WO2019151715A1 - Catalyst for carbon dioxide conversion and method for preparing same - Google Patents

Catalyst for carbon dioxide conversion and method for preparing same Download PDF

Info

Publication number
WO2019151715A1
WO2019151715A1 PCT/KR2019/001042 KR2019001042W WO2019151715A1 WO 2019151715 A1 WO2019151715 A1 WO 2019151715A1 KR 2019001042 W KR2019001042 W KR 2019001042W WO 2019151715 A1 WO2019151715 A1 WO 2019151715A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst layer
layer
raw material
composite
Prior art date
Application number
PCT/KR2019/001042
Other languages
French (fr)
Korean (ko)
Inventor
지광선
계정일
김광헌
김동백
임은자
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019151715A1 publication Critical patent/WO2019151715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide

Definitions

  • the present invention relates to an electrochemical cell used when decomposing carbon dioxide and converting it into a useful product, and a catalyst used for an electrode for a cathode in the cell.
  • hydrocarbons including fossil fuels
  • All hydrocarbons are basically in a certain proportion of carbon and hydrogen, which inevitably generates carbon dioxide when they are burned.
  • Carbon dioxide is known to be a major cause of global warming. Accordingly, the reduction of carbon dioxide has emerged as a very important issue worldwide.
  • the method of using a catalyst has many advantages that the apparatus and the method itself are very simple, can use electricity produced from renewable energy as it is, and is very easy to scale up to a commercial scale.
  • the method using the catalyst has the advantage that it can selectively produce a variety of carbon compounds.
  • C1 carbon monovalent hydrocarbon such as CH 4
  • C2 + carbon divalent hydrocarbon such as C 2 H 4
  • the C2 + production rate is higher than the C1 production rate.
  • the reduction reaction proceeds in accordance with Cu 2 O in the catalyst from the monovalent Cu + 1 ions are to occur the reduction of the Cu atom thereby C2 + generation rate of carbon dioxide, there is a problem that continues to decrease.
  • the present invention intends to invent a Cu catalyst having a high conversion rate from carbon dioxide to C2 or more hydrocarbons.
  • the present invention provides a novel catalyst comprising a surface structure having crystallographic preferential orientation for the production of C2 or higher hydrocarbons.
  • the present invention provides a method for preparing a catalyst that is easy to scale up on an economical and commercial scale using equipment or processes that are conventional and commercially widely used in the existing metal field without any expensive equipment or process. I would like to.
  • the ⁇ 100 ⁇ plane is A first catalyst layer comprising a Cu polycrystalline base having a preferred orientation;
  • a second catalyst layer is disposed on the first catalyst layer and includes a polycrystalline layer made of Cu.
  • the complex catalyst may be provided.
  • the fraction of the ⁇ 100 ⁇ plane in the Cu polycrystalline base is 30% or more; a composite catalyst may be provided.
  • the polycrystalline layer in the second catalyst layer may be provided with a composite catalyst, characterized in that the orientation is not formed first.
  • the polycrystal layer in the second catalyst layer may have a preferred orientation of ⁇ 111 ⁇ or ⁇ 110 ⁇ planes.
  • a complex catalyst may be provided between the first catalyst layer and the second catalyst layer having a surface structure in which a height difference or a step is formed.
  • the second catalyst layer is a 0-dimensional structure such as a dot or a 1-dimensional structure of a wire, a needle, and a thin column, or a 2-dimensional structure of a thin film or an island;
  • a complex catalyst characterized in that may be provided.
  • the complex catalyst may be provided with a complex catalyst, characterized in that containing at least one element of oxygen, nitrogen, or hydrogen in the catalyst.
  • the complex catalyst may be provided with a complex catalyst comprising at least one of Cu oxide, Cu nitride, Cu oxynitride or Cu hydroxide in the catalyst.
  • the first catalyst layer and the second catalyst layer may each include a different element; a complex catalyst may be provided.
  • Another method of the present invention is to provide a manufacturing method that is easy to scale up on an economical and commercial scale by using equipment or processes that are conventional and commercially widely used in the existing metal field without any expensive equipment or process.
  • preparing a Cu raw material constituting the first catalyst layer; A primary processing step of deforming the Cu raw material; Forming a second catalyst layer on the Cu raw material; Annealing step; may be provided a method for producing a composite catalyst comprising a.
  • preparing a Cu raw material constituting the first catalyst layer; A primary processing step of dynamically recrystallizing the Cu raw material; The secondary processing step of forming a second catalyst layer on the Cu raw material; may be provided a method for producing a composite catalyst comprising a.
  • the primary processing step is a multi-pass (multi-pass) rolling; it can be provided a method for producing a composite catalyst characterized in that.
  • the secondary processing step may include a process of one or more of deposition, plating, or printing; may be provided a method for producing a complex catalyst characterized in that.
  • C2 or more useful hydrocarbon compounds in the decomposition of carbon dioxide can be selectively produced in higher proportion than other hydrocarbons.
  • the catalyst of the present invention is more effective in producing C2 or more hydrocarbons than other catalysts.
  • the catalyst of the present invention since the catalyst of the present invention includes a large number of different interfaces or grain boundaries on the surface, C2 hydrocarbon-forming dimerization at the interface or grain boundaries is more enhanced in terms of reaction rate or thermodynamic energy.
  • the method of preparing the catalyst of the present invention makes it easy to prepare a catalyst having excellent carbon dioxide conversion efficiency by applying equipment and processes commercially readily available in the conventional metal field.
  • Another method for preparing a catalyst of the present invention can produce a catalyst having excellent hydrocarbon conversion efficiency of C2 or higher without additional subsequent heat treatment.
  • Another catalyst manufacturing method of the present invention can omit a long time and energy-consuming unit process such as heat treatment, thereby having an excellent productivity and economic efficiency.
  • 1 is a schematic diagram of an electrochemical cell for decomposing and reducing carbon dioxide.
  • FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
  • FIG. 3 shows the free energy state at the interface according to the crystallographic orientation of the surface of Cu when generating C2 or more hydrocarbons using a Cu catalyst.
  • FIG. 5 shows energy levels in the transition and final levels required for the formation of hydrocarbons above C2 on various catalyst surfaces.
  • FIG. 6 is a flowchart illustrating a method according to one embodiment of preparing the composite catalyst of the present invention.
  • FIG. 7 is a diagram schematically illustrating the manufacturing method in FIG. 6.
  • FIG. 9 is a flowchart illustrating a method according to another embodiment of preparing a composite catalyst of the present invention.
  • FIG. 10 illustrates the microstructure of the copper plate according to the number of rolling passes when performing the primary processing step with cold rolling.
  • FIG. 11 shows an experimental result of analyzing a reaction gas converted in an electrochemical cell for decomposing carbon dioxide, which is prepared using a composite catalyst having a first catalyst layer and a second catalyst layer and having a different ⁇ 100 ⁇ preferred orientation.
  • first, second, A, B, (a), and (b) can be used. These terms are only to distinguish the components from other components, and the terms are not limited in nature, order, order or number of the components.
  • a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected to or connected to that other component, but between components It is to be understood that the elements may be “interposed” or each component may be “connected”, “coupled” or “connected” through other components.
  • FIG. 1 is a schematic diagram of a typical electrochemical cell for decomposing and reducing carbon dioxide.
  • the electrochemical cell includes a cathode for receiving an oxidation reaction in which oxygen is generated, a cathode for reducing carbon dioxide, a compartment for accommodating an electrolyte containing the anode and the cathode, and And a membrane positioned between the cathodes and selectively passing only the desired components on the electrolyte.
  • the cell includes an energy supply source for supplying energy from the outside to drive the cell.
  • an extractor for extracting the by-product generated from the reduction of the carbon dioxide is further included.
  • an electrolyte supply device may be added as necessary.
  • a secondary reactor for the reaction may optionally be included.
  • FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
  • Figure 3 shows the free energy state at the interface according to the crystallographic orientation of the Cu surface when generating a C2 or more hydrocarbon using a Cu catalyst.
  • the Cu catalyst is chemically the same catalyst, the orientation of the ⁇ 100 ⁇ plane rather than the ⁇ 111 ⁇ plane orientation has been investigated as in FIG. 3 to maintain a lower energy state for all C2 hydrocarbon productions investigated.
  • FIG. 3 shows, by way of example, a free energy state for the production of a hydrocarbon called "+ OCCHO".
  • FIG. 3 shows that the free energy of the state where "+ OCCHO” is generated is higher than the free energy of the two carbon monoxide combinations on the ⁇ 111 ⁇ plane of Cu.
  • the results of FIG. 3 indicate that in order to generate “+ OCCHO” hydrocarbons from carbon monoxide, energy must be supplied externally to compensate for the thermodynamically high energy state of the final “+ OCCHO” hydrocarbons, in addition to the This means that more energy must be supplied from outside to overcome the activation step.
  • the ⁇ 100 ⁇ plane of Cu can form thermodynamically stable "+ OCCHO" hydrocarbons with less energy than the ⁇ 111 ⁇ plane.
  • the activation energy for causing the hydrocarbon generation or carbon monoxide conversion reaction on the Cu surface also means that the ⁇ 100 ⁇ plane of Cu is required to be smaller than the ⁇ 111 ⁇ plane.
  • metals such as Cu are produced via conventional metallurgical processes. Specifically, Cu metal is produced by melting and casting, hot working and / or cold working, heat treatment and, if necessary, etching or surface treatment.
  • face centered cubic (FCC) such as Cu generally has the lowest surface energy in terms of surface energy, and thus the ⁇ 111 ⁇ plane becomes the most stable surface.
  • FCC face centered cubic
  • the ⁇ 100> direction is the softest direction elastically.
  • the as-cast microstructure formed through melting or casting which is a common metal fabrication process, is a single crystal composed of only one grain. It is not formed into a single crystal. Instead, the cast microstructure consists of poly-crystal microstructures consisting of grains with different crystallographic orientations.
  • the cast microstructures are all destroyed by hot working and / or cold working and subsequent heat treatment to finally form a processed microstructure consisting of fine polycrystals.
  • FIG. 4 shows the orientation of ⁇ 111 ⁇ planes or ⁇ 100 ⁇ planes having a small surface energy or elastic energy, but a small number and a high distribution of ⁇ 101 ⁇ planes.
  • the crystal orientation analysis of the conventional Cu catalyst in FIG. 4 shows that the proportion of ⁇ 100 ⁇ planes occupying the surface of the Cu catalyst is very small, 2.1%.
  • the results in FIG. 4 mean that, as shown in FIG. 3, the ⁇ 100 ⁇ plane of Cu advantageous for C2 hydrocarbon production is scarce on the surface of a conventional Cu catalyst. And the small fraction of the ⁇ 100 ⁇ plane on the Cu surface is in good agreement with the relatively small C 2 H 4 conversion ratio in the Cu catalyst shown in FIG.
  • FIG. 5 shows energy levels in the transition and final levels required for the formation of hydrocarbons above C2 on various catalyst surfaces.
  • the CO molecules adsorbed on the surface of the catalyst are inclined in order for the C2 hydrocarbon-forming dimerization called OCCO to occur by the combination of CO and CO. Then, after passing through a transition stage where the two CO molecules come close to each other, a surface species called OCCO is finally formed.
  • the free energy at the transition and final stages is 1.1 eV and 0.86 eV, respectively, compared to the free energy of the two initial CO molecular stages.
  • the free energy difference means that dimerization may occur due to the combination of CO (carbon monoxide) and CO in a Cu metal catalyst having a surface of ⁇ 111 ⁇ when only an energy of 1.1 eV or more is supplied from the outside. In other words, in the Cu metal catalyst having the ⁇ 111 ⁇ plane, dimerization by the combination of CO (carbon monoxide) and CO has a free energy barrier of 1.1 eV.
  • the metal atoms located on the surface cannot exist only in the state of the metal atoms.
  • an oxide film is naturally formed on the surface of pure metal.
  • the general characteristics of the metal surface are applied to the Cu metal catalyst as it is, and Cu atoms on the Cu metal surface exist as oxides such as CuOx, not pure metal states.
  • the present invention completed a Cu metal catalyst having a new structure by controlling and controlling the crystallographic orientation of the conventional Cu metal catalyst to convert carbon dioxide to form C2 or more hydrocarbons with high efficiency.
  • the catalyst includes a first catalyst layer including a Cu polycrystalline base having a ⁇ 100 ⁇ plane in a preferred direction, and a second catalyst layer disposed on the first catalyst layer and including a polycrystalline layer made of Cu. It is a composite catalyst comprising a.
  • the fraction of the ⁇ 100 ⁇ plane in the said Cu polycrystal base is 30% or more. If the fraction of the ⁇ 100 ⁇ plane is less than 30%, it is difficult to expect crystallographic effects on C2 hydrocarbon formation.
  • the second catalyst layer is a polycrystalline catalyst in which ⁇ 111 ⁇ , ⁇ 110 ⁇ , and ⁇ 100 ⁇ faces are mixed.
  • the polycrystalline layer in the second catalyst layer is preferably not formed orientation.
  • the preferred orientation of the second catalyst layer preferably has a preferred orientation of the ⁇ 111 ⁇ or ⁇ 110 ⁇ plane.
  • the composite catalyst according to the embodiment of the present invention has a surface structure in which a height difference or a step is formed between the first catalyst layer and the second catalyst layer.
  • the multi-layered composite catalyst having a height difference can widen the reaction area where the catalyst reacts, and as a result, the effective area of the catalyst can be widened, thereby improving the conversion efficiency of carbon dioxide.
  • the second catalyst layer may be a 0-dimensional structure such as a dot or a 1-dimensional structure such as a wire, a needle, and a thin column.
  • the second catalyst layer may be a thin film or have a two-dimensional planar structure such as island-shaped particles.
  • Such a morphology of the second catalyst can be determined to be the most efficient shape that matches the processing method for forming the second catalyst.
  • the second catalyst layer may have a two-dimensional planar structure mainly such as a thin film.
  • the second catalyst layer may be in the form of a thick film or an island-shaped two-dimensional planar structure.
  • the second catalyst layer may be one-dimensional, such as a wire or pillar, or zero-dimensional, such as a dot, depending on the shape of the screen or the conditions of the paste.
  • the composite catalyst in the embodiment of the present invention may additionally include elements such as oxygen, nitrogen, or hydrogen in the Cu catalyst naturally or by an artificial subsequent process such as oxidation treatment, nitriding treatment, or hydrogenation treatment.
  • the composite catalyst in the embodiment of the present invention may additionally include Cu oxide, Cu nitride, Cu oxynitride, Cu hydrate, or the like within the Cu catalyst naturally or by artificial subsequent processes such as oxidation treatment, nitriding treatment, or hydrogenation treatment. It may also contain a compound.
  • the first catalyst layer and the second catalyst layer may each contain different elements.
  • the C2 dimerization reaction is more advantageous near the interface of Cu in different oxidation states in terms of reaction rate or thermodynamics.
  • the metal including Cu is formed in an alloy state including the base or the base material and different components, the metal component having a high ionization tendency is more easily oxidized due to the difference in ionization tendency between different metal components. Therefore, if the first catalyst layer and the second catalyst layer in the composite catalyst in the embodiment of the present invention contains different elements, the oxidation state of each Cu in the first catalyst layer and the second catalyst layer may be different from each other. And the C2 dimerization reaction may be further promoted due to the different oxidation states of Cu.
  • the complex catalyst in the embodiment of the present invention may be prepared by the method as shown in FIGS. 6 and 7.
  • Cu raw materials are prepared (S1). At this time, various forms such as copper plate, copper foil, and copper can be used as the Cu raw material.
  • the Cu raw material may be a Cu alloy based on Cu and containing some other components.
  • the Cu raw material is subjected to the first processing step such as cold working (S2).
  • the plastic deformation causing work hardening increases the number of dislocations inside the Cu raw material.
  • the number of dislocations is about 10 6 to 10 8 per cm 2, whereas the dislocation density in the heavily deformed metal is about 10 12 / cm 2.
  • Dislocation tangles are formed in the cold processed tissue, and the dislocation tangles develop back into a dislocation web.
  • a second catalyst layer of the composite catalyst of the embodiment of the present invention is formed on the Cu raw material through a secondary processing step (S3) such as a low stress processing process.
  • the low stress machining process refers to a process that does not apply relative or absolute stress to the previous stage of the first machining step.
  • the low stress machining process in the embodiment of the present invention locally forms the second catalyst layer through a process such as deposition, plating, or printing on Cu raw material serving as a raw material of the base and / or the first catalyst layer. It is a process to do it.
  • the shape of the second catalyst layer corresponds to a 0-dimensional structure.
  • the second catalyst layer may be a one-dimensional structure such as a wire, a needle, and a thin column.
  • the second catalyst layer may be a thin film or have a two-dimensional planar structure such as island-shaped particles.
  • the annealing process refers to annealing the composite catalyst including the cold-processed Cu raw material and the second catalyst layer by a low stress processing process located on the raw material.
  • the annealing process greatly changes the microstructure inside the metal.
  • cold worked metals have greater internal energy by machining than undeformed metals.
  • dislocation cell tissue in the cold worked metal may be mechanically stable but thermodynamically unstable.
  • the cold worked state becomes more unstable by the thermal activation of atoms as the temperature increases.
  • the metal eventually changes into a softening and non-deforming tissue. This whole process is called annealing.
  • the annealing process can be generally classified into three stages: recovery, recrystallization, and grain growth.
  • the smaller the grain size of the catalyst in the embodiment of the present invention the larger the grain boundary, which is the boundary portion between the grains, and therefore, the annealing process of the embodiment of the present invention is preferably not performed until the grain growth step.
  • Recovery is a step in which the microstructure of the cold worked metal is little changed and the physical properties of the metal are mainly recovered. During recovery, the conductivity increases sharply and the deformation of the lattice decreases considerably. The physical properties most affected by recovery are those that are sensitive to point defects. In contrast, the intensity controlled by dislocations is not much affected by recovery.
  • Recrystallization refers to the replacement of cold grains with new grains without deformation. Recrystallization can be easily determined by observing the microscopic tissue. When recrystallization occurs, hardness or strength decreases, ductility increases, dislocation density decreases significantly, and all effects of work hardening are lost.
  • the thermodynamic driving force for recovery and recrystallization is the energy stored by cold working.
  • the microstructure of the composite catalyst including the cold-processed Cu raw material and the second catalyst layer by the low stress machining process located on the raw material is changed through recovery and recrystallization during the annealing process.
  • the Cu raw material corresponding to the base in the composite catalyst of the present invention has a microstructure having new grains without deformation through stress relaxation in a high stress state where deformation is severe.
  • a new microstructure without deformation due to recrystallization is grown with the ⁇ 100 ⁇ direction having the smallest Young's modulus as the first direction as shown in FIG. 8.
  • the Cu raw material corresponding to the base becomes a first catalyst layer including a microstructure having a preferred orientation in the ⁇ 100 ⁇ direction.
  • the second catalyst layer positioned on the Cu raw material constituting the first catalyst layer may have various orientations without the preferred orientation by the secondary processing step or may have the ⁇ 100 ⁇ preferred orientation.
  • the secondary machining step is a low stress machining process, a sufficient processing amount to be recrystallized by the annealing step is not provided to the secondary catalyst layer by low stress machining. As a result, the secondary catalyst layer does not have a preferred orientation or at least elastically does not have the softest ⁇ 100 ⁇ preferred orientation.
  • the secondary processing step proceeds to processes such as deposition and plating, and the processes are performed under conditions in which the movement of atoms is very free, the second catalyst layer by secondary processing has the smallest interfacial energy of Cu.
  • the possibility of having a bearing becomes very high.
  • the secondary processing step is carried out in a process with a large amount of processing, such as the primary processing step, the second catalyst layer after the annealing step is likely to have a ⁇ 100 ⁇ priority direction the same as the first catalyst layer.
  • the surfaces of the catalysts to which carbon monoxide is adsorbed have different surface characteristics. . Therefore, it is preferable that the second catalyst layer does not have a preferential orientation unlike the first catalyst layer or has a ⁇ 111 ⁇ or ⁇ 110 ⁇ preferred orientation different from the preferred orientation of the first catalyst layer even if it has. Therefore, it is more preferable that secondary processing uses a low stress processing process.
  • the composite catalyst of the embodiment of the present invention may be prepared by the same method as in FIG. 9, unlike FIGS. 6 and 7.
  • the catalyst preparation method in FIG. 9 does not require an annealing process step, unlike in FIGS. 6 and 7.
  • the method for preparing a catalyst in FIG. 9 includes preparing a Cu raw material (S'1), a first processing step (S'2) for hot deformation of a Cu raw material at a temperature above a temperature at which dynamic recrystallization occurs, and dynamic recrystallization. This occurs by a method of forming a second catalyst layer through the secondary processing step (S'3), such as a low stress processing process on the Cu raw material formed ⁇ 100 ⁇ first orientation.
  • the method in FIG. 9 is characterized by having a ⁇ 100 ⁇ preferred orientation in the Cu raw material by generating recrystallization with processing in the primary processing step as compared to the method comprising the annealing process described above.
  • dynamic recrystallization is a concept opposite to the static recrystallization which is a recrystallization occurring during the annealing process, and the dynamic recrystallization means that nucleation and growth of new grains without defects occur during processing or deformation.
  • the dynamic recrystallization has a softening effect due to the recrystallization during processing, the occurrence of the dynamic recrystallization can be confirmed from the occurrence of a peak peculiar to the recrystallization in the stress-displacement curve.
  • the first catalyst layer having a preferential orientation may be formed through recrystallization without performing a subsequent heat treatment process.
  • productivity can be greatly improved by reducing the time for preparing the composite catalyst through dynamic recrystallization.
  • a copper plate having a purity of 98% having a thickness of 100 to 150 um was prepared as a Cu raw material.
  • a cold rolling of 1 to 3 passes was performed on the copper plate using a rolling mill as a specific method of cold working, and the rolling reduction rate per pass was set to 18% to 30%.
  • a second catalyst layer was then formed on the cold rolled copper plate through sputtering.
  • the sputtering process is as follows. DC sputtering using a polycrystalline Cu target at an acceleration voltage range of 20 to 50 V and a power condition of 200 to 1000 W under a chamber vacuum of 1 mTorr after first maintaining an initial vacuum of ⁇ 10 -6 torr and then filling 100 sccm of Ar into the chamber.
  • the copper layer thin film of about 100 ⁇ 500nm thickness was deposited on the copper plate through.
  • the copper plate on which the thin copper layer is deposited is annealed for 1 hour at a temperature of 200 ° C. in a vacuum atmosphere to prevent oxidation, and the Cu oxide layer of the surface, which may be formed on a part of the surface, may be HCl or the like for precise analysis. Chemically etched.
  • Table 1 summarizes the crystal orientation according to the number of cold rolling passes of the final annealed copper sheet.
  • FIG. 10 illustrates the microstructure of the copper plate according to the number of rolling passes when performing the primary processing step with cold rolling.
  • the strain energy accumulated in the metal acts as a driving force for recrystallization in which a new microstructure composed of new grains free of defects during annealing is produced.
  • the recrystallized microstructure has the softest elasticity, that is, the ⁇ 100 ⁇ preferred orientation having the smallest Young's modulus.
  • FIG. 10 is a diagram showing the crystallographic orientation of the material along the cold rolling pass. It can be clearly seen from FIG. 10 that as the cold rolling pass increases, more grains are arranged in the ⁇ 100 ⁇ direction.
  • FIG. 11 shows an experimental result of analyzing a reaction gas converted in an electrochemical cell for decomposing carbon dioxide, which is prepared using a composite catalyst having a first catalyst layer and a second catalyst layer and having a different ⁇ 100 ⁇ preferred orientation.
  • the electrochemical cell used in FIG. 11 has the same structure as in FIG. 1 and was manufactured using a beaker cell of three electrodes.
  • a working electrode a composite catalyst comprising a first catalyst layer and a second catalyst layer prepared in an embodiment of the present invention was used as a counter electrode and a reference electrode Pt and Ag / AgCl were used, respectively.
  • 0.1 M KHCO 3 was used as an electrolyte, and a reaction gas generated by applying a charge amount of 4 to 10 coulombs (C) at ⁇ 1.9 V (vs. Ag / AgCl) was collected. The collected reaction gases were analyzed using gas chromatography (GC).
  • Faradaic efficiency for ethylene is defined as follows.
  • Faradaic Efficiency (number of generated C 2 H 4 moles XC 2 H 4 electron number X Faraday constant needed to generate 1 mole) / total amount of charge applied to the cathode X 100%
  • the Faradaic efficiency for ethylene (C 2 H 4 ) in a cathodic catalyst using copper (Cu) with ⁇ 100 ⁇ preferred orientation of 24% is maximum of about 43% at the beginning of the reduction reaction. After showing efficiency, it was measured to decrease with time.
  • Faradaic efficiency for ethylene (C 2 H 4 ) in a catalyst for anodes using copper (Cu) having a ⁇ 100 ⁇ preferred orientation of 95.5% was about 63 at the beginning of the reaction. It was measured to decrease over time after showing the maximum efficiency of%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to an electrochemical cell used for decomposing carbon dioxide and reducing into useful converted product, and a catalyst used for a cathode electrode in the cell. According to the present invention, provided is a composite catalyst comprising: a first catalyst layer comprising a Cu polycrystalline base having {100} preferred orientation; and a second catalyst layer positioned on the first catalyst layer and comprising a polycrystalline layer formed from Cu.

Description

이산화탄소 전환용 촉매 및 그 제조 방법Carbon dioxide conversion catalyst and its manufacturing method
본 발명은 이산화탄소를 분해하여 유용한 생성물로 전환할 때 이용되는 전기화학 셀과 상기 셀 내의 음극용 전극에 사용되는 촉매에 관한 것이다.The present invention relates to an electrochemical cell used when decomposing carbon dioxide and converting it into a useful product, and a catalyst used for an electrode for a cathode in the cell.
산업이 발달함에 따라 에너지 사용이 크게 증가하고, 이에 따라 화석 연료를 포함한 탄화수소류의 사용량도 급격히 증가하고 있다. 모든 탄화수소류는 기본적으로 일정 비율의 탄소 및 수소로 되어 있어, 이들이 연소될 때는 필연적으로 이산화탄소를 발생시키게 된다.As the industry develops, energy use is greatly increased, and accordingly, the use of hydrocarbons including fossil fuels is also rapidly increasing. All hydrocarbons are basically in a certain proportion of carbon and hydrogen, which inevitably generates carbon dioxide when they are burned.
이산화탄소는 지구 온난화의 주요 요인으로 알려져 있다. 이에 따라 전세계적으로 이산화탄소 저감은 매우 중요한 이슈로 부각되어 왔다.Carbon dioxide is known to be a major cause of global warming. Accordingly, the reduction of carbon dioxide has emerged as a very important issue worldwide.
한편 국내에는 산업 기반시설인 화학공장, 제철소, 시멘트 공장들이 많이 소재하는데, 이러한 시설들은 특히 이산화탄소를 많이 배출시키고 있다.On the other hand, there are many industrial plants, chemical plants, steel mills, and cement plants, which emit a lot of carbon dioxide.
이산화탄소에 에너지를 인가하면 탄소화합물과 산소와 같은 유용한 자원으로 변환시켜주는 전환기술이 발생된 이산화탄소를 제거하는 방법으로 최근에 들어 큰 주목을 받고 있다. 고온에서 압력을 가하거나 촉매를 이용하는 방법 등이 이러한 전환기술에 포함된다.The application of energy to carbon dioxide has recently received a lot of attention as a method of removing carbon dioxide generated by the conversion technology that converts it into useful resources such as carbon compounds and oxygen. Pressure conversion at high temperatures or the use of catalysts include such conversion techniques.
상기 전환기술들 가운데 촉매를 사용하는 방법은 장치 및 방법 자체가 매우 간단하고 신재생 에너지로부터 생산된 전기를 그대로 사용할 수 있으며 상업적인 규모로까지 스케일 업(scale up)이 매우 쉽다는 많은 장점이 있다. 또한 촉매를 사용하는 방법은 다양한 종류의 탄소화합물들을 선택적으로 생성할 수 있다는 장점도 있다.Among the conversion techniques, the method of using a catalyst has many advantages that the apparatus and the method itself are very simple, can use electricity produced from renewable energy as it is, and is very easy to scale up to a commercial scale. In addition, the method using the catalyst has the advantage that it can selectively produce a variety of carbon compounds.
반면 상기 촉매를 사용하는 방법이 실용화까지 진행되기 위해서는 실용성이 우수한 에틸렌, 에탄올, 프로판올 및 부탄올과 같은 C2 이상의 유용한 탄화수소를 안정적이고 지속적으로 생산할 수 있어야 한다. On the other hand, in order for the method using the catalyst to be put into practical use, it is necessary to be able to stably and continuously produce useful hydrocarbons of C2 or more such as ethylene, ethanol, propanol and butanol having excellent practicality.
최근 들어 Cu와 Cu2O 같은 일부 촉매들이 C2 이상의 탄화수소 생성에 효과를 보이는 것으로 보고되어 주목을 받고 있다.Recently, some catalysts such as Cu and Cu 2 O have been reported to have an effect on the production of hydrocarbons of C2 or more have attracted attention.
Cu 촉매의 경우 이산화탄소의 환원반응으로 생성되는 생성물들 중 C2+ (C2H4와 같이 탄소가 2가 이상 탄화수소) 보다 C1 (CH4와 같이 탄소가 1가 탄화수소)이 더 많이 생성되는 문제가 있는 것으로 알려져 있다. In case of the Cu catalyst, C1 (carbon monovalent hydrocarbon such as CH 4 ) is more generated than C2 + (carbon divalent hydrocarbon such as C 2 H 4) among the products generated by the reduction of carbon dioxide. It is known.
한편 Cu2O 촉매의 경우 C2+ 생성 비율이 C1 생성 비율보다 높다. 그러나 이산화탄소의 환원 반응이 진행됨에 따라 Cu2O 촉매에서는 +1가의 Cu 이온으로부터 Cu 원자로의 환원이 일어나게 되고 그로 인해 C2+ 생성 비율이 지속적으로 감소되는 문제가 있다.Meanwhile, in the case of the Cu 2 O catalyst, the C2 + production rate is higher than the C1 production rate. However, the reduction reaction proceeds in accordance with Cu 2 O in the catalyst from the monovalent Cu + 1 ions are to occur the reduction of the Cu atom thereby C2 + generation rate of carbon dioxide, there is a problem that continues to decrease.
결국 촉매를 이용하여 이산화탄소를 C2 이상의 탄화수소로 선택적이고 안정적으로 전환시키기 위해서는, Cu 촉매에서 C2 이상의 탄화수소로의 전환율을 높이는 것이 필요하다.As a result, in order to selectively and stably convert carbon dioxide to C2 or more hydrocarbons using a catalyst, it is necessary to increase the conversion rate of Cu catalyst to C2 or more hydrocarbons.
따라서 본 발명에서는 이산화탄소에서 C2 이상의 탄화수소로의 전환율이 높은 Cu 촉매를 발명하고자 한다.Therefore, the present invention intends to invent a Cu catalyst having a high conversion rate from carbon dioxide to C2 or more hydrocarbons.
이산화탄소의 분해에 사용되는 전기화학적 셀(cell)에서 환원이 일어나는 음극(cathode)용 촉매에 있어서, 본 발명은 C2 이상의 탄화수소 생성에 유리한 결정학적 우선 배향성을 가지는 표면 구조를 포함하는 새로운 촉매를 제공하는 것을 목적으로 한다.In a catalyst for a cathode in which reduction occurs in an electrochemical cell used for the decomposition of carbon dioxide, the present invention provides a novel catalyst comprising a surface structure having crystallographic preferential orientation for the production of C2 or higher hydrocarbons. For the purpose of
또한 본 발명은 촉매의 표면에서 서로 다른 계면(interface) 또는 입계(grain boundary) 특성을 가짐으로써 C2 이상의 탄화수소 생성에 유리한 새로운 촉매를 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide new catalysts which are advantageous for the production of hydrocarbons above C2 by having different interface or grain boundary properties at the surface of the catalyst.
한편 본 발명은 별도의 고가의 장비나 공정 없이도 기존의 금속분야에서 통상적이고 상업적으로 널리 사용되는 장비나 공정을 이용하여 경제적이면서 상업적 규모로 스케일 업(scale up)이 용이한 촉매의 제조 방법을 제공하고자 한다.On the other hand, the present invention provides a method for preparing a catalyst that is easy to scale up on an economical and commercial scale using equipment or processes that are conventional and commercially widely used in the existing metal field without any expensive equipment or process. I would like to.
C2 이상의 탄화수소 생성에 유리한 결정학적 우선 배향성을 가지는 표면 구조를 포함하고 표면에서 서로 다른 계면(interface) 또는 입계(grain boundary) 특성을 가지기 위해 본 발명의 하나의 실시예에 따르면, {100} 면을 우선 방위로 가지는 Cu 다결정 베이스를 포함하는 제1 촉매층; 상기 제1 촉매층 상에 위치하며, Cu로 이루어진 다결정 층을 포함하는 제2 촉매층;을 포함하는 것을 특징으로 하는 복합 촉매가 제공될 수 있다.According to one embodiment of the present invention in order to include a surface structure having a crystallographically preferential orientation favoring C2 or higher hydrocarbon generation and having different interface or grain boundary properties on the surface, the {100} plane is A first catalyst layer comprising a Cu polycrystalline base having a preferred orientation; A second catalyst layer is disposed on the first catalyst layer and includes a polycrystalline layer made of Cu. The complex catalyst may be provided.
바람직하게는 상기 Cu 다결정 베이스에서의 {100} 면의 분율은 30% 이상인 것;을 특징으로 하는 복합 촉매가 제공될 수 있다.Preferably, the fraction of the {100} plane in the Cu polycrystalline base is 30% or more; a composite catalyst may be provided.
바람직하게는 상기 제2 촉매층에서의 다결정 층은 우선 방위가 형성되지 않은 것;을 특징으로 하는 복합 촉매가 제공될 수 있다.Preferably, the polycrystalline layer in the second catalyst layer may be provided with a composite catalyst, characterized in that the orientation is not formed first.
또는 상기 제2 촉매층에서의 다결정 층은 {111} 또는 {110}면의 우선 방위를 가지는 것;을 특징으로 하는 복합 촉매가 제공될 수 있다.Alternatively, the polycrystal layer in the second catalyst layer may have a preferred orientation of {111} or {110} planes.
바람직하게는, 상기 제1 촉매층과 상기 제2 촉매층 사이에는 높이차 또는 단차를 형성한 표면 구조를 가지는 것;을 특징으로 하는 복합 촉매가 제공될 수 있다.Preferably, a complex catalyst may be provided between the first catalyst layer and the second catalyst layer having a surface structure in which a height difference or a step is formed.
바람직하게는 제 2촉매층은 도트(dot)와 같은 0차원 구조 또는 와이어(wire), 바늘(needle), 및 가는 기둥(column)의 1차원 구조 또는 박막, 아일랜드 형태의 2차원 구조인 것;을 특징으로 하는 복합 촉매가 제공될 수 있다.Preferably, the second catalyst layer is a 0-dimensional structure such as a dot or a 1-dimensional structure of a wire, a needle, and a thin column, or a 2-dimensional structure of a thin film or an island; A complex catalyst characterized in that may be provided.
바람직하게는, 상기 복합 촉매는 촉매 내부에 산소, 질소, 또는 수소 중 하나이상의 원소를 포함하는 것;을 특징으로 하는 복합 촉매가 제공될 수 있다. Preferably, the complex catalyst may be provided with a complex catalyst, characterized in that containing at least one element of oxygen, nitrogen, or hydrogen in the catalyst.
바람직하게는, 상기 복합 촉매는 촉매 내부에 Cu 산화물, Cu 질화물, Cu 산질화물 또는 Cu 수산화물 중 하나 이상을 포함하는 것;을 특징으로 하는 복합 촉매가 제공될 수 있다.Preferably, the complex catalyst may be provided with a complex catalyst comprising at least one of Cu oxide, Cu nitride, Cu oxynitride or Cu hydroxide in the catalyst.
바람직하게는, 상기 제1 촉매층과 제2 촉매층은 각각 서로 다른 원소를 포함하는 것;을 특징으로 하는 복합 촉매가 제공될 수 있다.Preferably, the first catalyst layer and the second catalyst layer may each include a different element; a complex catalyst may be provided.
별도의 고가의 장비나 공정 없이도 기존의 금속분야에서 통상적이고 상업적으로 널리 사용되는 장비나 공정을 이용하여 경제적이면서 상업적 규모로 스케일 업(scale up)이 용이한 제조 방법을 제공하기 위한 본 발명의 다른 실시예에 따르면, 제1 촉매층을 구성하는 Cu 원재료를 준비하는 단계; 상기 Cu 원재료를 변형시키는 1차 가공 단계; 상기 Cu 원재료 상에 제2 촉매층을 형성하는 2차 가공 단계; 소둔 단계;를 포함하는 것을 특징으로 하는 복합 촉매의 제조 방법이 제공될 수 있다.Another method of the present invention is to provide a manufacturing method that is easy to scale up on an economical and commercial scale by using equipment or processes that are conventional and commercially widely used in the existing metal field without any expensive equipment or process. According to an embodiment, preparing a Cu raw material constituting the first catalyst layer; A primary processing step of deforming the Cu raw material; Forming a second catalyst layer on the Cu raw material; Annealing step; may be provided a method for producing a composite catalyst comprising a.
본 발명의 또 다른 측면에 따르면, 제1 촉매층을 구성하는 Cu 원재료를 준비하는 단계; 상기 Cu 원재료를 동적 재결정 시키는 1차 가공 단계; 상기 Cu 원재료 상에 제2 촉매층을 형성하는 2차 가공 단계;를 포함하는 것을 특징으로 하는 복합 촉매의 제조 방법이 제공될 수 있다.According to another aspect of the invention, preparing a Cu raw material constituting the first catalyst layer; A primary processing step of dynamically recrystallizing the Cu raw material; The secondary processing step of forming a second catalyst layer on the Cu raw material; may be provided a method for producing a composite catalyst comprising a.
바람직하게는, 상기 1차 가공 단계는 멀티 패스(multi-pass) 압연인 것;을 특징으로 하는 복합 촉매의 제조 방법 이 제공될 수 있다.Preferably, the primary processing step is a multi-pass (multi-pass) rolling; it can be provided a method for producing a composite catalyst characterized in that.
바람직하게는, 상기 2차 가공 단계는 증착, 도금, 또는 인쇄 중 하나 이상의 공정을 포함하는 것;을 특징으로 하는 복합 촉매의 제조 방법 이 제공될 수 있다.Preferably, the secondary processing step may include a process of one or more of deposition, plating, or printing; may be provided a method for producing a complex catalyst characterized in that.
본 발명의 우선 배향성을 가지는 표면 구조를 포함하는 촉매에 따르면, 이산화탄소를 분해함에 있어 구체적으로 C2 이상의 유용한 탄화수소 화합물이 다른 탄화수소 보다 높은 비율로 선택적으로 생성될 수 있다.According to the catalyst comprising the surface structure having preferential orientation of the present invention, specifically, C2 or more useful hydrocarbon compounds in the decomposition of carbon dioxide can be selectively produced in higher proportion than other hydrocarbons.
이에 따라 본 발명의 촉매는 다른 촉매들 대비 C2 이상의 탄화수소의 생성에 더욱 효과적이다.Accordingly, the catalyst of the present invention is more effective in producing C2 or more hydrocarbons than other catalysts.
또한 본 발명의 촉매는 표면에 서로 다른 계면 내지는 입계를 많이 포함함으로써 상기 계면 내지는 입계에서의 C2 탄화수소 형성 이합체화 반응(dimerization)이 반응속도나 열역학적 에너지 측면에서 보다 조장되는 효과를 가진다.In addition, since the catalyst of the present invention includes a large number of different interfaces or grain boundaries on the surface, C2 hydrocarbon-forming dimerization at the interface or grain boundaries is more enhanced in terms of reaction rate or thermodynamic energy.
또한 본 발명의 촉매의 제조 방법은 통상의 금속분야에서 상업적으로 쉽게 이용 가능한 장비 및 공정을 적용함으로써 이산화탄소 전환 효율이 우수한 촉매를 쉽게 제조할 수 있게 한다.In addition, the method of preparing the catalyst of the present invention makes it easy to prepare a catalyst having excellent carbon dioxide conversion efficiency by applying equipment and processes commercially readily available in the conventional metal field.
이를 통해 본 발명의 촉매의 제조 방법은 경제성이 뛰어나고 스케일 업이 손쉬운 장점을 가진다.Through this method of producing a catalyst of the present invention has the advantage of excellent economy and easy scale-up.
한편 본 발명의 또 다른 촉매의 제조 방법은 별도의 후속 열처리 없이도 C2 이상의 탄화수소 전환 효율이 우수한 촉매를 생산할 수 있다.Meanwhile, another method for preparing a catalyst of the present invention can produce a catalyst having excellent hydrocarbon conversion efficiency of C2 or higher without additional subsequent heat treatment.
그로 인해 본 발명의 또 다른 촉매 제조 방법은 열처리라는 긴 시간과 에너지가 소모되는 단위 공정을 생략할 수 있어 생산성과 경제성이 매우 뛰어난 효과를 가진다.Therefore, another catalyst manufacturing method of the present invention can omit a long time and energy-consuming unit process such as heat treatment, thereby having an excellent productivity and economic efficiency.
도 1은 이산화탄소를 분해하여 환원하기 위한 전기화학적 셀의 모식도이다.1 is a schematic diagram of an electrochemical cell for decomposing and reducing carbon dioxide.
도 2는 Cu 촉매 및 산화수가 +1가인 Cu 이온으로 구성된 구리 산화물 촉매의 표면에서 이산화탄소가 분해될 때 생성되는 탄화수소의 종류별 비율을 도시한 것이다.FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
도 3은 Cu 촉매를 이용하여 C2 이상의 탄화수소 생성시 Cu의 표면의 결정학적 방위(crystallographic orientation)에 따른 계면에서의 자유 에너지 상태를 도시한 것이다.FIG. 3 shows the free energy state at the interface according to the crystallographic orientation of the surface of Cu when generating C2 or more hydrocarbons using a Cu catalyst.
도 4는 통상적인 Cu 촉매의 결정학적 방위를 나타내는 미세조직 사진이다.4 is a microstructure photograph showing the crystallographic orientation of a conventional Cu catalyst.
도 5는 다양한 촉매 표면에서 C2 이상의 탄화수소 형성을 위해 필요한 전이 단계(transition state)에서의 에너지 레벨 및 최종 단계에서의 에너지 레벨을 도시한 것이다.FIG. 5 shows energy levels in the transition and final levels required for the formation of hydrocarbons above C2 on various catalyst surfaces.
도 6은 본 발명의 복합 촉매를 제조하는 하나의 실시예에 따른 방법을 나타낸 순서도이다. 6 is a flowchart illustrating a method according to one embodiment of preparing the composite catalyst of the present invention.
도 7은 도 6에서의 제조 방법을 도식적으로 예시한 도면이다.FIG. 7 is a diagram schematically illustrating the manufacturing method in FIG. 6.
도 8은 Cu의 결정학적 방향성에 따른 영율(Young's modulus)을 도시한 것이다.8 shows Young's modulus according to the crystallographic orientation of Cu.
도 9는 본 발명의 복합 촉매를 제조하는 또 다른 실시예에 따른 방법을 나타낸 순서도이다.9 is a flowchart illustrating a method according to another embodiment of preparing a composite catalyst of the present invention.
도 10은 냉간 압연으로 1차 가공 단계를 수행할 때 압연 패스(pass) 횟수에 따른 구리판의 미세조직을 도시한 것이다.FIG. 10 illustrates the microstructure of the copper plate according to the number of rolling passes when performing the primary processing step with cold rolling.
도 11은 제1 촉매층과 제2 촉매층을 가지며 {100} 우선 배향성이 서로 다른 복합촉매를 각각 이용하여 제작한 이산화탄소 분해용 전기화학 셀에서 전환된 반응가스를 분석한 실험결과를 도시한 것이다.FIG. 11 shows an experimental result of analyzing a reaction gas converted in an electrochemical cell for decomposing carbon dioxide, which is prepared using a composite catalyst having a first catalyst layer and a second catalyst layer and having a different {100} preferred orientation.
이하, 본원에 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 촉매와 이를 제조하는 방법을 상세히 설명하기로 한다.Hereinafter, a catalyst and a method of preparing the same according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.The present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only this embodiment to make the disclosure of the present invention complete and to those skilled in the art to fully understand the scope of the invention It is provided to inform you.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 본 발명의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and like reference numerals designate like elements throughout the specification. In addition, some embodiments of the invention will be described in detail with reference to exemplary drawings. In adding reference numerals to components of each drawing, the same components may have the same reference numerals as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description may be omitted.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) can be used. These terms are only to distinguish the components from other components, and the terms are not limited in nature, order, order or number of the components. When a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but between components It is to be understood that the elements may be "interposed" or each component may be "connected", "coupled" or "connected" through other components.
또한, 본 발명을 구현함에 있어서 설명의 편의를 위하여 구성요소를 세분화하여 설명할 수 있으나, 이들 구성요소가 하나의 장치 또는 모듈 내에 구현될 수도 있고, 혹은 하나의 구성요소가 다수의 장치 또는 모듈들에 나뉘어져서 구현될 수도 있다.In addition, in the implementation of the present invention may be described by subdividing the components for convenience of description, these components may be implemented in one device or module, or one component is a plurality of devices or modules It can also be implemented separately.
도 1은 이산화탄소를 분해하여 환원하기 위한 일반적인 전기화학적 셀의 모식도이다. 1 is a schematic diagram of a typical electrochemical cell for decomposing and reducing carbon dioxide.
도 1에서 도시한 바와 같이 상기 전기화학적 셀(cell)은 산소가 발생하는 산화반응이 일어나는 양극과 이산화탄소의 환원이 일어나는 음극, 상기 양극과 음극이 담기는 전해질을 수용하기 위한 구획, 그리고 상기 양극과 음극 사이에서 위치하며 상기 전해질 상의 원하는 성분만 선택적으로 통과시키는 멤브레인을 포함한다.As shown in FIG. 1, the electrochemical cell includes a cathode for receiving an oxidation reaction in which oxygen is generated, a cathode for reducing carbon dioxide, a compartment for accommodating an electrolyte containing the anode and the cathode, and And a membrane positioned between the cathodes and selectively passing only the desired components on the electrolyte.
한편, 상기 도 1에는 도시되지는 않았으나, 상기 셀은 상기 셀을 구동시키기 위해 외부에서 에너지를 공급하기 위한 에너지 공급원을 포함한다. 또한 상기 이산화탄소의 환원으로부터 발생한 부산물을 추출하기 위한 추출기가 추가로 포함된다. 또한 필요에 따라 전해질 공급장치가 추가될 수도 있다.Although not shown in FIG. 1, the cell includes an energy supply source for supplying energy from the outside to drive the cell. In addition, an extractor for extracting the by-product generated from the reduction of the carbon dioxide is further included. In addition, an electrolyte supply device may be added as necessary.
이와는 별도로 만일 이산화탄소의 환원으로부터 발생한 부산물이 또 다른 추가적인 반응을 필요로 하는 경우, 상기 반응을 위한 이차적인 반응기도 선택적으로 포함될 수 있다.Apart from this, if the by-product resulting from the reduction of carbon dioxide requires another additional reaction, a secondary reactor for the reaction may optionally be included.
상기 도 1과 같은 셀에서 이산화탄소가 분해되어 환원될 때, 환원반응이 일어나는 촉매의 종류에 따라 다양한 부산물(또는 전환물 또는 생성물이라 한다)이 생성되는 것으로 알려져 있다.When carbon dioxide is decomposed and reduced in a cell as shown in FIG. 1, it is known that various by-products (or conversion products or products) are produced depending on the type of catalyst in which a reduction reaction occurs.
CO2 + nH+ + ne- → CxHyOz (1) CO 2 + nH + + ne - → C x H y O z (1)
예를 들어 Ag 또는 Sb가 촉매로 사용 되면, 상기 촉매에서 다음의 반응식 (2)를 통해 이산화탄소는 환원되고 일산화탄소가 생성된다. 반면, Cu 또는 Cu2O가 촉매로 사용되면, 다음의 반응식 (3) 내지 (6)을 통해 이산화탄소가 분해되어 메탄, 에탄, 에틸렌 등의 자원이 생성되는 것으로 알려져 있다.For example, when Ag or Sb is used as a catalyst, carbon dioxide is reduced and carbon monoxide is produced through the following reaction (2) in the catalyst. On the other hand, when Cu or Cu 2 O is used as the catalyst, it is known that carbon dioxide is decomposed through the following reaction formulas (3) to (6) to generate resources such as methane, ethane, and ethylene.
CO2 + 2H+ + 2e- → CO + H2O -0.51 V (2) CO 2 + 2H + + 2e - → CO + H 2 O -0.51 V (2)
CO2 + 8H+ + 8e- → CH4 + 2H2O -0.24 V (3) CO 2 + 8H + + 8e - → CH 4 + 2H 2 O -0.24 V (3)
2CO2 + 12H+ + 12e- → C2H4 + 4H2O -0.33 V (4) 2CO 2 + 12H + + 12e - → C 2 H 4 + 4H 2 O -0.33 V (4)
2CO2 + 12H+ + 12e- → C2H5OH + 3H2O -0.32 V (5) 2CO 2 + 12H + + 12e - → C 2 H 5 OH + 3H 2 O -0.32 V (5)
3CO2 + 18H+ + 18e- → C3H7OH + 5H2O -0.31 V (V vs.NHE) (6) 3CO 2 + 18H + + 18e - → C 3 H 7 OH + 5H 2 O -0.31 V (V vs.NHE) (6)
반면, 산화 전극에서는 다음의 식 (7)을 통해 물이 산화되어 산소, 수소이온, 그리고 전자가 발생한다.On the other hand, in the oxidation electrode, water is oxidized through the following equation (7) to generate oxygen, hydrogen ions, and electrons.
n/2 H2O → nH+ + n/4O2 + ne- (7) n / 2 H 2 O → nH + + n / 4O 2 + ne - (7)
도 2는 Cu 촉매 및 산화수가 +1가인 Cu 이온으로 구성된 구리 산화물 촉매의 표면에서 이산화탄소가 분해될 때 생성되는 탄화수소의 종류별 비율을 도시한 것이다.FIG. 2 illustrates the ratio of hydrocarbons generated when carbon dioxide is decomposed on a surface of a copper oxide catalyst composed of a Cu catalyst and a Cu ion having an oxidation number of +1.
도 2에서 도시된 바와 같이 금속상태의 Cu가 촉매로 사용되면 이산화탄소의 환원으로 CH4와 C2H4가 Cu 촉매의 표면에서 생성된다. 이 때 CH4와 C2H4 각각의 생성 비율은 비슷하나 CH4가 C2H4보다 더 많은 분율을 차지함을 알 수 있다.As shown in FIG. 2, when Cu in a metal state is used as a catalyst, CH 4 and C 2 H 4 are generated on the surface of the Cu catalyst by reduction of carbon dioxide. At this time, the formation rate of each of CH 4 and C 2 H 4 is similar, but it can be seen that CH 4 occupies more fraction than C 2 H 4 .
이와는 달리, 만일 산화수가 +1가인 Cu가 촉매로 사용되면, +1가 Cu 촉매 표면에서의 이산화탄소의 환원은 CH4와 C2H4를 주로 생성한다. 다만 생성된 탄화수소에서의 C2H4가 CH4의 비율은 C2H4가 CH4보다 최대 15배 이상 더 큰 분율을 차지함을 알 수 있다. 따라서 산화수가 +1가인 Cu가 이산화탄소 환원용 전기화학적 셀의 촉매로써 C2 이상의 탄화수소 생성에 매우 유리한 효과를 가짐을 알 수 있다.In contrast, if Cu having an oxidation number of +1 is used as the catalyst, the reduction of carbon dioxide at the surface of the +1 Cu catalyst produces mainly CH 4 and C 2 H 4 . However, C 2 H 4 in the resulting hydrocarbon is the ratio of CH 4 can be seen to occupy a greater fraction of up to 15 or more times that of the C 2 H 4 CH 4. Accordingly, it can be seen that Cu having an oxidation number of +1 has a very advantageous effect on the generation of C2 or more hydrocarbons as a catalyst of an electrochemical cell for reducing carbon dioxide.
도 3은 Cu 촉매를 이용하여 C2 이상의 탄화수소 생성시 Cu 표면의 결정학적 방위(crystallographic orientation)에 따른 계면에서의 자유 에너지 상태를 도시한 것이다.Figure 3 shows the free energy state at the interface according to the crystallographic orientation of the Cu surface when generating a C2 or more hydrocarbon using a Cu catalyst.
비록 Cu 촉매가 화학적으로는 동일한 촉매라 할지라도, {111} 면 방위보다는 {100} 면의 방위가 조사된 모든 C2 탄화수소 생성에 대해 더 낮은 에너지 상태를 유지하는 것으로 도 3에서와 같이 조사되었다.Although the Cu catalyst is chemically the same catalyst, the orientation of the {100} plane rather than the {111} plane orientation has been investigated as in FIG. 3 to maintain a lower energy state for all C2 hydrocarbon productions investigated.
도 3은 일례로써 "+OCCHO"라는 탄화수소가 생성되기 위한 자유 에너지 상태를 나타낸다. 전체 열역학적 시스템의 자유 에너지 상태를 고려할 때, 도 3은 Cu의 {111}면에서 일산화탄소 2개가 결합된 상태의 자유 에너지 보다 "+OCCHO"가 생성된 상태의 자유에너지가 더 높은 것을 보여준다. 도 3의 상기 결과는 "+OCCHO"탄화 수소를 일산화탄소로부터 생성하기 위해서는 최종 "+OCCHO" 탄화수소의 열역학적으로 높은 에너지 상태를 보상하기 위해 외부에서 에너지가 공급되어야 하고, 이에 더하여 상기 탄화수소의 생성 반응의 활성화 단계를 극복하기 위한 에너지가 외부에서 더 공급되어야 함을 의미한다. 3 shows, by way of example, a free energy state for the production of a hydrocarbon called "+ OCCHO". Considering the free energy state of the entire thermodynamic system, FIG. 3 shows that the free energy of the state where "+ OCCHO" is generated is higher than the free energy of the two carbon monoxide combinations on the {111} plane of Cu. The results of FIG. 3 indicate that in order to generate “+ OCCHO” hydrocarbons from carbon monoxide, energy must be supplied externally to compensate for the thermodynamically high energy state of the final “+ OCCHO” hydrocarbons, in addition to the This means that more energy must be supplied from outside to overcome the activation step.
이에 반해 Cu의 {100}면에서는 일산화탄소 2개가 결합된 자유 에너지 상태와 "+OCCHO"라는 탄화수소의 자유 에너지 상태는 거의 동일한 것으로 나타났다. 이에 더하여 상기 탄화수소 생성 반응의 활성화 에너지도 {100} 면에서의 활성화 에너지가 {111}면의 활성화 에너지보다 낮은 것으로 나타났다.On the contrary, on the {100} side of Cu, the free energy state of two carbon monoxide bonds and the free energy state of the hydrocarbon "+ OCCHO" were almost identical. In addition, the activation energy of the hydrocarbon production reaction was also found to be lower than the activation energy of the {111} plane.
상기 결과들은 Cu의 {100}면이 {111}면보다 작은 에너지로도 "+OCCHO"탄화수소를 열역학적으로 안정적으로 형성할 수 있음을 의미한다. 또한 Cu 표면에서 상기 탄화수소 생성 또는 일산화탄소 전환 반응을 일으키기 위한 활성화 에너지도 Cu의 {100} 면이 {111} 면보다 더 적게 필요함을 의미한다.These results indicate that the {100} plane of Cu can form thermodynamically stable "+ OCCHO" hydrocarbons with less energy than the {111} plane. In addition, the activation energy for causing the hydrocarbon generation or carbon monoxide conversion reaction on the Cu surface also means that the {100} plane of Cu is required to be smaller than the {111} plane.
도 4는 통상적인 Cu 촉매의 결정학적 방위를 나타내는 미세조직 사진이다.4 is a microstructure photograph showing the crystallographic orientation of a conventional Cu catalyst.
일반적으로 Cu와 같은 금속은 통상의 금속학적 프로세스를 거쳐서 제조된다. 구체적으로 Cu 금속은 용해 및 주조와 열간가공 및/또는 냉간가공, 열처리 그리고 필요한 경우 에칭이나 표면처리를 통해 제조된다. In general, metals such as Cu are produced via conventional metallurgical processes. Specifically, Cu metal is produced by melting and casting, hot working and / or cold working, heat treatment and, if necessary, etching or surface treatment.
한편 Cu와 같은 면심입방격자(face centered cubic, FCC)는 표면에너지 측면에서 일반적으로 {111}면이 가장 낮은 표면에너지를 가지므로 {111}면이 가장 안정한 표면이 된다. 한편 Cu와 같은 입방격자(cubic lattice)를 가지는 금속에서는 <100> 방향이 탄성적으로 가장 연한(soft)한 방향이다. On the other hand, face centered cubic (FCC) such as Cu generally has the lowest surface energy in terms of surface energy, and thus the {111} plane becomes the most stable surface. On the other hand, in a metal having a cubic lattice such as Cu, the <100> direction is the softest direction elastically.
그러나 열역학적인 요인 또는 용해 및 주조 공정시 발생하는 미세한 유동(turbulence) 때문에, 일반적인 금속 제조 프로세스인 용해 또는 주조를 통해 형성되는 주조 미세조직(as-cast microstructure)은 어떤 하나의 결정립으로만 이루어지는 단결정(single crystal)으로 형성되지 못한다. 그 대신 주조 미세조직은 서로 다른 결정학적 방위를 가지는 결정립들로 이루어지는 다결정(poly-crystal) 미세조직으로 이루어 진다.However, due to thermodynamic factors or the fine turbulence that occurs during the melting and casting process, the as-cast microstructure formed through melting or casting, which is a common metal fabrication process, is a single crystal composed of only one grain. It is not formed into a single crystal. Instead, the cast microstructure consists of poly-crystal microstructures consisting of grains with different crystallographic orientations.
상기 주조 미세조직은 열간가공 및/또는 냉간가공 그리고 후속 열처리를 통해 모두 파괴되어 최종적으로는 미세한(fine) 다결정으로 이루어지는 가공된 미세조직이 형성된다.The cast microstructures are all destroyed by hot working and / or cold working and subsequent heat treatment to finally form a processed microstructure consisting of fine polycrystals.
이 때 최종 다결정 미세조직 내에서 각각의 결정립들의 방위는 도 4에서와 같이 일반적으로 무작위하게(randomly) 분포하는 것으로 알려져 있다. 도 4에서의 Cu 다결정 결정방위 분석 결과는 일반적인 금속 재료를 열간가공 및/또는 냉간가공 그리고 후속 열처리를 한 후 얻어진 방위 분포와 일치한다. 구체적으로 도 4는 표면에너지나 탄성에너지가 작은 {111}면 또는 {100}면의 분포는 오히려 소수이고 {101}면의 분포가 높은 방위 결과를 보여준다.At this time, the orientations of the respective grains in the final polycrystalline microstructure are generally known to be randomly distributed as shown in FIG. 4. The result of Cu polycrystal orientation analysis in FIG. 4 is consistent with the orientation distribution obtained after hot and / or cold working and subsequent heat treatment of a general metal material. Specifically, FIG. 4 shows the orientation of {111} planes or {100} planes having a small surface energy or elastic energy, but a small number and a high distribution of {101} planes.
한편 도 4의 통상의 Cu 촉매의 결정학적 방위 측정 결과는 도 2 및 3의 결과와 잘 부합한다.On the other hand, the crystallographic orientation measurement results of the conventional Cu catalyst of FIG. 4 agree well with those of FIGS. 2 and 3.
도 4에서의 통상적인 Cu 촉매의 결정 방위 분석 결과는 Cu 촉매 표면을 차지하는 {100}면의 비율이 2.1%로 매우 적음을 보여준다. 도 4의 결과는, 도 3에서 나타난 바와 같이, C2 탄화수소 생성에 유리한 Cu의 {100}면이 종래의 통상적인 Cu 촉매의 표면에서는 거의 없음을 의미한다. 그리고 Cu 표면에서 {100}면의 적은 분율은 도 2에서 보여주고 있는 Cu 촉매에서의 상대적으로 작은 C2H4 전환 비율과 잘 일치한다.The crystal orientation analysis of the conventional Cu catalyst in FIG. 4 shows that the proportion of {100} planes occupying the surface of the Cu catalyst is very small, 2.1%. The results in FIG. 4 mean that, as shown in FIG. 3, the {100} plane of Cu advantageous for C2 hydrocarbon production is scarce on the surface of a conventional Cu catalyst. And the small fraction of the {100} plane on the Cu surface is in good agreement with the relatively small C 2 H 4 conversion ratio in the Cu catalyst shown in FIG.
도 5는 다양한 촉매 표면에서 C2 이상의 탄화수소 형성을 위해 필요한 전이 단계(transition state)에서의 에너지 레벨 및 최종 단계에서의 에너지 레벨을 도시한 것이다.FIG. 5 shows energy levels in the transition and final levels required for the formation of hydrocarbons above C2 on various catalyst surfaces.
먼저 Cu 금속 촉매 표면이 주로 {111} 면을 가지는 경우, CO(일산화탄소)와 CO의 결합에 의해 OCCO라는 C2 탄화수소 형성 이합체화 반응(dimerization)이 일어나기 위해서는 먼저 촉매 표면에 흡착된 CO 분자들이 기울어지고(tilt) 그 다음 두 개의 CO 분자들이 서로 근접하게 되는 전이 단계(transition stage)를 거친 후 최종적으로 OCCO라는 표면 화학종이 만들어진다. 이 때 전이 단계와 최종 단계에서의 자유 에너지는 초기의 두 개의 CO 분자 단계의 자유 에너지와 비교해서 각각 1.1eV 그리고 0.86eV의 차이가 발생한다. 상기 자유 에너지 차이는 외부에서 1.1eV 이상의 에너지를 공급해야만 표면이 {111} 면을 가지는 Cu 금속 촉매에서 CO(일산화탄소)와 CO의 결합에 의한 이합체화 반응(dimerization)이 일어날 수 있음을 의미한다. 다시 말하면 표면이 {111} 면을 가지는 Cu 금속 촉매에서 CO(일산화탄소)와 CO의 결합에 의한 이합체화 반응(dimerization)이 일어나기 위해서는 1.1eV 만큼의 자유 에너지 장벽이 있음을 의미한다. First, when the surface of the Cu metal catalyst mainly has the {111} plane, the CO molecules adsorbed on the surface of the catalyst are inclined in order for the C2 hydrocarbon-forming dimerization called OCCO to occur by the combination of CO and CO. Then, after passing through a transition stage where the two CO molecules come close to each other, a surface species called OCCO is finally formed. The free energy at the transition and final stages is 1.1 eV and 0.86 eV, respectively, compared to the free energy of the two initial CO molecular stages. The free energy difference means that dimerization may occur due to the combination of CO (carbon monoxide) and CO in a Cu metal catalyst having a surface of {111} when only an energy of 1.1 eV or more is supplied from the outside. In other words, in the Cu metal catalyst having the {111} plane, dimerization by the combination of CO (carbon monoxide) and CO has a free energy barrier of 1.1 eV.
반면 Cu2O의 금속 산화물과 {111} 면을 가지는 Cu 금속이 공존하는 복합 촉매에서 Cu 원자에서의 CO와 +1가의 Cu 이온에서의 CO 원자가 OCCO라는 C2 탄화수소 형성 이합체화 반응이 일어날 때, 전이 단계와 최종 단계에서의 자유 에너지는 초기 단계의 자유 에너지와 비교해서 각각 0.71eV 및 0.12eV 만큼 차이가 발생한다. 상기 자유 에너지 차이는 외부에서 0.71eV 이상의 에너지를 공급해야만 Cu2O의 금속 산화물과 {111} 면을 가지는 Cu 금속 촉매가 공존하는 촉매에서 상기 반응이 일어날 수 있음을 의미한다. On the other hand, in a composite catalyst in which a metal oxide of Cu 2 O and a Cu metal having a {111} plane coexist, when a C2 hydrocarbon-forming dimerization reaction of CO in a Cu atom and a CO atom in a + 1-valent Cu ion occurs, OCCO, The free energy in the stage and the final stage differs by 0.71 eV and 0.12 eV, respectively, compared to the free energy of the initial stage. The free energy difference means that the reaction may occur in a catalyst in which a metal oxide of Cu 2 O and a Cu metal catalyst having a {111} surface coexist only when an energy of 0.71 eV or more is supplied from the outside.
상기 Cu2O 금속 산화물과 Cu 금속의 복합 촉매에서 C-C 커플링(coupling)이 에너지적으로 더 잘 일어나는 이유는 +1가의 Cu 이온에서 흡착된 CO에서의 C는 양으로 하전된 반면 Cu 원자에서 흡착된 CO에서의 C는 음으로 하전되어 있기 때문이다. 따라서 상기 두 개의 C들 사이에서의 C-C 결합 형성을 위한 정전기적인 인력은 상기 Cu2O 금속 산화물과 Cu 금속의 복합 촉매에서 C-C 커플링(coupling)을 에너지적으로 더 잘 일어나게 한다. 이는 상기 정전기적인 인력이 C2 이합체화 반응에 대해 반응 속도(kinetics)나 열역학적인 구동력을 증가시킴을 의미한다. The reason why CC coupling occurs more energetically in the complex catalyst of Cu 2 O metal oxide and Cu metal is that C in CO adsorbed at +1 valence Cu ions is positively charged while adsorption at Cu atoms. This is because C in the CO is negatively charged. Thus electrostatic attraction for the formation of CC bonds between the two Cs makes energy energizing better CC coupling in the composite catalyst of Cu 2 O metal oxide and Cu metal. This means that the electrostatic attraction increases the kinetics or thermodynamic driving forces for the C2 dimerization reaction.
일반적으로 금속의 표면은 금속 원자의 결합이 끊어진 불안정한 상태이므로 표면에 위치하는 금속 원자는 금속 원자 상태만으로는 존재할 수 없다. 이로 인해 순수한 금속은 그 표면에 자연적으로 산화막이 형성된다. 그리고 상기 금속 표면에서의 일반적인 특성은 Cu 금속 촉매에서도 그대로 적용되며, Cu 금속 표면에 Cu 원자는 순수한 금속 상태가 아닌 CuOx와 같은 산화물로 존재한다. In general, since the surface of the metal is in an unstable state in which the bonds of the metal atoms are broken, the metal atoms located on the surface cannot exist only in the state of the metal atoms. As a result, an oxide film is naturally formed on the surface of pure metal. In addition, the general characteristics of the metal surface are applied to the Cu metal catalyst as it is, and Cu atoms on the Cu metal surface exist as oxides such as CuOx, not pure metal states.
따라서 본 발명은 이산화탄소를 전환하여 C2 이상의 탄화수소를 높은 효율로 형성하기 위해 종래 Cu 금속 촉매의 결정학적 배향을 제어 및 조절한 새로운 구조의 Cu 금속 촉매를 완성하였다.Accordingly, the present invention completed a Cu metal catalyst having a new structure by controlling and controlling the crystallographic orientation of the conventional Cu metal catalyst to convert carbon dioxide to form C2 or more hydrocarbons with high efficiency.
이를 위해 본 발명의 일 실시예에서의 촉매는 {100} 면을 우선 방위로 가지는 Cu 다결정 베이스를 포함하는 제1 촉매층과 상기 제1 촉매층 상에 위치하며 Cu로 이루어진 다결정 층을 포함하는 제2 촉매층을 포함하는 것을 특징으로 하는 복합 촉매이다.To this end, in one embodiment of the present invention, the catalyst includes a first catalyst layer including a Cu polycrystalline base having a {100} plane in a preferred direction, and a second catalyst layer disposed on the first catalyst layer and including a polycrystalline layer made of Cu. It is a composite catalyst comprising a.
상기 Cu 다결정 베이스에서의 {100} 면의 분율은 30% 이상인 것이 바람직하다. 만일 {100} 면의 분율이 30% 보다 작다면, C2 탄화수소 형성에 대한 결정 배향 효과를 기대하기 어렵다.It is preferable that the fraction of the {100} plane in the said Cu polycrystal base is 30% or more. If the fraction of the {100} plane is less than 30%, it is difficult to expect crystallographic effects on C2 hydrocarbon formation.
반면, 제2 촉매층은 {111}, {110}, {100} 면이 혼재된 다결정 촉매이다. 이 때 상기 제2 촉매층에서의 다결정 층은 제1 촉매층과 달리 우선 방위가 형성되지 않는 것이 바람직하다. 또는 만일 상기 제2 촉매층이 우선 방위를 가진다면, 이 때 제2 촉매층의 우선 방위는 {111} 또는 {110} 면의 우선 방위를 가지는 것이 바람직하다. On the other hand, the second catalyst layer is a polycrystalline catalyst in which {111}, {110}, and {100} faces are mixed. At this time, unlike the first catalyst layer, the polycrystalline layer in the second catalyst layer is preferably not formed orientation. Or if the second catalyst layer has a preferred orientation, then the preferred orientation of the second catalyst layer preferably has a preferred orientation of the {111} or {110} plane.
또한 본 발명의 실시예에 따른 복합 촉매는 상기 제1 촉매층과 상기 제2 촉매층 사이에서 높이차 또는 단차를 형성한 표면 구조를 가진다. 이와 같이 높이 차이가 있는 다층형 복합 촉매는 촉매가 반응하는 반응 면적을 보다 넓힐 수 있고 그 결과 촉매의 유효 면적이 넓어져서 이산화 탄소의 전환 효율의 향상이 도모될 수 있다.In addition, the composite catalyst according to the embodiment of the present invention has a surface structure in which a height difference or a step is formed between the first catalyst layer and the second catalyst layer. As described above, the multi-layered composite catalyst having a height difference can widen the reaction area where the catalyst reacts, and as a result, the effective area of the catalyst can be widened, thereby improving the conversion efficiency of carbon dioxide.
한편 상기 제2 촉매층은 도트(dot)와 같은 0차원 구조 또는 와이어(wire), 바늘(needle), 및 가는 기둥(column)과 같은 1차원 구조일 수도 있다. The second catalyst layer may be a 0-dimensional structure such as a dot or a 1-dimensional structure such as a wire, a needle, and a thin column.
또한, 상기 제2 촉매층은 박막이거나 또는 아일랜드(island) 형태의 입자와 같은 2차원의 평면 구조를 가질 수 있다. In addition, the second catalyst layer may be a thin film or have a two-dimensional planar structure such as island-shaped particles.
상기와 같은 제2 촉매의 형상(morphology)은 제2 촉매를 형성하기 위한 가공 방법에 부합되는 가장 효율적인 형상으로 결정될 수 있다. Such a morphology of the second catalyst can be determined to be the most efficient shape that matches the processing method for forming the second catalyst.
예를 들어 만일 제2 촉매층이 증착에 의해 형성되면, 제2 촉매층은 주로 박막과 같은 2차원의 평면 구조를 가질 수 있다. For example, if the second catalyst layer is formed by vapor deposition, the second catalyst layer may have a two-dimensional planar structure mainly such as a thin film.
반면 만일 2차 촉매층이 인쇄와 같은 공정에 의해 형성되면, 제2 촉매층은 후막의 형태이거나 또는 아일랜드 형상의 2차원 평면구조일 수도 있다. 또는 제2 촉매층은 스크린의 형상 또는 패이스트의 조건에 따라 와이어나 기둥과 같은 1차원이거나 또는 도트와 같은 0차원 형상을 가질 수도 있다.On the other hand, if the secondary catalyst layer is formed by a process such as printing, the second catalyst layer may be in the form of a thick film or an island-shaped two-dimensional planar structure. Alternatively, the second catalyst layer may be one-dimensional, such as a wire or pillar, or zero-dimensional, such as a dot, depending on the shape of the screen or the conditions of the paste.
한편 본 발명의 실시예에서의 복합 촉매는 자연적으로 또는 산화 처리, 질화 처리, 또는 수소화 처리 등의 인위적인 후속공정에 의해 Cu 촉매 내부에 추가적으로 산소, 질소, 또는 수소 등의 원소를 포함할 수도 있다. Meanwhile, the composite catalyst in the embodiment of the present invention may additionally include elements such as oxygen, nitrogen, or hydrogen in the Cu catalyst naturally or by an artificial subsequent process such as oxidation treatment, nitriding treatment, or hydrogenation treatment.
또한 본 발명의 실시예에서의 복합 촉매는 자연적으로, 또는 산화 처리, 질화 처리, 또는 수소화 처리 등의 인위적인 후속공정에 의해 Cu 촉매 내부에 추가적으로 Cu 산화물, Cu 질화물, Cu 산질화물 또는 Cu 수화물 등의 화합물을 포함할 수도 있다.In addition, the composite catalyst in the embodiment of the present invention may additionally include Cu oxide, Cu nitride, Cu oxynitride, Cu hydrate, or the like within the Cu catalyst naturally or by artificial subsequent processes such as oxidation treatment, nitriding treatment, or hydrogenation treatment. It may also contain a compound.
본 발명의 실시예에서의 복합 촉매는 제1 촉매층과 제2 촉매층이 각각 서로 다른 원소를 포함할 수도 있다. In the composite catalyst in the embodiment of the present invention, the first catalyst layer and the second catalyst layer may each contain different elements.
앞에서 도 5에서 살펴본 바와 같이, C2 이합체화 반응은 반응 속도나 열역학적인 측면에서 서로 다른 산화 상태의 Cu의 계면 부근에서 보다 유리하다. 그리고 Cu를 비롯한 금속은 기지 또는 모재와 서로 다른 성분을 포함하여 합금 상태로 형성되게 되면, 서로 다른 금속 성분들 사이의 이온화 경향 차이로 인해 이온화 경향이 높은 금속 성분은 산화가 더욱 용이해 진다. 따라서 만일 본 발명의 실시예에서의 복합 촉매에서 제1 촉매층과 제2 촉매층이 서로 다른 원소를 포함한다면, 제1 촉매층 및 제2 촉매층 내에서의 각각의 Cu의 산화 상태는 서로 달라질 수 있다. 그리고 C2 이합체화 반응은 상기 Cu이의 서로 다른 산화 상태로 인해 더욱 촉진될 수 있다.As described above in FIG. 5, the C2 dimerization reaction is more advantageous near the interface of Cu in different oxidation states in terms of reaction rate or thermodynamics. When the metal including Cu is formed in an alloy state including the base or the base material and different components, the metal component having a high ionization tendency is more easily oxidized due to the difference in ionization tendency between different metal components. Therefore, if the first catalyst layer and the second catalyst layer in the composite catalyst in the embodiment of the present invention contains different elements, the oxidation state of each Cu in the first catalyst layer and the second catalyst layer may be different from each other. And the C2 dimerization reaction may be further promoted due to the different oxidation states of Cu.
본 발명 실시예에서의 상기 복합 촉매는 도 6 및 7에서 도시된 바와 같은 방법을 통해 제조될 수 있다.The complex catalyst in the embodiment of the present invention may be prepared by the method as shown in FIGS. 6 and 7.
먼저 Cu 원재료가 준비된다(S1). 이 때 동판이나 동박(copper foil), 그리고 동선(cable)과 같은 다양한 형태가 상기 Cu 원재료로써 이용 가능하다. 또한 Cu 원재료는 Cu를 기지로 하고 다른 성분이 일부 포함된 Cu 합금일 수도 있다.First, Cu raw materials are prepared (S1). At this time, various forms such as copper plate, copper foil, and copper can be used as the Cu raw material. In addition, the Cu raw material may be a Cu alloy based on Cu and containing some other components.
다음으로 상기 Cu 원재료는 냉간가공과 같은 1차 가공단계를 거친다(S2). Next, the Cu raw material is subjected to the first processing step such as cold working (S2).
다결정 금속에서는 인근 결정립의 상호 간성 때문에 다중슬립(multi-slip)이 쉽게 일어난다. 그 결과 가공에 의해 재료가 경화되는 현상인 가공경화가 발생하게 된다. 소위 말하는 냉간가공은 상기 가공경화가 풀리지 않는 온도영역과 시간에서 행하여지는 소성변형을 의미한다.In polycrystalline metals, multi-slip easily occurs because of the interdependency of neighboring grains. As a result, work hardening, which is a phenomenon that the material is hardened by work, occurs. The so-called cold working refers to plastic deformation performed in a temperature range and time at which the work hardening is not solved.
가공경화를 유발시키는 소성변형으로 인해 Cu 원재료 내부에는 전위(dislocation)의 수가 증가한다. 소둔(annealing) 처리를 한 금속에서는 전위의 수가 ㎠당 106~108개 정도인 데 반해, 심하게 변형된 금속 내의 전위 밀도는 1012/㎠개 정도이다. 냉간가공된 조직에는 고전위밀도영역(dislocation tangles)이 형성되고 상기 고전위밀도영역(dislocation tangles)은 다시 엉킨 전위망(dislocation web)으로 발전한다.The plastic deformation causing work hardening increases the number of dislocations inside the Cu raw material. In the annealing metal, the number of dislocations is about 10 6 to 10 8 per cm 2, whereas the dislocation density in the heavily deformed metal is about 10 12 / cm 2. Dislocation tangles are formed in the cold processed tissue, and the dislocation tangles develop back into a dislocation web.
Cu 원재료를 냉간가공하여 변형시키는데 소비된 에너지 대부분은 열로 변한다. 소비된 에너지의 단지 약 10%가 금속의 내부 즉 격자(lattice) 속에 저장되고 금속의 내부에너지는 증가하게 된다. 이렇게 저장된 에너지 대부분은 냉간가공 중 전위의 발생과 상호작용으로부터 기인한 것이다. 공공(vacancy)도 매우 낮은 온도에서 변형된 금속의 저장된 에너지의 일부를 담당할 수 있으나, 공공은 전위보다 훨씬 이동하기 쉽기 때문에 상온에서는 변형된 대부분의 금속으로부터 쉽게 빠져나간다. 적층결함(stacking fault)과 쌍정(twin) 결함도 금속 내부에 저장된 에너지의 극히 일부만을 담당한다. 또한 탄성변형에너지도 상기 저장된 에너지의 소량만을 담당한다.Most of the energy consumed by cold processing Cu raw materials is transformed into heat. Only about 10% of the energy consumed is stored inside the metal, or lattice, and the internal energy of the metal increases. Most of this stored energy comes from the generation and interaction of dislocations during cold working. Vacancies can also account for some of the stored energy of the deformed metal at very low temperatures, but the vacancy is easier to move away from the dislocation at room temperature because it is much more mobile than the potential. Stacking faults and twin faults also account for only a fraction of the energy stored inside the metal. In addition, the elastic strain energy is also responsible for only a small amount of the stored energy.
그 후 상기 Cu 원재료 위에 저응력 가공 공정과 같은 2차 가공 단계(S3)를 통해 본 발명 실시예의 복합 촉매의 제2 촉매층이 형성된다.Thereafter, a second catalyst layer of the composite catalyst of the embodiment of the present invention is formed on the Cu raw material through a secondary processing step (S3) such as a low stress processing process.
상기 저응력 가공 공정이란 이전 단계인 1차 가공단계 대비 상대적이거나 절대적으로 응력을 가하지 않는 공정을 의미한다.The low stress machining process refers to a process that does not apply relative or absolute stress to the previous stage of the first machining step.
보다 구체적으로 본 발명의 실시예에서의 상기 저응력 가공 공정은 기지 및/또는 제1 촉매층의 원재료로써 작용하는 Cu 원재료 상에 증착, 도금, 또는 인쇄 등의 공정을 통해 제2 촉매층을 국부적으로 형성하는 공정이다.More specifically, the low stress machining process in the embodiment of the present invention locally forms the second catalyst layer through a process such as deposition, plating, or printing on Cu raw material serving as a raw material of the base and / or the first catalyst layer. It is a process to do it.
이 때 형성되는 형성되는 제2 촉매층이 도트(dot)와 같은 형상이면, 제2 촉매층의 형상은 0차원 구조에 해당한다. 반면 제2 촉매층은 와이어(wire), 바늘(needle), 및 가는 기둥(column)과 같은 1차원 구조일 수도 있다. 더 나아가 상기 제2 촉매층은 박막이거나 또는 아일랜드(island) 형태의 입자와 같은 2차원의 평면 구조를 가질 수도 있다. If the formed second catalyst layer is shaped like a dot, the shape of the second catalyst layer corresponds to a 0-dimensional structure. On the other hand, the second catalyst layer may be a one-dimensional structure such as a wire, a needle, and a thin column. Furthermore, the second catalyst layer may be a thin film or have a two-dimensional planar structure such as island-shaped particles.
다음으로 냉간가공된 Cu 원재료 및 저응력 가공 공정을 거친 촉매는 소둔공정 단계(S4)를 거친다. Next, the cold processed Cu raw material and the catalyst which has undergone the low stress processing process go through an annealing process step (S4).
보다 구체적으로 상기 소둔공정은 냉간가공된 Cu 원재료와 상기 원재료 위에 위치하는 저응력 가공 공정에 의한 제2 촉매층을 포함한 복합촉매를 소둔(annealing)하는 단계를 의미한다.More specifically, the annealing process refers to annealing the composite catalyst including the cold-processed Cu raw material and the second catalyst layer by a low stress processing process located on the raw material.
상기 소둔공정은 금속 내부의 미세조직을 크게 변화시킨다.The annealing process greatly changes the microstructure inside the metal.
일반적으로 냉간가공된 금속은 변형되지 않은 금속보다 가공에 의해 더 큰 내부에너지를 가지고 있다. 따라서 냉간가공된 금속 내의 전위방(dislocation cell) 조직은 기계적으로는 안정할 수 있지만 열역학적으로 불안정하다. 그리고 냉간가공된 상태는 온도가 증가함에 따라 원자들의 열적 활성화에 의해 더욱 불안정해진다. 온도가 올라가면 결국 금속은 연화(softening)되고 변형이 없는 조직으로 변화하게 되는데 이러한 전체 과정을 소둔(annealing)이라 한다.In general, cold worked metals have greater internal energy by machining than undeformed metals. Thus, dislocation cell tissue in the cold worked metal may be mechanically stable but thermodynamically unstable. And the cold worked state becomes more unstable by the thermal activation of atoms as the temperature increases. When the temperature rises, the metal eventually changes into a softening and non-deforming tissue. This whole process is called annealing.
소둔과정은 회복(recovery), 재결정(recrystallization), 그리고 결정립 성장(grain growth)의 3 단계로 일반적으로 분류될 수 있다. 그러나 본 발명 실시예에서의 촉매는 결정립이 작을수록 결정립들 사이의 경계부분인 결정립계(grain boundary)가 많아지므로, 본 발명의 실시예의 소둔공정은 결정립 성장 단계까지는 진행되지 않는 것이 바람직하다.The annealing process can be generally classified into three stages: recovery, recrystallization, and grain growth. However, the smaller the grain size of the catalyst in the embodiment of the present invention, the larger the grain boundary, which is the boundary portion between the grains, and therefore, the annealing process of the embodiment of the present invention is preferably not performed until the grain growth step.
회복은 냉각가공된 금속의 현미경조직의 변화는 거의 없고 금속의 물리적 성질이 주로 회복되는 단계이다. 회복 중 전기전도도는 급격히 증가하고 격자의 변형은 상당히 감소한다. 회복에 의해 가장 크게 영향을 받는 물리적 성질은 점결함(point defect)에 민감한 성질이다. 반면 전위에 의해 제어되는 강도는 회복에 의해 별로 영향을 받지 않는다.Recovery is a step in which the microstructure of the cold worked metal is little changed and the physical properties of the metal are mainly recovered. During recovery, the conductivity increases sharply and the deformation of the lattice decreases considerably. The physical properties most affected by recovery are those that are sensitive to point defects. In contrast, the intensity controlled by dislocations is not much affected by recovery.
재결정은 냉간가공된 조직이 변형 없는 새로운 결정립으로 대체되는 것을 말한다. 재결정은 현미경조직을 관찰함으로써 쉽게 알아낼 수 있다. 재결정이 일어나면 경도나 강도가 감소하고 연성이 증가하며 전위밀도가 현저히 감소하고 가공경화의 모든 효과가 없어진다. 회복과 재결정의 열역학적인 구동력은 냉간가공에 의하여 저장된 에너지이다. Recrystallization refers to the replacement of cold grains with new grains without deformation. Recrystallization can be easily determined by observing the microscopic tissue. When recrystallization occurs, hardness or strength decreases, ductility increases, dislocation density decreases significantly, and all effects of work hardening are lost. The thermodynamic driving force for recovery and recrystallization is the energy stored by cold working.
본 발명의 실시예에서의 냉간가공된 Cu 원재료와 상기 원재료 위에 위치하는 저응력 가공 공정에 의한 제2 촉매층을 포함한 복합촉매의 미세조직은 상기 소둔공정 동안 회복과 재결정을 거쳐 변화된다.In the embodiment of the present invention, the microstructure of the composite catalyst including the cold-processed Cu raw material and the second catalyst layer by the low stress machining process located on the raw material is changed through recovery and recrystallization during the annealing process.
보다 구체적으로 소둔공정 동안 본 발명 실시예의 복합촉매에서의 베이스에 해당하는 Cu 원재료는 변형이 심한 높은 스트레스 상태에서 스트레스 완화(relaxation)을 거쳐 변형이 없는 새로운 결정립을 가지는 미세조직을 가지게 된다. 이 때 재결정에 의한 변형이 없는 새로운 미세조직은 도 8에서 도시된 바와 같이 영률(Young's modulus)이 가장 작은 {100} 방향을 우선 방향으로 하여 성장된다. 그 결과 본 발명 실시예의 복합촉매에서 베이스에 해당하는 Cu 원재료는 {100} 방향으로 우선 방위를 가지는 미세조직을 포함하는 제1 촉매층이 된다.More specifically, during the annealing process, the Cu raw material corresponding to the base in the composite catalyst of the present invention has a microstructure having new grains without deformation through stress relaxation in a high stress state where deformation is severe. At this time, a new microstructure without deformation due to recrystallization is grown with the {100} direction having the smallest Young's modulus as the first direction as shown in FIG. 8. As a result, in the composite catalyst of the present invention, the Cu raw material corresponding to the base becomes a first catalyst layer including a microstructure having a preferred orientation in the {100} direction.
반면 상기 제1 촉매층을 구성하는 Cu 원재료 위에 위치하는 제2 촉매층은 2차 가공 단계에 의해 우선 방위가 없이 다양한 방위를 가지거나 또는 {100} 우선 방위를 가질 수도 있다. On the other hand, the second catalyst layer positioned on the Cu raw material constituting the first catalyst layer may have various orientations without the preferred orientation by the secondary processing step or may have the {100} preferred orientation.
만일 2차 가공 단계가 저응력 가공 공정라면, 상기 소둔 단계에 의해 재결정시킬 정도의 충분한 가공량이 저응력 가공에 의해 2차 촉매층에 제공되지 않는다. 그 결과 2차 촉매층은 우선 방위를 가지지 않거나 또는 적어도 탄성적으로 가장 유연한(soft) {100} 우선방위를 가지지 못하게 된다. If the secondary machining step is a low stress machining process, a sufficient processing amount to be recrystallized by the annealing step is not provided to the secondary catalyst layer by low stress machining. As a result, the secondary catalyst layer does not have a preferred orientation or at least elastically does not have the softest {100} preferred orientation.
한편 만일 2차 가공 단계가 증착이나 도금과 같은 공정들로 진행되고 상기 공정들이 원자의 이동이 매우 자유로운 조건으로 진행된다면, 2차 가공에 의한 제2 촉매층은 Cu의 계면 에너지가 가장 작은 {111} 우선 방위를 가질 가능성이 매우 높아진다. On the other hand, if the secondary processing step proceeds to processes such as deposition and plating, and the processes are performed under conditions in which the movement of atoms is very free, the second catalyst layer by secondary processing has the smallest interfacial energy of Cu. First of all, the possibility of having a bearing becomes very high.
반면 만일 2차 가공 단계가 1차 가공 단계처럼 가공량이 많은 공정으로 수행된다면, 상기 소둔 단계 이후 제2 촉매층은 제1 촉매층과 동일하게 {100} 우선방위를 가질 가능성이 높아진다.On the other hand, if the secondary processing step is carried out in a process with a large amount of processing, such as the primary processing step, the second catalyst layer after the annealing step is likely to have a {100} priority direction the same as the first catalyst layer.
앞에서 도 5에서 살펴본 바와 같이, C-C 커플링에 의해 CO(일산화탄소)와 CO가 결합하는 이합체화 반응(dimerization)을 위해서는 각각의 일산화탄소가 흡착되는 촉매의 표면이 서로 다른 표면 특성을 가지는 것이 보다 바람직하다. 따라서 제2 촉매층은 제1 촉매층과는 달리 우선방위를 가지지 않거나 만일 가지더라도 제1 촉매층의 우선 방위와는 다른 {111} 또는 {110} 우선 방위를 가지는 것이 바람직하다. 따라서 2차 가공은 저응력 가공 공정을 이용하는 것이 보다 바람직하다.As described above with reference to FIG. 5, for dimerization in which CO (carbon monoxide) and CO are bonded by CC coupling, it is more preferable that the surfaces of the catalysts to which carbon monoxide is adsorbed have different surface characteristics. . Therefore, it is preferable that the second catalyst layer does not have a preferential orientation unlike the first catalyst layer or has a {111} or {110} preferred orientation different from the preferred orientation of the first catalyst layer even if it has. Therefore, it is more preferable that secondary processing uses a low stress processing process.
한편 본 발명의 실시예의 복합 촉매는 앞에서의 도 6 및 7과는 달리 도 9와 같은 방법을 통해서도 제조될 수 있다.Meanwhile, the composite catalyst of the embodiment of the present invention may be prepared by the same method as in FIG. 9, unlike FIGS. 6 and 7.
구체적으로 도 9에서의 촉매 제조 방법은, 도 6 및 7에서와는 달리, 소둔 공정 단계를 필요로 하지 않는다. Specifically, the catalyst preparation method in FIG. 9 does not require an annealing process step, unlike in FIGS. 6 and 7.
보다 구체적으로 도 9에서의 촉매 제조 방법은 Cu 원재료를 준비하는 단계(S'1), Cu 원재료를 동적 재결정이 발생하는 온도 이상의 온도에서 열간 변형시키는 1차 가공 단계(S' 2), 동적 재결정이 발생하여 {100} 우선 방위가 형성된 Cu 원재료 위에 저응력 가공 공정과 같은 2차 가공 단계(S'3)를 통해 제2 촉매층을 형성하는 방법으로 이루어 진다.More specifically, the method for preparing a catalyst in FIG. 9 includes preparing a Cu raw material (S'1), a first processing step (S'2) for hot deformation of a Cu raw material at a temperature above a temperature at which dynamic recrystallization occurs, and dynamic recrystallization. This occurs by a method of forming a second catalyst layer through the secondary processing step (S'3), such as a low stress processing process on the Cu raw material formed {100} first orientation.
도 9에서의 방법은, 앞서의 소둔 공정을 포함하는 방법 대비, 1차 가공 단계에서 가공과 함께 재결정을 발생시켜 Cu 원재료 내에 {100} 우선 배향을 가지게 하는 것에 특징이 있다. The method in FIG. 9 is characterized by having a {100} preferred orientation in the Cu raw material by generating recrystallization with processing in the primary processing step as compared to the method comprising the annealing process described above.
이와 같이 가공 단계에서 재결정이 같이 일어나는 공정은 소위 동적 재결정(dynamic re-crystallization)이라 일컬어 진다. 상기 동적 재결정은 소둔 공정시 일어나는 재결정인 정적 재결정과는 반대되는 개념이며, 동적 재결정은 가공 또는 변형 중에 결함이 없는 새로운 결정립의 핵생성과 성장이 일어나는 것을 의미한다.This process in which recrystallization occurs together in the machining step is called dynamic re-crystallization. The dynamic recrystallization is a concept opposite to the static recrystallization which is a recrystallization occurring during the annealing process, and the dynamic recrystallization means that nucleation and growth of new grains without defects occur during processing or deformation.
동적 재결정은 가공 중에 재결정에 의해 연화 효과가 발생하므로 응력-변위 곡선에서 재결정 특유의 피크가 발생하는 것으로부터 동적 재결정의 발생이 확인될 수 있다.Since the dynamic recrystallization has a softening effect due to the recrystallization during processing, the occurrence of the dynamic recrystallization can be confirmed from the occurrence of a peak peculiar to the recrystallization in the stress-displacement curve.
따라서 공정 변수나 조건의 조절을 통해 동적 재결정이 발생하게 되면, 우선방위를 가지는 제1 촉매층이 후속 열처리 공정을 수행하지 않고도 재결정을 통해 형성될 수 있다. 그리고 동적 재결정을 통해 복합 촉매를 제조하는 시간을 줄일 수 있게 됨으로써 생산성이 크게 향상될 수 있다.Therefore, when dynamic recrystallization occurs through the control of process variables or conditions, the first catalyst layer having a preferential orientation may be formed through recrystallization without performing a subsequent heat treatment process. In addition, productivity can be greatly improved by reducing the time for preparing the composite catalyst through dynamic recrystallization.
실시예Example
본 발명의 실시예에서는 Cu 원재료로써 두께 100~150um의 순도 98%의 구리판이 준비되었다.In the embodiment of the present invention, a copper plate having a purity of 98% having a thickness of 100 to 150 um was prepared as a Cu raw material.
먼저 냉간가공의 구체적인 방법으로써 압연기를 이용하여 상기 구리판에 1 내지 3 패스(pass)의 냉간압연이 실시되었으며 각 패스(pass)당 압하율은 18%~30%로 설정되었다.First, a cold rolling of 1 to 3 passes was performed on the copper plate using a rolling mill as a specific method of cold working, and the rolling reduction rate per pass was set to 18% to 30%.
그 다음 스퍼터링을 통해 상기 냉간 압연된 구리판 위에 제2 촉매층이 형성되었다.A second catalyst layer was then formed on the cold rolled copper plate through sputtering.
구체적으로 상기 스퍼터링 공정은 다음과 같다. 먼저 초기 진공도를 < 10-6 torr로 유지한 후 100sccm의 Ar이 챔버 내에 채워진 뒤에 1 mTorr의 챔버 진공도 하에서 20 ~ 50V의 가속전압 범위와 200~1000W의 전력 조건에서 다결정 Cu 타겟을 사용하는 DC 스퍼터링을 통해 상기 구리판 위에 약 100 ~ 500nm 두께의 구리층 박막이 증착되었다.Specifically, the sputtering process is as follows. DC sputtering using a polycrystalline Cu target at an acceleration voltage range of 20 to 50 V and a power condition of 200 to 1000 W under a chamber vacuum of 1 mTorr after first maintaining an initial vacuum of <10 -6 torr and then filling 100 sccm of Ar into the chamber. The copper layer thin film of about 100 ~ 500nm thickness was deposited on the copper plate through.
상기와 같은 박막 구리층이 증착된 구리판은 다시 산화방지를 위해 진공 분위기에서 200℃의 온도에서 1시간 동안 소둔 처리되고, 표면의 일부에서 형성될 수 있는 표면의 Cu 산화층은 정밀한 분석을 위해 HCl 등으로 화학적 에칭되었다.The copper plate on which the thin copper layer is deposited is annealed for 1 hour at a temperature of 200 ° C. in a vacuum atmosphere to prevent oxidation, and the Cu oxide layer of the surface, which may be formed on a part of the surface, may be HCl or the like for precise analysis. Chemically etched.
표 1은 최종 소둔 처리 된 구리판의 냉간 압연 패스 횟수에 따른 결정 배향성을 요약한 것이다. 도 10은 냉간 압연으로 1차 가공 단계를 수행할 때 압연 패스(pass) 횟수에 따른 구리판의 미세조직을 도시한 것이다.Table 1 summarizes the crystal orientation according to the number of cold rolling passes of the final annealed copper sheet. FIG. 10 illustrates the microstructure of the copper plate according to the number of rolling passes when performing the primary processing step with cold rolling.
표 1. 냉간 압연 패스 횟수에 따른 구리판의 결정 배향성(%)Table 1. Crystal orientation of copper plate according to the number of cold rolling passes (%)
Figure PCTKR2019001042-appb-I000001
Figure PCTKR2019001042-appb-I000001
먼저 표 1에서 나타난 바와 같이, 냉간 압연 패스 횟수가 증가할수록 구리판 표면에서는 {100} 우선 배향성이 더욱 커지는 것을 알 수 있다. First, as shown in Table 1, it can be seen that as the number of cold rolling passes increases, the {100} preferred orientation becomes larger on the copper plate surface.
앞에서 설명한 바와 같이, 우선 냉간 변형량이 늘어날수록 구리판 내부에 축적된 변형에너지는 많아진다. 이와 같이 금속 내부에 축적된 변형에너지는 소둔 시 결함이 없는 새로운 결정립으로 이루어지는 새로운 미세조직이 생성되는 재결정의 구동력으로 작용한다. 그 결과 재결정된 미세조직은 탄성적으로 가장 소프트한 다시 말하면 영률(Young's modulus)이 가장 작은 {100} 우선 배향성을 가지게 된다.As described above, first, as the amount of cold deformation increases, the amount of strain energy accumulated in the copper plate increases. As such, the strain energy accumulated in the metal acts as a driving force for recrystallization in which a new microstructure composed of new grains free of defects during annealing is produced. As a result, the recrystallized microstructure has the softest elasticity, that is, the {100} preferred orientation having the smallest Young's modulus.
한편 도 10은 냉간 압연 패스에 따른 재료의 결정학적 배향성을 도시한 그림이다. 냉간 압연 패스가 증가할수록 {100} 방향으로 배열된 결정립이 많아짐을 도 10으로부터 명확하게 알 수 있다.10 is a diagram showing the crystallographic orientation of the material along the cold rolling pass. It can be clearly seen from FIG. 10 that as the cold rolling pass increases, more grains are arranged in the {100} direction.
도 11은 제1 촉매층과 제2 촉매층을 가지며 {100} 우선 배향성이 서로 다른 복합촉매를 각각 이용하여 제작한 이산화탄소 분해용 전기화학 셀에서 전환된 반응가스를 분석한 실험결과를 도시한 것이다. FIG. 11 shows an experimental result of analyzing a reaction gas converted in an electrochemical cell for decomposing carbon dioxide, which is prepared using a composite catalyst having a first catalyst layer and a second catalyst layer and having a different {100} preferred orientation.
도 11에서 사용된 전기화학 셀은 도 1에서와 같은 구조를 가지며 3전극의 비이커 셀을 이용하여 제작되었다.The electrochemical cell used in FIG. 11 has the same structure as in FIG. 1 and was manufactured using a beaker cell of three electrodes.
보다 구체적인 실험조건을 살펴보면, 워킹 전극(working electrode)으로는 본 발명의 실시예에서 제작한 제1 촉매층과 제2 촉매층을 포함하는 복합촉매가 이용되었고 카운터(counter) 전극과 기준(reference) 전극으로는 각각 Pt와 Ag/AgCl가 이용되었다. 전해질로는 0.1M의 KHCO3가 사용되었고, -1.9V(vs. Ag/AgCl)에서 4 ~ 10 쿨롱(C)의 전하량을 인가하여 생성된 반응가스가 포집되었다. 포집된 반응가스는 가스 크로매토그래피(GC)를 이용하여 분석되었다.Looking at the more specific experimental conditions, as a working electrode (composite) a composite catalyst comprising a first catalyst layer and a second catalyst layer prepared in an embodiment of the present invention was used as a counter electrode and a reference electrode Pt and Ag / AgCl were used, respectively. 0.1 M KHCO 3 was used as an electrolyte, and a reaction gas generated by applying a charge amount of 4 to 10 coulombs (C) at −1.9 V (vs. Ag / AgCl) was collected. The collected reaction gases were analyzed using gas chromatography (GC).
이 때 에틸렌(C2H4)에 대한 패러데이 효율(Faradaic efficiency)은 다음과 같이 정의된다.In this case, Faradaic efficiency for ethylene (C 2 H 4 ) is defined as follows.
Faradaic Efficiency = (생성된 C2H4 몰수 X C2H4 1몰 생성에 필요한 전자수 X 패러데이 상수) / 환원전극에 인가된 전체 전하량 X 100%Faradaic Efficiency = (number of generated C 2 H 4 moles XC 2 H 4 electron number X Faraday constant needed to generate 1 mole) / total amount of charge applied to the cathode X 100%
도 11을 살펴보면, 먼저 {100} 우선 배향성이 24%인 구리(Cu)를 사용한 음극용 촉매에서 에틸렌(C2H4)에 대한 패러데이 효율(Faradaic efficiency)은 환원 반응 초기에 약 43%의 최대 효율을 보인 후 시간이 지남에 따라 감소하는 것으로 측정되었다. 이에 반해 본 발명의 실시예에 해당하는 {100} 우선 배향성이 95.5%인 구리(Cu)를 사용한 음극용 촉매에서 에틸렌(C2H4)에 대한 패러데이 효율(Faradaic efficiency)은 반응 초기에 약 63%의 최대 효율을 보인 후 시간이 지남에 따라 감소하는 것으로 측정되었다.11, the Faradaic efficiency for ethylene (C 2 H 4 ) in a cathodic catalyst using copper (Cu) with {100} preferred orientation of 24% is maximum of about 43% at the beginning of the reduction reaction. After showing efficiency, it was measured to decrease with time. In contrast, Faradaic efficiency for ethylene (C 2 H 4 ) in a catalyst for anodes using copper (Cu) having a {100} preferred orientation of 95.5%, corresponding to an embodiment of the present invention, was about 63 at the beginning of the reaction. It was measured to decrease over time after showing the maximum efficiency of%.
도 11의 음극용 촉매에 따른 에틸렌(C2H4)의 패러데이 효율(Faradaic efficiency)에 관한 상기 결과는 본 발명 실시예의 {100} 우선 배향성을 가지는 구리 촉매가 C2 이상의 탄화수소 생성에 매우 효과적임을 의미하는 것이다. The above results on Faradic efficiency of ethylene (C 2 H 4 ) according to the catalyst for the negative electrode of Figure 11 means that the copper catalyst having the {100} preferred orientation of the embodiment of the present invention is very effective for the production of hydrocarbons of C2 or more It is.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the drawings, but the present invention is not limited to the embodiments and drawings disclosed herein, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is obvious that modifications can be made. In addition, even if the above described embodiments of the present invention while not explicitly described and described the operation and effect according to the configuration of the present invention, it is obvious that the effect predictable by the configuration is also to be recognized.

Claims (13)

  1. {100} 면을 우선 방위로 가지는 Cu 다결정 베이스를 포함하는 제1 촉매층;A first catalyst layer comprising a Cu polycrystalline base having the {100} plane first in orientation;
    상기 제1 촉매층 상에 위치하며, Cu로 이루어진 다결정 층을 포함하는 제2 촉매층;A second catalyst layer positioned on the first catalyst layer, the second catalyst layer including a polycrystalline layer made of Cu;
    을 포함하는 것을 특징으로 하는 복합 촉매. Composite catalyst comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 Cu 다결정 베이스에서의 {100} 면의 분율은 30% 이상인 것;The fraction of the {100} plane in the Cu polycrystalline base is 30% or more;
    을 특징으로 하는 복합 촉매.Complex catalyst characterized in that.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제2 촉매층에서의 다결정 층은 우선 방위가 형성되지 않은 것;The polycrystalline layer in the second catalyst layer is not first formed in an orientation;
    을 특징으로 복합 촉매.A composite catalyst characterized by the above.
  4. 제 1항에 있어서,The method of claim 1,
    상기 제2 촉매층에서의 다결정 층은 {111} 또는 {110}면의 우선 방위를 가지는 것;The polycrystalline layer in the second catalyst layer has a preferred orientation of the {111} or {110} plane;
    을 특징으로 복합 촉매.A composite catalyst characterized by the above.
  5. 제 1항에 있어서,The method of claim 1,
    상기 제1 촉매층과 상기 제2 촉매층 사이에는 높이차 또는 단차를 형성한 표면 구조를 가지는 것;Having a surface structure in which a height difference or a step is formed between the first catalyst layer and the second catalyst layer;
    을 특징으로 하는 복합 촉매.Complex catalyst characterized in that.
  6. 제 1항에 있어서,The method of claim 1,
    제 2촉매층은 도트(dot) 형태의 0차원 구조 또는 와이어(wire), 바늘(needle), 및 가는 기둥(column) 형태의 1차원 구조 또는 박막, 아일랜드 형태의 2차원 구조인 것;The second catalyst layer is a one-dimensional structure in the form of a dot or a one-dimensional structure in the form of a wire, a needle, and a column, or a two-dimensional structure in the form of a thin film or an island;
    을 특징으로 하는 복합 촉매.Complex catalyst characterized in that.
  7. 제 1항에 있어서,The method of claim 1,
    상기 복합 촉매는 촉매 내부에 산소, 질소, 또는 수소 중 하나이상의 원소를 포함하는 것;The composite catalyst includes one or more elements of oxygen, nitrogen, or hydrogen in the catalyst;
    을 특징으로 하는 복합 촉매.Complex catalyst characterized in that.
  8. 제 1항에 있어서,The method of claim 1,
    상기 복합 촉매는 촉매 내부에 Cu 산화물, Cu 질화물, Cu 산질화물 또는 Cu 수소화물 중 하나 이상을 포함하는 것;The composite catalyst comprises at least one of Cu oxide, Cu nitride, Cu oxynitride or Cu hydride inside the catalyst;
    을 특징으로 하는 복합 촉매.Complex catalyst characterized in that.
  9. 제 1항에 있어서,The method of claim 1,
    상기 제1 촉매층과 제2 촉매층은 각각 서로 다른 원소를 포함하는 것; The first catalyst layer and the second catalyst layer each containing different elements;
    을 특징으로 하는 복합 촉매.Complex catalyst characterized in that.
  10. 제1 촉매층을 구성하는 Cu 원재료를 준비하는 단계;Preparing a Cu raw material constituting the first catalyst layer;
    상기 Cu 원재료를 변형시키는 1차 가공 단계;A primary processing step of deforming the Cu raw material;
    상기 Cu 원재료 상에 제2 촉매층을 형성하는 2차 가공 단계;Forming a second catalyst layer on the Cu raw material;
    소둔 단계;Annealing step;
    를 포함하는 것을 특징으로 하는 복합 촉매의 제조 방법.Method for producing a composite catalyst comprising a.
  11. 제1 촉매층을 구성하는 Cu 원재료를 준비하는 단계;Preparing a Cu raw material constituting the first catalyst layer;
    상기 Cu 원재료를 동적 재결정 시키는 1차 가공 단계;A primary processing step of dynamically recrystallizing the Cu raw material;
    상기 Cu 원재료 상에 제2 촉매층을 형성하는 2차 가공 단계;Forming a second catalyst layer on the Cu raw material;
    를 포함하는 것을 특징으로 하는 복합 촉매의 제조 방법.Method for producing a composite catalyst comprising a.
  12. 제11항 또는 제12항에 있어서,The method according to claim 11 or 12, wherein
    상기 1차 가공 단계는 멀티 패스(multi-pass) 압연인 것;The first machining step is multi-pass rolling;
    을 특징으로 하는 복합 촉매의 제조 방법.Method for producing a composite catalyst, characterized in that.
  13. 제11항 또는 제12항에 있어서,The method according to claim 11 or 12, wherein
    상기 2차 가공 단계는 증착, 도금, 또는 인쇄 중 하나 이상의 공정을 포함하는 것;The secondary processing step includes one or more processes of deposition, plating, or printing;
    을 특징으로 하는 복합 촉매의 제조 방법.Method for producing a composite catalyst, characterized in that.
PCT/KR2019/001042 2018-02-05 2019-01-24 Catalyst for carbon dioxide conversion and method for preparing same WO2019151715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0014059 2018-02-05
KR1020180014059A KR20190094651A (en) 2018-02-05 2018-02-05 Catalyst for carbon dioxide conversion and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2019151715A1 true WO2019151715A1 (en) 2019-08-08

Family

ID=67479362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001042 WO2019151715A1 (en) 2018-02-05 2019-01-24 Catalyst for carbon dioxide conversion and method for preparing same

Country Status (2)

Country Link
KR (1) KR20190094651A (en)
WO (1) WO2019151715A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240055987A (en) 2022-10-21 2024-04-30 한국생산기술연구원 The Catalyst for CO2 conversion with high selectivity of CO, the method of manufacturing the same, and the CO2 conversion system including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140043897A (en) * 2011-05-11 2014-04-11 치눅 앤드-스테이지 리싸이클링 리미티드 Synthesis gas grocessing and system using copper catalyst in two step reactions at 475°c-525°c and 250°c-290°c
JP2018016535A (en) * 2016-07-29 2018-02-01 学校法人東京理科大学 Carbon dioxide reduction device and reduction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140043897A (en) * 2011-05-11 2014-04-11 치눅 앤드-스테이지 리싸이클링 리미티드 Synthesis gas grocessing and system using copper catalyst in two step reactions at 475°c-525°c and 250°c-290°c
JP2018016535A (en) * 2016-07-29 2018-02-01 学校法人東京理科大学 Carbon dioxide reduction device and reduction method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, CHUNG SHOU ET AL.: "Stable and selective electrochemical reduction of carbon dioxide 10 ethylene on copper mesocrystats", CATALYSIS SCIENCE & TECHNOLOGY, vol. 5, no. 1, 2015, pages 161 - 168, XP055629580 *
KIM, DOHYUNG ET AL.: "Copper nanoparticle ensembles for selective electroreduction of C02 to C2-C3 products", PNAS, vol. 114, no. 40, 2017, pages 10560 - 10565, XP055613942, doi:10.1073/pnas.1711493114 *
PENG, YUECHENG ET AL.: "Selective Electrochemical Reduction of C02 to Ethylene on Nanopores-Modified Copper Electrodes in Aqueous Solution", ACS APPLIED MATERIALS & INTERFACES, vol. 9, no. 38, 2017, pages 32782 - 32789, XP055629585 *

Also Published As

Publication number Publication date
KR20190094651A (en) 2019-08-14

Similar Documents

Publication Publication Date Title
EP1954857B1 (en) Doped aluminum nitride crystals and methods of making them
WO2019151715A1 (en) Catalyst for carbon dioxide conversion and method for preparing same
DE102012209887A1 (en) Chipping method for forming a multiple photovoltaic structure
WO2021029645A1 (en) Method for manufacturing aluminum anodized film having pillar-on-pore structure by using phosphoric acid
Bond et al. On the determination of the hydrogen fugacity in an environmental cell TEM facility
KR20110025237A (en) Reduction of metal oxides in an elecrolytic cell
KR20170128631A (en) Titanium plate material for fuel cell separators and method for producing same
CN1719583A (en) Method of crystallizing semiconductor film and method of manufacturing display device
JP2017208427A (en) Method of manufacturing semiconductor device
CN116623300A (en) Method for removing polycrystalline region existing in electrolytic copper foil single crystallization process
Nagae et al. Microstructure of a molybdenum nitride layer formed by nitriding molybdenum metal
WO2022239886A1 (en) Pure titanium having high strength and high ductility, and preparation method therefor
CN101719465A (en) Method for manufacturing silicon substrate GaN-based semiconductor material
WO2018008850A1 (en) Reduced iron production method using electrowinning method, and reduced iron produced thereby
JP5569871B2 (en) MOSFET and manufacturing method thereof
CN110699722B (en) Preparation of Ti5Si3Method for producing high temperature alloy film
US3335037A (en) Method for producing tantalum sheet
Jeong et al. Lifetime enhancement in EFG multicrystalline silicon [solar cells]
WO2016167400A1 (en) Zirconium alloy composition having excellent high temperature oxidation and corrosion resistance, and manufacturing method thereof
WO2017200276A1 (en) Composite metal oxide particles and method for producing same
WO2021029678A1 (en) Method for manufacturing 6000 series aluminum alloy, having superhydrophilic surface, for filter and rainwater storage water tank
JP4318325B2 (en) Manufacturing method of high purity gold for ultra fine bonding wire
WO2023140609A1 (en) Carbon dioxide electrolysis device and method
WO2021054628A1 (en) Method for preparing layered cobalt arsenide, layered cobalt arsenide prepared thereby, and cobalt arsenide nanosheet exfoliated therefrom
JP2015203149A (en) Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746645

Country of ref document: EP

Kind code of ref document: A1