WO2019181696A1 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
WO2019181696A1
WO2019181696A1 PCT/JP2019/010334 JP2019010334W WO2019181696A1 WO 2019181696 A1 WO2019181696 A1 WO 2019181696A1 JP 2019010334 W JP2019010334 W JP 2019010334W WO 2019181696 A1 WO2019181696 A1 WO 2019181696A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
phase difference
light
light intensity
Prior art date
Application number
PCT/JP2019/010334
Other languages
English (en)
French (fr)
Inventor
奥田 義行
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019181696A1 publication Critical patent/WO2019181696A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • the present invention relates to a distance measuring device, and more particularly to a distance measuring device that measures the distance to an object by comparing the phases of a transmission signal and a reception signal.
  • a distance measuring device that measures the distance to an object by irradiating the object with laser light and receiving and analyzing the laser light reflected by the object is known (for example, Patent Document 1). .
  • a distance measuring device for example, a target is irradiated with laser light whose light intensity is modulated by a sine wave, the laser light reflected by the target is received, and the light intensity is converted into an electrical signal. Then, the phase difference between the sine wave component included in the electrical signal and the sine wave component included in the light intensity of the laser beam at the time of emission is extracted, and the extracted phase difference is converted into a delay time. The distance from the object is calculated based on the speed of light.
  • this distance calculation method since the distance is calculated based on the phase difference, it is possible to measure only up to a distance corresponding to one wavelength (or 1 ⁇ 2 wavelength depending on the phase difference detection method) of the sine wave to be modulated. .
  • a sine wave In order to widen the range of measurement distance, it is conceivable to use a sine wave with a long wavelength, but when it is necessary to identify a small difference in distance, the amount of phase change corresponding to the difference in distance is small. Measurement accuracy will deteriorate. Therefore, in order to achieve both a wide measurement distance range and measurement accuracy, laser light is used by combining a sine wave having a long wavelength (ie, a low frequency) and a sine wave having a short wavelength (ie, a high frequency). The intensity is being modulated.
  • a plurality of sine waves are emitted after being multiplex-modulated with the light intensity of laser light from one light source (that is, one laser light).
  • another sine wave is modulated to the light intensity of laser light (that is, a plurality of laser lights) from a plurality of light sources and emitted simultaneously.
  • the signal components of each sine wave are extracted from the electrical signal obtained by converting the received laser beam.
  • An example of the problem is that the BPF (Band Pass ⁇ ⁇ Filter) to be extracted and the BPF to extract a high frequency signal component have to be provided, and the circuit configuration of the distance measuring device becomes complicated.
  • a configuration for aligning the delay amounts is required separately.
  • the output signal indicating the light intensity of the received laser beam may have a signal waveform in which the non-linearity with respect to the incident light amount increases as the multiplication factor is increased and the upper side is crushed.
  • the signal waveform becomes a distorted waveform whose upper side is crushed relative to the original sine wave. Since this is a second harmonic distortion, the zero cross point shifts to the front side when rising, and shifts to the rear side when falling. In this state, if the product of the sine wave before emission is taken to detect the phase difference, the phase difference appears back and forth every half cycle.
  • a plurality of laser light sources, optical systems, and light receiving systems are required, which increases the scale of the system.
  • the optical system is misaligned, it will be difficult to collect spots at the same point on the object (detected object).
  • One example of the problem is that they will be separated.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a distance measuring device capable of accurately measuring a distance to an object with a simple configuration.
  • a laser beam whose light intensity is modulated based on a first frequency signal having a first frequency and a second frequency signal having a second frequency higher than the first frequency is directed to a predetermined region.
  • a light receiving unit that receives the laser light reflected by the object in the predetermined region, converts the light intensity of the received laser light into an electrical signal, and the electrical signal
  • a first phase difference detector that detects a phase difference between the first frequency signal component and the first frequency signal; and the second frequency signal component generated from the electrical signal and the second frequency signal.
  • the laser beam has a light intensity modulated by a modulation signal obtained by amplitude-modulating a second sine wave having the second frequency with a first sine wave having the first frequency. It is characterized by.
  • FIG. 6 is a diagram illustrating an example of a signal waveform of a light reception signal in Embodiment 1.
  • FIG. It is a figure which shows the signal waveform of the optical intensity of the laser beam radiate
  • FIG. 1 It is a figure which shows the example of the signal waveform of the light intensity of the laser beam received in a comparative example. It is a block diagram which shows the structure of the distance measuring device of a comparative example. It is a block diagram which shows the structure of the ranging apparatus of Example 2.
  • FIG. It is a figure which shows the signal waveform of the optical intensity of the laser beam radiate
  • FIG. It is a figure which shows typically the spectrum of the signal component of each frequency modulated in the light intensity of a laser beam in Example 2.
  • FIG. 1 is a block diagram illustrating a configuration of the distance measuring apparatus 100 according to the first embodiment.
  • the distance measuring device 100 emits laser light whose light intensity is modulated based on a signal of a predetermined frequency toward a predetermined area, receives the laser light reflected by the object OJT in the predetermined area, The distance to the object OJT is measured based on the phase difference of the signal component of the predetermined frequency generated from the light intensity of the laser light at the time of light reception.
  • the distance measuring device 100 includes a reference signal generating unit 10, an emitting unit 11, a light receiving unit 12, a fa to fb band pass BPF 13, an f1 component generating unit 14, an f1 phase difference detecting unit 15, an f2 phase difference detecting unit 17, and a distance calculating unit. 18
  • the reference signal generator 10 generates a reference signal used for modulation of the light intensity of the laser beam at the time of emission.
  • the reference signal generator 10 generates a first frequency signal S1 and a second frequency signal S2 having different frequencies as reference signals.
  • the first frequency signal S1 has a frequency f1 (for example, 1 MHz), and the second frequency signal S2 has a frequency f2 (for example, 50 MHz) higher than the frequency f1.
  • f1 for example, 1 MHz
  • the second frequency signal S2 has a frequency f2 (for example, 50 MHz) higher than the frequency f1.
  • the emission unit 11 includes a laser light source 11A that emits laser light, and a laser light emission drive unit 11B that drives the laser light source 11A.
  • the emitting unit 11 emits laser light, whose light intensity is modulated based on the first frequency signal S1 and the second frequency signal S2 supplied from the reference signal generating unit 10, toward a predetermined region.
  • the emitting unit 11 uses, as emitted light OL, laser light having a light intensity modulated by a modulation signal obtained by amplitude-modulating a second sine wave having a frequency f2 with a first sine wave having a frequency f1.
  • the light receiving unit 12 receives reflected light RL, which is laser light reflected by the object OJT in a predetermined area, and receives the reflected light RL of the received reflected light RL into an electric signal, and the light receiving element 12A.
  • a light reception signal detection unit 12B that detects the light reception signal RS from the converted electrical signal is included.
  • the light receiving element 12A is composed of a photodetector such as a photodiode, for example, and converts the light intensity of the received reflected light RL into an electric signal.
  • the light receiving element 12A is composed of an APD (Avalanche Photodiode).
  • the fa to fb band pass BPF 13 is a band pass filter whose pass band is a frequency range from the frequency fa to the frequency fb.
  • the fa to fb band-pass BPF 13 passes signal components having frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components in other frequency bands.
  • the f1 component generator 14 Based on the second frequency signal S2 supplied from the reference signal generator 10, the f1 component generator 14 generates (extracts) the signal component f1RS of the frequency f1 from the light reception signal RS that has passed through the fa to fb band pass BPF 13. .
  • the f1 phase difference detection unit 15 is one of the signal component of the frequency f1 of the light reception signal RS and the reference signal generated by the reference signal generation unit 10 based on the light reception signal RS that has passed through the fa to fb band pass BPF 13.
  • a phase difference PD1 from a certain first frequency signal S1 (frequency f1) is detected.
  • the f2 phase difference detection unit 17 receives the light reception signal RS that has passed through the fa to fb bandpass BPF 13, and the second frequency signal S2 (frequency f2) that is one of the reference signals generated by the reference signal generation unit 10.
  • the phase difference PD2 is detected.
  • the distance calculation unit 18 is based on the phase difference PD1 for the frequency f1 detected by the f1 phase difference detection unit 15 and the phase difference PD2 for the frequency f2 detected by the f2 phase difference detection unit 17.
  • a distance CD from 100 to the object OJT is calculated.
  • the frequency f1 1 MHz
  • the wavelength is about 300 m, and therefore, measurement in a range of 150 m (that is, a range of 300 m round-trip) is possible based on the phase difference PD1 for the frequency f1.
  • the wavelength is about 6 m, and therefore, measurement in a range of 3 m (that is, a range of 6 m round-trip) is possible based on the phase difference PD2 for the frequency f2.
