WO2019181316A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019181316A1
WO2019181316A1 PCT/JP2019/005707 JP2019005707W WO2019181316A1 WO 2019181316 A1 WO2019181316 A1 WO 2019181316A1 JP 2019005707 W JP2019005707 W JP 2019005707W WO 2019181316 A1 WO2019181316 A1 WO 2019181316A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
outdoor
refrigerant
unit
valve
Prior art date
Application number
PCT/JP2019/005707
Other languages
French (fr)
Japanese (ja)
Inventor
亮 ▲高▼岡
慎太郎 真田
佑 廣崎
稔弘 関根
光哉 青木
達朗 山▲崎▼
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Publication of WO2019181316A1 publication Critical patent/WO2019181316A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present invention relates to an air conditioner, and more particularly to a multi-type air conditioner having a plurality of indoor units.
  • An air conditioner having a compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit having an expansion valve, and a refrigerant circuit in which a plurality of indoor units having an indoor heat exchanger are connected by a liquid pipe and a gas pipe.
  • the refrigerant discharged from the refrigerant and flowing into the heat exchanger functioning as a condenser and condensed through the expansion valve flows into the heat exchanger functioning as an evaporator, evaporates, and is again sucked into the compressor As a result, a refrigeration cycle is formed.
  • the refrigerant usually stays in various places of the refrigerant circuit (for example, a liquid pipe when the refrigeration cycle is operating as a heating cycle or an indoor heat exchanger of a stopped indoor unit).
  • an amount of refrigerant necessary for simultaneously demonstrating the air conditioning capacity required for each indoor unit (hereinafter referred to as air conditioning capacity unless otherwise necessary) is circulated in the refrigerant circuit.
  • the refrigerant charge amount is determined by taking into account the refrigerant quantity that stays in the refrigerant circuit in addition to the necessary refrigerant quantity.
  • an on-off valve is provided upstream of the indoor unit, the on-off valve provided on the upstream side (high-pressure side) of the stopped indoor unit is closed, and the expansion valve on the downstream side (low-pressure side) is opened.
  • pressure side is disclosed (for example, refer patent document 1).
  • the present invention solves the above-described problems, and an object thereof is to provide an indoor unit that is stopped during heating operation and an air conditioner that suppresses the retention of liquid-phase refrigerant in a corresponding liquid pipe.
  • a first aspect of the present invention is an outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger and an indoor fan, the compressor, and the outdoor heat exchanger.
  • An air conditioner having an on-off valve on the upstream side of the heat exchanger and an expansion valve on the downstream side, wherein the control means is a plurality of the indoor units performing a heating operation using the refrigerant circuit as a heating cycle, A first step of controlling the direction of opening of the corresponding expansion valve by stopping the indoor fan and leaving the corresponding on-off valve in an open state when a stop device for stopping the operation is generated; Close the corresponding on-off valve And 2 step, and carrying out the third step of closing the expansion valve corresponding to the order.
  • the on-off valve is provided in the outdoor unit.
  • the expansion valve is provided in the outdoor unit.
  • the present invention it is possible to provide an indoor unit that is stopped during heating operation and an air conditioner that suppresses the retention of the liquid-phase refrigerant in the corresponding liquid pipe.
  • FIG. 1A is a refrigerant circuit diagram illustrating the air conditioner of the present embodiment.
  • FIG. 1B is a block diagram of the control means of the air conditioner of the present embodiment.
  • FIG. 2 is a diagram for explaining the control for suppressing the retention of the liquid-phase refrigerant when at least one indoor unit is stopped during the heating operation in the present embodiment, and schematically shows the structure of the refrigerant circuit. Yes.
  • FIG. 3 is also a flow for explaining control for suppressing the retention of the liquid-phase refrigerant.
  • an air conditioner 1 As shown in FIG. 1A, an air conditioner 1 according to the present embodiment is installed outdoors, one outdoor unit 2, and indoors.
  • the outdoor unit 2 includes a first liquid pipe 8a and a second liquid pipe 8b.
  • the third liquid pipe 8c, the fourth liquid pipe 8d, the first gas pipe 9a, the second gas pipe 9b, the third gas pipe 9c, and the fourth gas pipe 9d connected in parallel to the four first to fourth.
  • first liquid pipe 8a is connected to the first liquid side closing valve 28a of the outdoor unit 2, and the other end is connected to the first liquid side connection portion 53a of the first indoor unit 5a.
  • second liquid pipe 8b is connected to the second liquid side shut-off valve 28b of the outdoor unit 2, and the other end is connected to the second liquid side connection portion 53b of the second indoor unit 5b.
  • third liquid pipe 8c is connected to the third liquid side shut-off valve 28c of the outdoor unit 2, and the other end is connected to the third liquid side connection portion 53c of the third indoor unit 5c.
  • fourth liquid pipe 8d is connected to the fourth liquid side shut-off valve 28d of the outdoor unit 2, and the other end is connected to the fourth liquid side connection portion 53d of the fourth indoor unit 5d.
  • one end of the first gas pipe 9a is connected to the first gas side shut-off valve 29a of the outdoor unit 2, and the other end is connected to the first gas side connection portion 54a of the first indoor unit 5a.
  • One end of the second gas pipe 9b is connected to the second gas side shut-off valve 29b of the outdoor unit 2, and the other end is connected to the second gas side connection portion 54b of the second indoor unit 5b.
  • One end of the third gas pipe 9c is connected to the third gas side shut-off valve 29c of the outdoor unit 2, and the other end is connected to the third gas side connection portion 54c of the third indoor unit 5c.
  • One end of the fourth gas pipe 9d is connected to the fourth gas side shut-off valve 29d of the outdoor unit 2, and the other end is connected to the fourth gas side connection portion 54d of the fourth indoor unit 5d.
  • the refrigerant circuit 10 of the air conditioner 1 is configured as described above.
  • the outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a first outdoor expansion valve 24a, a second outdoor expansion valve 24b, a third outdoor expansion valve 24c, and a fourth outdoor expansion.
  • each apparatus except the outdoor fan 27 is mutually connected by each refrigerant
  • An accumulator (not shown) may be provided on the refrigerant suction side of the compressor 21.
  • the compressor 21 is a variable capacity compressor that can change the operating capacity by controlling the rotation speed by an inverter (not shown).
  • the refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 described later and a discharge pipe 41.
  • the refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22 by a suction pipe 42.
  • the four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and has four ports a, b, c, and d.
  • the port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above.
  • the port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 43.
  • the port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 42 as described above.
  • the port d is connected to the outdoor unit gas pipe 44 via the first to fourth gas side closing valves 29a to 29d and the first to fourth on-off valves 6a to 6d. Control of the first to fourth on-off valves 6a to 6d will be described later.
  • the outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 described later.
  • one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 43, and one end of the outdoor unit liquid pipe 45 is connected to the other refrigerant inlet / outlet.
  • the outdoor heat exchanger 23 functions as a condenser during the cooling operation and functions as an evaporator during the heating operation by switching the four-way valve 22.
  • the other end of the outdoor unit liquid pipe 45 is connected to one end of the first liquid distribution pipe 46a, one end of the second liquid distribution pipe 46b, one end of the third liquid distribution pipe 46c, and one end of the fourth liquid distribution pipe 46d.
  • the other end of the first liquid distribution pipe 46a is connected to the first liquid side closing valve 28a
  • the other end of the second liquid distribution pipe 46b is connected to the second liquid side closing valve 28b
  • the other end of the third liquid distribution pipe 46c Is connected to the third liquid side closing valve 28c
  • the other end of the fourth liquid side pipe 46d is connected to the fourth liquid side closing valve 28d.
  • the first outdoor pipe 46a is provided with a first outdoor expansion valve 24a.
  • the second liquid distribution pipe 46b is provided with a second outdoor expansion valve 24b.
  • the third liquid distribution pipe 46c is provided with a third outdoor expansion valve 24c.
  • the fourth liquid distribution pipe 46d is provided with a fourth outdoor expansion valve 24d.
  • the first to fourth outdoor expansion valves 24a to 24d are electronic expansion valves driven by a pulse motor (not shown).
  • a pulse motor not shown.
  • By adjusting the opening degree of the first outdoor expansion valve 24a the amount of refrigerant flowing through the first indoor heat exchanger 51a of the first indoor unit 5a described later is adjusted.
  • By adjusting the opening degree of the second outdoor expansion valve 24b the amount of refrigerant flowing through the second indoor heat exchanger 51b of the second indoor unit 5b described later is adjusted.
  • By adjusting the opening degree of the third outdoor expansion valve 24c the amount of refrigerant flowing through the third indoor heat exchanger 51c of the third indoor unit 5c described later is adjusted.
  • By adjusting the opening degree of the fourth outdoor expansion valve 24d the amount of refrigerant flowing through the fourth indoor heat exchanger 51d of the fourth indoor unit 5d described later is adjusted.
  • the outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23.
  • the center of the outdoor fan 27 is connected to a rotating shaft of a fan motor (not shown). As the fan motor rotates, the outdoor fan 27 rotates.
  • a fan motor As the fan motor rotates, the outdoor fan 27 rotates.
  • outside air is taken into the outdoor unit 2 from a suction port (not shown) of the outdoor unit 2, and the outdoor air exchanged with the refrigerant in the outdoor heat exchanger 23 is discharged from the outlet (not shown) of the outdoor unit 2. Release outside the machine 2.
  • the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, a discharge pressure sensor 31 that detects the pressure of the refrigerant discharged from the compressor 21 and a temperature of the refrigerant discharged from the compressor 21 (the above-described discharge temperature) are detected in the discharge pipe 41. A discharge temperature sensor 33 is provided. The suction pipe 42 is provided with a suction pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 34 that detects the temperature of the refrigerant sucked into the compressor 21. An outdoor heat exchanger temperature sensor 35 that detects an outdoor heat exchanger temperature that is the temperature of the outdoor heat exchanger 23 is provided at a substantially intermediate portion of a refrigerant path (not shown) of the outdoor heat exchanger 23.
  • a first liquid temperature sensor 38a for detecting the temperature of the refrigerant flowing through the first liquid distribution pipe 46a between the first outdoor expansion valve 24a and the first liquid side closing valve 28a in the first liquid distribution pipe 46a.
  • a second liquid temperature sensor 38b is provided between the second outdoor expansion valve 24b and the second liquid side closing valve 28b in the second liquid distribution pipe 46b to detect the temperature of the refrigerant flowing through the second liquid distribution pipe 46b. It has been.
  • a third liquid temperature sensor 38c is provided between the third outdoor expansion valve 24c and the third liquid side closing valve 28c in the third liquid distribution pipe 46c to detect the temperature of the refrigerant flowing through the third liquid distribution pipe 46c. It has been.
  • a fourth liquid temperature sensor 38d is provided between the fourth outdoor expansion valve 24d and the fourth liquid side closing valve 28d in the fourth liquid distribution pipe 46d to detect the temperature of the refrigerant flowing through the fourth liquid distribution pipe 46d. It has been.
