as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description may be omitted.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) can be used. These terms are only to distinguish the components from other components, and the terms are not limited in nature, order, order or number of the components. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but between components It is to be understood that the elements may be "interposed" or each component may be "connected", "coupled" or "connected" through other components.
또한, 본 발명을 구현함에 있어서 설명의 편의를 위하여 구성요소를 세분화하여 설명할 수 있으나, 이들 구성요소가 하나의 장치 또는 모듈 내에 구현될 수도 있고, 혹은 하나의 구성요소가 다수의 장치 또는 모듈들에 나뉘어져서 구현될 수도 있다.In addition, in the implementation of the present invention may be described by subdividing the components for convenience of description, these components may be implemented in one device or module, or one component is a plurality of devices or modules It can also be implemented separately.
도 1은 이산화탄소를 분해하여 환원시키기 위한 일반적인 전기화학적 셀(cell)의 모식도이다.1 is a schematic diagram of a typical electrochemical cell for decomposing and reducing carbon dioxide.
도 1에서 도시한 바와 같이 상기 전기화학적 셀은 산소가 발생하는 산화반응이 일어나는 양극과 이산화탄소의 환원이 일어나는 음극, 상기 양극과 음극이 담기는 전해질을 수용하기 위한 구획, 그리고 상기 양극과 음극 사이에서 위치하며 상기 전해질 상의 원하는 성분만 선택적으로 통과시키는 멤브레인을 포함한다.As shown in FIG. 1, the electrochemical cell includes a cathode in which an oxidation reaction in which oxygen is generated and a cathode in which reduction of carbon dioxide occurs, a compartment for accommodating an electrolyte containing the anode and the cathode, and between the cathode and the anode And a membrane that selectively passes only the desired components on the electrolyte.
한편, 상기 도 1에는 도시되지는 않았으나, 상기 셀은 상기 셀을 구동시키기 위해 외부에서 에너지를 공급하기 위한 에너지 공급원을 포함한다. 또한 상기 이산화탄소의 환원으로부터 발생한 부산물을 추출하기 위한 추출기가 추가로 포함된다. 또한 필요에 따라 전해질 공급장치가 추가될 수도 있다.Although not shown in FIG. 1, the cell includes an energy supply source for supplying energy from the outside to drive the cell. In addition, an extractor for extracting the by-product generated from the reduction of the carbon dioxide is further included. In addition, an electrolyte supply device may be added as necessary.
이와는 별도로 만일 이산화탄소의 환원으로부터 발생한 부산물이 또 다른 추가적인 반응을 필요로 하는 경우, 상기 반응을 위한 이차적인 반응기도 선택적으로 포함될 수 있다.Apart from this, if the by-product resulting from the reduction of carbon dioxide requires another additional reaction, a secondary reactor for the reaction may optionally be included.
상기 도 1과 같은 셀에서 이산화탄소가 분해되어 환원될 때, 환원반응이 일어나는 촉매의 종류에 따라 다양한 부산물(또는 전환물 또는 생성물이라 한다)이 생성되는 것으로 알려져 있다.When carbon dioxide is decomposed and reduced in a cell as shown in FIG. 1, it is known that various by-products (or conversion products or products) are produced depending on the type of catalyst in which a reduction reaction occurs.
예를 들어 Ag 또는 Sb가 촉매로 사용 되면, 상기 촉매에서 다음의 반응식 (1)을 통해 이산화탄소는 환원되고 일산화탄소가 생성된다. 반면 Cu2O가 촉매로 사용되면, 다음의 반응식 (2) 내지 (5)를 통해 이산화탄소가 분해되어 메탄, 에탄, 에틸렌 등의 자원이 생성되는 것으로 알려져 있다.For example, when Ag or Sb is used as a catalyst, carbon dioxide is reduced and carbon monoxide is produced through the following reaction formula (1) in the catalyst. On the other hand, when Cu 2 O is used as a catalyst, it is known that carbon dioxide is decomposed through the following reaction formulas (2) to (5) to generate resources such as methane, ethane, and ethylene.
CO2 + 2H+ + 2e- → CO + H2O -0.51 V (1) CO 2 + 2H + + 2e - → CO + H 2 O -0.51 V (1)
CO2 + 8H+ + 8e- → CH4 + 2H2O -0.24 V (2) CO 2 + 8H + + 8e - CH 4 + 2H 2 O -0.24 V (2)
2CO2 + 12H+ + 12e- → C2H4 + 4H2 -0.33 V (3) 2CO 2 + 12H + + 12e - → C 2 H 4 + 4H 2 -0.33 V (3)
2CO2 + 12H+ + 12e- → C2H5OH + 3H2O -0.32 V (4) 2CO 2 + 12H + + 12e - → C 2 H 5 OH + 3H 2 O -0.32 V (4)
3CO2 + 18H+ + 18e- → C3H7OH + 5H2O -0.31 V (V vs.NHE) (5) 3CO 2 + 18H + + 18e - → C 3 H 7 OH + 5H 2 O -0.31 V (V vs.NHE) (5)
반면 산화 전극에서는 다음의 식 (6)을 통해 물이 산화되고 산소, 수소이온, 그리고 전자가 발생된다.On the other hand, in the oxidation electrode, water is oxidized through the following equation (6) and oxygen, hydrogen ions, and electrons are generated.
n/2 H2O → nH+ + n/4O2 + ne- (6) n / 2 H 2 O → nH + + n / 4O 2 + ne - (6)
따라서 Cu2O가 촉매로 사용되면, 다양한 종류의 탄화수소가 생성될 수 있을 뿐만 아니라 더 나아가 에틸렌, 에탄올, 프로판올 및 부탄올과 같은 C2 이상의 유용한 탄화수소가 생성될 수 있다는 장점이 있다. 이로 인해 최근에는 Cu2O가 이산화탄소 촉매로써 많은 각광을 받고 있다.Therefore, when Cu 2 O is used as a catalyst, not only various kinds of hydrocarbons can be produced, but also there are advantages that C2 or more useful hydrocarbons such as ethylene, ethanol, propanol and butanol can be produced. For this reason, Cu 2 O has recently attracted much attention as a carbon dioxide catalyst.
도 2는 Cu 촉매 및 산화수가 +1가인 Cu 이온으로 구성된 구리 산화물 촉매의 표면에서 이산화탄소가 분해될 때 생성되는 탄화수소의 종류별 비율을 도시한 것이다.FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
도 2에서 도시된 바와 같이 금속상태의 Cu가 촉매로 사용되면 이산화탄소의 환원으로 CH4와 C2H4가 Cu 촉매의 표면에서 생성된다. 이 때 CH4와 C2H4 각각의 생성 비율은 비슷하나 CH4가 C2H4보다 더 많은 분율을 차지함을 알 수 있다.As shown in FIG. 2, when Cu in a metal state is used as a catalyst, CH 4 and C 2 H 4 are generated on the surface of the Cu catalyst by reduction of carbon dioxide. At this time, the formation rate of each of CH 4 and C 2 H 4 is similar, but it can be seen that CH 4 occupies more fraction than C 2 H 4 .
이와는 달리, 만일 산화수가 +1가인 Cu가 촉매로 사용되면, +1가 Cu 촉매 표면에서의 이산화탄소의 환원은 CH4와 C2H4를 주로 생성한다. 다만 생성된 탄화수소에서의 C2H4가 CH4의 비율은 C2H4가 CH4보다 최대 15배 이상 더 큰 분율을 차지함을 알 수 있다. 따라서 산화수가 +1가인 Cu가 이산화탄소 환원용 전기화학적 셀의 촉매로써 C2 이상의 탄화수소 생성에 매우 유리한 효과를 가짐을 알 수 있다.In contrast, if Cu having an oxidation number of +1 is used as the catalyst, the reduction of carbon dioxide at the surface of the +1 Cu catalyst produces mainly CH 4 and C 2 H 4 . However, C 2 H 4 in the resulting hydrocarbon is the ratio of CH 4 can be seen to occupy a greater fraction of up to 15 or more times that of the C 2 H 4 CH 4. Accordingly, it can be seen that Cu having an oxidation number of +1 has a very advantageous effect on the generation of C2 or more hydrocarbons as a catalyst of an electrochemical cell for reducing carbon dioxide.