  • the distance calculation unit 18 uses the phase difference PD1 for the frequency f1 for a rough measurement of a long distance range, and uses the phase difference PD2 for the frequency f2 for a fine measurement of a short distance range.
  • the distance CD to OJT is calculated.
  • the reference signal generation unit 10 generates a first frequency signal S1 having a frequency f1, and supplies the first frequency signal S1 to the emission unit 11 and the f1 phase difference detection unit 15. In addition, the reference signal generation unit 10 generates a second frequency signal S2 having the frequency f2 and supplies the second frequency signal S2 to the emission unit 11 and the f2 phase difference detection unit 17.
  • the emission unit 11 directs laser light having light intensity modulated by a modulation signal obtained by amplitude-modulating the second sine wave having the frequency f2 with the first sine wave having the frequency f1 to the predetermined region as the emission light OL. Exit.
  • the first sine wave having the frequency f1 is cos (2 ⁇ ⁇ f1 ⁇ t)
  • the second sine wave having the frequency f2 is cos (2 ⁇ ⁇ f2 ⁇ t)
  • the time is t
  • the frequency f1 and the frequency f2 Is the frequency fa
  • the difference between the frequency f1 and the frequency f2 is the frequency fb
  • the light intensity Semit (t) of the emitted light OL is expressed by the following equation (Equation 1).
  • the light intensity Semit (t) needs to be kept at 0 or more. Since the minimum value that can be taken by cos (2 ⁇ ⁇ f2 ⁇ t) ⁇ 1 + cos (2 ⁇ ⁇ f1 ⁇ t) ⁇ is ⁇ 2, in this embodiment, a DC-like offset value (hereinafter referred to as a DC offset). "+2" is added.
  • the DC offset represents the base level of the light intensity Semit (t), and the DC offset value “2” is the average light intensity of the outgoing light OL.
  • the light intensity of the output light OL is appropriately weighted (1/2 in the above equation) with the sine wave of the frequency fa and the sine wave of the frequency fb with respect to the center frequency f2.
  • the signal waveform is the same as that modulated by the added modulation signal, and the signal waveform is a waveform whose amplitude changes around “2”.
  • FIG. 2A is a diagram showing a signal waveform of the light intensity of the outgoing light OL.
  • Laser light having such a signal waveform of light intensity is emitted from the emitting portion 11 toward the predetermined region as emitted light OL.
  • FIG. 2B is a graph schematically showing spectra of the frequencies f2, fa, and fb that are modulated by the light intensity of the outgoing light OL.
  • the spectrum of the frequency f2 stands on the graph
  • the spectrums of the frequency fa and the frequency fb are in the vicinity of the frequency f2 and symmetrically on both sides. Will stand.
  • the laser light (emitted light OL) emitted from the emitting unit 11 is reflected by the object OJT in a predetermined area.
  • the light receiving unit 12 receives reflected light RL that is laser light reflected by the object OJT.
  • the light receiving element 12A of the light receiving unit 12 multiplies the amount of the reflected light RL and converts the light intensity of the reflected light RL into an electric signal. At this time, the nonlinearity of the reflected light RL multiplied by the light receiving element 12A with respect to the incident light amount increases. For this reason, the signal waveform of the light reception signal RS which is a signal obtained by converting the light intensity of the reflected light RL into an electric signal has a distorted shape.
  • FIG. 2C is a diagram illustrating an example of a signal waveform of the light reception signal RS.
  • a signal waveform in which the light intensity of the reflected light RL is saturated and the upper half is crushed is shown.
  • the signal waveform of the light reception signal RS retains the shape of the waveform of the light intensity of the emitted light OL.
  • the signal waveform of the light reception signal RS shown in FIG. 2C is a signal waveform obtained by adding the signal component of the frequency f1 to the light intensity of the emitted light OL shown in FIG. 2A. Therefore, by cutting the signal component of the frequency f1 from the light reception signal RS, the distorted signal waveform shown in FIG. 2C can be returned to the signal waveform similar to the signal waveform of the light intensity of the emitted light OL shown in FIG. 2A.
  • the light receiving unit 12 supplies the light reception signal RS to the fa to fb bandpass BPF 13.
  • the fa to fb band-pass BPF 13 passes signal components having frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components in other frequency bands. Thereby, the signal component of the frequency f1 is cut, and the distortion of the signal waveform of the light reception signal RS is corrected.
  • the f1 component generator 14 has an envelope of the signal waveform of the received light signal RS (that is, the same amplitude modulation waveform as the signal waveform of the emitted light OL shown in FIG. 2A) whose distortion has been corrected by passing through the fa to fb bandpass BPF 13. Is detected (generated), the signal component f1RS of the frequency f1 of the received light signal RS is generated.
  • the f1 phase difference detector 15 is based on the signal component f1RS of the frequency f1 generated by the f1 component generator 14 and the phase difference between the signal component of the frequency f1 of the received light signal RS and the first frequency signal S1 (frequency f1). PD1 is detected and supplied to the distance calculator 18. Similarly, the f2 phase difference detection unit 17 detects the phase difference PD2 between the light reception signal RS that has passed through the fa to fb band pass BPF 13 and the second frequency signal S2 (frequency f2), and supplies it to the distance calculation unit 18.
  • the distance calculation unit 18 uses the detected phase difference PD1 for the frequency f1 for a rough measurement of a long distance range, and uses the phase difference PD2 for the frequency f2 for a fine measurement of a short distance range.
  • the distance CD from the object to the object OJT is calculated.
  • the distance measuring apparatus 100 has the frequency f2 as the first sine wave having the frequency f1 based on the first frequency signal S1 having the frequency f1 and the second frequency signal S2 having the frequency f2.
  • a laser beam having a light intensity modulated by a modulation signal obtained by amplitude-modulating the second sine wave is emitted toward a predetermined region.
  • the distance measuring device 100 receives the laser beam reflected by the object OJT in the predetermined area and converts it into an electrical signal (light reception signal RS), and the signal component of the frequency f1 generated from the electrical signal and the first signal component.
  • phase difference PD1 between the first frequency signal S1 and the phase difference PD2 between the second frequency signal S2 and the signal component of the frequency f2 generated from the electrical signal are detected, and the distance CD from the object OJT based on the detection result. Is calculated.
  • FIG. 3A is different from the present embodiment in that the light of the laser light in the comparative example in which the laser light having the light intensity modulated by the combined wave signal obtained by adding the sine wave of the frequency f1 and the sine wave of the frequency f2 is emitted. It is a figure which shows the signal waveform of an intensity
  • laser light having a light intensity Semit (t) expressed by the following formula (Equation 2) is emitted, for example.
  • FIG. 4 is a block diagram showing a configuration of a distance measuring device 100A of a comparative example.
  • the distance measuring apparatus 100A of the comparative example extracts the signal component f1RS having the frequency f1 and the signal component f2RS having the frequency f2 from the received light signal RS obtained by converting the received laser light into an electrical signal, and the respective frequencies are determined. Compare the phase difference.
  • the distance measuring apparatus 100A of the comparative example requires two systems of BPFs (f1 component extraction BPF 13A and f2 component extraction BPF 13B shown in FIG. 4). Become. Further, in order to achieve matching in calculating the distance, it is necessary to align the delay amounts of the two systems of BPF.
  • the distance measuring apparatus 100 of the present embodiment is unnecessary with one BPF (fa to fb bandpass BPF 13 shown in FIG. 1) because the frequencies f2, fa, and fb are close as shown in FIG. 2B. It is possible to cut a signal component.
  • FIG. 3C is a diagram illustrating a signal waveform of a light reception signal of a comparative example.
  • the signal waveform of the light reception signal RS does not retain the shape of the signal waveform of the light intensity of the laser beam at the time of emission. Therefore, it is difficult to return to the same shape as the signal waveform at the time of emission.
  • the signal component f1RS of the frequency f1 extracted from the received light signal RS has a distortion waveform that shifts to the front side when the zero cross point rises and shifts to the rear side when falling due to the second harmonic distortion. If an attempt is made to detect the phase difference in this state, the phase difference appears in a form shifted back and forth every half cycle. In order to avoid this, it is necessary to narrow the pass band of the BPF for extracting the signal component f1RS of the frequency f1 and remove the second harmonic. However, when trying to narrow the BPF band, there is a side effect that the delay time becomes longer in a trade-off manner, and the time required for distance calculation becomes longer.
  • the signal waveform of the light reception signal RS retains the shape of the signal waveform of the light intensity of the emitted light OL, and the signal component of the frequency f1 is cut from the light reception signal RS.