  • An outdoor air temperature sensor 100 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.
  • the outdoor unit 2 is provided with an outdoor unit control means 200.
  • the outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2.
  • the outdoor unit control unit 200 includes an outdoor CPU 210, an outdoor storage unit 220, and an outdoor communication unit 230 (in this specification, the outdoor unit control unit 200 is simply a control unit. Sometimes).
  • the outdoor storage unit 220 includes a flash memory, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21, the outdoor fan 27, and the like. . Although not shown, the outdoor storage unit 220 stores in advance a rotation speed table that determines the rotation speed of the compressor 21 in accordance with the required capacity received from the first to fourth indoor units 5a to 5d. .
  • the outdoor communication unit 230 is an interface that performs communication with the first to fourth indoor units 5a to 5d.
  • the outdoor CPU 210 captures the detection results of the sensors of the outdoor unit 2 described above, and captures control signals transmitted from the first to fourth indoor units 5a to 5d via the outdoor communication unit 230.
  • the outdoor CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 and switching control of the four-way valve 22 based on the acquired detection results and control signals. Further, the outdoor CPU 210 adjusts the opening of the first to fourth outdoor expansion valves 24a to 24d and controls the opening and closing of the first to fourth on-off valves 6a to 6d based on the acquired detection results and control signals.
  • the first indoor unit 5a includes a first indoor heat exchanger 51a, a first liquid side connection portion 53a to which the first liquid pipe 8a is connected, and the other end of the first gas pipe 9a (the first gas of the outdoor unit 2).
  • These devices other than the first indoor fan 55a are connected to each other through refrigerant pipes described in detail below to constitute a first indoor unit refrigerant circuit 50a that forms part of the refrigerant circuit 10.
  • the first indoor heat exchanger 51a exchanges heat between the refrigerant and indoor air taken into the first indoor unit 5a from a suction port (not shown) of the first indoor unit 5a by rotation of a first indoor fan 55a described later. Is.
  • One refrigerant inlet / outlet of the first indoor heat exchanger 51a is connected to the first liquid side connecting portion 53a by the first indoor unit liquid pipe 71a.
  • the other refrigerant inlet / outlet port of the first indoor heat exchanger 51a is connected to the first gas side connecting portion 54a and the first indoor unit gas pipe 72a.
  • the first indoor heat exchanger 51a functions as an evaporator when the first indoor unit 5a performs a cooling operation, and functions as a condenser when the first indoor unit 5a performs a heating operation.
  • coolant piping is connected by welding, a flare nut, etc.
  • the first indoor fan 55a is preferably a cross flow fan formed of a resin material, and is disposed in the vicinity of the first indoor heat exchanger 51a.
  • the first indoor fan 55a is rotated by a fan motor (not shown) to take indoor air into the first indoor unit 5a from a suction port (not shown) of the first indoor unit 5a, and a refrigerant is generated in the first indoor heat exchanger 51a.
  • the room air heat-exchanged with the first indoor unit 5a is blown out into the room from a blowout port (not shown).
  • the first indoor unit 5a is provided with various sensors.
  • the first indoor heat exchanger 51a is provided with a first indoor heat exchange temperature sensor 61a that detects the temperature of the first indoor heat exchanger 51a.
  • the first indoor unit gas pipe 72a is provided with a first gas temperature sensor 63a.
  • a first indoor temperature sensor 62a for detecting the temperature of the indoor air flowing into the first indoor unit 5a, that is, the indoor temperature, is provided in the vicinity of a suction port (not shown) of the first indoor unit 5a.
  • first indoor unit 5a is provided with first indoor unit control means 500a.
  • the first indoor unit control means 500a is mounted on a control board stored in an electrical component box (not shown) of the first indoor unit 5a.
  • the first indoor CPU 510a and the first indoor storage unit 520a and a first indoor communication unit 530a may be simply referred to as control means.
  • the first indoor storage unit 520a is configured by a flash memory, and stores a control program for the first indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information regarding air conditioning operation by the user, and the like.
  • the first indoor communication unit 530a is an interface that communicates with the outdoor unit 2 and the other second to fourth indoor units 5b to 5d.
  • the first indoor CPU 510a captures detection values from various sensors, and a signal including an operation condition set by a user operating a remote controller (not shown), a timer operation setting, and the like is input via a remote control light receiving unit (not shown).
  • the first indoor CPU 510a performs drive control of the first indoor fan 55a based on the various detected values taken in and the various pieces of input information. Further, the first indoor CPU 510a transmits an operation information signal including an operation start / stop signal and operation information (set temperature, indoor temperature, etc.) to the outdoor unit 2 via the first indoor communication unit 530a.
  • the outdoor CPU 210 determines that the four-way valve 22 is in a state indicated by a solid line, that is, the ports a and d of the four-way valve 22 It switches so that it may communicate and port b and port c communicate.
  • the refrigerant circulates in the direction indicated by the solid arrow in the refrigerant circuit 10, the outdoor heat exchanger 23 functions as an evaporator, and the first to fourth indoor heat exchangers 51a to 51d function as condensers. It becomes a cycle.
  • the high-pressure refrigerant discharged from the compressor 21 flows from the discharge pipe 41 into the port a of the four-way valve 22 and branches after flowing through the outdoor unit gas pipe 44 from the port d of the four-way valve 22.
  • the gas flows into the first to fourth gas pipes 9a to 9d through the fourth to fourth on-off valves 6a to 6d and the first to fourth gas side closing valves 29a to 29d.
  • the refrigerant flowing through the first to fourth gas pipes 9a to 9d flows into the first to fourth indoor units 5a to 5d via the first to fourth gas side connection portions 54a to 54d.
  • the refrigerant that has flowed into the first to fourth indoor units 5a to 5d flows through the first to fourth indoor unit gas pipes 72a to 72d and flows into the first to fourth indoor heat exchangers 51a to 51d.
  • the fourth indoor fans 55a to 55d rotate, heat is exchanged with the indoor air taken into the first to fourth indoor units 5a to 5d from a suction port (not shown) to condense.
  • the first to fourth indoor heat exchangers 51a to 51d function as condensers, and the indoor air that has exchanged heat with the refrigerant in the first to fourth indoor heat exchangers 51a to 51d is not shown in the figure. Is blown into the room to heat the room where the first to fourth indoor units 5a to 5d are installed.
  • the refrigerant flowing out of the first to fourth indoor heat exchangers 51a to 51d flows through the first to fourth indoor unit liquid pipes 71a to 71d, and passes through the first to fourth liquid side connection portions 53a to 53d.
  • the refrigerant that has flowed into the outdoor unit 2 from the first to fourth liquid pipes 8a to 8d through the first to fourth liquid side shut-off valves 28a to 28d flows through the first to fourth liquid distribution pipes 46a to 46d and flows into the first. After passing through the fourth outdoor expansion valves 24 a to 24 d and being decompressed, they merge together and flow into the outdoor unit liquid pipe 45.
  • the refrigerant flowing into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 45 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27.
  • the refrigerant that has flowed out of the outdoor heat exchanger 23 into the refrigerant pipe 43 flows through the ports b and c of the four-way valve 22 and the suction pipe 42, and is sucked into the compressor 21 and compressed again.
  • the four-way valve 22 When the first to fourth indoor units 5a to 5d perform the cooling operation or the defrosting operation, that is, when the refrigerant circuit 10 enters the cooling cycle, in the outdoor unit 2, the four-way valve 22 is in a state indicated by a broken line, That is, switching is performed so that the port a and the port d of the four-way valve 22 communicate with each other and the port c and the port b communicate with each other.
  • the outdoor heat exchanger 23 functions as a condenser
  • the first to fourth indoor heat exchangers 51a to 51d function as evaporators.
  • FIGS. 2 and 3 are diagrams for explaining control for suppressing the retention of the liquid-phase refrigerant when at least one indoor unit is stopped during the heating operation.
  • FIG. 2 schematically illustrates the structure of the refrigerant circuit 10.
  • FIG. 3 shows a control flow.
  • first to fourth on-off valves 6a to 6d are provided at positions branched from the outdoor unit gas pipe 44, and are provided upstream of the first indoor heat exchanger 51a during heating operation.
  • the fourth on-off valve 6d provided on the upstream side of the fourth indoor heat exchanger 51d, the first outdoor expansion valve 24a provided on the downstream side of the first indoor heat exchanger 51a, and the second indoor heat exchange
  • the second outdoor expansion valve 24b provided on the downstream side of the vessel 51b, the third outdoor expansion valve 24c provided on the downstream side of the third indoor heat exchanger 51c, and the downstream of the fourth indoor heat exchanger 51d Of the liquid-phase refrigerant by controlling the fourth outdoor expansion valve 24d provided on the side Suppress.
  • the 1st indoor unit 5a is set as an indoor unit which receives the stop instruction
  • the 2nd indoor unit 5b as a drive unit
  • the third indoor unit 5c and the fourth indoor unit 5d will be described as an example. Regardless of which indoor unit is a stop unit and a plurality of stop units, and whether there are a plurality of stop units and drive units, control is performed. The procedure is the same.
  • the position where the first on-off valve 6a is provided may be in the middle of the first gas pipe 9a.
  • the position where the second on-off valve 6b is provided may be in the middle of the second gas pipe 9b.
  • the position where the third on-off valve 6c is provided may be in the middle of the third gas pipe 9c.
  • the position where the fourth on-off valve 6d is provided may be in the middle of the fourth gas pipe 9d.
  • the flowchart shown in FIG. 3 shows the processing flow of the outdoor CPU 210 when an indoor unit that stops operation is generated among the plurality of indoor units that are performing the heating operation, and S represents a step. Subsequent numbers represent step numbers.
  • step S101 when there is an instruction to stop the first indoor unit 5a and a stop unit for stopping the operation is generated (step S101), the driving unit is operated among the indoor units connected to the outdoor unit 2. It is determined whether or not there exists (step S102). If there is no driver, that is, if the determination is NO, this flow ends (step S108). On the other hand, for example, if the second indoor unit 5b is in the heating operation as the operating unit, the determination is YES, the first indoor fan 55a is stopped for the first indoor unit 5a (stop unit), and the first indoor heat exchanger is determined.
  • the first on-off valve 6a on the upstream side of 51a remains open, and the opening degree of the first outdoor expansion valve 24a on the downstream side of the first indoor heat exchanger 51a is increased (step S103).
  • the large opening is, for example, full open.
  • step S103 when the first indoor fan 55a is stopped, forced heat exchange between the refrigerant and the first indoor heat exchanger 51a is suppressed. And since the opening degree of the 1st outdoor expansion valve 24a becomes large with the 1st on-off valve 6a opened, while the circulation amount of the refrigerant
  • step S103 corresponds to the “first step” of the present invention.
