WO2024053831A1 - Graphene synthesis device and graphene synthesis method - Google Patents

Graphene synthesis device and graphene synthesis method Download PDF

Info

Publication number
WO2024053831A1
WO2024053831A1 PCT/KR2023/009090 KR2023009090W WO2024053831A1 WO 2024053831 A1 WO2024053831 A1 WO 2024053831A1 KR 2023009090 W KR2023009090 W KR 2023009090W WO 2024053831 A1 WO2024053831 A1 WO 2024053831A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
electrode
graphene synthesis
electrolyte solution
metal
Prior art date
Application number
PCT/KR2023/009090
Other languages
French (fr)
Korean (ko)
Inventor
남우석
오은석
Original Assignee
주식회사 이녹스에코엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이녹스에코엠 filed Critical 주식회사 이녹스에코엠
Publication of WO2024053831A1 publication Critical patent/WO2024053831A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/135Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/046Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/029Concentration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means

Definitions

  • the present invention relates to a graphene synthesis device and a graphene synthesis method, and more specifically, to a device capable of continuously synthesizing high-quality low-oxidized graphene and a graphene synthesis method using the same.
  • Graphene is one of the allotropes of carbon, and is a two-dimensional planar structure with a single atomic layer thickness in which carbon atoms are each connected by SP 2 hybrid structure bonds, and has a hexagonal structure in which benzene-type carbon rings are connected to form a honeycomb or network. It has a crystal form.
  • Conventional methods for synthesizing graphene include a method of mechanically exfoliating graphene from graphite, a method of directly producing graphene by chemical vapor deposition (CVD), and an oxidation-reduction method of graphite.
  • CVD chemical vapor deposition
  • oxidation-reduction method of graphite has been most commonly used in that it is suitable for mass production.
  • the oxidation-reduction method of graphite is a method that facilitates exfoliation between graphene layers by reducing the van der Waals attraction by reducing the pi electron density between the graphene layers that make up graphite by inducing oxygen-based functional groups.
  • a recent research paper ⁇ "Nature and Strength of Interlayer Binding in Graphite", Spanu, L.; Sorella, S.; Galli, G. Phys. Rev. Lett. 2009, 103, 196401196404 ⁇ and ⁇ "Application of van der Waals Density Functional to an Extended System: Adsorption of Benzene and Naphthalene on Graphite", Chakarova-Kack, S.
  • 'electrochemical method' a method of producing multilayer graphene from graphite using an electrochemical process.
  • electrochemical method uses a sulfuric acid electrolyte, a chemical reaction occurs between radicals generated by sulfuric acid and graphite, which has the disadvantage of increasing the defect rate of the finally produced multilayer graphene.
  • the method of producing multilayer graphene using a conventional electrochemical method has the disadvantages that the produced multilayer graphene has a high defect rate, requires additional processes, is limited in size, or is thick.
  • the quality of the final manufactured graphene can be improved by increasing the size of graphene and thinning the thickness, while at the same time reducing the defect rate of graphene as much as possible.
  • the purpose of the present invention is to solve the limitations and problems of the conventional graphene synthesis process as described above, thereby increasing the size of graphene and making it thinner, while at the same time producing excellent quality graphene that reduces the defect rate of graphene as much as possible.
  • the goal is to provide a graphene synthesis device and a graphene synthesis method that can efficiently and continuously mass produce pins.
  • a graphene synthesis reaction tank and an electrode portion disposed inside the reaction tank, wherein the electrode portion includes n metal electrode portions and n+1 working electrode portions alternately disposed with the metal electrode portion, and the graphene synthesis reaction tank.
  • the inside of contains an electrolyte solution of a certain concentration, the metal electrode portion is electrochemically connected and operates as a cathode, the working electrode portion is electrochemically connected and operates as an anode, and the metal electrode portion is spaced at a predetermined interval.
  • a graphene synthesis device comprising a number of metal electrodes arranged, wherein the working electrode unit includes b number of working electrodes arranged alternately with the metal electrodes at a predetermined interval, wherein n, a, and b are integers of 1 or more. can be provided.
  • the metal electrode portion and the working electrode portion may each be a plate-shaped electrode portion, and the metal electrode and the working electrode may be a metal electrode and a working electrode respectively applied in the form of a rod.
  • the distance between the metal electrode and the working electrode may be arranged at 2D (cm).
  • the metal electrode may be a stainless steel electrode, and the working electrode may be a graphite electrode.
  • the electrolyte solution may include one or more selected from the group consisting of sulfate, nitrate, phosphate, potassium salt, metal halide, and ionic liquid.
  • the electrolyte solution includes ammonium sulfate and sulfuric acid. It may contain one or more types of potassium.
  • the graphene synthesis device may further include an electrolyte solution supply device for continuously supplying an electrolyte solution, and the electrolyte solution supply device may include an electrolyte solution concentration measuring/controlling unit; and an electrolyte solution supply unit.
  • a drive motor that can operate up and down opposite to the graphene synthesis reaction tank may be connected to the electrode unit.
  • It may further include a spare working electrode unit including a spare working electrode that is replaced when the working electrode is consumed by graphene synthesis, and the spare working electrode unit may be connected to the driving motor.
  • the graphene synthesis device may further include a filter system that separates the graphene synthesized from the graphene synthesis device and the electrolyte solution, and the filter system may include a graphene recovery unit that recovers the synthesized graphene. And, the filter system may be installed separately from the graphene synthesis reaction tank.
  • the graphene synthesis apparatus may further include a heat exchanger that controls the temperature of the electrolyte solution in the graphene synthesis reaction tank.
  • a constant current regulator may be connected to the electrode unit.
  • adding an electrolyte solution into a graphene synthesis reaction tank Arranging an electrode unit including n metal electrode units and n+1 working electrode units alternately disposed with the metal electrode units, inside the reaction tank; electrochemically connecting the metal electrode portion to a cathode and electrochemically connecting the working electrode portion to an anode; and synthesizing graphene by applying a voltage to the metal electrode portion and the working electrode portion, wherein the metal electrode portion may include a number of metal electrodes arranged at predetermined intervals, and The working electrode unit may include b working electrodes alternately arranged with the metal electrode at a predetermined interval, and n, a, and b are integers of 1 or more.
  • the metal electrode may be a stainless steel electrode in the form of a rod, and the working electrode may be a graphite electrode in the form of a rod.
  • the electrolyte solution may include one or more selected from the group consisting of sulfate, nitrate, phosphate, metal halide, and ionic liquid.
  • the electrolyte solution may be continuously supplied.
  • the initial concentration of the electrolyte solution may be preferably 0.1 to 0.5 M, and more preferably 0.3 to 035 M.
  • the concentration may increase due to moisture evaporating into water vapor during the reaction, so the electrolyte solution can be continuously supplied to maintain the initial concentration, and for this purpose, a buffer containing the electrolyte solution is provided.
  • a buffer solution tank can be used. The capacity of the buffer solution tank may vary depending on design conditions, etc., and may be, for example, 20 to 50 L, for example, 30 to 40 L, but is not limited thereto.
  • the temperature of the electrolyte solution can be controlled to remain constant. Since the temperature of the system continues to rise due to the graphene synthesis reaction, the reaction heat generated thereby activates moisture evaporation in the electrolyte solution, so it is desirable to cool the reaction heat to maintain room temperature (approximately 25°C).
  • room temperature approximately 25°C.
  • One way to implement this is, for example, using a chiller.
  • the graphene synthesis method may further include the step of replacing the working electrode with a spare working electrode when it is consumed by graphene synthesis.
  • the graphene synthesis method may further include the step of separating and recovering the synthesized graphene.
  • the graphene synthesis device of the present invention consists of a multi-electrode system in which a plurality of metal electrodes are arranged around a plurality of working electrodes, so that a large amount of metal electrodes surround each working electrode, resulting in the production of a large amount in a short time.
  • Graphene can be synthesized.
  • the distance between electrodes is constant and a metal electrode surrounds the working electrode, so the peeling effect due to chemical reaction in an electric field can be maximized, and the yield of graphene synthesis is high while Since the variation in synthesis yield is small, it has the advantage of being advantageous for mass production and management of graphene.
  • the graphene synthesis apparatus of the present invention may further include a spare working electrode unit including a spare working electrode that is replaced when the working electrode is consumed by graphene synthesis, so that graphene can be continuously mass-produced.
  • the graphene synthesis device of the present invention can continuously supply an electrolyte solution and stably discharge an electrolyte containing synthesized graphene, thereby enabling continuous mass production of graphene.
  • FIG. 1 is a schematic diagram of a graphene synthesis device according to an aspect of the present invention.
  • FIGS. 2 to 4 are cross-sectional schematic diagrams of electrode portions of a graphene synthesis device according to an aspect of the present invention.
  • Figure 5 is a photograph of the electrode portion of the graphene synthesis device according to one aspect of the present invention.
  • Figure 6 is a photograph of a graphene synthesis device according to an aspect of the present invention.
  • top (or bottom) of a component or the arrangement of any component on the “top (or bottom)” of a component means that any component is disposed in contact with the top (or bottom) of the component.
  • other components may be interposed between the component and any component disposed on (or under) the component.
  • a graphene synthesis device can be provided.
  • Figure 1 is a simplified illustration of a graphene synthesis device
  • Figures 2 to 4 are a simplified cross-sectional view of an electrode portion of the graphene synthesis device.
  • the graphene synthesis apparatus 1 includes a graphene synthesis reaction tank 10; and an electrode unit 20 disposed inside the reaction tank 10, wherein the electrode unit 20 is alternately arranged with n metal electrode units 20A and the metal electrode units 20A. It includes n+1 working electrode units 20B, and the inside of the graphene synthesis reaction tank 10 contains an electrolyte solution of a certain concentration, and the metal electrode unit 20A is electrochemically connected to the cathode.
  • the working electrode unit 20B is electrochemically connected and operates as an anode, and the metal electrode unit 20A includes a number of metal electrodes (20a in FIG. 2) arranged at predetermined intervals.
  • the working electrode unit 20B includes b working electrodes (20b in FIG. 2) arranged alternately with the metal electrodes (20a in FIG. 2) at a predetermined interval, where n, a, and b are 1. It can be an integer above.
  • the operating voltage applied from the graphene synthesis device 1 may be 5V to 20V, and for example, it may be desirable to maintain the voltage at a level of 10 ⁇ 0.1V. Additionally, the applied operating current may be 15A to 30A, and for example, it may be desirable for the current to be supplied maintained at a level of 23 ⁇ 0.3A.
  • the constant current applied for the graphene synthesis reaction can be controlled.
  • the metal electrode portion 20A and the working electrode portion 20B may each be plate-shaped electrode portions. Each electrode may be arranged at predetermined intervals in the plate-shaped electrode portion.
  • the distance between the metal electrode 20a and the working electrode 20b is It may be arranged in 2D (cm), but is not necessarily limited thereto.
  • the metal electrode 20a may be a stainless steel electrode, and the working electrode 20b may be a graphite electrode.
  • a stainless steel electrode which is a metal electrode 20a
  • a metal electrode 20a may be fixed and installed as a cathode on the upper part of the graphene synthesis reaction tank 10 in which an electrolyte solution is prepared, and working electrodes 20b may be alternately arranged between them.
  • the phosphorus graphite electrode operates as an anode and can be continuously placed and exchanged between the cathodes of the graphene synthesis reaction tank 10.
  • ferritic stainless steel or martensitic stainless steel contains relatively less nickel (Ni) than austenitic stainless steel, so it is prone to crevice corrosion. Therefore, from the viewpoint of mass production of graphene, austenitic stainless steel may be preferable for use as a working electrode.
  • the 316/316L or 317L series are relatively superior to the 304/304L series, but preferably, the 310S electrode, which has a relatively high nickel content among austenitic stainless steels, is used. It may be more desirable to do so.
  • the graphene synthesis apparatus 1 may supply an electrolyte solution to the graphene synthesis reaction tank 10 through an electrolyte solution supply passage 60.
  • the electrolyte solution may include one or more selected from the group consisting of sulfate, nitrate, phosphate, metal halide, and ionic liquid.
  • the electrolyte solution of the present invention may contain ammonium sulfate ((NH 4 ) 2 SO 4 ), but in order to produce graphene with a thinner layer, ammonium, which has the effect of increasing the thickness of the graphene layer, is used.
  • An electrolytic solution containing metal ions, which are more advantageous for producing thinner graphene than ions (NH 4 + ), can also be used.
  • an electrolyte solution in which the amount of ammonium ions is reduced and the concentration of ammonium ions is set to 70 wt% to 90 wt% in consideration of mass productivity, and the amount of other metal ions mixed is mixed at a ratio of 10 wt% to 30 wt%. can be used.
  • the concentration of metal ions in the electrolyte solution varies depending on the thickness conditions of graphene required in the final manufactured product.
  • the composition of the electrolytic solution for producing thick graphene of about 5 to 10 layers is preferably composed of 100 wt% ammonium ions and no other metal ions.
  • the other metal ions include potassium ions (K + ), sodium ions (Na + ), preferably 10 wt% to 15 wt% potassium ions, more preferably 13 wt% to 15 wt% potassium ions, and A mixed electrolyte solution can be used.
  • the electrolytic solution can be prepared as an aqueous solution in which metal ions at a concentration of 0.3 mol to 0.5 mol are dissolved.
  • an ammonium sulfate electrolyte solution with a concentration of about 0.3 mol.
  • a mixed electrolyte solution of ammonium sulfate and potassium sulfate with a mixing concentration of about 0.35 mol.
  • the mixing ratio (by weight) of ammonium sulfate:potassium sulfate is preferably 70:30 to 95:5, more preferably 80:20 to 90:10, and 85:15 to 90:10. It is more desirable.
  • the graphene synthesis device 1 further includes an electrolyte solution additional supply device 80 to continuously supply the electrolyte solution, and the electrolyte solution additional supply device 80 is an electrolyte solution concentration measurement and control unit. (80a); and an electrolyte solution supply unit (80b).
  • a drive motor 30 that can operate up and down opposite to the graphene synthesis reaction tank 10 may be connected to the electrode unit 20.
  • the working electrode 20a of the working electrode unit 20A can be supplied in a vertical up and down direction by being connected to the driving motor 30 against the electrolyte solution of the graphene synthesis reaction tank 10.
  • the optimal conditions for driving the drive motor 30 may vary depending on the conditions of the applied voltage and current.
  • the drive motor 30 is preferably driven at a feed rate of 0.10 cm/min to 0.50 cm/min, and more preferably driven at a feed rate of 0.2 cm/min to 0.35 cm/min.
  • the graphene synthesis device 1 is used when the working electrode 20a is consumed by graphene synthesis.
  • It may further include a spare working electrode unit 40 including a spare working electrode 40a that is replaced with the used working electrode 20a.
  • the spent working electrode 20a is recovered and replaced with a spare working electrode 40a that can continuously participate in the graphene synthesis reaction, thereby allowing the synthesis of graphene to proceed continuously.
  • the preliminary operating electrode unit 40 Since the preliminary operating electrode unit 40 is connected to the driving motor 30, exchange of the operating electrode 20a and the preliminary operating electrode 40a is automatically performed by the driving motor 30, thereby producing graphene. It has the advantage of being able to be mass-produced continuously.
  • the graphene synthesis device 1 is installed separately from the graphene synthesis reaction tank 10, and may further include a filter system 70 for separating the synthesized graphene and the electrolyte solution,
  • the filter system 70 may include a graphene recovery unit 70a that recovers synthesized graphene.
  • the filter system 70 which separates the synthesized graphene, blocks the flow of the electrolyte solution when a certain amount of graphene accumulates, thereby reducing the amount of electrolyte solution refluxed into the graphene synthesis reaction tank 10. This prevents this and continues. If a pressure difference exceeds a certain pressure occurs so that a negative reaction can occur, it can be replaced with another filter.
  • the separated graphene can be washed three times using ultrapure water to remove as much residual electrolyte solution as possible, and then commercialized while dispersed in water containing an organic solvent or surfactant.
  • the graphene synthesis apparatus may further include an electrolyte solution reflux pump 90.
  • an electrolyte solution supply device 100 may be further included to continuously supply the electrolyte solution so as to check the electrolyte concentration and replenish and reflux the insufficient electrolyte.
  • the electrolyte solution supplier 100 is the electrolyte solution concentration measurement/control unit (100a); and an electrolyte solution supply unit 100b.
  • the graphene synthesis device 1 may further include a heat exchanger 100 to maintain it at room temperature.
  • the heat exchanger 100 can maintain the temperature of the electrolyte solution that passes through the filter system 70 and then is refluxed and returned to the graphene reaction synthesis tank 10 at room temperature.
  • a graphene synthesis method capable of continuously mass producing high quality graphene can be provided, and in this case, the graphene mass production apparatus according to an aspect of the present invention can be used.
  • the graphene synthesis method of the present invention includes the steps of disposing an electrode unit including n metal electrode units and n+1 working electrode units alternately arranged with the metal electrode units, inside the reaction tank; electrochemically connecting the metal electrode portion to a cathode and electrochemically connecting the working electrode portion to an anode; and synthesizing graphene by applying voltage to the metal electrode portion and the working electrode portion.
  • the metal electrode unit 10 may include a number of metal electrodes arranged at a predetermined interval, and the working electrode part 20 may include b number of operating electrodes arranged alternately with the metal electrodes at a predetermined interval. It may include an electrode, and n, a, and b may be integers of 1 or more.
  • the metal electrode may be a stainless steel electrode, and the working electrode may be a graphite electrode.
  • the electrolyte solution may contain one or more selected from the group consisting of sulfate, nitrate, phosphate, metal halide, and ionic liquid, and the electrolyte solution and electrical energy conditions may vary depending on the thickness of the graphene to be manufactured. You can.
  • the electrolyte solution can be continuously supplied, and the temperature of the electrolyte solution can be controlled to be constant.
  • the working electrode When the working electrode is consumed by graphene synthesis, it may further include replacing it with a spare working electrode.
  • step of separating and recovering the synthesized graphene may be further included.
  • the working electrodes were placed in a cylindrical reactor between two rows of metal electrodes, and the electrolyte solution was a 0.35M ammonium sulfate and potassium sulfate mixed electrolyte. was used mixed in a ratio of 87:13.
  • the metal electrode was immersed in the electrolyte solution to a depth of 35 cm, and while the distance between each electrode was maintained at 1.0 cm, the working electrode was immersed to a depth of about 1.5 cm from the top of the electrolyte solution to prepare for reaction.
  • the metal electrode was immersed in the electrolyte solution to a depth of 35 cm, and while the distance between each electrode was maintained at 1.0 cm, the working electrode was immersed to a depth of about 1.5 cm above the electrolyte solution to prepare for reaction.
  • a constant voltage constant current of 10V, 20A was applied to the graphite electrode for 1 hour to start the reaction, and the working electrode, which gradually became shorter as it peeled off, was slowly supplied vertically downward at a rate of 0.30 cm per minute.
  • the metal electrodes were arranged to surround the working electrodes with the counter electrodes positioned at 90-degree intervals at the corners around the working electrodes, and a square electrode was used. After being placed in the reaction tank, 40 L of 0.3 M ammonium sulfate and potassium sulfate mixed electrolyte solution was prepared and used in a ratio of 87:13.
  • the metal electrode was immersed in the electrolyte solution to a depth of 15 cm, and the distance between electrodes was maintained at 2.0 cm diagonally from the center point of the electrodes, and the working electrode was immersed about 0.5 cm above the electrolyte solution to prepare for reaction.
  • An electrolyte absorption time of 1 hour was allowed to allow the electrolyte solution to be sufficiently absorbed into the graphite electrode and for the sulfate group to penetrate between the graphite layers.
  • a constant voltage constant current of 10V, 15A is applied to the graphite electrode for 1 hour to start the reaction.
  • the working electrode gradually peels off and becomes shorter, so it operates at a speed of 0.25 cm per minute. The electrode was slowly fed vertically downward.
  • the metal electrodes were arranged to surround the working electrodes with the counter electrodes positioned at 90-degree intervals at the corners around the working electrodes, and a square electrode was used. After being placed in the reaction tank, 40 L of 0.3 M ammonium sulfate and potassium sulfate mixed electrolyte solution was prepared and used in a ratio of 87:13.
  • the metal electrode was immersed in the electrolyte solution to a depth of 15 cm, and the distance between electrodes was maintained at 2.0 cm diagonally from the center point of the electrodes, and the working electrode was immersed about 0.5 cm above the electrolyte solution to prepare for reaction.
  • the electrolyte solution was absorbed for 2 hours so that the electrolyte solution could be sufficiently absorbed into the graphite electrode and the sulfate group could penetrate between the graphite layers.
  • a constant voltage constant current of 10V, 25A is applied to the graphite electrode for 1 hour to start the reaction.
  • the working electrode gradually peels off and becomes shorter, so it operates at a speed of 0.25 cm per minute. The electrode was slowly fed vertically downward.
  • Each electrode was immersed in the electrolyte solution to a depth of 7 cm, and the distance between each electrode was maintained at 1.0 cm, and a current of 10V and 20A was applied to the graphite electrode for 1 hour to exfoliate the graphite.
  • Each electrode was immersed in the electrolyte solution to a depth of 7 cm, and the distance between electrodes was maintained at 1.0 cm, and a current of 10V and 20A was applied to the graphite electrode for 1 hour to exfoliate the graphite.
  • 20 electrode part, 20A: metal electrode part, 20B: working electrode part, 20a: metal electrode, 20b: working electrode
  • 40 preliminary operation electrode part
  • 40a preliminary operation electrode
  • 70 filter system
  • 70a graphene recovery unit
  • 100 electrolyte solution additional supply unit
  • 100a electrolyte solution concentration measurement/control unit
  • 100b electrolyte solution supply unit
  • Electrolyte reserve tank (not shown)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