  • the distorted signal waveform can be returned to the same signal waveform as the signal waveform of the light intensity of the outgoing light OL. Therefore, according to the distance measuring apparatus 100 of the present embodiment, it is possible to correct the distortion of the signal waveform of the light reception signal RS with a simple configuration.
  • the distance measuring device 100 of the present embodiment when compared with another distance measuring device (not shown) that measures a distance by simultaneously emitting a plurality of laser beams, the distance measuring device 100 of the present embodiment has a light source and an optical system for laser light, Since only one light receiving system, BPF, etc. are required, the scale of the apparatus can be reduced. Further, in the distance measuring device 100 according to the present embodiment, it is difficult to collect a spot at the same point or an optical axis misalignment caused by using a plurality of laser beams generated in another distance measuring device. There is no problem that long and short wavelength measurement positions are scattered.
  • the DC offset may be set to an appropriate value in order to keep the light intensity Semit (t) at 0 or more. That is, the emitted light OL has only to have the light intensity Semit (t) represented by the following mathematical formula (Formula 3), where ⁇ , ⁇ , and ⁇ are constants.
  • the distance measuring apparatus 100 of the present embodiment it is possible to accurately measure the distance to the object with a simple configuration.
  • FIG. 5 is a block diagram illustrating a configuration of the distance measuring apparatus 200 according to the second embodiment.
  • the distance measuring device 200 includes a reference signal generating unit 20, an emitting unit 21, a light receiving unit 22, a fa to fb band pass BPF 23, an f1 component generating unit 24, a first f1 phase difference detecting unit 25, an f2 phase difference detecting unit 27, It has a distance calculation unit 28, an f1 band pass BPF 30, and a second f1 phase difference detection unit 31.
  • the reference signal generator 20 generates a first frequency signal S1 and a second frequency signal S2 as reference signals used for modulation of the light intensity of the laser light at the time of emission and detection of a phase difference after light reception.
  • the first frequency signal S1 has a frequency f1 (for example, 1 MHz), and the second frequency signal S2 has a frequency f2 (for example, 50 MHz) higher than the frequency f1.
  • f1 for example, 1 MHz
  • f2 for example, 50 MHz
  • the emission unit 21 includes a laser light source 21A that emits laser light, and a laser light emission drive unit 21B that drives the laser light source 21A.
  • the emission unit 21 emits laser light, whose light intensity is modulated based on the first frequency signal S1 and the second frequency signal S2 supplied from the reference signal generation unit 20, toward a predetermined region.
  • the emitting unit 21 of the present embodiment is a composite signal obtained by adding a third wave having the first frequency f1 to the modulation signal obtained by amplitude-modulating the second sine wave having the frequency f2 with the first sine wave having the frequency f1.
  • the laser beam having the light intensity modulated by is emitted as the outgoing light OL.
  • the light receiving unit 22 has the same configuration as the light receiving unit 12 of the first embodiment.
  • the light receiving unit 22 receives the reflected light RL that is the laser light reflected by the object OJT in the predetermined area, converts the light intensity of the received reflected light RL into an electric signal, and generates a light receiving signal RS.
  • the fa to fb band pass BPF 23 is a band pass filter whose pass band is a frequency range from the frequency fa to the frequency fb.
  • the fa to fb band pass BPF 23 passes signal components of frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components of other frequency bands.
  • the f1 component generator 24 Based on the second frequency signal S2 supplied from the reference signal generator 20, the f1 component generator 24 generates (extracts) the signal component f1RS having the frequency f1 from the received light signal RS that has passed through the fa to fb band pass BPF 23. .
  • the first f1 phase difference detection unit 25 includes the signal component f1RS of the frequency f1 of the light reception signal RS generated by the f1 component generation unit 24, and the first frequency signal S1 (frequency f1) supplied from the reference signal generation unit 20.
  • the phase difference PD1 is detected.
  • the f2 phase difference detection unit 27 detects the phase difference PD2 between the light reception signal RS that has passed through the fa to fb bandpass BPF 23 and the second frequency signal S2 (frequency f2) supplied from the reference signal generation unit 20.
  • the f1 band pass BPF 30 is a band pass filter that passes the signal of the frequency f1.
  • the f1 band pass BPF 30 passes the signal component of the frequency f1 among the signal components included in the light reception signal RS, and blocks the signal components of the other frequency bands.
  • the second f1 phase difference detection unit 31 includes the signal component f3RS of the frequency f1 of the light reception signal RS that has passed through the f1 band pass BPF 30 and the first frequency signal S1 (frequency f1) supplied from the reference signal generation unit 20.
  • the phase difference PD3 is detected.
  • the distance calculation unit 28 includes a phase difference PD1 for the frequency f1 detected by the first f1 phase difference detection unit 25, a phase difference PD2 for the frequency f2 detected by the f2 phase difference detection unit 27, and a second
  • the reference signal generation unit 20 generates a first frequency signal S1 having a frequency f1, and supplies the first frequency signal S1 to the emission unit 21, the first f1 phase difference detection unit 25, and the second f1 phase difference detection unit 31.
  • the reference signal generation unit 20 generates a second frequency signal S2 having a frequency f2, and supplies the second frequency signal S2 to the emission unit 21, the f1 component generation unit 24, and the f2 phase difference detection unit 27.
  • the emitting unit 21 is modulated by a composite signal obtained by adding a third wave having the first frequency f1 to a modulation signal obtained by amplitude-modulating the second sine wave having the frequency f2 with the first sine wave having the frequency f1.
  • Laser light having light intensity is emitted toward a predetermined region as emitted light OL.
  • the first sine wave having the frequency f1 is cos (2 ⁇ ⁇ f1 ⁇ t)
  • the second sine wave having the frequency f2 is cos (2 ⁇ ⁇ f2 ⁇ t)
  • the third wave having the frequency f1 is cos.
  • Example 1 the minimum value that can be taken by the portion excluding the DC offset (that is, cos (2 ⁇ ⁇ f2 ⁇ t) ⁇ 1 + cos (2 ⁇ ⁇ f1 ⁇ t) ⁇ ) is ⁇ 2; “+2” was added as an offset.
  • the minimum value that can be taken by the portion excluding the DC offset in this embodiment is larger than that in the first embodiment by cos (2 ⁇ ⁇ f1 ⁇ t). Therefore, in this embodiment, “+1” which is smaller than that in the first embodiment is added as the DC offset.
  • FIG. 6A is a diagram showing a signal waveform of the light intensity of the outgoing light OL.
  • the light intensity of the output light OL is modulated based on cos (2 ⁇ ⁇ f2 ⁇ t) ⁇ 1 + cos (2 ⁇ ⁇ f1 ⁇ t) ⁇ , and further, cos ( 2 ⁇ ⁇ f1 ⁇ t) is added, the signal waveform is such that the entire waveform swells upward from the 0 level.
  • the laser light (emitted light OL) emitted by the emitting unit 21 is reflected by the object OJT in the predetermined area.
  • the light receiving unit 22 receives reflected light RL that is laser light reflected by the object OJT.
  • the light receiving unit 22 multiplies the amount of the reflected light RL, converts the light intensity into an electric signal, and detects it as a light receiving signal RS.
  • the light receiving unit 22 supplies the light reception signal RS to the fa to fb band pass BPF 23 and the f1 band pass BPF 30.
  • the fa to fb band pass BPF 23 passes signal components of frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components of other frequency bands. Thereby, the signal component of the frequency f1 is cut, and the distortion of the signal waveform of the light reception signal RS is corrected.
  • the f1 component generation unit 24 generates (extracts) the signal component f1RS of the frequency f1 by detecting the envelope of the signal waveform of the received light signal RS that has passed through the fa to fb bandpass BPF 23 and whose distortion has been corrected.
  • the first f1 phase difference detection unit 25 detects the phase difference PD1 between the signal component f1RS of the frequency f1 of the light reception signal RS and the first frequency signal S1 (frequency f1), and supplies it to the distance calculation unit 28.
  • the f2 phase difference detection unit 27 detects the phase difference PD2 between the light reception signal RS that has passed through the fa to fb band pass BPF 23 and the distortion has been corrected and the second frequency signal S2 (frequency f2), and sends it to the distance calculation unit 28. Supply.
  • the f1 band pass BPF 30 passes the signal component of the frequency f1 among the signal components included in the light reception signal RS, and blocks the signal components of the other frequency bands. Thereby, the signal component of the frequency f1 of the light reception signal RS is extracted.
  • the second f1 phase difference detector 31 detects the phase difference PD3 between the extracted signal component f3RS of the frequency f1 of the received light signal RS and the first frequency signal S1 (frequency f1), and supplies it to the distance calculator 28. .