  • Q is the heat exchange amount [W] of the first indoor unit 5a
  • G is the circulation amount [kg / h] of the refrigerant flowing through the first indoor unit 5a
  • ⁇ H is the enthalpy change of the refrigerant flowing through the first indoor unit 5a.
  • step S103 The control in step S103 is continued for a predetermined time (for example, 10 seconds) required for expelling the high-density refrigerant (step S104).
  • a predetermined time for example, 10 seconds
  • N 1 first mask time it is denoted with the predetermined time as N 1 first mask time.
  • step S105 After a predetermined time (first mask time N 1 ) has elapsed, the first on-off valve 6a on the upstream side of the first indoor unit 5a is closed (step S105). Thereby, the high-pressure gas-phase refrigerant distributed in the first indoor unit 5a and the first liquid pipe 8a becomes the low-pressure gas-phase refrigerant, and the density further decreases.
  • the processing of the outdoor CPU 210 in step S105 corresponds to the “second step” of the present invention.
  • the control in step S105 continues for a predetermined time (for example, 10 seconds) required for pressure equalization with the low pressure side (step S106). In FIG. 3, it is denoted with the predetermined time as the second mask time N 2.
  • step S107 the first outdoor expansion valve 24a on the downstream side of the first indoor unit 5a is closed (step S107).
  • the low pressure liquid phase refrigerant is prevented from flowing (reverse flow) into the first indoor unit 5a and the first liquid pipe 8a, and the state where only the low density low pressure gas phase refrigerant is distributed is maintained.
  • the processing of the outdoor CPU 210 in step S107 corresponds to the “third step” of the present invention.
  • the stagnation of the liquid refrigerant in the first indoor unit 5a stopped during the heating operation and the corresponding first liquid pipe 8a can be suppressed. Further, in the natural convection, the stagnation is only gradually eliminated, whereas the stagnation can be eliminated in a short time. Thereby, the shortage of the circulation amount of the refrigerant to the operating machine due to the liquid phase refrigerant staying in the stop machine can be solved in a short time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An air conditioner (1) comprising: an outdoor unit (2); a plurality of indoor units (5a–5d); a plurality of on/off valves (6a–6d) provided on the upstream side of the respective indoor heat exchangers (51a–51d) of the indoor units; a plurality of expansion valves (24a–24d) provided on the downstream side of the indoor heat exchangers; and a control means (200, 500a) for selectively controlling the components of the air conditioner. When a second indoor unit (5b) is operating, the control means stops a first indoor unit (5a) that has received a stop instruction by a procedure in which: a first indoor fan (55a) is stopped; the degree of opening of a first outdoor expansion valve (24a) is increased while a first on/off valve (6a) remains open, and a low-density, high-pressure gas-phase refrigerant is circulated in a first indoor heat exchanger (51a) and a first liquid pipe (8a); the first on/off valve (6a) is closed and the high-pressure gas-phase refrigerant is changed to a lower-density, low-pressure gas-phase refrigerant; and the first outdoor expansion valve (24a) is closed, and reverse flow of a low-pressure liquid-phase refrigerant is prevented.

Description

空気調和機Air conditioner
 本発明は、空気調和機、特に、複数の室内機を有するマルチ型の空気調和機に関するものである。 The present invention relates to an air conditioner, and more particularly to a multi-type air conditioner having a plurality of indoor units.
 圧縮機と四方弁と室外熱交換器と膨張弁を有する室外機と、室内熱交換器を有する複数の室内機を液管とガス管で接続された冷媒回路を有する空気調和装置では、圧縮機から吐出されて凝縮器として機能している熱交換器に流入して凝縮した冷媒は、膨張弁を介して蒸発器として機能している熱交換器に流入して蒸発し、再び圧縮機に吸入されることで冷凍サイクルを形成している。 An air conditioner having a compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit having an expansion valve, and a refrigerant circuit in which a plurality of indoor units having an indoor heat exchanger are connected by a liquid pipe and a gas pipe. The refrigerant discharged from the refrigerant and flowing into the heat exchanger functioning as a condenser and condensed through the expansion valve flows into the heat exchanger functioning as an evaporator, evaporates, and is again sucked into the compressor As a result, a refrigeration cycle is formed.
 上記のような空気調和装置では、通常、冷媒回路の各所(例えば、冷凍サイクルが暖房サイクルとして動作しているときの液管や、停止している室内機の室内熱交換器)に冷媒が滞留しても、各室内機で必要とされる空調能力(以下、必要な場合を除き空調能力と記載)を同時に発揮するために必要な量の冷媒が冷媒回路を循環するように、冷媒回路で必要な冷媒量に冷媒回路に滞留する冷媒量を加味して冷媒充填量が決定される。 In the air conditioner as described above, the refrigerant usually stays in various places of the refrigerant circuit (for example, a liquid pipe when the refrigeration cycle is operating as a heating cycle or an indoor heat exchanger of a stopped indoor unit). However, in the refrigerant circuit, an amount of refrigerant necessary for simultaneously demonstrating the air conditioning capacity required for each indoor unit (hereinafter referred to as air conditioning capacity unless otherwise necessary) is circulated in the refrigerant circuit. The refrigerant charge amount is determined by taking into account the refrigerant quantity that stays in the refrigerant circuit in addition to the necessary refrigerant quantity.
 しかし、冷媒回路に充填する冷媒量が多くなる程コストアップとなる問題がある。また、冷媒回路に充填する冷媒が可燃性冷媒(例えば、R32)である場合は、上述したコストアップという問題に加えて、万が一室内機が設置された空間に冷媒が漏洩した場合に、その漏洩量が多くなる。そのため、室内機が設置された空間における冷媒濃度が、冷媒が発火する恐れがある濃度に達する可能性が高くなる。 However, there is a problem that the cost increases as the amount of refrigerant charged in the refrigerant circuit increases. In addition, when the refrigerant filled in the refrigerant circuit is a flammable refrigerant (for example, R32), in addition to the problem of cost increase described above, if the refrigerant leaks into the space where the indoor unit is installed, the leakage The amount increases. Therefore, there is a high possibility that the refrigerant concentration in the space where the indoor unit is installed reaches a concentration at which the refrigerant may ignite.
 そこで、室内機の上流に開閉弁を設けておき、停止した室内機の上流側(高圧側)に設けられた開閉弁を閉じ、下流側(低圧側)の膨張弁を開くことで当該室内機及び対応する液管に滞留する液相冷媒を低圧側へ流す技術が開示されている(例えば、特許文献1参照)。 Therefore, an on-off valve is provided upstream of the indoor unit, the on-off valve provided on the upstream side (high-pressure side) of the stopped indoor unit is closed, and the expansion valve on the downstream side (low-pressure side) is opened. And the technique which flows the liquid-phase refrigerant | coolant which stays in a corresponding liquid pipe to a low voltage | pressure side is disclosed (for example, refer patent document 1).
 しかしながら、特許文献1の技術では、上流の開閉弁を閉鎖したことで停止した室内機及び液管内が低圧二相冷媒となり、高密度で重力の影響が大きい液相冷媒は十分引かれずに滞留し続ける(特に、室内機の設置位置が室外機に対して下にある場合)。滞留した冷媒は室内空気と熱交換し、液相が気相になることでこの滞留は解消されるものの、停止した室内機の室内ファンは停止するため、熱交換は自然対流により徐々にしか行われず、滞留が解消されるには時間を要するという問題があった。 However, in the technique of Patent Document 1, the indoor unit and the liquid pipe that have been stopped by closing the upstream on-off valve become low-pressure two-phase refrigerant, and the liquid refrigerant that has a high density and has a large influence of gravity stays without being drawn sufficiently. Continue (especially when the indoor unit is located below the outdoor unit). The accumulated refrigerant exchanges heat with room air, and the liquid phase becomes a gas phase. This stay is eliminated, but the indoor fan of the stopped indoor unit stops, so heat exchange is only gradually performed by natural convection. Therefore, there is a problem that it takes time to eliminate the retention.
特開平5-99526号公報JP-A-5-99526
 本発明は以上述べた問題点を解決するものであって、暖房運転時に停止した室内機及び対応する液管への液相冷媒の滞留を抑制する空気調和機を提供することを目的とする。 The present invention solves the above-described problems, and an object thereof is to provide an indoor unit that is stopped during heating operation and an air conditioner that suppresses the retention of liquid-phase refrigerant in a corresponding liquid pipe.
 本発明は、上記目的を達成するために、以下の構成のように把握される。
(1)本発明の第1の観点は、圧縮機と室外熱交換器とを有する室外機と、室内熱交換器と室内ファンを有する複数の室内機と、前記圧縮機、前記室外熱交換器、複数の前記室内機が冷媒配管で接続された冷媒回路と、前記圧縮機と複数の前記室内ファンとを制御する制御手段と、を備え、前記冷媒回路は、凝縮器として機能する各前記室内熱交換器の上流側に開閉弁、下流側に膨張弁を有する空気調和機であって、前記制御手段は、前記冷媒回路を暖房サイクルとして暖房運転を行っている複数の前記室内機のうち、運転を停止させる停止機が発生した場合、前記停止機について、前記室内ファンを停止させて、対応する前記開閉弁を開状態のまま、対応する前記膨張弁を開く方向に制御する第1ステップと、対応する前記開閉弁を閉じる第2ステップと、対応する前記膨張弁を閉じる第3ステップを順に行うことを特徴とする。
In order to achieve the above object, the present invention is grasped as follows.
(1) A first aspect of the present invention is an outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger and an indoor fan, the compressor, and the outdoor heat exchanger. A refrigerant circuit in which the plurality of indoor units are connected by refrigerant piping; and a control unit that controls the compressor and the plurality of indoor fans, wherein the refrigerant circuit functions as a condenser. An air conditioner having an on-off valve on the upstream side of the heat exchanger and an expansion valve on the downstream side, wherein the control means is a plurality of the indoor units performing a heating operation using the refrigerant circuit as a heating cycle, A first step of controlling the direction of opening of the corresponding expansion valve by stopping the indoor fan and leaving the corresponding on-off valve in an open state when a stop device for stopping the operation is generated; Close the corresponding on-off valve And 2 step, and carrying out the third step of closing the expansion valve corresponding to the order.
(2)上記(1)において、前記開閉弁は前記室外機に設けられている。 (2) In the above (1), the on-off valve is provided in the outdoor unit.
(3)上記(1)において、前記膨張弁は前記室外機に設けられている。 (3) In the above (1), the expansion valve is provided in the outdoor unit.
 本発明によれば、暖房運転時に停止した室内機及び対応する液管への液相冷媒の滞留を抑制する空気調和機を提供することができる。 According to the present invention, it is possible to provide an indoor unit that is stopped during heating operation and an air conditioner that suppresses the retention of the liquid-phase refrigerant in the corresponding liquid pipe.
