WO2019180783A1 - Elevator rope - Google Patents

Elevator rope Download PDF

Info

Publication number
WO2019180783A1
WO2019180783A1 PCT/JP2018/010808 JP2018010808W WO2019180783A1 WO 2019180783 A1 WO2019180783 A1 WO 2019180783A1 JP 2018010808 W JP2018010808 W JP 2018010808W WO 2019180783 A1 WO2019180783 A1 WO 2019180783A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
core
elevator
fiber
elevator rope
Prior art date
Application number
PCT/JP2018/010808
Other languages
French (fr)
Japanese (ja)
Inventor
晋也 内藤
肥田 政彦
史也 村田
道雄 村井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018007311.4T priority Critical patent/DE112018007311T5/en
Priority to PCT/JP2018/010808 priority patent/WO2019180783A1/en
Priority to KR1020207026028A priority patent/KR102486074B1/en
Priority to CN201880090672.2A priority patent/CN111867960B/en
Priority to JP2018533279A priority patent/JP6414370B1/en
Publication of WO2019180783A1 publication Critical patent/WO2019180783A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • D07B1/0686Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration characterised by the core design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/04Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics with a core of fibres or filaments arranged parallel to the centre line
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2056Cores characterised by their structure comprising filaments or fibers arranged parallel to the axis
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2058Cores characterised by their structure comprising filaments or fibers comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2074Spacers in radial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2005Elongation or elasticity
    • D07B2401/201Elongation or elasticity regarding structural elongation
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators

Definitions

  • This invention relates to an elevator rope.
  • the structure of an elevator rope is generally such that a rope core is disposed at the center of the elevator rope, and steel strands, which are a plurality of steel strands, are twisted around the outer periphery of the rope core.
  • Rope cores are made of various materials such as steel and fibers, and are formed by twisting the core material.
  • the core material is a fiber bundle. This fiber bundle is generally made by twisting general fibers such as hemp or synthetic fibers.
  • the elevator rope is loaded with the weight of the car, the weight of the counterweight, and the weight of the elevator rope itself.
  • the lift distance of the car is long, so the length of the elevator rope used is also long.
  • the influence of the weight of the elevator rope itself becomes larger, so the maximum lifting distance of the car is limited by the strength of the rope and the weight of the rope. That is, in order to increase the lifting distance of the car, a light and high strength rope having a higher mass specific strength (strength / weight per unit length) is required.
  • a tensile load is shared by a rope core made of a lightweight synthetic fiber.
  • the elevator rope is generally used with a load that is 10% or less of the breaking strength of the elevator rope. At this time, the elongation of the elevator rope in the tensile direction is less than 1%. Therefore, it is important for elevator ropes to generate higher loads during small elongations, such as less than 1% elongation.
  • the elevator rope can generate a high load even during a small elongation such as an elongation of less than 1% in the tensile direction of the elevator rope.
  • the rope core is made of fiber, the twisted fiber is likely to be stretched and contracted by the amount of twist, so it is difficult to generate a high load while the rope core is stretched as small as less than 1%. .
  • Cited Document 1 discloses that a large number of fiber yarns are bundled in parallel as a core material.
  • the core materials When the rope core is bundled without twisting the core material, when the elevator rope is bent, the core materials may be shifted due to a difference in curvature between the inside and outside of the bend. When the bending of the elevator rope in this state is loosened, the deviation of some core materials may not return. When a load is applied again to the core material in which the deviation has not returned, the core material is less likely to be loaded. Since the shifted core material cannot bear the load, the other core material is excessively loaded. As a result, there exists a problem that the intensity
  • the present invention is characterized by comprising a rope core integrated without twisting a plurality of core members, and a strand disposed on the outer periphery of the rope core.
  • an elevator rope having a rope core having a core material that is not twisted there is an effect that it is possible to suppress a decrease in strength due to the bending back of the elevator rope.
  • FIG. 1 is a sectional view of an elevator rope according to a first embodiment.
  • FIG. 3 is a diagram illustrating a rope core according to the first embodiment. It is sectional drawing of the elevator rope of Embodiment 2. It is a figure which shows the rope core of Embodiment 2.
  • FIG. It is a figure which shows the fiber bundle which comprises the rope core of Embodiment 2.