  • the distance calculation unit 28 uses the phase difference PD1 and the phase difference PD3 for the frequency f1 for rough measurement of a long distance range, and uses the phase difference PD2 for the frequency f2 for fine measurement of a short distance range. A distance CD from 200 to the object OJT is calculated.
  • the distance measuring apparatus 200 has the frequency f2 as the first sine wave having the frequency f1, based on the first frequency signal S1 having the frequency f1 and the second frequency signal S2 having the frequency f2.
  • a laser beam having a light intensity modulated by a combined signal obtained by adding a third wave having the first frequency f1 to the modulation signal obtained by amplitude-modulating the second sine wave is emitted toward the predetermined region as the emitted light OL.
  • cos (2 ⁇ ⁇ f1 ⁇ t) is added to cos (2 ⁇ ⁇ f2 ⁇ t) ⁇ 1 + cos (2 ⁇ ⁇ f1 ⁇ t) ⁇ as a combined wave signal for modulating the light intensity. is doing. Therefore, the minimum value that can be taken by the portion excluding the DC offset of the synthesized wave signal is larger than that of the first embodiment by cos (2 ⁇ ⁇ f1 ⁇ t). Therefore, the value of the DC offset can be made smaller than that of the first embodiment (for example, “+1”).
  • the value of DC offset indicates the base level of the light intensity of the laser light, and is a value indicating the average light intensity of the laser light. From the viewpoint of safety, it is desirable that the average light intensity of the laser light is low. Therefore, according to the distance measuring apparatus 200 of the present embodiment, the distance can be measured using a laser beam with higher safety.
  • the S / N ratio of the signals used for phase difference detection (in the present embodiment, the first frequency signal S1 and the second frequency signal S2) is Improves distance measurement accuracy. Since the DC offset is an element not related to phase difference detection, and thus distance measurement, if the ratio of the DC offset to the amplitude of the synthesized wave signal can be kept small, the amplitude of the synthesized wave signal can be reduced without increasing the average light intensity. The distance measurement accuracy can be improved by increasing the distance.
  • the distance measuring apparatus 200 of the present embodiment since the ratio of the DC offset to the amplitude of the synthesized wave signal is small, the amplitude of the synthesized wave signal is relatively large and the S / N ratio of the signal used for phase difference detection is large. Therefore, according to the distance measuring apparatus 200 of the present embodiment, it is possible to perform distance measurement with high accuracy.
  • the distance measuring apparatus 200 since the distance measuring apparatus 200 according to the present embodiment detects the phase difference for the frequency f1 by two methods and calculates the distance, the accuracy of the phase difference detection is improved, and further the accuracy of the distance measurement is further increased. Can be improved.
  • the DC offset may be set to an appropriate value in order to keep the light intensity Semit (t) at 0 or more. That is, the emitted light OL has only to have the light intensity Semit (t) represented by the following mathematical formula (Formula 5), where ⁇ , ⁇ , ⁇ , and ⁇ are constants.
  • the fa to fb bandpass BPF passes a signal component having a frequency from the frequency fa to the frequency fb among the signal components included in the light reception signal RS.
  • the passband of the fa to fb bandpass BPF may be set to a slightly wider bandwidth.
  • the lower limit value of the pass band of the fa to fb band pass BPF may be set to a value smaller than the frequency fa.
  • the upper limit value of the pass band of the fa to fb band pass BPF may be set to a value larger than the frequency fb.
  • the distance measuring device 200 includes the f1 band pass BPF 30 and the second f1 phase difference detection unit 31, and the signal component of the frequency f1 is separated from the first phase difference detection unit 25.
  • the distance measuring apparatus 200 determines the distance based on the phase difference for the signal component of the frequency f2 and the phase difference for the signal component of the frequency f1 detected by the first phase difference detection unit 25. May be calculated. That is, the distance measuring device 200 may be configured without the f1 band-pass BPF 30 and the second f1 phase difference detection unit 31, and according to such a configuration, only one system of BPF or the like is required. Can be suppressed.