図1Aは、本実施形態の空気調和機を説明する冷媒回路図である。FIG. 1A is a refrigerant circuit diagram illustrating the air conditioner of the present embodiment. 図1Bは、本実施形態の空気調和機の制御手段のブロック図である。FIG. 1B is a block diagram of the control means of the air conditioner of the present embodiment. 図2は、本実施形態において、暖房運転時に少なくとも1台の室内機が停止した場合における液相冷媒の滞留を抑制する制御を説明する図であって、冷媒回路の構造を模式的に示している。FIG. 2 is a diagram for explaining the control for suppressing the retention of the liquid-phase refrigerant when at least one indoor unit is stopped during the heating operation in the present embodiment, and schematically shows the structure of the refrigerant circuit. Yes. 図3は、同じく、液相冷媒の滞留を抑制する制御を説明するフローである。FIG. 3 is also a flow for explaining control for suppressing the retention of the liquid-phase refrigerant.
(実施形態)
 以下、本発明の実施形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に4台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行えるマルチ型の空気調和機を例に挙げて説明する。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
(Embodiment)
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, a description will be given by taking as an example a multi-type air conditioner in which four indoor units are connected in parallel to one outdoor unit, and all the indoor units can simultaneously perform a cooling operation or a heating operation. In addition, this invention is not limited to the following embodiment, A various deformation | transformation is possible in the range which does not deviate from the main point of this invention.
 図1Aに示すように、本実施形態における空気調和機1は、屋外に設置される1台の室外機2と、室内に設置され、室外機2に第1液管8a、第2液管8b、第3液管8c、第4液管8d、第1ガス管9a、第2ガス管9b、第3ガス管9c及び第4ガス管9dで並列に接続された4台の第1~第4室内機5a~5dとを備えている。 As shown in FIG. 1A, an air conditioner 1 according to the present embodiment is installed outdoors, one outdoor unit 2, and indoors. The outdoor unit 2 includes a first liquid pipe 8a and a second liquid pipe 8b. , The third liquid pipe 8c, the fourth liquid pipe 8d, the first gas pipe 9a, the second gas pipe 9b, the third gas pipe 9c, and the fourth gas pipe 9d connected in parallel to the four first to fourth. Indoor units 5a to 5d.
 詳細には、第1液管8aの一端が室外機2の第1液側閉鎖弁28aに、他端が第1室内機5aの第1液側接続部53aにそれぞれ接続されている。また、第2液管8bの一端が室外機2の第2液側閉鎖弁28bに、他端が第2室内機5bの第2液側接続部53bにそれぞれ接続されている。また、第3液管8cの一端が室外機2の第3液側閉鎖弁28cに、他端が第3室内機5cの第3液側接続部53cにそれぞれ接続されている。また、第4液管8dの一端が室外機2の第4液側閉鎖弁28dに、他端が第4室内機5dの第4液側接続部53dにそれぞれ接続されている。 Specifically, one end of the first liquid pipe 8a is connected to the first liquid side closing valve 28a of the outdoor unit 2, and the other end is connected to the first liquid side connection portion 53a of the first indoor unit 5a. One end of the second liquid pipe 8b is connected to the second liquid side shut-off valve 28b of the outdoor unit 2, and the other end is connected to the second liquid side connection portion 53b of the second indoor unit 5b. One end of the third liquid pipe 8c is connected to the third liquid side shut-off valve 28c of the outdoor unit 2, and the other end is connected to the third liquid side connection portion 53c of the third indoor unit 5c. One end of the fourth liquid pipe 8d is connected to the fourth liquid side shut-off valve 28d of the outdoor unit 2, and the other end is connected to the fourth liquid side connection portion 53d of the fourth indoor unit 5d.
 また、第1ガス管9aの一端が室外機2の第1ガス側閉鎖弁29aに、他端が第1室内機5aの第1ガス側接続部54aにそれぞれ接続されている。また、第2ガス管9bの一端が室外機2の第2ガス側閉鎖弁29bに、他端が第2室内機5bの第2ガス側接続部54bにそれぞれ接続されている。また、第3ガス管9cの一端が室外機2の第3ガス側閉鎖弁29cに、他端が第3室内機5cの第3ガス側接続部54cにそれぞれ接続されている。また、第4ガス管9dの一端が室外機2の第4ガス側閉鎖弁29dに、他端が第4室内機5dの第4ガス側接続部54dにそれぞれ接続されている。以上により、空気調和機1の冷媒回路10が構成されている。 Also, one end of the first gas pipe 9a is connected to the first gas side shut-off valve 29a of the outdoor unit 2, and the other end is connected to the first gas side connection portion 54a of the first indoor unit 5a. One end of the second gas pipe 9b is connected to the second gas side shut-off valve 29b of the outdoor unit 2, and the other end is connected to the second gas side connection portion 54b of the second indoor unit 5b. One end of the third gas pipe 9c is connected to the third gas side shut-off valve 29c of the outdoor unit 2, and the other end is connected to the third gas side connection portion 54c of the third indoor unit 5c. One end of the fourth gas pipe 9d is connected to the fourth gas side shut-off valve 29d of the outdoor unit 2, and the other end is connected to the fourth gas side connection portion 54d of the fourth indoor unit 5d. The refrigerant circuit 10 of the air conditioner 1 is configured as described above.
 <室外機の構成>
 まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、第1室外膨張弁24aと、第2室外膨張弁24bと、第3室外膨張弁24cと、第4室外膨張弁24dと、室外ファン27と、一端に第1液管8aが接続された第1液側閉鎖弁28aと、一端に第2液管8bが接続された第2液側閉鎖弁28bと、一端に第3液管8cが接続された第3液側閉鎖弁28cと、一端に第4液管8dが接続された第4液側閉鎖弁28dと、一端に第1ガス管9aが接続された第1ガス側閉鎖弁29aと、一端に第2ガス管9bが接続された第2ガス側閉鎖弁29bと、一端に第3ガス管9cが接続された第3ガス側閉鎖弁29cと、一端に第4ガス管9dが接続された第4ガス側閉鎖弁29dとを備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路20を構成している。なお、圧縮機21の冷媒吸入側には、アキュムレータ(不図示)が設けられてもよい。
<Configuration of outdoor unit>
First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a first outdoor expansion valve 24a, a second outdoor expansion valve 24b, a third outdoor expansion valve 24c, and a fourth outdoor expansion. A valve 24d, an outdoor fan 27, a first liquid side closing valve 28a having a first liquid pipe 8a connected to one end, a second liquid side closing valve 28b having a second liquid pipe 8b connected to one end, and one end A third liquid side closing valve 28c connected to the third liquid pipe 8c, a fourth liquid side closing valve 28d connected to the fourth liquid pipe 8d at one end, and a first gas pipe 9a connected to one end. A first gas side closing valve 29a, a second gas side closing valve 29b having one end connected to the second gas pipe 9b, a third gas side closing valve 29c having one end connected to the third gas pipe 9c, and one end And a fourth gas side closing valve 29d to which a fourth gas pipe 9d is connected. And these each apparatus except the outdoor fan 27 is mutually connected by each refrigerant | coolant piping explained in full detail below, and the outdoor unit refrigerant circuit 20 which makes a part of refrigerant circuit 10 is comprised. An accumulator (not shown) may be provided on the refrigerant suction side of the compressor 21.
 圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管41で接続されている。また、圧縮機21の冷媒吸入側は、四方弁22のポートcと吸入管42で接続されている。 The compressor 21 is a variable capacity compressor that can change the operating capacity by controlling the rotation speed by an inverter (not shown). The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 described later and a discharge pipe 41. The refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22 by a suction pipe 42.
 四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管42で接続されている。そして、ポートdは、第1~第4ガス側閉鎖弁29a~29dと第1~第4開閉弁6a~6dを介して室外機ガス管44で接続されている。第1~第4開閉弁6a~6dの制御については、後述する。 The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and has four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 42 as described above. The port d is connected to the outdoor unit gas pipe 44 via the first to fourth gas side closing valves 29a to 29d and the first to fourth on-off valves 6a to 6d. Control of the first to fourth on-off valves 6a to 6d will be described later.
 室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管43で接続され、他方の冷媒出入口には室外機液管45の一端が接続されている。室外熱交換器23は、四方弁22の切り替えによって、冷房運転時は凝縮器として機能し、暖房運転時は蒸発器として機能する。 The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 43, and one end of the outdoor unit liquid pipe 45 is connected to the other refrigerant inlet / outlet. The outdoor heat exchanger 23 functions as a condenser during the cooling operation and functions as an evaporator during the heating operation by switching the four-way valve 22.
 室外機液管45の他端には、第1液分管46aの一端と第2液分管46bの一端と第3液分管46cの一端と第4液分管46dの一端が各々接続されている。また、第1液分管46aの他端は第1液側閉鎖弁28aと接続され、第2液分管46bの他端は第2液側閉鎖弁28bと接続され、第3液分管46cの他端は第3液側閉鎖弁28cと接続され、第4液分管46dの他端は第4液側閉鎖弁28dと接続されている。 The other end of the outdoor unit liquid pipe 45 is connected to one end of the first liquid distribution pipe 46a, one end of the second liquid distribution pipe 46b, one end of the third liquid distribution pipe 46c, and one end of the fourth liquid distribution pipe 46d. The other end of the first liquid distribution pipe 46a is connected to the first liquid side closing valve 28a, the other end of the second liquid distribution pipe 46b is connected to the second liquid side closing valve 28b, and the other end of the third liquid distribution pipe 46c. Is connected to the third liquid side closing valve 28c, and the other end of the fourth liquid side pipe 46d is connected to the fourth liquid side closing valve 28d.
 第1液分管46aには、第1室外膨張弁24aが設けられている。また、第2液分管46bには、第2室外膨張弁24bが設けられている。また、第3液分管46cには、第3室外膨張弁24cが設けられている。さらには、第4液分管46dには、第4室外膨張弁24dが設けられている。 The first outdoor pipe 46a is provided with a first outdoor expansion valve 24a. The second liquid distribution pipe 46b is provided with a second outdoor expansion valve 24b. The third liquid distribution pipe 46c is provided with a third outdoor expansion valve 24c. Further, the fourth liquid distribution pipe 46d is provided with a fourth outdoor expansion valve 24d.