According to the present invention, provided is a graphene synthesis device comprising a graphene synthesis reaction tank, and an electrode part arranged inside the reaction tank, wherein the electrode part includes n metal electrode parts and n+1 working electrode parts arranged alternately with the metal electrode parts, a predetermined concentration of an electrolyte solution is contained in the graphene synthesis reaction tank, the metal electrode parts are electrochemically connected so as to act as an anode, the working electrode parts are electrochemically connected so as to act as a cathode, the metal electrode parts include a metal electrodes arranged with predetermined intervals therebetween, the working electrode parts include b working electrodes arranged alternately with the metal electrodes with predetermined intervals therebetween, and n, a and b are an integer of 1 or greater.

Description

그래핀 합성 장치 및 그래핀 합성 방법 Graphene synthesis device and graphene synthesis method
본 발명은 그래핀 합성 장치 및 그래핀 합성 방법에 관한 것으로, 보다 상세하게는 연속적으로 고품질의 저산화 그래핀을 합성할 수 있는 장치 및 이를 이용한 그래핀 합성 방법에 관한 것이다. The present invention relates to a graphene synthesis device and a graphene synthesis method, and more specifically, to a device capable of continuously synthesizing high-quality low-oxidized graphene and a graphene synthesis method using the same.
그래핀은 탄소의 동소체 중의 하나이며, 탄소 원자들이 각각 SP2 혼성구조 결합으로 연결된 단일 원자층 두께의 2차원 평면구조이며, 벤젠 형태의 탄소 고리가 연결되어 벌집 형태 혹은 망상으로 결합된 육각구조의 결정형태를 갖는다.Graphene is one of the allotropes of carbon, and is a two-dimensional planar structure with a single atomic layer thickness in which carbon atoms are each connected by SP 2 hybrid structure bonds, and has a hexagonal structure in which benzene-type carbon rings are connected to form a honeycomb or network. It has a crystal form.
그래핀 개별 단위체는 반데르발스(Van der Waals)힘에 의해 흑연(그라파이트, Graphite)형태로 존재하며, 산업적으로 활용하기 위해서는 상기 흑연으로부터 그래핀을 박리하는 공정이 필수적이다.Individual graphene units exist in the form of graphite due to Van der Waals forces, and for industrial use, a process of exfoliating graphene from graphite is essential.
그래핀을 합성하기 위한 종래 방법으로는 흑연으로부터 그래핀을 기계적으로 박리하는 방법, 화학기상증착법(CVD)으로 직접 그래핀을 제조하는 방법, 흑연(graphite)의 산화-환원법 등이 알려져 있으며, 특히, 흑연의 산화-환원법이 대량 생산에 적합하다는 측면에서 가장 일반적으로 사용되어오고 있다.Conventional methods for synthesizing graphene include a method of mechanically exfoliating graphene from graphite, a method of directly producing graphene by chemical vapor deposition (CVD), and an oxidation-reduction method of graphite. In particular, , the oxidation-reduction method of graphite has been most commonly used in that it is suitable for mass production.
흑연의 산화-환원법은 산소를 기반으로 하는 관능기를 유도하여 흑연을 구성하는 그래핀 층 간에 파이 전자 밀도를 줄임으로써 반데르발스 인력을 낮추어 그래핀 층 간의 박리를 용이하게 하는 방법으로서, 최근 연구 논문인 『"Nature and Strength of Interlayer Binding in Graphite", Spanu, L.; Sorella, S.; Galli, G. Phys. Rev. Lett. 2009, 103, 196401196404』 및 『"Application of van der Waals Density Functional to an Extended System: Adsorption of Benzene and Naphthalene on Graphite", Chakarova-Kack, S. D.; Schroder, E.; Lundqvist, B. I.; Langreth, D. C. Phys. Rev. Lett. 2006, 96, 146107-146110』 등에 따르면, 흑연 속 그래핀의 층간 간격이 5Å 이상으로 될 경우에 그래핀의 층간 반데르발스 인력이 완전히 사라진다는 사실이 밝혀진 바 있다.The oxidation-reduction method of graphite is a method that facilitates exfoliation between graphene layers by reducing the van der Waals attraction by reducing the pi electron density between the graphene layers that make up graphite by inducing oxygen-based functional groups. A recent research paper 『"Nature and Strength of Interlayer Binding in Graphite", Spanu, L.; Sorella, S.; Galli, G. Phys. Rev. Lett. 2009, 103, 196401196404』 and 『"Application of van der Waals Density Functional to an Extended System: Adsorption of Benzene and Naphthalene on Graphite", Chakarova-Kack, S. D.; Schroder, E.; Lundqvist, B. I.; Langreth, D. C. Phys. Rev. Lett. According to 2006, 96, 146107-146110, etc., it has been revealed that when the interlayer spacing of graphene in graphite becomes 5Å or more, the interlayer van der Waals attraction of graphene completely disappears.
그러나, 상기의 흑연의 산화-환원법에서의 산화 공정은 강산과 강산화제를 조합한 극한의 조건에서 산화시키기 때문에 환원 후에도 본래의 그래핀 구조로 복원되지 않을 뿐 아니라 환원 과정을 거친 후에는 산소가 잔존하기 때문에, 그래핀의 대량 생산에 용이하지만 결함율과 산화도가 높아져서 고품질의 그래핀을 제조할 수 없다는 단점이 있다.However, since the oxidation process in the graphite oxidation-reduction method is oxidized under extreme conditions combining a strong acid and a strong oxidizing agent, not only is the original graphene structure not restored even after reduction, but oxygen remains after the reduction process. Therefore, it is easy to mass-produce graphene, but it has the disadvantage that high-quality graphene cannot be produced because the defect rate and oxidation degree increase.
보다 구체적으로는, 그래핀 층 간의 산화에서, 최초 반응으로 하이드록실기(hydroxyl group) 및 에폭시기(epoxy group)가 만들어지고 산화반응이 지속적으로 진행될수록 에테르(ether) 등을 거쳐 최종적으로 카르복실기(carboxyl group)가 생성되는데, 이러한 과정에서 그래핀을 이루는 탄소-탄소 결합이 끊어져 결함(defect)이 발생하며 이 결함은 환원 후에도 완벽하게 복원되지 않는다는 문제점이 존재한다.More specifically, in the oxidation between graphene layers, hydroxyl groups and epoxy groups are created as an initial reaction, and as the oxidation reaction continues, ethers are formed, and finally carboxyl groups are formed. group) is created, and in this process, the carbon-carbon bonds that make up graphene are broken, causing defects, and there is a problem in that these defects are not completely restored even after reduction.
최근에 전기화학적 공정을 이용해 흑연으로부터 다층 그래핀을 제조하는 방법(이하 '전기화학적 방법')이 개발되고 있는데, 전기화학적 공정을 이용할 경우 단일 공정을 통해 흑연으로부터 수 마이크로미터 이상의 크기를 가진 다층 그래핀을 높은 수율로 제조할 수 있다는 장점을 가진다. 그러나, 상기 전기화학적 방법은 황산 전해질을 이용하기 때문에, 황산에 의해 생성된 라디칼(radical)과 흑연 사이에 화학반응이 진행되어 최종적으로 제조된 다층 그래핀의 결함율이 높아지는 단점이 있다.Recently, a method of producing multilayer graphene from graphite using an electrochemical process (hereinafter referred to as 'electrochemical method') has been developed. When using an electrochemical process, multilayer graphene with a size of several micrometers or more is obtained from graphite through a single process. It has the advantage of being able to manufacture pins with high yield. However, because the electrochemical method uses a sulfuric acid electrolyte, a chemical reaction occurs between radicals generated by sulfuric acid and graphite, which has the disadvantage of increasing the defect rate of the finally produced multilayer graphene.
상기와 같이 전기화학적 방법으로 합성된 다층 그래핀을 단층 그래핀으로 최종 제조하기 위해서는, 알칼리 금속을 그래핀 층간에 삽입하여 그래핀을 박리하는 방법을 사용하게 된다. 그러나, 삽입되는 금속이온의 상대적인 크기가 작기 때문에 박리가 잘 일어나지 않거나 그 효율이 높지 않으므로 추가적인 박리 공정이 필수적으로 요구된다. 그 외에 다른 박리방법으로서, 암모늄(ammonium) 계열 단분자를 전기화학적으로 삽입하여 그래핀을 박리하는 방법은, 제조된 그래핀의 90% 이상이 10층 이상의 두께를 가져 통상적인 의미에서 그래핀이라기 보다는 얇은 박리 흑연에 가깝다는 한계점이 존재한다. In order to finally manufacture the multilayer graphene synthesized by the electrochemical method as described above into single-layer graphene, a method of inserting an alkali metal between graphene layers to exfoliate the graphene is used. However, since the relative size of the inserted metal ion is small, peeling does not occur easily or the efficiency is not high, so an additional peeling process is essential. Another exfoliation method is a method of exfoliating graphene by electrochemically inserting ammonium-based single molecules, and more than 90% of the produced graphene has a thickness of 10 layers or more, so it is not called graphene in the conventional sense. There is a limitation that it is closer to thinner exfoliated graphite.
이와 같이, 종래의 전기화학적 방법을 이용한 다층 그래핀 제조 방법의 경우, 제조된 다층 그래핀의 결함율이 높거나, 추가적인 공정을 요하거나, 크기가 제한되거나, 두께가 두껍다는 단점을 가진다. As such, the method of producing multilayer graphene using a conventional electrochemical method has the disadvantages that the produced multilayer graphene has a high defect rate, requires additional processes, is limited in size, or is thick.
따라서, 그래핀의 효과적인 산업적 활용을 위해서는 최종 제조되는 그래핀의 품질이 향상될 수 있도록, 그래핀의 크기는 증가시키고 두께는 얇게 하면서, 이와 동시에 그래핀의 결함율을 최대한 감소시킬 수 있고, 나아가 연속적으로 그래핀을 합성하여 양산성을 향상시키기 위한 그래핀 합성 장치 및 방법의 개발이 요구되고 있는 실정이다. Therefore, for effective industrial use of graphene, the quality of the final manufactured graphene can be improved by increasing the size of graphene and thinning the thickness, while at the same time reducing the defect rate of graphene as much as possible. There is a demand for the development of a graphene synthesis device and method to improve mass productivity by continuously synthesizing graphene.
본 발명의 목적은 상술한 바와 같은 종래의 그래핀 합성 공정의 한계점 및 문제점을 해결하여, 그래핀의 크기는 증가시키고 두께는 얇게 하면서, 이와 동시에 그래핀의 결함율을 최대한 감소시킨 우수한 품질의 그래핀을 효율적·연속적으로 대량 생산할 수 있는 그래핀 합성 장치 및 그래핀 합성 방법을 제공하는 것이다.The purpose of the present invention is to solve the limitations and problems of the conventional graphene synthesis process as described above, thereby increasing the size of graphene and making it thinner, while at the same time producing excellent quality graphene that reduces the defect rate of graphene as much as possible. The goal is to provide a graphene synthesis device and a graphene synthesis method that can efficiently and continuously mass produce pins.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The object of the present invention is not limited to the object mentioned above, and other objects and advantages of the present invention that are not mentioned can be understood through the following description and will be more clearly understood by the examples of the present invention. In addition, it will be readily apparent that the objects and advantages of the present invention can be realized by the means and combinations thereof indicated in the patent claims.
본 발명의 일 양태에 따르면, 그래핀 합성 반응 수조; 및 상기 반응 수조 내부에 배치된 전극부;를 포함하고, 상기 전극부는, n개의 금속 전극부 및 상기 금속 전극부와 교대로 배치된 n+1개의 작동 전극부를 포함하고, 상기 그래핀 합성 반응 수조의 내부에는 일정 농도의 전해 용액이 포함되어 있고, 상기 금속 전극부는 전기 화학적으로 연결되어 음극으로 작동하고, 상기 작동 전극부는 전기 화학적으로 연결되어 양극으로 작동하며, 상기 금속 전극부는 소정의 간격을 두고 배치된 a개의 금속 전극을 포함하고, 상기 작동 전극부는 소정의 간격을 두면서 상기 금속 전극과 교대로 배치된 b개의 작동 전극을 포함하며, 상기 n, a 및 b는 1 이상의 정수인, 그래핀 합성 장치를 제공할 수 있다.According to one aspect of the present invention, a graphene synthesis reaction tank; and an electrode portion disposed inside the reaction tank, wherein the electrode portion includes n metal electrode portions and n+1 working electrode portions alternately disposed with the metal electrode portion, and the graphene synthesis reaction tank. The inside of contains an electrolyte solution of a certain concentration, the metal electrode portion is electrochemically connected and operates as a cathode, the working electrode portion is electrochemically connected and operates as an anode, and the metal electrode portion is spaced at a predetermined interval. A graphene synthesis device comprising a number of metal electrodes arranged, wherein the working electrode unit includes b number of working electrodes arranged alternately with the metal electrodes at a predetermined interval, wherein n, a, and b are integers of 1 or more. can be provided.