한편 이와 같이 촉매 종류에 따라 생성되는 탄화수소가 차이가 나는 원인은 이산화탄소의 환원반응이 일어나는 음극의 촉매가 산화수가 +1가인 Cu이면 이산화탄소와 C1 탄화수소와의 결합력이 증가하고 그 결과 C1-C1간 결합반응이 조장됨으로써 C2 이상의 유용한 탄화수소 화합물 생성이 보다 유리해지기 때문인 것으로 추정된다.On the other hand, the reason for the difference in the hydrocarbons produced according to the type of catalyst is that if the catalyst of the cathode in which the reduction reaction of carbon dioxide occurs is Cu whose oxidation number is +1, the bonding strength between carbon dioxide and C1 hydrocarbon increases and as a result, the bond between C1-C1 It is presumed that this is because the reaction is encouraged to produce more useful hydrocarbon compounds of C2 or more.
따라서 Cu2O를 이산화탄소 환원용 촉매로 사용하게 되면, 초기에는 이산화탄소가 촉매 표면에서 전환되면서 C2 이상의 유용한 탄화수소 화합물을 생성하게 된다. Therefore, when Cu 2 O is used as a catalyst for carbon dioxide reduction, carbon dioxide is initially converted at the surface of the catalyst to produce C2 or more useful hydrocarbon compounds.
하지만 이산화탄소의 환원 반응이 진행됨에 따라 Cu2O 촉매는 음극에서의 환원 반응에 의해 금속의 Cu로 환원되게 된다. 상기 Cu2O 촉매의 Cu로의 환원으로 인해 촉매에서 생성되는 탄화수소의 대부분은 C1의 탄화수소로 바뀌게 된다.However, as the reduction reaction of carbon dioxide proceeds, the Cu 2 O catalyst is reduced to Cu of the metal by the reduction reaction at the negative electrode. Reduction of the Cu 2 O catalyst into Cu causes most of the hydrocarbons produced in the catalyst to be converted to C 1 hydrocarbons.
도 3은 이산화탄소 분해용 전기화학적 셀에서 음극 촉매로써 Cu2O를 사용한 실험예에서 이산화탄소 환원반응 전/후 XRD로 측정된 음극의 결정구조를 나타낸다.Figure 3 shows the crystal structure of the negative electrode measured by XRD before and after the carbon dioxide reduction reaction in the experimental example using Cu 2 O as the negative electrode catalyst in the electrochemical cell for carbon dioxide decomposition.
도 3에서 도시한 바와 같이 환원반응 전의 음극은 두께에 관계없이 전체 두께에 걸쳐 Cu2O 상태로 존재함을 알 수 있다.As shown in FIG. 3, the cathode before the reduction reaction may be present in the Cu 2 O state over the entire thickness regardless of the thickness.
반면 환원반응 후 XRD로 측정된 음극은 두께와 무관하게 모두 Cu로 존재하는 것으로 나타났다. 상기 XRD 측정 결과는 전기화학 셀 내의 음극에서는 반응물인 이산화탄소의 환원만 일어나야 하지만 촉매 자체의 환원도 매우 활발하게 발생함을 의미한다. On the other hand, the cathodes measured by XRD after the reduction reaction were all present as Cu regardless of the thickness. The XRD measurement result means that only the reduction of the reactant carbon dioxide should occur at the cathode in the electrochemical cell, but the reduction of the catalyst itself is also very active.
이산화탄소 분해용 전기화학적 셀에서의 상기 촉매의 환원은 Cu2O 촉매가 가지는 재료 자체의 전기화학적 특성에서 기인한다.The reduction of the catalyst in the electrochemical cell for carbon dioxide decomposition is due to the electrochemical properties of the material itself of the Cu 2 O catalyst.
도 4는 Cu2O의 Pourbaix 다이어그램(전위-pH 다이어그램)이다. 상기 Pourbaix 다이어그램은 대기압 하의(1기압 상태를 의미함) 수용액 중에서 금속이나 금속이온이 안정하게 존재하는 전위와 pH와의 관계를 도시한 것이다. 다시 말하면, Pourbaix 다이어그램은 pH와 표준 수소 전위 조건에서 안정한 상태의 금속 또는 금속이온 또는 금속화합물 영역을 도시한다.4 is a Pourbaix diagram (potential-pH diagram) of Cu 2 O. The Pourbaix diagram shows the relationship between the pH and the potential at which a metal or metal ion is stably present in an aqueous solution under atmospheric pressure (meaning 1 atm). In other words, the Pourbaix diagram shows the region of the metal or metal ion or metal compound in a stable state at pH and standard hydrogen potential conditions.
도 4와 상기 식 (2) 내지 (5)의 표준 환원 전위값으로부터 예측되는 바와 같이, 구리는 이산화탄소의 환원에 의해 탄화수소가 발생하는 전위 값들인 -0.33 ~ -0.24V의 범위에서는 Cu 원자 자체로 존재하는 것이 열역학적으로 안정한 상태임을 알 수 있다. As predicted from the standard reduction potential values of Fig. 4 and the above formulas (2) to (5), copper is a Cu atom itself in the range of -0.33 to -0.24 V, which are potential values at which hydrocarbons are generated by reduction of carbon dioxide. It can be seen that the presence is a thermodynamically stable state.
다시 말하면 비록 구리가 이산화탄소 환원 반응이 일어나기 전이나 또는 상기 반응이 일어나는 중에 +1가 또는 +2가의 산화수를 갖는 Cu(이온)상태로 존재하거나 Cu2O나 CuO로 존재한다 하더라도, 구리는 외부 또는 전기화학적 반응에 의해 0V 이하의 전압(potential)이 가해지는 조건에서는 Cu 산화물로부터 Cu로의 환원반응에 의해 Cu 원자로 존재하게 됨을 의미한다.In other words, even if copper is present in the Cu (ion) state with +1 or +2 valence oxidation before or during the carbon dioxide reduction reaction, or as Cu 2 O or CuO, the copper is external or Under the condition that a potential of 0 V or less is applied by the electrochemical reaction, it means that it is present as a Cu atom by a reduction reaction from Cu oxide to Cu.
결국 이산화탄소 환원 반응 후 음극이 Cu2O에서 모두 Cu로 환원된 것을 실험적으로 보여주는 도 3의 XRD 측정 결과는 상기 도 4 및 식 (2) 내지 (5)에 의해 예측되는 결과와 잘 부합한다. Eventually, the XRD measurement results of FIG. 3 experimentally showing that the cathodes were all reduced to Cu in Cu 2 O after the carbon dioxide reduction reaction was in good agreement with the results predicted by FIGS. 4 and (2) to (5).
따라서 Cu2O 촉매의 내구성을 증가시키기 위해서는 Cu2O 촉매 내의 산화수가 +1가인 Cu 상태로 유지되거나 또는 환원된 Cu가 다시 +1가 상태의 Cu 또는 Cu2O로 회복되어야 한다.Therefore, to be returned to in order to increase the durability of the Cu 2 O catalyst is Cu 2 O in the oxidation catalyst maintained at +1 Ga Cu state or of the reduced Cu + 1 is again the status Cu or Cu 2 O.