 第1~第4室外膨張弁24a~24dは、図示しないパルスモータにより駆動される電子膨張弁である。第1室外膨張弁24aの開度を調節することで、後述する第1室内機5aの第1室内熱交換器51aを流れる冷媒量を調節する。第2室外膨張弁24bの開度を調節することで、後述する第2室内機5bの第2室内熱交換器51bを流れる冷媒量を調節する。第3室外膨張弁24cの開度を調節することで、後述する第3室内機5cの第3室内熱交換器51cを流れる冷媒量を調節する。第4室外膨張弁24dの開度を調節することで、後述する第4室内機5dの第4室内熱交換器51dを流れる冷媒量を調節する。 The first to fourth outdoor expansion valves 24a to 24d are electronic expansion valves driven by a pulse motor (not shown). By adjusting the opening degree of the first outdoor expansion valve 24a, the amount of refrigerant flowing through the first indoor heat exchanger 51a of the first indoor unit 5a described later is adjusted. By adjusting the opening degree of the second outdoor expansion valve 24b, the amount of refrigerant flowing through the second indoor heat exchanger 51b of the second indoor unit 5b described later is adjusted. By adjusting the opening degree of the third outdoor expansion valve 24c, the amount of refrigerant flowing through the third indoor heat exchanger 51c of the third indoor unit 5c described later is adjusted. By adjusting the opening degree of the fourth outdoor expansion valve 24d, the amount of refrigerant flowing through the fourth indoor heat exchanger 51d of the fourth indoor unit 5d described later is adjusted.
 室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、その中心部が図示しないファンモータの回転軸に接続されている。ファンモータが回転することで室外ファン27が回転する。室外ファン27の回転によって、室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を、室外機2の図示しない吹出口から室外機2の外部へ放出する。 The outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The center of the outdoor fan 27 is connected to a rotating shaft of a fan motor (not shown). As the fan motor rotates, the outdoor fan 27 rotates. By the rotation of the outdoor fan 27, outside air is taken into the outdoor unit 2 from a suction port (not shown) of the outdoor unit 2, and the outdoor air exchanged with the refrigerant in the outdoor heat exchanger 23 is discharged from the outlet (not shown) of the outdoor unit 2. Release outside the machine 2.
 以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1Aに示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度(上述した吐出温度)を検出する吐出温度センサ33が設けられている。吸入管42には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34が設けられている。室外熱交換器23の図示しない冷媒パスの略中間部には、室外熱交換器23の温度である室外熱交温度を検出する室外熱交温度センサ35が設けられている。 In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, a discharge pressure sensor 31 that detects the pressure of the refrigerant discharged from the compressor 21 and a temperature of the refrigerant discharged from the compressor 21 (the above-described discharge temperature) are detected in the discharge pipe 41. A discharge temperature sensor 33 is provided. The suction pipe 42 is provided with a suction pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 34 that detects the temperature of the refrigerant sucked into the compressor 21. An outdoor heat exchanger temperature sensor 35 that detects an outdoor heat exchanger temperature that is the temperature of the outdoor heat exchanger 23 is provided at a substantially intermediate portion of a refrigerant path (not shown) of the outdoor heat exchanger 23.
 さらに、第1液分管46aにおける、第1室外膨張弁24aと第1液側閉鎖弁28aとの間には、この間の第1液分管46aを流れる冷媒の温度を検出する第1液温度センサ38aが設けられている。第2液分管46bにおける、第2室外膨張弁24bと第2液側閉鎖弁28bとの間には、この間の第2液分管46bを流れる冷媒の温度を検出する第2液温度センサ38bが設けられている。第3液分管46cにおける、第3室外膨張弁24cと第3液側閉鎖弁28cとの間には、この間の第3液分管46cを流れる冷媒の温度を検出する第3液温度センサ38cが設けられている。第4液分管46dにおける、第4室外膨張弁24dと第4液側閉鎖弁28dとの間には、この間の第4液分管46dを流れる冷媒の温度を検出する第4液温度センサ38dが設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ100が備えられている。 Further, a first liquid temperature sensor 38a for detecting the temperature of the refrigerant flowing through the first liquid distribution pipe 46a between the first outdoor expansion valve 24a and the first liquid side closing valve 28a in the first liquid distribution pipe 46a. Is provided. A second liquid temperature sensor 38b is provided between the second outdoor expansion valve 24b and the second liquid side closing valve 28b in the second liquid distribution pipe 46b to detect the temperature of the refrigerant flowing through the second liquid distribution pipe 46b. It has been. A third liquid temperature sensor 38c is provided between the third outdoor expansion valve 24c and the third liquid side closing valve 28c in the third liquid distribution pipe 46c to detect the temperature of the refrigerant flowing through the third liquid distribution pipe 46c. It has been. A fourth liquid temperature sensor 38d is provided between the fourth outdoor expansion valve 24d and the fourth liquid side closing valve 28d in the fourth liquid distribution pipe 46d to detect the temperature of the refrigerant flowing through the fourth liquid distribution pipe 46d. It has been. An outdoor air temperature sensor 100 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.
 また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1Bに示すように、室外機制御手段200は、室外CPU210と、室外記憶部220と、室外通信部230とを備えている(なお、本明細書では、室外機制御手段200を単に制御手段ということがある)。 Moreover, the outdoor unit 2 is provided with an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 1B, the outdoor unit control unit 200 includes an outdoor CPU 210, an outdoor storage unit 220, and an outdoor communication unit 230 (in this specification, the outdoor unit control unit 200 is simply a control unit. Sometimes).
 室外記憶部220は、フラッシュメモリで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27等の制御状態等を記憶している。また、図示は省略するが、室外記憶部220には第1~第4室内機5a~5dから受信する要求能力に応じて圧縮機21の回転数を定めた回転数テーブルが予め記憶されている。室外通信部230は、第1~第4室内機5a~5dとの通信を行うインターフェイスである。 The outdoor storage unit 220 includes a flash memory, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21, the outdoor fan 27, and the like. . Although not shown, the outdoor storage unit 220 stores in advance a rotation speed table that determines the rotation speed of the compressor 21 in accordance with the required capacity received from the first to fourth indoor units 5a to 5d. . The outdoor communication unit 230 is an interface that performs communication with the first to fourth indoor units 5a to 5d.
 室外CPU210は、前述した室外機2の各センサでの検出結果を取り込むとともに、第1~第4室内機5a~5dから送信される制御信号を、室外通信部230を介して取り込む。室外CPU210は、取り込んだ検出結果や制御信号等に基づいて、圧縮機21や室外ファン27の駆動制御、四方弁22の切り替え制御を行う。さらには、室外CPU210は、取り込んだ検出結果や制御信号に基づいて、第1~第4室外膨張弁24a~24dの開度調整や第1~第4開閉弁6a~6dの開閉制御を行う。 The outdoor CPU 210 captures the detection results of the sensors of the outdoor unit 2 described above, and captures control signals transmitted from the first to fourth indoor units 5a to 5d via the outdoor communication unit 230. The outdoor CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 and switching control of the four-way valve 22 based on the acquired detection results and control signals. Further, the outdoor CPU 210 adjusts the opening of the first to fourth outdoor expansion valves 24a to 24d and controls the opening and closing of the first to fourth on-off valves 6a to 6d based on the acquired detection results and control signals.
 <室内機の構成>
 次に、第1~第4室内機5a~5dについて説明する。なお、第1~第4室内機5a~5dの冷媒回路10における相対的な位置関係及び各個の構成は全て同じであるため、以下の説明では、第1室内機5aの位置関係及び構成についてのみ説明を行い、その他の第2~第4室内機5b~5dについては説明を省略する。図1Aでは、第1室内機5aの構成装置に付与した番号の末尾をaからb、cおよびdにそれぞれ変更したものが、第1室内機5aの構成装置と対応する第2~第4室内機5b~5dの構成装置となる。
<Configuration of indoor unit>
Next, the first to fourth indoor units 5a to 5d will be described. Since the relative positional relationship and the configuration of each of the first to fourth indoor units 5a to 5d in the refrigerant circuit 10 are all the same, only the positional relationship and configuration of the first indoor unit 5a will be described below. A description will be given, and the description of the other second to fourth indoor units 5b to 5d will be omitted. In FIG. 1A, the numbers assigned to the constituent devices of the first indoor unit 5a are changed from a to b, c, and d to indicate the second to fourth indoors corresponding to the constituent devices of the first indoor unit 5a. It becomes a component device of the machines 5b to 5d.
 第1室内機5aは、第1室内熱交換器51aと、第1液管8aが接続された第1液側接続部53aと、第1ガス管9aの他端(室外機2の第1ガス側閉鎖弁29aと接続された一端の反対側)が接続された第1ガス側接続部54aと、第1室内ファン55aとを備えている。そして、第1室内ファン55aを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす第1室内機冷媒回路50aを構成している。 The first indoor unit 5a includes a first indoor heat exchanger 51a, a first liquid side connection portion 53a to which the first liquid pipe 8a is connected, and the other end of the first gas pipe 9a (the first gas of the outdoor unit 2). A first gas-side connecting portion 54a connected to the side closing valve 29a (opposite one end connected to the side closing valve 29a), and a first indoor fan 55a. These devices other than the first indoor fan 55a are connected to each other through refrigerant pipes described in detail below to constitute a first indoor unit refrigerant circuit 50a that forms part of the refrigerant circuit 10.
 第1室内熱交換器51aは、冷媒と、後述する第1室内ファン55aの回転により第1室内機5aの図示しない吸込口から第1室内機5aの内部に取り込まれた室内空気を熱交換させるものである。第1室内熱交換器51aの一方の冷媒出入口は、第1液側接続部53aと第1室内機液管71aで接続されている。第1室内熱交換器51aの他方の冷媒出入口は、第1ガス側接続部54aと第1室内機ガス管72aで接続されている。第1室内熱交換器51aは、第1室内機5aが冷房運転を行う場合は蒸発器として機能し、第1室内機5aが暖房運転を行う場合は凝縮器として機能する。なお、第1液側接続部53aや第1ガス側接続部54aでは、各冷媒配管が溶接やフレアナット等により接続されている。 The first indoor heat exchanger 51a exchanges heat between the refrigerant and indoor air taken into the first indoor unit 5a from a suction port (not shown) of the first indoor unit 5a by rotation of a first indoor fan 55a described later. Is. One refrigerant inlet / outlet of the first indoor heat exchanger 51a is connected to the first liquid side connecting portion 53a by the first indoor unit liquid pipe 71a. The other refrigerant inlet / outlet port of the first indoor heat exchanger 51a is connected to the first gas side connecting portion 54a and the first indoor unit gas pipe 72a. The first indoor heat exchanger 51a functions as an evaporator when the first indoor unit 5a performs a cooling operation, and functions as a condenser when the first indoor unit 5a performs a heating operation. In addition, in the 1st liquid side connection part 53a and the 1st gas side connection part 54a, each refrigerant | coolant piping is connected by welding, a flare nut, etc.
 第1室内ファン55aは樹脂材で形成された好ましくはクロスフローファンであり、第1室内熱交換器51aの近傍に配置されている。第1室内ファン55aは、図示しないファンモータによって回転することで、第1室内機5aの図示しない吸込口から第1室内機5aの内部に室内空気を取り込み、第1室内熱交換器51aにおいて冷媒と熱交換した室内空気を第1室内機5aの図示しない吹出口から室内へ吹き出す。 The first indoor fan 55a is preferably a cross flow fan formed of a resin material, and is disposed in the vicinity of the first indoor heat exchanger 51a. The first indoor fan 55a is rotated by a fan motor (not shown) to take indoor air into the first indoor unit 5a from a suction port (not shown) of the first indoor unit 5a, and a refrigerant is generated in the first indoor heat exchanger 51a. The room air heat-exchanged with the first indoor unit 5a is blown out into the room from a blowout port (not shown).
