WO2019181405A1 - 機器管理システム、機器、及び、機器管理方法 - Google Patents

機器管理システム、機器、及び、機器管理方法 Download PDF

Info

Publication number
WO2019181405A1
WO2019181405A1 PCT/JP2019/007583 JP2019007583W WO2019181405A1 WO 2019181405 A1 WO2019181405 A1 WO 2019181405A1 JP 2019007583 W JP2019007583 W JP 2019007583W WO 2019181405 A1 WO2019181405 A1 WO 2019181405A1
Authority
WO
WIPO (PCT)
Prior art keywords
server
base station
communication
information
state
Prior art date
Application number
PCT/JP2019/007583
Other languages
English (en)
French (fr)
Inventor
淳也 鈴木
慎也 中井
美季 山田
小塚 雅之
邦男 郷原
山本 雅哉
智輝 小川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020507475A priority Critical patent/JP7382580B2/ja
Priority to US16/638,439 priority patent/US11212133B2/en
Priority to EP19770896.9A priority patent/EP3771221A4/en
Priority to CN201980003642.8A priority patent/CN110945875B/zh
Publication of WO2019181405A1 publication Critical patent/WO2019181405A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • H04L12/2825Reporting to a device located outside the home and the home network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/284Home automation networks characterised by the type of medium used
    • H04L2012/2841Wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/2847Home automation networks characterised by the type of home appliance used
    • H04L2012/285Generic home appliances, e.g. refrigerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a device management system, a device, and a device management method.
  • a home appliance control cloud also referred to as a control cloud
  • a control cloud which is a cloud that controls the devices, via a network and operate under the control of the control cloud
  • the user who uses the device does not necessarily connect the device to the control cloud by making settings for connecting to the network. If the device is not connected to the control cloud, there is a problem that the device cannot be efficiently managed by the control cloud.
  • the present disclosure provides a device management system that can efficiently manage devices.
  • a device management system is a server that is communicatively connected to a network, a long-distance wireless communication base station that is communicatively connected to the network, and a device that is communicatively connected to the base station. And a device that transmits status information indicating the status of the device to the server via the base station.
  • the device management system according to the present disclosure can efficiently manage devices.
  • FIG. 1 is an explanatory view showing the evolution of household appliances.
  • FIG. 2 is an explanatory diagram illustrating an example of third-generation home appliance architecture and external service cooperation.
  • FIG. 3 is an explanatory diagram showing an example of third-generation home appliance architecture and AI speaker cooperation.
  • FIG. 4 is an explanatory diagram showing a first problem of the third generation household appliances.
  • FIG. 5 is an explanatory diagram showing a second problem of the third-generation household appliances.
  • FIG. 6 is an explanatory diagram showing a net connection rate of a home appliance with a built-in network connection function.
  • FIG. 7 is an explanatory diagram showing a network connection of cloud home appliances.
  • FIG. 1 is an explanatory view showing the evolution of household appliances.
  • FIG. 2 is an explanatory diagram illustrating an example of third-generation home appliance architecture and external service cooperation.
  • FIG. 3 is an explanatory diagram showing an example of third-generation home appliance architecture and AI speaker cooperation.
  • FIG. 4 is an explanatory diagram showing a
  • FIG. 8 is a table showing the characteristics of communication methods (Wi-Fi, LPWA) that can be used in always-connected IoT home appliances.
  • FIG. 9 is a first explanatory diagram showing the architecture of a fourth generation household appliance (always connected IoT household appliance) and external service cooperation.
  • FIG. 10 is a second explanatory diagram showing the architecture of the fourth-generation household appliances and external service cooperation.
  • FIG. 11 is a third explanatory diagram showing the architecture of the fourth-generation household appliances and external service cooperation.
  • FIG. 12 is a fourth explanatory diagram showing the architecture of the fourth-generation household appliances and external service cooperation.
  • FIG. 13 is a diagram showing the evolution of the home appliance architecture.
  • FIG. 9 is a first explanatory diagram showing the architecture of a fourth generation household appliance (always connected IoT household appliance) and external service cooperation.
  • FIG. 10 is a second explanatory diagram showing the architecture of the fourth-generation household appliances and external service cooperation.
  • FIG. 11 is a third explan
  • FIG. 14 is a diagram for explaining the function sharing (externalization of functions) of the fourth-generation household appliances.
  • FIG. 15 is a block diagram showing the configuration of the device management system.
  • FIG. 16 is a configuration diagram illustrating a block of a first example of a device that is an IoT home appliance.
  • FIG. 17 is a configuration diagram illustrating a block of a server that is an IoT home appliance control cloud.
  • FIG. 18 is a diagram illustrating an example of a processing flow for notifying a server of status information in a device having a function of notifying information at the time of manufacture or repair.
  • FIG. 19 is a table showing an example of state information transmitted from the device to the server at the time of manufacture or repair.
  • FIG. 20 is a flowchart illustrating a first example of processing for determining an energization state of a device in a server.
  • FIG. 21 is a flowchart illustrating a second example of the process of determining the energization state of the device in the server.
  • FIG. 22 is a flowchart illustrating an example of a process of estimating the installation state of a device that is not energized in the server.
  • FIG. 23 is a sequence diagram illustrating an example of processing in which the server controls the communication frequency of a non-energized device.
  • FIG. 24 is a graph showing the relationship between the update interval determined by the server and the elapsed time since the non-energized state.
  • FIG. 25 is a configuration diagram illustrating a block of a second example of a device that is an IoT home appliance.
  • FIG. 26 is a diagram illustrating an example of a method for acquiring a region where a device is installed when the device is used.
  • FIG. 27 is a diagram for explaining an example of notifying the firmware version in the distribution channel of the device.
  • FIG. 28 is a diagram for explaining processing for associating a user and a device in the home appliance management service linked to the EC service.
  • a device management system is a server that is communicatively connected to a network, a long-distance wireless communication base station that is communicatively connected to the network, and a device that is communicatively connected to the base station. And a device that transmits status information indicating the status of the device to the server via the base station.
  • the device can transmit device status information to the server, for example, periodically.
  • the server can acquire the latest status information of the device, and can efficiently manage the device.
  • the device includes a communication module for long-distance wireless communication with the base station, and a communication battery that supplies power for driving the communication module to the communication module.
  • the status information may be transmitted to the server via the base station.
  • the communication module can communicate with the base station even when the power of the device is off, it can transmit the status information of the device to the server.
  • the device further includes a control unit that controls operation of the device and a holding unit that sequentially holds a control state by the control unit when the power of the device is on, and the communication
  • the module reads the control state sequentially held in the holding unit, and reads the read control state as the state information to the server via the base station. You may send it.
  • the communication module can transmit the control state of the device as state information to the server even when the device is powered off.
  • the base station may be an LPWA (Low Power, Wide Area) base station
  • the communication module may be the LPWA communication module
  • the device can transmit the energization state of the device to the server.
  • the state information may include an energization state indicating whether or not the device is energized.
  • the device since the device can easily realize the state of being always connected to the network, the device status information can be periodically transmitted to the server.
  • the server may receive the state information from the device, generate notification information according to the received state information, and transmit the generated notification information to the device.
  • the server can transmit notification information suitable for the state of the device to the device.
  • the communication module is a communication module for communication connection to a base station for long-distance wireless communication, and status information indicating the status of the device is connected to the base station via the network via the network.
  • a communication module for transmitting to a server There may be provided a communication module for transmitting to a server.
  • the device can transmit device status information to the server, for example, periodically.
  • the device further includes a communication battery that supplies power for driving the communication module to the communication module, and the communication module passes through the base station when the device is powered off.
  • the status information may be transmitted to the server.
  • the communication module can communicate with the base station even when the power of the device is off, it can transmit the status information of the device to the server.
  • the device further includes a control unit that controls operation of the device and a holding unit that sequentially holds a control state by the control unit when the power of the device is on, and the communication
  • the module reads the control state sequentially held in the holding unit, and reads the read control state as the state information to the server via the base station. You may send it.
  • the communication module can transmit the control state of the device as state information to the server even when the device is powered off.
  • the base station may be an LPWA (Low Power, Wide Area) base station
  • the communication module may be the LPWA communication module
  • the device can transmit the energization state of the device to the server.
  • the state information may include an energization state indicating whether or not the device is energized.
  • the device since the device can easily realize the state of being always connected to the network, the device status information can be periodically transmitted to the server.
  • a recording medium such as a method, an integrated circuit, a computer program, or a computer-readable CD-ROM, and the method, the integrated circuit, the computer program, and the recording medium. You may implement
  • FIG. 1 is an explanatory view showing the evolution of household appliances.
  • Fig. 1 shows the architecture evolution of household appliances (white goods such as washing machines and refrigerators, air conditioners, humidified air purifiers, etc.).
  • the household appliances of the first generation are a single-function product because hardware such as compressors and motors is realized by control logic made with LSI (Large-scale Integrated Circuit) etc. It was.
  • LSI Large-scale Integrated Circuit
  • the second generation (from 1990 to 2010), home appliances with built-in microcomputers are equipped with microcomputers, and by creating microcomputer software, it is possible to perform complex control, so that multifunctional home appliances Was realized. However, functions could not be changed or added by changing the microcomputer after shipment.
  • Third-generation (2012 and later) cloud home appliances have communication functions such as Wi-Fi (registered trademark) and Bluetooth (registered trademark) (hereinafter referred to as BT), and connect home GW (gateway) and broadband network.
  • IoT Internet of Things
  • the IoT home appliance control cloud is a cloud (an aggregate of a server and a network) that controls home appliances through a communication path such as a broadband network, and is one of cloud-type services.
  • FIG. 2 is an explanatory diagram showing an example of third-generation home appliance architecture and external service cooperation.
  • the home appliance can be controlled from various cloud services, or the operation information of the home appliance (Log etc.) can be taken out and used by external services.
  • an external service group such as an EC service cloud or a monitoring service cloud
  • the home appliance can be controlled from various cloud services, or the operation information of the home appliance (Log etc.) can be taken out and used by external services.
  • FIG. 3 is an explanatory diagram showing an example of third-generation consumer electronics architecture and AI (Artificial Intelligence) speaker cooperation.
  • the AI speaker control mechanism in the cloud is accessed via the home GW from the AI speaker that implements the voice interaction function.
  • the AI speaker control mechanism accesses each household electrical appliance control mechanism, so that the user can remotely control each household electrical appliance from the AI speaker through voice conversation.
  • FIG. 4 is an explanatory diagram showing a first problem of the third generation household appliances.
  • the first problem is that a home without Wi-Fi GW cannot use the functions of third-generation home appliances.
  • FIG. 5 is an explanatory view showing a second problem of the third-generation household appliances.
  • the second problem is that even if the Wi-Fi GW is at home, the user does not connect the third-generation home appliances to the Wi-Fi GW.
  • Information devices such as smartphones, tablets, and PCs, or AI speakers cannot use the original functions that users want for their products unless they have an Internet connection function such as Wi-Fi.
  • Some smartphones or AI speakers cannot be used in the first place unless connected to the Internet and user information (email address, account, etc.) is set. Since the user has purchased the device in order to use these functions, the user must always set the user ID or Wi-Fi and connect to the Internet.
  • Wi-Fi settings are performed, but if the user thinks that the convenience of the Internet service is not relatively high, the user can cancel the connection, or reconnect it even if the connection is lost for some reason. In many cases, it is not connected.
  • FIG. 6 is an explanatory diagram showing the net connection rate of home appliances with built-in network connection functions (AV and household appliances).
  • the above-mentioned cloud consumer electronics can be connected to the IoT consumer electronics control cloud by implementing communication means such as Wi-Fi or Bluetooth, and by using various cloud services, customer value that is not found in microcomputer consumer electronics Can provide. For this reason, customer satisfaction can be improved by providing customer value that exceeds the cost increase due to the implementation of communication means such as Wi-Fi in cloud consumer electronics.
  • the communication means described above has the problem that the setting is not made by the user who owns the device in many cases as shown below, that is, if the cloud home appliance is not connected to the cloud, it has only the same customer value as the microcomputer home appliance. There is a problem that it cannot be provided.
  • Wi-Fi In order to connect Wi-Fi, the user needs to prepare a Wi-Fi access point in the home. However, there are cases in which a Wi-Fi access point is not held in the home for a user who only connects to the Internet from a smartphone, that is, a user who uses only a communication network prepared by a communication carrier.
  • FIG. 7 is an explanatory diagram showing the network connection of cloud home appliances.
  • wireless communication means specially developed for IoT collectively called LPWA (Low Power Wide Area)
  • LPWA Low Power Wide Area
  • LPWA radio The characteristics of LPWA radio are that, compared to LTE (Long Term Evolution), the terminal cost can be reduced by mounting a small-scale semiconductor, and the number of base stations can be reduced by low-rate modulation that provides a very long communication distance (up to 10 km). As a result, the cost reduction of both the radio circuit and the infrastructure equipment has been realized. On the other hand, the amount of data that can be transmitted is small because the method of reducing the transmission rate and improving the reception sensitivity is employed.
  • LTE Long Term Evolution
  • LPWA wireless By installing LPWA wireless in home appliances, users do not need to subscribe to the Internet line, and home appliances can be directly connected to the base station and services connected to the cloud server can be realized at a very low cost. there is a possibility.
  • the LPWA is classified into cellular LPWA and non-cellular LPWA.
  • the cellular LPWA uses a frequency band (license band) assigned to a cellular carrier and is provided as one of cellular lines (LTE, etc.).
  • Non-cellular LPWA uses LPWA radio by utilizing the non-licensed band existing in each country and eliminating the need for channel usage costs.
  • Non-licensed bands are shared with other wireless systems, so restrictions on not monopolizing channels are stipulated by the Radio Law of each country.
  • FIG. 8 is a table showing the characteristics of the communication methods (Wi-Fi, LPWA) that can be used in the always-connected IoT home appliances.
  • Cellular LPWA (1-1) NB-IoT It originates from the GSM (registered trademark) (2G) system, and is a specification specialized in data transmission for IoT by applying the advantages of low transmission rate and LTE communication sequence. By setting the channel interval to 200 kHz which is the same as GSM, the replacement operation to the GSM channel is facilitated. Sensitivity points are improved by reducing the peak rate of uplink transmission to 62.5 kbps and by accumulating and receiving multiple repeated transmissions (64 times). The maximum link budget is as large as 130 dB. In addition, the specification is such that the transmission power is suppressed to 100 mW (GSM is 2 W), and the peak current is suppressed to enable operation with one battery.
  • GSM registered trademark
  • 2G registered trademark
  • LTE-M (1-2) LTE-M (CAT-M) This is a system that originates from the LTE (4G) system and performs communication using the minimum channel spacing (1.4 MHz) of LTE. Since it conforms to the LTE slot configuration, it can be operated in a mixed manner in a conventional LTE communication slot. The sensitivity point is improved by reducing the peak rate of uplink transmission to 1 Mbps and accumulating and receiving by repeated transmission. The maximum link budget is 130 dB.
  • the transmission power is 200 mW.
  • Non-cellular LPWA (2-1) LoRa
  • a conventional low power radio band (ISM band) is used, but reception sensitivity is improved by ultra-low rate modulation.
  • a method for realizing ultra-low rate modulation uses special spread modulation called LoRa chirp modulation.
  • the feature of LoRa chirp modulation is that it achieves a low transmission rate of 250 bps and a spread band of 125 kHz, and is highly resistant to interference noise and highly sensitive.
  • a plurality of data rates can be selected with the same bandwidth, and these can be received simultaneously on the same channel, thereby improving the capacity of communication capacity.
  • the maximum link budget is 149 dB.
  • the transmission power is 20 mW.
  • LoRa Alliance standardized specifications to enable interconnection between operators.
  • SIGFOX A conventional low power radio band (ISM band) is used, but reception sensitivity is improved by ultra-low rate modulation.
  • the implementation method of ultra-low rate modulation is narrow band FSK modulation, and the problem of frequency error is overcome by devising digital demodulation processing on the base station side.
  • the fixed rate is 100 bps upstream and 600 bps downstream.
  • the effect of interference noise is avoided by transmitting multiple times with different frequencies. Since the fixed rate and simultaneous multiple reception are not possible, the capacity of the communication capacity is relatively small.
  • the maximum link budget is 158 dB.
  • the transmission power is 20 mW.
  • SIGFOX inherits the characteristics of conventional low power radio (low power, low current peak), and can be driven with a single battery for 10 years or with a coin battery.