  • the third wave is not limited to this, and may be a sine wave (sin wave, cos wave), a trapezoidal wave, a triangular wave, a rectangular wave, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

第1周波数の第1周波数信号及び第1周波数よりも高い第2周波数の第2周波数信号に基づいて光強度を変調したレーザ光を出射する出射部と、対象物で反射されたレーザ光を受光して光強度を電気信号に変換する受光部と、電気信号から生成された第1周波数の信号成分と第1周波数信号との位相差を検出する第1位相差検出部と、電気信号から生成された第2周波数の信号成分と第2周波数信号との位相差を検出する第2位相差検出部と、第1周波数及び第2周波数の夫々についての位相差に基づいて対象物までの距離を算出する距離算出部と、を有する。レーザ光は、第1周波数を有する第1の正弦波で第2周波数を有する第2の正弦波を振幅変調した変調信号により変調された光強度を有する。

Description

測距装置
 本発明は、測距装置に関し、特に、送信信号及び受信信号の位相を比較して対象物までの距離を測定する測距装置に関する。
 レーザ光を対象物に照射し、当該対象物によって反射されたレーザ光を受光して解析することにより、対象物までの距離を計測する測距装置が知られている(例えば、特許文献1)。かかる測距装置では、例えば正弦波によって光強度を変調したレーザ光を対象物に照射し、対象物によって反射されたレーザ光を受光して、その光強度を電気信号に変換する。そして、電気信号に含まれる正弦波の成分と射出時のレーザ光の光強度に含まれる正弦波の成分との位相差を抽出し、抽出した位相差を遅延時間に変換し、当該遅延時間及び光速度に基づいて対象物との距離を算出する。
 正弦波に基づいてレーザ光の光強度を変調する場合、光強度をゼロレベル以上に保つため、正弦波にオフセット値を加えて光強度のベースレベルを設定し、そのベースレベルを中心として振動させる手法が知られている。
 また、かかる距離の算出方法では、位相差に基づいて距離を算出するため、変調する正弦波の1波長(または位相差検出方式によっては1/2波長)分の距離までしか計測することができない。測定距離の範囲を広くするためには波長の長い正弦波を用いることが考えられるが、そうすると細かい距離の差を識別する必要がある場合に、当該距離の差に対応する位相変化量が小さいため、測定精度が悪化してしまう。そこで、広い測定距離の範囲と測定精度とを両立させるため、波長の長い(すなわち、周波数が低い)正弦波と波長の短い(すなわち、周波数が高い)正弦波とを併用してレーザ光の光強度を変調することが行われている。
 波長の異なる複数の正弦波を併用するために、1つの光源からのレーザ光(すなわち、1本のレーザ光)の光強度に複数の正弦波を多重変調して出射することが行われている。また、複数の光源からのレーザ光(すなわち、複数本のレーザ光)の光強度にそれぞれ別の正弦波を変調して同時に出射することも行われている。
特開2015-129646号公報
 上記のように、1本のレーザ光に複数の正弦波を多重変調する方法では、受光したレーザ光を変換した電気信号から各々の正弦波の信号成分を抽出するため、低い周波数の信号成分を抽出するBPF(Band Pass Filter)と高い周波数の信号成分を抽出するBPFとを設けなければならず、測距装置の回路構成が複雑化するということが課題の一例として挙げられる。また、複数設けたBPF間の遅延量を揃えなければ距離計算における整合性が取れないため、遅延量を揃えるための構成が別途必要になる。
 また、対象物によって反射されたレーザ光を受光する受光部において、APD(Avalanche Photodiode)等の受光素子を用いて、アバランシェ増倍を利用して受光感度を上昇させることが考えられる。しかし、受光したレーザ光の光強度を表す出力信号は、増倍率を上げるにしたがって入射光量に対する非線形性が増大し、上側が潰れたような信号波形となる場合がある。
 この出力信号から低い周波数の正弦波の信号成分を抽出した場合、その信号波形は元の正弦波に対して上側が潰れた歪み波形となる。これは2次高調波歪みであるため、ゼロクロスポイントが立上がり時は前側にずれ、立下り時は後ろ側にずれる。この状態で出射前の正弦波との積をとって位相差を検出しようとすると、半周期ごとに前後にずれた位相差となって表れる。
 これを回避するためには、低い周波数の正弦波の信号成分を抽出するBPFの通過帯域を狭くして、2次高調波を除去する対応をとることになる。しかし、BPFの帯域を狭くしようとすると、トレードオフ的に遅延時間が長くなる副作用が生じ、距離算出に要する時間が長くなるという弊害が生じることが課題の一例として挙げられる。
 また、異なる波長の正弦波で光強度を変調した複数本のレーザ光を同時に出射する方法では、レーザ光源、光学系及び受光系がそれぞれ複数個必要となり、システムの規模が大きくなることが課題の一例として挙げられる。また、複数本のレーザ光を用いることでお互いの光学系の軸ズレが生じると、その影響で対象物(被検出体)の同一点にスポットを集めるのが困難になり、長短波長の計測位置が別々になってしまうということが課題の一例として挙げられる。
 本発明は上記した点に鑑みてなされたものであり、簡易な構成で精度よく対象物までの距離を計測することが可能な測距装置を提供することを目的の一つとしている。
 請求項1に記載の発明は、第1周波数を有する第1周波数信号及び前記第1周波数よりも高い第2周波数を有する第2周波数信号に基づいて光強度を変調したレーザ光を所定領域に向けて出射する出射部と、前記所定領域内の対象物によって反射された前記レーザ光を受光し、当該受光したレーザ光の光強度を電気信号に変換する受光部と、前記電気信号から生成された前記第1周波数の信号成分と前記第1周波数信号との位相差を検出する第1位相差検出部と、前記電気信号から生成された前記第2周波数の信号成分と前記第2周波数信号との位相差を検出する第2位相差検出部と、前記第1位相差検出部により検出された位相差及び前記第2位相差検出部により検出された位相差に基づいて、前記対象物までの距離を算出する距離算出部と、を有し、前記レーザ光は、前記第1周波数を有する第1の正弦波で前記第2周波数を有す第2の正弦波を振幅変調した変調信号により変調された光強度を有することを特徴とする。
本発明の実施例1の測距装置の構成を示すブロック図である。 実施例1において出射されるレーザ光の光強度の信号波形を示す図である。 実施例1において出射されるレーザ光の光強度に変調される各周波数の信号成分のスペクトラムを模式的に示す図である。 実施例1における受光信号の信号波形の例を示す図である。 比較例において出射されるレーザ光の光強度の信号波形を示す図である。 比較例において出射されるレーザ光の光強度に変調される各周波数の信号成分のスペクトラムを模式的に示す図である。 比較例において受光するレーザ光の光強度の信号波形の例を示す図である。 比較例の測距装置の構成を示すブロック図である。 実施例2の測距装置の構成を示すブロック図である。 実施例2において出射されるレーザ光の光強度の信号波形を示す図である。 実施例2においてレーザ光の光強度に変調される各周波数の信号成分のスペクトラムを模式的に示す図である。
 以下に本発明の好適な実施例を詳細に説明する。なお、以下の各実施例における説明及び添付図面においては、実質的に同一または等価な部分には同一の参照符号を付している。
 図1は、実施例1の測距装置100の構成を示すブロック図である。測距装置100は、所定周波数の信号に基づいて光強度を変調したレーザ光を所定領域に向けて出射し、所定領域内の対象物OJTによって反射されたレーザ光を受光して、出射時及び受光時のレーザ光の光強度から生成された当該所定周波数の信号成分の位相差に基づいて対象物OJTまでの距離を計測する。測距装置100は、基準信号発生部10、出射部11、受光部12、fa~fb帯域通過BPF13、f1成分生成部14、f1位相差検出部15、f2位相差検出部17及び距離算出部18を有する。
 基準信号発生部10は、出射時におけるレーザ光の光強度の変調に用いる基準信号を生成する。基準信号発生部10は、互いに周波数の異なる第1周波数信号S1及び第2周波数信号S2を基準信号として生成する。第1周波数信号S1は周波数f1(例えば、1MHz)を有し、第2周波数信号S2は周波数f1よりも高い周波数f2(例えば、50MHz)を有する。以下の説明では、第1周波数信号S1=cos(2π・f1・t)、第2周波数信号S2=cos(2π・f2・t)とする。
 出射部11は、レーザ光を出射するレーザ光源11A、及びレーザ光源11Aを駆動するレーザ発光駆動部11Bを含む。出射部11は、基準信号発生部10から供給された第1周波数信号S1及び第2周波数信号S2に基づいて光強度を変調したレーザ光を所定領域に向けて出射する。具体的には、出射部11は、周波数f1を有する第1の正弦波で周波数f2を有する第2の正弦波を振幅変調した変調信号により変調された光強度を有するレーザ光を出射光OLとして出射する。
 受光部12は、所定領域内の対象物OJTによって反射されたレーザ光である反射光RLを受光し、受光した反射光RLの光強度を電気信号に変換する受光素子12A、及び受光素子12Aにより変換された電気信号から受光信号RSを検出する受光信号検出部12Bを含む。受光素子12Aは、例えばフォトダイオード等の光検出器から構成され、受光した反射光RLの光強度を電気信号に変換する。例えば、受光素子12Aは、APD(Avalanche Photodiode)から構成されている。
 fa~fb帯域通過BPF13は、周波数faから周波数fbまでの周波数範囲を通過帯域とするバンドパスフィルタである。fa~fb帯域通過BPF13は、受光信号RSに含まれる信号成分のうち、周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。
 f1成分生成部14は、基準信号発生部10から供給された第2周波数信号S2に基づいて、fa~fb帯域通過BPF13を通過した受光信号RSから周波数f1の信号成分f1RSを生成(抽出)する。
 f1位相差検出部15は、fa~fb帯域通過BPF13を通過した受光信号RSに基づいて、受光信号RSの周波数f1の信号成分と、基準信号発生部10によって生成された基準信号の1つである第1周波数信号S1(周波数f1)との位相差PD1を検出する。
 f2位相差検出部17は、fa~fb帯域通過BPF13を通過した受光信号RSと、基準信号発生部10によって生成された基準信号の他の1つである第2周波数信号S2(周波数f2)との位相差PD2を検出する。
