WO2019182195A1 - 여기광을 제어한 형광체 파장 변환 백색 발광 소자 및 이를 포함하는 발광장치 - Google Patents

여기광을 제어한 형광체 파장 변환 백색 발광 소자 및 이를 포함하는 발광장치 Download PDF

Info

Publication number
WO2019182195A1
WO2019182195A1 PCT/KR2018/006298 KR2018006298W WO2019182195A1 WO 2019182195 A1 WO2019182195 A1 WO 2019182195A1 KR 2018006298 W KR2018006298 W KR 2018006298W WO 2019182195 A1 WO2019182195 A1 WO 2019182195A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
white light
light emitting
wavelength
Prior art date
Application number
PCT/KR2018/006298
Other languages
English (en)
French (fr)
Inventor
안종욱
배정빈
심재곤
Original Assignee
주식회사 올릭스
안종욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 올릭스, 안종욱 filed Critical 주식회사 올릭스
Publication of WO2019182195A1 publication Critical patent/WO2019182195A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a phosphor wavelength converting white light emitting device that controls excitation light and a light emitting device including the same, and more particularly, to a high color white light emitting diode configured by a phosphor wavelength converting method excited by ultraviolet light and violet light.
  • Diode abbreviated as LED
  • the present invention relates to a white light emitting device and a light emitting device in which ultraviolet light and ultraviolet light, which are excitation light, are completely removed.
  • excitation phosphor wavelength converting white LED device since at least three or more kinds of phosphors are used to generate white light, the difference in emission energy, that is, the stokes shift between the excitation light and the phosphor, appear.
  • excitation energy loss due to cascade excitation occurring during the excitation / luminescence process between different phosphors also occurs, so that it is difficult to achieve high efficiency and high color rendering.
  • the near-ultraviolet which is an excitation light, and a violet light component are contained, there is a fear of deterioration when the object is irradiated. Therefore, such excitation light is preferably emitted as little as possible.
  • the present invention is to provide a high efficiency white LED device having high color rendering property by removing the excitation light from the semiconductor LED chip in the white light emitting device, and having a phosphor layer adjusted to optimum conditions. .
  • the present invention is a semiconductor LED chip that emits light in the ultraviolet and violet wavelength region having an emission peak at 350nm or more and 430nm or less and a transparent resin layer excited by the excitation wavelength of the purple LED chip to emit light
  • a white light emitting device comprising a phosphor layer distributed in the light emitting device, wherein the phosphor layer comprises: a first phosphor having an emission peak wavelength at 440 nm to 455 nm; And a second phosphor having an emission peak wavelength at 460 to 470 nm.
  • the present invention provides a phosphor wavelength converting white light emitting device in which an excitation light is controlled.
  • the first phosphor may be Sr 10 (PO 4 ) 6 Cl 2 : Eu
  • the second phosphor may be (Sr, Br) 10 (PO 4 ) 6 Cl 2 : Eu.
  • the weight ratio of the second phosphor to the first phosphor is 0.15 or more and less than 2, the phosphor wavelength conversion white light emitting device, characterized in that the color temperature is 1900K or more.
  • the phosphor layer may include a third phosphor having an emission peak wavelength in a wavelength region of 510 to 550 nm; A fourth phosphor having an emission peak wavelength in a wavelength region of 550 to 590 nm; And a fifth phosphor having an emission peak wavelength in a wavelength region of 630 to 660 nm.
  • the weight ratio of the first phosphor and the second phosphor may be mixed in a ratio of 10 to 300 times less than that of the third phosphor.
  • the phosphor wavelength converting white light emitting device may not exhibit an excitation light emission peak of 350 nm or more and 430 nm or less.
  • the phosphor wavelength converting white light emitting device may have an emission spectrum distributed in the range of 430 nm to 780 nm.
  • the light emitting device may have a light emission efficiency of 50 lm / W or more and a color rendering property of 89 or more.
  • the present invention also provides a white light emitting module comprising a phosphor wavelength converting white light emitting device.
  • the white light emitting module may further include a white light emitting device that emits excitation light.
  • the phosphor wavelength converting white light emitting device controlling the excitation light according to the present invention not only emits white light having a high color rendering degree, but also prevents the emission of excitation light, thereby minimizing optical damage due to ultraviolet and violet light, and By having a high luminous efficiency compared with the light emitting element which controlled light, the white light emitting element which has high efficiency and high color rendering property can be provided.
  • FIG. 2 is a graph showing a spectrum at a color temperature of 2000K as an emission spectrum according to an embodiment (Example 1) of the present invention (B1 / B2> 0.15).
  • Example 3 is a graph showing a spectrum at a color temperature of 3800K as an emission spectrum according to an embodiment (Example 2) of the present invention (B1 / B2> 0.5).
  • Example 4 is a graph showing a spectrum at a color temperature 4500K as an emission spectrum according to an embodiment (Example 3) of the present invention (B1 / B2> 0.7).
  • Example 5 is a graph showing a spectrum at a color temperature of 4600K as an emission spectrum according to an embodiment (Example 4) of the present invention (B1 / B2> 0.6).
  • Example 6 is a graph showing a spectrum at a color temperature 6100K as an emission spectrum according to an embodiment (Example 5) of the present invention (B1 / B2> 1.4).
  • FIG. 7 is a conceptual diagram of phosphor excitation and light emitting structures according to an embodiment of the present invention: (a) shows a case where the concentration of the B1 blue phosphor is low, and (b) shows a case where the concentration of the B1 phosphor is high. V represents an excitation light.
  • the present invention includes a semiconductor LED chip that emits light in the ultraviolet and violet wavelength region having an emission peak at 350 nm or more and 430 nm or less and a phosphor layer distributed in a transparent resin layer excited and emitted by the excitation wavelength of the purple LED chip.
  • the phosphor layer the first phosphor having an emission peak wavelength at 440 ⁇ 455nm; And a second phosphor having a light emission peak wavelength at 460 to 470 nm.
  • the semiconductor LED chip is a light emission half-width 30 nm excitation chip having a center wavelength at 405 nm and is composed of an InGaN / GaN multiple quantum well layer grown on a sapphire substrate, a Si substrate, or an SIC substrate, and grown on a GaN buffer layer. It is preferable to use semiconductor LED chips.
  • the semiconductor LED chip may have an emission peak at 350 nm or more and 430 nm or less, and the external quantum efficiency is preferably 50% or more. If the light emission peak is out of the above range, it cannot have a center wavelength at 405 nm, so it is difficult to emit white light, and when the quantum efficiency is less than 50%, the light emission efficiency is lowered.
  • the light emitting LED may further include various structures (electrode structure, reflective structure, flip-chip structure inverted up and down, etc.) for extracting more light generated from the light emitting layer to the outside.
  • the first phosphor may be a blue phosphor having an emission peak at 440 to 455 nm by being excited at a wavelength of 350 to 430 nm, and preferably Sr 10 (PO 4 ) 6 Cl 2 : Eu.
  • the second phosphor may be a blue phosphor having an emission peak at 460 to 470 nm by being excited at a wavelength of 440 to 455 nm, and preferably (Sr, Br) 10 (PO 4 ) 6 Cl 2 : Eu.
  • the weight ratio of the second phosphor to the first phosphor may be more than 0.15 and less than 2.
  • absorption of excitation light may not be smooth, and thus an emission peak spectrum of the excitation light may appear.
  • the light emission peaks of the first phosphor and the second phosphor are more preferably close to each other with a spacing of 10 nm or more so as to minimize the generation of excitation light, and it is preferable that the emission width is wide.
  • the color temperature of the light emitting device may be 1900K or more.
  • the phosphor layer may include a third phosphor having an emission peak wavelength in a wavelength region of 510 to 550 nm; A fourth phosphor having an emission peak wavelength in a wavelength region of 550 to 590 nm; And a fifth phosphor having an emission peak wavelength in a wavelength region of 630 to 660 nm.