 以上説明した構成の他に、第1室内機5aには各種のセンサが設けられている。第1室内熱交換器51aには、第1室内熱交換器51aの温度を検出する第1室内熱交温度センサ61aが設けられている。また、第1室内機ガス管72aには第1ガス温度センサ63aが設けられている。さらに、第1室内機5aの図示しない吸込口付近には、第1室内機5a内に流入する室内空気の温度、すなわち室内温度を検出する第1室内温度センサ62aが備えられている。 In addition to the configuration described above, the first indoor unit 5a is provided with various sensors. The first indoor heat exchanger 51a is provided with a first indoor heat exchange temperature sensor 61a that detects the temperature of the first indoor heat exchanger 51a. The first indoor unit gas pipe 72a is provided with a first gas temperature sensor 63a. Further, a first indoor temperature sensor 62a for detecting the temperature of the indoor air flowing into the first indoor unit 5a, that is, the indoor temperature, is provided in the vicinity of a suction port (not shown) of the first indoor unit 5a.
 また、第1室内機5aには、第1室内機制御手段500aが備えられている。第1室内機制御手段500aは、第1室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1Bに示すように、第1室内CPU510aと、第1室内記憶部520aと、第1室内通信部530aとを備えている(なお、本明細書では、第1室内機制御手段500aを単に制御手段ということがある)。 Further, the first indoor unit 5a is provided with first indoor unit control means 500a. The first indoor unit control means 500a is mounted on a control board stored in an electrical component box (not shown) of the first indoor unit 5a. As shown in FIG. 1B, the first indoor CPU 510a and the first indoor storage unit 520a and a first indoor communication unit 530a (in this specification, the first indoor unit control means 500a may be simply referred to as control means).
 第1室内記憶部520aは、フラッシュメモリで構成されており、第1室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。第1室内通信部530aは、室外機2および他の第2~第4室内機5b~5dとの通信を行うインターフェイスである。 The first indoor storage unit 520a is configured by a flash memory, and stores a control program for the first indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information regarding air conditioning operation by the user, and the like. The first indoor communication unit 530a is an interface that communicates with the outdoor unit 2 and the other second to fourth indoor units 5b to 5d.
 第1室内CPU510aは、各種センサでの検出値を取り込むとともに、使用者が図示しないリモコンを操作して設定した運転条件やタイマー運転設定等を含んだ信号が図示しないリモコン受光部を介して入力される。第1室内CPU510aは、これら取り込んだ各種検出値や入力された各種情報に基づいて第1室内ファン55aの駆動制御を行う。また、第1室内CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号を、第1室内通信部530aを介して室外機2に送信する。 The first indoor CPU 510a captures detection values from various sensors, and a signal including an operation condition set by a user operating a remote controller (not shown), a timer operation setting, and the like is input via a remote control light receiving unit (not shown). The The first indoor CPU 510a performs drive control of the first indoor fan 55a based on the various detected values taken in and the various pieces of input information. Further, the first indoor CPU 510a transmits an operation information signal including an operation start / stop signal and operation information (set temperature, indoor temperature, etc.) to the outdoor unit 2 via the first indoor communication unit 530a.
 <冷媒回路の動作>
 次に、実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1Aを用いて説明する。以下の説明では、第1~第4室内機5a~5dが暖房運転を行う場合について説明し、冷房運転(あるいは除霜運転。以下同様)を行う場合については詳細な説明を省略する。また、図1Aにおける矢印は、暖房運転の冷媒の流れを示している。なお、暖房運転時に第1~第4室内機5a~5dの少なくとも1台が停止した場合における、当該室内機及び対応する液管への液相冷媒の滞留を抑制する際の制御については、後述する。
<Operation of refrigerant circuit>
Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioner 1 in the embodiment will be described with reference to FIG. 1A. In the following description, the case where the first to fourth indoor units 5a to 5d perform the heating operation will be described, and the detailed description will be omitted when the cooling operation (or the defrosting operation, the same applies hereinafter) is performed. Moreover, the arrow in FIG. 1A has shown the flow of the refrigerant | coolant of heating operation. Note that, when at least one of the first to fourth indoor units 5a to 5d is stopped during the heating operation, the control for suppressing the liquid phase refrigerant from staying in the indoor unit and the corresponding liquid pipe will be described later. To do.
 第1~第4室内機5a~5dが暖房運転を行う場合、室外CPU210は、図1Aに示すように、四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcが連通するよう、切り替える。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに、第1~第4室内熱交換器51a~51dが凝縮器として機能する暖房サイクルとなる。 When the first to fourth indoor units 5a to 5d perform the heating operation, as shown in FIG. 1A, the outdoor CPU 210 determines that the four-way valve 22 is in a state indicated by a solid line, that is, the ports a and d of the four-way valve 22 It switches so that it may communicate and port b and port c communicate. As a result, the refrigerant circulates in the direction indicated by the solid arrow in the refrigerant circuit 10, the outdoor heat exchanger 23 functions as an evaporator, and the first to fourth indoor heat exchangers 51a to 51d function as condensers. It becomes a cycle.
 圧縮機21から吐出された高圧の冷媒は、吐出管41から四方弁22のポートaに流入した冷媒は、四方弁22のポートdから室外機ガス管44を流れた後に分岐して、第1~第4開閉弁6a~6dと第1~第4ガス側閉鎖弁29a~29dを介して第1~第4ガス管9a~9dに流入する。第1~第4ガス管9a~9dを流れる冷媒は、第1~第4ガス側接続部54a~54dを介して第1~第4室内機5a~5dに流入する。 The high-pressure refrigerant discharged from the compressor 21 flows from the discharge pipe 41 into the port a of the four-way valve 22 and branches after flowing through the outdoor unit gas pipe 44 from the port d of the four-way valve 22. The gas flows into the first to fourth gas pipes 9a to 9d through the fourth to fourth on-off valves 6a to 6d and the first to fourth gas side closing valves 29a to 29d. The refrigerant flowing through the first to fourth gas pipes 9a to 9d flows into the first to fourth indoor units 5a to 5d via the first to fourth gas side connection portions 54a to 54d.
 第1~第4室内機5a~5dに流入した冷媒は、第1~第4室内機ガス管72a~72dを流れて第1~第4室内熱交換器51a~51dに流入し、第1~第4室内ファン55a~55dの回転により図示しない吸入口から第1~第4室内機5a~5dの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、第1~第4室内熱交換器51a~51dが凝縮器として機能し、第1~第4室内熱交換器51a~51dで冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、第1~第4室内機5a~5dが設置された室内の暖房が行われる。 The refrigerant that has flowed into the first to fourth indoor units 5a to 5d flows through the first to fourth indoor unit gas pipes 72a to 72d and flows into the first to fourth indoor heat exchangers 51a to 51d. As the fourth indoor fans 55a to 55d rotate, heat is exchanged with the indoor air taken into the first to fourth indoor units 5a to 5d from a suction port (not shown) to condense. In this way, the first to fourth indoor heat exchangers 51a to 51d function as condensers, and the indoor air that has exchanged heat with the refrigerant in the first to fourth indoor heat exchangers 51a to 51d is not shown in the figure. Is blown into the room to heat the room where the first to fourth indoor units 5a to 5d are installed.
 第1~第4室内熱交換器51a~51dから流出した冷媒は、第1~第4室内機液管71a~71dを流れ、第1~第4液側接続部53a~53dを介して第1~第4液管8a~8dに流入する。第1~第4液管8a~8dから第1~第4液側閉鎖弁28a~28dを介して室外機2に流入した冷媒は、第1~第4液分管46a~46dを流れて第1~第4室外膨張弁24a~24dを通過して減圧された後に合流して、室外機液管45に流入する。 The refrigerant flowing out of the first to fourth indoor heat exchangers 51a to 51d flows through the first to fourth indoor unit liquid pipes 71a to 71d, and passes through the first to fourth liquid side connection portions 53a to 53d. To the fourth liquid pipes 8a to 8d. The refrigerant that has flowed into the outdoor unit 2 from the first to fourth liquid pipes 8a to 8d through the first to fourth liquid side shut-off valves 28a to 28d flows through the first to fourth liquid distribution pipes 46a to 46d and flows into the first. After passing through the fourth outdoor expansion valves 24 a to 24 d and being decompressed, they merge together and flow into the outdoor unit liquid pipe 45.
 室外機液管45から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管43に流出した冷媒は、四方弁22のポートb及びポートc、吸入管42を流れ、圧縮機21に吸入されて再び圧縮される。 The refrigerant flowing into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 45 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant that has flowed out of the outdoor heat exchanger 23 into the refrigerant pipe 43 flows through the ports b and c of the four-way valve 22 and the suction pipe 42, and is sucked into the compressor 21 and compressed again.
 なお、第1~第4室内機5a~5dが冷房運転あるいは除霜運転を行う場合、つまり、冷媒回路10が冷房サイクルとなる場合は、室外機2では、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートcとポートbとが連通するよう、切り換えられる。これにより、室外熱交換器23が凝縮器として機能するとともに、第1~第4室内熱交換器51a~51dが蒸発器として機能する。 When the first to fourth indoor units 5a to 5d perform the cooling operation or the defrosting operation, that is, when the refrigerant circuit 10 enters the cooling cycle, in the outdoor unit 2, the four-way valve 22 is in a state indicated by a broken line, That is, switching is performed so that the port a and the port d of the four-way valve 22 communicate with each other and the port c and the port b communicate with each other. As a result, the outdoor heat exchanger 23 functions as a condenser, and the first to fourth indoor heat exchangers 51a to 51d function as evaporators.
 <液相冷媒の滞留抑制>
 本実施形態に係るマルチ型の空気調和機1では、暖房運転時に第1~第4室内機5a~5dのうち少なくとも1台の室内機が停止した場合であって残る室内機に運転機(運転中の室内機をいう)があるとき、以下に述べる制御により、停止機(停止した室内機をいう)及び停止機に対応する液管への液相冷媒の滞留を速やかに解消することで、空調能力を確保しつつ冷媒量の削減を図る。
<Inhibition of liquid phase refrigerant retention>
In the multi-type air conditioner 1 according to this embodiment, when at least one of the first to fourth indoor units 5a to 5d is stopped during the heating operation, the remaining indoor unit is operated as a driver (operating unit). By the control described below, the liquid phase refrigerant stays in the liquid pipe corresponding to the stop machine (stopped indoor unit) and the stop machine quickly. Reducing the amount of refrigerant while ensuring air conditioning capability.