상기 금속 전극부 및 작동 전극부는 각각 판상형 전극부일 수 있고, 상기 금속 전극 및 작동 전극은 각각 봉(rod)의 형태로 적용되는 금속 전극봉 및 작동 전극봉일 수 있다.The metal electrode portion and the working electrode portion may each be a plate-shaped electrode portion, and the metal electrode and the working electrode may be a metal electrode and a working electrode respectively applied in the form of a rod.
상기 금속 전극봉 및 작동 전극봉의 직경이 각각 D(cm)일 경우, 상기 금속 전극봉 및 작동 전극봉끼리의 간격은 2D(cm)로 배치되는 것일 수 있다.When the diameters of the metal electrode and the working electrode are each D (cm), the distance between the metal electrode and the working electrode may be arranged at 2D (cm).
상기 금속 전극봉 스테인레스 스틸 전극봉일 수 있고, 상기 작동 전극봉은 흑연 전극봉일 수 있다. The metal electrode may be a stainless steel electrode, and the working electrode may be a graphite electrode.
상기 전해 용액은 황산염, 질산염, 인산염, 칼륨염, 금속 할라이드 및 이온성 액체로 구성되는 군에서 선택되는 1종 이상을 포함할 수 있고, 바람직한 일 구현예에 따르면, 상기 전해 용액은 황산 암모늄 및 황산 칼륨 중 1종 이상을 포함할 수 있다.The electrolyte solution may include one or more selected from the group consisting of sulfate, nitrate, phosphate, potassium salt, metal halide, and ionic liquid. According to a preferred embodiment, the electrolyte solution includes ammonium sulfate and sulfuric acid. It may contain one or more types of potassium.
상기 그래핀 합성 장치는, 전해 용액을 연속적으로 공급하기 위한 전해 용액 공급기를 더 포함할 수 있고, 상기 전해 용액 공급기는, 전해 용액 농도 측정·조절부; 및 전해 용액 공급부;를 포함할 수 있다. The graphene synthesis device may further include an electrolyte solution supply device for continuously supplying an electrolyte solution, and the electrolyte solution supply device may include an electrolyte solution concentration measuring/controlling unit; and an electrolyte solution supply unit.
상기 전극부에는 상기 그래핀 합성 반응 수조에 대향하여 상하로 작동할 수 있는 구동 모터가 연결되어 있을 수 있다. A drive motor that can operate up and down opposite to the graphene synthesis reaction tank may be connected to the electrode unit.
상기 작동 전극이 그래핀 합성에 의해 소모되는 경우 교환되는 예비 작동 전극봉을 포함하는 예비 작동 전극부를 더 포함할 수 있고, 상기 예비 작동 전극부는 상기 구동 모터에 연결되어 있을 수 있다.It may further include a spare working electrode unit including a spare working electrode that is replaced when the working electrode is consumed by graphene synthesis, and the spare working electrode unit may be connected to the driving motor.
상기 그래핀 합성 장치는, 상기 그래핀 합성 장치로부터 합성된 그래핀과 전해 용액을 분리하는 필터 시스템을 더 포함할 수 있고, 상기 필터 시스템은 합성된 그래핀을 회수하는 그래핀 회수부를 포함할 수 있고, 상기 필터 시스템은 상기 그래핀 합성 반응 수조로부터 이격되어 설치되어 있을 수 있다.The graphene synthesis device may further include a filter system that separates the graphene synthesized from the graphene synthesis device and the electrolyte solution, and the filter system may include a graphene recovery unit that recovers the synthesized graphene. And, the filter system may be installed separately from the graphene synthesis reaction tank.
상기 그래핀 합성 장치는, 상기 그래핀 합성 반응 수조의 전해 용액의 온도를 제어하는 열교환기를 더 포함할 수 있다. The graphene synthesis apparatus may further include a heat exchanger that controls the temperature of the electrolyte solution in the graphene synthesis reaction tank.
상기 전극부에는 정전류 조절기가 연결되어 있을 수 있다.A constant current regulator may be connected to the electrode unit.
본 발명의 다른 일 양태에 따르면, 그래핀 합성 반응 수조 내에 전해 용액을 투입하는 단계; 상기 반응 수조 내부에, n개의 금속 전극부 및 상기 금속 전극부와 교대로 배치된 n+1개의 작동 전극부를 포함하는 전극부를 배치하는 단계; 상기 금속 전극부를 전기 화학적으로 음극으로 연결하고, 상기 작동 전극부를 전기 화학적으로 양극으로 연결하는 단계; 및 상기 금속 전극부 및 작동 전극부에 전압을 인가하여 그래핀을 합성하는 단계;를 포함할 수 있고, 상기 금속 전극부는, 소정의 간격을 두고 배치된 a개의 금속 전극을 포함할 수 있고, 상기 작동 전극부는 소정의 간격을 두면서 상기 금속 전극과 교대로 배치된 b개의 작동 전극을 포함할 수 있으며, 상기 n, a 및 b는 1 이상의 정수인, 그래핀 합성 방법을 제공할 수 있다. According to another aspect of the present invention, adding an electrolyte solution into a graphene synthesis reaction tank; Arranging an electrode unit including n metal electrode units and n+1 working electrode units alternately disposed with the metal electrode units, inside the reaction tank; electrochemically connecting the metal electrode portion to a cathode and electrochemically connecting the working electrode portion to an anode; and synthesizing graphene by applying a voltage to the metal electrode portion and the working electrode portion, wherein the metal electrode portion may include a number of metal electrodes arranged at predetermined intervals, and The working electrode unit may include b working electrodes alternately arranged with the metal electrode at a predetermined interval, and n, a, and b are integers of 1 or more.
상기 금속 전극은 봉(rod)의 형태로서 스테인레스 스틸 전극봉일 수 있고, 상기 작동 전극은 봉(rod)의 형태로서 흑연 전극봉일 수 있다.The metal electrode may be a stainless steel electrode in the form of a rod, and the working electrode may be a graphite electrode in the form of a rod.
상기 전해 용액은 황산염, 질산염, 인산염, 금속 할라이드 및 이온성 액체로 구성되는 군에서 선택되는 1종 이상을 포함할 수 있다. The electrolyte solution may include one or more selected from the group consisting of sulfate, nitrate, phosphate, metal halide, and ionic liquid.
상기 전해 용액의 농도 및 부피량을 유지하기 위하여 전해 용액은 연속적으로 공급될 수 있다. 이 때, 바람직하게는 전해 용액의 초기 농도는 0.1~0.5 M일 수 있고, 더욱 바람직하게는 0.3~035 M일 수 있다. 그래핀 합성 반응이 진행되면서 반응 중에서 수증기로 증발하는 수분으로 인하여 농도가 높아질 수 있기 때문에, 상기 초기 농도로 유지될 수 있도록 전해 용액을 연속적으로 공급될 수 있는 것이며, 이를 위해 전해 용액이 들어 있는 버퍼 용액 탱크(buffer solution tank)를 이용할 수 있다. 상기 버퍼 용액 탱크의 용량은 설계 조건 등에 따라 달리 할 수 있으며, 예를 들어 20~50 L, 예를 들어 30~40 L일 수 있으나, 이에 한정되는 것이 아니다. In order to maintain the concentration and volume of the electrolyte solution, the electrolyte solution may be continuously supplied. At this time, the initial concentration of the electrolyte solution may be preferably 0.1 to 0.5 M, and more preferably 0.3 to 035 M. As the graphene synthesis reaction progresses, the concentration may increase due to moisture evaporating into water vapor during the reaction, so the electrolyte solution can be continuously supplied to maintain the initial concentration, and for this purpose, a buffer containing the electrolyte solution is provided. A buffer solution tank can be used. The capacity of the buffer solution tank may vary depending on design conditions, etc., and may be, for example, 20 to 50 L, for example, 30 to 40 L, but is not limited thereto.
상기 전해 용액의 온도는 일정하게 유지되도록 제어될 수 있다. 그래핀 합성 반응에 의해 시스템의 온도는 지속적으로 상승하므로, 이에 의해 발생하는 반응열에 의해 전해 용액 중의 수분 증발이 활성화되므로, 반응열을 식혀서 상온(대략 25℃)을 유지하는 것이 바람직하다. 이를 구현하기 위한 방법으로는 예를 들어, 칠러(chiller)를 이용하는 방법을 예로 들 수 있다. The temperature of the electrolyte solution can be controlled to remain constant. Since the temperature of the system continues to rise due to the graphene synthesis reaction, the reaction heat generated thereby activates moisture evaporation in the electrolyte solution, so it is desirable to cool the reaction heat to maintain room temperature (approximately 25°C). One way to implement this is, for example, using a chiller.
상기 그래핀 합성 방법은, 작동 전극이 그래핀 합성에 의해 소모되는 경우 예비 작동 전극봉으로 교환되는 단계를 더 포함할 수 있다.The graphene synthesis method may further include the step of replacing the working electrode with a spare working electrode when it is consumed by graphene synthesis.
상기 그래핀 합성 방법은, 상기 합성된 그래핀이 분리되어 회수되는 단계를 더 포함할 수 있다. The graphene synthesis method may further include the step of separating and recovering the synthesized graphene.
본 발명의 그래핀 합성 장치는, 다수의 작동 전극봉 주변으로 다수의 금속 전극봉이 배치되는 멀티 전극 시스템으로 이루어져 있으므로, 작동 전극봉 1개당 다수의 금속 전극봉이 둘러싸는 효과를 나타냄에 따라 단시간에 많은 양의 그래핀을 합성할 수 있다.The graphene synthesis device of the present invention consists of a multi-electrode system in which a plurality of metal electrodes are arranged around a plurality of working electrodes, so that a large amount of metal electrodes surround each working electrode, resulting in the production of a large amount in a short time. Graphene can be synthesized.
본 발명의 그래핀 합성 장치는, 전극 간의 거리가 일정하면서도 작동 전극 주위를 금속 전극이 둘러싸는 형태이므로 전기장 내에서 화학반응에 의한 박리 효과가 극대화될 수 있기 때문에, 그래핀의 합성 수율이 높으면서도 합성 수율의 변동이 작으므로, 그래핀의 대량 양산 및 관리에 유리하다는 이점이 있다.In the graphene synthesis device of the present invention, the distance between electrodes is constant and a metal electrode surrounds the working electrode, so the peeling effect due to chemical reaction in an electric field can be maximized, and the yield of graphene synthesis is high while Since the variation in synthesis yield is small, it has the advantage of being advantageous for mass production and management of graphene.
본 발명의 그래핀 합성 장치는, 작동 전극이 그래핀 합성에 의해 소모되는 경우 교환되는 예비 작동 전극을 포함하는 예비 작동 전극부를 더 포함할 수 있으므로, 그래핀을 연속적으로 양산할 수 있다.The graphene synthesis apparatus of the present invention may further include a spare working electrode unit including a spare working electrode that is replaced when the working electrode is consumed by graphene synthesis, so that graphene can be continuously mass-produced.
본 발명의 그래핀 합성 장치는 전해 용액을 일정하게 지속적으로 공급할 수 있고, 합성된 그래핀을 함유하는 전해질을 안정적으로 배출할 수 있으므로, 그래핀을 연속적으로 양산할 수 있다.The graphene synthesis device of the present invention can continuously supply an electrolyte solution and stably discharge an electrolyte containing synthesized graphene, thereby enabling continuous mass production of graphene.
도 1은 본 발명의 일 양태에 따른 그래핀 합성 장치의 모식도이다. 1 is a schematic diagram of a graphene synthesis device according to an aspect of the present invention.
도 2 내지 도 4는 본 발명의 일 양태에 따른 그래핀 합성 장치의 전극부의 단면 모식도이다.2 to 4 are cross-sectional schematic diagrams of electrode portions of a graphene synthesis device according to an aspect of the present invention.
도 5는 본 발명의 일 양태에 따른 그래핀 합성 장치의 전극부의 사진이다.Figure 5 is a photograph of the electrode portion of the graphene synthesis device according to one aspect of the present invention.
도 6은 본 발명의 일 양태에 따른 그래핀 합성 장치의 사진이다.Figure 6 is a photograph of a graphene synthesis device according to an aspect of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. The present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts not related to the description are omitted, and identical or similar components are given the same reference numerals throughout the specification.
본 명세서를 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 명세서의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.In describing the present specification, if it is determined that a detailed description of related known technology may unnecessarily obscure the gist of the present specification, the detailed description will be omitted.