  • the third to fifth phosphors are preferably excited to 440 to 455 nm generated by the first phosphor. In this case, since the light generated by the first phosphor is used to excite the third to fifth phosphors, white light emission is possible.
  • the weight median diameter is preferably 15 to 25 ⁇ m.
  • the weight median diameter is less than 15 ⁇ m, light emission by the phosphor is not smooth, and when the weight median diameter is larger than 25 ⁇ m, a screening effect by the phosphor may occur, thereby reducing light emission efficiency.
  • the weight ratio of the first phosphor and the second phosphor may be mixed in a ratio of 10 to 300 times less than that of the third phosphor. This is because the excitation light removal effect, which is one of the essential contents of the present invention, cannot be obtained unless the ratio of the content of the first phosphor and the second phosphor belonging to the blue phosphor and the ratio of the green phosphor increases by at least 10 to 300 times. On the other hand, when the phosphor is added at a ratio exceeding 300 times, the white light emission efficiency is expected to be extremely low. For the above reasons, the phosphor wavelength conversion type white light emitting device can prevent the emission peak of the excitation light of 350 nm or more and 430 nm or less from appearing.
  • the phosphor wavelength converting white light emitting device may have an emission spectrum distributed in the range of 430 nm to 780 nm.
  • the light emitting device may have a light emission efficiency of 50 lm / W or more and a color rendering property of 89 or more.
  • the light emitting part of the light emitting element of this invention can contain the said fluorescent substance and transparent resin which is a sealing material. That is, as the encapsulating material, it is preferable to use a transparent resin having sufficient transmittance and durability to excitation light (peak wavelength 350 to 430 nm) from the semiconductor LED element, and more preferably, a silicone resin can be used as the encapsulating material. have.
  • the invention also relates to a white light emitting module comprising a phosphor wavelength converting white light emitting device.
  • the white light emitting module may further include a white light emitting device that emits excitation light.
  • White devices were manufactured and evaluated using the following materials as semiconductor LED chips, phosphor materials, and sealing materials.
  • an InGaN / GaN multiple quantum well structure having a peak wavelength of 405 nm and a half width of 30 nm was used as the light emitting layer.
  • the outline is a rectangle of 520 ⁇ mx 390 ⁇ m.
  • Silicone resin and silica (SiO 2) were used.
  • the following phosphor material was used.
  • the mixing ratio of the used phosphors is shown in Table 1 below.
  • the weight ratio of each phosphor was determined based on the weight of the green phosphor that emits the green light having the highest visibility.
  • Phosphor compounding amount (content of green phosphor is 1) Blue phosphor B1 Blue phosphor B2 Green phosphor G Yellow phosphor Y Red phosphor R Comparative example 0 (B1 / G) 19.2 (B2 / G) 1 (G / G) 1.7 (Y / G) 6.3 (R / G) Example 1 1.5 (B1 / G) 10 (B2 / G) 1 (G / G) 1 (Y / G) 6.2 (R / G)
  • the emission spectrum was measured at room temperature under a 65 mA forward current application condition.
  • OPI-100 manufactured by Optoelectronic Precision Co., Ltd. (WITHLIGHT, Korea) was used.
  • 1 is a light emission spectrum of a white LED manufactured at a ratio of a comparative example at a color temperature of 3900K. At this time, the concentration ratio of B1 to B2 is zero. The intensity of the excitation light was about the same as the red emission intensity, but the blue, green, and red emission peaks appeared, but showed a fairly flat spectral distribution. Therefore, the color rendering is good, Ra is 98. In addition, R9 which represents the color of red and blue is 88, and R12 is 95. The luminous efficiency was 72lm / W.
  • excitation light of 405 nm is emitted through the phosphor layer to the outside. This appears as the short wavelength side excitation output light of the emission spectrum.
  • Each phosphor exhibits light emission intrinsic to the phosphor by this excitation light, and each light of the phosphor is synthesized to form a white light component (see Fig. 7 (a)).
  • Example 2 is a light emission spectrum of a white LED device manufactured at the ratio of Example 1 when the color temperature is 2000K.
  • concentration ratio of B1 to B2 is 0.15.
  • the excitation light component 405 nm does not appear at all.
  • the green light component in blue is fairly flat and has a bell-shaped shape with a broad emission peak at 630 nm.
  • Ra is 95 and the luminous efficiency is 50 lm / W or more.
  • Conventional techniques Patent No. KR10-1651342, etc.
  • Example 3 is a light emission spectrum of a white LED device manufactured at a ratio of Example 2 when the color temperature is 3900K. Under these conditions, no emission of 405 nm as excitation light occurred. Although blue light emission is shown at 459 nm, it is light emission of B2 blue fluorescent substance which is a 2nd fluorescent substance.
  • the Ra value was 96 and the luminous efficiency was 81 lm / W.
  • R9 is 96, R12 is 86, each value was confirmed to show a similar level when compared with the comparative example.
  • Example 4 is a light emission spectrum of a white light emitting device manufactured under the conditions of Example 3 shown in Table 1.
  • FIG. The color temperature is 4500K.
  • Both B1 and B2 were prepared by mixing at a specific ratio (> 0.7).
  • the excitation light peak of 405 nm does not appear at all in the emission spectrum. In this case, it was found that the strength of B1 was strengthened and became almost similar to that of B2. Color temperature was 4500K, Ra was 90 and luminous efficiency was 77lm / W.
  • Example 5 is a spectrum of a white LED device constructed at the ratio of Example 4 when the color temperature is 4600K.
  • the concentration ratio of B1 to B2 is 0.67.
  • the color temperature is about 100K higher than that of Example 3, the emission spectrum is nearly flat from 460nm to 630nm.
  • Ra is 93 and the luminous efficiency is 78 lm / W.
  • Fig. 6 is a spectrum of a white LED device constructed at the ratio of Example 5 when the color temperature is 6100K.
  • the concentration ratio of B1 to B2 is 1.47. Reflecting the characteristic that the color temperature is high, a light emission peak appears near 455 nm. Ra is 89 and the luminous efficiency is 69 lm / W.
  • FIG. 7 (b) schematically shows a process in which five kinds of phosphors present in the phosphor resin layers forming the white light emitting portions are excited and then each light emission is generated.
  • This schematic diagram is created to qualitatively explain the following experimental fact in the white LED element produced based on the present invention to the last.
  • the luminous efficiency is higher than 50 lm / W, up to 90 lm / W. . This is because the effect of exciting each phosphor with 405 nm light and the selective excitation of the blue (B2) phosphor, green phosphor, yellow phosphor, and red phosphor directly localized with blue light of around 450 nm, is achieved in two steps. By this, the loss due to Stokes shift is reduced, and thus it is considered that it advantageously acts on the phosphor excitation. It is thought that the light energy of 405 nm which is an excitation light is mostly used for excitation of the blue phosphor of B1.
  • the ratio of the amount of the first blue phosphor which emits light in the short wavelength and the amount of the second blue phosphor having light emission in the long wavelength side of the two kinds of blue phosphors is 0.15 or more and less than 2 It was confirmed that the light was completely removed, and the light emission efficiency and high color rendering were both compatible.
  • the ratio of green phosphor, B1 blue phosphor, and B2 blue phosphor is also an important relationship. Proper combination of the two blue phosphors and the green phosphors provided the desired spectrum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 자외, 자색광으로 여기한 형광체 파장 변환 방식으로 구성된 고연색 백색 발광 다이오드(Light-emitting Diode: LED로 약칭) 소자에서 백색광을 생성하는 형광체 조합 비율을 조정하는 것으로 여기광인 자외, 자색광을 완전히 제거한 백색 발광 소자 및 발광 장치에 관한 것이다. 본 발명은 350nm 이상 430nm 이하에 발광 피크를 가지는 자외선 및 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 백색 발광 소자에 있어서, 상기 형광체 층은, 440~455nm에 발광 피크 파장을 가지는 제1형광체; 및 460~470nm에 발광 피크 파장을 가지는 제2형광체를 포함하는 것을 특징으로 하는 여기광을 제어한 넓은 색온도 범위(1900K~7000K)를 가지는 형광체 파장 변환 백색 발광 소자를 제공한다.