  • SIGFOX can be used for sensor IoT because it can only communicate in one direction, but it is not suitable for IoT home appliances.
  • LPWA technology As shown in FIG. 8, a combination of LPWA technology and Wi-Fi is considered appropriate in order to realize a constantly connected IoT home appliance.
  • the characteristics of the three types of LPWA as described above are different from each other, if communication quality is emphasized, the cost increases. On the other hand, if cost is emphasized, there is a risk that communication quality is poor and stable communication cannot be secured. For this reason, it is difficult for an always-connected IoT home appliance to select one type of LPWA.
  • FIG. 9 is a first explanatory diagram showing the architecture of a fourth generation consumer electronics (always connected IoT consumer electronics) and external service cooperation.
  • Home appliances are, for example, white goods such as washing machines and refrigerators, air conditioners, and humidified air purifiers, and are also simply referred to as devices.
  • LPWA LPWA
  • the feature of LPWA is that it can be used without setting by the user, realizes a very long communication distance ( ⁇ 10 km), and always connects to a base station where radio waves reach.
  • FIG. 10 is a second explanatory diagram showing the architecture of the fourth-generation household appliances and external service cooperation.
  • LPWA has excellent characteristics as described above, but it uses a technique to lower the transmission rate and improve the reception sensitivity, so the amount of data that can be transmitted is smaller than Wi-Fi or LTE.
  • fourth-generation household appliances (hereinafter also referred to as “always-connected IoT household appliances”) have not only LPWA but also Wi-Fi as well as third-generation household appliances so that appropriate communication according to the application can be performed. Make it possible.
  • FIG. 11 is a third explanatory diagram showing the architecture of the fourth-generation household appliances and external service cooperation.
  • One of the major challenges of third-generation home appliances is to force users to make troublesome Wi-Fi settings by using LPWA for Wi-Fi settings as shown below. Can be simple.
  • the Wi-Fi setting is input to the cloud, and the fourth-generation household appliances use the LPWA to acquire the Wi-Fi setting from the cloud and connect to the Wi-Fi GW.
  • a Wi-Fi setting is input to one fourth-generation household appliance and transmitted to other devices in the home via LPWA, and the other device connects to the Wi-Fi GW using the setting.
  • FIG. 12 is a fourth explanatory diagram showing the architecture of the fourth-generation household appliances and external service cooperation.
  • LPWA can solve the problem that the amount of data that can be transmitted is smaller than Wi-Fi as described above by having a plurality of LPWAs at the same time.
  • LPWA is classified into two main systems: cellular LPWA and non-cellular LPWA. Since cellular LPWA uses a frequency band (license band) allocated to a cellular carrier, it has a feature that the amount of data that can be transmitted is larger than that of non-cellular LPWA. Since it is possible to publish, it is easy to manage the cover area.
  • Wi-Fi By having at least one LPWA in addition to Wi-Fi, it is possible to realize an always-connected IoT home appliance that can always be connected to the cloud during home appliance operation.
  • FIG. 13 is a diagram showing the evolution of the home appliance architecture.
  • the first-generation household appliances (before 1990) are single-function products realized by mechanics such as compressors and motors and control logic.
  • Second-generation household appliances (up to about 2010) have a built-in microcomputer, and complex control is possible by making the microcomputer execute microcomputer software. For this reason, the second generation household electrical appliances are multifunctional. However, it was difficult to change functions or add functions of second-generation household electrical appliances by changing the microcomputer software after shipment.
  • Third-generation (after 2012) cloud home appliances have communication functions such as Wi-Fi and Bluetooth, and can be connected to the IoT home appliance control cloud via the home GW and broadband network. For this reason, the cloud home appliances can update the microcomputer software in the main unit from the IoT home appliance control cloud even after shipment, or update the control mechanism of the corresponding device on the cloud side without updating the microcomputer software, etc. , You can add features or update features. However, with Wi-Fi, etc., it was difficult to connect all the shipped products, and the cloud function could not be used in many cases.
  • FIG. 14 is a diagram for explaining the function sharing (externalization of functions) of the fourth-generation home appliances.
  • the fourth-generation cloud consumer electronics it is possible to easily connect all the products shipped at all times, so that all products can be remotely monitored and controlled even after shipment. For this reason, significant improvement of the quality assurance function can be expected.
  • the cloud is still connected to the device and can be traced after shipment. Can be executed. For this reason, the recall cost can be greatly reduced.
  • the device management system 1 according to the present embodiment will be described using the configuration described in FIG. 9 as an example.
  • FIG. 15 is a block diagram showing the configuration of the device management system.
  • the device management system 1 includes a server 20, a base station 30, and a device 10.
  • the server 20 is connected to a network such as the Internet and functions as an IoT home appliance control cloud.
  • the server 20 receives state information from the device 10 via the network, generates notification information according to the received state information, and transmits the generated notification information to the device 10. Detailed functions of the server 20 will be described later.
  • the base station 30 is, for example, an LPWA base station, and is a base station used for long-distance wireless communication for a IoT home appliance to always connect to a network. Although one base station 30 is illustrated in FIG. 15, the device management system 1 includes a plurality of base stations 30.
  • the device 10 is the above-described fourth-generation household appliance, that is, an always-connected IoT household appliance, and is connected to one base station 30 among the plurality of base stations 30 by communication.
  • the device 10 sequentially transmits state information indicating the state of the device 10 to the server 20 via the one base station 30 using the LPWA communication module built in the device 10.
  • the state information includes, for example, “device unique ID”, “communication module ID”, “communication module type”, “transmission date / time”, “energized state”, and the like.
  • the energized state indicates whether the device 10 is energized, that is, whether the power is on or off.
  • the state information may include software version information other than the above. As a result, the server 20 can more accurately manage the state in which the device 10 is operating.
  • the base station 30 sequentially transmits to the server 20 unique information that is information unique to the base station 30 together with the sequentially received state information.
  • the unique information transmitted together with the state information may be a base station ID for identifying the base station, or a position where the base station is installed. May be position information.
  • the device 10 according to the present embodiment can transmit the status information of the device 10 to the server 20 periodically, for example. For this reason, the server 20 can acquire the latest status information of the device 10, and can efficiently manage the device 10.
  • FIG. 16 is a configuration diagram illustrating a block of a first example of the device 10 which is an IoT home appliance.
  • the device 10 includes a communication module 101, a control unit 104, a functional module 107, a holding unit 108, a power supply unit 109, a communication battery 110, an operation unit 111, and a display unit. 112.
  • the communication module 101 connects to the server 20 that manages the device 10 via a specific line network.
  • the communication module 101 is a communication module for performing long-distance wireless communication such as LPWA, for example.
  • the communication module 101 may include a communication module that performs at least one of the three types of LPWA and Wi-Fi described with reference to FIG. That is, the communication module 101 may include a plurality of communication modules that respectively perform a plurality of types of LPWA, or may include a plurality of communication modules that respectively perform LPWA and Wi-Fi.
  • the communication module 101 includes a holding unit 102 that holds the module ID of the communication module. When the communication module 101 has a plurality of communication modules with different communication methods, the holding unit 102 holds the module IDs of the plurality of communication modules.
  • the control unit 104 controls the operation of the device 10 when the power of the device 10 is on. Specifically, the control unit 104 controls the operation of the device 10 by controlling the functional module 107. Further, the control unit 104 may generate state information of the device 10 and transmit the generated state information to the server 20 using the communication module 101. Specifically, the control unit 104 may generate the state information including the energized state by acquiring the energized state indicating the power on / off of the power source unit 109 of the device 10, and the function module 107 exhibits State information including function information indicating the function being performed may be generated. The state information generated by the control unit 104 may include the “device unique ID”, “communication module ID”, “communication module type”, “transmission date / time”, and the like described above. The control unit 104 may cause the display unit 112 to display an image based on information received from the server 20 via the communication module 101.
  • the functional module 107 is a module that demonstrates the function of the device 10.
  • the holding unit 108 is a storage device that holds a unique ID for each device 10.
  • transmission of the state information to the server 20 may be referred to as state information notification.
  • the power supply unit 109 receives power from an external power supply and supplies power to the components inside the device 10.
  • the communication battery 110 is a battery that supplies power for driving the communication module 101 or the like to the communication module 101 or the like.
  • the communication battery 110 may be a primary battery or a secondary battery.
  • the communication module 101 transmits the state information to the server 20 via the base station 30 even when the power of the device 10 is off. That is, since the communication module 101 can communicate with the base station 30 regardless of whether the power supply state of the device 10 is power-on or power-off, the communication module 101 can always transmit the state information to the server 20. it can.
  • the operation unit 111 is an input device that receives an operation by the user on the device 10.
  • the operation unit 111 may be a door, a door, or the like when the device 10 has a door, a door, or the like that opens and closes, such as a refrigerator, a microwave oven, or a rice cooker.
  • the display unit 112 is a display device that displays various information as images.
  • the configuration of the device 10 will be described in detail using a refrigerator as an example.
  • the device 10 that is a refrigerator is used as a home appliance, and includes various modules for realizing an original function as the home appliance.
  • modules include a compressor for cooling the inside of the cabinet, a lighting device that illuminates the inside of the cabinet when the door is opened, and a sensor for measuring the temperature or humidity in the cabinet.
  • a module corresponds to the function module 107.
  • large household appliances such as a refrigerator or an air conditioner are generally connected to an external power source via a power supply unit 109.
  • a control unit 104 using a microcomputer or a processor is generally mounted in order to control various convenient functions.
  • a sensor installed in a dedicated plate for storing ice made ice is used to determine whether or not ice making is performed, and an operation for making new ice is performed.
  • control is performed by a microcomputer or a processor and software executed therein.
  • the device 10 has a display unit 112 for presenting various information to the user, or an operation unit 111 for the user to perform complicated operations.
  • the display unit of the conventional device has performed only the minimum necessary display such as display of an abnormal state or presence / absence of energization by a limited method such as display with a plurality of lamps or several digits. Also, simple operations such as quick freezing instructions or resetting operations in case of abnormality have been performed with only a few buttons.
  • the device 10 includes a small touch panel display as the operation unit 111 and the display unit 112, and can display a more complicated state and various settings.
  • the communication module 101 characterizes the IoT home appliance with respect to the device 10.
  • the communication module 101 enables connection to the Internet using any one of various communication means such as Wi-Fi or LTE, or a plurality of methods.
  • independent communication module IDs are assigned to the respective communication modules, and depending on the communication method, for example, a role as a communication identifier, such as a telephone number in LTE.
  • LPWA a technique called LPWA, which has a low communication speed but can be connected to the Internet with low power consumption, has been developed.
  • the LPWA has a communication battery 110 in the device 10 in addition to the external power supply, so that the minimum communication is possible even when not connected to the external power supply. Moreover, since it is necessary to perform control by designating a specific home appliance depending on communication, it is assumed that a holding unit 108 that holds a unique ID for each device 10 is provided. Note that there may be a device 10 that does not have the communication battery 110.
  • FIG. 17 is a block diagram showing a block of the server 20 that is an IoT home appliance control cloud.
  • the server 20 includes a communication unit 201, a control unit 202, and a storage unit 203.
  • the communication unit 201 communicates with a network such as the Internet, and sequentially receives state information and unique information sequentially transmitted by the device 10. Further, the communication unit 201 may transmit the processing result of the control unit 202 to the device 10 or the operation device 40 via the network and the base station 30.
  • the control unit 202 sequentially stores state information and unique information sequentially received at timings corresponding to each other by the communication unit 201 in association with each other in the storage unit 203.
  • the control unit 202 may transmit a processing result using the state information or unique information stored in the storage unit 203 to the device 10 or the operation device 40 by executing a predetermined program.
  • the control unit 202 is realized by a non-volatile memory that stores a predetermined program and a processor that executes the predetermined program.
  • the control unit 202 may be realized by a dedicated circuit that realizes the above function.
  • the storage unit 203 stores the state information and unique information received by the communication unit 201.
  • the storage unit 203 may store the processing result obtained by the control unit 202.
  • the storage unit 203 is realized by, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like.
  • FIG. 18 is a diagram showing an example of a processing flow for notifying the server 20 of status information in the device 10 having a function of notifying information at the time of manufacture or repair.
  • FIG. 19 is a table showing an example of state information transmitted from the device 10 to the server 20 during manufacturing or repair.
  • the device 10 transmits status information to the server 20 by connecting to the network via the base station 30.
  • the device 10 transmits information at the time of manufacture or repair as state information.
  • the server 20 can accumulate the received information, and can manage the device 10 using the accumulated information, thereby maintaining the quality of the device 10 over the entire product life cycle. .
  • Such a device 10 may transmit, for example, the base station ID at the time of establishing the initial communication to the server 20 as information indicating the manufacturing factory.
  • the device 10 may transmit the date and time when the initial communication is established to the server 20 as information indicating the manufacturing date and time.
  • the device 10 may include such information in the state information and transmit it to the server 20.
  • the device 10 does not need to transmit the base station ID, and the base station 30 adds the base station ID to the state information received from the device 10 and sends the state information with the base station ID added to the server 20. You may send it.
  • the server 20 can calculate the elapsed time from the manufacturing date of the device 10 over the entire product life cycle by storing the above information transmitted by the device 10 as manufacturing information.
  • the server 20 can store a manufacturing factory and a manufacturing date of the device 10.
  • the server 20 can easily identify the manufacturing plant of the device 10 subject to recall and the period during which the device 10 subject to recall in the manufacturing plant was manufactured. Therefore, even if the server 20 is a device after shipment, the server 20 can specify a plurality of devices that are subject to recall by narrowing down by the manufacturing factory and the period that are subject to recall. Therefore, the server 20 can notify the recalled device 10 or the user's operating device 40 that the device 10 is a recall target.
  • the server 20 can calculate the elapsed period from the manufacturing date of the device 10, when the device 10 exceeds the design useful life, information indicating that the device 10 has exceeded the design useful life, for example, 10 or the operation device 40 can be notified to the user. Thereby, an accident can be prevented beforehand.
  • the device 10 may transmit, for example, the base station ID of the base station 30 with which communication is first established after the repair to the server 20 as information indicating a repair factory.
  • the device 10 may transmit a communication date and time when communication is first established after repair to the server as information indicating the repair date and time.
  • the device 10 may include such information in the state information and transmit it to the server 20.
  • the server 20 can manage the repair history by storing the information transmitted by the device 10 as repair information.
  • the device 10 may transmit information indicating the manufacturing factory and information indicating the manufacturing date and time to the server 20 as manufacturing information when the initial communication is established.
  • the device 10 may transmit information indicating the repair factory and information indicating the repair date and time to the server 20 as repair information.
  • the information indicating whether or not it is after the repair is that the worker of the repair shop transmits information indicating that the repair target device 10 is under repair or after repair to the server 20 together with the device ID of the device 10.
  • the server 20 may be notified that the device 10 is under repair or after repair.
  • the device 10 may store state information including the transmitted manufacturing information or repair information.
  • the user can know the manufacturing information or the repair information even if the device 10 is not in communication with the network, and the device 10 can receive the manufacturing information or the repair information when the communication with the network is established. It can be transmitted to the server 20.
  • the device 10 notifies the server 20 of energization information indicating whether the power of the device 10 is on or off.
  • the server 20 can estimate the installation state of the device 10 and can also be used to control the communication function of the device 10.
  • the server 20 notifies the user according to the estimated result. As a result, the service quality can be improved.