  • FIG. It is sectional drawing of the elevator rope of Embodiment 3. It is a figure showing the performance value of the measured elevator rope of each elevator rope from which conditions differ. It is a figure which shows an example at the time of an elevator rope being attached to the elevator.
  • Embodiment 1 the structure of the elevator rope 1 having the rope core 2 formed by bundling a plurality of fiber bundles 4 that are core materials without twisting them will be described. After that, the strength of the elevator rope 1 having the rope core 2 formed by bundling the fiber bundle 4 without twisting will be described, and the features of the present invention will be described.
  • FIG. 1 is a cross-sectional view of an elevator rope 1 having a rope core 2 formed by bundling fiber bundles 4 as core materials.
  • the elevator rope 1 according to the first embodiment has a plurality of steel strands 3 (eight in this example) made of stranded wires arranged on the outer periphery of the rope core 2 and twisted together.
  • the elevator rope 1 has a structure in which eight steel strands 3 are wound around a rope core 2, for example, 8 ⁇ S (19), 8 ⁇ W (19), or 8 ⁇ Fi defined in JIS G3525. This is the structure of (25).
  • the elevator rope 1 of this Embodiment is made from the steel strand 3, what is necessary is just a strand, and a material is not limited.
  • FIG. 2 is a view showing a rope core 2 in which fiber bundles 4 are bundled.
  • FIG. 2 includes a cross-sectional view and a perspective view of the rope core 2.
  • the rope core 2 has a configuration in which a plurality of (7 in this example) fiber bundles 4 that are core materials are bundled without being twisted.
  • the fiber bundle 4 as the core material is made of synthetic fiber.
  • the rope core 2 formed by bundling a plurality of pieces means a single rope core 2 formed by superposing a plurality of fiber bundles 4 approximately in parallel.
  • the rope core 2 is configured by collecting a plurality of fiber bundles 4 so as to be approximately parallel.
  • the core material is a synthetic fiber, but it may be a general fiber, and the material of the core material is not limited.
  • the core material may be anything as long as it is fibrous. Since each fiber is too thin in a general elevator rope, a plurality of fibers are twisted to form a fiber bundle 4, and the rope core 2 is often generated therefrom.
  • FIG. 3 is a view showing a fiber bundle 4 constituting the rope core 2. It is the figure which looked at the fiber bundle 4 from diagonally.
  • FIG. 3 is an enlarged view of one of the seven fiber bundles 4 in FIG. 2.
  • the fiber bundle 4 is obtained by twisting hundreds to tens of thousands of synthetic fibers having an outer diameter of several ⁇ m to several tens of ⁇ m.
  • the configuration in which a plurality of core materials are bundled without being twisted does not have to be bundled without twisting all the core materials in the fiber bundle 4 that is a twisted core material.
  • nine of the ten core materials are twisted together, but only one is not twisted.
  • two sets of 10 core members are twisted to form 5 sets, and the 5 sets may be arranged in parallel.
  • “Not twisting the core material” is not limited to the state in which all the core materials are not twisted in this way, but also includes a case where a part of the core material is not twisted, and is not limited.
  • the configuration in which a plurality of core materials are bundled without being twisted is a concept including the case where the core materials themselves are not twisted.
  • the case where the core material is formed without twisting the fibers of the core material and the core materials are twisted, the case where the core material is not twisted, and the core materials are not twisted is also conceivable. That all the core members are bundled without being twisted means a state in which each fiber bundle 4 is arranged substantially parallel to the longitudinal direction.
  • the fiber material constituting the fiber bundle 4 is preferably composed of fibers having high tensile strength and tensile modulus. It is preferable that the fiber has a tensile strength of 20 cN / dtex or more and a tensile modulus of 500 cN / dtex or more. Specifically, one or more of para-type aramid fiber, meta-type aramid fiber, carbon fiber, polyarylate fiber, and polyparaphenylene benzoxazole fiber are used.
  • para-type aramid fiber, meta-type aramid fiber, carbon fiber, polyarylate fiber, and polyparaphenylene benzoxazole fiber are used.
  • the rope core needs to generate a larger load with a smaller strain such as a strain of less than 1%. For that purpose, it is important to reduce the structural elongation described later. In order to increase the strength of the elevator rope, it is also important that all the fibers are pulled evenly so that the load is not biased to a specific fiber bundle of the rope core. In other words, it is important to increase the strength utilization rate.