 図2及び図3は、暖房運転時に少なくとも1台の室内機が停止した場合における液相冷媒の滞留を抑制する制御を説明する図であって、図2は冷媒回路10の構造を模式的に示し、図3は制御のフローを示している。 2 and 3 are diagrams for explaining control for suppressing the retention of the liquid-phase refrigerant when at least one indoor unit is stopped during the heating operation. FIG. 2 schematically illustrates the structure of the refrigerant circuit 10. FIG. 3 shows a control flow.
 図2に示す、第1~第4室内機5a~5dのいずれかが停止機になると、第1~第4室内熱交換器51a~51dを挟む区間B-C、第1室内熱交換器51aと第1室外膨張弁24aを挟む第1液管8aと、第2室内熱交換器51bと第2室外膨張弁24bを挟む第2液管8bと、第3室内熱交換器51cと第3室外膨張弁24cを挟む第3液管8cと、第4室内熱交換器51dと第4室外膨張弁24dを挟む第4液管8dの区間C-Dにおいて、液相冷媒が滞留する。本実施形態では、室外機ガス管44から分岐した位置に第1~第4開閉弁6a~6dが設けられており、暖房運転時に第1室内熱交換器51aの上流側に設けられている第1開閉弁6aと、第2室内熱交換器51bの上流側に設けられている第2開閉弁6bと、第3室内熱交換器51cの上流側に設けられている第3開閉弁6cと、第4室内熱交換器51dの上流側に設けられている第4開閉弁6dと、第1室内熱交換器51aの下流側に設けられている第1室外膨張弁24aと、第2室内熱交換器51bの下流側に設けられている第2室外膨張弁24bと、第3室内熱交換器51cの下流側に設けられている第3室外膨張弁24cと、第4室内熱交換器51dの下流側に設けられている第4室外膨張弁24dとを制御して、液相冷媒の滞留を抑制する。 When any of the first to fourth indoor units 5a to 5d shown in FIG. 2 becomes a stop device, the section BC between the first to fourth indoor heat exchangers 51a to 51d, the first indoor heat exchanger 51a And a first liquid pipe 8a sandwiching the first outdoor expansion valve 24a, a second liquid pipe 8b sandwiching the second indoor heat exchanger 51b and the second outdoor expansion valve 24b, a third indoor heat exchanger 51c and the third outdoor In the third liquid pipe 8c sandwiching the expansion valve 24c, and in the section CD of the fourth liquid pipe 8d sandwiching the fourth indoor heat exchanger 51d and the fourth outdoor expansion valve 24d, the liquid phase refrigerant stays. In the present embodiment, first to fourth on-off valves 6a to 6d are provided at positions branched from the outdoor unit gas pipe 44, and are provided upstream of the first indoor heat exchanger 51a during heating operation. A first on-off valve 6a, a second on-off valve 6b provided on the upstream side of the second indoor heat exchanger 51b, a third on-off valve 6c provided on the upstream side of the third indoor heat exchanger 51c, The fourth on-off valve 6d provided on the upstream side of the fourth indoor heat exchanger 51d, the first outdoor expansion valve 24a provided on the downstream side of the first indoor heat exchanger 51a, and the second indoor heat exchange The second outdoor expansion valve 24b provided on the downstream side of the vessel 51b, the third outdoor expansion valve 24c provided on the downstream side of the third indoor heat exchanger 51c, and the downstream of the fourth indoor heat exchanger 51d Of the liquid-phase refrigerant by controlling the fourth outdoor expansion valve 24d provided on the side Suppress.
 以下では、液相冷媒の滞留を抑制する制御について、停止指示を受けてこれから運転を停止させる処理を行い停止機とする室内機として第1室内機5aを、運転機として第2室内機5b、第3室内機5c及び第4室内機5dを例に説明するが、いずれの室内機が停止機及び運転機であっても、また、停止機及び運転機の台数が複数であっても、制御の手順は同様である。なお、第1開閉弁6aを設ける位置については、第1ガス管9aの途中であればよい。また、第2開閉弁6bを設ける位置については、第2ガス管9bの途中であればよい。また、第3開閉弁6cを設ける位置については、第3ガス管9cの途中であればよい。また、第4開閉弁6dを設ける位置については、第4ガス管9dの途中であればよい。 Below, about the control which suppresses retention of a liquid-phase refrigerant | coolant, the 1st indoor unit 5a is set as an indoor unit which receives the stop instruction | indication, and performs the process which stops operation | movement from now on, and makes it a stop machine, The 2nd indoor unit 5b as a drive unit, The third indoor unit 5c and the fourth indoor unit 5d will be described as an example. Regardless of which indoor unit is a stop unit and a plurality of stop units, and whether there are a plurality of stop units and drive units, control is performed. The procedure is the same. The position where the first on-off valve 6a is provided may be in the middle of the first gas pipe 9a. The position where the second on-off valve 6b is provided may be in the middle of the second gas pipe 9b. The position where the third on-off valve 6c is provided may be in the middle of the third gas pipe 9c. The position where the fourth on-off valve 6d is provided may be in the middle of the fourth gas pipe 9d.
 図3に示すフローチャートは、暖房運転を行っている複数の室内機のうち、運転を停止させる室内機が発生したときの室外CPU210の処理の流れを示すものであり、Sはステップを表しこれに続く番号はステップ番号を表している。 The flowchart shown in FIG. 3 shows the processing flow of the outdoor CPU 210 when an indoor unit that stops operation is generated among the plurality of indoor units that are performing the heating operation, and S represents a step. Subsequent numbers represent step numbers.
 図3に示すように、第1室内機5aに対して停止の指示があり、運転を停止させる停止機が発生すると(ステップS101)、室外機2に接続されている室内機の中で運転機の存在の有無を判定する(ステップS102)。運転機が存在しない、すなわち、判定がNOであれば、このフローは終了する(ステップS108)。一方、例えば第2室内機5bが運転機として暖房運転中であると、判定はYESとなり、第1室内機5a(停止機)について、第1室内ファン55aを停止し、第1室内熱交換器51aの上流側となる第1開閉弁6aは開のままで、第1室内熱交換器51aの下流側となる第1室外膨張弁24aを開度大とする(ステップS103)。ここで、開度大とは、例えば全開である。 As shown in FIG. 3, when there is an instruction to stop the first indoor unit 5a and a stop unit for stopping the operation is generated (step S101), the driving unit is operated among the indoor units connected to the outdoor unit 2. It is determined whether or not there exists (step S102). If there is no driver, that is, if the determination is NO, this flow ends (step S108). On the other hand, for example, if the second indoor unit 5b is in the heating operation as the operating unit, the determination is YES, the first indoor fan 55a is stopped for the first indoor unit 5a (stop unit), and the first indoor heat exchanger is determined. The first on-off valve 6a on the upstream side of 51a remains open, and the opening degree of the first outdoor expansion valve 24a on the downstream side of the first indoor heat exchanger 51a is increased (step S103). Here, the large opening is, for example, full open.
 ステップS103において、第1室内ファン55aが停止することにより、冷媒と第1室内熱交換器51aとの強制的な熱交換が抑制される。そして、第1開閉弁6aが開のまま、第1室外膨張弁24aが開度大となるため、第1室内機5aに流れる冷媒の循環量が大きくなるとともに、第1室内熱交換器51aが凝縮器として機能しなくなるため低密度(高乾き度)な高圧気相冷媒が第1室内機5a及び第1液管8aに流れる。低密度な冷媒が流入することで第1室内機5a及び第1液管8a内の液相冷媒は押し出される。さらに、高圧と低圧の圧力差が大きいため、液相冷媒は低圧側に速やかに流れていく。なお、このステップS103の室外CPU210の処理は、本発明の「第1ステップ」に該当する。 In step S103, when the first indoor fan 55a is stopped, forced heat exchange between the refrigerant and the first indoor heat exchanger 51a is suppressed. And since the opening degree of the 1st outdoor expansion valve 24a becomes large with the 1st on-off valve 6a opened, while the circulation amount of the refrigerant | coolant which flows into the 1st indoor unit 5a becomes large, the 1st indoor heat exchanger 51a becomes Since it does not function as a condenser, a low-density (high dryness) high-pressure gas-phase refrigerant flows through the first indoor unit 5a and the first liquid pipe 8a. When the low density refrigerant flows, the liquid phase refrigerant in the first indoor unit 5a and the first liquid pipe 8a is pushed out. Furthermore, since the pressure difference between the high pressure and the low pressure is large, the liquid-phase refrigerant flows quickly to the low pressure side. The processing of the outdoor CPU 210 in step S103 corresponds to the “first step” of the present invention.
 補足すると、Qを第1室内機5aの熱交換量[W]、Gを第1室内機5aに流れる冷媒の循環量[kg/h]、ΔHを第1室内機5aに流れる冷媒のエンタルピ変化[kJ/kg]とするとき、Q=G×ΔHの関係により、Qが小さくGが大きい場合ΔHが極めて小さくなるため、エンタルピはほとんど変化しない。よって、第1室内機5aの入口のガス冷媒は低密度(高乾き度)のまま第1室内機5aと第1液管8aを流れることとなる。 Supplementally, Q is the heat exchange amount [W] of the first indoor unit 5a, G is the circulation amount [kg / h] of the refrigerant flowing through the first indoor unit 5a, and ΔH is the enthalpy change of the refrigerant flowing through the first indoor unit 5a. When [kJ / kg], due to the relationship of Q = G × ΔH, ΔH is extremely small when Q is small and G is large, so that the enthalpy hardly changes. Therefore, the gas refrigerant at the inlet of the first indoor unit 5a flows through the first indoor unit 5a and the first liquid pipe 8a with low density (high dryness).
 ステップS103の制御は、高密度冷媒の追い出しに必要な所定時間(例えば、10秒)だけ継続する(ステップS104)。なお、図3では、この所定時間を第1マスク時間Nとして表記している。 The control in step S103 is continued for a predetermined time (for example, 10 seconds) required for expelling the high-density refrigerant (step S104). In FIG. 3, it is denoted with the predetermined time as N 1 first mask time.
 次に、所定時間(第1マスク時間N)経過後、第1室内機5aの上流側の第1開閉弁6aを閉とする(ステップS105)。これにより、第1室内機5a及び第1液管8a内に分布する高圧気相冷媒が低圧気相冷媒になり、より一層、密度が低下する。なお、このステップS105の室外CPU210の処理は、本発明の「第2ステップ」に該当する。ステップS105の制御は、低圧側との均圧に必要な所定時間(例えば、10秒)だけ継続する(ステップS106)。なお、図3では、この所定時間を第2マスク時間Nとして表記している。 Next, after a predetermined time (first mask time N 1 ) has elapsed, the first on-off valve 6a on the upstream side of the first indoor unit 5a is closed (step S105). Thereby, the high-pressure gas-phase refrigerant distributed in the first indoor unit 5a and the first liquid pipe 8a becomes the low-pressure gas-phase refrigerant, and the density further decreases. Note that the processing of the outdoor CPU 210 in step S105 corresponds to the “second step” of the present invention. The control in step S105 continues for a predetermined time (for example, 10 seconds) required for pressure equalization with the low pressure side (step S106). In FIG. 3, it is denoted with the predetermined time as the second mask time N 2.
 最後に、所定時間(第2マスク時間N)経過後、第1室内機5aの下流側の第1室外膨張弁24aを閉とする(ステップS107)。これにより、第1室内機5a及び第1液管8a内に低圧液相冷媒が流入(逆流)することを防止し、低密度な低圧気相冷媒のみが分布している状態を維持する。なお、このステップS107の室外CPU210の処理は、本発明の「第3ステップ」に該当する。 Finally, after a predetermined time (second mask time N 2 ) has elapsed, the first outdoor expansion valve 24a on the downstream side of the first indoor unit 5a is closed (step S107). As a result, the low pressure liquid phase refrigerant is prevented from flowing (reverse flow) into the first indoor unit 5a and the first liquid pipe 8a, and the state where only the low density low pressure gas phase refrigerant is distributed is maintained. The processing of the outdoor CPU 210 in step S107 corresponds to the “third step” of the present invention.
 以上説明した実施形態によれば、暖房運転時に停止した第1室内機5a及び対応する第1液管8aへの液相冷媒の滞留を抑制することができる。さらに、自然対流では滞留の解消が徐々にしか行われないのに対し、滞留の解消を短時間で行うことができる。これによって、停止機に液相冷媒が滞留していたことによる運転機への冷媒の循環量不足が短時間で解消できる。 According to the embodiment described above, the stagnation of the liquid refrigerant in the first indoor unit 5a stopped during the heating operation and the corresponding first liquid pipe 8a can be suppressed. Further, in the natural convection, the stagnation is only gradually eliminated, whereas the stagnation can be eliminated in a short time. Thereby, the shortage of the circulation amount of the refrigerant to the operating machine due to the liquid phase refrigerant staying in the stop machine can be solved in a short time.
 1 空気調和機
 2 室外機
 5a,5b,5c,5d 第1~第4室内機
 6a,6b,6c,6d 第1~第4開閉弁
 8a,8b,8c,8d 第1~第4液管
 9a,9b,9c,9d 第1~第4ガス管
 10 冷媒回路
 20 室外機冷媒回路
 21 圧縮機
 22 四方弁(a,b,c,d ポート)
 23 室外熱交換器
 24a,24b,24c,24d 第1~第4室外膨張弁
 27 室外ファン
 28a,28b,28c,28d 第1~第4液側閉鎖弁
 29a,29b,29c,29d 第1~第4ガス側閉鎖弁
 31 吐出圧力センサ
 32 吸入圧力センサ
 33 吐出温度センサ
 34 吸入温度センサ
 35 室外熱交温度センサ
 38a,38b,38c,38d 第1~第4液温度センサ
 41 吐出管
 42 吸入管
 43 冷媒配管
 44 室外機ガス管
 45 室外機液管
 46a,46b,46c,46d 第1~第4液分管
 50a,50b,50c,50d 第1~第4室内機冷媒回路
 51a,51b,51c,51d 第1~第4室内熱交換器
 53a,53b,53c,53d 第1~第4液側接続部
 54a,54b,54c,54d 第1~第4ガス側接続部
 55a,55b,55c,55d 第1~第4室内ファン
 61a,61b,61c,61d 第1~第4室内熱交温度センサ
 62a,62b,62c,62d 第1~第4室内温度センサ
 63a,63b,63c,63d 第1~第4ガス温度センサ
 71a,71b,71c,71d 第1~第4室内機液管
 72a,72b,72c,72d 第1~第4室内機ガス管
 100 外気温度センサ
 200 室外機制御手段(制御手段)
 210 室外CPU
 220 室外記憶部
 230 室外通信部
 500a,500b,500c,500d 第1~第4室内機制御手段(制御手段)
 510a,510b,510c,510d 第1~第4室内CPU
 520a,520b,520c,520d 第1~第4室内記憶部
 530a,530b,530c,530d 第1~第4室内通信部
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 5a, 5b, 5c, 5d 1st-4th indoor unit 6a, 6b, 6c, 6d 1st-4th on-off valve 8a, 8b, 8c, 8d 1st- 4th liquid pipe 9a , 9b, 9c, 9d First to fourth gas pipes 10 Refrigerant circuit 20 Outdoor unit refrigerant circuit 21 Compressor 22 Four-way valve (a, b, c, d port)
23 outdoor heat exchangers 24a, 24b, 24c, 24d first to fourth outdoor expansion valves 27 outdoor fans 28a, 28b, 28c, 28d first to fourth liquid side shut-off valves 29a, 29b, 29c, 29d first to fourth 4 gas side closing valve 31 discharge pressure sensor 32 suction pressure sensor 33 discharge temperature sensor 34 suction temperature sensor 35 outdoor heat exchange temperature sensor 38a, 38b, 38c, 38d first to fourth liquid temperature sensors 41 discharge pipe 42 suction pipe 43 refrigerant Piping 44 Outdoor unit gas pipe 45 Outdoor unit liquid pipe 46a, 46b, 46c, 46d First to fourth liquid distribution pipes 50a, 50b, 50c, 50d First to fourth indoor unit refrigerant circuits 51a, 51b, 51c, 51d First -4th indoor heat exchanger 53a, 53b, 53c, 53d 1st-4th liquid side connection part 54a, 54b, 54c, 54d 1st-4th gas side Connection 55a, 55b, 55c, 55d First to fourth indoor fans 61a, 61b, 61c, 61d First to fourth indoor heat exchange temperature sensors 62a, 62b, 62c, 62d First to fourth indoor temperature sensors 63a, 63b, 63c, 63d First to fourth gas temperature sensors 71a, 71b, 71c, 71d First to fourth indoor unit liquid pipes 72a, 72b, 72c, 72d First to fourth indoor unit gas pipes 100 Outside air temperature sensor 200 Outdoor unit control means (control means)
210 Outdoor CPU
220 outdoor storage unit 230 outdoor communication unit 500a, 500b, 500c, 500d first to fourth indoor unit control means (control means)
510a, 510b, 510c, 510d First to fourth indoor CPUs
520a, 520b, 520c, 520d First to fourth indoor storage units 530a, 530b, 530c, 530d First to fourth indoor communication units

Claims (3)

  1.  圧縮機と室外熱交換器とを有する室外機と、
     室内熱交換器と室内ファンを有する複数の室内機と、
     前記圧縮機、前記室外熱交換器、複数の前記室内機が冷媒配管で接続された冷媒回路と、
     前記圧縮機と複数の前記室内ファンとを制御する制御手段と、を備え、
     前記冷媒回路は、凝縮器として機能する各前記室内熱交換器の上流側に開閉弁、下流側に膨張弁を有する空気調和機であって、
     前記制御手段は、
     前記冷媒回路を暖房サイクルとして暖房運転を行っている複数の前記室内機のうち、運転を停止させる停止機が発生した場合、
     前記停止機について、
     前記室内ファンを停止させて、対応する前記開閉弁を開状態のまま、対応する前記膨張弁を開く方向に制御する第1ステップと、
     対応する前記開閉弁を閉じる第2ステップと、
     対応する前記膨張弁を閉じる第3ステップを順に行う、
     ことを特徴とする空気調和機。
    An outdoor unit having a compressor and an outdoor heat exchanger;
    A plurality of indoor units having an indoor heat exchanger and an indoor fan;
    A refrigerant circuit in which the compressor, the outdoor heat exchanger, and a plurality of the indoor units are connected by refrigerant piping;
    Control means for controlling the compressor and the plurality of indoor fans,
    The refrigerant circuit is an air conditioner having an on-off valve on the upstream side of each indoor heat exchanger functioning as a condenser and an expansion valve on the downstream side,
    The control means includes
    Among the plurality of indoor units that are performing the heating operation using the refrigerant circuit as a heating cycle, when a stop device that stops the operation occurs,
    About the stop machine
    A first step of stopping the indoor fan and controlling the opening direction of the corresponding expansion valve while keeping the corresponding opening / closing valve in an open state;
    A second step of closing the corresponding on-off valve;
    Sequentially performing a third step of closing the corresponding expansion valve;
    An air conditioner characterized by that.
  2.  前記開閉弁は前記室外機に設けられている、ことを特徴とする請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the on-off valve is provided in the outdoor unit.
  3.  前記膨張弁は前記室外機に設けられている、ことを特徴とする請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the expansion valve is provided in the outdoor unit.
PCT/JP2019/005707 2018-03-22 2019-02-15 Air conditioner WO2019181316A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-054337 2018-03-22
JP2018054337A JP2019168129A (en) 2018-03-22 2018-03-22 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019181316A1 true WO2019181316A1 (en) 2019-09-26

Family

ID=67986413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005707 WO2019181316A1 (en) 2018-03-22 2019-02-15 Air conditioner

Country Status (2)

Country Link
JP (1) JP2019168129A (en)
WO (1) WO2019181316A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538616B1 (en) * 2022-11-29 2023-06-01 엄용식 Cooling and heating apparatus without outdoor unit by using pre-cooling and spray cooling, and cooling operation method and heating operation method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169451A (en) * 1987-01-06 1988-07-13 三菱電機株式会社 Operation controller for multi-chamber type air conditioner
JPH04208364A (en) * 1990-11-30 1992-07-30 Toshiba Corp Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169451A (en) * 1987-01-06 1988-07-13 三菱電機株式会社 Operation controller for multi-chamber type air conditioner
JPH04208364A (en) * 1990-11-30 1992-07-30 Toshiba Corp Air conditioner

Also Published As

Publication number Publication date
JP2019168129A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6225548B2 (en) Air conditioner
JP4544461B2 (en) Air conditioner
JP3829867B2 (en) Air conditioner
JP2008089292A (en) Air conditioner
WO2014083682A1 (en) Air conditioning device
WO2019181315A1 (en) Air conditioner
JP2019020061A (en) Air-conditioner
JP4562650B2 (en) Air conditioner
WO2019181316A1 (en) Air conditioner
WO2020189586A1 (en) Refrigeration cycle device
JP2002147907A (en) Refrigerating plant
JP2017155952A (en) Air conditioner
JP2019113246A (en) Air conditioner
JP2017142017A (en) Air conditioner
JP6672860B2 (en) Air conditioner
JP2019100592A (en) Air conditioner
JP2017133777A (en) Air conditioning device
JP2020128858A (en) Air conditioner
JP7408942B2 (en) air conditioner
JP2003161535A (en) Air conditioning device and pump-down control method therefor
JP2621687B2 (en) Air conditioner
JP7268773B2 (en) air conditioner
WO2021229647A1 (en) Refrigeration cycle device
WO2021214816A1 (en) Refrigeration cycle device, air conditioner, and cooling device
JP4179365B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772284

Country of ref document: EP

Kind code of ref document: A1