이 중 가장 쉽게 먼저 생각할 수 있는 방법은 환원된 내부 또는 외부에서 환원된 Cu 원자에 지속적이고 안정적으로 산소를 공급하여 Cu 금속 원자를 산화수가 +1가인 Cu로 다시 전환시키는 것이다.The first and easiest way to think of this is to continuously and stably supply oxygen to the reduced Cu atom inside or outside the converted metal to convert the Cu metal atoms back to Cu having +1 valence.
그러나 산소가 내부 또는 외부로부터 음극 촉매 또는 전기화학 셀로 지속적으로 공급되기 위해서는 장치 비용이 증가하고 시스템의 부피가 증가할 뿐만 아니라 추가적인 재료 및 장비가 필요해지는 문제가 있다.However, the continuous supply of oxygen from inside or outside to the cathodic catalyst or electrochemical cell increases the cost of the device, increases the volume of the system, and requires additional materials and equipment.
따라서 본 발명은 전기화학 셀의 음극용 촉매 자체를 재생시킴으로써 장치 비용 내지는 부피 증가를 수반하지도 않고 더 나아가 추가적인 재료 및 장비도 필요하지 않는 방법을 개발하여 완성하였다.Accordingly, the present invention has been accomplished by regenerating the catalyst itself for the cathode of an electrochemical cell, which does not involve device cost or volume increase and further requires no additional materials and equipment.
보다 구체적으로 종래의 전기화학 셀의 장치를 그대로 이용하면서 동시에 음극용 촉매로 사용되는 Cu2O 촉매의 표면에서의 산화물을 재생함으로써 이산화탄소의 C2 이상의 탄화수소로의 전환효율을 지속적으로 유지할 수 있는 본 발명의 방법이 개발되었다.More specifically, the present invention can continuously maintain the conversion efficiency of carbon dioxide to C2 or more hydrocarbons by regenerating an oxide on the surface of the Cu 2 O catalyst used as a catalyst for a cathode while using the apparatus of a conventional electrochemical cell as it is. Method was developed.
도 5는 각각 순수한 Cu의 표면을 산화 처리한 CuxO로 이루어진 촉매와 순수한 Cu로 이루어진 촉매를 이용하여 이산화탄소를 환원시킬 때 생성되는 탄화수소 중 에틸렌(C2H4)의 비율을 측정한 것이다.FIG. 5 shows the ratio of ethylene (C 2 H 4 ) in hydrocarbons produced when carbon dioxide is reduced using a catalyst composed of Cu x O and a catalyst composed of pure Cu, each of which is oxidized to the surface of pure Cu.
도 5의 결과는 도 6에 도시된 3전극(산화 전극/환원 전극/기준 전극) 시스템을 통해 측정되었다. The results of FIG. 5 were measured through the three electrode (oxidation electrode / reduction electrode / reference electrode) system shown in FIG. 6.
본 발명의 실시예의 3전극 시스템은 도 6에 도시된 바와 같이 기체 밀폐형 쿼츠 반응기와 상기 반응기의 상부에 위치하는 기준(reference) 전극, 환원(working) 전극 및 산화(counter) 전극을 포함한다. 순수한 Cu의 표면을 산화 처리한 CuxO 또는 순수한 Cu가 환원 전극으로 사용되었고, Pt와 Ag/AgCl가 각각 산화 전극 및 기준 전극으로 사용되었다. 전해질로는 pH 6.8에서 0.1M의 KHCO3이 사용되었고, -1.9V(vs. Ag/AgCl)에서 4 ~ 10 쿨롱(C)의 전하량을 인가하여 생성되는 반응가스가 포집되었다. 포집된 반응가스는 가스 크로매토그래피(GC)를 이용하여 분석되었다. The three-electrode system of an embodiment of the present invention includes a gas sealed quartz reactor and a reference electrode, a working electrode and a counter electrode located on top of the reactor as shown in FIG. Cu x O or pure Cu which oxidized the surface of pure Cu was used as a reduction electrode, and Pt and Ag / AgCl were used as an oxidation electrode and a reference electrode, respectively. As an electrolyte, 0.1 M KHCO 3 was used at pH 6.8, and a reaction gas generated by applying a charge amount of 4 to 10 coulombs (C) at -1.9 V (vs. Ag / AgCl) was collected. The collected reaction gases were analyzed using gas chromatography (GC).
구리 산화물(CuxO)로 이루어진 촉매는 순수한 구리(Cu)로 이루어진 촉매보다 전체 반응시간에 걸쳐 더 높은 에틸렌(C2H4) 생성 효율을 가지는 것으로 측정되었다(도 5). 그리고 도 5의 결과는 앞에서의 도2의 결과와도 잘 부합한다. 한편 이산화탄소 환원 반응의 반응시간이 진행될수록 에틸렌(C2H4) 생성 효율dms 구리 산화물(CuxO)로 이루어진 촉매뿐만 아니라 순수한 구리(Cu)로 이루어진 촉매에서도 저하되는 것을 알 수 있다.Catalysts made of copper oxide (Cu x O) were determined to have higher ethylene (C 2 H 4 ) production efficiency over the entire reaction time than catalysts made of pure copper (Cu) (FIG. 5). And the result of FIG. 5 is in good agreement with the result of FIG. 2. On the other hand, as the reaction time of the carbon dioxide reduction reaction proceeds, it can be seen that the ethylene (C 2 H 4 ) production efficiency is reduced not only in the catalyst made of dms copper oxide (Cu x O) but also in the catalyst made of pure copper (Cu).
도 7 및 8은 각각 구리 산화물(CuxO)로 이루어진 촉매와 순수한 구리(Cu)로 이루어진 촉매에서의 이산화탄소 환원 반응 전/후의 미세조직 및 표면 성분 분석 결과를 도시한 것이다. 7 and 8 show the results of analysis of the microstructure and surface components before and after the carbon dioxide reduction reaction in the catalyst consisting of copper oxide (Cu x O) and the catalyst consisting of pure copper (Cu), respectively.
도 8의 미세조직 및 성분 분석에서 나타난 바와 같이, 구리 산화물(CuxO)로 이루어진 촉매는 이산화탄소 환원 반응 전에 수㎛ 크기의 산화물들을 수십 at.% 정도의 비율로 표면에 포함한다. 반면 150분의 이산화탄소 환원 반응 후에는 상기 산화물들의 분율이 상기 촉매의 표면에서 감소하였음이 현미경 사진에 나타나 있고 더 나아가 촉매 표면에서의 산소의 비율이 수 at.%로 감소하였음이 성분 분석 결과에 나타나 있다.As shown in the microstructure and component analysis of FIG. 8, the catalyst composed of copper oxide (Cu x O) includes several micrometer-sized oxides on the surface at a rate of several tens at.% Before the carbon dioxide reduction reaction. On the other hand, after 150 minutes of carbon dioxide reduction, the photomicrograph shows that the fraction of oxides decreased on the surface of the catalyst, and furthermore, the proportion of oxygen on the surface of the catalyst decreased by several at.%. have.
도 8에서의 표면 조직 사진과 성분 분석의 결과는 이전의 도 2 내지 4에서의 결과와 잘 부합한다. 이산화탄소 환원 반응에 사용된 구리 산화물(CuxO)로 이루어진 촉매는 환원 반응 초기에는 촉매 표면에 높은 분율의 구리 산화물(CuxO)을 포함한다. 반면 환원 반응이 진행됨에 따라 촉매 표면에서의 구리 산화물의 분율과 산소의 비율은 감소하게 된다. The surface tissue photographs and the results of the component analysis in FIG. 8 are in good agreement with the results in previous FIGS. 2 to 4. The catalyst consisting of copper oxide (Cu x O) used in the carbon dioxide reduction reaction includes a high portion of copper oxide (Cu x O) on the surface of the catalyst at the beginning of the reduction reaction. On the other hand, as the reduction reaction proceeds, the fraction of copper oxide and oxygen on the surface of the catalyst decreases.