본 명세서에서 구성 요소를 '포함한다', '갖는다', '이루어진다', '배치한다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다. In this specification, when 'includes', 'has', 'consists of', 'arranges', etc. are used for constituent elements, other parts may be added unless 'only' is used. When a component is expressed in the singular, the plural is included unless specifically stated otherwise.
본 명세서에서 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.In interpreting the components in this specification, they are interpreted to include the margin of error even if there is no separate explicit description.
본 명세서에서 구성 요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성 요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성 요소와 상기 구성 요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다.In this specification, the “top (or bottom)” of a component or the arrangement of any component on the “top (or bottom)” of a component means that any component is disposed in contact with the top (or bottom) of the component. In addition, it may mean that other components may be interposed between the component and any component disposed on (or under) the component.
본 발명의 일 양태에 따르면 그래핀 합성 장치를 제공할 수 있다. 도 1은 그래핀 합성 장치를 간략화하여 도시한 것이고, 도 2 내지 도 4는 그래핀 합성 장치의 전극부의 단면을 간략화하여 도시한 것이다.According to one aspect of the present invention, a graphene synthesis device can be provided. Figure 1 is a simplified illustration of a graphene synthesis device, and Figures 2 to 4 are a simplified cross-sectional view of an electrode portion of the graphene synthesis device.
도 1 및 도 2를 참조하면, 그래핀 합성 장치(1)는 그래핀 합성 반응 수조(10); 및 상기 반응 수조(10) 내부에 배치된 전극부(20);를 포함하고, 상기 전극부(20)는, n개의 금속 전극부(20A) 및 상기 금속 전극부(20A)와 교대로 배치된 n+1개의 작동 전극부(20B)를 포함하고, 상기 그래핀 합성 반응 수조(10)의 내부에는 일정 농도의 전해 용액이 포함되어 있고, 상기 금속 전극부(20A)는 전기 화학적으로 연결되어 음극으로 작동하고, 상기 작동 전극부(20B)는 전기 화학적으로 연결되어 양극으로 작동하며, 상기 금속 전극부(20A)는 소정의 간격을 두고 배치된 a개의 금속 전극봉(도 2의 20a)을 포함하고, 상기 작동 전극부(20B)는 소정의 간격을 두면서 상기 금속 전극봉(도 2의 20a)과 교대로 배치된 b개의 작동 전극봉(도 2의 20b)을 포함하며, 상기 n, a 및 b는 1 이상의 정수일 수 있다.Referring to Figures 1 and 2, the graphene synthesis apparatus 1 includes a graphene synthesis reaction tank 10; and an electrode unit 20 disposed inside the reaction tank 10, wherein the electrode unit 20 is alternately arranged with n metal electrode units 20A and the metal electrode units 20A. It includes n+1 working electrode units 20B, and the inside of the graphene synthesis reaction tank 10 contains an electrolyte solution of a certain concentration, and the metal electrode unit 20A is electrochemically connected to the cathode. The working electrode unit 20B is electrochemically connected and operates as an anode, and the metal electrode unit 20A includes a number of metal electrodes (20a in FIG. 2) arranged at predetermined intervals. , the working electrode unit 20B includes b working electrodes (20b in FIG. 2) arranged alternately with the metal electrodes (20a in FIG. 2) at a predetermined interval, where n, a, and b are 1. It can be an integer above.
상기 그래핀 합성 장치(1)에서 인가되는 작동 전압은 5V 내지 20V일 수 있고, 예를 들어 10±0.1V의 수준으로 유지하며 전압이 공급되는 것이 바람직할 수 있다. 또한, 인가되는 작동 전류는 15A 내지 30 A일 수 있고, 예를 들어 23±0.3A의 수준으로 유지하며 전류가 공급되는 것이 바람직할 수 있다.The operating voltage applied from the graphene synthesis device 1 may be 5V to 20V, and for example, it may be desirable to maintain the voltage at a level of 10 ± 0.1V. Additionally, the applied operating current may be 15A to 30A, and for example, it may be desirable for the current to be supplied maintained at a level of 23±0.3A.
상기 전극부(10)에는 정전류 조절기(50)가 연결됨으로써, 그래핀 합성 반응을 위해 인가되는 정전류를 제어할 수 있다.By connecting a constant current regulator 50 to the electrode unit 10, the constant current applied for the graphene synthesis reaction can be controlled.
도 3을 참조하여 알 수 있는 바와 같이, 상기 금속 전극부(20A) 및 작동 전극부(20B)는 각각 판상형 전극부일 수 있다. 상기 판상형 전극부에는 각각의 전극봉이 소정의 간격을 두고 배치되어 있을 수 있다.As can be seen with reference to FIG. 3, the metal electrode portion 20A and the working electrode portion 20B may each be plate-shaped electrode portions. Each electrode may be arranged at predetermined intervals in the plate-shaped electrode portion.
도 3을 참조하여 알 수 있는 바와 같이, 상기 금속 전극봉(20a) 및 작동 전극봉(20b)의 직경이 각각 D(cm)일 경우, 상기 금속 전극봉(20a) 및 작동 전극봉(20b)끼리의 간격은 2D(cm)로 배치될 수 있으나, 이에 반드시 한정되는 것은 아니다.As can be seen with reference to FIG. 3, when the diameters of the metal electrode 20a and the working electrode 20b are D (cm), the distance between the metal electrode 20a and the working electrode 20b is It may be arranged in 2D (cm), but is not necessarily limited thereto.
상기 금속 전극봉(20a)은 스테인레스 스틸 전극봉일 수 있고, 상기 작동 전극봉(20b)은 흑연 전극봉일 수 있다.The metal electrode 20a may be a stainless steel electrode, and the working electrode 20b may be a graphite electrode.
예를 들어, 전해 용액이 준비된 그래핀 합성 반응 수조(10)의 상부에 금속 전극봉(20a)인 스테인레스 스틸 전극봉이 음극으로 고정되어 설치될 수 있고, 그 사이로 교대 배치될 수 있는 작동 전극봉(20b)인 흑연 전극봉이 양극으로 작동하면서 연속적으로 그래핀 합성 반응 수조(10)의 음극 사이로 배치·교환될 수 있다. For example, a stainless steel electrode, which is a metal electrode 20a, may be fixed and installed as a cathode on the upper part of the graphene synthesis reaction tank 10 in which an electrolyte solution is prepared, and working electrodes 20b may be alternately arranged between them. The phosphorus graphite electrode operates as an anode and can be continuously placed and exchanged between the cathodes of the graphene synthesis reaction tank 10.
상기 스테인레스 스틸은 다양한 종류가 있으나, 그 중 페라이트계(Ferritic Stainless Steel) 또는 마르텐사이트계(Martensitic Stainless Steel) 스테인레스 스틸은 오스테나이트계(Austenitic Stainless Steel) 보다 상대적으로 니켈(Ni) 성분이 적어서 틈새 부식에 취약하므로, 그래핀의 양산 관점에서 오스테나이트계 스테인레스 스틸이 작동 전극봉으로 사용되기에 바람직할 수 있다.There are various types of stainless steel, but among them, ferritic stainless steel or martensitic stainless steel contains relatively less nickel (Ni) than austenitic stainless steel, so it is prone to crevice corrosion. Therefore, from the viewpoint of mass production of graphene, austenitic stainless steel may be preferable for use as a working electrode.
보다 구체적으로, 오스테나이트계 스테인레스 스틸의 종류 중 중 304/304L 계열보다, 316/316L 또는 317L 계열이 상대적으로 우수하지만, 바람직하게는 오스테타이트계열 스테인레스 스틸 중에서도 니켈 함량이 상대적으로 많은 310S 전극을 사용하는 것이 더욱 바람직할 수 있다.More specifically, among the types of austenitic stainless steel, the 316/316L or 317L series are relatively superior to the 304/304L series, but preferably, the 310S electrode, which has a relatively high nickel content among austenitic stainless steels, is used. It may be more desirable to do so.
상기 그래핀 합성 반응 수조(10)의 내부에 전해 용액이 공급되고, 각 전극봉(20a, 20b)에 일정한 직류전류를 공급하면, 황산암모늄 전해 용액, 흑연 전극봉(작동 전극봉) 사이에 들어가 있는 SO4 2- 이온 및 물 분자가 산화되어 SO2 와 O2 가스가 발생하게 되고, 상기 가스화 반응에 의해서 흑연 층이 박리되면서 결함이 거의 없는 저산화 박리 그래핀이 지속적으로 제조될 수 있다.When an electrolyte solution is supplied to the inside of the graphene synthesis reaction tank 10 and a constant direct current is supplied to each electrode (20a, 20b), the ammonium sulfate electrolyte solution and SO 4 contained between the graphite electrodes (operating electrodes) are 2- Ions and water molecules are oxidized to generate SO 2 and O 2 gas, and as the graphite layer is exfoliated through the gasification reaction, low-oxidation exfoliated graphene with almost no defects can be continuously produced.
상기 그래핀 합성 장치(1)는, 전해 용액 공급 통로(60)를 통해 전해 용액을 그래핀 합성 반응 수조(10)에 공급될 수 있다.The graphene synthesis apparatus 1 may supply an electrolyte solution to the graphene synthesis reaction tank 10 through an electrolyte solution supply passage 60.
상기 전해 용액은 황산염, 질산염, 인산염, 금속 할라이드 및 이온성 액체로 구성되는 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하게는 본 발명의 전해 용액은 황산 암모늄((NH4)2SO4)을 포함할 수 있으나, 보다 얇은 층을 가진 그래핀을 제조하기 위해서, 그래핀 층의 두께가 두꺼워지는 효과가 나타나는 암모늄 이온(NH4 +)보다 얇은 그래핀 생성에 유리한 금속 이온을 포함하는 전해 용액을 사용할 수도 있다. The electrolyte solution may include one or more selected from the group consisting of sulfate, nitrate, phosphate, metal halide, and ionic liquid. Preferably, the electrolyte solution of the present invention may contain ammonium sulfate ((NH 4 ) 2 SO 4 ), but in order to produce graphene with a thinner layer, ammonium, which has the effect of increasing the thickness of the graphene layer, is used. An electrolytic solution containing metal ions, which are more advantageous for producing thinner graphene than ions (NH 4 + ), can also be used.
얘를 들어, 암모늄 이온의 양을 줄이되 양산성을 고려하여 암모늄 이온의 농도를 70wt% 내지 90wt%로 하면서, 이 외에 혼합되는 다른 금속 이온의 양을 10wt% 내지 30wt%의 비율로 혼합한 전해 용액을 사용할 수 있다. For example, an electrolyte solution in which the amount of ammonium ions is reduced and the concentration of ammonium ions is set to 70 wt% to 90 wt% in consideration of mass productivity, and the amount of other metal ions mixed is mixed at a ratio of 10 wt% to 30 wt%. can be used.
구체적으로는, 전해 용액 중의 금속 이온의 농도는 최종 제조되는 제품에서 요구되는 그래핀의 두께 조건에 따라서 달라지게 된다. 예를 들어, 5층 내지 10층 정도의 두꺼운 그래핀을 생산하기 위한 전해 용액의 조성은 다른 금속 이온 없이 암모늄 이온 100wt%의 조성이 바람직하다. Specifically, the concentration of metal ions in the electrolyte solution varies depending on the thickness conditions of graphene required in the final manufactured product. For example, the composition of the electrolytic solution for producing thick graphene of about 5 to 10 layers is preferably composed of 100 wt% ammonium ions and no other metal ions.
예를 들어, 3층 내지 6층 정도의 얇은 두께를 가지는 다층 그래핀을 양산하기 위해서는 85wt% 내지 90wt%의 암모늄 이온을 함유하는 것이 바람직하고, 87wt% 내지 90wt%의 암모늄 이온을 함유하는 것이 보다 바람직하며, 이 외의 다른 금속 이온과 혼합하여 전해 용액으로서 사용할 수 있다. 상기 다른 금속 이온의 후보 물질로서는, 칼륨 이온(K+), 나트륨 이온(Na+), 그 중에서도 바람직하게는 10wt% 내지 15wt%의 칼륨 이온, 보다 바람직하게는 13wt% 내지 15wt%의 칼륨 이온과 혼합한 전해 용액을 사용할 수 있다. For example, in order to mass-produce multilayer graphene with a thickness of about 3 to 6 layers, it is preferable to contain 85 wt% to 90 wt% of ammonium ions, and more preferably to contain 87 wt% to 90 wt% of ammonium ions. It is preferable and can be used as an electrolytic solution by mixing with other metal ions. Candidate materials for the other metal ions include potassium ions (K + ), sodium ions (Na + ), preferably 10 wt% to 15 wt% potassium ions, more preferably 13 wt% to 15 wt% potassium ions, and A mixed electrolyte solution can be used.