Description

여기광을 제어한 형광체 파장 변환 백색 발광 소자 및 이를 포함하는 발광장치
본 발명은 여기광을 제어한 형광체 파장 변환 백색 발광 소자 및 이를 포함하는 발광장치에 관한 것으로서, 더욱 상세하게는 자외, 자색광으로 여기한 형광체 파장 변환 방식으로 구성된 고연색 백색 발광 다이오드(Light-emitting Diode: LED로 약칭) 소자에서 백색광을 생성하는 형광체 조합 비율을 조정하는 것으로 여기광인 자외, 자색광을 완전히 제거한 백색 발광 소자 및 발광 장치에 관한 것이다.
근자외, 자색광 여기 형광체 파장 변환형 백색LED 소자에 있어서, 백색광을 생성하기 위해 적어도 3종류 이상의 형광체를 사용하기 때문에 여기광과 형광체 사이에 발광 에너지의 차이, 즉 스토크스 이동(Stokes shift)이 나타난다. 또한, 서로 다른 형광체 간에 일어나는 여기/발광 과정에서 발생하는 캐스케이드 여기(cascade excitation)에 따른 여기 에너지 손실도 발생하여, 고효율과 고연색성을 양립하는 것은 어려운 일이었다. 게다가, 여기광인 근자외, 자색광 성분이 포함되어 있기 때문에 대상물에 조사했을 경우 열화의 우려가 있다. 따라서 이러한 여기광은 가능한 한 적게 방출되는 것이 바람직하다.
이러한 문제를 해결하기 위해, 각종 형광체를 층 구조로 제조하는 방법이 발명되었다. 그러나 다수의 형광체 코팅 과정이 필요함에 따라 제조비용이 높아지는 단점을 가지고 있다. 또한, 여기광이 완전히 흡수되지 못하는 경우 투과되고 마는 단점이 있다. 또한, 광학 필터를 사용하여 자색광을 제거하는 방법이 있으나, 발광효율이 대폭 감소함에 따라 현실적이지 않다.
한편, 형광체 혼합층의 두께를 두껍게 하면 여기광이 제거 될 확률이 있지만, 대량 양산에 적용하기 어렵고, 발광 효율이 나쁜 결점이 있다.
이렇듯이, 발광 효율을 향상시키면서 높은 연색성을 가지고, 또한 여기광을 제거하는 방법은 극히 어렵다. 그렇기 때문에, 통상적인 형광체 코팅법으로는 이러한 문제점을 해결할 수는 없었다.
전술한 문제를 해결하기 위하여, 본 발명은 백색 발광 소자에 있어서 반도체LED 칩에서의 여기광을 제거함과 더불어, 최적 조건으로 조정한 형광체 층을 가지는 것으로 인해 연색성이 높은 고효율 백색LED 소자를 제공하고자 한다.
상술한 문제를 해결하기 위해, 본 발명은 350nm 이상 430nm 이하에 발광 피크를 가지는 자외선 및 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 백색 발광 소자에 있어서, 상기 형광체 층은, 440~455nm에 발광 피크 파장을 가지는 제1형광체; 및 460~470nm에 발광 피크 파장을 가지는 제2형광체를 포함하는 것을 특징으로 하는 여기광을 제어한 형광체 파장 변환 백색 발광 소자를 제공한다.
상기 제1형광체는 Sr10(PO4)6Cl2:Eu 이며, 제2형광체는 (Sr,Br)10(PO4)6Cl2:Eu일 수 있다.
상기 제1형광체에 대한 제2형광체의 무게비는 0.15이상 2미만이며, 색온도 1900K이상 인 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
상기 형광체층은 510~550nm의 파장 영역에 발광 피크 파장을 가지는 제3 형광체; 550~590nm의 파장 영역에 발광 피크 파장을 가지는 제4 형광체; 및 630~660nm의 파장 영역에 발광 피크 파장을 가지는 제5 형광체를 추가로 포함할 수 있다.
상기 제1형광체 및 제2형광체의 중량 비율은 상기 제3형광체 대비 10배 이상 300배 미만의 비율로 혼합될 수 있다.
상기 형광체 파장 변환 백색 발광 소자는 350nm 이상 430nm 이하의 여기광 발광피크가 나타나지 않을 수 있다.
상기 형광체 파장 변환 백색 발광 소자는 발광 스펙트럼이 430~780nm의 범위에서 분포되어 있을 수 있다.
상기 발광 소자는 발광 효율이 50lm/W 이상, 연색성은 89 이상일 수 있다.
(효율 및 연색성을 확장하였습니다. 다만 상기와 같이 확장하는 경우 다른 특허와 청구범위가 겹칠 수 있습니다)
본 발명은 또한 형광체 파장 변환 백색 발광 소자를 포함하는 백색 발광 모듈을 제공한다.
상기 백색 발광 모듈은 여기광을 발산하는 백색 발광 소자를 추가로 포함할 수 있다.
본 발명에 의한 여기광을 제어한 형광체 파장 변환 백색 발광 소자는 높은 연색도를 가지는 백색광을 발산할 수 있을 뿐만 아니라 여기광의 발산을 막아 자외선 및 자색광으로 인한 광손상을 최소화함과 더불어 기존의 여기광을 제어한 발광 소자에 비하여 높은 발광효율을 가짐으로서, 고효율 및 고연색성을 가지는 백색 발광소자를 제공할 수 있다.
도 1은 본 발명의 일 실시예(비교예)에 의한 발광 스펙트럼으로, 색온도 3900K에서의 발광 스펙트럼을 나타낸 것이다(B1/B2=0).
도 2는 본 발명의 일 실시예(실시예1)에 의한 발광 스펙트럼으로 색온도 2000K에서의 스펙트럼을 나타낸 그래프이다(B1/B2>0.15).
도 3은 본 발명의 일 실시예(실시예2)에 의한 발광 스펙트럼으로 색온도 3800K에서의 스펙트럼을 나타낸 그래프이다(B1/B2>0.5).
도 4는 본 발명의 일 실시예(실시예 3)에 의한 발광 스펙트럼으로 색온도 4500K에서의 스펙트럼을 나타낸 그래프이다(B1/B2>0.7).