  • FIG. 20 is a flowchart illustrating a first example of a process for determining the energization state of the device 10 in the server 20.
  • the server 20 sequentially receives state information including an energized state from the device 10 via the base station 30.
  • the server 20 uses the received state information to determine whether or not the device 10 is in an energized state, that is, whether the power is on or off (S1).
  • the server 20 determines that the device 10 is energized, that is, the power is on. (S2).
  • the server 20 determines whether or not the device 10 has the communication battery 110 mounted ( S3).
  • the state information may include battery information indicating whether or not the device 10 has the communication battery 110 mounted, and the server 20 performs the determination in step S3 based on the battery information. Also good. Further, the server 20 may perform the determination in step S3 by referring to the device information of the device 10 from the external device using the device ID.
  • the server 20 determines that the device 10 is not energized, that is, the power is off (S4).
  • the server 20 When it is determined that the device 10 does not have the communication battery 110 (No in S3), the server 20 is in a state where the power of the device 10 is off and cannot be notified (that is, notification is not possible). (S5).
  • the server 20 can estimate the installation state of the device 10 based on the state information transmitted by the device 10 having the function of notifying the energized state. For example, when it is determined in step S2 that the device 10 is in an energized state, the server 20 is installed at a factory test, a store display, or a user's house and can be used immediately. It turns out that it is in a state.
  • the server 20 determines that the device 10 is not energized as in step S4, it can be seen that the device 10 is not in a ready-to-use state such as before shipment, during transportation, and before installation. For this reason, for example, the server 20 transmits a control signal that reduces the communication amount by reducing information to be communicated or reduces the communication frequency to the device 10 via the base station 30, so that the device 10 When the communication battery 110 is mounted, the power consumption of the communication battery 110 by the device 10 can be suppressed.
  • the server 20 can estimate the state of the device 10 more accurately by determining the information history one or more previous times in addition to the information notified most recently.
  • FIG. 21 is a flowchart illustrating a second example of the process of determining the energization state of the device 10 in the server 20.
  • the server 20 sequentially receives state information including an energized state from the device 10 via the base station 30.
  • the server 20 uses the received status information to determine whether the device 10 is in an energized state, that is, whether the power is on or off (S11).
  • the server 20 determines whether or not the device 10 has the communication battery 110 mounted ( S12).
  • the server 20 When it is determined that the device 10 has the communication battery 110 mounted (Yes in S12), the server 20 has the communication battery 110 mounted and is energized, that is, the power source. Is determined to be on (S13).
  • the server 20 When it is determined that the device 10 is not equipped with the communication battery 110 (No in S12), the server 20 is not equipped with the communication battery 110 and is energized. It is determined that the power is on (S14).
  • the server 20 determines whether or not the device 10 is equipped with the communication battery 110 ( S15).
  • the server 20 When it is determined that the device 10 has the communication battery 110 mounted (Yes in S15), the server 20 has the communication battery 110 mounted and is not energized, that is, the power source. Is determined to be off (S16).
  • the server 20 When it is determined that the device 10 does not have the communication battery 110 mounted (No in S15), the server 20 does not have the communication battery 110 mounted and is not energized. It is determined that the notification cannot be made (that is, the notification is disabled) (S17).
  • step S12 and S15 are performed in the same manner as in step S3.
  • the server 20 can estimate the installation state or communication abnormality of the device 10 based on the state information transmitted by the device 10 having the function of notifying the energization state and the battery information. For example, it is estimated that the server 20 is equipped with a communication battery 110 and is in a state of being energized, and at least can be used immediately and can expect continuous communication. can do. For this reason, the server 20 can estimate that there is something abnormal when the communication from the device 10 is interrupted. Moreover, it can be estimated that the server 20 needs to monitor the subsequent progress about the apparatus 10 which is not carrying the communication battery 110 and is energized, for example.
  • the device 10 when the device 10 is equipped with the communication battery 110, the device 10 may notify the state information of the remaining battery level of the communication battery 110. Thereby, the server 20 can further predict or detect the battery running out of the communication battery 110 of the communication module 101.
  • the server 20 can estimate the state of the device 10 more accurately by determining the information history one or more previous times in addition to the information notified most recently.
  • the device 10 may further notify the server 20 of type information indicating the type classification of the device 10 (home appliance), for example. Thereby, the server 20 can further improve the accuracy of the state estimation of the device 10.
  • the server 20 can notify the user of information corresponding to the estimated result to the device 10 or the operating device 40, thereby improving service quality.
  • the classification includes, for example, large IoT home appliances, medium IoT home appliances, and small IoT home appliances. That is, the device 10 is classified into one of a large IoT home appliance, a medium IoT home appliance, and a small IoT home appliance.
  • IoT home appliances are IoT home appliances that require construction for installation, such as dishwashers, built-in IH stoves, and intercoms.
  • Medium-sized IoT home appliances are IoT home appliances such as TVs and refrigerators that do not require construction but are not supposed to be carried.
  • Small IoT home appliances are IoT home appliances such as a dryer and a shaver that do not require construction for installation but are also assumed to be portable.
  • FIG. 22 is a flowchart illustrating an example of processing for estimating the installation state of the device 10 in the server 20 that is not energized.
  • the server 20 determines in the processing in FIG. 20 or FIG. 21 that the communication battery 110 is not energized regardless of whether or not the communication battery 110 is mounted, the server 20 executes the following processing.
  • the server 20 determines whether or not there is a usage history of the device 10 (S21). For example, when the status information of the device 10 stored in the storage unit 203 does not include the status information indicating that the power is on, the server 20 determines that there is no use history of the device 10 and turns on the power. When the status information shown is included, it is determined that there is a usage history of the device 10.
  • the server 20 determines whether the device 10 is a small IoT home appliance (S22).
  • the server 20 determines whether the device 10 is outside the home (S23). For example, the server 20 determines whether or not the base station ID of the base station 30 received together with the status information of the device 10 matches the base station ID of the base station 30 around the user's home. Determine if you are out of home. Whether or not the base station ID is the base station ID of the base station 30 around the user's home is determined by information indicating that the device 10 is installed at home when the user installs the device 10 at home. By transmitting the information to the device 10, the server 20 is notified of the base station ID of the base station 30 around the home together with the status information. The server 20 can perform the determination in step S23 by storing the base station ID received together with information indicating that the device 10 is installed at home as the base station ID of the base station around the user's home. .
  • the server 20 determines that the user is traveling with the device 10 (S24).
  • the server 20 determines that the user is using the device 10 at home (that is, normally used) (S25).
  • the server 20 determines whether the device 10 is a medium IoT home appliance (S26).
  • the server 20 determines whether or not the user of the device 10 is a power saving house (S27). For example, the server 20 may determine whether or not the user is a power saver based on information input in advance when the user registers the device 10 by the user. That is, in the user registration, the user performs an input indicating whether or not the user is a power saver using the operation device 40, and the operation device 40 determines whether or not the user is a power saver based on the input. May be transmitted to the server 20.
  • the server 20 determines that the device 10 is saving power by the user (S28).
  • the server 20 is not a medium-sized IoT home appliance (No in S26) or when it is determined that the user is not a power-saving house (No in S27), the user is not using the device 10 and is moving It is determined that either the device 10 has been discarded or the device 10 has been transferred to another user (S29).
  • the server 20 determines that the device 10 is unused (S30).
  • the server 20 can estimate the state of the device 10 based on the notification content or the content notified in the past. Some devices 10 are not energized at all times, such as fans that are used for a limited time. By mounting the communication battery 110, the device 10 that is not always energized can notify the server 20 of status information even when the device 10 is not supplied with power from an external power source. However, if the device 10 performs frequent communication, the power stored in the communication battery 110 is quickly consumed. That is, if the communication frequency is appropriately controlled, the communication battery 110 can be lengthened and the amount of communication can be suppressed.
  • FIG. 23 is a sequence diagram illustrating an example of a process in which the server 20 controls the communication frequency of the non-energized device 10.
  • FIG. 24 is a graph showing the relationship between the update interval determined by the server 20 and the elapsed time since the non-energized state.
  • the device 10 has been in a non-energized state from time t0, and makes an n-th information notification (n) to the server 20 at time t (S51).
  • the server 20 calculates the update interval (i) according to the graph shown in FIG. 24 from the elapsed time after the device 10 is de-energized, and notifies the device 10 of a control signal for designating the next notification time (t + i). (S52).
  • step S53 is replaced with step S51, and then step S52 and step S53 are repeated.
  • the server 20 sets the update interval of the information notification by the device 10 longer as the non-energized state continues longer. Thereby, the apparatus 10 can suppress consuming the power of the communication battery 110 due to frequent information notification.
  • the device 10 may notify the state information regardless of the designated update time when the device 10 is energized. Thereby, even when the state of the device 10 changes and the notification content changes, the server 20 can receive the changed notification content.
  • the server 20 sets the update interval to 1 day when the elapsed time after the device 10 is in a non-energized state is 5 days or less.
  • the update interval may be set to 5 days if the elapsed time from the energized state is longer than 5 days and less than 25 days, and the update interval may be set to 25 days if the energized state is longer than 25 days. .
  • the server 20 is not used when, for example, more than 5 days have passed since the device 10 has been de-energized. Therefore, by setting the update interval to 25 days, it is possible to suppress the power consumption of the communication battery 110.
  • the server 20 sets an update interval of 8 hours when the elapsed time after the device 10 is de-energized is 7 days or less.
  • the position of the device 10 can be tracked, and the power of the communication battery 110 is consumed by setting the update interval to 1 day when the elapsed time after the deenergized state is longer than 7 days. Can be suppressed.
  • the communication frequency may not be controlled by the server 20.
  • the device 10 may control the next update time by holding the elapsed time since the deenergization state and calculating the next update time from the elapsed time.
  • the device 10A having the holding unit 108A that holds notification contents will be described.
  • the device 10A can perform notification with the minimum necessary power even in a non-energized state.
  • FIG. 25 is a configuration diagram illustrating a block of a second example of the device 10A which is an IoT home appliance.
  • the device 10A is different from the device 10 in that it includes a main body battery 113 and a point in which a holding unit 108A is provided instead of the holding unit 108.
  • control unit 104 sequentially stores the control state of the control unit 104 in the holding unit 108A.
  • the holding unit 108A sequentially holds the control state by the control unit 104.
  • the communication module 101 reads the control state sequentially held in the holding unit 108A when the power of the device 10 is off, and the read control state Information may be transmitted to the server 20 via the base station 30.
  • the device 10A includes the holding unit 108A that can hold information necessary for notification to the server 20 even when the device 10A is in a non-energized state. Necessary information can be notified to the server 20 without supplying.
  • the battery information of the main body battery 113 of the device 10 ⁇ / b> A may be held by a device other than the communication module 101 that is supplied with power from the communication battery 110.
  • the communication module 101 acquires a battery information of the main body battery 113 in order to acquire battery information of the main body battery 113 (for example, the control unit 104). It is necessary to supply power to a storage unit (not shown).
  • the device 10A since the device 10A includes the holding unit 108A, by copying the battery information of the main body battery 113 to the holding unit 108A when the device 10A is in the energized state, the communication module can be used even if the device 10A is in the non-energized state.
  • the battery information of the main body battery 113 can be notified to the server 20 simply by supplying power to 101.
  • the control unit 104 holds the control state other than the battery information of the main battery 113 in the holding unit 108A, and the communication module 101 stores the control state held in the holding unit 108A in the server 20 as the state information. You may send it.
  • the communication module 101 may reduce the amount of communication by notifying the server 20 of the difference from the content previously notified to the server 20.
  • the device 10 may notify the destination information indicating the destination of the device 10. Accordingly, when the device 10 is used in an area different from the original destination, the server 20 automatically changes the setting of the device 10 to a setting suitable for the area where the device 10 is installed. Can do.
  • FIG. 26 is a diagram illustrating an example of a method for acquiring a region where the device 10 is installed when the device 10 is used.
  • the device 10 notifies the server 20 of information indicating the destination (corresponding area) at the time of manufacture, and the server 20 stores the information.
  • the device 10 notifies the neighboring base station 30 of the device ID of the device 10.
  • the base station 30 notifies the server 20 of information on the base station ID with which communication has been established with the device ID.
  • the server 20 determines based on the notified information whether the destination location (corresponding region) of the device 10 is the same as the installation region where the device 10 is actually used. If the destination location and the installation area are not the same, the server 20 transmits an instruction for changing the setting of the device 10 as notification information, and changes the setting to match the characteristics and properties of the installation area. Examples of settings to be changed are menu screen language, TV channel information, AC frequency, water quality, temperature, humidity, precipitation, and the like.
  • FIG. 27 is a diagram for explaining an example of notifying the firmware version in the distribution route of the device 10.
  • Home appliances are manufactured at the manufacturer's factory, and then delivered to the purchased user's home via a plurality of bases such as the manufacturer's own, wholesale distribution bases, and retail stores.
  • home appliances may be modified or improved as firmware is changed as production and sales continue. For this reason, in order to manage whether or not the firmware has been changed, the firmware version is generally changed together.
  • the user purchases and uses a home appliance of the latest firmware version that has been modified or improved, both for the user and the home appliance manufacturer that manufactures it.
  • home appliances may be invented at multiple stages after they are manufactured, even if the latest home appliances are manufactured and shipped at the factory, Improvements may have been made. For this reason, the user may receive home appliances before correction / improvement, that is, home appliances whose firmware version has not been changed.
  • the device 10 notifies the server 20 of firmware information by connecting to the network even if it is in stock.
  • the server 20 since the server 20 also acquires the base station ID of the base station 30 with which the device 10 communicated together with the firmware information, the server 20 can also grasp the position where the device 10 exists. Therefore, the server 20 can estimate which firmware version of the device 10 is in stock at which location. Based on the information, the server 20 notifies the terminal on the base side as notification information of an instruction not to ship the device 10 with the old firmware version, so that the device 10 before correction or improvement reaches the user. The situation can be reduced.
  • FIG. 28 is a diagram for explaining the process of associating the user and the device 10 in the home appliance management service linked with the EC service.
  • the distribution channels of home appliances are generally delivered to the user's home where the home appliances are purchased via a plurality of factories, distribution bases, retail stores, and the like.
  • a device ID for individual identification is often embedded at the manufacturing stage.
  • the user purchase opportunities for home appliances are also increasing through online purchases using EC services.
  • each EC service also issues a dedicated membership card and gives points that can be discounted according to the purchase amount.
  • the device 10 notifies the device ID of the device ID, so that the server 20 also acquires the base station ID of the base station 30 with which the device 10 communicated together with the device ID. Accordingly, if the home appliance management service can grasp the device ID and the position information indicating the position where the device 10 exists, the home appliance management service and the EC service cooperate to obtain the device ID and position grasped by the home appliance management service. Linkage prediction is possible by collating the information with the user ID, the purchased home appliance information, and the shipping destination information that are grasped by the EC service.
  • the QR code registered trademark
  • the operation device 40 such as a smartphone
  • the user ID of the EC site is matched.
  • the registration of the association can be confirmed.
  • the user transmits a receipt notification by operating the operation device 40 the user is given a merit by giving a discount point or the like of the linked EC service to the user. This can prompt the user to register the purchased device 10.
  • the resources for discount points granted to the user by the EC service can be generated by cost reduction by omitting the distribution channel.
  • This disclosure is useful as a device management system, a device, a device management method, and the like that can efficiently manage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)