상기 전해 용액은 0.3mol 내지 0.5mol 농도의 금속 이온이 용해된 수용액으로 준비할 수 있다. 예를 들어, 5층 내지 10층의 두꺼운 그래핀을 제조하기 위해서는 약 0.3 mol 농도의 황산암모늄 전해 용액을 사용하는 것이 바람직하다. 예를 들어, 3층 내지 6층의 얇은 그래핀을 제조하기 위해서는 약 0.35 mol의 혼합 농도를 가지면서, 황산 암모늄 및 황산 칼륨의 혼합 전해 용액을 사용하는 것이 바람직하다. 예를 들어, 황산 암모늄 : 황산 칼륨의 혼합 비율(중량 기준)은 70 : 30 내지 95 : 5인 것이 바람직하고, 80 : 20 내지 90 : 10인 것이 보다 바람직하고, 85 : 15 내지 90 : 10인 것이 더욱 바람직하다. The electrolytic solution can be prepared as an aqueous solution in which metal ions at a concentration of 0.3 mol to 0.5 mol are dissolved. For example, in order to manufacture thick graphene with 5 to 10 layers, it is desirable to use an ammonium sulfate electrolyte solution with a concentration of about 0.3 mol. For example, in order to manufacture thin graphene of 3 to 6 layers, it is desirable to use a mixed electrolyte solution of ammonium sulfate and potassium sulfate with a mixing concentration of about 0.35 mol. For example, the mixing ratio (by weight) of ammonium sulfate:potassium sulfate is preferably 70:30 to 95:5, more preferably 80:20 to 90:10, and 85:15 to 90:10. It is more desirable.
또한, 상기 그래핀 합성 장치(1)는, 상기 전해 용액을 연속적으로 공급하기 위하여 전해 용액 추가 공급기(80)를 더 포함하고, 상기 전해 용액 추가 공급기(80)는, 전해 용액 농도 측정·조절부(80a); 및 전해 용액 공급부(80b);를 포함할 수 있다. In addition, the graphene synthesis device 1 further includes an electrolyte solution additional supply device 80 to continuously supply the electrolyte solution, and the electrolyte solution additional supply device 80 is an electrolyte solution concentration measurement and control unit. (80a); and an electrolyte solution supply unit (80b).
상기 전극부(20)에는 상기 그래핀 합성 반응 수조(10)에 대향하여 상하로 작동할 수 있는 구동 모터(30)가 연결될 수 있다. A drive motor 30 that can operate up and down opposite to the graphene synthesis reaction tank 10 may be connected to the electrode unit 20.
상기 작동 전극부(20A)의 작동 전극봉(20a)는 그래핀 합성 반응 수조(10)의 전해 용액에 대항하여, 구동 모터(30)에 연결됨으로써 수직 상하부 방향으로 공급될 수 있다. 이 때 인가되는 전압과 전류의 조건에 따라, 구동 모터(30)를 구동하는 최적 조건이 달라질 수 있다. The working electrode 20a of the working electrode unit 20A can be supplied in a vertical up and down direction by being connected to the driving motor 30 against the electrolyte solution of the graphene synthesis reaction tank 10. At this time, the optimal conditions for driving the drive motor 30 may vary depending on the conditions of the applied voltage and current.
예를 들어, 구동 모터(30)는 0.10 cm/min 내지 0.50 cm/min의 공급 속도로 구동되는 것이 바람직하고, 0.2 cm/min 내지 0.35 cm/min의 공급 속도로 구동되는 것이 더욱 바람직하다. For example, the drive motor 30 is preferably driven at a feed rate of 0.10 cm/min to 0.50 cm/min, and more preferably driven at a feed rate of 0.2 cm/min to 0.35 cm/min.
또한, 작동 전극봉(20a)은 흑연이 박리되는 현상으로 인하여, 최종적으로 하강이 불가한 길이로 짧아지므로, 그래핀 합성 장치(1)는 상기 작동 전극봉(20a)이 그래핀 합성에 의해 소모되는 경우, 소모된 작동 전극봉(20a)과 교환되는 예비 작동 전극봉(40a)을 포함하는 예비 작동 전극부(40)를 더 포함할 수 있다. 이로써, 소모된 작동 전극봉(20a)은 회수되고, 그래핀 합성 반응에 지속적으로 참여시킬 수 있는 예비 작동 전극봉(40a)로 교환됨으로써, 그래핀의 합성을 연속적으로 진행할 수 있다.In addition, because the working electrode 20a is ultimately shortened to a length where it cannot be lowered due to the phenomenon of graphite exfoliation, the graphene synthesis device 1 is used when the working electrode 20a is consumed by graphene synthesis. , It may further include a spare working electrode unit 40 including a spare working electrode 40a that is replaced with the used working electrode 20a. As a result, the spent working electrode 20a is recovered and replaced with a spare working electrode 40a that can continuously participate in the graphene synthesis reaction, thereby allowing the synthesis of graphene to proceed continuously.
상기 예비 작동 전극부(40)는 상기 구동 모터(30)에 연결되어 있으므로, 상기 작동 전극봉(20a) 및 예비 작동 전극봉(40a)의 교환이 구동 모터(30)에 의해 자동적으로 이루어짐으로써 그래핀이 연속적으로 양산될 수 있다는 이점이 있다.Since the preliminary operating electrode unit 40 is connected to the driving motor 30, exchange of the operating electrode 20a and the preliminary operating electrode 40a is automatically performed by the driving motor 30, thereby producing graphene. It has the advantage of being able to be mass-produced continuously.
상기 그래핀 합성 장치(1)는, 상기 그래핀 합성 반응 수조(10)로부터 이격되어 설치되어 있는 것으로, 합성된 그래핀과 전해 용액을 분리하는 필터 시스템(70)을 더 포함할 수 있고, 상기 필터 시스템(70)은 합성된 그래핀을 회수하는 그래핀 회수부(70a)를 포함할 수 있다.The graphene synthesis device 1 is installed separately from the graphene synthesis reaction tank 10, and may further include a filter system 70 for separating the synthesized graphene and the electrolyte solution, The filter system 70 may include a graphene recovery unit 70a that recovers synthesized graphene.
합성된 그래핀을 분리한 필터 시스템(70)은 일정량의 그래핀이 쌓이면 전해 용액의 흐름이 방해받게 되어 그래핀 합성 반응 수조(10)로 환류되는 전해 용액의 양이 줄어들게 되므로, 이를 방지하고 연속적인 반응이 일어날 수 있도록 일정 압력 이상의 압력 차이가 발생되면 다른 필터로 교체될 수 있다. The filter system 70, which separates the synthesized graphene, blocks the flow of the electrolyte solution when a certain amount of graphene accumulates, thereby reducing the amount of electrolyte solution refluxed into the graphene synthesis reaction tank 10. This prevents this and continues. If a pressure difference exceeds a certain pressure occurs so that a negative reaction can occur, it can be replaced with another filter.
분리된 그래핀은 초순수를 이용하여 3회 세정해서, 잔류 전해 용액을 최대한 제거하고, 유기용매 혹은 계면활성제가 포함된 수중에 분산된 상태에서 제품화할 수 있다.The separated graphene can be washed three times using ultrapure water to remove as much residual electrolyte solution as possible, and then commercialized while dispersed in water containing an organic solvent or surfactant.
그래핀이 제거된 전해 용액을 다시 그래핀 합성 반응 수조(10)로 되돌아 가도록 하기 위하여, 그래핀 합성 장치는 전해 용액 환류 펌프(90)를 더 포함할 수 있다. In order to return the electrolyte solution from which the graphene has been removed to the graphene synthesis reaction tank 10, the graphene synthesis apparatus may further include an electrolyte solution reflux pump 90.
이 때, 전해질 농도를 확인하고 부족한 전해질을 보충 공급하고 환류시킬 수 있도록, 전해 용액을 연속적으로 공급하기 위한 전해 용액 공급기(100)를 더 포함할 수 있다. At this time, an electrolyte solution supply device 100 may be further included to continuously supply the electrolyte solution so as to check the electrolyte concentration and replenish and reflux the insufficient electrolyte.
또한, 전체 전해 용액의 양을 제어하여 전해 용액 예비 수조(110; 미도시)에서 항상 일정 수량으로 그래핀 반응 합성 수조(10) 내에 전해 용액이 존재할 수 있도록 공급하기 위하여, 상기 전해 용액 공급기(100)는, 전해 용액 농도 측정·조절부(100a); 및 전해 용액 공급부(100b);를 포함할 수 있다. In addition, in order to control the total amount of the electrolyte solution and supply it so that the electrolyte solution can always be present in the graphene reaction synthesis tank 10 in a constant quantity from the electrolyte solution preliminary tank 110 (not shown), the electrolyte solution supplier 100 ) is the electrolyte solution concentration measurement/control unit (100a); and an electrolyte solution supply unit 100b.
나악, 환류되는 전해 용액은 다량의 전기화학적 반응을 통하여 온도가 상승하게 되므로 이를 상온으로 유지시켜주기 위하여, 그래핀 합성 장치(1)는 열교환기(100)를 더 포함할 수 있다. 상기 열교환기(100)는 필터 시스템(70)을 통과한 다음, 환류되어 그래핀 반응 합성 수조(10)로 되돌아가는 전해 용액의 온도를 상온으로 유지시켜 줄 수 있다.However, since the temperature of the refluxed electrolyte solution increases through a large amount of electrochemical reaction, the graphene synthesis device 1 may further include a heat exchanger 100 to maintain it at room temperature. The heat exchanger 100 can maintain the temperature of the electrolyte solution that passes through the filter system 70 and then is refluxed and returned to the graphene reaction synthesis tank 10 at room temperature.
본 발명의 다른 일 양태에 따르면, 고품질의 그래핀을 연속적으로 양산할 수 있는 그래핀 합성 방법을 제공할 수 있으며, 이 때 본 발명의 일 양태에 따른 그래핀 양산 장치를 이용할 수 있다.According to another aspect of the present invention, a graphene synthesis method capable of continuously mass producing high quality graphene can be provided, and in this case, the graphene mass production apparatus according to an aspect of the present invention can be used.
본 발명의 그래핀 합성 방법은, 상기 반응 수조 내부에, n개의 금속 전극부 및 상기 금속 전극부와 교대로 배치된 n+1개의 작동 전극부를 포함하는 전극부를 배치하는 단계; 상기 금속 전극부를 전기 화학적으로 음극으로 연결하고, 상기 작동 전극부를 전기 화학적으로 양극으로 연결하는 단계; 및 상기 금속 전극부 및 작동 전극부에 전압을 인가하여 그래핀을 합성하는 단계;를 포함할 수 있고, The graphene synthesis method of the present invention includes the steps of disposing an electrode unit including n metal electrode units and n+1 working electrode units alternately arranged with the metal electrode units, inside the reaction tank; electrochemically connecting the metal electrode portion to a cathode and electrochemically connecting the working electrode portion to an anode; and synthesizing graphene by applying voltage to the metal electrode portion and the working electrode portion.
상기 금속 전극부(10)는, 소정의 간격을 두고 배치된 a개의 금속 전극을 포함할 수 있고, 상기 작동 전극부(20)는 소정의 간격을 두면서 상기 금속 전극과 교대로 배치된 b개의 작동 전극을 포함할 수 있으며, 상기 n, a 및 b는 1 이상의 정수일 수 있다. The metal electrode unit 10 may include a number of metal electrodes arranged at a predetermined interval, and the working electrode part 20 may include b number of operating electrodes arranged alternately with the metal electrodes at a predetermined interval. It may include an electrode, and n, a, and b may be integers of 1 or more.
상기 금속 전극은 스테인레스 스틸 전극봉이고, 상기 작동 전극은 흑연 전극봉일 수 있다. The metal electrode may be a stainless steel electrode, and the working electrode may be a graphite electrode.
상기 전해 용액은 황산염, 질산염, 인산염, 금속 할라이드 및 이온성 액체로 구성되는 군에서 선택되는 1종 이상을 포함할 수 있으며, 제조하고자 하는 그래핀의 두께에 따라 전해 용액 및 전기 에너지 조건을 달리할 수 있다. The electrolyte solution may contain one or more selected from the group consisting of sulfate, nitrate, phosphate, metal halide, and ionic liquid, and the electrolyte solution and electrical energy conditions may vary depending on the thickness of the graphene to be manufactured. You can.
상기 전해 용액의 농도 및 부피량을 유지하기 위하여 전해 용액이 연속적으로 공급될 수 있고, 상기 전해 용액의 온도가 일정하게 제어될 수 있다.In order to maintain the concentration and volume of the electrolyte solution, the electrolyte solution can be continuously supplied, and the temperature of the electrolyte solution can be controlled to be constant.
상기 작동 전극봉이 그래핀 합성에 의해 소모되는 경우 예비 작동 전극봉으로 교환되는 단계를 더 포함할 수 있다.When the working electrode is consumed by graphene synthesis, it may further include replacing it with a spare working electrode.
또한, 상기 합성된 그래핀이 분리되어 회수되는 단계를 더 포함할 수 있다.In addition, the step of separating and recovering the synthesized graphene may be further included.
이하 본 발명의 실시예를 설명한다. 그러나, 하기 실시예는 본 발명의 일 예시일 뿐 이에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described. However, the following example is only an example of the present invention and is not limited thereto.
실시예 1Example 1
작동 전극으로 흑연 전극봉을 6개, 금속 전극으로 스테인리스 스틸 전극봉 13개를 사용하여, 2개 열의 금속 전극봉 사이에 작동 전극봉을 원통형 반응기에 배치한 후, 전해 용액은 0.35M 황산암모늄과 황산칼륨 혼합 전해액을 87:13의 비율로 혼합하여 사용하였다. Using 6 graphite electrodes as working electrodes and 13 stainless steel electrodes as metal electrodes, the working electrodes were placed in a cylindrical reactor between two rows of metal electrodes, and the electrolyte solution was a 0.35M ammonium sulfate and potassium sulfate mixed electrolyte. was used mixed in a ratio of 87:13.