  • the strength utilization rate means a value represented by actual strength / theoretical strength ⁇ 100, where the strength of the fiber bundle used ⁇ the number of the fiber bundles used is the theoretical strength.
  • the mass specific strength of the entire elevator rope can be increased by making the rope core lighter and stronger.
  • the material of the rope core is made of steel, the strength tends to increase, but the mass increases. Therefore, the rope core 2 is light like a fiber and preferably has a higher strength.
  • the strength of a general synthetic fiber rope will be described.
  • the synthetic fiber rope described here refers to a synthetic fiber rope that is twisted.
  • FIG. 4 is a diagram showing a conceptual diagram of the relationship between elongation and load when a general synthetic fiber rope is pulled.
  • the elongation of the synthetic fiber rope can be divided into structural elongation and material elongation. Structural elongation occurs at the beginning of the process of pulling the synthetic fiber rope. The twisted fibers that make up the synthetic fiber rope are pulled in a state where they are not in close contact with each other. This occurs in the process where the fibers come into close contact with each other while tightening toward the center of the rope. For this reason, while the structural elongation occurs, the influence of the material of the fiber does not appear and a load is hardly generated.
  • the material becomes stretched.
  • the material elongation is caused by the elongation of the fibers constituting the synthetic fiber rope, and the load begins to increase.
  • the synthetic fiber rope generates a high load with a smaller elongation.
  • the twist reduction ratio is expressed by a value of (Lb ⁇ La) / Lb, where La is the length of the twisted fiber and Lb is the length of the fiber untwisted from the length of La.
  • FIG. 5 is a view showing an example of the relationship between elongation and load when pulling synthetic fiber ropes having different twist shrinkage rates.
  • elevator ropes are used with an elongation in the tensile direction of less than 1%, so it is important to generate a large load with an elongation of less than 1%.
  • FIG. 5 it can be seen that when the twist reduction ratio is 15%, the load at an elongation of 1% is high, and the load at an elongation of 1% or less is high at a twist reduction ratio of 15% or less. Conversely, when the twist reduction ratio is higher than 15%, the load at an elongation of 1% or less decreases.
  • the twist reduction ratio of each fiber bundle 4 is It can be equated with the twist reduction ratio of the entire rope core 2. Since the rope core 2 formed by bundling the fiber bundle 4 having a twist reduction ratio of 15% or less without being twisted can be regarded as the above-described synthetic fiber rope having a twist reduction ratio of 15% or less, the twist reduction ratio of the fiber bundle 4 By setting the ratio to 15% or less, an elevator rope with higher strength can be obtained. Moreover, since the load of an elevator rope can be shared with the lighter rope core 2 like a synthetic fiber, the mass ratio intensity
  • the twist shrinkage of the fiber bundle 4 is more preferably 10% or less.
  • the twist reduction ratio (Lf ⁇ Ly) / Lf higher than 15% When twisted at a twist reduction ratio (Lf ⁇ Ly) / Lf higher than 15%, the structural elongation becomes large, and the load applied to the elevator rope 1 can hardly be shared by the rope core 2.
  • the strength utilization rate is increased.
  • the twist reduction rate is the same for all the fiber bundles 4.
  • the twist reduction rate of each fiber bundle 4 is 15% or less, and the strength of the entire elevator rope 1 can be further increased by making the fiber bundles 4 equal.
  • the strength of the fibers becomes weaker than that of the original fibers. The strength can be increased by not twisting together.
  • the elevator rope 1 formed by combining the rope core 2 having the above-described configuration and the steel strand 3 has 8 ⁇ S (19) and 8 ⁇ W (19) having a conventional three-ply synthetic fiber rope as a rope core. ) Or 8 ⁇ Fi (25) rope, the breaking load is high.
  • the mass specific strength (kN / kg / m) obtained by dividing the breaking load (kN) of the elevator rope by the mass per unit length (kg / m) is 160 kN / kg / m or more, preferably 180 kN / kg / m or more. is there.
  • FIG. 6 is a cross-sectional view of the elevator rope 5 according to the first embodiment.