구리 산화물(CuxO)로 이루어진 촉매 표면에서의 상기 변화는 환원 반응이 진행됨에 따라 촉매 표면에서의 미세조직 및 성분 변화를 유발하여 그 결과, 도 5에서의 결과와 같이, C2 이상의 탄화수소로의 전환비율의 퇴화(degradation)가 발생한다.The change in the catalyst surface made of copper oxide (Cu x O) causes a change in the microstructure and components on the catalyst surface as the reduction reaction proceeds, and as a result, as shown in FIG. Degradation of the conversion rate occurs.
한편 순수한 구리(Cu)로 이루어지며 표면에 {100} 우선 배향을 가지는 촉매의 표면은, 도 7에서 도시된 바와 같이, 이산화탄소 환원 반응 전에는 아무런 산화물을 포함하지 않았고 성분 분석 결과에서도 산소는 촉매 표면에서 거의 관찰되지 않았다. 반면 150분의 이산화탄소 환원 반응 후의 상기 촉매는 표면에 현미경 조직 사진에서 보이는 바와 같이 산화물 등으로 식별될 수 있는 입자들을 포함하지 않는 것으로 관찰되었으나 산소가 촉매 표면에서 수 at.% 정도로 존재하고 있음이 성분 분석 결과 확인되었다. Meanwhile, the surface of the catalyst made of pure copper (Cu) and having a {100} preferred orientation on the surface, as shown in FIG. 7, contained no oxide prior to the carbon dioxide reduction reaction, and oxygen was found on the surface of the catalyst even in the component analysis results. Hardly observed. On the other hand, the catalyst after 150 minutes of carbon dioxide reduction reaction was observed that the surface does not contain particles that can be identified as an oxide or the like, as shown in the microscopic image, but the oxygen is present at the catalyst surface by a few at.%. The analysis result confirmed.
이와 같이 순수한 구리(Cu)로 이루어진 촉매에서의 미세조직 및 성분 변화는(도 7) 도 5에서의 이산화탄소로부터 탄화수소로의 전환비율의 변화를 초래한다. 구체적으로, 순수한 구리(Cu)로 된 촉매는 이산화탄소 환원 반응 초기에 표면에서의 {100} 우선 배향으로 인해 C2 이상의 탄화수소로의 전환이 일정 수준 정도로 발생한다. 그러나 환원 반응이 진행됨에 따라 구리 촉매의 표면에서 일정 부분 산화가 발생하고 상기 산화로 인해 촉매 표면에서의 {100} 우선 배향 효과가 차단(screen out)된다. 그 결과 순수한 구리(Cu)로 된 촉매에서도 환원 반응이 어느 정도 진행된 후에는 C2 이상의 탄화수소로의 전환비율의 퇴화(degradation)가 발생된 것으로 판단된다.This change in microstructure and components in the catalyst made of pure copper (Cu) (FIG. 7) results in a change in the conversion ratio of carbon dioxide to hydrocarbon in FIG. 5. Specifically, catalysts made of pure copper (Cu) undergo some degree of conversion to C2 or more hydrocarbons due to {100} preferred orientation at the surface early in the carbon dioxide reduction reaction. However, as the reduction reaction proceeds, some oxidation occurs on the surface of the copper catalyst and the oxidation screens out the {100} preferred orientation effect on the surface of the catalyst. As a result, even after the reduction reaction to some extent even in the catalyst made of pure copper (Cu), it is determined that the degradation of the conversion ratio to C2 or more hydrocarbons.
이에 따라 이산화탄소 환원 분해 반응이 진행된 후 퇴화된 촉매 표면을 회복시키는 방법이 본 발명에서 개발되었다.Accordingly, a method of restoring a degraded catalyst surface after a carbon dioxide reduction decomposition reaction has been developed in the present invention.
도 9 및 10은 구리 산화물(CuxO)로 이루어진 촉매가 이산화탄소 환원 반응을 100분 이상 진행하여 이산화탄소로부터 C2 이상의 탄화수소로의 전환 비율이 퇴화된 후 상기 촉매에 다시 산화전위를 인가하여 재산화된 촉매의 표면을 전자 현미경으로 관찰한 전자현미경 사진이다.9 and 10 show that the catalyst composed of copper oxide (Cu x O) undergoes a carbon dioxide reduction reaction for at least 100 minutes, and the conversion rate from carbon dioxide to C 2 or more hydrocarbon is deteriorated, and then the oxidation potential is applied to the catalyst again. It is the electron microscope photograph which observed the surface of the catalyst with the electron microscope.
도 9 및 10에서의 구리 산화물(CuxO)로 이루어진 촉매는 외부에서 +1.5V를 인가하여(표준수소전극 standard hydrogen electrode 기준이며, 이하 모든 전위 값들은 표준수소전극을 기준으로 한다) 표면을 재산화시킨 촉매이다. The catalyst made of copper oxide (Cu x O) in FIGS. 9 and 10 is applied with + 1.5V from the outside (based on the standard hydrogen electrode, and all potential values are based on the standard hydrogen electrode). It is a reoxidized catalyst.
보다 구체적으로 살펴보면, +0.52V 이상의 전압 조건에서 구리(Cu)는 순수한 구리(Cu) 보다는 구리 산화물(CuO)이 열역학적으로 더 안정한 상태이다. 만일 외부에서 +0.52V 이상의 전압이 구리에 인가되면, 순수한 구리는 표면에서부터 산화가 발생하여 표면에서 산소가 차지하는 비율이 전압 인가에 따라 증가하게 된다.More specifically, copper (Cu) is a thermodynamically more stable state of copper oxide (CuO) than pure copper (Cu) at a voltage condition of + 0.52V or more. If a voltage of more than + 0.52V is applied to the copper from the outside, pure copper is oxidized from the surface, and the proportion of oxygen on the surface increases with voltage application.
먼저 구리 산화물(CuxO)로 이루어진 촉매에 대해 +1.5V의 산화전위를 인가한 시간이 3분인 경우, 도 9 및 10의 왼쪽 사진에서 도시된 바와 같이 먼저 구리의 재산화가 촉매의 표면 일부 영역에서는 일어나고 산소의 함량이 13.92 at.%(이하 %라 한다)인 영역이 관찰되었다(도 9). 또한 약 100㎚ 크기의 CuxOy의 성분을 가지는 구리 산화물들이 구리의 재산화가 일어난 상기 영역에 존재하였다(도 10). 이와 같은 도 9 및 10의 관찰 결과는 비록 3분이라는 짧은 시간 동안 구리 산화물 촉매를 재산화 시키더라도 상기 촉매의 표면에서는 산화가 이미 시작 내지는 진행되고 있음을 의미한다.First, when the oxidation potential of +1.5 V is applied to the catalyst made of copper oxide (Cu x O) for 3 minutes, as shown in the left photograph of FIGS. 9 and 10, first, the reoxidation of copper causes partial surface area of the catalyst. In the region where the oxygen content was 13.92 at.% (Hereinafter referred to as%) was observed (FIG. 9). Also copper oxides having a component of Cu x O y of about 100 nm size were present in the region where copper reoxidation occurred (FIG. 10). These observations of FIGS. 9 and 10 indicate that oxidation has already begun or is progressing on the surface of the catalyst even if the copper oxide catalyst is reoxidized for a short time of 3 minutes.