 距離算出部18は、f1位相差検出部15によって検出された周波数f1についての位相差PD1と、f2位相差検出部17によって検出された周波数f2についての位相差PD2と、に基づいて測距装置100から対象物OJTまでの距離CDを算出する。例えば、周波数f1=1MHzとすると、波長が約300mであるため、周波数f1についての位相差PD1に基づいて150mの範囲(すなわち、往復300mの範囲)での測定が可能である。一方、周波数f2=50MHzとすると、波長が約6mであるため、周波数f2についての位相差PD2に基づいて3mの範囲(すなわち、往復6mの範囲)での測定が可能である。距離算出部18は、周波数f1についての位相差PD1を長い距離範囲の大まかな測定に用い、周波数f2についての位相差PD2を短い距離範囲の細かい測定に用いることにより、測距装置100から対象物OJTまでの距離CDを算出する。
 次に、本実施例の測距装置100の動作について図1及び図2A~2Cを参照して説明する。
 基準信号発生部10は、周波数f1を有する第1周波数信号S1を生成し、出射部11及びf1位相差検出部15に供給する。また、基準信号発生部10は、周波数f2を有する第2周波数信号S2を生成し、出射部11及びf2位相差検出部17に供給する。
 出射部11は、周波数f1を有する第1の正弦波で周波数f2を有する第2の正弦波を振幅変調した変調信号により変調された光強度を有するレーザ光を出射光OLとして所定領域に向けて出射する。
 例えば、周波数f1を有する第1の正弦波をcos(2π・f1・t)、周波数f2を有する第2の正弦波をcos(2π・f2・t)、時間をt、周波数f1と周波数f2との和の周波数を周波数fa、周波数f1と周波数f2との差の周波数を周波数fbとすると、出射光OLの光強度Semit(t)は、以下の数式(数1)で表される。
Figure JPOXMLDOC01-appb-M000003
 なお、光強度Semit(t)は、0以上に保たれる必要がある。cos(2π・f2・t){1+cos(2π・f1・t)}が取りうる値の最小値は-2であるため、本実施例では、DC的なオフセット値(以下、DCオフセットと称する)として、“+2”を加えている。DCオフセットは光強度Semit(t)のベースレベルを表しており、DCオフセットの値である“2”が出射光OLの平均の光強度となる。
 式の変形から分かるように、出射光OLの光強度は、中心周波数f2に対して、周波数faの正弦波及び周波数fbの正弦波が適当な重み付け(上記数式では、1/2)を伴って加わった変調信号により変調されたのと同じであり、その信号波形は“2”を中心に振幅が変化する波形となる。
 図2Aは、出射光OLの光強度の信号波形を示す図である。このような信号波形の光強度を有するレーザ光が、出射光OLとして出射部11から所定領域に向けて出射される。
 図2Bは、出射光OLの光強度に変調される周波数f2、fa及びfbのスペクトラムを模式的に示すグラフである。f1=1MHz、f2=50MHzとすると、fa=51MHz、fb=49MHzとなり、グラフ上では周波数f2のスペクトラムが立つとともに、周波数f2の近傍且つ両側の左右対称な位置に周波数fa及び周波数fbのスペクトラムが立つことになる。
 再び図1を参照すると、出射部11により出射されたレーザ光(出射光OL)は、所定領域内の対象物OJTによって反射される。受光部12は、対象物OJTによって反射されたレーザ光である反射光RLを受光する。
 受光部12の受光素子12Aは、反射光RLの光量を増倍させ、反射光RLの光強度を電気信号に変換する。その際、受光素子12Aにより増倍された反射光RLの光強度は、入射光量に対する非線形性が増大する。このため、反射光RLの光強度を電気信号に変換した信号である受光信号RSの信号波形は、歪んだ形状となる。
 図2Cは、受光信号RSの信号波形の一例を示す図である。ここでは、歪んだ信号波形の極端な例として、反射光RLの光強度が飽和して上側半分が潰れた信号波形を示している。
 図2Aと図2Cとの比較から分かるように、受光信号RSの信号波形は、出射光OLの光強度の波形の形状を留めている。具体的には、図2Cに示す受光信号RSの信号波形は、図2Aに示す出射光OLの光強度に周波数f1の信号成分を足した信号波形となる。従って、受光信号RSから周波数f1の信号成分をカットすることにより、図2Cに示す歪んだ信号波形を図2Aに示す出射光OLの光強度の信号波形と同様の信号波形に戻すことができる。
 再び図1を参照すると、受光部12は、受光信号RSをfa~fb帯域通過BPF13に供給する。fa~fb帯域通過BPF13は、受光信号RSに含まれる信号成分のうち、周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。これにより、周波数f1の信号成分がカットされ、受光信号RSの信号波形の歪みが補正される。
 f1成分生成部14は、fa~fb帯域通過BPF13を通過して歪みが補正された受光信号RSの信号波形(すなわち、図2Aに示す出射光OLの信号波形と同様の振幅変調波形)のエンベロープを検出することにより、受光信号RSの周波数f1の信号成分f1RSを生成(抽出)する。
 f1位相差検出部15は、f1成分生成部14により生成された周波数f1の信号成分f1RSに基づいて、受光信号RSの周波数f1の信号成分と第1周波数信号S1(周波数f1)との位相差PD1を検出し、距離算出部18に供給する。同様に、f2位相差検出部17は、fa~fb帯域通過BPF13を通過した受光信号RSと第2周波数信号S2(周波数f2)との位相差PD2を検出し、距離算出部18に供給する。
 距離算出部18は、検出された周波数f1についての位相差PD1を長い距離範囲の大まかな測定に用い、周波数f2についての位相差PD2を短い距離範囲の細かい測定に用いることにより、測距装置100から対象物OJTまでの距離CDを算出する。
 以上のように、本実施例の測距装置100は、周波数f1の第1周波数信号S1及び周波数f2の第2周波数信号S2に基づいて、周波数f1を有する第1の正弦波で周波数f2を有する第2の正弦波を振幅変調した変調信号により変調された光強度を有するレーザ光を所定領域に向けて出射する。そして、測距装置100は、所定領域内の対象物OJTによって反射されたレーザ光を受光して電気信号(受光信号RS)に変換し、当該電気信号から生成された周波数f1の信号成分と第1周波数信号S1との位相差PD1、及び電気信号から生成された周波数f2の信号成分と第2周波数信号S2との位相差PD2をそれぞれ検出し、検出結果に基づいて対象物OJTとの距離CDを算出する。
 図3Aは、本実施例とは異なり、周波数f1の正弦波と周波数f2の正弦波とを加算した合成波信号により変調された光強度を有するレーザ光を出射する比較例における、レーザ光の光強度の信号波形を示す図である。比較例では、例えば以下の数式(数2)で表される光強度Semit(t)のレーザ光を出射する。
Figure JPOXMLDOC01-appb-M000004
 図3Bは、比較例のレーザ光の光強度に変調される周波数f1及びf2のスペクトラムを示すグラフである。f1=1MHz、f2=50MHzとすると、周波数f1及び周波数f2のスペクトラムは、グラフ上の離れた位置に立つことになる。
 図4は、比較例の測距装置100Aの構成を示すブロック図である。比較例の測距装置100Aは、受光したレーザ光を電気信号に変換して得られた受光信号RSから周波数f1の信号成分f1RSと周波数f2の信号成分f2RSとを抽出して、それぞれの周波数についての位相差の比較を行う。
 図3Bに示すように、周波数f1と周波数f2とは離れているため、比較例の測距装置100Aでは、2系統のBPF(図4に示すf1成分抽出BPF13A及びf2成分抽出BPF13B)が必要となる。また、距離の算出において整合を取るためには2系統のBPFの遅延量を揃える必要がある。
 これに対し、本実施例の測距装置100は、図2Bに示すように周波数f2、fa及びfbが近接しているため、1つのBPF(図1に示すfa~fb帯域通過BPF13)で不要な信号成分をカットすることができる。
 また、図3Cは、比較例の受光信号の信号波形を示す図である。比較例では、受光信号RSの信号波形が出射時のレーザ光の光強度の信号波形の形状を留めていない。従って、出射時の信号波形と同様の形状に戻すことは難しい。
 また、受光信号RSから抽出した周波数f1の信号成分f1RSは、2次高調波歪みにより、ゼロクロスポイントが立上がり時は前側にずれ、立下り時は後ろ側にずれた歪み波形となる。この状態で位相差を検出しようとすると、位相差は半周期ごとに前後にずれた形で表れる。これを回避するためには、周波数f1の信号成分f1RSを抽出するBPFの通過帯域を狭くして、2次高調波を除去する必要がある。しかし、BPFの帯域を狭くしようとすると、トレードオフ的に遅延時間が長くなる副作用が生じ、距離算出に要する時間が長くなってしまう。
 これに対し、本実施例の測距装置100では、受光信号RSの信号波形が出射光OLの光強度の信号波形の形状を留めており、受光信号RSから周波数f1の信号成分をカットすることにより、歪んだ信号波形を出射光OLの光強度の信号波形と同様の信号波形に戻すことができる。従って、本実施例の測距装置100によれば、簡易な構成で受光信号RSの信号波形の歪みを補正することができる。
 また、複数本のレーザ光を同時に出射することにより距離を計測する他の測距装置(図示せず)と比較した場合、本実施例の測距装置100では、レーザ光の光源や光学系、受光系、BPF等が1系統で済むため、装置規模を抑えることができる。また、本実施例の測距装置100では、当該他の測距装置において生じる複数本のレーザ光を用いることにより生じる光学系の軸のずれや、同一点にスポットを集めることが困難であるため長短波長の計測位置がバラバラになってしまうといった問題が生じない。
 なお、本実施例の測距装置100が出射する出射光OLの光強度Semit(t)は、上記の数式(数1)の「Semit(t)=cos(2π・f2・t){1+cos(2π・f1・t)}+2」の形に限定されず、各項の係数は任意に設定することが可能である。その際、cos(2π・f2・t)及びcos(2π・f1・t)の係数は等しくても良く、異なっていても良い。また、DCオフセットは、光強度Semit(t)を0以上に保つために適当な値に設定されていれば良い。すなわち、出射光OLは、α、β及びγを定数として、下記の数式(数3)で表される光強度Semit(t)を有していれば良い。
Figure JPOXMLDOC01-appb-M000005
 以上のように、本実施例の測距装置100によれば、簡易な構成で精度よく対象物までの距離を計測することが可能となる。