금속 전극을 전해 용액에 35 cm의 깊이로 담궜고, 각 전극봉 간 거리는 1.0 cm로 유지한 상태에서 작동 전극을 전해 용액 상부로부터 약 1.5 cm의 깊이로 담궈서 반응시킬 준비를 하였다. The metal electrode was immersed in the electrolyte solution to a depth of 35 cm, and while the distance between each electrode was maintained at 1.0 cm, the working electrode was immersed to a depth of about 1.5 cm from the top of the electrolyte solution to prepare for reaction.
흑연 전극봉에 10V, 23A의 정전압 정전류를 1시간 동안 가하여 반응을 시작하면서, 저산화 그래핀을 박리하면 작동 전극이 서서히 박리되면서 짧아지므로, 1분에 0.283 cm의 속도로 작동 전극을 천천히 수직 하방향으로 공급하였다. Start the reaction by applying a constant voltage constant current of 10V, 23A to the graphite electrode for 1 hour. When low-oxidized graphene is peeled off, the working electrode gradually peels off and becomes shorter, so slowly move the working electrode vertically downward at a speed of 0.283 cm per minute. supplied.
이 결과, 1시간의 반응을 통하여, 저산화 그래핀 80.05 g을 얻을 수 있었다. As a result, 80.05 g of low-oxidized graphene could be obtained through a reaction of 1 hour.
실시예 2Example 2
작동 전극으로 흑연 전극봉을 6개, 금속 전극봉으로 스테인리스 스틸 전극봉 13개를 사용하여, 2개 열의 금속 전극봉 사이에 작동 전극봉을 원통형 반응기에 배치한 후, 전해 용액은 0.30M 황산암모늄 전해액을 사용하였다.Six graphite electrodes were used as the working electrodes and 13 stainless steel electrodes were used as the metal electrodes. The working electrodes were placed in a cylindrical reactor between two rows of metal electrodes, and then a 0.30M ammonium sulfate electrolyte solution was used as the electrolyte solution.
금속 전극을 전해 용액에 35 cm의 깊이로 담궜고, 각 전극봉 간 거리는 1.0cm로 유지한 상태에서 작동 전극을 전해액 상부에서 약 1.5 cm의 깊이로 담궈서 반응시킬 준비를 하였다. The metal electrode was immersed in the electrolyte solution to a depth of 35 cm, and while the distance between each electrode was maintained at 1.0 cm, the working electrode was immersed to a depth of about 1.5 cm above the electrolyte solution to prepare for reaction.
흑연 전극봉에 10V, 20A의 정전압 정전류를 1시간 동안 가하여 반응을 시작하면서, 박리하면서 서서히 짧아지는 작동 전극을 1분에 0.30 cm의 속도로 작동 전극을 천천히 수직 하방향으로 공급하였다. A constant voltage constant current of 10V, 20A was applied to the graphite electrode for 1 hour to start the reaction, and the working electrode, which gradually became shorter as it peeled off, was slowly supplied vertically downward at a rate of 0.30 cm per minute.
이 결과, 1시간의 반응을 통하여, 저산화 그래핀 82.65 g을 얻을 수 있었다. As a result, 82.65 g of low-oxidized graphene could be obtained through a reaction of 1 hour.
실시예 3Example 3
작동 전극으로 천연 흑연 전극 35개, 금속 전극으로 스테인리스 스틸 전극봉 54개를 사용하여, 금속 전극이 작동 전극을 중심으로 상대전극을 90 간격으로 모서리에 위치하여, 작동 전극을 둘러싸도록 배치하고, 정사각형의 반응조에 배치한 후, 전해질 용액은 0.3M 황산암모늄과 황산칼륨 혼합 전해액을 87:13의 비율로 혼합한 40L를 조제하여 사용하였다. Using 35 natural graphite electrodes as the working electrodes and 54 stainless steel electrodes as the metal electrodes, the metal electrodes were arranged to surround the working electrodes with the counter electrodes positioned at 90-degree intervals at the corners around the working electrodes, and a square electrode was used. After being placed in the reaction tank, 40 L of 0.3 M ammonium sulfate and potassium sulfate mixed electrolyte solution was prepared and used in a ratio of 87:13.
금속 전극을 전해질 용액에 15 cm의 깊이로 담그고 전극 간 거리는 전극의 중심점에서 대각선 비율로 2.0 cm를 유지한 상태에서 작동 전극을 전해액 상부에서 약 0.5 cm 담궈서 반응시킬 준비를 하였다. The metal electrode was immersed in the electrolyte solution to a depth of 15 cm, and the distance between electrodes was maintained at 2.0 cm diagonally from the center point of the electrodes, and the working electrode was immersed about 0.5 cm above the electrolyte solution to prepare for reaction.
전해질 용액이 충분히 흑연 전극 내부로 흡수되고 황산기가 흑연의 층 사이에 침투할 수 있도록, 1시간의 전해액 흡수 시간을 두었다. 전해액이 흡수된 상태에서 흑연 전극에 10V, 15A의 정전압 정전류를 1시간 동안 가하여 반응을 시작하면서, 저산화 그래핀을 박리하면 작동 전극이 서서히 박리되면서 짧아지므로, 1분에 0.25 cm의 속도로 작동 전극을 천천히 수직 하방향으로 공급하였다.An electrolyte absorption time of 1 hour was allowed to allow the electrolyte solution to be sufficiently absorbed into the graphite electrode and for the sulfate group to penetrate between the graphite layers. With the electrolyte absorbed, a constant voltage constant current of 10V, 15A is applied to the graphite electrode for 1 hour to start the reaction. When the low-oxidized graphene is peeled off, the working electrode gradually peels off and becomes shorter, so it operates at a speed of 0.25 cm per minute. The electrode was slowly fed vertically downward.
이 결과, 1시간의 반응을 통하여, 저산화 그래핀 92.32 g을 얻을 수 있었다. As a result, 92.32 g of low-oxidized graphene could be obtained through a reaction of 1 hour.
실시예 4Example 4
작동 전극으로 천연 흑연 전극 35개, 금속 전극으로 스테인리스 스틸 전극봉 54개를 사용하여, 금속 전극이 작동 전극을 중심으로 상대전극을 90 간격으로 모서리에 위치하여, 작동 전극을 둘러싸도록 배치하고, 정사각형의 반응조에 배치한 후, 전해질 용액은 0.3M 황산암모늄과 황산칼륨 혼합 전해액을 87:13의 비율로 혼합한 40L를 조제하여 사용하였다. Using 35 natural graphite electrodes as the working electrodes and 54 stainless steel electrodes as the metal electrodes, the metal electrodes were arranged to surround the working electrodes with the counter electrodes positioned at 90-degree intervals at the corners around the working electrodes, and a square electrode was used. After being placed in the reaction tank, 40 L of 0.3 M ammonium sulfate and potassium sulfate mixed electrolyte solution was prepared and used in a ratio of 87:13.
금속 전극을 전해질 용액에 15 cm의 깊이로 담그고 전극 간 거리는 전극의 중심점에서 대각선 비율로 2.0 cm를 유지한 상태에서 작동 전극을 전해액 상부에서 약 0.5 cm 담궈서 반응시킬 준비를 하였다. The metal electrode was immersed in the electrolyte solution to a depth of 15 cm, and the distance between electrodes was maintained at 2.0 cm diagonally from the center point of the electrodes, and the working electrode was immersed about 0.5 cm above the electrolyte solution to prepare for reaction.
전해질 용액이 충분히 흑연 전극 내부로 흡수되고 황산기가 흑연의 층 사이에 침투할 수 있도록, 2시간의 전해액 흡수 시간을 두었다. 전해액이 흡수된 상태에서 흑연 전극에 10V, 25A의 정전압 정전류를 1시간 동안 가하여 반응을 시작하면서, 저산화 그래핀을 박리하면 작동 전극이 서서히 박리되면서 짧아지므로, 1분에 0.25 cm의 속도로 작동 전극을 천천히 수직 하방향으로 공급하였다.The electrolyte solution was absorbed for 2 hours so that the electrolyte solution could be sufficiently absorbed into the graphite electrode and the sulfate group could penetrate between the graphite layers. When the electrolyte solution is absorbed, a constant voltage constant current of 10V, 25A is applied to the graphite electrode for 1 hour to start the reaction. When the low-oxidized graphene is peeled off, the working electrode gradually peels off and becomes shorter, so it operates at a speed of 0.25 cm per minute. The electrode was slowly fed vertically downward.
이 결과, 1시간의 반응을 통하여, 저산화 그래핀 90.78 g을 얻을 수 있었다. As a result, 90.78 g of low-oxidized graphene could be obtained through a reaction of 1 hour.
비교예 1Comparative Example 1
작동 전극으로 흑연 전극 6개, 금속 전극으로 스테인리스 스틸 전극봉 2개를 사용하여, 2개의 금속 전극봉 사이에 작동 전극봉 6개를 배치한 후, 전해질은 0.3M 황산암모늄을 사용하였다. Six graphite electrodes were used as the working electrodes and two stainless steel electrodes were used as the metal electrodes. Six working electrodes were placed between the two metal electrodes, and 0.3M ammonium sulfate was used as the electrolyte.
각각의 전극을 전해질 용액에 7 cm의 깊이로 담궜고, 각 전극봉 간 거리는 1.0 cm로 유지한 상태로 흑연 전극에 10V, 20A의 전류를 1시간 동안 가하여 흑연을 박리하였다. Each electrode was immersed in the electrolyte solution to a depth of 7 cm, and the distance between each electrode was maintained at 1.0 cm, and a current of 10V and 20A was applied to the graphite electrode for 1 hour to exfoliate the graphite.
이 결과, 그래핀 총 7.3 g을 얻었다. As a result, a total of 7.3 g of graphene was obtained.
비교예 2Comparative Example 2
작동 전극으로 흑연 전극봉 6개, 금속 전극으로 스테인리스 스틸 전극봉 8개를 사용하여, 금속 전극봉 사이에 작동 전극봉이 1개씩 배치되도록 한 후, 전해질은 0.3M 황산암모늄을 사용하였다. Six graphite electrodes were used as the working electrodes and eight stainless steel electrodes were used as the metal electrodes. One working electrode was placed between the metal electrodes, and 0.3M ammonium sulfate was used as the electrolyte.
각각의 전극을 전해질 용액에 7 cm의 깊이로 담그고, 전극 간 거리는 1.0cm로 유지한 상태로 흑연 전극에 10V, 20A의 전류를 1시간 동안 가하여 흑연을 박리하였다. Each electrode was immersed in the electrolyte solution to a depth of 7 cm, and the distance between electrodes was maintained at 1.0 cm, and a current of 10V and 20A was applied to the graphite electrode for 1 hour to exfoliate the graphite.
작동 전극봉인 흑연 전극봉이 금속 전극봉인 스테인리스 스틸 전극봉 사이 사이에 존재하는 반응은 빠른 반응속도를 나타내었으며, 침지된 작동 전극봉은 거의 다 박리되었다. The reaction that existed between the graphite electrode, which is the working electrode, and the stainless steel electrode, which was the metal electrode, showed a fast reaction rate, and almost all of the immersed working electrodes were peeled off.
이 결과, 그래핀 총 39.81 g을 얻었다.As a result, a total of 39.81 g of graphene was obtained.
이상 첨부된 도면을 참조하여 본 명세서의 실시예들을 더욱 상세하게 설명하였으나, 본 명세서는 반드시 이러한 실시예로 국한되는 것은 아니고, 본 명세서의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 명세서에 개시된 실시예들은 본 명세서의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 명세서의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 명세서의 보호 범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 명세서의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present specification have been described in more detail with reference to the accompanying drawings, the present specification is not necessarily limited to these embodiments, and various modifications may be made without departing from the technical spirit of the present specification. . Accordingly, the embodiments disclosed in this specification are not intended to limit the technical idea of the present specification, but rather to explain it, and the scope of the technical idea of the present specification is not limited by these embodiments. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. The scope of protection of this specification should be interpreted in accordance with the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of this specification.
[부호의 설명][Explanation of symbols]
1 : 그래핀 합성 장치1: Graphene synthesis device
10 : 그래핀 합성 반응 수조10: Graphene synthesis reaction tank
20 : 전극부, 20A : 금속 전극부, 20B : 작동 전극부, 20a : 금속 전극봉, 20b : 작동 전극봉20: electrode part, 20A: metal electrode part, 20B: working electrode part, 20a: metal electrode, 20b: working electrode
30 : 구동 모터30: drive motor
40 : 예비 작동 전극부, 40a : 예비 작동 전극봉40: preliminary operation electrode part, 40a: preliminary operation electrode
50 : 정전류 조절기50: constant current regulator
60 : 전해 용액 공급 통로60: Electrolyte solution supply passage
70 : 필터 시스템, 70a : 그래핀 회수부70: filter system, 70a: graphene recovery unit
80 : 전해 용액 환류 펌프80: Electrolyte reflux pump
90 : 열교환기90: heat exchanger
100 : 전해 용액 추가 공급기, 100a : 전해 용액 농도 측정·조절부, 100b : 전해 용액 공급부 100: electrolyte solution additional supply unit, 100a: electrolyte solution concentration measurement/control unit, 100b: electrolyte solution supply unit
110 : 전해액 예비 수조 (미도시)110: Electrolyte reserve tank (not shown)