구리 산화물(CuxO)로 이루어진 촉매에 대해 재산화 시간이 다시 12분으로 증가한 경우, 도 9 및 10의 가운데 사진에서 나타난 바와 같이 구리의 재산화가 촉매 표면의 보다 넓은 지역에서 발생하였다. 재산화 시간이 3분에서 12분으로 증가함에 따라, 상기 촉매의 재산화가 일어난 표면에서의 산소의 함량은 17.18%로 더욱 높아진 것으로 측정되었고(도 9) CuxOy의 성분을 가지는 구리 산화물들의 크기도 500㎚ 정도로 더욱 성장하였음을 알 수 있다(도 10).When the reoxidation time increased to 12 minutes again for the catalyst consisting of copper oxide (Cu x O), the reoxidation of copper occurred in a wider area of the catalyst surface as shown in the middle photo of FIGS. 9 and 10. As the reoxidation time increased from 3 minutes to 12 minutes, the oxygen content at the surface where the reoxidation of the catalyst took place was determined to be higher (17.18%) (Fig. 9) of the copper oxides having components of Cu x O y . It can be seen that the size also grew to about 500 nm (Fig. 10).
구리 산화물(CuxO)로 이루어진 촉매에 대해 재산화 시간이 63분으로 증가한 경우, 도 9 및 10의 오른쪽 사진에서 나타난 바와 같이 구리의 재산화가 촉매 표면의 대부분의 영역에서 발생하였다. 재산화 시간이 63분인 경우, 상기 촉매의 재산화가 일어난 표면에서의 산소의 평균 함량은 50% 이상으로 크게 증가한 것으로 측정되었고(도 9) CuxOy의 성분을 가지는 구리 산화물들의 크기 역시 1㎛ 이상으로 더욱 성장하였음을 알 수 있다(도 10). When the reoxidation time increased to 63 minutes for the catalyst consisting of copper oxide (Cu x O), reoxidation of copper occurred in most areas of the catalyst surface, as shown in the photo on the right of FIGS. 9 and 10. If re-oxidation time is 63 minutes, and the average content of oxygen takes place at the surface of the catalyst reoxidation is the size of the copper oxide having the composition of were measured to be significantly increased to over 50% (Figure 9) Cu x O y, too 1㎛ It can be seen that the further growth (Fig. 10).
도 9 및 10의 미세조직 관찰결과와 함께 전기화학적 실험을 통해, 구리 산화물(CuxO)로 이루어진 촉매에 대해 외부에서 산화전위를 인가하여 표면 산화도를 회복시키는 방법의 공정 조건은 다음과 같이 확립될 수 있다.The process conditions of the method of restoring the surface oxidation degree by applying an oxidation potential externally to the catalyst made of copper oxide (Cu x O) through the electrochemical experiment with the microstructure observation results of FIGS. 9 and 10 are as follows. Can be established.
먼저 외부에서 인가하는 구리 산화전위는 표준수소전위 기준으로 +0.8 내지 1.5V가 바람직하다.First, the copper oxide potential applied from the outside is preferably +0.8 to 1.5V based on the standard hydrogen potential.
외부 인가 산화전위가 +0.52V 이상이면, 구리 산화물(CuxO)로 이루어진 촉매 표면에서 구리의 재산화는 열역학적으로 가능하다. 그러나 상기 구리 산화 반응에 대한 활성화 에너지(activation energy)를 극복하기 위해서는 실제로는 +0.52V 이외에 추가적인 전기화학적 에너지가 공급되어야 한다. 이 때 상기 산화전위가 +0.8V보다 작은 경우, 구리 산화물(CuxO) 촉매 표면에서 재산화를 위한 시간이 지나치게 길어진다. 촉매 표면에서의 재산화 시간이 이산화탄소 환원을 위한 전기화학 셀의 가동시간보다 더 길게 되면, 긴 재산화 시간은 이산화탄소 분해라는 발명의 목적에 부합하지 못하기 때문에 바람직하지 못하다.If the externally applied oxidation potential is +0.52 V or more, reoxidation of copper is thermodynamically possible at the catalyst surface made of copper oxide (Cu x O). However, in order to overcome the activation energy for the copper oxidation reaction, additional electrochemical energy must be supplied in addition to + 0.52V. At this time, if the oxidation potential is less than + 0.8V, the time for reoxidation on the surface of the copper oxide (Cu x O) catalyst becomes too long. If the reoxidation time at the catalyst surface is longer than the operating time of the electrochemical cell for carbon dioxide reduction, the long reoxidation time is undesirable since it does not meet the object of the invention of carbon dioxide decomposition.
반면 상기 재산화를 위한 산화전위는 1.5V보다는 작은 것이 바람직하다. 만일 외부에서 인가한 산화전위가 1.5V보다 더 높은 경우, 촉매의 표면뿐만 아니라 내부까지 산화가 일어나는 과산화 현상이 발생하여 촉매의 수명을 저하시키는 문제가 유발된다. 더 나아가 지나치게 높은 산화전위는 산소환원반응(oxygen reduction reaction, ORR) 전위보다 높아지고 그로 인해 산소가 발생하여 에너지 손실을 유발할 수 있어 바람직하지 못하다.On the other hand, the oxidation potential for reoxidation is preferably less than 1.5V. If the externally applied oxidation potential is higher than 1.5V, a peroxidation phenomenon occurs in which oxidation occurs not only on the surface of the catalyst but also on the inside thereof, causing a problem of deteriorating the life of the catalyst. Furthermore, an excessively high oxidation potential is not preferable because it is higher than the oxygen reduction reaction (ORR) potential, and as a result, oxygen may be generated to cause energy loss.
한편 구리 산화물(CuxO) 촉매의 재산화에 필요한 전하량은 1 C/㎠ 이상이 바람직하다. On the other hand, the amount of charge required for reoxidation of the copper oxide (Cu x O) catalyst is preferably 1 C / cm 2 or more.
이산화탄소 환원 반응을 포함하는 전기화학 반응은 통상적으로 촉매(또는 촉매를 포함하는 전극)의 표면에서 일어나는 표면반응이다. 따라서 촉매의 표면 특성이 전기화학 반응에 영향을 미치며, 촉매의 내부 또는 벌크(bulk)의 특성은 표면 특성에 별다른 영향을 미치지 않게 된다. 촉매에서 표면 특성을 결정할 수 있는 표면 범위는 통상적으로 표면에서 수 ㎛ 깊이까지인 것으로 알려져 있다. 따라서 본 발명에서 구리 산화물 촉매의 재산화를 위해 필요한 전하량은 대략 1 C/㎠ 정도인 것으로 계산된다. Electrochemical reactions, including carbon dioxide reduction reactions, are typically surface reactions that occur on the surface of a catalyst (or an electrode comprising a catalyst). Therefore, the surface properties of the catalyst affect the electrochemical reaction, and the internal or bulk properties of the catalyst have little effect on the surface properties. It is known that the surface range from which the surface properties in the catalyst can be determined is typically up to several micrometers deep at the surface. Therefore, in the present invention, the amount of charge required for reoxidation of the copper oxide catalyst is calculated to be approximately 1 C / cm 2.
만일 구리 산화물 촉매의 재산화를 위해 사용된 전하량이 1 C/㎠ 보다 작은 경우, 촉매 표면의 재산화가 충분히 일어나지 않아 그로 인해 촉매의 회복이 완전히 일어나지 못하는 문제가 있다. If the amount of charge used for reoxidation of the copper oxide catalyst is less than 1 C / cm 2, there is a problem in that reoxidation of the catalyst surface does not occur sufficiently, and thus, recovery of the catalyst does not occur completely.