 次に、実施例2の測距装置について説明する。図5は、実施例2の測距装置200の構成を示すブロック図である。測距装置200は、基準信号発生部20、出射部21、受光部22、fa~fb帯域通過BPF23、f1成分生成部24、第1のf1位相差検出部25、f2位相差検出部27、距離算出部28、f1帯域通過BPF30及び第2のf1位相差検出部31を有する。
 基準信号発生部20は、出射時におけるレーザ光の光強度の変調及び受光後における位相差の検出に用いる基準信号として、第1周波数信号S1及び第2周波数信号S2を生成する。第1周波数信号S1は周波数f1(例えば、1MHz)を有し、第2周波数信号S2は周波数f1よりも高い周波数f2(例えば、50MHz)を有する。以下の説明では、第1周波数信号S1=cos(2π・f1・t)、第2周波数信号S2=cos(2π・f2・t)とする。
 出射部21は、レーザ光を出射するレーザ光源21A、及びレーザ光源21Aを駆動するレーザ発光駆動部21Bを含む。出射部21は、基準信号発生部20から供給された第1周波数信号S1及び第2周波数信号S2に基づいて光強度を変調したレーザ光を所定領域に向けて出射する。
 本実施例の出射部21は、周波数f1を有する第1の正弦波で周波数f2を有する第2の正弦波を振幅変調した変調信号に第1周波数f1を有する第3の波を加算した合成信号により変調された光強度を有するレーザ光を出射光OLとして出射する。
 受光部22は、実施例1の受光部12と同様の構成を有する。受光部22は、所定領域内の対象物OJTによって反射されたレーザ光である反射光RLを受光し、受光した反射光RLの光強度を電気信号に変換して受光信号RSを生成する。
 fa~fb帯域通過BPF23は、周波数faから周波数fbまでの周波数範囲を通過帯域とするバンドパスフィルタである。fa~fb帯域通過BPF23は、受光信号RSに含まれる信号成分のうち、周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。
 f1成分生成部24は、基準信号発生部20から供給された第2周波数信号S2に基づいて、fa~fb帯域通過BPF23を通過した受光信号RSから周波数f1の信号成分f1RSを生成(抽出)する。
 第1のf1位相差検出部25は、f1成分生成部24により生成された受光信号RSの周波数f1の信号成分f1RSと、基準信号発生部20から供給された第1周波数信号S1(周波数f1)との位相差PD1を検出する。
 f2位相差検出部27は、fa~fb帯域通過BPF23を通過した受光信号RSと、基準信号発生部20から供給された第2周波数信号S2(周波数f2)との位相差PD2を検出する。
 f1帯域通過BPF30は、周波数f1の信号を通過させるバンドパスフィルタである。f1帯域通過BPF30は、受光信号RSに含まれる信号成分のうち、周波数f1の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。
 第2のf1位相差検出部31は、f1帯域通過BPF30を通過した受光信号RSの周波数f1の信号成分f3RSと、基準信号発生部20から供給された第1周波数信号S1(周波数f1)との位相差PD3を検出する。
 距離算出部28は、第1のf1位相差検出部25によって検出された周波数f1についての位相差PD1と、f2位相差検出部27によって検出された周波数f2についての位相差PD2と、第2のf1位相差検出部31によって検出された周波数f1についての位相差PD3と、に基づいて測距装置200から対象物OJTまでの距離を算出する。例えば、周波数f1=1MHz、f2=50MHzとすると、周波数f1についての位相差PD1及び位相差PD3に基づいて150m、周波数f2についての位相差PD2に基づいて3mの範囲での測定がそれぞれ可能である。
 次に、本実施例の測距装置200の動作について図5、図6A及び図6Bを参照して説明する。
 基準信号発生部20は、周波数f1を有する第1周波数信号S1を生成し、出射部21、第1のf1位相差検出部25及び第2のf1位相差検出部31に供給する。また、基準信号発生部20は、周波数f2を有する第2周波数信号S2を生成し、出射部21、f1成分生成部24及びf2位相差検出部27に供給する。
 出射部21は、周波数f1を有する第1の正弦波で周波数f2を有する第2の正弦波を振幅変調した変調信号に第1周波数f1を有する第3の波を加算した合成信号により変調された光強度を有するレーザ光を出射光OLとして所定領域に向けて出射する。
 例えば、周波数f1を有する第1の正弦波をcos(2π・f1・t)、周波数f2を有する第2の正弦波をcos(2π・f2・t)、周波数f1を有する第3の波をcos(2π・f1・t)、時間をtとすると、出射光OLの光強度Semit(t)は、以下の数式(数4)で表される。
Figure JPOXMLDOC01-appb-M000006
 上記の通り、実施例1では、DCオフセットを除いた部分(すなわち、cos(2π・f2・t){1+cos(2π・f1・t)})が取り得る最小値が-2であるため、DCオフセットとして“+2”を加えていた。しかし、本実施例においてDCオフセットを除いた部分が取り得る最小値は、cos(2π・f1・t)の分だけ実施例1よりも大きい。そこで、本実施例では、DCオフセットとして、実施例1の場合よりも小さい “+1”を加えている。
 図6Aは、出射光OLの光強度の信号波形を示す図である。上記の式(数4)の変形からも分かるように、出射光OLの光強度は、cos(2π・f2・t){1+cos(2π・f1・t)}に基づいて変調され、さらにcos(2π・f1・t)が加算されているため、その信号波形は波形全体が0レベルから上に膨らんだような信号波形となる。
 図6Bは、出射光OLの光強度に変調される周波数f1、f2、fa及びfbのスペクトラムを模式的に示すグラフである。f1=1MHz、f2=50MHzとすると、fa=51MHz、fb=49MHzとなり、グラフ上では周波数f1、f2のスペクトラムが立つとともに、周波数f2の近傍且つ両側の左右対称な位置に周波数fa及び周波数fbのスペクトラムが立つことになる。
 再び図5を参照すると、出射部21により出射されたレーザ光(出射光OL)は、所定領域内の対象物OJTによって反射される。受光部22は、対象物OJTによって反射されたレーザ光である反射光RLを受光する。
 受光部22は、反射光RLの光量を増倍させて光強度を電気信号に変換し、受光信号RSとして検出する。受光部22は、受光信号RSをfa~fb帯域通過BPF23及びf1帯域通過BPF30に供給する。
 fa~fb帯域通過BPF23は、受光信号RSに含まれる信号成分のうち、周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。これにより、周波数f1の信号成分がカットされ、受光信号RSの信号波形の歪みが補正される。
 f1成分生成部24は、fa~fb帯域通過BPF23を通過して歪みが補正された受光信号RSの信号波形のエンベロープを検出することにより、周波数f1の信号成分f1RSを生成(抽出)する。第1のf1位相差検出部25は、受光信号RSの周波数f1の信号成分f1RSと第1周波数信号S1(周波数f1)との位相差PD1を検出し、距離算出部28に供給する。
 f2位相差検出部27は、fa~fb帯域通過BPF23を通過して歪みが補正された受光信号RSと第2周波数信号S2(周波数f2)との位相差PD2を検出し、距離算出部28に供給する。
 f1帯域通過BPF30は、受光信号RSに含まれる信号成分のうち、周波数f1の周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。これにより、受光信号RSの周波数f1の信号成分が抽出される。第2のf1位相差検出部31は、抽出された受光信号RSの周波数f1の信号成分f3RSと第1周波数信号S1(周波数f1)との位相差PD3を検出し、距離算出部28に供給する。
 距離算出部28は、周波数f1についての位相差PD1及び位相差PD3を長い距離範囲の大まかな測定に用い、周波数f2についての位相差PD2を短い距離範囲の細かい測定に用いることにより、測距装置200から対象物OJTまでの距離CDを算出する。
 以上のように、本実施例の測距装置200は、周波数f1の第1周波数信号S1及び周波数f2の第2周波数信号S2に基づいて、周波数f1を有する第1の正弦波で周波数f2を有する第2の正弦波を振幅変調した変調信号に第1周波数f1を有する第3の波を加算した合成信号により変調された光強度を有するレーザ光を出射光OLとして所定領域に向けて出射する。
 上記の通り、本実施例では、光強度を変調するための合成波信号として、cos(2π・f2・t){1+cos(2π・f1・t)}にcos(2π・f1・t)を加算している。従って、合成波信号のDCオフセットを除いた部分の取りうる最小値は、実施例1の場合よりもcos(2π・f1・t)の分だけ大きくなる。従って、DCオフセットの値を実施例1よりも小さい値(例えば“+1”)にすることができる。
 DCオフセットの値は、レーザ光の光強度のベースレベルを示すものであり、レーザ光の平均の光強度を示す値となる。そして、安全性の観点から、レーザ光の平均の光強度は低い方が望ましい。従って、本実施例の測距装置200によれば、より安全性の高いレーザ光を用いて距離の測定を行うことが可能となる。
 また、レーザ光の光強度の変調に用いる合成波信号の振幅が大きいと、位相差検出に用いる信号(本実施例では、第1周波数信号S1及び第2周波数信号S2)のS/N比が向上して距離計測の精度が高くなる。DCオフセットは、位相差検出、ひいては距離計測に関係しない要素であるため、合成波信号の振幅に対するDCオフセットの比率を小さく抑えることができれば、平均光強度を増大させることなく合成波信号の振幅を大きくし、距離計測の精度を向上させることができる。
 本実施例の測距装置200では、合成波信号の振幅に対するDCオフセットの比率が小さいため、合成波信号の振幅が相対的に大きく、位相差検出に用いる信号のS/N比が大きい。従って、本実施例の測距装置200によれば、精度の高い距離測定を行うことが可能となる。
 また、本実施例の測距装置200は、2通りの方法で周波数f1についての位相差を検出して距離の算出を行うため、位相差検出の精度を向上させ、ひいては距離測定の精度をさらに向上させることができる。
 なお、本実施例の測距装置200が出射する出射光OLの光強度Semit(t)は、上記の数式(数4)の「Semit(t)=cos(2π・f2・t){1+cos(2π・f1・t)}+cos(2π・f1・t)+1」の形に限定されず、各項の係数は任意に設定することが可能である。その際、cos(2π・f2・t)及びcos(2π・f1・t)の係数は等しくても良く、異なっていても良い。また、DCオフセットは、光強度Semit(t)を0以上に保つために適当な値に設定されていれば良い。すなわち、出射光OLは、α、β、γ及びδを定数として、下記の数式(数5)で表される光強度Semit(t)を有していれば良い。