Abstract

ネットワークに通信接続されているサーバ(20)と、ネットワークに通信接続されている、遠距離無線通信の基地局(30)と、基地局(30)に通信接続する機器(10)であって、当該機器(10)の状態を示す状態情報を、基地局(30)を介してサーバ(20)に送信する機器(10)と、を備え、サーバ(20)は、機器(10)から状態情報を受信し、受信された状態情報に応じて通知情報を生成し、生成された通知情報を機器(10)に送信する。

Description

機器管理システム、機器、及び、機器管理方法
 本開示は、機器管理システム、機器、及び、機器管理方法に関する。
 近年、生活家電(機器ともいう)が、当該機器を制御するクラウドである家電制御クラウド(制御クラウドともいう)にネットワークを介して接続され、制御クラウドによる制御の下で動作する形態がある(非特許文献1参照)。
特開2016-63520号公報
 しかし、機器を使用するユーザが、必ずしも、ネットワークに接続するための設定などをして、機器を制御クラウドに接続するとは限らない。機器が制御クラウドに接続されなければ、制御クラウドによる機器の管理を効率よく行うことができないという問題がある。
 そこで、本開示は、機器の管理を効率よく行うことができる機器管理システムなどを提供する。
 本開示の一態様に係る機器管理システムは、ネットワークに通信接続されているサーバと、前記ネットワークに通信接続されている、遠距離無線通信の基地局と、前記基地局に通信接続する機器であって、当該機器の状態を示す状態情報を、前記基地局を介して前記サーバに送信する機器と、を備える。
 なお、これらの全般的または具体的な態様は、機器、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、機器、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の機器管理システムは、機器の管理を効率よく行うことができる。
図1は、生活家電の進化を示す説明図である。 図2は、第三世代の生活家電のアーキテクチャと外部サービス連携の例を示す説明図である。 図3は、第三世代の生活家電のアーキテクチャとAIスピーカー連携の例を示す説明図である。 図4は、第三世代の生活家電の第一の課題を示す説明図である。 図5は、第三世代の生活家電の第二の課題を示す説明図である。 図6は、ネット接続機能内蔵家電のネット接続率を示す説明図である。 図7は、クラウド生活家電のネット接続などを示す説明図である。 図8は、常時接続IoT生活家電で利用可能な通信方式(Wi-Fi、LPWA)の特徴を示す表である。 図9は、第四世代の生活家電(常時接続IoT家電)のアーキテクチャと外部サービス連携を示す第一の説明図である。 図10は、第四世代の生活家電のアーキテクチャと外部サービス連携を示す第二の説明図である。 図11は、第四世代の生活家電のアーキテクチャと外部サービス連携を示す第三の説明図である。 図12は、第四世代の生活家電のアーキテクチャと外部サービス連携を示す第四の説明図である。 図13は、生活家電のアーキテクチャの進化を示す図である。 図14は、第四世代の生活家電の機能分担(機能の外部化)について説明するための図である。 図15は、機器管理システムの構成を示すブロック図である。 図16は、IoT家電である機器の第1の例のブロックを示す構成図である。 図17は、IoT家電制御クラウドであるサーバのブロックを示す構成図である。 図18は、製造時または修理時の情報を通知する機能を有する機器において、状態情報をサーバに通知する処理フローの一例を示す図である。 図19は、製造時または修理時に機器がサーバに送信する状態情報の一例を示す表である。 図20は、サーバにおける機器の通電状態を判断する処理の第1の例を示すフローチャートである。 図21は、サーバにおける機器の通電状態を判断する処理の第2の例を示すフローチャートである。 図22は、サーバにおける、通電状態でない機器の設置状態を推定する処理の一例を示すフローチャートである。 図23は、非通電状態の機器の通信頻度をサーバが制御する処理の一例を示すシーケンス図である。 図24は、サーバにより決定される更新間隔と、非通電状態になってからの経過時間との関係を示すグラフである。 図25は、IoT家電である機器の第2の例のブロックを示す構成図である。 図26は、機器の使用時に機器が設置されている地域を取得する方法の例を示す図である。 図27は、機器の流通経路におけるファームウェアバージョンを通知する例について説明するための図である。 図28は、ECサービスと連携した家電管理サービスにおけるユーザと機器との紐付ける処理について説明するための図である。
 本開示の一態様に係る機器管理システムは、ネットワークに通信接続されているサーバと、前記ネットワークに通信接続されている、遠距離無線通信の基地局と、前記基地局に通信接続する機器であって、当該機器の状態を示す状態情報を、前記基地局を介して前記サーバに送信する機器と、を備える。
 このため、機器は、サーバに機器の状態情報を例えば定期的に送信することができる。このため、サーバは、機器の最新の状態情報を取得することができ、機器の管理を効率よく行うことができる。
 また、前記機器は、前記基地局と前記遠距離無線通信用の通信モジュールと、前記通信モジュールを駆動する電力を前記通信モジュールに供給する通信用バッテリと、を有し、前記通信モジュールは、前記機器の電源がオフである場合に、前記基地局を介して前記サーバに前記状態情報を送信してもよい。
 このため、通信モジュールは、機器の電源がオフの場合であっても、基地局と通信することができるため、機器の状態情報をサーバに送信することができる。
 また、前記機器は、さらに、前記機器の電源がオンである場合に、前記機器の動作を制御する制御部と、前記制御部による制御状態を逐次保持する保持部と、を有し、前記通信モジュールは、前記機器の電源がオフである場合に、前記保持部に逐次保持された前記制御状態を読み出して、読み出された前記制御状態を前記状態情報として前記基地局を介して前記サーバに送信してもよい。
 このため、通信モジュールは、機器の電源がオフの場合であっても、機器の制御状態を状態情報としてサーバに送信することができる。
 また、前記基地局は、LPWA(Low Power, Wide Area)の基地局であり、前記通信モジュールは、前記LPWAの通信モジュールであってもよい。
 このため、機器は、機器の通電状態をサーバに送信することができる。
 また、前記状態情報は、前記機器が通電しているか否かを示す通電状態を含んでもよい。
 このため、機器は、ネットワークと常時接続された状態を容易に実現できるため、機器の状態情報を定期的にサーバに送信することができる。
 また、前記サーバは、前記機器から前記状態情報を受信し、受信された前記状態情報に応じて通知情報を生成し、生成された通知情報を前記機器に送信してもよい。
 このため、サーバは、機器の状態に適した通知情報を機器に送信することができる。
 また、機器であって、遠距離無線通信の基地局に通信接続する通信モジュールであって、前記機器の状態を示す状態情報を、前記基地局を介して、前記基地局にネットワークで通信接続されているサーバに送信する通信モジュールを備えてもよい。
 このため、機器は、サーバに機器の状態情報を例えば定期的に送信することができる。
 また、前記機器は、さらに、前記通信モジュールを駆動する電力を前記通信モジュールに供給する通信用バッテリを有し、前記通信モジュールは、前記機器の電源がオフの場合に、前記基地局を介して前記サーバに前記状態情報を送信してもよい。
 このため、通信モジュールは、機器の電源がオフの場合であっても、基地局と通信することができるため、機器の状態情報をサーバに送信することができる。
 また、前記機器は、さらに、前記機器の電源がオンである場合に、前記機器の動作を制御する制御部と、前記制御部による制御状態を逐次保持する保持部と、を有し、前記通信モジュールは、前記機器の電源がオフである場合に、前記保持部に逐次保持された前記制御状態を読み出して、読み出された前記制御状態を前記状態情報として前記基地局を介して前記サーバに送信してもよい。
 このため、通信モジュールは、機器の電源がオフの場合であっても、機器の制御状態を状態情報としてサーバに送信することができる。
 また、前記基地局は、LPWA(Low Power, Wide Area)の基地局であり、前記通信モジュールは、前記LPWAの通信モジュールであってもよい。
 このため、機器は、機器の通電状態をサーバに送信することができる。
 また、前記状態情報は、前記機器が通電しているか否かを示す通電状態を含んでもよい。
 このため、機器は、ネットワークと常時接続された状態を容易に実現できるため、機器の状態情報を定期的にサーバに送信することができる。
 なお、これらの全般的または具体的な態様は、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者(ら)は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 以降において、本発明に至る背景、及び、本発明により解決すべき課題を詳細に説明した後で、実施の形態を説明する。
 (本発明に至る背景)
 図1は、生活家電の進化を示す説明図である。
 図1に生活家電(洗濯機、冷蔵庫等の白物家電とエアコン、加湿空気清浄機等)のアーキテクチャの進化を示す。
 第一世代(1990年以前)の生活家電機器は、コンプレッサ、モータ等のハードウェアを、LSI(Large-scale Integrated Circuit)等で作った制御ロジックにより実現していたため、単機能の製品となっていた。
 第二世代(1990年以降2010年くらいまで)のマイコン内蔵生活家電機器には、マイコンが導入され、マイコンのソフトウェアを作成することにより、複雑な制御が可能になったことにより、多機能な家電が実現できた。しかしながら、出荷後マイコンを変更することで機能を変更、追加することはできなかった。
 第三世代(2012年以降)のクラウド家電は、Wi-Fi(登録商標)、Bluetooth(登録商標)(以下BTとする)等の通信機能を持ち、ホームGW(ゲートウェイ)とブロードバンド回線網とを経由してIoT(Internet of Things)家電制御クラウドに接続可能になった。このため、出荷後もクラウドから本体内のマイコンのソフトウェアを更新することもできるようになった。マイコンのソフトウェアは更新しないで、クラウド側の該当機器の制御機構を更新すること等により、出荷後も機能追加、更新を行うことができるようになった。ここで、IoT家電制御クラウドとは、ブロードバンド回線網などの通信路を通じて家電機器を制御するクラウド(サーバとネットワークとの集合体)であり、クラウド型のサービスの1つである。 
 図2は、第三世代の生活家電のアーキテクチャと外部サービス連携の例を示す説明図である。
 第三世代のクラウド生活家電(洗濯機、冷蔵庫等の白物家電とエアコン、加湿)の場合は、スマートフォンのAPPs(アプリケーション)からIoT家電制御クラウドの各生活家電制御機構を経由して、家庭内の各生活家電にアクセスすることが可能になる。
 このため、スマートフォンのAPPsから各生活家電の動作状況を遠隔監視したり、遠隔動作制御(起動、停止、温度調節、洗剤投入等)したりすることができる。また、ECサービスクラウド又は見守りサービスクラウド等の外部サービス群と、IoT家電制御クラウド内の各生活家電制御機構とが連携することにより、各種クラウドサービスから生活家電を制御したり、生活家電の動作情報(ログ等)を取り出し、それを外部サービスで利用したりすることが可能になる。
 図3は、第三世代の生活家電のアーキテクチャとAI(Artificial Intelligence、人工知能)スピーカー連携の例を示す説明図である。
 第三世代のクラウド生活家電(洗濯機、冷蔵庫等の白物家電とエアコン、加湿)の場合は、音声対話機能を実現するAIスピーカーから、ホームGW経由でクラウド内のAIスピーカー制御機構にアクセスし、そのAIスピーカー制御機構が各生活家電制御機構にアクセスすることで、ユーザがAIスピーカーから音声対話で各生活家電を遠隔制御することも可能になる。
 (解決すべき課題)
 図4は、第三世代の生活家電の第一の課題を示す説明図である。第一の課題は、Wi-Fi GWがない家庭では、第三世代の家電の機能を使うことができない、という課題である。
 ある家庭が第三世代のクラウド生活家電(洗濯機、冷蔵庫等の白物家電とエアコン、加湿)を購入した場合でも、その家庭にWi-Fi等のホームGWがなくブロードバンド回線網に接続できない場合は、クラウド家電がIoT家電制御クラウドに接続できない。この場合、IoT家電制御クラウドから家電にアクセスすることが不可能なため、第三世代の生活家電が掲げる、購入後のクラウド側での機能進化による商品付加価値向上という目的を達成することができない。そのため、IoT家電でありながら製造時に機能が固定されていた従来型の第二世代生活家電(マイコン生活家電)としてしか使用できない。
 図5は、第三世代の生活家電の第二の課題を示す説明図である。第二の課題は、Wi-Fi GWが家庭にあってもユーザが第三世代の生活家電をWi-Fi GWに接続しない、という課題である。
 スマートフォン、タブレット、PC等の情報機器、又は、AIスピーカーは、Wi-Fi等によるインターネット接続機能がないと、ユーザがその製品に望む本来の機能が使えない。また、スマートフォン又はAIスピーカーには、インターネットに接続し、ユーザ情報(メールアドレス、アカウント等)を設定しないと、そもそも使えない機器もある。ユーザはそれらの機能を使いたいためにその機器を購入したため、ユーザは必ずユーザID設定又はWi-Fi設定を行い、インターネットに接続させる。
 スマートTVの場合も、Youtube、Netflix、Amazon Prime Video等の映像配信サービスが普及しており、これらの映像コンテンツを大画面TVで視聴するために、ユーザ(もしくは設置業者)がWi-Fiの設定を行うことが多い。
 クラウド生活家電の場合は、ユーザが面倒なWi-Fi設定を行ったことで利用可能になるインターネットサービスが判り難かったり、このインターネットサービスの利用価値性がユーザにとって必要な機能と思えなかったりするため、ユーザは最初からインターネット接続設定を行わないことが多い。
 また、購入直後は、Wi-Fi設定を行うが、インターネットサービスの利便性が比較的高くないとユーザが考えた場合は、折角接続したものを解除したり、何らかの理由で接続が切れても再接続しない場合も多い。
 従って、情報機器とAIスピーカーとについてはほぼ100%接続が期待できるため、インターネットに接続されることを前提に各種クラウドサービスを開発することが可能であるが、TV又は生活家電の場合は、100%の接続率はほぼ期待されない。
 図6は、ネット接続機能内蔵家電(AVと生活家電)のネット接続率を示す説明図である。
 前述のクラウド生活家電は、Wi-Fi又はBluetoothなどの通信手段が実装されることによって、IoT家電制御クラウドへの接続が実現され、各種クラウドサービスを利用することで、マイコン生活家電にない顧客価値を提供できる。このため、Wi-Fi等の通信手段をクラウド生活家電に実装することによるコスト増加を上回る顧客価値を提供できることで顧客満足度を向上させることができる。
 しかしながら、前述の通信手段は、以下に示すような多くのケースで機器を保有するユーザによる設定がなされないという課題、つまりはクラウド生活家電がクラウドへ接続されないと、マイコン生活家電と同じ顧客価値しか提供できないという課題がある。
 (1)Wi-Fiを接続するためには、ユーザは宅内にWi-Fiのアクセスポイントを用意する必要がある。しかしながら、インターネットの接続はスマートフォンからしか行わないユーザ、つまり通信キャリアが用意する通信網しか使用しないユーザにとってWi-Fiのアクセスポイントを宅内に保有していないケースがある。
 (2)Wi-Fiのアクセスポイントが宅内に存在していたとしても、家電の接続設定の煩雑さ、例えばWi-Fiのパスワード入力を筆頭とする接続作業のために、万人が容易にWi-Fiの接続設定を出来るとは言い難い。
 実際、図6のように2017年の日本市場でのクラウド対応TV又はクラウド生活家電のネットワーク接続率は、50%以下に留まり、多くのユーザがクラウド生活家電をマイコン生活家電として使っていることがわかる。
 図7は、クラウド生活家電のネット接続などを示す説明図である。
 クラウド生活家電がクラウドに接続されていない場合、IoT家電制御クラウドからクラウド生活家電にアクセスすることが不可能である。このため、クラウド生活家電で実現可能な、購入後のクラウド側での機能進化による商品付加価値向上機能を利用することができない。
 そのため、クラウド生活家電でありながら、製造時に機能が固定されていた従来型のマイコン生活家電と同等の機能しか使えない。
 本来のクラウド生活家電であれば、万が一リコールなどが発生した際にも対象家電に対して緊急停止指示、リモートファーム更新、又は、ユーザへのメール通知などの対応を取ることができる。しかし、接続率の低い、現状では、製造メーカは、これらのIoT家電制御クラウドから、クラウド生活家電を制御する機能をつかうことができないことが多い。このため、対象クラウド生活家電の全部に対して、遠隔監視、制御ができれば実現可能な、リモートメンテナンス又はリコール通知等の機能が十分機能しない。
 そこで、Wi-Fi又はBT等の通信手段が実装されたクラウド生活家電が、実際にはクラウドへ接続されづらい状況もあるなか、家電以外の機器又はセンサをIoT化するための様々な通信手段が利用可能になってきた。
 特に、LPWA(Low Power Wide Area)と総称されるIoT向け利用に特化して開発された無線通信手段が実用化され、IoT時代に適した通信方式として注目されている。
 LPWA無線の特徴は、LTE(Long Term Evolution)に比べ、小規模の半導体実装により端末コストを削減できること、非常に長い通信距離(~10km)が得られる低レート変調により基地局数を削減できることとによって、無線回路とインフラ設備との両方の低コスト化を実現したことである。反面、伝送レートを下げて受信感度を改善する手法を取っているため、伝送できるデータ量は小さい。
 LPWA無線を家電機器に搭載することにより、利用者がインターネット回線を契約する必要がなくなり、家電機器が直接的に基地局に接続されて、クラウドサーバに接続したサービスを非常に低コストに実現できる可能性がある。
 LPWAは、セルラーLPWAとノンセルラーLPWAとに分類される。セルラーLPWAは、セルラーキャリアに割り当てられた周波数バンド(ライセンスバンド)を用い、セルラー回線(LTEなど)の1つとして提供されるものである。
 ノンセルラーLPWAは、各国に存在するノンライセンスバンドを用いてチャネル使用費用が不要となることを利用してLPWA無線を使用するものである。ノンライセンスバンドは他の無線システムとの共用利用となるため、チャネルを独占しないための制限が各国の電波法で規定されている。
 以下に代表的なLPWA方式について述べる。
 図8は、常時接続IoT生活家電で利用可能な通信方式(Wi-Fi、LPWA)の特徴を示す表である。
 (1)セルラーLPWA
 (1-1)NB-IoT
 GSM(登録商標)(2G)方式を起源とし、低伝送レート化とLTE通信シーケンスの優位性を適用し、IoT向けのデータ伝送に特化した仕様となっている。チャンネル間隔をGSMと同じ200kHzにすることで、GSMチャネルへの置換え運用を容易にしている。上り送信のピークレートを62.5kbpsと低速化し、また複数回の繰返し送信(64回)で蓄積受信することで、感度点の改善を行っている。最大リンクバジェットは130dBと大きい。また、送信電力を100mW(GSMは2W)に抑える仕様とし、ピーク電流を抑えて電池1本での運用を可能としている。
 (1-2)LTE-M(CAT-M)
 LTE(4G)方式を起源とし、LTEの最小チャネル間隔(1.4MHz)を用いて通信を行う方式である。LTEのスロット構成に準拠しているため、従来LTEの通信スロットに混在させて運用することができる。上り送信のピークレートを1Mbpsと低速化し、繰り返し送信で蓄積受信することで、感度点の改善を行っている。最大リンクバジェットは130dBである。
 伝送レートがやや高いため、電池駆動時の消費電力が最も小さい。送信電力は200mWである。
 (2)ノンセルラーLPWA
 (2-1)LoRa
 従来の小電力無線バンド(ISMバンド)を用いるが、超低レート変調により受信感度を改善している。超低レート変調の実現方法は、LoRaチャープ変調と呼ばれる特殊な拡散変調を用いる。LoRaチャープ変調の特徴は、250bpsの低伝送レートと拡散帯域125kHzとを実現し、妨害ノイズに強く高感度が得られることである。また、同一帯域幅で複数のデータレートを選択でき、これらを同一チャネルで同時に受信できるので、通信容量のキャパシティが改善される。最大リンクバジェットは149dBである。送信電力は20mWである。
 従来の小電力無線の特徴(小電力、小電流ピーク)を継承しており、電池1本で10年駆動又はコイン電池での駆動が可能である。
 LoRa Allianceで仕様を統一し、事業者間の相互接続を可能とした。
 (2-2)SIGFOX
 従来の小電力無線バンド(ISMバンド)を用いるが、超低レート変調により受信感度を改善している。超低レート変調の実現方法は、狭帯域FSK変調であり、基地局側でデジタル復調処理を工夫することで、周波数誤差の問題を克服した。SIGFOX変調では、上り100bps、下り600bpsの固定レートとなる。周波数を変えた複数回送信をすることで妨害ノイズの影響を回避している。固定レートおよび同時多重受信不可のため、通信容量のキャパシティは比較的小さい。最大リンクバジェットは158dBである。送信電力は20mWである。
 SIGFOXは、従来の小電力無線の特徴(小電力、小電流ピーク)を継承しており、電池1本で10年駆動又はコイン電池での駆動が可能である。
 SIGFOX独自仕様となり、基地局をSIGFOX1社で独占する形態をとる。
 SIGFOXは、片方向通信しかできないため、センサ系IoTには使えるが、IoT生活家電には適さない。
 図8に示されるように、常時接続IoT生活家電を実現するためには、LPWA技術とWi-Fiとの組み合わせが適切と考えられる。しかしながら、上述したような3方式のLPWAの特質はそれぞれ異なるため、通信品質を重視すればコストが高くなり、反対にコストを重視すると通信品質が悪く安定的な通信が確保できないリスクがある。このため、常時接続IoT家電が1つの方式のLPWAを選択することは難しい。
 (実施の形態)
 以降において、適切に制御クラウドに接続され、制御され得る機器について説明する。
 図9は、第四世代の生活家電(常時接続IoT家電)のアーキテクチャと外部サービス連携を示す第一の説明図である。生活家電は、例えば、洗濯機、冷蔵庫等の白物家電とエアコン、加湿空気清浄機であり、単に機器ともいう。
 第三世代の生活家電の課題を解決するためには、生活家電を利用する全てのユーザがWi-Fi GWを持ち、生活家電をインターネットに接続し継続的に利用したいと思わせるサービス開発を行い、かつ、簡単にWi-Fi設定をできるようにする必要があった。
 しかし、近年多様な通信手段の台頭により従来よりも簡単に家電をクラウドに接続できる、LPWA(Low Power Wide Area)と総称される通信手段が提唱され、注目されている。
 LPWAの特徴は、ユーザが設定することなく利用することができ、非常に長い通信距離(~10km)を実現し、電波の届くところなら必ず基地局につながることである。
 第四世代の生活家電(常時接続IoT家電)においては、LPWAを生活家電に搭載することにより、ユーザがWi-Fi GWを用意し、面倒なWi-Fi設定をすることなく、クラウドと接続することが可能となり、購入後のクラウド側での機能拡張などが可能となる。
 図10は、第四世代の生活家電のアーキテクチャと外部サービス連携を示す第二の説明図である。
 LPWAは、前述の通り優れた特徴を持つ反面、伝送レートを下げて受信感度を改善する手法を取っているため、伝送できるデータ量はWi-Fi又はLTEなどに比べて小さい。そのため、第四世代の生活家電(以下、「常時接続IoT家電」とも言う。)においてはLPWAだけでなく、第三世代の生活家電同様Wi-Fiも併せ持つことで用途に応じた適切な通信を可能とする。
 図11は、第四世代の生活家電のアーキテクチャと外部サービス連携を示す第三の説明図である。
 第三世代の生活家電の大きな課題の一つであった、ユーザに面倒なWi-Fi設定を強いるという点も、以下に例を示すようにLPWAをWi-Fi設定に活用することで設定を簡単にすることができる。
 (1)クラウドにWi-Fi設定を入力し、第四世代の生活家電はLPWAを利用して、クラウドからWi-Fi設定を取得しWi-Fi GWに接続する。
 (2)一台の第四世代の生活家電にWi-Fi設定を入力し、LPWA経由で、宅内他機器に送信、他機器はその設定を用いてWi-Fi GWに接続する。
 図12は、第四世代の生活家電のアーキテクチャと外部サービス連携を示す第四の説明図である。
 LPWAは、前述の通り、伝送できるデータ量はWi-Fiなどに比べて小さいという課題に関しても、複数のLPWAを同時に持つことで解決することができる。LPWAは主だった体系としてセルラーLPWAとノンセルラーLPWAとに分類される。セルラーLPWAは、セルラーキャリアに割り当てられた周波数バンド(ライセンスバンド)を用いるため、ノンセルラーLPWAに比べ伝送できるデータ量が大きいという特徴があり、ノンセルラーLPWAはライセンス不要のため、家電メーカ主導で置局することも可能なため、カバーエリアを管理しやすいという特徴がある。Wi-Fiに加え少なくとも一つ以上のLPWAを持つことで家電稼働中は常にクラウドにつながった状態を保持できる常時接続IoT家電を実現する。
 図13は、生活家電のアーキテクチャの進化を示す図である。
 第一世代(1990年以前)の生活家電機器は、例えばコンプレッサ、モータ等のメカニクスと制御ロジックとにより実現された単機能製品である。
 第二世代(2010年くらいまで)の生活家電機器は、マイコンを内蔵しており、マイコンにマイコンソフトを実行させることにより、複雑な制御が可能となった。このため、第二世代の生活家電機器は、多機能である。ただし、第二世代の生活家電機器は、出荷後において、マイコンソフトを変更することで機能を変更したり、追加したりすることは困難であった。
 第三世代(2012年以降)のクラウド家電は、Wi-Fi、Bluetooth等の通信機能を持ち、ホームGWとブロードバンド回線網とを経由してIoT家電制御クラウドに接続可能になった。このため、クラウド家電は、出荷後であってもIoT家電制御クラウドから本体内のマイコンソフトを更新することも、マイコンソフトを更新しないで、クラウド側の該当機器の制御機構を更新すること等により、機能の追加または機能の更新を行うことができるようになった。ただし、Wi-Fi等では、出荷された全製品を接続することが難しく、クラウド機能が使えない場合が多かった。
 第四世代(2020年以降)LPWA等の常時接続機能を搭載した常時接続IoT家電では、出荷された全製品を接続することができるため、クラウドの機能がすべての製品で利用可能になると考えられている。
 図14は、第四世代の生活家電の機能分担(機能の外部化)について説明するための図である。
 第四世代のクラウド生活家電(洗濯機、冷蔵庫等の白物家電とエアコン、加湿空気清浄機等)の場合は、生活家電と、クラウド(サーバ)と、スマートフォン等のUI機器との間を常時接続機能で繋ぐことで、クラウドと、スマートフォンと、生活家電などの機器とに機能分担(機能の外部化)を実現することができる。このため、機器が出荷された後も、クラウド側で機能変更や追加を行うことで、生活家電の機能・性能改善が可能となる。
 また、第四世代のクラウド生活家電では、出荷された製品の全数の常時接続を容易に実現できるため、出荷後も全製品の遠隔監視および遠隔制御が可能となる。このため、品質保証機能の大幅改善が期待できる。また、不幸にも製品をリコールするような事態になっても、クラウドは、出荷後も機器と通信接続され、トレースできるため、リコールの対象製品に対し、故障の告知、強制停止等の対応を実行できる。このため、リコール費用の大幅低減が可能となる。
 次に、本実施の形態に係る機器管理システム1について、図9で説明した構成を例にして説明する。
 図15は、機器管理システムの構成を示すブロック図である。
 図15に示されるように、機器管理システム1は、サーバ20と、基地局30と、機器10とを備える。
 サーバ20は、インターネットなどのネットワークに通信接続されており、IoT家電制御クラウドとして機能する。サーバ20は、ネットワークを介して機器10から状態情報を受信し、受信された状態情報に応じて通知情報を生成し、生成された通知情報を機器10に送信する。サーバ20の詳細な機能については後述する。
 基地局30は、例えばLPWA基地局であり、IoT家電がネットワークに常時接続するための遠距離無線通信に用いられる基地局である。図15では、1つの基地局30が図示されているが、機器管理システム1は、複数の基地局30を備える。
 機器10は、上述した第四世代の生活家電、つまり、常時接続IoT家電であり、複数の基地局30のうちの一の基地局30に通信接続する。機器10は、機器10の状態を示す状態情報を、機器10に内蔵されているLPWA通信モジュールを用いて、一の基地局30を経由してサーバ20に逐次送信する。
 なお、状態情報は、例えば、「機器固有ID」、「通信モジュールID」、「通信モジュール種別」、「送信日時」、「通電状態」、などを含む。通電状態は、機器10が通電しているか否か、つまり、電源がオンであるかオフであるかを示す。状態情報は、上記以外にもソフトウェアのバージョン情報を含んでいてもよい。これにより、サーバ20は、機器10がどのような状態で動作しているのかをより正確に管理することができる。
 次に、基地局30は、状態情報を逐次受信すると、逐次受信された状態情報と共に当該基地局30に固有の情報である固有情報をサーバ20に逐次送信する。ここで、基地局30が状態情報を転送する際に、状態情報と共に送信される固有情報は、当該基地局を識別する基地局IDであってもよいし、当該基地局が設置されている位置を示す位置情報であってもよい。
 本実施の形態に係る機器10は、サーバ20に機器10の状態情報を例えば定期的に送信することができる。このため、サーバ20は、機器10の最新の状態情報を取得することができ、機器10の管理を効率よく行うことができる。
 次に、機器10およびサーバ20の構成についてそれぞれ説明する。
 図16は、IoT家電である機器10の第1の例のブロックを示す構成図である。
 図16に示されるように、機器10は、通信モジュール101と、制御部104と、機能モジュール107と、保持部108と、電源部109と、通信用バッテリ110と、操作部111と、表示部112とを備える。
 通信モジュール101は、機器10を管理するサーバ20に、特定の回線網を介して接続する。通信モジュール101は、例えば、LPWAなどの遠距離無線通信を行うための通信モジュールである。なお、通信モジュール101は、図8を用いて説明した、3方式のLPWAおよびWi-Fiのうちの少なくとも1方式のLPWAを行う通信モジュールを含んでいてもよい。つまり、通信モジュール101は、複数の方式のLPWAをそれぞれ行う、複数の通信モジュールを含んでいてもよいし、LPWAおよびWi-Fiをそれぞれ行う複数の通信モジュールを含んでいてもよい。通信モジュール101は、通信モジュールのモジュールIDを保持している保持部102を有する。通信モジュール101は、通信方式が異なる複数の通信モジュールを有している場合には、保持部102は、複数の通信モジュールのそれぞれのモジュールIDを保持している。
 制御部104は、機器10の電源がオンである場合に、機器10の動作を制御する。具体的には、制御部104は、機能モジュール107を制御することで、機器10の動作を制御する。また、制御部104は、機器10の状態情報を生成し、生成された状態情報を、通信モジュール101を用いてサーバ20に送信してもよい。制御部104は、具体的には、機器10の電源部109の電源の入/切を示す通電状態を取得することで通電状態を含む状態情報を生成してもよいし、機能モジュール107が発揮している機能を示す機能情報を含む状態情報を生成してもよい。制御部104により生成される状態情報は、上記で説明した「機器固有ID」、「通信モジュールID」、「通信モジュール種別」、「送信日時」などを含んでいてもよい。また、制御部104は、通信モジュール101を介してサーバ20から受信した情報に基づく画像を表示部112に表示させてもよい。
 機能モジュール107は、機器10の機能を発揮するモジュールである。
 保持部108は、機器10ごとの固有のIDを保持している記憶装置である。なお、以下では、状態情報のサーバ20への送信を、状態情報の通知と称する場合もある。
 電源部109は、外部電源から電力を受け、機器10内部の構成要素に電力を供給する。
 通信用バッテリ110は、通信モジュール101などに通信モジュール101などを駆動する電力を供給する電池である。通信用バッテリ110は、一次電池であってもよいし、二次電池であってもよい。これにより、通信モジュール101は、機器10の電源がオフである場合であっても、基地局30を介してサーバ20に状態情報を送信する。つまり、通信モジュール101は、機器10の通電状態が電源オンであるか電源オフであるかに関わらず、基地局30と通信することができるため、常時、サーバ20に状態情報を送信することができる。
 操作部111は、機器10に対するユーザによる操作を受け付ける入力装置である。操作部111は、機器10が冷蔵庫、電子レンジ、炊飯器などのように、開閉するドア、扉などを有する場合、これらのドア、扉などであってもよい。
 表示部112は、さまざまな情報を画像として表示する表示装置である。
 機器10の構成について、冷蔵庫を例として詳しく説明する。
 IoT機器としてネット接続されているとしても、冷蔵庫である機器10は、家電として利用されるものであり、家電として本来の機能を実現するための各種モジュールを備えている。冷蔵庫であれば、庫内を冷却するためのコンプレッサ、扉が開かれた際に庫内を照らす照明装置、庫内の温度又は湿度を測定するためのセンサなどがこうしたモジュールにあたる。このようなモジュールが機能モジュール107に相当する。また、冷蔵庫又はエアコンなどの大型家電機器は、電源部109を介して外部電源に接続される構成が一般的である。
 また、近年の家電機器では様々な便利機能を制御するために、マイクロコンピューター又はプロセッサを用いた制御部104が搭載されていることが一般的である。例えば、製氷機能を持つ冷蔵庫であれば、製氷された氷を保存しておく専用皿内に設置されたセンサで製氷の是非を判断し、新たな氷を作るような動作を行う。こうした詳細な動作を行うために、マイクロコンピューター又はプロセッサと、そこで実行されるソフトウェアによって制御が行われている。
 さらに、機器10は、ユーザに対して様々な情報を提示するための表示部112、又は、ユーザが複雑な操作を行うための操作部111をもつ。
 従来の機器の表示部は、複数のランプ又は数桁の数字での表示など限定的な方法で、異常状態の表示又は通電の有無など最低限必要な表示だけを行っていた。また、操作も数個のボタンだけで、急速冷凍の指示又は異常時のリセット操作などシンプルな操作を行ってきた。
 これに対して、機器10は、小型のタッチパネルディスプレイを、操作部111及び表示部112として備え、より複雑な状態の表示、及び、各種の設定が可能である。
 機器10に対し、IoT家電を特徴付けるものが、通信モジュール101である。通信モジュール101は、Wi-Fi又はLTEなど様々な通信手段のなかのいずれか、または複数の方式でインターネットへの接続を可能とする。通信モジュールが複数搭載されている場合にはそれぞれ通信モジュールごとに独立した通信モジュールIDが付与され、通信方式によっては例えばLTEにおける電話番号のように通信識別子としての役割をになう。インターネットと接続することにより、制御部104で収集した各種情報をサーバ20に送付すること、又は、反対にサーバ20から機器10の制御に必要となる情報を取得することが可能である。さらに、近年ではLPWAと呼ばれる、通信速度は低いものの、低消費電力でネット接続が可能な技術も出てきている。LPWAでは、外部電源とは別に機器10内に通信用バッテリ110を持つことで、外部電源に接続されていない場合でも最低限の通信が可能となる。また、通信によっては、特定の家電機器を指定して制御を行う必要もあるため、機器10ごとの固有IDを保持する保持部108を備えることも想定される。なお、通信用バッテリ110を有していない機器10も存在しうる。
 図17は、IoT家電制御クラウドであるサーバ20のブロックを示す構成図である。
 図17に示されるように、サーバ20は、通信部201と、制御部202と、記憶部203とを有する。
 通信部201は、インターネットなどのネットワークに通信接続することで、機器10により逐次送信された状態情報および固有情報を逐次受信する。また、通信部201は、制御部202の処理結果をネットワークおよび基地局30を介して、機器10または操作機器40に送信してもよい。
 制御部202は、通信部201により互いに対応するタイミングで逐次受信された状態情報および固有情報を対応付けて記憶部203に逐次記憶する。制御部202は、所定のプログラムを実行することで、記憶部203に記憶された状態情報または固有情報を用いた処理結果を通信部201に機器10または操作機器40へ送信してもよい。
 制御部202は、所定のプログラムを記憶している不揮発性メモリと、所定のプログラムを実行するプロセッサとにより実現される。制御部202は、上記の機能を実現する専用回路により実現されてもよい。
 記憶部203は、通信部201により受信された状態情報および固有情報を記憶する。記憶部203は、制御部202による処理結果を記憶してもよい。記憶部203は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)などにより実現される。
 次に、機器10が製造または修理の時に送信される状態情報について説明する。
 図18は、製造時または修理時の情報を通知する機能を有する機器10において、状態情報をサーバ20に通知する処理フローの一例を示す図である。図19は、製造時または修理時に機器10がサーバ20に送信する状態情報の一例を示す表である。
 図16を用いて既に説明したように、機器10は、基地局30を介してネットワークに接続することで状態情報をサーバ20に送信する。機器10は、例えば、製造時または修理時の情報を状態情報として送信する。これにより、サーバ20は、受信された情報を蓄積することができ、蓄積された情報を用いて機器10を管理することで、機器10の製品ライフサイクルの全期間における品質を保持することができる。
 このような機器10は、例えば、初回通信確立時の基地局IDを、製造工場を示す情報としてサーバ20に送信してもよい。また、機器10は、初回通信確立時の日時を、製造日時を示す情報としてサーバ20に送信してもよい。機器10は、これらの情報を状態情報に含めてサーバ20に送信してもよい。なお、機器10が基地局IDを送信しなくてもよく、基地局30が、機器10から受信した状態情報に基地局IDを付加して、基地局IDが付加された状態情報をサーバ20に送信してもよい。サーバ20は、機器10により送信された上記の情報を製造情報として保存しておくことで、製品ライフサイクル全期間に亘って、機器10の製造日からの経過時間を算出することができる。また、サーバ20は、機器10の製造工場および製造日を記憶しておくことができる。
 これらの情報を基に、サーバ20は、リコール対象となった機器10の製造工場および当該製造工場におけるリコール対象となった機器10が製造された期間を特定することが容易にできる。よって、サーバ20は、出荷後の機器であっても、リコール対象となった製造工場および期間で絞り込むことで、リコール対象となった複数の機器を特定することができる。このため、サーバ20は、リコール対象となった機器10、または、ユーザの操作機器40に、当該機器10がリコール対象となっていることを通知することができる。
 また、サーバ20は、機器10の製造日からの経過期間を算出できるため、機器10が設計耐用年数を超過した場合に、機器10が設計耐用年数を超過したことを示す情報を、例えば、機器10または操作機器40に送信することで、ユーザに通知することができる。これにより、事故を未然に防止することができる。
 また機器10が修理された場合、機器10は、例えば、修理後に最初に通信が確立された基地局30の基地局IDを、修理工場を示す情報としてサーバに20に送信してもよい。また、機器10は、修理後に最初に通信が確立された通信日時を、修理日時を示す情報としてサーバに送信してもよい。機器10は、これらの情報を状態情報に含めてサーバ20に送信してもよい。サーバ20は、機器10により送信された、上記の情報を修理情報として保存しておくことで、修理の履歴を管理することができる。
 図19に示されるように、機器10は、初回通信確立時において、製造工場を示す情報および製造日時を示す情報を製造情報としてサーバ20に送信してもよい。また、機器10は、修理後における通信確立時において、修理工場を示す情報および修理日時を示す情報を修理情報としてサーバ20に送信してもよい。なお、修理後であるか否かを示す情報は、修理工場の作業者が修理対象の機器10が修理中または修理後であることを示す情報を機器10の機器IDと共にサーバ20に送信することで、サーバ20に当該機器10が修理中または修理後であることを通知してもよい。
 なお、機器10は、送信した製造情報または修理情報を含む状態情報を保存してもよい。これにより、ユーザは、機器10がネットワークと通信が確立されていなくても製造情報または修理情報を知ることができるし、機器10は、ネットワークと通信が確立した時点で、製造情報または修理情報をサーバ20に送信することができる。
 次に、機器10から通電状態が通知される場合のサーバ20による処理について説明する。
 機器10は、例えば、機器10の電源がオンであるかオフであるかを示す通電情報をサーバ20に通知する。これにより、サーバ20は、機器10の設置状態を推定することができるほか、機器10の通信機能の制御にも活用することができる。サーバ20は、推定した結果に応じた通知をユーザに行う。これにより、サービス品質の向上につなげることができる。
 図20は、サーバ20における機器10の通電状態を判断する処理の第1の例を示すフローチャートである。
 サーバ20は、通電状態を含む状態情報を、基地局30を介して機器10から逐次受信しているものとする。
 サーバ20は、受信された状態情報を用いて、機器10の通電状態であるか否か、つまり、電源がオンであるかオフであるかを判定する(S1)。
 サーバ20は、状態情報に含まれる通電状態が機器10の電源がオンであることを示している場合(S1でYes)、機器10が通電している、つまり、電源がオンであると判断する(S2)。
 サーバ20は、状態情報に含まれる通電状態が機器10の電源がオフであることを示している場合(S1でNo)、機器10が通信用バッテリ110を搭載しているか否かを判定する(S3)。なお、状態情報には、機器10が通信用バッテリ110を搭載しているか否かを示すバッテリ情報が含まれていてもよく、サーバ20は、バッテリ情報に基づいて、ステップS3の判定を行ってもよい。また、サーバ20は、機器IDを用いて機器10の機器情報を外部機器から参照することで、ステップS3の判定を行ってもよい。
 サーバ20は、機器10が通信用バッテリ110を搭載していると判定された場合(S3でYes)、機器10が通電していない、つまり、電源がオフであると判断する(S4)。
 サーバ20は、機器10が通信用バッテリ110を搭載していないと判定された場合(S3でNo)、機器10の電源がオフであり、かつ、通知をすることができない状態(つまり、通知不可の状態)であると判断する(S5)。
 このように、通電状態を通知する機能を有する機器10により送信される状態情報によって、サーバ20は、当該機器10の設置状態を推定することができる。サーバ20は、例えば、ステップS2のように機器10が通電している状態であると判断した場合、工場でのテスト用や店頭での展示用、或いは使用者宅に設置され、少なくともすぐに使える状態であることがわかる。
 一方で、サーバ20は、ステップS4のように機器10が通電していない状態と判断した場合、出荷前、輸送中、設置前など機器10がすぐに使える状態にはないことがわかる。このため、サーバ20は、例えば、通信する情報を少なくすることで通信量を抑制したり、通信頻度を低くさせる制御信号を、基地局30を介して機器10に送信することで、機器10が通信用バッテリ110搭載の場合に、機器10による通信用バッテリ110の消費電力を抑えることができる。
 なお、サーバ20は、直近に通知された情報以外にも、1つ前或いはそれ以上前の情報履歴も合わせて判断することで、機器10の状態をより精度よく推定することができる。
 図21は、サーバ20における機器10の通電状態を判断する処理の第2の例を示すフローチャートである。
 サーバ20は、第1の例と同様に、通電状態を含む状態情報を、基地局30を介して機器10から逐次受信しているものとする。
 サーバ20は、受信された状態情報を用いて、機器10の通電状態であるか否か、つまり、電源がオンであるかオフであるかを判定する(S11)。
 サーバ20は、状態情報に含まれる通電状態が機器10の電源がオンであることを示している場合(S11でYes)、機器10が通信用バッテリ110を搭載しているか否かを判定する(S12)。
 サーバ20は、機器10が通信用バッテリ110を搭載していると判定された場合(S12でYes)、機器10が通信用バッテリ110を搭載しており、かつ、通電している、つまり、電源がオンであると判断する(S13)。
 サーバ20は、機器10が通信用バッテリ110を搭載していないと判定された場合(S12でNo)、機器10が通信用バッテリ110を搭載しておらず、かつ、通電している、つまり、電源がオンであると判断する(S14)。
 サーバ20は、状態情報に含まれる通電状態が機器10の電源がオフであることを示している場合(S11でNo)、機器10が通信用バッテリ110を搭載しているか否かを判定する(S15)。
 サーバ20は、機器10が通信用バッテリ110を搭載していると判定された場合(S15でYes)、機器10が通信用バッテリ110を搭載しており、かつ、通電していない、つまり、電源がオフであると判断する(S16)。
 サーバ20は、機器10が通信用バッテリ110を搭載していないと判定された場合(S15でNo)、機器10が通信用バッテリ110を搭載しておらず、かつ、通電していない、つまり、通知をすることができない状態(つまり、通知不可の状態)であると判断する(S17)。
 なお、ステップS12およびS15の判定は、ステップS3と同様に行われる。
 このように、通電状態およびバッテリ情報を通知する機能を有する機器10により送信される状態情報によって、サーバ20は、当該機器10の設置状態または通信異常を推定することができる。サーバ20は、例えば、通信用バッテリ110を搭載しており、かつ、通電している状態である機器10について、少なくともすぐに使える状態である上に継続的な通信を期待することができると推定することができる。このため、サーバ20は、当該機器10からの通信が途絶えた場合には何か異常があったと推定することができる。また、サーバ20は、例えば、通信用バッテリ110を搭載しておらず、かつ、通電している状態である機器10について、その後の経過を監視する必要があると推測できる。これは、機器10の状態が、電源コンセントが抜けている、ブレーカが落ちているなどで外部電源から電力の供給が絶たれていることで、通信が途絶える場合も考えられるためであり、必ずしも機器10または通信経路に異常があったとは言えないからである。
 なお、機器10が通信用バッテリ110を搭載している場合には、機器10は、通信用バッテリ110のバッテリ残量も状態情報に含めて通知してもよい。これにより、サーバ20は、さらに、通信モジュール101の通信用バッテリ110のバッテリ切れを予測したり、検知したりすることができる。
 なお、サーバ20は、直近に通知された情報以外にも、1つ前或いはそれ以上前の情報履歴も合わせて判断することで、機器10の状態をより精度よく推定することができる。
 次に、機器から家電の種別情報の通知される場合のサーバ20による処理について説明する。
 機器10は、例えば、機器10(家電)の種別分類を示す種別情報をさらにサーバ20に通知してもよい。これにより、サーバ20は、機器10の状態推定の精度をより高めることができる。サーバ20は、推定された結果に応じた情報を、機器10または操作機器40に通知することで、ユーザに通知することができ、サービス品質の向上につなげることができる。
 以下に、種別情報で示される種別分類の例を示す。種別分類は、例えば、大型IoT家電、中型IoT家電、および、小型IoT家電を含む。つまり、機器10は、大型IoT家電、中型IoT家電、および、小型IoT家電のいずれかに分類される。
 大型IoT家電は、食器洗い機やビルトインIHコンロ、インタホンなど、設置に工事が必要なIoT家電である。中型IoT家電は、テレビや冷蔵庫など、設置に工事は必要ないが持ち運びを想定していないIoT家電である。小型IoT家電は、ドライヤやシェーバなど、設置に工事は必要ないが持ち運びも想定しているIoT家電である。
 図22は、サーバ20における、通電状態でない機器10の設置状態を推定する処理の一例を示すフローチャートである。
 サーバ20は、例えば、図20または図21における処理において、通信用バッテリ110の搭載または非搭載にかかわらず、通電状態でないと判断された場合において、以下の処理を実行する。
 サーバ20は、機器10の使用履歴があるか否かを判定する(S21)。サーバ20は、例えば、記憶部203に記憶している機器10の状態情報において、電源がオンを示す状態情報を含まない場合に、当該機器10の使用履歴がないと判断し、電源がオンを示す状態情報を含む場合に、当該機器10の使用履歴があると判断する。
 サーバ20は、機器10の使用履歴があると判定された場合(S21でYes)、当該機器10が小型IoT家電であるか否かを判定する(S22)。
 サーバ20は、機器10が小型IoT家電であると判定された場合(S22でYes)、当該機器10が自宅外にあるか否かを判定する(S23)。サーバ20は、例えば、機器10の状態情報と共に受信した基地局30の基地局IDがユーザの自宅周辺の基地局30の基地局IDと一致するか否かを判定することで、当該機器10が自宅外であるか否かを判定する。なお、基地局IDがユーザの自宅周辺の基地局30の基地局IDであるか否かは、ユーザが自宅に機器10を設置した時に、機器10を自宅に設置したことを示す情報をサーバ20へ機器10に送信させることで、サーバ20には状態情報と共に自宅周辺の基地局30の基地局IDが通知される。サーバ20は、機器10を自宅に設置したことを示す情報と共に受信した基地局IDをユーザの自宅周辺の基地局の基地局IDとして保存しておくことで、ステップS23の判定を行うことができる。
 サーバ20は、機器10が自宅外にあると判定された場合(S23でYes)、ユーザが当該機器10を所持して旅行していると判断する(S24)。
 サーバ20は、機器10が自宅内にあると判定された場合(S23でNo)、ユーザが当該機器10を自宅で使用している(つまり、通常使用している)と判断する(S25)。
 サーバ20は、機器10が小型IoT家電でないと判定された場合(S22でNo)、機器10が中型IoT家電であるか否かを判定する(S26)。
 サーバ20は、機器10が中型IoT家電であると判定された場合(S26でYes)、機器10のユーザが節電家であるか否かを判定する(S27)。サーバ20は、例えば、予めユーザにより、機器10のユーザ登録が行われた時に入力された情報に基づいて、ユーザが節電家であるか否かを判定してもよい。つまり、ユーザ登録において、ユーザは、ユーザが節電家であるか否かを示す入力を、操作機器40を用いて行い、操作機器40は、当該入力に基づいてユーザが節電家であるか否かを示す情報をサーバ20に送信していてもよい。
 サーバ20は、ユーザが節電家であると判定された場合(S27でYes)、機器10がユーザにより節電中であると判断する(S28)。
 サーバ20は、中型IoT家電でないと判定された場合(S26でNo)、または、ユーザが節電家でないと判定された場合(S27でNo)、ユーザは、機器10を使用していない、引っ越し中である、機器10を廃棄した、および、機器10を他のユーザに譲渡した、のいずれかを行ったと判断する(S29)。
 サーバ20は、機器10の使用履歴がないと判定された場合(S21でNo)、機器10が未使用であると判断する(S30)。
 次に、サーバ20による機器10の通信頻度を制御する方法について説明する。
 サーバ20は、通知内容または過去に通知された内容に基づいて、機器10の状態を推定することができる。機器10の中には、使われる時期が限られている扇風機など、常時通電していないものもある。このような常時通電していない機器10は、通信用バッテリ110を搭載することで、機器10が外部電源から電力の供給を受けていなくても、状態情報をサーバ20に通知することができる。しかしながら、機器10は、頻繁に通信を行うと通信用バッテリ110に蓄えられている電力を早く消耗してしまう。つまり、通信頻度を適切に制御すれば、通信用バッテリ110を長もちさせることができると共に、通信量を抑制することもできる。
 図23は、非通電状態の機器10の通信頻度をサーバ20が制御する処理の一例を示すシーケンス図である。図24は、サーバ20により決定される更新間隔と、非通電状態になってからの経過時間との関係を示すグラフである。
 機器10は、例えば、時刻t0から非通電状態になっており、サーバ20に対して時刻tにn回目の情報通知(n)を行う(S51)。
 サーバ20は、機器10が非通電状態になってからの経過時間から図24に示すグラフに従って更新間隔(i)を算出し、機器10に次回通知時刻(t+i)を指定する制御信号を通知情報として送信する(S52)。
 すると、機器10は、ステップS52で受信した制御信号で指定された次回通知時刻(t+1)において、n+1回目の情報通知(n+1)を行う(S53)。以降では、ステップS53をステップS51に置き換えた上で、ステップS52およびステップS53が繰り返される。
 これにより、機器10が非通信時には部分的に電力をカットするなどしてバッテリの消費を最低限に抑えることができる。また、機器10は、非通電時には通知内容が変わる可能性が低い。このため、サーバ20は、非通電状態が長く続くにつれて、機器10による情報通知の更新間隔を長く設定する。これにより、機器10は、頻繁に情報通知を行うことによる通信用バッテリ110の電力を消費することを抑えることができる。なお、機器10は、通電状態になった際には、指定された更新時刻に関わらず状態情報を通知してもよい。これにより、機器10の状態が変化して通知内容が変化した場合にも、サーバ20は変化した通知内容を受信することができる。
 例えば、扇風機、ヒータなど季節によって通電しない時期がある機器10の場合、サーバ20は、機器10が非通電状態になってからの経過時間が5日以下の場合は更新間隔を1日にし、非通電状態になってからの経過時間が5日より長くて25日以下の場合は更新間隔を5日にし、25日よりも長い間非通電状態にある場合は更新間隔を25日にしてもよい。これにより、非通電状態が長くなるにつれて更新間隔も長くなるため、通信用バッテリ110の電力を消費することを抑えることができる。
 また冷蔵庫などのように、常に通電していると想定される機器10の場合、サーバ20は、例えば、機器10が非通電状態になってから5日以上経った場合には、使われていないと判断し、更新間隔を25日にすることで、通信用バッテリ110の電力を消費することを抑えることができる。
 また、ドライヤ、シェーバなどのように、持ち運ぶことが想定される機器10の場合、サーバ20は、機器10が非通電状態になってからの経過時間が7日以下の場合の更新間隔を8時間にして機器10の位置を追跡できるようにし、非通電状態になってからの経過時間が7日より長い場合には更新間隔を1日にすることで、通信用バッテリ110の電力を消費することを抑えることができる。
 なお、通信頻度の制御は、サーバ20により行われなくてもよい。例えば、機器10は、非通電状態になってからの経過時刻を保持し、経過時刻から次回の更新時刻を算出することで、次回の更新時刻を自ら制御してもよい。
 次に、通知内容を保持する保持部108Aを有する機器10Aについて説明する。機器10Aは、保持部108Aを有することにより、非通電状態であっても必要最小限の電力で通知を行うことができる。
 図25は、IoT家電である機器10Aの第2の例のブロックを示す構成図である。
 図25に示されるように、機器10Aは、機器10と比較して本体用バッテリ113を備える点と、保持部108の代わりに保持部108Aを備える点とが異なる。
 この場合、制御部104は、当該制御部104の制御状態を、保持部108Aに逐次記憶させている。
 保持部108Aは、制御部104による制御状態を逐次保持する。保持部108Aに制御状態が保持される場合、通信モジュール101は、機器10の電源がオフである場合に、保持部108Aに逐次保持された制御状態を読み出して、読み出された制御状態を状態情報として基地局30を介してサーバ20に送信してもよい。
 このように、機器10Aは、非通電状態であってもサーバ20への通知に必要な情報を保持することができる保持部108Aを備えており、非通電状態であっても機器10A全体に電力を供給することなしに必要な情報をサーバ20に通知することができる。
 例えば、機器10Aの本体用バッテリ113のバッテリ情報は、通信用バッテリ110からの電力の供給を受けている通信モジュール101以外で保持されている場合がある。このため、保持部108Aがない構成の場合に、通信モジュール101は、本体用バッテリ113のバッテリ情報を取得するために、本体用バッテリ113のバッテリ情報を保持しているブロック(例えば、制御部104の図示しない記憶部)に電力を供給する必要がある。しかしながら、機器10Aは保持部108Aを備えているため、通電状態にある時に本体用バッテリ113のバッテリ情報を保持部108Aにコピーしておくことで、機器10Aが非通電状態になっても通信モジュール101に給電するのみで本体用バッテリ113のバッテリ情報をサーバ20に通知することができる。なお、制御部104は、本体用バッテリ113のバッテリ情報以外の制御状態を保持部108Aに保持させておき、通信モジュール101は、保持部108Aに保持されている制御状態を状態情報としてサーバ20に送信してもよい。
 なお、通信モジュール101は、サーバ20へ前回通知した内容との差分をサーバ20に通知することで、通信量を削減してもよい。
 次に、機器10の仕向地情報について説明する。機器10は、例えば当該機器10の仕向地を示す仕向地情報を通知してもよい。これにより、サーバ20は、本来の仕向地とは異なる地域で機器10が使用された場合に、機器10の設定を、機器10が設置されている地域に適した設定に自動的に変更させることができる。
 図26は、機器10の使用時に機器10が設置されている地域を取得する方法の例を示す図である。
 機器10は、例えば、製造時に仕向地(対応地域)がわかる情報をサーバ20に通知し、サーバ20は、その情報を保存しておく。機器10がユーザによって使われる際には、(1)機器10は近隣の基地局30に機器10の機器IDを通知する。そして、(2)基地局30は、機器IDと通信が確立した基地局IDの情報をサーバ20に通知する。
 サーバ20は、通知された情報を元に、機器10の仕向地(対応地域)と実際に機器10が使われている設置地域とが同じか否かを判定する。サーバ20は、仕向地と設置地域とが同じでない場合、機器10に設定変更をさせる指示を通知情報として送信し、設置地域の特性および性質に合わせた設定に変更する。変更する設定の例としては、メニュー画面の言語、テレビのチャンネル情報、交流周波数、水質、気温、湿度、降水量などである。
 次に、在庫状態でファームウェア情報を通知する機能を備えた機器10について説明する。
 図27は、機器10の流通経路におけるファームウェアバージョンを通知する例について説明するための図である。
 家電は、メーカの工場で製造されてから、メーカ所有、卸の物流拠点、小売店等の複数の拠点を経由し、購入されたユーザ宅に届けられる。
 また、家電は、製造および販売が継続されていく中で修正または改良が行われてファームウェアが変更されることがある。このため、ファームウェアが変更されたか否かを管理するために、ファームウェアバージョンも合わせて変更されることが一般的である。
 ユーザにとっても製造している家電メーカにとっても、ユーザが、修正または改良が行われた最新ファームウェアバージョンの家電を購入し使用することが望ましい。しかしながら、家電、製造されてから複数の拠点を経由する段階で在庫が発生することがあるため、工場側で最新の家電が製造出荷されたとしても、ユーザ宅に届くまでに家電には修正または改良が行われている可能性がある。このため、ユーザには、修正・改良前の家電、つまり、ファームウェアバージョンが変更されていない家電が届くことがある。また、在庫されている家電のファームウェアバージョンを確認したり、判断したりすることは、拠点の手間を考えても困難である。
 そこで、機器10は、在庫状態であっても、ネットワークに接続することでファームウェア情報をサーバ20に通知する。これにより、サーバ20は、ファームウェア情報と共に機器10が通信した基地局30の基地局IDも取得するため、機器10が存在する位置も把握できる。このため、サーバ20は、どの拠点にどのファームウェアバージョンの機器10が在庫されているか推定することが可能になる。サーバ20は、さらにその情報を元に、古いファームウェアバーションの機器10を出荷させない指示を通知情報として、拠点側の端末へ通知することで、修正または改良前の機器10がユーザに届いてしまう状況を削減できる。
 次に、ECサービスと連携した家電管理サービスにおけるユーザと機器10との紐付ける処理について説明する。
 図28は、ECサービスと連携した家電管理サービスにおけるユーザと機器10との紐付ける処理について説明するための図である。
 家電の流通経路は、工場、物流拠点、小売店等の複数を経由し、家電を購入したユーザ宅に届けられるのが一般的である。家電には、個体識別用の機器IDが製造段階で埋め込まれることが多い。また、ユーザの家電の購入機会は、小売店以外にもECサービスによるネット購入も増加している。各ECサービスは、専用の会員カードを発行し、購入金額に合わせて割引可能なポイントを付与するサービスも行っていることが多い。
 一方、家電メーカ等が提供する家電管理サービス等では、ユーザと購入家電の機器IDとの紐付け登録が行われる必要がある。しかしながら、当該家電の機器IDを事前もしくは流通過程で把握することが困難なため、現状では、ユーザが当該サービスサイトにアクセスして購入した家電の機器IDを登録する必要があり、手間がかかる。また、ユーザは、機器IDを登録しても、ユーザメリットが乏しいため、ユーザによる家電の登録件数が増加しないという課題がある。
 そこで、例えば、機器10は、機器IDをサーバ20に通知することで、サーバ20は、機器IDと共に機器10が通信した基地局30の基地局IDも取得する。これにより、家電管理サービスが機器IDと機器10が存在する位置を示す位置情報とを把握できれば、家電管理サービスとECサービスとが連携することで、家電管理サービスが把握している機器IDおよび位置情報と、ECサービスが把握しているユーザID・購入家電情報・発送先情報とを照合することで紐付け予測が可能である。また、ユーザがECサイトにログインした状態で、購入した家電に付帯の家電機器IDが記載されたQRコード(登録商標)等をスマホ等の操作機器40で読取し、ECサイトのユーザIDと合わせて家電管理サービスへ受領通知を送信することにより、その紐付けの登録を確定できる。さらに、ユーザが操作機器40を操作することで受領通知の送信を行った場合、連携するECサービスの割引ポイント等をユーザに付与することで、ユーザにメリットが生まれる。これにより、ユーザに、購入した機器10を登録させることを促すことができる。なお、ECサービスがユーザに付与する割引ポイントの原資については、流通経路の省略のよるコスト削減で捻出することも可能である。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記実装を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、機器の管理を効率よく行うことができる機器管理システム、機器、機器管理方法などとして有用である。
  1 機器管理システム
 10、10A 機器
 20 サーバ
 30 基地局
 40 操作機器
101 通信モジュール
102 保持部
104 制御部
107 機能モジュール
108、108A 保持部
109 電源部
110 通信用バッテリ
111 操作部
112 表示部
113 本体用バッテリ
201 通信部
202 制御部
203 記憶部