이에 반해 구리 산화물 촉매의 재산화를 위해 사용된 전하량의 상한값은 크게 제한이 없으나, 전하량이 지나치게 크게 되면 에너지 소비가 많아지고 촉매의 내부까지 재산화가 발생할 뿐만 아니라 재산화 시간이 지나치게 길어져서 그로 인해 이산화탄소 분해용 전기화학 셀의 효율이 저하되는 문제가 발생할 수 있다. On the other hand, the upper limit of the amount of charge used for reoxidation of the copper oxide catalyst is not particularly limited. However, if the amount of charge is too large, energy consumption is increased, reoxidation occurs to the inside of the catalyst, and the reoxidation time is too long. Problems may occur in which the efficiency of the electrochemical cell for decomposition is lowered.
한편 본 발명의 다른 실시예에 따르면 구리 산화물(CuxO) 촉매의 재산화에 소요되는 시간을 단축시키고자 산화전위 인가 직전에 상기 촉매의 표면에 흡착된 탄화수소를 제거하는 공정이 추가될 수도 있다.Meanwhile, according to another embodiment of the present invention, in order to shorten the time required for reoxidation of the copper oxide (Cu x O) catalyst, a process of removing hydrocarbon adsorbed on the surface of the catalyst immediately before the oxidation potential may be added. .
보다 구체적으로, 상기 구리 산화물(CuxO) 촉매의 표면에는 이산화탄소 환원 반응을 통해 생성된 탄화수산화물이 존재한다. 상기 탄화수산화물들은 상기 촉매의 표면에서 상기 촉매와의 반응에 의해 물리적으로 또는 화학적으로 흡착되어 있다. 따라서 흡착된 탄화수산화물들이 상기 촉매의 표면에 존재하면, 촉매의 표면 재산화 반응은 촉매 표면에 흡착된 탄화수산화물들로 인해 지연되게 되고 그로 인해 구리 산화물(CuxO) 촉매의 표면 재산화에 소요되는 시간은 보다 늘어나게 된다.More specifically, the surface of the copper oxide (Cu x O) catalyst is a hydrocarbon produced through the carbon dioxide reduction reaction. The hydrocarbons are physically or chemically adsorbed by the reaction with the catalyst on the surface of the catalyst. Therefore, if the adsorbed hydrocarbons are present on the surface of the catalyst, the surface reoxidation reaction of the catalyst is delayed due to the hydrocarbon adsorbed on the surface of the catalyst, thereby requiring the surface reoxidation of the copper oxide (Cu x O) catalyst. The time taken will increase.
따라서 본 발명의 다른 실시예에 따르면 촉매 표면에 흡착된 탄화수산화물을 털어내기 위해 산소환원반응(ORR) 전위 이상이면서 전류값은 정상 환원전류의 5 내지 10배 이상이 되는 펄스가 인가된다. 상기 펄스(pulse) 구동을 통해 촉매의 표면에 흡착된 탄화수산화물은 발생된 산소 기포에 의해 물리적으로 촉매 표면에서 떨어질 수 있다. 그 결과 촉매의 재산화에 소요되는 시간은 보다 단축될 수 있다.Therefore, according to another embodiment of the present invention, in order to shake off the hydrocarbon adsorbed on the catalyst surface, a pulse having an oxygen reduction reaction (ORR) potential or more and a current value of 5-10 times or more of the normal reduction current is applied. Hydrocarbons adsorbed on the surface of the catalyst through the pulse driving may be physically separated from the surface of the catalyst by the generated oxygen bubbles. As a result, the time required for reoxidation of the catalyst can be shortened.
한편 본 발명의 실시예에서의 구리 산화물(CuxO) 촉매의 재산화를 위한 주기(frequency)는 다양한 방법으로 결정될 수 있다.Meanwhile, the frequency for reoxidation of the copper oxide (Cu x O) catalyst in the embodiment of the present invention can be determined in various ways.
먼저 생성된 탄화수소들 가운데 C2 이상의 탄화수소 분율을 화학적으로 측정하고 측정된 C2 이상의 탄화수소 분율이 임계치 이하일 때 촉매의 재산화가 시작되는 것으로 재산화 주기가 결정될 수도 있다.The reoxidation cycle may be determined to chemically measure the hydrocarbon fraction of C2 or higher among the hydrocarbons produced first and to reoxidize the catalyst when the measured hydrocarbon fraction of C2 or higher is below the threshold.
상기 방법은 가장 정확하게 구리 산화물(CuxO) 촉매의 재산화 시점을 결정할 수 있다는 장점이 있는 반면 실시간 측정(in-situ)이 곤란하다는 단점이 있다.The method has the advantage of being able to determine the reoxidation time of the copper oxide (Cu x O) catalyst most accurately, while the disadvantage is that in-situ is difficult.
한편 만일 이산화탄소 환원 분해용 전기화학 셀이 셋팅되고 셀의 특성이 탄화수소 분율에 의해 결정되게 되면, 촉매의 재산화 시점은 안정적으로 셋팅되어 운용될 수 있다.On the other hand, if the electrochemical cell for carbon dioxide reduction decomposition is set and the characteristics of the cell are determined by the hydrocarbon fraction, the reoxidation time of the catalyst can be stably set and operated.
앞에서의 탄화수소 측정 방법과는 반대로 이산화탄소 전기화학 셀의 전체 파워를 측정함으로써 촉매의 재산화 시점이 결정될 수도 있다.Contrary to the hydrocarbon measurement method described above, the timing of reoxidation of the catalyst may be determined by measuring the total power of the carbon dioxide electrochemical cell.
상기 방법은 정확하게 구리 산화물(CuxO) 촉매의 재산화 시점을 결정할 수는 없다는 단점은 있으나 실시간 측정(in-situ)이 가능하다는 장점이 있다. The method has the disadvantage that it cannot accurately determine the reoxidation time of the copper oxide (Cu x O) catalyst, but has the advantage that in-situ is possible.
만일 전기화학 셀의 전체 파워와 함께 생성된 탄화수소의 성분분석이 상호 캘리브레이션(calibration) 되면, 구리 산화물(CuxO) 촉매의 재산화 시점은 전기적인 측정 방법에 의해 실시간(in-situ)으로 결정할 수 있게 된다. If the component analysis of the hydrocarbons produced together with the total power of the electrochemical cell is mutually calibrated, the reoxidation time of the copper oxide (Cu x O) catalyst is determined in-situ by electrical measurement methods. It becomes possible.
본 발명의 이산화탄소 환원용 촉매의 회생 방법은 구리(Cu)이외에 다른 종류의 금속 산화물 촉매에 대해서도 적용이 가능하다. 더 나아가 본 발명의 촉매 회생 방법은 구리(Cu)와 다른 종류의 금속이 포함된 합금 형태의 금속 산화물 촉매에 대해서도 적용이 가능하다.The regeneration method of the catalyst for carbon dioxide reduction of the present invention is applicable to other types of metal oxide catalysts in addition to copper (Cu). Furthermore, the catalyst regeneration method of the present invention is applicable to a metal oxide catalyst in the form of an alloy containing copper (Cu) and other kinds of metals.
본 발명의 촉매 회생 방법은 비한정적인 예로써 Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Sc 들 중 하나 또는 둘 이상의 금속 또는 이들의 합금을 포함하는 촉매에 대해서도 적용이 가능하다.The catalyst regeneration method of the present invention is a non-limiting example, Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Application is also possible for catalysts comprising one or more metals of the Scs or alloys thereof.
<실시예><Example>
도 11 및 12는, 앞서 본 발명의 도 9 및 10에서 도시한, 1.5V의 외부 인가 산화전위에 의해 63분 동안 재산화된 구리 산화물(CuxO) 촉매의 성능 평가를 위해 사용된 2 전극 이산화탄소 반응기의 개략도 및 실제 형상을 나타낸 것이다.11 and 12 are two electrodes used to evaluate the performance of a copper oxide (Cu x O) catalyst reoxidized for 63 minutes by an externally applied oxidation potential of 1.5V, as shown previously in FIGS. 9 and 10 of the present invention. A schematic and actual shape of a carbon dioxide reactor is shown.
기상의 이산화탄소 투입이 가능하고 시스템 성능 평가가 가능한 2전극 반응기는, 도 11에서 도시된 바와 같이, 전해질과 직접 또는 간접적으로 접촉하여 H+ 또는 OH- 이온이 촉매로 이동되는 멤브레인과, 중간에 위치하며 탄소 등의 지지체에 담지된 촉매층(환원전극 또는 membrane electrode assembly, MEA), 그리고 반응에 관여되는 가스 들을 촉매로 유입시키고 형성된 탄화수소를 배출하는 가스확산층(gas diffusion electrode)을 포함한다.A two-electrode reactor capable of injecting carbon dioxide in the gas phase and evaluating the performance of the system is located in the middle of the membrane in which H + or OH - ions are transferred to the catalyst by direct or indirect contact with the electrolyte, as shown in FIG. And a catalyst layer (reduction electrode or membrane electrode assembly, MEA) supported on a support such as carbon, and a gas diffusion electrode for introducing gases involved in the reaction into the catalyst and discharging the formed hydrocarbon.
도 12는 상기 도 11의 2 전극 반응기의 실제 형상을 도시한 것이다.FIG. 12 shows the actual shape of the two-electrode reactor of FIG. 11.
도 13은 상기 2 전극 반응기의 환원전극에 구리 산화물(CuxO) 촉매를 적용하고 이산화탄소를 환원 분해하여 생성된 에틸렌(C2H4)의 패러데이 효율(Faradaic efficiency)을 도시한 것이다. FIG. 13 illustrates a Faradaic efficiency of ethylene (C 2 H 4 ) generated by applying a copper oxide (CuxO) catalyst to a cathode of the two-electrode reactor and reducing and decomposing carbon dioxide.
도 13에서의 패러데이 효율(Faradaic efficiency)에서 C2H4 가스의 성분 분석은 기체 크로마토그래피를 사용하였고 패러데이 효율은 아래의 식으로 계산되었다.In the Faraday efficiency (Faradaic efficiency) in Figure 13 the component analysis of the C 2 H 4 gas using gas chromatography and Faraday efficiency was calculated by the following equation.
Faradaic Efficiency = {(생성된 C2H4 몰수 X C2H4 1몰 생성에 필요한 전자수 X 패러데이 상수) / (환원전극에 인가된 전체 전하량)} X 100%Faradaic Efficiency = {(number of generated C 2 H 4 moles XC 2 H 4 number of electrons needed to produce X Faraday constant) / (total charge applied to the reducing electrode)} X 100%
초기의 구리 산화물(CuxO) 촉매를 이용하여 이산화탄소를 환원 분해하는 경우 C2H4 가스의 최대 패러데이 효율은 약 20% 정도로 측정되었다. 그리고 이산화탄소의 환원 반응이 진행됨에 따라 C2H4 가스의 효율은 반응 시간이 경과함에 따라 감소하였다. 반응 시간이 약 100분이 경과되면 C2H4 가스의 상기 효율은 거의 0 근처로 수렴함을 알 수 있다.In the case of reductive decomposition of carbon dioxide using an initial copper oxide (Cu x O) catalyst, the maximum Faraday efficiency of C 2 H 4 gas was measured at about 20%. As the reduction reaction of carbon dioxide proceeds, the efficiency of the C 2 H 4 gas decreases as the reaction time elapses. It can be seen that after about 100 minutes of reaction time, the efficiency of the C 2 H 4 gas converges to near zero.
C2H4 가스의 효율이 거의 0으로 수렴할 때의 구리 산화물(CuxO) 촉매는, 도 7에서의 오른쪽에서의 표면 미세조직과 같이, 표면에서 환원이 진행되어서 그로 인해 구리 산화물(CuxO) 촉매에서의 산소의 함량은 크게 감소한 것으로 추정된다.When the efficiency of the C 2 H 4 gas converges to almost zero, the copper oxide (Cu x O) catalyst undergoes reduction at the surface, as is the surface microstructure on the right side in FIG. x O) The content of oxygen in the catalyst is estimated to be greatly reduced.
본 발명의 실시예에서는 표면이 환원된 구리 산화물(CuxO) 촉매에 외부에서 +1.5V의 산화전위를 약 60분간 적용함으로써 상기 구리 산화물 촉매 표면이 재산화되어 회복되었다.In an embodiment of the present invention, the surface of the copper oxide catalyst was reoxidized and recovered by applying an oxidation potential of + 1.5V to the surface for about 60 minutes to the reduced copper oxide (Cu x O) catalyst.
도 13에서 도시된 바와 같이, 본 발명 실시예의 회복된 구리 산화물 촉매에 다시 -1.1V의 환원 전위가 인가되어 이산화탄소가 환원반응 되면, 회복된 구리 산화물 촉매의 C2H4 가스 효율의 최대값 및 최소값은 최초 구리 산화물 촉매의 C2H4 가스 효율과 거의 동일한 수준으로 유지되는 것으로 조사되었다. As shown in FIG. 13, when a reduction potential of −1.1 V is again applied to the recovered copper oxide catalyst of the embodiment of the present invention to reduce carbon dioxide, the maximum value of the C 2 H 4 gas efficiency of the recovered copper oxide catalyst and The minimum value was found to be maintained at about the same level as the C 2 H 4 gas efficiency of the original copper oxide catalyst.
또한 초기 구리 산화물 촉매에서 이산화탄소를 환원 분해하는데 소요되는 전체 분해 시간은 본 발명의 실시예에 따라 회복된 구리 산화물 촉매에서의 전체 분해 시간과 거의 동일한 것으로 측정되었다. In addition, the total decomposition time required for reduction decomposition of carbon dioxide in the initial copper oxide catalyst was determined to be about the same as the total decomposition time in the recovered copper oxide catalyst according to the embodiment of the present invention.
더 나아가 비록 회복된 구리 산화물 촉매의 표면이 다시 환원되더라도 또 다시 외부에서 +1.5V의 산화전위를 환원된 촉매에 약 60분간 적용하여 재회복 시키게 되면, 재회복된 구리 산화물 촉매도 최초의 구리 산화물 촉매나 회복된 구리 산화물 촉매와 실질적으로 동일한 C2H4 가스의 효율 특성을 가지는 것으로 측정되었다.Furthermore, even if the surface of the recovered copper oxide catalyst is reduced again, if the oxide is re-recovered by applying an external + 1.5V oxidation potential to the reduced catalyst for about 60 minutes, the recovered copper oxide catalyst is also the first copper oxide. It was measured to have substantially the same efficiency characteristics of the C 2 H 4 gas as the catalyst or recovered copper oxide catalyst.
도 13의 본 발명의 실시예 결과는 본 발명에서 개발된 구리 산화물 촉매의 재산화 방법이 구리 산화물 촉매를 반복적이고 재현성이 있으며 매우 효과적으로 회복시키는 방법임을 입증하는 것이라 할 수 있다.The result of the embodiment of the present invention of FIG. 13 can be said to prove that the reoxidation method of the copper oxide catalyst developed in the present invention is a method of recovering the copper oxide catalyst repeatedly, reproducibly and very effectively.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the drawings, but the present invention is not limited to the embodiments and drawings disclosed herein, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is obvious that modifications can be made. In addition, even if the above described embodiments of the present invention while not explicitly described and described the operation and effect according to the configuration of the present invention, it is obvious that the effect predictable by the configuration is also to be recognized.

Claims (9)

  1. 표면이 환원된 금속 산화물 촉매를 준비하는 단계;Preparing a metal oxide catalyst having a reduced surface;
    상기 환원된 금속 산화물 촉매에 구리 산화 전위 이상의 전압을 일정 전하량 이상 인가하여 재산화하는 단계;Reoxidizing by applying a voltage higher than a copper oxidation potential to the reduced metal oxide catalyst by a predetermined charge amount or more;
    를 포함하는 것을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 금속 산화물 촉매는 구리 산화물(CuxO)인 것;The metal oxide catalyst is copper oxide (Cu x O);
    을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst, characterized in that.
  3. 제 1항에 있어서,The method of claim 1,
    상기 금속 산화물 촉매의 금속 성분은 Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Sc 들 중 하나 또는 둘 이상의 금속 또는 이들의 합금 중 하나 이상인 것;The metal component of the metal oxide catalyst is one of Ta, Os, Nb, Mo, Ir, Ag, V, Ru, Mn, Rh, Pd, Ni, Co, Fe, Cr, Hf, Ti, Y, Zr, Sc Or one or more of two or more metals or alloys thereof;
    을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst, characterized in that.
  4. 제 1항에 있어서,The method of claim 1,
    상기 재산화 단계에서의 상기 전압은 +0.8 내지 1.5V 인 것;The voltage in the reoxidation step is +0.8 to 1.5V;
    을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst, characterized in that.
  5. 제 1항에 있어서,The method of claim 1,
    상기 재산화 단계에서의 상기 전하량은 1 C/㎠ 이상인 것;The charge amount in the reoxidation step is 1 C / cm 2 or more;
    을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst, characterized in that.
  6. 제 1항에 있어서,The method of claim 1,
    상기 재산화 단계 이전에 추가적으로 탄화수산화물을 촉매 표면으로부터 제거하는 단계;Further removing the hydrocarbon from the catalyst surface prior to the reoxidation step;
    를 추가로 포함하는 촉매의 회복 방법.Recovery method of the catalyst further comprising.
  7. 제 6항에 있어서,The method of claim 6,
    상기 탄화수산화물을 제거하는 단계는 산소환원반응 전위 이상의 전압에서 정상 환원전류의 5 내지 10배 이상의 전류 값의 펄스를 인가하는 것;The removing of the hydrocarbon may include applying a pulse having a current value of 5 to 10 times or more the normal reduction current at a voltage above an oxygen reduction reaction potential;
    을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst, characterized in that.
  8. 제 1항에 있어서,The method of claim 1,
    상기 재산화 단계는 측정된 탄화수소 분율 값이 설정된 임계치 이하일 때시작되는 것;The reoxidation step begins when the measured hydrocarbon fraction value is below a set threshold;
    을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst, characterized in that.
  9. 제 1항에 있어서,The method of claim 1,
    상기 재산화 단계는 상기 촉매가 사용되는 전기화학 셀에서 측정된 전류 또는 파워 값이 설정된 임계치 이하일 때 시작되는 것;The reoxidation step begins when the current or power value measured in the electrochemical cell in which the catalyst is used is below a set threshold;
    을 특징으로 하는 촉매의 회복 방법.Recovery method of the catalyst, characterized in that.
PCT/KR2019/001044 2018-03-19 2019-01-24 Method for recovering surface oxide of catalyst WO2019182240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0031721 2018-03-19
KR1020180031721A KR20190109973A (en) 2018-03-19 2018-03-19 Recovery method for surface oxide of catalyst

Publications (1)

Publication Number Publication Date
WO2019182240A1 true WO2019182240A1 (en) 2019-09-26

Family

ID=67987390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001044 WO2019182240A1 (en) 2018-03-19 2019-01-24 Method for recovering surface oxide of catalyst

Country Status (2)

Country Link
KR (1) KR20190109973A (en)
WO (1) WO2019182240A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122125A (en) * 2010-12-10 2012-06-28 Central Research Institute Of Electric Power Industry Method for manufacturing surface-modified copper member, catalyst member and organic synthesis method using the same
KR20150050289A (en) * 2013-10-31 2015-05-08 현대자동차주식회사 Method for recovery of fuel cell performance by using electrode reversal
WO2018007826A1 (en) * 2016-07-08 2018-01-11 University Court Of The University Of St Andrews Method for producing an electrode catalyst from a perovskite metal oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122125A (en) * 2010-12-10 2012-06-28 Central Research Institute Of Electric Power Industry Method for manufacturing surface-modified copper member, catalyst member and organic synthesis method using the same
KR20150050289A (en) * 2013-10-31 2015-05-08 현대자동차주식회사 Method for recovery of fuel cell performance by using electrode reversal
WO2018007826A1 (en) * 2016-07-08 2018-01-11 University Court Of The University Of St Andrews Method for producing an electrode catalyst from a perovskite metal oxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, CHUNG SHOU ET AL.: "Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu20-Derived Copper Catalyst and Palladium(II) Chloride", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 48, 2015, pages 26875 - 26882, XP055636505 *
MANDAL, LILY ET AL.: "Investigating the Role of Copper Oxide in Electrochemical CO2 Reduction in Real Time", ACS APPLIED MATERIALS & INTERFACES, vol. 10, 1 March 2018 (2018-03-01), pages 8574 - 8584, XP055636493 *

Also Published As

Publication number Publication date
KR20190109973A (en) 2019-09-27

Similar Documents

Publication Publication Date Title
Pan et al. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell
KR101038701B1 (en) Reduction of metal oxides in an elecrolytic cell
WO2014088148A1 (en) Method for reducing carbon dioxide, and apparatus for reducing carbon dioxide using same
WO2014104477A1 (en) Method for reducing carbon dioxide and diaphragm-free device for reducing carbon dioxide
CN105483747B (en) A kind of method and device of water electrolysis hydrogen production gas
CN111755766A (en) Method for regenerating lithium precursor
JP2022505733A (en) How to recover lithium or sodium from the active material of a lithium or sodium ion battery, respectively
US20180010255A1 (en) Methanol generation device, method for generating methanol, and electrode for generating methanol
JP2007297655A (en) Method for collecting noble metal from membrane/electrode assembly (mea)
KR101345987B1 (en) ELECTRODEPOSITION METHOD USING A LIQUID Cd AS AN ANODE AND A CATHODE FOR RECOVERING URANIUM AND TRANS-URANIUM SIMULTANEOUSLY
WO2019182240A1 (en) Method for recovering surface oxide of catalyst
WO2020121287A1 (en) Catalytic methane decomposition and catalyst regeneration, methods and uses thereof
JP2008134096A (en) Reductor and lithium reclamation electrolysis device of spent oxide nuclear fuel
KR101655143B1 (en) Regeneration method of raw materials for hydrogen supply system of fuel cell
CN113430559A (en) Application of copper-based catalyst in electrocatalytic hydrogenation
WO2019151714A1 (en) Electrode and electrochemical cell comprising electrode
CN110042448B (en) Preparation method of porous anodic aluminum oxide template
CN113430545B (en) Copper-based catalyst and preparation method and application thereof
US10683577B1 (en) Method of producing hydrogen peroxide using nanostructured bismuth oxide
WO2021045302A1 (en) Water electrolysis electrode containing catalyst having three-dimensional nanosheet structure, method for manufacturing same, and water electrolysis device including same
WO2019151715A1 (en) Catalyst for carbon dioxide conversion and method for preparing same
WO2024053831A1 (en) Graphene synthesis device and graphene synthesis method
WO2023027272A1 (en) Carbon dioxide reduction catalyst complex
WO2023063677A1 (en) Method for recovering lithium precursor from lithium secondary battery
WO2020184824A1 (en) Electrochemical process for conversion of carbon dioxide to oxalic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771222

Country of ref document: EP

Kind code of ref document: A1