Figure JPOXMLDOC01-appb-M000007
 なお、本発明は上記実施形態に限定されない。例えば、上記実施例1及び実施例2では、fa~fb帯域通過BPF(13,23)が、受光信号RSに含まれる信号成分のうち周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する場合を例として説明した。しかし、fa~fb帯域通過BPFの通過帯域はこれよりも多少広い帯域幅に設定されていても良い。例えば、fa~fb帯域通過BPFの通過帯域の下限値は、周波数faよりも小さい値に設定されていても良い。また、fa~fb帯域通過BPFの通過帯域の上限値は、周波数fbよりも大きい値に設定されていても良い。
 また、上記実施例2では、測距装置200がf1帯域通過BPF30及び第2のf1位相差検出部31を有し、第1の位相差検出部25とは別に周波数f1の信号成分についての位相差を検出して距離の算出に用いる場合を例として説明した。しかし、測距装置200は、実施例1と同様に、周波数f2の信号成分についての位相差及び第1の位相差検出部25が検出した周波数f1の信号成分についての位相差に基づいて、距離を算出しても良い。すなわち、測距装置200は、f1帯域通過BPF30及び第2のf1位相差検出部31を有しない構成であっても良く、かかる構成によれば、BPF等が1系統で済むため、装置規模を抑えることができる。
 また、上記実施例2では、第3の波としてcos(2π・f1・t)を加算する場合を例として説明した。しかし、第3の波はこれに限られず、正弦波(sin波、cos波)、台形波、三角波、矩形波等のいずれであっても良い。
 また、上記各実施例で説明した一連の処理は、例えばROMなどの記録媒体に格納されたプログラムに従ったコンピュータ処理により行うことができる。
100,200 測距装置
10,20 基準信号発生部
11,21 出射部
11A,21A レーザ光源
11B,21B レーザ発光駆動部
12A,22A 受光素子
12B,22B 受光信号検出部
12,22 受光部
13,23 fa~fb帯域通過BPF
14、24 f1成分生成部
15 f1位相差検出部
17,27 f2位相差検出部
18,28 距離算出部
25 第1のf1位相差検出部
30 f1帯域通過BPF
31 第2のf1位相差検出部

Claims (7)

  1.  第1周波数を有する第1周波数信号及び前記第1周波数よりも高い第2周波数を有する第2周波数信号に基づいて光強度を変調したレーザ光を所定領域に向けて出射する出射部と、
     前記所定領域内の対象物によって反射された前記レーザ光を受光し、当該受光したレーザ光の光強度を電気信号に変換する受光部と、
     前記電気信号から生成された前記第1周波数の信号成分と前記第1周波数信号との位相差を検出する第1位相差検出部と、
     前記電気信号から生成された前記第2周波数の信号成分と前記第2周波数信号との位相差を検出する第2位相差検出部と、
     前記第1位相差検出部により検出された位相差及び前記第2位相差検出部により検出された位相差に基づいて、前記対象物までの距離を算出する距離算出部と、
     を有し、
     前記レーザ光は、前記第1周波数を有する第1の正弦波で前記第2周波数を有する第2の正弦波を振幅変調した変調信号により変調された光強度を有することを特徴とする測距装置。
  2.  前記第1周波数及び前記第2周波数の差の周波数である第3周波数から前記第1周波数及び前記第2周波数の和の周波数である第4周波数までを含む所定の周波数範囲の信号成分を通過させるとともに、前記所定の周波数範囲よりも小なる周波数の信号成分及び大なる周波数の信号成分を遮断するフィルタを有し、
     前記第1位相差検出部及び前記第2位相差検出部の各々は、前記フィルタを通過した前記電気信号に基づいて位相差を検出することを特徴とする請求項1に記載の測距装置。
  3.  前記レーザ光は、前記変調信号に前記第1の正弦波及び前記第2の正弦波の振幅に応じたオフセット値を加算した光強度を有することを特徴とする請求項1又は2に記載の測距装置。
  4.  前記レーザ光は、前記第1周波数をf1とし、前記第2周波数をf2とし、時間をtとし、α、β及びγを定数として、下記の数1に表される数式で変調された光強度を有することを特徴とする請求項3に記載の測距装置。
    Figure JPOXMLDOC01-appb-M000001
  5.  前記変調信号は、前記第1の正弦波で前記第2の正弦波を振幅変調した信号に前記第1周波数を有する第3の波を加算した信号であることを特徴とする請求項1又は2に記載の測距装置。
  6.  前記第3の波は、正弦波、矩形波、台形波もしくは三角波のいずれかの波であることを特徴とする請求項5に記載の測距装置。
  7.  前記レーザ光は、前記第1周波数をf1とし、前記第2周波数をf2とし、時間をtとし、α、β、γ及びδを定数として、下記の数2に表される数式で変調された光強度を有することを特徴とする請求項5又は6に記載の測距装置。
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2019/010334 2018-03-23 2019-03-13 測距装置 WO2019181696A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-056603 2018-03-23
JP2018056603 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181696A1 true WO2019181696A1 (ja) 2019-09-26

Family

ID=67987124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010334 WO2019181696A1 (ja) 2018-03-23 2019-03-13 測距装置

Country Status (1)

Country Link
WO (1) WO2019181696A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127685A (ja) * 1985-11-28 1987-06-09 Matsushita Electric Ind Co Ltd レ−ザ−測距装置
JPS6469983A (en) * 1987-09-11 1989-03-15 Omron Tateisi Electronics Co Distance measuring device
US5082364A (en) * 1990-08-31 1992-01-21 Russell James T Rf modulated optical beam distance measuring system and method
JPH04131787A (ja) * 1990-09-21 1992-05-06 Topcon Corp 距離測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127685A (ja) * 1985-11-28 1987-06-09 Matsushita Electric Ind Co Ltd レ−ザ−測距装置
JPS6469983A (en) * 1987-09-11 1989-03-15 Omron Tateisi Electronics Co Distance measuring device
US5082364A (en) * 1990-08-31 1992-01-21 Russell James T Rf modulated optical beam distance measuring system and method
JPH04131787A (ja) * 1990-09-21 1992-05-06 Topcon Corp 距離測定装置

Similar Documents

Publication Publication Date Title
EP3683600B1 (en) Laser radar device
US10901089B2 (en) Coherent LIDAR method and apparatus
US20180202923A1 (en) Gas Detection Device and Gas Detection Method
JP5043714B2 (ja) 光ファイバ特性測定装置及び方法
JP2013238474A (ja) レーザーレーダー装置
JP2007071704A (ja) 測定装置、方法、プログラムおよび記録媒体
JP2008002815A (ja) 波長変化パルス光発生装置およびこれを用いた光断層計測装置
WO2019181695A1 (ja) 測距装置
JP2016148661A (ja) 光ファイバ特性測定装置及び光ファイバ特性測定方法
US11977157B2 (en) Optical distance measurement device and machining device
JP5561679B2 (ja) 光周波数領域反射測定方法及び光周波数領域反射測定装置
WO2019181696A1 (ja) 測距装置
JP2013108840A (ja) レーザレーダ装置
WO2015129118A1 (ja) 特性測定装置、過渡吸収応答測定装置および過渡吸収応答測定方法
JP5473405B2 (ja) 差分吸収ライダ装置
WO2022124066A1 (ja) 測距装置、および測距方法、並びにプログラム
JP7325669B2 (ja) レーザレーダ装置
WO2019188302A1 (ja) 測距装置
JP2001066250A (ja) ガス検出装置
JP2010169487A (ja) 濃度計測装置及び濃度計測方法
KR102177933B1 (ko) 가시광선 레이저와 근적외선 펄스 레이저를 이용한 거리 측정 장치 및 측정 방법
JP7115738B2 (ja) 距離計及び距離測定方法並びに光学的三次元形状測定機
JP7192959B2 (ja) 測距装置及び測距方法
JP2023089130A (ja) 信号処理装置
JP6653052B2 (ja) レーザー測距装置およびレーザー測距方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP