WO2019181298A1 - グリコリドの製造方法 - Google Patents

グリコリドの製造方法 Download PDF

Info

Publication number
WO2019181298A1
WO2019181298A1 PCT/JP2019/005348 JP2019005348W WO2019181298A1 WO 2019181298 A1 WO2019181298 A1 WO 2019181298A1 JP 2019005348 W JP2019005348 W JP 2019005348W WO 2019181298 A1 WO2019181298 A1 WO 2019181298A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycolic acid
glycolide
iron salt
divalent iron
depolymerization
Prior art date
Application number
PCT/JP2019/005348
Other languages
English (en)
French (fr)
Inventor
壮慶 東瀬
義紀 鈴木
雄大 山土井
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to EP19770880.3A priority Critical patent/EP3770153B1/en
Priority to CN201980014073.7A priority patent/CN111741952B/zh
Priority to US16/980,626 priority patent/US11753391B2/en
Publication of WO2019181298A1 publication Critical patent/WO2019181298A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing glycolide.
  • Polyglycolic acid is a resin material with excellent biodegradability, gas barrier properties, strength, etc., medical polymer materials such as sutures and artificial skin, packaging materials such as bottles and films, injection molded products, fibers, and vapor deposition. It is used in a wide range of technical fields such as resin materials for various industrial products such as films and fishing lines.
  • Such polyglycolic acid is required to have a high degree of polymerization depending on the application.
  • Polyglycolic acid having a high degree of polymerization can be produced by a method of ring-opening polymerization of glycolide. Moreover, reduction of the production cost of polyglycolic acid is required, and mass production of glycolide as a raw material, that is, production of glycolide at a high production rate is required.
  • Glycolide used as a raw material for polyglycolic acid is 1) a step of dehydrating polycondensation of glycolic acid to obtain a glycolic acid oligomer (dehydration polycondensation step), and 2) a step of depolymerizing the obtained glycolic acid oligomer (dissolution). Produced through a polymerization step).
  • This invention is made
  • the method for producing glycolide according to the present invention includes an oligomer preparation step of heating a glycolic acid aqueous solution to dehydrate and polycondensate glycolic acid contained in the glycolic acid aqueous solution to obtain a glycolic acid oligomer, and the glycolic acid oligomer to divalent iron. Depolymerizing in the presence of ions to obtain glycolide.
  • a method for producing glycolide that can further increase the production rate of glycolide can be provided.
  • the method for producing glycolide of the present invention comprises an oligomer preparation step for heating a glycolic acid aqueous solution and dehydrating polycondensation of glycolic acid to obtain a glycolic acid oligomer, and the resulting glycolic acid oligomer is divalent iron ion
  • ferric sulfate as a stabilizer (alkali metal ion trapping agent) during depolymerization.
  • coloring of glycolide can be suppressed, but it has been difficult to dramatically increase the production rate of glycolide.
  • the present inventors have found that the production rate of glycolide is remarkably increased by using divalent iron ions as a catalyst at the time of depolymerization.
  • first glycolide production method a method of adding a salt of divalent iron to the reaction system
  • second glycolide production method a method in which a salt of trivalent iron and a reducing agent thereof are added to the reaction system
  • the first production method of glycolide includes: a) a divalent iron salt addition step of adding a divalent iron salt to a glycolic acid aqueous solution; b) heating the glycolic acid aqueous solution; A method comprising: an oligomer preparation step for dehydrating polycondensation of glycolic acid contained in an aqueous glycolic acid solution to obtain a glycolic acid oligomer; and c) a depolymerization step for depolymerizing the glycolic acid oligomer to obtain glycolide. Can do. However, other steps may be included as long as the object and effect of the present invention are not impaired. Hereinafter, each step will be described.
  • the divalent iron salt addition step is a step of adding a divalent iron salt (hereinafter also referred to as “divalent iron salt”) to the glycolic acid aqueous solution.
  • the timing of performing the divalent iron salt addition step is not particularly limited as long as it is before the later-described c) depolymerization step, and may be before the later-described b) oligomer preparation step, and b) parallel to the oligomer preparation step. You may do it.
  • a divalent iron salt addition process may be performed only once and may be performed twice or more.
  • a catalyst (divalent iron ion) for increasing the production rate of glycolide is added in the c) depolymerization step.
  • the depolymerization step is usually carried out in an organic solvent.
  • divalent iron salt is hard to melt
  • the production rate of glycolide is dramatically increased.
  • the reason is considered as follows.
  • the divalent iron salt is added to the glycolic acid aqueous solution, the divalent iron ions are well dispersed in the glycolic acid oligomer prepared in the b) oligomer preparation step.
  • the c) depolymerization step the state in which the divalent iron ions are well dispersed in the glycolic acid oligomer is maintained, and the divalent iron ions sufficiently act as a catalyst.
  • the divalent iron salt added to the aqueous glycolic acid solution is not particularly limited as long as it can be dissolved in water to generate divalent iron ions.
  • an inorganic acid salt, an organic acid salt, or a complex salt can do.
  • inorganic acid salts include ferrous sulfate, ferrous chloride, ferrous nitrate, ferrous nitrite, ferrous sulfite, ferrous cyanide and the like.
  • the organic acid salt include a salt of an aliphatic carboxylic acid and divalent iron, a salt of an aromatic carboxylic acid and divalent iron, and the like.
  • Examples of aliphatic carboxylic acids include formic acid, acetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, lactic acid, glycolic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, dodecanoic acid, stearic acid Oleic acid and the like.
  • Examples of the aromatic carboxylic acid include phthalic acid, benzoic acid, salicylic acid and the like.
  • Examples of complex salt ligands include those having an acyl group or a nitrile group.
  • the divalent iron salt added in the divalent iron salt addition step may be one kind or two or more kinds.
  • an inorganic acid salt is preferable from the viewpoint of stability in an aqueous solution, and among these, ferrous sulfate and ferrous chloride are preferable from the viewpoint of availability and cost.
  • organic acid salts a salt of glycolic acid, which is an organic acid originally contained in an aqueous glycolic acid solution, is preferable from the viewpoint of suppressing side reactions caused by organic acids.
  • the form of the divalent iron salt is not particularly limited as long as it can be charged into the reactor, and may be powdery or massive. Especially, it is preferable that it is a powder form from a viewpoint of making it easy to disperse
  • a solvent for example, water
  • the addition amount of the divalent iron salt is not particularly limited, but the addition amount is preferably such that the amount of divalent iron is 0.01 to 1,000 ppm relative to the amount of glycolic acid contained in the glycolic acid aqueous solution.
  • the addition amount is preferably 1 to 100 ppm, more preferably 1 to 10 ppm.
  • the total amount of the divalent iron salt added to glycolic acid aqueous solution is the said range.
  • the addition amount of the divalent iron salt is a certain level or more, the rate of dehydration polycondensation reaction of glycolic acid and the depolymerization reaction of glycolic acid oligomer can be sufficiently increased, and the production rate of glycolide is increased.
  • the addition amount of the divalent iron salt is below a certain level, the undissolved amount of the divalent iron salt is reduced.
  • divalent iron ions can be supplied to c) depolymerization process by other methods
  • a) divalent iron salt addition process is not essential.
  • other methods include a method of adding a divalent iron salt to a glycolic acid oligomer.
  • a divalent iron salt those in which the ligand is removed from the glycolic acid oligomer are preferable, and specifically, a divalent iron carboxylate is preferable.
  • the glycolic acid aqueous solution to which the divalent iron salt is added is a solution containing glycolic acid and water.
  • the glycolic acid aqueous solution may contain components other than glycolic acid and water as long as the objects and effects of the present invention are not impaired.
  • glycolic acid aqueous solution can be prepared by dissolving glycolic acid, glycolic acid ester (for example, lower alkyl ester), or glycolate (for example, sodium salt) in water.
  • glycolic acid ester for example, lower alkyl ester
  • glycolate for example, sodium salt
  • the amount of glycolic acid in the glycolic acid aqueous solution can be, for example, 1% by mass to 99% by mass.
  • glycolic acid aqueous solution with a low content of impurities such as organic substances and metal ions as the glycolic acid aqueous solution.
  • Addition of the divalent iron salt to the glycolic acid aqueous solution may be performed while heating the glycolic acid aqueous solution from the viewpoint of easily dissolving the divalent iron salt uniformly. From the same viewpoint, the addition of the divalent iron salt may be performed while stirring the aqueous glycolic acid solution.
  • oligomer preparation step the glycolic acid aqueous solution is heated and the glycolic acid contained in the glycolic acid aqueous solution is dehydrated and polycondensed to obtain a glycolic acid oligomer.
  • glycolic acid is polycondensed by heating an aqueous glycolic acid solution until the distillation of low molecular weight substances such as water and alcohol substantially disappears.
  • the dehydration polycondensation of glycolic acid may be performed in the presence of a condensation catalyst or a transesterification catalyst, if necessary. Further, the dehydration condensation may be performed under any atmospheric pressure, reduced pressure, or pressurized atmosphere.
  • the heating temperature (dehydration polycondensation temperature) during the dehydration polycondensation reaction is preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and 140 ° C. or higher and 230 ° C. or lower. More preferably it is.
  • the produced glycolic acid oligomer can be used as it is as a raw material for the depolymerization step described later.
  • the weight average molecular weight (Mw) of the glycolic acid oligomer prepared in this step is preferably from 1,000 to 100,000, and more preferably from 10,000 to 100,000, from the viewpoint of the yield of glycolide.
  • the weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC).
  • the melting point (Tm) of the resulting glycolic acid oligomer is, for example, preferably 140 ° C. or higher, more preferably 160 ° C. or higher, and more preferably 180 ° C. or higher, from the viewpoint of the yield of glycolide in the depolymerization reaction. More preferably it is.
  • the upper limit of the melting point (Tm) of the glycolic acid oligomer is, for example, 220 ° C.
  • the melting point (Tm) of the glycolic acid oligomer can be measured as an endothermic peak temperature when the temperature is raised at a rate of 10 ° C./min in an inert gas atmosphere using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the glycolic acid oligomer obtained in the above-described b) oligomer preparation step is heated and depolymerized to obtain glycolide.
  • glycolide is obtained by depolymerizing a glycolic acid oligomer in an organic solvent.
  • glycolic acid oligomer is added to an organic solvent described later, and heated under normal pressure or reduced pressure to dissolve the glycolic acid oligomer in the organic solvent.
  • the organic solvent is preferably a high-boiling organic solvent having a boiling point of 230 ° C. or higher and 450 ° C. or lower from the viewpoint of appropriately raising the depolymerization reaction temperature and easily increasing the production rate of glycolide.
  • the boiling point of the organic solvent is more preferably 235 ° C. or more and 450 ° C. or less, further preferably 255 ° C. or more and 430 ° C. or less, and particularly preferably 280 ° C. or more and 420 ° C. or less.
  • organic solvent having the above boiling point examples include aromatic dicarboxylic acid diesters, aromatic carboxylic acid esters, aliphatic dicarboxylic acid diesters, polyalkylene glycol diethers, aromatic dicarboxylic acid dialkoxyalkyl esters, aliphatic dicarboxylic acid dialkoxys.
  • Alkyl esters, polyalkylene glycol diesters, aromatic phosphate esters and the like are included.
  • aromatic dicarboxylic acid diesters, aromatic carboxylic acid esters, aliphatic dicarboxylic acid diesters, and polyalkylene glycol diethers are preferred, and polyalkylene glycol diethers are more preferred because they are less susceptible to thermal degradation.
  • the polyalkylene glycol diether is preferably a polyalkylene glycol diether represented by the following formula (1).
  • R represents a methylene group or a linear or branched alkylene group having 2 to 8 carbon atoms.
  • X and Y each represents an alkyl group or an aryl group having 2 to 20 carbon atoms.
  • p represents an integer of 1 to 5. When p is 2 or more, the plurality of R may be the same as or different from each other.
  • polyalkylene glycol diether examples include polyalkylene glycol dialkyl ether, polyalkylene glycol alkyl aryl ether, and polyalkylene glycol diaryl ether.
  • polyalkylene glycol dialkyl ethers examples include diethylene glycol dibutyl ether, diethylene glycol dihexyl ether, diethylene glycol dioctyl ether, diethylene glycol butyl 2-chlorophenyl ether, diethylene glycol butyl hexyl ether, diethylene glycol butyl octyl ether, diethylene glycol hexyl octyl ether; Ethylene glycol diethyl ether, triethylene glycol dipropyl ether, triethylene glycol dibutyl ether, triethylene glycol dihexyl ether, triethylene glycol dioctyl ether, triethylene glycol butyl octyl ether, triethylene Triethylene glycol dialkyl ethers such as recall butyl decyl ether, triethylene glycol butyl hexyl ether, triethylene glycol hexyl octyl ether; tetra
  • polyalkylene glycol alkyl aryl ethers examples include diethylene glycol butyl phenyl ether, diethylene glycol hexyl phenyl ether, diethylene glycol octyl phenyl ether, triethylene glycol butyl phenyl ether, triethylene glycol hexyl phenyl ether, triethylene glycol octyl phenyl ether, tetraethylene glycol Butyl phenyl ether, tetraethylene glycol hexyl phenyl ether, tetraethylene glycol octyl phenyl ether, and polyethylene glycol alkyl aryl ethers in which some of the hydrogen atoms on the phenyl group of these compounds are substituted with alkyl, alkoxy, or halogen atoms; These polyalkylene glycos In Le alkylaryl ethers, polypropylene glycol alkyl aryl ether was replaced with
  • polyalkylene glycol diaryl ethers examples include diethylene glycol diphenyl ether, triethylene glycol diphenyl ether, tetraethylene glycol diphenyl ether or polyethylene glycol diaryl in which some of the hydrogen atoms on the phenyl group of these compounds are substituted with alkyl, alkoxy or halogen atoms Ethers: These polyalkylene glycol diaryl ethers include polypropylene glycol diaryl ethers in which ethyleneoxy groups are replaced with propyleneoxy groups, polybutylene glycol diaryl ethers in which ethyleneoxy groups are replaced with butyleneoxy groups, and the like.
  • polyalkylene glycol dialkyl ether is preferable from the viewpoint of hardly causing thermal degradation, tetraethylene glycol dibutyl ether, triethylene glycol butyl octyl ether, diethylene glycol dibutyl ether, diethylene glycol butyl 2-chlorophenyl ether are more preferable, and glycolide recovery is performed. From the viewpoint of efficiency, tetraethylene glycol dibutyl ether and triethylene glycol butyl octyl ether are more preferable.
  • the addition amount of the organic solvent is preferably, for example, 30 to 5000 parts by mass, more preferably 50 to 2000 parts by mass, and 100 to 1000 parts by mass with respect to 100 parts by mass of the glycolic acid oligomer. Further preferred.
  • a solubilizer may be further added to the reaction system as necessary.
  • the solubilizer is a monohydric alcohol, polyhydric alcohol, phenol, monohydric aliphatic carboxylic acid, polyhydric aliphatic carboxylic acid, aliphatic amide, aliphatic imide having a boiling point of 180 ° C. or higher or Non-basic organic compounds such as sulfonic acids can be used. Among these, monohydric alcohols and polyhydric alcohols are preferable because the effect as a solubilizer is easily obtained.
  • the boiling point of monohydric or polyhydric alcohols is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and particularly preferably 250 ° C. or higher.
  • the monohydric alcohol is particularly preferably a polyalkylene glycol monoether represented by the following formula (2).
  • R 1 represents a methylene group or a linear or branched alkylene group having 2 to 8 carbon atoms.
  • X 1 represents a hydrocarbon group.
  • the hydrocarbon group is preferably an alkyl group.
  • q represents an integer of 1 or more. When q is 2 or more, the plurality of R 1 may be the same as or different from each other.
  • polyalkylene glycol monoethers examples include polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether, polyethylene glycol monopropyl ether, polyethylene glycol monobutyl ether, polyethylene glycol monohexyl ether, polyethylene glycol monooctyl ether, polyethylene glycol monodecyl ether, Polyethylene glycol monoethers such as polyethylene glycol monolauryl ether; in these polyethylene glycol monoethers, polypropylene glycol monoethers in which ethyleneoxy groups are replaced with propyleneoxy groups, polybutylene glycol monoethers in which ethyleneoxy groups are replaced with butyleneoxy groups Etc. are included.
  • polyalkylene glycol monoethers having 1 to 18, preferably 6 to 18 carbon atoms of the alkyl group contained in the ether group are preferred, and polyethylene glycol monoalkyl ethers such as triethylene glycol monooctyl ether are more preferred.
  • the polyhydric alcohol is particularly preferably a polyalkylene glycol represented by the following formula (3).
  • R 2 represents a methylene group or a linear or branched alkylene group having 2 to 8 carbon atoms.
  • r represents an integer of 1 or more. When r is 2 or more, the plurality of R 2 may be the same as or different from each other.
  • polyalkylene glycol examples include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like.
  • the addition amount of the solubilizer is preferably 0.1 to 500 parts by mass, more preferably 1 to 300 parts by mass with respect to 100 parts by mass of the glycolic acid oligomer.
  • the solubility of the glycolic acid oligomer in the organic solvent is likely to be sufficiently increased.
  • the cost required for recovery of the solubilizer can be reduced by setting the amount of the solubilizing material to be a certain level or less.
  • the glycolic acid oligomer is depolymerized to obtain glycolide.
  • the above-described divalent iron ion acts as a catalyst, so that the production rate of glycolide is remarkably increased.
  • the heating temperature (depolymerization temperature) at the time of the depolymerization reaction may be equal to or higher than the temperature at which the depolymerization of the glycolic acid oligomer occurs, and generally depends on the degree of pressure reduction and the type of the high-boiling organic solvent. It is preferably 200 ° C or higher and 350 ° C or lower, more preferably 210 ° C or higher and 310 ° C or lower, further preferably 220 ° C or higher and 300 ° C or lower, and 230 ° C or higher and 290 ° C or lower. More preferably.
  • the heating during the depolymerization reaction may be performed under normal pressure or reduced pressure, but is preferably performed under reduced pressure of 0.1 kPa or more and 90 kPa. This is because the lower the pressure, the lower the depolymerization reaction temperature, so that the heating temperature is easily lowered and the solvent recovery rate is increased.
  • the degree of vacuum is preferably 1 kPa or more and 60 kPa or less, more preferably 1.5 kPa or more and 40 kPa or less, and particularly preferably 2 kPa or more and 30 kPa or less.
  • the aforementioned divalent iron ions may be oxidized (for example, converted to trivalent iron ions) and deactivated. Therefore, an activator for activating the deactivated divalent iron ions may be added to the reaction system as necessary.
  • the activator may be added after the divalent iron ion is deactivated, or may be added in advance to the organic solvent together with the glycolic acid oligomer or the like. When the activator is added in advance, the activator inhibits the oxidation of the divalent iron ions for a long time, and the deactivation of the divalent iron ions can be suppressed.
  • the oxidation-reduction potential from divalent iron ions to trivalent iron ions is 0.78V.
  • the activator include metals, metal compounds, or organic compounds having a redox potential lower than 0.78V.
  • Specific examples of the activator include copper chloride (CuCl), Mn, vitamin C and the like. Among these, Mn having a high activation effect is preferable.
  • the addition amount (mol) of the activator is preferably 0.1-20, more preferably 1-10, when the amount (mol) of iron ions present in the reaction system is 1. More preferably, it is 2-5.
  • the amount of the activator for the iron ions is a certain amount or more, the deactivated divalent iron ions (for example, trivalent iron ions) are easily reduced, and the depolymerization reaction is easily promoted.
  • the amount of the activator is equal to or less than a certain amount, the cost and work required for the activator recovery work are reduced.
  • the depolymerization reaction may be performed in a continuous processing system or a batch processing system, but it is preferable to perform the depolymerization reaction in a continuous processing system from the viewpoint of the productivity of glycolide.
  • the produced glycolide is vaporized and recovered in parallel with the depolymerization reaction.
  • the produced glycolide is co-distilled with an organic solvent and taken out of the depolymerization reaction system. By distilling the produced glycolide together with the organic solvent, it is possible to prevent glycolide from adhering and accumulating on the reaction vessel or the wall of the line. Distillation of glycolide from the reaction system may be carried out continuously or intermittently.
  • glycolide is recovered from the obtained distillate. Specifically, the distillate is cooled and phase-separated to precipitate glycolide. The precipitated glycolide is separated from the mother liquor by filtration, centrifugal sedimentation, decantation or the like and collected.
  • the mother liquor from which glycolide has been separated may be recycled as it is without being purified, or may be treated with activated carbon and purified by filtration, or may be recycled after being purified again by distillation.
  • the amount of the reaction solution in the depolymerization reaction system decreases. Therefore, the above-mentioned organic solvent and glycolic acid oligomer may be added to the system as necessary.
  • the addition of the organic solvent and the glycolic acid oligomer may be performed after the glycolide is recovered, or may be performed in parallel with the recovery of the glycolide.
  • the second glycolide production method includes: d) a trivalent iron salt addition step of adding a trivalent iron salt to a glycolic acid aqueous solution; and e) a trivalent iron salt-derived three.
  • oligomer preparation step and g) depolymerization step are the same as those in the first glycolide production method described above, and therefore, d) a trivalent iron salt addition step and e) a reducing agent addition step will be described here. To do.
  • Trivalent iron salt addition step is a step of adding a salt of trivalent iron (hereinafter also referred to as “trivalent iron salt”) to the glycolic acid aqueous solution.
  • the timing of performing the trivalent iron salt addition step is not particularly limited as long as it is before g) the depolymerization step, f) may be before the oligomer preparation step, and f) is performed in parallel with the oligomer preparation step. Also good.
  • the trivalent iron salt addition step may be performed only once or may be performed twice or more.
  • a catalyst (divalent iron ion) for increasing the production rate of glycolide is added in the g) depolymerization step.
  • the depolymerization step is usually carried out in an organic solvent.
  • trivalent iron salt is hard to melt
  • a divalent iron ion can be introduced into the reaction system of the depolymerization step, and the divalent iron ion is depolymerized. It can function sufficiently as a catalyst.
  • trivalent iron salt By adding a trivalent iron salt to a glycolic acid aqueous solution and further reducing the trivalent iron to divalent iron, the production rate of glycolide can be increased.
  • the reason is considered as follows.
  • trivalent iron salt is added to the glycolic acid aqueous solution, f) trivalent iron ions (divalent iron ions when reduced by a reducing agent described later) are well dispersed in the glycolic acid oligomer prepared in the oligomer preparation step. To do. Then, by appropriately reducing the trivalent iron ions to divalent iron ions, g) in the depolymerization step, the divalent iron ions can be well dispersed in the glycolic acid oligomer. Iron ions work well as a catalyst.
  • the trivalent iron salt added to the glycolic acid aqueous solution is not particularly limited as long as it can be dissolved in water to generate trivalent iron ions.
  • an inorganic acid salt, an organic salt, or a complex salt is used. be able to.
  • inorganic acid salts include ferric sulfate, ferric chloride, ferric nitrate, ferric nitrite, ferric sulfite, ferric cyanide and the like.
  • the organic acid salt include a salt of an aliphatic carboxylic acid and trivalent iron, a salt of an aromatic carboxylic acid and trivalent iron, and the like.
  • the organic acid can be the same as the acid contained in the divalent iron salt.
  • the complex salt ligand may be the same as the ligand contained in the divalent iron salt. These may be used alone or in combination of two or more.
  • an inorganic acid salt is preferable from the viewpoint of stability in an aqueous solution, and among these, ferric chloride is particularly preferable from the viewpoint of availability and cost.
  • organic acid salts a salt of glycolic acid, which is an organic acid originally contained in an aqueous glycolic acid solution, is preferable from the viewpoint of suppressing side reactions caused by organic acids.
  • the form of the trivalent iron salt is not particularly limited as long as it can be charged into the reactor, and may be in the form of powder or lump. Especially, it is preferable that it is a powder form from a viewpoint of making it easy to disperse
  • the addition amount of the trivalent iron salt is not particularly limited, but the addition amount is preferably such that the amount of trivalent iron with respect to the amount of glycolic acid contained in the aqueous glycolic acid solution is 0.01 to 1,000 ppm.
  • the addition amount is preferably 1 to 100 ppm, and more preferably 1 to 10 ppm.
  • the total amount of the trivalent iron salt added to glycolic acid aqueous solution is the said range.
  • the addition amount of the trivalent iron salt is a certain amount or more, the dehydration polycondensation reaction rate of glycolic acid tends to increase.
  • the amount of divalent iron ions obtained by reducing trivalent iron ions can be made sufficient, and the speed of the depolymerization reaction of the glycolic acid oligomer tends to increase.
  • the addition amount of the trivalent iron salt is below a certain level, the undissolved amount of the trivalent iron salt is reduced.
  • a trivalent iron salt addition process is not essential if trivalent iron ions can be supplied by other methods and reduced by a reducing agent added in the e) reducing agent addition process described later.
  • examples of other methods include a method of adding a trivalent iron salt to a glycolic acid oligomer.
  • a trivalent iron salt those in which the ligand is removed from the glycolic acid oligomer are preferable, and specifically, a trivalent iron carboxylate is preferable.
  • the glycolic acid aqueous solution to which the trivalent iron salt is added can be the same as the glycolic acid aqueous solution used in the above-mentioned first glycolide production method.
  • the addition of the trivalent iron salt to the glycolic acid aqueous solution may be performed while heating the glycolic acid aqueous solution from the viewpoint of easily dissolving the trivalent iron salt uniformly. From the same viewpoint, the addition of the trivalent iron salt may be performed while stirring the aqueous glycolic acid solution. Further, the trivalent iron salt may be previously dissolved in a solvent (for example, water) and then mixed with the aqueous glycolic acid solution.
  • a solvent for example, water
  • the reducing agent addition step is a step of adding a reducing agent for reducing the trivalent iron ions generated from the trivalent iron salt added in the trivalent iron salt addition step into divalent iron ions. It is.
  • the timing at which the reducing agent addition step is performed is not particularly limited as long as the glycolic acid oligomer can be depolymerized in the presence of divalent iron ions in the g) depolymerization step.
  • the reducing agent addition step may be performed simultaneously with, for example, d) the trivalent iron salt addition step, d) may be performed after the trivalent iron salt addition step, or d) before the trivalent iron salt addition step. You may go to In particular, when it is carried out after the trivalent iron salt addition step, the production rate of glycolide tends to increase.
  • a reducing agent process may be performed only once and may be performed twice or more.
  • examples of the reducing agent that is reduced in the reducing agent addition step include metals, metal compounds, or organic compounds having a redox potential lower than 0.78V.
  • Specific examples of the reducing agent include copper chloride (CuCl), Mn, vitamin C and the like. Among these, Mn having a high reduction effect is preferable.
  • the amount of the reducing agent added is not particularly limited as long as it is possible to reduce the trivalent iron ions derived from the trivalent iron salt and generate a sufficient amount of the divalent iron ions.
  • the addition amount of the reducing agent is preferably 0.1 to 20 when the total amount (mole) of the trivalent iron salt added in d) the trivalent iron salt addition step is 1. It is more preferably 1 to 10, and further preferably 2 to 5.
  • the reducing agent may be added directly to the reactor, or may be added to the reactor after being previously dissolved in a solvent or the like.
  • Glycolide Glycolide (also referred to as crude glycolide) obtained by the production method of the present invention preferably has a high purity. Specifically, the purity of glycolide is preferably 99.0% or more, more preferably 99.3% or more, and further preferably 99.5% or more. Thus, according to the glycolide manufacturing method of the present invention, high-purity glycolide can be obtained at a high production rate.
  • Example 1 In a separable flask having a volume of 1 L, 1.3 kg of an aqueous solution of 70% by weight of glycolic acid (manufactured by Chemours, high purity grade) was charged, and 0.13 g of ferrous sulfate was added (divalent iron salt addition step). Next, this was heated with stirring at normal pressure, heated from room temperature to 215 ° C., and a polycondensation reaction was performed while distilling the produced water. Next, after gradually reducing the pressure in the flask from normal pressure to 3 kPa, the mixture was heated at 215 ° C.
  • glycolic acid manufactured by Chemours, high purity grade
  • glycolic acid oligomers for 3 hours to distill low-boiling substances such as unreacted raw materials to obtain glycolic acid oligomers (oligomer preparation step).
  • 120 g of the resulting glycolic acid oligomer, 130 g of tetraethylene glycol dibutyl ether, and 100 g of octyltriethylene glycol were added to a container having a volume of 0.5 L, and then heated to 235 ° C. to make the reaction system a uniform solution. did. While this reaction system was heated at a temperature of 235 ° C. at a stirring speed of 170 rpm, a depolymerization reaction was performed for 12 hours under a reduced pressure of 3 kPa.
  • tetraethylene glycol dibutyl ether and crude glycolide were co-distilled every other hour, and the crude glycolide was separated and recovered from the co-distillate, and the mass was measured (depolymerization step).
  • a glycolic acid oligomer in an amount equal to the mass of the recovered crude glycolide was newly added to the reaction system.
  • the recovered amount per hour of the crude glycolide was arithmetically averaged to obtain the production rate (distillation rate) (g / h) of the crude glycolide.
  • Example 2 Crude glycolide production rate was determined in the same manner as in Example 1 except that the divalent iron salt added in the divalent iron salt addition step was changed from ferrous sulfate to 0.09 g of ferrous chloride.
  • Example 3 The divalent iron salt addition step was changed to a trivalent iron salt addition step and a reducing agent addition step (specifically, ferrous sulfate was changed to 0.10 g of ferric chloride and 0.14 g of copper chloride). Except for the above, the production rate of crude glycolide was determined in the same manner as in Example 1.
  • Example 4 In a separable flask having a volume of 1 L, 1.3 kg of an aqueous solution of 70% by weight of glycolic acid (manufactured by Chemours, high purity grade) was added, and 0.13 g of ferric chloride was added (trivalent iron salt addition step). Next, this was heated with stirring at normal pressure, heated from room temperature to 215 ° C., and a polycondensation reaction was performed while distilling the produced water. Subsequently, after gradually reducing the pressure in the flask from normal pressure to 3 kPa, the mixture was heated at 215 ° C. for 3 hours to distill low-boiling substances such as unreacted raw materials to obtain glycolic acid oligomers (oligomer preparation step).
  • glycolic acid manufactured by Chemours, high purity grade
  • Example 5 12 except that the divalent iron salt addition step was changed to the trivalent iron salt addition step (specifically, ferrous sulfate was changed to 0.13 g of ferric chloride). A time depolymerization reaction was performed. After 12 hours, 0.12 g of L (+)-ascorbic acid was added (reducing agent addition step). The depolymerization reaction was further continued for 1 hour, and the production rate (g / h) of the crude glycolide was determined from the mass of the recovered crude glycolide.
  • the divalent iron salt addition step was changed to the trivalent iron salt addition step (specifically, ferrous sulfate was changed to 0.13 g of ferric chloride).
  • a time depolymerization reaction was performed. After 12 hours, 0.12 g of L (+)-ascorbic acid was added (reducing agent addition step). The depolymerization reaction was further continued for 1 hour, and the production rate (g / h) of the crude glycolide was determined from the mass of the recovered crude glycolide.
  • Table 1 shows the evaluation results of Examples 1 to 5, Comparative Examples 1 and 2, and Reference Examples 1 and 2.
  • the manufacturing method of glycolide which can further raise the production

Abstract

グリコリドの生成速度をさらに高めることができるグリコリドの製造方法の提供を課題とする。 上記課題を解決するグリコリドの製造方法は、グリコール酸水溶液を加熱し、前記グリコール酸水溶液に含まれるグリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得るオリゴマー調製工程と、前記グリコール酸オリゴマーを二価鉄イオンの存在下で解重合させて、グリコリドを得る解重合工程と、を含む。

Description

グリコリドの製造方法
 本発明は、グリコリドの製造方法に関する。
 ポリグリコール酸は、生分解性、ガスバリア性、強度等に優れた樹脂材料であり、縫合糸や人工皮膚等の医療用高分子材料、ボトル、フィルム等の包装材料、射出成形品、繊維、蒸着フィルム、釣糸等の各種工業製品の樹脂材料等の広い技術分野で用いられている。
 このようなポリグリコール酸は、用途によっては、高い重合度を有することが求められる。高重合度のポリグリコール酸は、グリコリドを開環重合させる方法によって製造することができる。また、ポリグリコール酸の生産コストの低減が求められており、原料であるグリコリドの量産化、すなわち、グリコリドを高い生成速度で製造することが求められている。
 ポリグリコール酸の原料となるグリコリドは、1)グリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得る工程(脱水重縮合工程)、および2)得られたグリコール酸オリゴマーを解重合させる工程(解重合工程)を経て製造される。
 ここで、上記2)解重合工程の反応系に、アルカリ金属イオンが存在すると、解重合反応が不安定になり、グリコリドが着色しやすい。そこで、2)解重合工程を、硫酸第二鉄等の安定剤の存在下で行うことが提案されている(例えば、特許文献1)。
特表2004-519485号公報
 特許文献1に示されるグリコリドの製造方法では、安定剤によってアルカリ金属イオンがトラップされるため、着色の少ないグリコリドを製造することができる。しかしながら、高重合度のポリグリコール酸の生産コストをさらに低減する観点から、原料となるグリコリドの生産速度のさらなる向上が求められている。
 本発明は、上記事情に鑑みてなされたものであり、グリコリドの生成速度をさらに高めることができるグリコリドの製造方法を提供することを目的とする。
 本発明のグリコリドの製造方法は、グリコール酸水溶液を加熱し、前記グリコール酸水溶液に含まれるグリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得るオリゴマー調製工程と、前記グリコール酸オリゴマーを二価鉄イオンの存在下で解重合させて、グリコリドを得る解重合工程と、を含む。
 本発明によれば、グリコリドの生成速度をさらに高めることができるグリコリドの製造方法を提供することができる。
 1.グリコリドの製造方法
 本発明のグリコリドの製造方法は、グリコール酸水溶液を加熱し、グリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得るオリゴマー調製工程、および得られたグリコール酸オリゴマーを二価鉄イオンの存在下で解重合させて、グリコリドを得る解重合工程を含む。
 従来、解重合時の安定化剤(アルカリ金属イオンのトラップ剤)として、硫酸第二鉄を用いること等が提案されている。しかしながら、当該硫酸第二鉄によれば、グリコリドの着色が抑制できるものの、グリコリドの生成速度を飛躍的に高めることは難しかった。これに対し、本発明者らは、解重合時の触媒として、二価鉄イオンを用いることで、グリコリドの生成速度が飛躍的に高まることを見出した。
 ここで、グリコール酸オリゴマーの解重合工程で二価鉄イオンを触媒とする方法には、(1)二価鉄の塩を反応系に添加する方法(以下、「第1のグリコリドの製造方法」とも称する)、および(2)三価鉄の塩とその還元剤とを反応系に添加する方法(以下、「第2のグリコリドの製造方法」とも称する)の2つの方法がある。そこで以下、これらの方法についてわけて説明する。
 (1)第1のグリコリドの製造方法
 第1のグリコリドの製造方法は、a)二価鉄の塩をグリコール酸水溶液に添加する二価鉄塩添加工程と、b)グリコール酸水溶液を加熱し、グリコール酸水溶液に含まれるグリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得るオリゴマー調製工程と、c)グリコール酸オリゴマーを解重合させて、グリコリドを得る解重合工程と、を含む方法とすることができる。ただし、本発明の目的および効果を損なわない範囲において、他の工程を含んでいてもよい。以下、各工程について説明する。
 a)二価鉄塩添加工程
 二価鉄塩添加工程は、二価鉄の塩(以下、「二価鉄塩」とも称する)を、グリコール酸水溶液に添加する工程である。二価鉄塩添加工程を行うタイミングは、後述のc)解重合工程の前であれば特に制限されず、後述のb)オリゴマー調製工程より前であってもよく、b)オリゴマー調製工程と並行して行ってもよい。また、二価鉄塩添加工程は、一回のみ行ってもよく、二回以上行ってもよい。
 ここで、グリコリドの生成速度を高めるための触媒(二価鉄イオン)は、c)解重合工程で添加することが一般的と考えられる。しかしながら、c)解重合工程は通常、有機溶媒中で行われる。そして、二価鉄塩は有機溶媒に溶解し難く、有機溶媒中では二価鉄イオンとなり難い。そこで、グリコール酸オリゴマーを調製するためのグリコール酸水溶液に二価鉄塩を添加し、イオン化させておくことで、c)解重合工程において、二価鉄イオンを触媒として十分に機能させることができる。
 またグリコール酸水溶液に二価鉄塩を加えることで、グリコリドの生成速度が飛躍的に高まる。その理由としては、以下のように考えられる。グリコール酸水溶液に二価鉄塩を添加すると、b)オリゴマー調製工程において調製されるグリコール酸オリゴマー中に、二価鉄イオンが良好に分散する。そしてこの場合、c)解重合工程においても、グリコール酸オリゴマー中に二価鉄イオンが良好に分散された状態が維持され、二価鉄イオンが触媒として十分に作用する。
 一方で、b)オリゴマー調製工程においても、二価鉄イオンがグリコール酸の脱水重縮合のための触媒として作用すると考えられる。したがって、b)オリゴマー調製工程およびc)解重合工程のいずれにおいても、二価鉄イオンが触媒として良好に作用する結果、グリコリドの生成速度が飛躍的に高まると考えられる。
 本工程において、グリコール酸水溶液に添加する二価鉄塩は、水に溶解して二価鉄イオンを生成可能なものであれば特に制限されず、例えば無機酸塩、有機酸塩、または錯塩とすることができる。無機酸塩の例には、硫酸第一鉄、塩化第一鉄、硝酸第一鉄、亜硝酸第一鉄、亜硫酸第一鉄、シアン化第一鉄等が含まれる。有機酸塩の例には、脂肪族カルボン酸と二価鉄との塩や、芳香族カルボン酸と二価鉄との塩等が含まれる。脂肪族カルボン酸の例には、蟻酸、酢酸、シュウ酸、マロン酸、コハク酸、グルタル酸、乳酸、グリコール酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ドデカン酸、ステアリン酸、オレイン酸等が含まれる。また、芳香族カルボン酸の例には、フタル酸、安息香酸、サリチル酸等が含まれる。また、錯塩の配位子の例には、アシル基やニトリル基を有するもの等が含まれる。二価鉄塩添加工程で添加する二価鉄塩は、一種のみであってもよく、二種以上であってもよい。二価鉄塩としては、水溶液中での安定性の観点から無機酸塩が好ましく、これらの中でも入手容易性や、コスト等の観点から、硫酸第一鉄および塩化第一鉄が好ましい。また、有機酸塩の中では、グリコール酸水溶液にもともと含まれる有機酸であるグリコール酸の塩が、有機酸による副反応を抑制できる観点で好ましい。
 二価鉄塩の形態は、反応器内に投入できる形態であればよく、粉状であってもよいし、塊状であってもよい。中でも、グリコール酸水溶液中へ均一に分散させやすくする観点では、粉状であることが好ましい。さらに、二価鉄塩を予め溶媒(例えば水)に溶解させてから、グリコール酸水溶液に混合してもよい。
 二価鉄塩の添加量は特に制限されないが、グリコール酸水溶液に含まれるグリコール酸の量に対する二価鉄の量が、0.01~1,000ppmとなる添加量であることが好ましく、0.1~100ppmとなる添加量であることがより好ましく、1~10ppmとなる添加量であることがさらに好ましい。なお、二価鉄塩添加工程を複数回行う場合、グリコール酸水溶液に添加する二価鉄塩の総量が、上記範囲であることが好ましい。二価鉄塩の添加量が一定以上であると、グリコール酸の脱水重縮合反応や、グリコール酸オリゴマーの解重合反応の速度が十分に高まりやすく、ひいてはグリコリドの生成速度が高まる。一方で、二価鉄塩の添加量が一定以下であると、二価鉄塩の溶け残り量が低減する。
 なお、他の方法でc)解重合工程に二価鉄イオンを供給することができるのであれば、a)二価鉄塩添加工程は必須ではない。他の方法としては、たとえば二価鉄塩をグリコール酸オリゴマーに添加する方法などが挙げられる。このような二価鉄塩としては、グリコール酸オリゴマー中で配位子が外れるものが好ましく、具体的には二価鉄のカルボン酸塩が好ましい。
 一方、二価鉄塩を添加するグリコール酸水溶液は、グリコール酸および水を含む溶液である。グリコール酸水溶液は、本発明の目的および効果を損なわない範囲で、グリコール酸および水以外の成分を含んでいてもよい。
 グリコール酸水溶液は、グリコール酸、グリコール酸エステル(例えば低級アルキルエステル)、またグリコール酸塩(例えばナトリウム塩)を水に溶解させることで調製することができる。
 グリコール酸水溶液中のグリコール酸の量は、例えば1質量%以上99質量%以下とすることができる。
 また、高純度のグリコリドを得やすくする観点から、グリコール酸水溶液として、有機物や金属イオン等の不純物の含量が少ない高純度のグリコール酸水溶液を用いることが好ましい。
 グリコール酸水溶液に対する二価鉄塩の添加は、二価鉄塩を均一に溶解させやすくする観点から、グリコール酸水溶液を加熱しながら行ってもよい。また同様の観点から、二価鉄塩の添加は、グリコール酸水溶液を攪拌しながら行ってもよい。
 b)オリゴマー調製工程
 オリゴマー調製工程では、上述のグリコール酸水溶液を加熱し、グリコール酸水溶液に含まれるグリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得る。具体的には、グリコール酸水溶液を加熱して、水、アルコール等の低分子量物の留出が実質的になくなるまで、グリコール酸を重縮合させる。
 グリコール酸の脱水重縮合は、必要に応じて縮合触媒またはエステル交換触媒等の存在下で行ってもよい。また脱水縮合は、常圧雰囲気、減圧雰囲気、または加圧雰囲気のいずれの雰囲気下で行ってもよい。
 また、脱水重縮合反応時の加熱温度(脱水重縮合温度)は、50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、140℃以上230℃以下であることがさらに好ましい。
 脱水重縮合反応の終了後、生成したグリコール酸オリゴマーは、後述の解重合工程の原料としてそのまま用いることができる。
 本工程で調製するグリコール酸オリゴマーの重量平均分子量(Mw)は、グリコリドの収率の観点から、1000以上100000以下であることが好ましく、10000以上100000以下であることがより好ましい。重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。
 得られるグリコール酸オリゴマーの融点(Tm)は、解重合反応の際のグリコリドの収率の観点から、例えば140℃以上であることが好ましく、160℃以上であることがより好ましく、180℃以上であることがさらに好ましい。グリコール酸オリゴマーの融点(Tm)の上限値は、例えば220℃である。グリコール酸オリゴマーの融点(Tm)は、示差走査熱量計(DSC)を用いて、不活性ガス雰囲気下、10℃/分の速度で昇温した際の吸熱ピーク温度として測定することができる。
 c)解重合工程
 解重合工程では、前述のb)オリゴマー調製工程で得られたグリコール酸オリゴマーを加熱し、解重合させて、グリコリドを得る。具体的には、有機溶媒中でグリコール酸オリゴマーを解重合させて、グリコリドを得る。
 解重合工程ではまず、グリコール酸オリゴマーを後述する有機溶媒に添加し、常圧下または減圧下で加熱して、グリコール酸オリゴマーを有機溶媒に溶解させる。
 有機溶媒は、解重合反応温度を適度に高くし、グリコリドの生成速度を高めやすくする観点から、沸点が230℃以上450℃以下である高沸点の有機溶媒であることが好ましい。有機溶媒の沸点は、235℃以上450℃以下であることがより好ましく、255℃以上430℃以下であることがさらに好ましく、280℃以上420℃以下であることが特に好ましい。
 上記沸点を有する有機溶媒の例には、芳香族ジカルボン酸ジエステル、芳香族カルボン酸エステル、脂肪族ジカルボン酸ジエステル、ポリアルキレングリコールジエーテル、芳香族ジカルボン酸ジアルコキシアルキルエステル、脂肪族ジカルボン酸ジアルコキシアルキルエステル、ポリアルキレングリコールジエステル、芳香族リン酸エステル等が含まれる。これらの中でも、芳香族ジカルボン酸ジエステル、芳香族カルボン酸エステル、脂肪族ジカルボン酸ジエステル、およびポリアルキレングリコールジエーテルが好ましく、熱劣化し難いこと等から、ポリアルキレングリコールジエーテルがより好ましい。
 ポリアルキレングリコールジエーテルとしては、下記式(1)で表されるポリアルキレングリコールジエーテルが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、Rは、メチレン基または炭素数2~8の直鎖状または分岐状のアルキレン基を表す。XおよびYは、それぞれ炭素数2~20のアルキル基またはアリール基を表す。pは、1~5の整数を表す。pが2以上の場合、複数のRは、互いに同一でも異なってもよい。
 上記ポリアルキレングリコールジエーテルの例には、ポリアルキレングリコールジアルキルエーテル、ポリアルキレングリコールアルキルアリールエーテル、およびポリアルキレングリコールジアリールエーテル等が含まれる。
 ポリアルキレングリコールジアルキルエーテルの例には、ジエチレングリコールジブチルエーテル、ジエチレングリコールジヘキシルエーテル、ジエチレングリコールジオクチルエーテル、ジエチレングリコールブチル2-クロロフェニルエーテル、ジエチレングリコールブチルヘキシルエーテル、ジエチレングリコールブチルオクチルエーテル、ジエチレングリコールヘキシルオクチルエーテル等のジエチレングリコールジアルキルエーテル;トリエチレングリコールジエチルエーテル、トリエチレングリコールジプロピルエーテル、トリエチレングリコールジブチルエーテル、トリエチレングリコールジヘキシルエーテル、トリエチレングリコールジオクチルエーテル、トリエチレングリコールブチルオクチルエーテル、トリエチレングリコールブチルデシルエーテル、トリエチレングリコールブチルヘキシルエーテル、トリエチレングリコールヘキシルオクチルエーテル等のトリエチレングリコールジアルキルエーテル;テトラエチレングリコールジエチルエーテル、テトラエチレングリコールジプロピルエーテル、テトラエチレングリコールジブチルエーテル、テトラエチレングリコールジヘキシルエーテル、テトラエチレングリコールジオクチルエーテル、テトラエチレングリコールブチルヘキシルエーテル、テトラエチレングリコールブチルオクチルエーテル、テトラエチレングリコールヘキシルオクチルエーテル等のポリエチレングリコールジアルキルエーテル等のテトラエチレングリコールジアルキルエーテル;これらのポリアルキレングリコールジアルキルエーテルにおいて、エチレンオキシ基をプロピレンオキシ基に代えたポリプロピレングリコールジアルキルエーテル、エチレンオキシ基をブチレンオキシ基に代えたポリブチレングリコールジアルキルエーテル等が含まれる。
 ポリアルキレングリコールアルキルアリールエーテルの例には、ジエチレングリコールブチルフェニルエーテル、ジエチレングリコールヘキシルフェニルエーテル、ジエチレングリコールオクチルフェニルエーテル、トリエチレングリコールブチルフェニルエーテル、トリエチレングリコールヘキシルフェニルエーテル、トリエチレングリコールオクチルフェニルエーテル、テトラエチレングリコールブチルフェニルエーテル、テトラエチレングリコールヘキシルフェニルエーテル、テトラエチレングリコールオクチルフェニルエーテル、およびこれらの化合物のフェニル基上の水素原子の一部がアルキル、アルコキシ、またはハロゲン原子で置換されたポリエチレングリコールアルキルアリールエーテル;これらのポリアルキレングリコールアルキルアリールエーテルにおいて、エチレンオキシ基をプロピレンオキシ基に代えたポリプロピレングリコールアルキルアリールエーテル、エチレンオキシ基をブチレンオキシ基に代えたポリブチレングリコールアルキルアリールエーテル等が含まれる。
 ポリアルキレングリコールジアリールエーテルの例には、ジエチレングリコールジフェニルエーテル、トリエチレングリコールジフェニルエーテル、テトラエチレングリコールジフェニルエーテルまたはこれらの化合物のフェニル基上の水素原子の一部がアルキル、アルコキシまたはハロゲン原子で置換されたポリエチレングリコールジアリールエーテル;これらのポリアルキレングリコールジアリールエーテルにおいて、エチレンオキシ基をプロピレンオキシ基に代えたポリプロピレングリコールジアリールエーテル、エチレンオキシ基をブチレンオキシ基に代えたポリブチレングリコールジアリールエーテル等が含まれる。
 中でも、熱劣化を生じにくい等の観点から、ポリアルキレングリコールジアルキルエーテルが好ましく、テトラエチレングリコールジブチルエーテル、トリエチレングリコールブチルオクチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチル2-クロロフェニルエーテルがより好ましく、グリコリドの回収率の観点等から、テトラエチレングリコールジブチルエーテル、トリエチレングリコールブチルオクチルエーテルがさらに好ましい。
 有機溶媒の添加量は、グリコール酸オリゴマー100質量部に対して、例えば30~5000質量部であることが好ましく、50~2000質量部であることがより好ましく、100~1000質量部であることがさらに好ましい。
 また、グリコール酸オリゴマーの有機溶媒に対する溶解性を高めるために、必要に応じて反応系に可溶化剤をさらに添加してもよい。
 可溶化剤は、沸点が180℃以上である、一価アルコール類、多価アルコール類、フェノール類、一価脂肪族カルボン酸類、多価脂肪族カルボン酸類、脂肪族アミド類、脂肪族イミド類またはスルホン酸類等の非塩基性有機化合物とすることができる。中でも、可溶化剤としての効果が得られやすいことから、一価アルコール類および多価アルコール類が好ましい。
 一価または多価アルコール類の沸点は、200℃以上であることが好ましく、230℃以上であることがより好ましく、250℃以上であることが特に好ましい。
 一価アルコール類は特に、下記式(2)で表されるポリアルキレングリコールモノエーテルであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(2)において、Rは、メチレン基または炭素数2~8の直鎖状または分岐状のアルキレン基を表す。Xは、炭化水素基を表す。炭化水素基は、好ましくはアルキル基である。qは、1以上の整数を表す。qが2以上の場合、複数のRは、互いに同一でも異なってもよい。
 ポリアルキレングリコールモノエーテルの例には、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル、ポリエチレングリコールモノプロピルエーテル、ポリエチレングリコールモノブチルエーテル、ポリエチレングリコールモノヘキシルエーテル、ポリエチレングリコールモノオクチルエーテル、ポリエチレングリコールモノデシルエーテル、ポリエチレングリコールモノラウリルエーテル等のポリエチレングリコールモノエーテル;これらのポリエチレングリコールモノエーテルにおいて、エチレンオキシ基をプロピレンオキシ基に代えたポリプロピレングリコールモノエーテル、エチレンオキシ基をブチレンオキシ基に代えたポリブチレングリコールモノエーテル等が含まれる。これらの中でも、エーテル基に含まれるアルキル基の炭素数が1~18、好ましくは6~18のポリアルキレングリコールモノエーテルが好ましく、トリエチレングリコールモノオクチルエーテル等のポリエチレングリコールモノアルキルエーテルがより好ましい。
 ポリアルキレングリコールモノエーテルを添加すると、グリコール酸オリゴマーの溶解性が高まる。したがって、ポリアルキレングリコールモノエーテルを可溶化剤として用いることで、グリコール酸オリゴマーの解重合反応がより迅速に進みやすい。
 一方、多価アルコール類は特に、下記式(3)で表されるポリアルキレングリコールであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(3)において、Rは、メチレン基または炭素数2~8の直鎖状または分岐状のアルキレン基を表す。rは、1以上の整数を表す。rが2以上の場合、複数のRは、互いに同一でも異なってもよい。
 ポリアルキレングリコールの例には、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等が含まれる。
 可溶化剤の添加量は、グリコール酸オリゴマー100質量部に対して0.1~500質量部であることが好ましく、1~300質量部であることがより好ましい。可溶化剤の添加量が一定以上であると、グリコール酸オリゴマーの有機溶媒への溶解性が十分に高まりやすい。一方で、可溶化材の添加量を一定以下とすることで、可溶化剤の回収に要するコストを低減できる。
 次いで、上述の溶液を、常圧下または減圧下で加熱しながら、グリコール酸オリゴマーを解重合させてグリコリドを得る。このとき、本発明の製造方法では、上述の二価鉄イオンが、触媒として作用するため、グリコリドの生成速度が格段に高まる。
 解重合反応時の加熱温度(解重合温度)は、グリコール酸オリゴマーの解重合が起こる温度以上であればよく、減圧度や高沸点有機溶媒の種類等にもよるが、一般的に、200℃以上であり、200℃以上350℃以下であることが好ましく、210℃以上310℃以下であることがより好ましく、220℃以上300℃以下であることがさらに好ましく、230℃以上290℃以下であることがさらに好ましい。
 解重合反応時の加熱は、常圧下および減圧下のいずれで行ってもよいが、0.1kPa以上90kPaの減圧下で行うことが好ましい。圧力が低いほど、解重合反応温度が下がるため、加熱温度を低くしやすく、溶媒の回収率が高くなるからである。減圧度は、1kPa以上60kPa以下であることが好ましく、1.5kPa以上40kPa以下であることがより好ましく、2kPa以上30kPa以下であることが特に好ましい。
 ここで、解重合反応時、上述の二価鉄イオンが酸化されて(例えば三価鉄イオンとなって)失活することがある。そこで、必要に応じて反応系に、失活した二価鉄イオンを活性化させるための活性化剤を添加してもよい。なお、活性化剤は、二価鉄イオンが失活してから添加してもよく、予めグリコール酸オリゴマー等と共に有機溶媒中に添加しておいてもよい。予め活性化剤を添加した場合、二価鉄イオンの酸化を活性化剤が長時間に亘って阻害することとなり、二価鉄イオンの失活を抑制できる。
 ここで、二価鉄イオンから三価鉄イオンへの酸化還元電位は0.78Vである。そこで活性化剤の例には、酸化還元電位が0.78Vより低い金属、金属化合物、または有機化合物が含まれる。活性化剤の具体例には、塩化銅(CuCl)、Mn、ビタミンC等が含まれる。これらの中でも活性化の効果の高いMnが好ましい。
 活性化剤の添加量(モル)は、反応系に存在する鉄イオンの量(モル)を1としたとき、0.1~20であることが好ましく、1~10であることがより好ましく、2~5であることがさらに好ましい。鉄イオンに対する活性化剤の量が一定量以上であると、失活した二価鉄イオン(例えば三価鉄イオン)が還元されやすくなり、解重合反応が促進されやすくなる。一方で、活性化剤の量が一定量以下であると、活性化剤の回収作業にかかるコストや作業等が少なくなる。
 ここで、上記解重合反応は、連続処理系で行ってもよく、バッチ処理系で行ってもよいが、連続処理系で行うことが、グリコリドの生産性の観点から好ましい。連続処理系で行う場合、上記解重合反応と並行して、生成したグリコリドを気化させて回収する。具体的には、生成したグリコリドを、有機溶媒とともに共留出させて、解重合反応系外に取り出す。生成したグリコリドを有機溶媒と共に留出させることで、反応容器やラインの壁面にグリコリドが付着して蓄積することを防げる。反応系からのグリコリドの留出は、連続的に行ってもよく、断続的に行ってもよい。
 そして、得られた留出物からグリコリドを回収する。具体的には、留出物を冷却し、相分離させて、グリコリドを析出させる。析出したグリコリドを、母液から濾別、遠心沈降、デカンテーション等の方法で分離し、回収する。
 グリコリドを分離した母液は、精製することなく、そのままリサイクル使用してもよいし、活性炭等で処理して濾別精製するか、または再蒸留して精製した後、リサイクル使用してもよい。
 一方、反応系からグリコリドを留出させると、解重合反応系内の反応液の量(例えば有機溶媒や解重合反応を行うためのグリコール酸オリゴマーの量)が減少する。そこで、必要に応じて上述の有機溶媒およびグリコール酸オリゴマーを系内に添加してもよい。有機溶媒およびグリコール酸オリゴマーの添加は、グリコリドの回収を行った後に行ってもよく、グリコリドの回収と並行して行ってもよい。留出量に相当する量のグリコール酸オリゴマーおよび有機溶媒を解重合反応系に追加することで、解重合反応を連続的に、長期にわたって実施することができる。
 (2)第2のグリコリドの製造方法
 第2のグリコリドの製造方法は、d)三価鉄の塩をグリコール酸水溶液に添加する三価鉄塩添加工程と、e)三価鉄塩由来の三価鉄イオンを還元し、二価鉄イオンとする還元剤を添加する還元剤添加工程と、f)グリコール酸水溶液を加熱し、グリコール酸水溶液に含まれるグリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得るオリゴマー調製工程と、g)グリコール酸オリゴマーを解重合させてグリコリドを得る解重合工程と、を含む方法とすることができる。なお、f)オリゴマー調製工程およびg)解重合工程については、上述の第1のグリコリドの製造方法と同様であるため、ここではd)三価鉄塩添加工程およびe)還元剤添加工程について説明する。
 d)三価鉄塩添加工程
 三価鉄塩添加工程は、三価鉄の塩(以下、「三価鉄塩」とも称する)を、グリコール酸水溶液に添加する工程である。三価鉄塩添加工程を行うタイミングは、g)解重合工程の前であれば特に制限されず、f)オリゴマー調製工程より前であってもよく、f)オリゴマー調製工程と並行して行ってもよい。また、三価鉄塩添加工程は、一回のみ行ってもよく、二回以上行ってもよい。
 前述のように、グリコリドの生成速度を高めるための触媒(二価鉄イオン)は、g)解重合工程で添加することが一般的と考えられる。しかしながら、g)解重合工程は通常、有機溶媒中で行われる。そして、三価鉄塩は有機溶媒に溶解し難い。そこで、第2のグリコリドの製造方法では、グリコール酸オリゴマーを調製するためのグリコール酸水溶液に三価鉄塩を添加し、三価鉄イオンを生成させる。そして、当該三価鉄イオンを、後述の還元剤によって還元することで、g)解重合工程の反応系内に二価鉄イオンを導入することができ、当該二価鉄イオンを解重合時の触媒として十分に機能させることができる。
 グリコール酸水溶液に三価鉄塩を加え、さらに三価鉄を二価鉄に還元することで、グリコリドの生成速度を高めることができる。その理由としては、以下のように考えられる。グリコール酸水溶液に三価鉄塩を添加すると、f)オリゴマー調製工程において調製されるグリコール酸オリゴマー中に、三価鉄イオン(後述の還元剤によって還元した場合は二価鉄イオン)が良好に分散する。そして、三価鉄イオンを適宜、二価鉄イオンに還元することで、g)解重合工程において、グリコール酸オリゴマー中に二価鉄イオンが良好に分散された状態とすることができ、二価鉄イオンが触媒として十分に作用する。
 本工程において、グリコール酸水溶液に添加する三価鉄塩は、水に溶解して三価鉄イオンを生成可能なものであれば特に制限されず、例えば無機酸塩、有機塩、または錯塩とすることができる。無機酸塩の例には、硫酸第二鉄、塩化第二鉄、硝酸第二鉄、亜硝酸第二鉄、亜硫酸第二鉄、シアン化第二鉄等が含まれる。有機酸塩の例には、脂肪族カルボン酸と三価鉄との塩や、芳香族カルボン酸と三価鉄との塩等が含まれる。有機酸は、二価鉄塩に含まれる酸と同様とすることができる。また、錯塩の配位子も二価鉄塩に含まれる配位子と同様とすることができる。これらは一種のみ用いてもよく、二種以上を組み合わせて用いてもよい。三価鉄塩としては、水溶液中での安定性の観点から無機酸塩が好ましく、これらの中でも特に入手容易性や、コスト等の観点から、塩化第二鉄が好ましい。また、有機酸塩の中では、グリコール酸水溶液にもともと含まれる有機酸であるグリコール酸の塩が、有機酸による副反応を抑制できる観点で好ましい。
 三価鉄塩の形態は、反応器内に投入できる形態であればよく、粉状であってもよいし、塊状であってもよい。中でも、グリコール酸水溶液中へ均一に分散させやすくする観点では、粉状であることが好ましい。
 三価鉄塩の添加量は、特に制限されないが、グリコール酸水溶液に含まれるグリコール酸の量に対する三価鉄の量が、0.01~1,000ppmとなる添加量であることが好ましく、0.1~100ppmとなる添加量であることがより好ましく、1~10ppmとなる添加量であることがさらに好ましい。なお、三価鉄塩添加工程を複数回行う場合には、グリコール酸水溶液に添加する三価鉄塩の総量が、上記範囲であることが好ましい。三価鉄塩の添加量が一定以上であると、グリコール酸の脱水重縮合反応速度が高まりやすい。またさらに、三価鉄イオンを還元して得られる二価鉄イオンの量を十分にすることができ、グリコール酸オリゴマーの解重合反応の速度が高まりやすくなる。一方で、三価鉄塩の添加量が一定以下であると、三価鉄塩の溶け残り量が低減する。
 なお、他の方法で三価鉄イオンを供給し、後述のe)還元剤添加工程で添加する還元剤によって還元させることができるのであれば、d)三価鉄塩添加工程は必須ではない。他の方法としては、たとえば三価鉄塩をグリコール酸オリゴマーに添加する方法などが挙げられる。このような三価鉄塩としては、グリコール酸オリゴマー中で配位子が外れるものが好ましく、具体的には三価鉄のカルボン酸塩が好ましい。
 一方、三価鉄塩を添加するグリコール酸水溶液は、上述の第一のグリコリドの製造方法で用いるグリコール酸水溶液と同様とすることができる。
 ここで、グリコール酸水溶液に対する三価鉄塩の添加は、三価鉄塩を均一に溶解させやすくする観点から、グリコール酸水溶液を加熱しながら行ってもよい。また同様の観点から、三価鉄塩の添加は、グリコール酸水溶液を攪拌しながら行ってもよい。さらに、三価鉄塩を予め溶媒(例えば水)に溶解させてから、グリコール酸水溶液に混合してもよい。
 e)還元剤添加工程
 還元剤添加工程は、三価鉄塩添加工程で添加する三価鉄塩から生成する三価鉄イオンを還元して二価鉄イオンとするための還元剤を添加する工程である。還元剤添加工程を行うタイミングは、g)解重合工程において、グリコール酸オリゴマーを二価鉄イオンの存在下で解重合させることが可能であれば、特に制限されない。e)還元剤添加工程は、例えば、d)三価鉄塩添加工程と同時に行ってもよく、d)三価鉄塩添加工程より後に行ってもよく、d)三価鉄塩添加工程より前に行ってもよい。特に、三価鉄塩添加工程より後に行うと、グリコリドの生成速度が高まりやすい。なお、還元剤工程は、一回のみ行ってもよく、二回以上行ってもよい。
 上述のように、二価鉄イオンから三価鉄イオンへの酸化還元電位は0.78Vである。そこで還元剤添加工程で還元する還元剤の例には、酸化還元電位が0.78Vより低い金属、金属化合物、または有機化合物が含まれる。還元剤の具体例には、塩化銅(CuCl)、Mn、ビタミンC等が含まれる。これらの中でも、還元の効果の高いMnが好ましい。
 還元剤の添加量は、三価鉄塩由来の三価鉄イオンを還元して、十分な量の二価鉄イオンを生成することが可能であれば特に制限されない。還元剤の添加量は、反応性の観点から、d)三価鉄塩添加工程で添加する三価鉄塩の総量(モル)を1としたとき、0.1~20であることが好ましく、1~10であることがより好ましく、2~5であることがさらに好ましい。
 ここで、還元剤は、直接、反応器に添加してもよく、予め溶媒等に溶解させてから反応器内に添加してもよい。
 2.グリコリド
 本発明の製造方法により得られるグリコリド(粗グリコリドともいう)は、高純度であることが好ましい。具体的には、グリコリドの純度は、99.0%以上であることが好ましく、99.3%以上であることがより好ましく、99.5%以上であることがさらに好ましい。このように、本発明のグリコリドの製造方法によれば、高純度のグリコリドを、高い生成速度で得ることができる。
 以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。
 〔実施例1〕
 容積1Lのセパラブルフラスコに、グリコール酸70質量%の水溶液(Chemours社製、高純度グレード)1.3kgを仕込み、硫酸第一鉄0.13gを添加した(二価鉄塩添加工程)。
 次いで、これを、常圧で撹拌しながら加熱して室温から215℃まで昇温加熱し、生成水を留出させながら重縮合反応を行った。次いで、フラスコ内を常圧から3kPaまで徐々に減圧した後、215℃で3時間加熱して、未反応原料等の低沸物を留出し、グリコール酸オリゴマーを得た(オリゴマー調製工程)。
 次いで、容積0.5Lの容器に、得られたグリコール酸オリゴマー120g、テトラエチレングリコールジブチルエーテル130g、およびオクチルトリエチレングリコール100gを添加した後、235℃まで加熱して、反応系を均一な溶液にした。この反応系を、170rpmの撹拌速度で235℃の温度で加熱しながら、3kPaの減圧下で12時間の解重合反応を行った。反応中は、1時間おきにテトラエチレングリコールジブチルエーテルと粗グリコリドを共留出させ、共留出物から粗グリコリドを分離および回収し、質量を測定した(解重合工程)。なお、1時間おきの粗グリコリドの回収とともに、回収した粗グリコリドの質量と等量のグリコール酸オリゴマーを新たに反応系に投入した。粗グリコリドの1時間当たりの回収量を算術平均し、粗グリコリドの生成速度(留出速度)(g/h)とした。
 〔実施例2〕
 二価鉄塩添加工程で添加する二価鉄塩を、硫酸第一鉄から塩化第一鉄0.09gに変更した以外は、実施例1と同様にして、粗グリコリド生成速度を求めた。
 〔比較例1〕
 二価鉄塩添加工程を三化鉄塩添加工程に変更した(具体的には硫酸第一鉄を、硫酸第二鉄1.63gに変更した)以外は、実施例1と同様にして、粗グリコリド生成速度を求めた。
 〔比較例2〕
 二価鉄塩添加工程を三化鉄塩添加工程に変更した(具体的には、硫酸第一鉄を、塩化第二鉄0.13gに変更した)以外は、実施例1と同様にして、粗グリコリド生成速度を求めた。
 〔実施例3〕
 二価鉄塩添加工程を、三価鉄塩添加工程および還元剤添加工程に変更した(具体的には、硫酸第一鉄を、塩化第二鉄0.10gおよび塩化銅0.14gに変更したこと)以外は実施例1と同様にして、粗グリコリド生成速度を求めた。
 〔参考例1〕
 二価鉄塩添加工程を行わなかった(硫酸第一鉄を加えなかったこと)以外は実施例1と同様にして、粗グリコリド生成速度を求めた。
 〔参考例2〕
 二価鉄塩添加工程を行わなかった(具体的には、硫酸第一鉄を、塩化銅0.95gに変更したこと)以外は実施例1と同様にして、粗グリコリド生成速度を求めた。
 〔実施例4〕
 容積1Lのセパラブルフラスコに、グリコール酸70質量%の水溶液(Chemours社製、高純度グレード)1.3kgを仕込み、塩化第二鉄0.13gを添加した(三価鉄塩添加工程)。
 次いで、これを、常圧で撹拌しながら加熱して室温から215℃まで昇温加熱し、生成水を留出させながら重縮合反応を行った。次いで、フラスコ内を常圧から3kPaまで徐々に減圧した後、215℃で3時間加熱して、未反応原料等の低沸物を留出し、グリコール酸オリゴマーを得た(オリゴマー調製工程)。
 次いで、容積0.5Lの容器に、得られたグリコール酸オリゴマー120g、テトラエチレングリコールジブチルエーテル130g、およびトリエチレングリコールモノオクチルエーテル100gを添加した後、235℃まで加熱して、反応系を均一な溶液にした。この反応系を、170rpmの撹拌速度で235℃の温度で加熱しながら、3kPaの減圧下で12時間の解重合反応を行った。反応中は、1時間おきにテトラエチレングリコールジブチルエーテルと粗グリコリドを共留出させ、共留出物から粗グリコリドを分離および回収し、質量を測定した(解重合工程)。なお、1時間おきの粗グリコリドの回収とともに、回収した粗グリコリドの質量と等量のグリコール酸オリゴマーと、金属マンガンとの混合物を新たに反応系に投入した。なお、投入する金属マンガンの量は、投入するグリコール酸オリゴマーに含まれる鉄イオンの1.5倍molとした。そして、2回目以降の粗グリコリドの1時間当たりの回収量を算術平均し、粗グリコリドの生成速度(g/h)とした。
 〔実施例5〕
 二価鉄塩添加工程を、三価鉄塩添加工程に変更した(具体的には、硫酸第一鉄を、塩化第二鉄0.13gに変更した)以外は実施例1と同様にして12時間の解重合反応を行った。12時間経過後、L(+)-アスコルビン酸0.12gを加えた(還元剤添加工程)。そしてさらに1時間解重合反応を継続し、回収した粗グリコリドの質量から、粗グリコリドの生成速度(g/h)を求めた。
 実施例1~5、比較例1~2、および参考例1~2の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示されるように、二価鉄イオンの存在下で解重合工程を行った実施例1~5は、粗グリコリド留出速度が高く、いずれもグリコリドの生成速度が高かったといえる。また、二価鉄塩を添加した場合(実施例1および2)と、三価鉄塩および還元剤を添加した場合(実施例3~5)のいずれにおいても、略同様の結果が得られた。また、還元剤を添加するタイミングは、三価鉄塩の添加と同時であってもよく(実施例3)、解重合工程と並行して行ってもよいこと(実施例4、5)が明らかであった。
 これに対し、三価鉄イオンの存在下でグリコール酸オリゴマーの解重合工程を行った場合(比較例1および2)、鉄化合物を添加しない場合(参考例1および2)と比較すると、グリコリドの生成速度は高まったものの、二価鉄塩を添加した場合(実施例1~5)と比較すると、グリコリドの生成速度が遅かった。
 本出願は、2018年3月20日出願の特願2018-052285号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、グリコリドの生成速度をさらに高めることができるグリコリドの製造方法を提供することができる。
 
 

Claims (10)

  1.  グリコール酸水溶液を加熱し、前記グリコール酸水溶液に含まれるグリコール酸を脱水重縮合させて、グリコール酸オリゴマーを得るオリゴマー調製工程と、
     前記グリコール酸オリゴマーを二価鉄イオンの存在下で解重合させて、グリコリドを得る解重合工程と、
     を含む、グリコリドの製造方法。
  2.  前記グリコール酸水溶液に二価鉄の塩を添加する二価鉄塩添加工程を含む、
     請求項1に記載のグリコリドの製造方法。
  3.  前記二価鉄塩添加工程で添加する前記二価鉄の塩の量が、前記グリコール酸水溶液中の前記グリコール酸の量に対して二価鉄の量が0.01~1,000ppmとなる添加量である、
     請求項2に記載のグリコリドの製造方法。
  4.  前記グリコール酸水溶液に三価鉄の塩を添加する、三価鉄塩添加工程と、
     前記三価鉄の塩由来の三価鉄イオンを二価鉄イオンに還元するための還元剤を添加する、還元剤添加工程と、を含む、
     請求項1に記載のグリコリドの製造方法。
  5.  前記三価鉄塩添加工程で添加する前記三価鉄の塩の量が、前記グリコール酸水溶液中の前記グリコール酸の量に対して三価鉄の量が0.01~1,000ppmとなる添加量である、
     請求項4に記載のグリコリドの製造方法。
  6.  前記還元剤添加工程を、前記三価鉄塩添加工程より後に行う、
     請求項4または請求項5に記載のグリコリドの製造方法。
  7.  前記解重合工程において、失活した二価鉄イオンを活性化するための活性化剤を添加する、
     請求項1~6のいずれか一項に記載のグリコリドの製造方法。
  8.  前記解重合工程において、前記解重合反応と並行して、グリコリドを気化させて回収する、
     請求項1~7のいずれか一項に記載のグリコリドの製造方法。
  9.  前記解重合工程において、前記グリコール酸オリゴマーを追加する、
     請求項8に記載のグリコリドの製造方法。
  10.  前記解重合工程を、下記式(1)で表されるポリアルキレングリコールジエーテルの存在下で行う、
     請求項1~7のいずれか一項に記載のグリコリドの製造方法。
     X-O-(-R-O-)p-Y   (1)
    (式(1)中、
     Rは、メチレン基または炭素数2~8の直鎖状または分岐状のアルキレン基を表わし、
     XおよびYは、それぞれ独立して、炭素数2~20のアルキル基またはアリール基を表し、
     pは、1~5の整数を表し、
     pが2以上の場合、複数のRは、それぞれ同一でも異なってもよい。)
     
PCT/JP2019/005348 2018-03-20 2019-02-14 グリコリドの製造方法 WO2019181298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19770880.3A EP3770153B1 (en) 2018-03-20 2019-02-14 Method for producing glycolide
CN201980014073.7A CN111741952B (zh) 2018-03-20 2019-02-14 乙交酯的制造方法
US16/980,626 US11753391B2 (en) 2018-03-20 2019-02-14 Method for producing glycolide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052285 2018-03-20
JP2018052285A JP7039345B2 (ja) 2018-03-20 2018-03-20 グリコリドの製造方法

Publications (1)

Publication Number Publication Date
WO2019181298A1 true WO2019181298A1 (ja) 2019-09-26

Family

ID=67987662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005348 WO2019181298A1 (ja) 2018-03-20 2019-02-14 グリコリドの製造方法

Country Status (5)

Country Link
US (1) US11753391B2 (ja)
EP (1) EP3770153B1 (ja)
JP (1) JP7039345B2 (ja)
CN (1) CN111741952B (ja)
WO (1) WO2019181298A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119961A (ja) * 1994-10-21 1996-05-14 Agency Of Ind Science & Technol ラクチドの製造方法
FI980839A (fi) * 1998-04-15 1999-10-16 Jvs Polymers Oy Laktidin valmistus
JP2004519485A (ja) 2001-03-06 2004-07-02 呉羽化学工業株式会社 グリコリドの製造方法及びグリコール酸組成物
JP2006104138A (ja) * 2004-10-06 2006-04-20 Nippon Shokubai Co Ltd グリコリドの製造方法
CN101054371A (zh) * 2007-05-24 2007-10-17 复旦大学 一种乙交酯制备方法
JP2018052285A (ja) 2016-09-28 2018-04-05 豊田合成株式会社 バイク用エアバッグ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157140A1 (ja) 2013-03-26 2014-10-02 株式会社クレハ グリコリドの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119961A (ja) * 1994-10-21 1996-05-14 Agency Of Ind Science & Technol ラクチドの製造方法
FI980839A (fi) * 1998-04-15 1999-10-16 Jvs Polymers Oy Laktidin valmistus
JP2004519485A (ja) 2001-03-06 2004-07-02 呉羽化学工業株式会社 グリコリドの製造方法及びグリコール酸組成物
JP2006104138A (ja) * 2004-10-06 2006-04-20 Nippon Shokubai Co Ltd グリコリドの製造方法
CN101054371A (zh) * 2007-05-24 2007-10-17 复旦大学 一种乙交酯制备方法
JP2018052285A (ja) 2016-09-28 2018-04-05 豊田合成株式会社 バイク用エアバッグ装置

Also Published As

Publication number Publication date
EP3770153A1 (en) 2021-01-27
EP3770153B1 (en) 2022-12-28
US20210017146A1 (en) 2021-01-21
US11753391B2 (en) 2023-09-12
CN111741952A (zh) 2020-10-02
CN111741952B (zh) 2023-06-09
EP3770153A4 (en) 2021-04-07
JP7039345B2 (ja) 2022-03-22
JP2019163222A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP4317690B2 (ja) グリコリドの製造方法
JP5813516B2 (ja) グリコリドの製造方法
JP6230597B2 (ja) グリコリドの製造方法
JP6912655B2 (ja) グリコリドの製造方法
RU2017112700A (ru) Способ стабилизации композиции конденсированной фазы, содержащей циклический сложный эфир, в процессе производства сложного полиэфира из лактида
JP7039345B2 (ja) グリコリドの製造方法
JP7064913B2 (ja) グリコリドの製造方法
JP2015145345A (ja) 環状α−ヒドロキシカルボン酸2量体エステルの製造方法
JP6751221B2 (ja) 環状エステルの製造方法
US20140343298A1 (en) Method for producing glycolide
JP2019099540A (ja) グリコリドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019770880

Country of ref document: EP

Effective date: 20201020