Claims (12)

  1.  ネットワークに通信接続されているサーバと、
     前記ネットワークに通信接続されている、遠距離無線通信の基地局と、
     前記基地局に通信接続する機器であって、当該機器の状態を示す状態情報を、前記基地局を介して前記サーバに送信する機器と、を備える
     機器管理システム。
  2.  前記機器は、
     前記基地局と前記遠距離無線通信用の通信モジュールと、
     前記通信モジュールを駆動する電力を前記通信モジュールに供給する通信用バッテリと、を有し、
     前記通信モジュールは、前記機器の電源がオフである場合に、前記基地局を介して前記サーバに前記状態情報を送信する
     請求項1に記載の機器管理システム。
  3.  前記機器は、さらに、
     前記機器の電源がオンである場合に、前記機器の動作を制御する制御部と、
     前記制御部による制御状態を逐次保持する保持部と、を有し、
     前記通信モジュールは、前記機器の電源がオフである場合に、前記保持部に逐次保持された前記制御状態を読み出して、読み出された前記制御状態を前記状態情報として前記基地局を介して前記サーバに送信する
     請求項2に記載の機器管理システム。
  4.  前記基地局は、LPWA(Low Power, Wide Area)の基地局であり、
     前記通信モジュールは、前記LPWAの通信モジュールである
     請求項2または3に記載の機器管理システム。
  5.  前記状態情報は、前記機器が通電しているか否かを示す通電状態を含む
     請求項1から4のいずれか1項に記載の機器管理システム。
  6.  前記サーバは、前記機器から前記状態情報を受信し、受信された前記状態情報に応じて通知情報を生成し、生成された通知情報を前記機器に送信する
     請求項1から5のいずれか1項に記載の機器管理システム。
  7.  機器であって、
     遠距離無線通信の基地局に通信接続する通信モジュールであって、前記機器の状態を示す状態情報を、前記基地局を介して、前記基地局にネットワークで通信接続されているサーバに送信する通信モジュールを備える
     機器。
  8.  前記機器は、さらに、
     前記通信モジュールを駆動する電力を前記通信モジュールに供給する通信用バッテリを有し、
     前記通信モジュールは、前記機器の電源がオフの場合に、前記基地局を介して前記サーバに前記状態情報を送信する
     請求項7に記載の機器。
  9.  前記機器は、さらに、
     前記機器の電源がオンである場合に、前記機器の動作を制御する制御部と、
     前記制御部による制御状態を逐次保持する保持部と、を有し、
     前記通信モジュールは、前記機器の電源がオフである場合に、前記保持部に逐次保持された前記制御状態を読み出して、読み出された前記制御状態を前記状態情報として前記基地局を介して前記サーバに送信する
     請求項8に記載の機器。
  10.  前記基地局は、LPWA(Low Power, Wide Area)の基地局であり、
     前記通信モジュールは、前記LPWAの通信モジュールである
     請求項8または9に記載の機器。
  11.  前記状態情報は、前記機器が通電しているか否かを示す通電状態を含む
     請求項7から10のいずれか1項に記載の機器。
  12.  ネットワークに通信接続されているサーバと、ネットワークに通信接続されている、遠距離無線通信の基地局と、前記基地局に通信接続する機器とを備える機器管理システムにおける機器管理方法であって、
     前記機器では、前記機器の状態を示す状態情報を、遠距離無線通信の基地局を介して、前記基地局にネットワークで通信接続されているサーバに送信する
     機器管理方法。
PCT/JP2019/007583 2018-03-23 2019-02-27 機器管理システム、機器、及び、機器管理方法 WO2019181405A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020507475A JP7382580B2 (ja) 2018-03-23 2019-02-27 機器管理システム、機器、及び、機器管理方法
US16/638,439 US11212133B2 (en) 2018-03-23 2019-02-27 Device management system, device, and device management method
EP19770896.9A EP3771221A4 (en) 2018-03-23 2019-02-27 DEVICE MANAGEMENT SYSTEM, AND DEVICE MANAGEMENT METHOD
CN201980003642.8A CN110945875B (zh) 2018-03-23 2019-02-27 家电设备管理系统、家电设备以及家电设备管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862647150P 2018-03-23 2018-03-23
US62/647,150 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181405A1 true WO2019181405A1 (ja) 2019-09-26

Family

ID=67987721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007583 WO2019181405A1 (ja) 2018-03-23 2019-02-27 機器管理システム、機器、及び、機器管理方法

Country Status (5)

Country Link
US (1) US11212133B2 (ja)
EP (1) EP3771221A4 (ja)
JP (1) JP7382580B2 (ja)
CN (1) CN110945875B (ja)
WO (1) WO2019181405A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119830A1 (ja) * 2021-12-20 2023-06-29 パナソニックIpマネジメント株式会社 制御装置、情報端末、制御方法、及び、プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108989996B (zh) * 2018-07-03 2021-05-25 京东方科技集团股份有限公司 通信方法及通信装置、电子设备、存储介质
US20230308467A1 (en) * 2022-03-24 2023-09-28 At&T Intellectual Property I, L.P. Home Gateway Monitoring for Vulnerable Home Internet of Things Devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200755A (ja) * 2002-12-16 2004-07-15 Matsushita Refrig Co Ltd 家電機器用ネットワークシステム
JP2013090125A (ja) * 2011-10-18 2013-05-13 Gaia Holdings Corp 家電情報蓄積サーバ
WO2016024556A1 (ja) * 2014-08-11 2016-02-18 シャープ株式会社 家電管理システム、及び管理装置
JP2016063520A (ja) 2014-09-22 2016-04-25 東芝ライテック株式会社 家電制御装置、家電制御システム及び家電制御方法
JP2017084174A (ja) * 2015-10-29 2017-05-18 エスケイジャパン株式会社 安否確認装置および安否通知装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172578A (ja) * 2001-12-07 2003-06-20 Hitachi Ltd ネットワーク対応家電機器、家電機器点検システム及び家電機器点検サービス
JP4596943B2 (ja) 2005-03-24 2010-12-15 株式会社日立製作所 センサネットワークシステム、データの転送方法及びプログラム
JP5520118B2 (ja) * 2010-04-02 2014-06-11 パナソニック株式会社 機器制御システム
WO2014024484A1 (ja) * 2012-08-07 2014-02-13 パナソニック株式会社 中継装置
WO2015118938A1 (ja) * 2014-02-04 2015-08-13 アプリックスIpホールディングス株式会社 電子機器管理システム、電子機器管理サーバ及び電子機器管理方法
AU2016290898B2 (en) * 2015-07-09 2021-11-04 Kortek Industries Pty Ltd Configurable wireless power control and management
JP6852515B2 (ja) * 2017-03-31 2021-03-31 沖電気工業株式会社 センサ管理システム、センサ管理方法、センサ管理プログラム及びセンサ管理装置
US10715886B2 (en) * 2017-06-06 2020-07-14 Landis+Gyr Technologies, Llc Power outage-assessment apparatuses and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200755A (ja) * 2002-12-16 2004-07-15 Matsushita Refrig Co Ltd 家電機器用ネットワークシステム
JP2013090125A (ja) * 2011-10-18 2013-05-13 Gaia Holdings Corp 家電情報蓄積サーバ
WO2016024556A1 (ja) * 2014-08-11 2016-02-18 シャープ株式会社 家電管理システム、及び管理装置
JP2016063520A (ja) 2014-09-22 2016-04-25 東芝ライテック株式会社 家電制御装置、家電制御システム及び家電制御方法
JP2017084174A (ja) * 2015-10-29 2017-05-18 エスケイジャパン株式会社 安否確認装置および安否通知装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENOMOTO, YOICHI: "Overview of low power wide area (LPWA) network technology to realize IoT", JREA, vol. 61, no. 3, 1 March 2018 (2018-03-01), pages 32 - 35, XP009518919, ISSN: 0447-2322 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119830A1 (ja) * 2021-12-20 2023-06-29 パナソニックIpマネジメント株式会社 制御装置、情報端末、制御方法、及び、プログラム

Also Published As

Publication number Publication date
EP3771221A1 (en) 2021-01-27
JP7382580B2 (ja) 2023-11-17
US11212133B2 (en) 2021-12-28
CN110945875B (zh) 2023-08-15
US20200169429A1 (en) 2020-05-28
JPWO2019181405A1 (ja) 2021-03-18
CN110945875A (zh) 2020-03-31
EP3771221A4 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
CN110945877B (zh) 设备管理系统以及设备管理方法
US10999255B2 (en) Systems and methods for re-commissioning a controlled device in a home area network
US8700187B2 (en) Method and apparatus for actively managing consumption of electric power supplied by one or more electric utilities
US8565903B2 (en) Critical resource notification system and interface device
WO2019181405A1 (ja) 機器管理システム、機器、及び、機器管理方法
US20130041852A1 (en) Customizable dynamic resource regulating devices and methods
US20120166004A1 (en) Energy management system in home network interworking with smart grid
AU2012246665A1 (en) Method and apparatus for actively managing consumption of electric power supplied by one or more electric utilities
KR20120024995A (ko) 탄소 배출권 결정 방법, 장치 및 시스템
KR20150024344A (ko) 일렉트릭 파워 그리드에 대한 일렉트릭 파워를 능동적으로 관리하는 방법 및 장치
WO2019172046A1 (ja) 機器管理方法、及び、機器管理システム
WO2019176542A1 (ja) 機器管理システム、機器、及び、制御方法
WO2019168033A1 (ja) 機器、システム、及び、通信方法
JP7286617B2 (ja) 制御方法、機器、及び、システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019770896

Country of ref document: EP