도 5는 본 발명의 일 실시예(실시예 4)에 의한 발광 스펙트럼으로 색온도 4600K에서의 스펙트럼을 나타낸 그래프이다(B1/B2>0.6).
도 6은 본 발명의 일 실시예(실시예 5)에 의한 발광 스펙트럼으로 색온도 6100K에서의 스펙트럼을 나타낸 그래프이다(B1/B2>1.4).
도 7은 본 발명의 일 실시예에 의한 형광체 여기 및 발광 구조의 개념도: (a)는 B1 청색 형광체의 농도가 낮을 경우, (b)는 B1 형광체의 농도가 높을 경우를 나타낸다. V는 여기광을 나타낸다.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 350nm 이상 430nm 이하에 발광 피크를 가지는 자외선 및 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 백색 발광 소자에 있어서, 상기 형광체 층은, 440~455nm에 발광 피크 파장을 가지는 제1형광체; 및 460~470nm에 발광 피크 파장을 가지는 제2형광체를 포함하는 것을 특징으로 하는 여기광을 제어한 형광체 파장 변환 백색 발광 소자에 관한 것이다.
상기 반도체 LED칩은 405nm에 중심 파장을 가지는 발광 반치폭30nm의 여기용 칩으로서 사파이어 기판 상, Si 기판 상 또는 SIC 기판 상에 성장시킨 InGaN/GaN 다중 양자 우물층으로 구성되며, GaN 버퍼 층 위에 성장시킨 반도체LED 칩을 사용하는 것이 바람직하다. 이때 상기 반도체 LED칩은 350nm 이상 430nm 이하에 발광 피크를 가질 수 있으며, 외부 양자 효율이 50% 이상인 것이 바람직하다. 발광피크가 상기 범위를 벗어나는 경우 405nm에 중심 파장을 가질 수 없어 백색의 발광이 어려우며, 양자효율이 50% 미만인 경우 발광효율이 떨어지게 된다. 또한 상기 발광 LED의 경우 발광층에서 발생한 빛을 보다 많이 외부로 추출하기 위한 다양한 구조(전극 구조, 반사 구조, 상하를 역전시킨 플립칩 구조 등)를 추가로 포함할 수 있다.
상기 제1형광체는 350~430nm의 파장으로 여기되어 440~455nm 에 발광 피크를 가지는 청색 형광체일 수 있으며, Sr10(PO4)6Cl2:Eu를 사용하는 것이 바람직하다. 또한 상기 제2형광체는 440~455nm의 파장으로 여기되어 460~470nm 에 발광 피크를 가지는 청색 형광체일 수 있으며, (Sr,Br)10(PO4)6Cl2:Eu를 사용하는 것이 바람직하다.
또한 상기 제1형광체에 대한 제2형광체의 무게비는 0.15이상 2미만일 수 있다. 상기 제1형광체에 대한 제2형광체의 무게비율이 상기 분위를 벗어나는 경우 여기광의 흡수가 원활하지 못하여 여기광의 발광 피크 스펙트럼이 나타날 수 있다. 또한 상기 제1형광체 및 제2형광체의 발광피크는 근접하여 존재하는 것이 바람직하다. 상기 제1형광체 및 제2형광체의 발광피크가 떨어져 있는 경우에는 여기광의 발광피크 스펙트럼이 나타날 수 있다. 아울러 제1형광체 및 제2형광체의 발광피크는 여기광의 발생을 최소화 할 수 있도록 10nm이상의 간격을 가지도록 근접한 것이 더욱 바람직하며, 또한 발광 전치폭이 넓은 것이 바람직하다.
또한 상기 발광소자의 색온도는 1900K이상 일 수 있다.
상기 형광체층은 510~550nm의 파장 영역에 발광 피크 파장을 가지는 제3 형광체; 550~590nm의 파장 영역에 발광 피크 파장을 가지는 제4 형광체; 및 630~660nm의 파장 영역에 발광 피크 파장을 가지는 제5 형광체를 추가로 포함할 수 있다. 이때 상기 제3~5 형광체는 상기 제1형광체에 의하여 발생되는 440~455nm으로 여기되는 것이 바람직하다. 이 경우 상기 제1형광체에 의하여 발생한 광이 상기 제3~5형광체를 여기하는 것에 사용되므로, 백색의 발광이 가능하다.
또한 상기 제1~5형광체의 경우 중량 메디안 지름이 15~25㎛인 것이 바람직하다. 중량메디안 지름이 15㎛미만인 경우 형광체에 의한 발광이 원활하지 않으며, 25㎛를 초과하는 경우에는 형광체에 의한 가림효과가 발생하여 발광효율이 떨어질 수 있다.
상기 제1형광체 및 제2형광체의 중량 비율은 상기 제3형광체 대비 10배 이상 300배 미만의 비율로 혼합될 수 있다. 이는, 청색 형광체에 속하는 제 1 형광체 및 제 2 형광체의 함유량과 녹색 형광체의 비율이 최소 10배에서 300배까지 높아지지 않으면 본 발명의 추요 내용 중 하나인 여기광 제거 효과를 얻을 수 없기 때문이다. 한편, 300배를 초과하는 비율로 형광체를 첨가하면 백색 발광 효율이 극단적으로 낮아질 것으로 예상된다. 이상의 이유로, 상기 형광체 파장 변환형 백색 발광 소자는 350nm 이상 430nm 이하의 여기광의 발광 피크가 나타나지 않게 하는 것이 가능하다.
상기 형광체 파장 변환 백색 발광 소자는 발광 스펙트럼이 430~780nm의 범위에서 분포되어 있을 수 있다.
상기 발광 소자는 발광 효율이 50lm/W 이상, 연색성은 89 이상일 수 있다.
본 발명의 발광 소자의 발광부는, 상기 형광체와 봉지재인 투명 수지를 함유할 수 있다. 즉, 봉지재로는, 반도체LED 소자로부터의 여기광(피크 파장350~430nm)에 대해 충분한 투과성과 내구성을 가지는 투명 수지를 사용하는 것이 바람직하며, 더욱 바람직하게는 봉지재로서 실리콘 수지를 사용할 수 있다.
본 발명은 또한 형광체 파장 변환 백색 발광 소자를 포함하는 백색 발광 모듈에 관한 것이다.
상기 백색 발광 모듈은 여기광을 발산하는 백색 발광 소자를 추가로 포함할 수 있다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.
실시예
반도체 LED칩, 형광체 재료, 봉지재로서 하기의 재료를 사용하여 백색 소자를 제조하고 평가하였다.
(1) 반도체 LED칩
반도체LED 칩으로는, 피크 파장405nm, 반치폭30nm인 InGaN/GaN 다중 양자 우물 구조를 발광층으로 하는 것을 사용하였다. 외형은 520μmx390μm의 장방형이다.
(2) 봉지재
실리콘 수지와 실리카(SiO2)를 사용하였다.
(3) 형광체
형광체로서 하기의 형광체 재료를 사용하였다.
청색 형광체(B1): Sr10(PO4)6Cl2:Eu
청색 형광체(B2): (Sr,Br)10(PO4)6Cl2:Eu
녹색 형광체(G): SiAlON:EU
황색 형광체(Y): (Ba,Sr)Si2(O,Cl)2N2:Eu
적색 형광체(R): CaAlSi(ON)2:Eu
이때 사용된 형광체의 혼합비는 하기의 표1과 같다. 가장 비시감도가 높은 녹색광을 방사하는 녹색 형광체 중량을 기준으로 각 형광체의 중량비를 결정하였다
형광체 배합량(녹색 형광체의 함량을1로 함.)
청색 형광체B1 청색 형광체B2 녹색 형광체G 황색 형광체Y 적색 형광체R
비교예 0(B1/G) 19.2(B2/G) 1(G/G) 1.7(Y/G) 6.3(R/G)
실시예1 1.5(B1/G) 10(B2/G) 1(G/G) 1(Y/G) 6.2(R/G)
실시예2 70(B1/G) 120(B2/G) 1(G/G) 4(Y/G) 20(R/G)
실시예3 70(B1/G) 150(B2/G) 1(G/G) 4(Y/G) 16(R/G)
실시예4 100(B1/G) 150(B2/G) 1(G/G) 6(Y/G) 12(R/G)
실시예5 250(B1/G) 170(B2/G) 1(G/G) 6(Y/G) 17.4(R/G)
또한 이때의 청색형광체(B1)과 청색형광체(B2)의 비는 하기의 표2와 같다.
샘플 청색 형광체(B1)의 중량% / 청색 형광체(b2)의 중량% 비율
비교예 0
실시예1 >0.15
실시예2 >0.5
실시예3 >0.7
실시예4 >0.6
실시예5 >1.4
상기 InGaN/GaN 다중 양자 우물 구조를 가지는 자색LED(발광피크 405nm)를 전극 배선을 실시한 알루미늄 상에 실장하여, 상기 5종류의 형광체를 각각의 배합비에 따라, 상기 실리콘 수지 중에 분산시킨 형광체 함유 조성물을 사용해 봉지하였다(비교예 1 실시예1~3). 형광체 혼합액은, 디스펜서를 사용하여 자색 LED 칩 상에 직접 빈틈없이 도포하였다. 이후 160℃의 온도에서 3시간 동안 열경화를 수행하였다. (특허 1-초고연색 발광소자-를 기초로 추가하였습니다)
발광 스펙트럼 측정은, 65mA의 순방향 전류 인가 조건으로, 실온에서 실시하였다. 측정 장치는, 광전자정밀㈜(WITHLIGHT, 한국)제OPI-100을 사용 하였다.
비교예
우리는 지금까지 오랜 기간 동안 자색 LED 칩 여기에 의한 초고연색 백색 LED 제조에 관여해 왔다. 색온도 1900K에서 11000K까지의 각종 백색 LED를 개발해 왔으나, 여기광인 자색광 성분은 반드시 발광에 포함되어 있었다. 우선 하기에 비교예로서 대표적인 색온도 3900K에서의 발광 스펙트럼 특성을 간단히 설명한다.
도1은 색온도 3900K에서의 비교예의 비율로 제작된 백색 LED의 발광스펙트럼이다. 이때 B1 대 B2의 농도비는 0이다. 여기광의 강도는 적색 발광 강도와 거의 같은 정도로, 청색, 녹색, 적색 발광 피크가 나타나기는 하지만 상당히 평탄한 스펙트럼 분포를 보였다. 그러므로 연색성은 양호하여, Ra는98이다. 또한, 적과 청의 색상을 나타내는R9는88, R12는95이다. 발광 효율은 72lm/W로 나타났다.
도 1에 나타난 바와 같이, 통상적인 형광체의 중량% 조합(비교예)에서는, 405nm의 여기광이 형광체층을 뚫고 외부로 출사되는 것을 알 수 있다. 이것이 발광 스펙트럼의 단파장 측 여기 출력광으로 나타난다. 각각의 형광체는, 이 여기광에 의해 형광체 고유의 발광을 나타내고, 형광체의 각각의 빛이 합성되어 백색광 성분을 형성한다(도 7(a) 참조).
실시예 1
도 2는 색 온도 2000K일 때의 실시예1의 비율로 제조된 백색LED 소자의 발광스펙트럼이다. B1 대 B2의 농도비는 0.15이다. 발광 스펙트럼에 있어서, 여기광 성분 405nm는 전혀 나타나지 않는다. 낮은 색온도 특성을 반영하여 청색에서 녹색광 성분이 상당히 평탄하게 연결되고 630nm에서 폭 넓은 발광 피크를 보이는 종 모양의 형태를 띤다. Ra는 95, 발광 효율은 50lm/W 이상이다. 지금까지의 기술로는(특허 번호 KR10-1651342 등) 형광체층에 B1 청색 형광체가 함유되어 있지 않은 경우에는 미세하지만 여기광 405nm는 발광 스펙트럼에 나타났다.
실시예 2
도 3은 색 온도3900K일 때의 실시예 2의 비율로 제조된 백색LED 소자의 발광 스펙트럼이다. 이 조건에서는 여기광인 405nm의 발광은 전혀 나타나지 않고 있다. 청색 발광은 459nm에서 나타나고 있으나, 이는 제2 형광체인 B2 청색 형광체의 발광이다. Ra 값은 96이고, 발광 효율은 81lm/W로 나타났다. 또한 R9는 96, R12는 86으로, 각각의 값은 비교예와 비교할 때 유사한 수준을 나타내는 것을 확인할 수 있었다.
실시예 1과 2에서, 서로 다른 색온도의 발광 소자에서도 B1/B2>0.5를 초과하면 명백하게 405nm의 여기광 피크가 나타나지 않는다. 이것은 도7(b)에 나타낸 바와 같이, 여기광 에너지는 우선, B1을 여기시키기 위해 사용되고, 대부분이 흡수된다. 그 후, B1 형광체는 450nm의 발광 에너지로 녹색 형광체(제3형광체), 황색 형광체(제4형광체), 및 적색 형광체(제5형광체)를 차례로 여기시킨다. 이러한 여기 과정이 존재하기 때문에, B1 청색형광체, B2 청색형광체, G, Y, R의 5색 형광체의 합성광에 의해 백색광을 발생시키는 것이 가능해진다.
또한 비교예와 실시예3을 비교해 보면, 발광 효율에 거의 차이가 없다는 점이다. 즉, 350nm 이상 430nm 미만의 여기광과 B1의 청색 여기광을 이용한 2단 여기 에너지의 흡수로 인해, 효율적으로 형광체의 발광이 발생하고 있는 것을 확인할 수 있었다.
실시예 3
도 4는, 표 1에 나타낸 실시예 3의 조건으로 제작된 백색 발광 소자의 발광 스펙트럼이다. 색온도는 4500K이다. B1과 B2 두가지를 특정 비율(>0.7)로 혼합하여 제작하였다.
B1/B2>0.7이므로, 405nm의 여기광 피크는 전혀 나타나지 않았다. 이에 따라 B1 형광체의 발광대와 B2 형광체의 발광대가 중첩되어459nm 부근에 발광 피크를 보였다. 그리고, 녹색과 황색 형광체 발광대는 연속적으로 연결되었다.
발광 스펙트럼에서405nm의 여기광 피크는 전혀 나타나지 않는다. 이 경우, B1의 강도가 강해져서B2의 강도와 거의 유사해지는 것으로 나타났다. 색온도는4500K로, Ra는90, 발광 효율은 77lm/W로 나타났다.
실시예 4
도 5는 색온도 4600K일 때의 실시예 4의 비율로 작제된 백색 LED 소자의 스펙트럼이다. B1 대 B2의 농도비는 0.67이다. 실시예 3과 비교하여 색온도가 약 100K 높으나, 460nm에서 630nm에 걸쳐 발광 스펙트럼이 평탄에 가까운 특징을 나타낸다. Ra는 93, 발광 효율은 78lm/W이다.
실시예5
도 6은 색온도 6100K일 때의 실시예 5의 비율로 작제된 백색 LED 소자의 스펙트럼이다. B1 대 B2의 농도비는 1.47이다. 색온도가 높다는 특징을 반영하여 455nm 부근에 발광 피크를 보인다. Ra는 89, 발광 효율은 69lm/W이다.
높은 색온도의 백색 LED 소자를 작제할 경우에는 [표 2]와 같이B1/B2의 비가 한자리 수 정도 높아지는 경향이 있음을 알 수 있었다.
도 7(b)는 각각 백색 발광부를 형성하는 형광체 수지층 속에 존재하는 5종류의 형광체가 여기되고, 그 후에 각 발광을 발생시키는 과정을 모식적으로 나타낸 것이다. 이 모식도는 어디까지나 본 발명에 기반하여 작제된 백색LED소자에서, 이하의 실험 사실을 정성적으로 설명하기 위해 작성된 것이다.
(1) 여기광이 거의 완전히 제거되어, 발광부에서 방출되지 않는다.
(2) 높은 발광 효율을 유지한다.
(3) Ra가90 인 높은 연색성을 보인다.
상기 실시예 1~5에서 알 수 있듯이, B1의 양이 많아지더라도, B1 형광체에서의450nm 발광은 형광체층에서 외부로 방출되고 있다. 도7에 나타낸 바와 같이,B1 형광체는 다량으로 포함되어 있기 때문에, 상 분리 및 적출의 우려가 있으나, 광학 현미경 관찰에서는 이러한 현상은 관측되지 않았다.
연색성에 관해서는, 실시예 1과 실시예5에서 알 수 있듯이, 스펙트럼이 거의 연속적으로 이어지기 때문에 굴곡이 생기는 일은 없었다. 그렇기 때문에 높은 평균연색 평가수를 얻을 수 있었다. Ra는 90에 가깝거나 그 이상의 값을 달성했다.
본 발명에서는, 많은 형광체를 사용하고 있기 때문에 다단 여기에 의한 에너지 손실이 발생하여, 발광 효율이 저하하는 것은 아닐까 하는 우려가 있었으나, 발광 효율은50lm/W 이상으로, 최대90lm/W까지 높일 수 있었다. 이것은, 405nm의 빛으로 각 형광체를 여기시키는 효과와, 450nm 내외의 청색광으로 직접적으로 국재화된 청색(B2) 형광체, 녹색 형광체, 황색 형광체 및 적색 형광체를 선택적으로 여기시키는 점에서, 2단계의 여기에 의해 스토크스 이동(Stokes shift)에 따른 손실이 감소되고, 이에 따라 형광체 여기에는 유리하게 작용한 것으로 생각된다. 여기광인 405nm의 빛 에너지는 대부분B1의 청색 형광체 여기에 사용되는 것으로 생각된다.
따라서 본 발명에 의한 백색 발광 소자는2종류의 청색 형광체 중 단파장에 발광을 보이는 제1 청색 형광체의 양과 미세하게 장파장 쪽 발광을 가지는 제2 청색 형광체의 양의 비율을 0.15 이상 2 미만으로 함에 따라 여기광을 완전히 제거하고, 높은 발광 효율과 높은 연색성을 양립하는 특성을 가진다는 점을 확인할 수 있었다.
또한, 본 발명에 있어서는 녹색 형광체와B1 청색 형광체 및B2 청색 형광체 비율도 중요한 관계이다. 두 가지 청색 형광체와 녹색형광체를 적절히 배합하여야 원하는 스펙트럼을 얻을 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (10)

  1. 350nm 이상 430nm 이하에 발광 피크를 가지는 자외선 및 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 백색 발광 소자에 있어서,
    상기 형광체 층은,
    440~455nm에 발광 피크 파장을 가지는 제1형광체; 및
    460~470nm에 발광 피크 파장을 가지는 제2형광체;
    를 포함하는 것을 특징으로 하는 여기광을 제어한 형광체 파장 변환 백색 발광 소자.
  2. 제1항에 있어서,
    상기 제1형광체는 Sr10(PO4)6Cl2:Eu 이며, 제2형광체는 (Sr,Br)10(PO4)6Cl2:Eu인 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
  3. 제1항에 있어서,
    상기 제1형광체에 대한 제2형광체의 무게비는 0.15이상 2미만이며, 상기 발광소자의 색온도는 1900K이상 인 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
  4. 제1항에 있어서,
    상기 형광체층은
    510~550nm의 파장 영역에 발광 피크 파장을 가지는 제3 형광체;
    550~590nm의 파장 영역에 발광 피크 파장을 가지는 제4 형광체; 및
    630~660nm의 파장 영역에 발광 피크 파장을 가지는 제5 형광체;
    를 추가로 포함하는 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
  5. 제4항에 있어서,
    상기 제1형광체 및 제2형광체의 중량 비율은 상기 제3형광체 대비 1.5배 이상 300배 미만의 비율로 혼합되는 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
  6. 제1항에 있어서,
    상기 형광체 파장 변환 백색 발광 소자는 350nm 이상 430nm 이하의 여기광 발광피크가 나타나지 않는 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
  7. 제1항에 있어서,
    상기 형광체 파장 변환 백색 발광 소자는 발광 스펙트럼이 430~780nm의 범위에서 분포되어 있는 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
  8. 제1항에 있어서,
    상기 발광 소자는 발광 효율이 50lm/W 이상, 연색성은 89 이상인 것을 특징으로 하는 형광체 파장 변환 백색 발광 소자.
  9. 제1항 내지 제8항 중 어느 한 항의 형광체 파장 변환 백색 발광 소자를 포함하는 백색 발광 모듈.
  10. 제9항에 있어서,
    상기 백색 발광 모듈은 여기광을 발산하는 백색 발광 소자를 추가로 포함하는 것을 특징으로 하는 백색 발광 모듈.
PCT/KR2018/006298 2018-03-21 2018-06-01 여기광을 제어한 형광체 파장 변환 백색 발광 소자 및 이를 포함하는 발광장치 WO2019182195A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0032626 2018-03-21
KR20180032626 2018-03-21

Publications (1)

Publication Number Publication Date
WO2019182195A1 true WO2019182195A1 (ko) 2019-09-26

Family

ID=67987413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006298 WO2019182195A1 (ko) 2018-03-21 2018-06-01 여기광을 제어한 형광체 파장 변환 백색 발광 소자 및 이를 포함하는 발광장치

Country Status (1)

Country Link
WO (1) WO2019182195A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706750B1 (ko) * 2000-08-10 2007-04-11 삼성전자주식회사 형광램프 및 이를 채용한 액정표시장치
KR20110085206A (ko) * 2010-01-19 2011-07-27 일진반도체 주식회사 백색 발광장치 및 이의 제조방법
WO2013069435A1 (ja) * 2011-11-07 2013-05-16 株式会社東芝 白色光源およびそれを用いた白色光源システム
KR20170068728A (ko) * 2015-12-10 2017-06-20 주식회사 올릭스 양자점 물질을 적용한 미술관 및 박물관용 led 소자 및 모듈
KR20170134241A (ko) * 2016-05-26 2017-12-06 니치아 카가쿠 고교 가부시키가이샤 발광 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706750B1 (ko) * 2000-08-10 2007-04-11 삼성전자주식회사 형광램프 및 이를 채용한 액정표시장치
KR20110085206A (ko) * 2010-01-19 2011-07-27 일진반도체 주식회사 백색 발광장치 및 이의 제조방법
WO2013069435A1 (ja) * 2011-11-07 2013-05-16 株式会社東芝 白色光源およびそれを用いた白色光源システム
KR20170068728A (ko) * 2015-12-10 2017-06-20 주식회사 올릭스 양자점 물질을 적용한 미술관 및 박물관용 led 소자 및 모듈
KR20170134241A (ko) * 2016-05-26 2017-12-06 니치아 카가쿠 고교 가부시키가이샤 발광 장치

Similar Documents

Publication Publication Date Title
CN108305929B (zh) 具有高显色性的白光发光装置
JP5951180B2 (ja) 飽和変換材料を有するエミッタパッケージ
KR101055772B1 (ko) 발광장치
KR101408508B1 (ko) 발광 장치
WO2012026718A2 (ko) 멀티칩 백색 led 소자
US7737457B2 (en) Phosphor down converting element for an LED package and fabrication method
WO2019182194A1 (ko) 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치
WO2018143681A1 (ko) 발광 다이오드 패키지
KR100911001B1 (ko) 백색 발광 다이오드용 신규 형광체 및 그 제조방법
JP5232783B2 (ja) 一種の珪素を含む蛍光粉及びその製造方法並びにそれを用いた発光器具
CN110534631B (zh) 一种led结合钙钛矿量子点微晶玻璃的显示用宽色域背光源
WO2012044026A2 (ko) 형광체 및 이의 제조방법
WO2017116048A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2014007451A1 (ko) 조명 장치
WO2015184618A1 (zh) 基于固态荧光材料的嵌入式白光led封装结构及其制作方法
WO2019182195A1 (ko) 여기광을 제어한 형광체 파장 변환 백색 발광 소자 및 이를 포함하는 발광장치
JP2007081159A (ja) 発光装置及び表示装置
EP3657064B1 (en) Led lighting apparatus having improved color rendering, and led filament
US10236425B2 (en) White light emitting device having high color rendering
WO2016032178A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 시스템
WO2015130055A2 (ko) 발광 다이오드 패키지
WO2011004961A2 (en) Light emitting device employing luminescent substances with oxyorthosilicate luminophores
WO2011083885A1 (ko) 산황화물계 적색 형광체 및 이를 이용한 백색 led와 led패키지
WO2017043851A1 (ko) 발광 장치
KR20200024607A (ko) 식물생장용 광합성 클로로필 파장 변환 백색 발광 소자 및 조명장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910975

Country of ref document: EP

Kind code of ref document: A1