Claims (20)

  1. 그래핀 합성 반응 수조; 및Graphene synthesis reaction bath; and
    상기 반응 수조 내부에 배치된 전극부;를 포함하고,It includes an electrode portion disposed inside the reaction tank,
    상기 전극부는, n개의 금속 전극부 및 상기 금속 전극부와 교대로 배치된 n+1개의 작동 전극부를 포함하고,The electrode portion includes n metal electrode portions and n+1 working electrode portions alternately arranged with the metal electrode portions,
    상기 그래핀 합성 반응 수조의 내부에는 일정 농도의 전해 용액이 포함되어 있고,The interior of the graphene synthesis reaction tank contains an electrolyte solution of a certain concentration,
    상기 금속 전극부는 전기 화학적으로 연결되어 음극으로 작동하고,The metal electrode portion is electrochemically connected and operates as a cathode,
    상기 작동 전극부는 전기 화학적으로 연결되어 양극으로 작동하며,The working electrode portion is electrochemically connected and operates as an anode,
    상기 금속 전극부는 소정의 간격을 두고 배치된 a개의 금속 전극을 포함하고,The metal electrode unit includes a number of metal electrodes arranged at predetermined intervals,
    상기 작동 전극부는 소정의 간격을 두면서 상기 금속 전극과 교대로 배치된 b개의 작동 전극을 포함하며,The working electrode unit includes b working electrodes arranged alternately with the metal electrode at a predetermined interval,
    상기 n, a 및 b는 1 이상의 정수인,where n, a and b are integers of 1 or more,
    그래핀 합성 장치.Graphene synthesis device.
  2. 제1항에 있어서,According to paragraph 1,
    상기 금속 전극부 및 작동 전극부는 각각 판상형 전극부이고,The metal electrode portion and the working electrode portion are each plate-shaped electrode portion,
    상기 금속 전극 및 작동 전극은 각각 금속 전극봉 및 작동 전극봉인,The metal electrode and the working electrode are a metal electrode and a working electrode, respectively,
    그래핀 합성 장치.Graphene synthesis device.
  3. 제2항에 있어서,According to paragraph 2,
    상기 금속 전극봉 및 작동 전극봉의 직경이 각각 D(cm)일 경우, 상기 금속 전극봉 및 작동 전극봉끼리의 간격은 2D(cm)로 배치되는,When the diameters of the metal electrode and the working electrode are each D (cm), the distance between the metal electrode and the working electrode is arranged at 2D (cm),
    그래핀 합성 장치.Graphene synthesis device.
  4. 제2항에 있어서,According to paragraph 2,
    상기 금속 전극봉은 스테인레스 스틸 전극봉인,The metal electrode is a stainless steel electrode,
    그래핀 합성 장치.Graphene synthesis device.
  5. 제2항에 있어서,According to paragraph 2,
    상기 작동 전극봉은 흑연 전극봉인,The operating electrode is a graphite electrode,
    그래핀 합성 장치.Graphene synthesis device.
  6. 제1항에 있어서,According to paragraph 1,
    상기 전해 용액은 황산염, 질산염, 인산염, 칼륨염, 금속 할라이드 및 이온성 액체로 구성되는 군에서 선택되는 1종 이상을 포함하는,The electrolyte solution contains at least one member selected from the group consisting of sulfate, nitrate, phosphate, potassium salt, metal halide, and ionic liquid.
    그래핀 합성 장치.Graphene synthesis device.
  7. 제1항에 있어서,According to paragraph 1,
    상기 전해 용액은 황산 암모늄 및 황산 칼륨 중 1종 이상을 포함하는, The electrolyte solution contains at least one of ammonium sulfate and potassium sulfate,
    그래핀 합성 장치.Graphene synthesis device.
  8. 제1항에 있어서,According to paragraph 1,
    상기 전해 용액을 연속적으로 공급하기 위한 전해 용액 공급기를 더 포함하고,It further includes an electrolyte solution supplier for continuously supplying the electrolyte solution,
    상기 전해 용액 공급기는, 전해 용액 농도 측정·조절부; 및 전해 용액 공급부;를 포함하는,The electrolyte solution supply unit includes an electrolyte solution concentration measuring/controlling unit; And an electrolyte solution supply unit;
    그래핀 합성 장치.Graphene synthesis device.
  9. 제1항에 있어서,According to paragraph 1,
    상기 전극부에는 상기 그래핀 합성 반응 수조에 대향하여 상하로 작동할 수 있는 구동 모터가 연결되어 있는,A drive motor that can operate up and down opposite the graphene synthesis reaction tank is connected to the electrode part,
    그래핀 합성 장치.Graphene synthesis device.
  10. 제9항에 있어서,According to clause 9,
    상기 작동 전극이 그래핀 합성에 의해 소모되는 경우 교환되는 예비 작동 전극봉을 포함하는 예비 작동 전극부를 더 포함하고,Further comprising a spare working electrode unit that is replaced when the working electrode is consumed by graphene synthesis,
    상기 예비 작동 전극부는 상기 구동 모터에 연결되어 있는,The preliminary operating electrode unit is connected to the driving motor,
    그래핀 합성 장치.Graphene synthesis device.
  11. 제1항에 있어서,According to paragraph 1,
    상기 그래핀 합성 장치로부터 합성된 그래핀과 전해 용액을 분리하는 필터 시스템을 더 포함하고,It further includes a filter system that separates the graphene synthesized from the graphene synthesis device and the electrolyte solution,
    상기 필터 시스템은 합성된 그래핀을 회수하는 그래핀 회수부를 포함하고,The filter system includes a graphene recovery unit that recovers synthesized graphene,
    상기 필터 시스템은 상기 그래핀 합성 반응 수조로부터 이격되어 설치되어 있는,The filter system is installed spaced apart from the graphene synthesis reaction tank,
    그래핀 합성 장치.Graphene synthesis device.
  12. 제1항에 있어서,According to paragraph 1,
    상기 그래핀 합성 반응 수조의 전해 용액의 온도를 제어하는 열교환기를 더 포함하는,Further comprising a heat exchanger that controls the temperature of the electrolyte solution in the graphene synthesis reaction tank,
    그래핀 합성 장치.Graphene synthesis device.
  13. 제1항에 있어서,According to paragraph 1,
    상기 전극부에는 정전류 조절기가 연결되어 있는,A constant current regulator is connected to the electrode part,
    그래핀 합성 장치.Graphene synthesis device.
  14. 그래핀 합성 반응 수조 내에 전해 용액을 투입하는 단계;Injecting an electrolyte solution into a graphene synthesis reaction tank;
    상기 반응 수조 내부에, n개의 금속 전극부 및 상기 금속 전극부와 교대로 배치된 n+1개의 작동 전극부를 포함하는 전극부를 배치하는 단계;Arranging an electrode unit including n metal electrode units and n+1 working electrode units alternately disposed with the metal electrode units inside the reaction tank;
    상기 금속 전극부를 전기 화학적으로 음극으로 연결하고, 상기 작동 전극부를 전기 화학적으로 양극으로 연결하는 단계; 및Electrochemically connecting the metal electrode portion to a cathode and electrochemically connecting the working electrode portion to an anode; and
    상기 금속 전극부 및 작동 전극부에 전압을 인가하여 그래핀을 합성하는 단계;를 포함하고,Comprising: synthesizing graphene by applying voltage to the metal electrode portion and the working electrode portion,
    상기 금속 전극부는, 소정의 간격을 두고 배치된 a개의 금속 전극을 포함하고,The metal electrode unit includes a number of metal electrodes arranged at predetermined intervals,
    상기 작동 전극부는 소정의 간격을 두면서 상기 금속 전극과 교대로 배치된 b개의 작동 전극을 포함하며,The working electrode unit includes b working electrodes arranged alternately with the metal electrode at a predetermined interval,
    상기 n, a 및 b는 1 이상의 정수인,where n, a and b are integers of 1 or more,
    그래핀 합성 방법.Graphene synthesis method.
  15. 제14항에 있어서,According to clause 14,
    상기 금속 전극은 스테인레스 스틸 전극봉이고, 상기 작동 전극은 흑연 전극봉인,The metal electrode is a stainless steel electrode, and the working electrode is a graphite electrode,
    그래핀 합성 방법.Graphene synthesis method.
  16. 제14항에 있어서,According to clause 14,
    상기 전해 용액은 황산염, 질산염, 인산염, 금속 할라이드 및 이온성 액체로 구성되는 군에서 선택되는 1종 이상을 포함하는,The electrolyte solution contains at least one member selected from the group consisting of sulfate, nitrate, phosphate, metal halide, and ionic liquid.
    그래핀 합성 방법.Graphene synthesis method.
  17. 제14항에 있어서,According to clause 14,
    상기 전해 용액의 농도 및 부피량을 유지하기 위하여 전해 용액은 연속적으로 공급되는,The electrolyte solution is continuously supplied to maintain the concentration and volume of the electrolyte solution.
    그래핀 합성 방법.Graphene synthesis method.
  18. 제14항에 있어서,According to clause 14,
    상기 전해 용액의 온도가 일정하게 유지되도록 제어되는, Controlled so that the temperature of the electrolyte solution is maintained constant,
    그래핀 합성 방법.Graphene synthesis method.
  19. 제14항에 있어서,According to clause 14,
    상기 작동 전극이 그래핀 합성에 의해 소모되는 경우 예비 작동 전극봉으로 교환되는 단계를 더 포함하는,Further comprising the step of exchanging the working electrode for a spare working electrode when the working electrode is consumed by graphene synthesis.
    그래핀 합성 방법.Graphene synthesis method.
  20. 제14항에 있어서,According to clause 14,
    상기 합성된 그래핀이 분리되어 회수되는 단계를 더 포함하는,Further comprising the step of separating and recovering the synthesized graphene,
    그래핀 합성 방법.Graphene synthesis method.
PCT/KR2023/009090 2022-09-06 2023-06-29 Graphene synthesis device and graphene synthesis method WO2024053831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220113006A KR20240033995A (en) 2022-09-06 2022-09-06 Graphene synthesis apparatus and graphene synthesis method
KR10-2022-0113006 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024053831A1 true WO2024053831A1 (en) 2024-03-14

Family

ID=90191501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009090 WO2024053831A1 (en) 2022-09-06 2023-06-29 Graphene synthesis device and graphene synthesis method

Country Status (2)

Country Link
KR (1) KR20240033995A (en)
WO (1) WO2024053831A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203021654U (en) * 2012-12-12 2013-06-26 同济大学 Large-scale multi-electrode electrochemical adsorption and reduction device
KR20170061121A (en) * 2017-05-26 2017-06-02 주식회사 멕스플로러 Manufacturing method for the graphene nanosheets and a graphene ink using electrochemical exfoliation in a persulfate electrolyte solution
KR20190037915A (en) * 2017-09-29 2019-04-08 한국화학연구원 Method and apparatus for mass production of non-oxidative exfoliated graphite by electrochemical treatment
KR102289201B1 (en) * 2021-04-20 2021-08-12 주식회사 케이비엘러먼트 Graphene synthesis apparatus and graphene synthesis method by electrochemical treatment
KR102375146B1 (en) * 2021-08-24 2022-03-16 엘브스케미칼 주식회사 Apparatus for manufacturing exfoliated graphene by electrochemical method and system for mass production using thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203021654U (en) * 2012-12-12 2013-06-26 同济大学 Large-scale multi-electrode electrochemical adsorption and reduction device
KR20170061121A (en) * 2017-05-26 2017-06-02 주식회사 멕스플로러 Manufacturing method for the graphene nanosheets and a graphene ink using electrochemical exfoliation in a persulfate electrolyte solution
KR20190037915A (en) * 2017-09-29 2019-04-08 한국화학연구원 Method and apparatus for mass production of non-oxidative exfoliated graphite by electrochemical treatment
KR102289201B1 (en) * 2021-04-20 2021-08-12 주식회사 케이비엘러먼트 Graphene synthesis apparatus and graphene synthesis method by electrochemical treatment
KR102375146B1 (en) * 2021-08-24 2022-03-16 엘브스케미칼 주식회사 Apparatus for manufacturing exfoliated graphene by electrochemical method and system for mass production using thereof

Also Published As

Publication number Publication date
KR20240033995A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2017010814A1 (en) Method and apparatus for preparing reduced product of carbon dioxide by electrically reducing carbon dioxide
WO2016208965A1 (en) Catalyst for water splitting and method for preparing same
DE2806984A1 (en) METHOD FOR PRODUCING HYDROGEN AND OXYGEN AND AN ELECTROLYSIS CELL FOR CARRYING OUT THIS METHOD
WO2006062672A2 (en) Apparatus and process for the production of metals in stacked electrolytic cells
CN111342102B (en) Preparation method of vanadium battery electrolyte based on vanadium compound
CN111875124A (en) Treatment method of nickel-containing waste residue wastewater generated in nitrogen trifluoride preparation process
WO2021107420A1 (en) Photoelectrode for photoelectrochemical water treatment, preparation method thereof and use thereof
WO2024053831A1 (en) Graphene synthesis device and graphene synthesis method
TW201831729A (en) Method of producing ammonium persulfate
CN106039964B (en) A kind of method of desulfurization co-producing hydrogen and sulfuric acid
WO2016114439A1 (en) Method for simultaneously recovering cobalt and manganese from lithium based battery
DE102013202976A1 (en) Low-temperature process for the production of lithium from poorly soluble lithium salts
WO2020009421A1 (en) Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction
CN105696017A (en) Novel technical method for reducing nitrobenzene by using iron
CN110042448A (en) A kind of preparation method of porous anodic alumina template
WO2022045747A1 (en) Method for manufacturing lithium hydroxide from lithium-containing source
WO2013191402A1 (en) Method for generating hydrogen and sulfuric acid from sulfur dioxide gas by using diluted gas
WO2020184824A1 (en) Electrochemical process for conversion of carbon dioxide to oxalic acid
WO2023182771A1 (en) Method for electrochemically synthesizing alkylene carbonate
US680543A (en) Process of producing piperidin.
WO2022181875A1 (en) Water management apparatus in hydrogen production system using water electrolysis
WO2020104956A1 (en) Electrochemical organic reaction setup and methods
CN110395717A (en) A kind of preparation method of fold graphene
WO2024106631A1 (en) System for recovering valuable metals from used crucible for firing cathode
WO2024076112A1 (en) Electrolysis device and operation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863313

Country of ref document: EP

Kind code of ref document: A1