  • the elevator rope 5 of Embodiment 1 shows a state in which the fiber bundle 4 is fixed and integrated with a resin 9. As shown in FIG. 6, the fiber bundles 4 that are a plurality of core materials are integrated with each other through a resin 9.
  • the elevator rope 5 has a plurality (eight in this example) of steel strands 3 made of stranded wires arranged on the outer periphery of a rope core 6 integrated with a resin 9 and twisted together.
  • FIG. 7 shows the rope core 6 of the first embodiment.
  • FIG. 7 shows a rope core 6 in which fiber bundles 4 of an elevator rope 1 having a rope core 2 formed by bundling the fiber bundles 4 that are the core materials described in FIGS.
  • FIG. 7 includes a cross-sectional view and a side view of the rope core 6. It differs from the elevator rope 1 in that it is fixed and integrated by the resin 9 of the fiber bundle 4.
  • the integration means that the relative position in the longitudinal direction between adjacent fiber bundles 4 does not change irreversibly. As long as the relative positions of the fiber bundles 4 do not change irreversibly, the fiber bundles 4 are not necessarily fixed and integrated by the resin 9, and the way of integration is not limited. In the case of integration through the resin 9, it is preferable that the resin enters between the fiber bundles 4 and the fiber bundles 4 are integrated through the resin 9, but the present invention is not limited to this.
  • the relative position in the longitudinal direction between adjacent fiber bundles 4 temporarily changes reversibly.
  • the temporary change in the relative position in the longitudinal direction between adjacent fiber bundles 4 is due to elastic deformation of the resin 9. Therefore, when the elevator rope passes through the sheave and returns to the linear shape from the state where the elevator rope is bent, the resin 9 recovers from the elastic deformation state, and the relative position in the longitudinal direction of the fiber bundles 4 passes through the sheave. Return to the same position as before.
  • the type of the resin 9 is not limited, but for example, a flexible resin having high wear resistance such as a thermoplastic resin is preferable. Specifically, it is selected from polyethylene, polypropylene, and polyurethane, but not limited thereto.
  • the resin 9 covers the outer periphery of the fiber bundle 4, thereby preventing direct contact between the steel strand 3 and the fiber bundle 4 and suppressing the damage of the fiber bundle 4 during use of the elevator rope 5.
  • the present invention integrates the fiber bundle 4 that is a core material that is bundled without twisting, so that when the elevator rope 5 is bent and the bending returns, the fiber bundles 4 that are the core material are displaced from each other. Can be suppressed. If the fiber bundle 4 is displaced, the load on some of the fiber bundles 4 may be biased due to the displacement. Since each fiber bundle 4 cannot receive the load evenly distributed, the strength when viewed as a whole of the elevator rope is lowered.
  • the fiber bundle 4 that is the core material
  • a decrease in the strength of the elevator rope 5 due to the deviation between the fiber bundles 4 due to the bending back of the elevator rope 5 can be suppressed. effective.
  • the rope core 6 can be formed in a state where the fiber bundle 4 as the core material is bundled without being twisted by the mechanism of the present invention, a high load is borne by the rope core 6 and the strength of the entire elevator rope is increased. Can give.
  • the rope core 6 is a synthetic fiber, the mass specific strength can be further increased.
  • the ratio of the cross-sectional area of the steel strand 3 to the cross-sectional area of the elevator rope 5 can be reduced, thereby further reducing the weight of the entire elevator rope 5 and The mass specific strength can be improved.
  • Embodiment 2 the outer periphery of each of the fiber bundles 4 as the core material is covered with the core material coating material 8 as the resin, and the coated core material 12 covered with the core material coating material 8 is bundled.
  • the rope core 11 is integrated.
  • the material of the core material is not limited. This embodiment will be described using a fiber bundle 4 as a core material.
  • FIG. 8 is a sectional view of the elevator rope 10 according to the second embodiment.
  • the elevator rope 10 according to the second embodiment includes a plurality of (8 in this example) steel strands 3 made of twisted wires arranged on the outer periphery of the rope core 11 and twisted together. have.
  • the rope core 11 is covered with a rope core covering material 7.
  • Each of the fiber bundles 4, which are a plurality of core materials, is coated with the resin of the core material coating material 8 to form a coated core material 12.
  • the coated core members 12 are integrated with each other through a resin.
  • FIG. 9 is a view showing the rope core 11 of the second embodiment.
  • FIG. 9 includes a cross-sectional view and a side view of the rope core 11.
  • the rope core covering material 7 is not shown.
  • the outer periphery of the rope core 11 in which the coated core material 12 is bundled and integrated is covered with the rope core coating material 7 that is a resin.
  • the present invention is not limited to this. There may be no coating surrounding 11 and it is not limited.
  • the rope core covering material 7 has a role of preventing direct contact between the steel strand 3 and the fiber bundle 4 and suppressing damage of the fiber bundle 4 during use of the elevator rope 10.
  • the rope core covering material 7 is preferably a twisted or knitted synthetic fiber or a resin formed by extrusion.
  • a synthetic fiber having high wear resistance is preferable, and is selected from, for example, para-type aramid fiber, meta-type aramid fiber, polyarylate fiber, and polyester fiber, but is not limited thereto.
  • the resin for forming the rope core covering material 7 by extrusion molding is preferably a flexible resin having high wear resistance and is selected from, for example, polyethylene, polypropylene, and polyurethane, but is not limited thereto.
  • a resin molded at a temperature lower than the melting point of the resin used in the fiber bundle 4 is preferable. This is because when the resin molded at a temperature higher than the melting point of the resin used in the fiber bundle 4 is used, the fiber bundle 4 may be melted and damaged by heat during molding.
  • the extrusion molding method a method similar to the method of coating a linear object such as an electric wire with a resin can be applied.
  • the covering of the rope core may be a double or more structure.
  • the outer periphery of the rope core 11 formed by bundling the fiber bundle 4 may be knitted and covered with synthetic fiber, and the outer periphery may be further covered with a resin by extrusion molding.
  • the rope core covering material 7 can prevent direct contact between the fibers of the rope core 11 and the steel strands 3, and can suppress damage to the fibers of the rope core 11 during use of the elevator rope.
  • FIG. 10 is a view showing a coated core material 12 constituting the rope core 11 of the second embodiment.
  • FIG. 10 includes a cross-sectional view and a side view of the coated core material 12.
  • Each of the coated core materials 12 is coated.
  • the rope core 11 is integrated by bundling the coated core material 12.
  • integrated refers not only to the case where the core material covering materials 8 are fixed and integrated, but also the case where the core material covering materials 8 are integrated by friction between the core material covering materials 8 being bundled. included.
  • the definition of integration is as described in the first embodiment.
  • the core material covering material 8 can be applied by a method similar to the method of covering a linear object such as an electric wire with a thermoplastic resin by extrusion molding.
  • the resin used for the core material covering material 8 has high wear resistance and is preferably a flexible resin, and is selected from, for example, polyethylene, polypropylene, and polyurethane, but is not limited thereto.
  • a resin molded at a temperature lower than the melting point of the resin used for the coated core material 12 is preferable. This is because, when using a resin that is molded at a temperature higher than the melting point of the resin used for the coated core material 12, the fiber bundle 4 may be melted and damaged by heat during molding.
  • the covering core material 12 coated with resin is integrated by bundling, but the way of integration is not limited.
  • the coated core materials 12 may not be fixed to each other and may be integrated by frictional force, or the core material coating materials 8 may be fixed to be integrated.
  • the core material covering material 8 is preferably made of a material having a high frictional force.
  • the core material covering material 8 is made of a thermoplastic resin, it can be integrated with higher frictional force.
  • the coated core materials 12 may be integrated by, for example, thermally fusing the resins of the core material coated material 8 of the coated core material 12.
  • the coated core material 12 is heated to the melting point of the core coating material 8 or higher than the melting point and lower than the melting point of the fiber bundle 4, and the core coating material 8 of the plurality of coated core materials 12 is heat-sealed.
  • the core material covering material 8 is a thermoplastic resin, it is suitable for easy thermal fusion. Accordingly, the core material covering material 8 between the coated core materials 12 can be fixed without using an adhesive or the like.
  • the resins of the core material covering material 8 of the coated core material 12 may be integrated by bonding with an adhesive.
  • the core material coating materials 8 of the coated core material 12 are in close contact with each other with the adhesive applied to the outer periphery of the core material coating material 8.
  • heat fusion and adhesion using an adhesive have been described.
  • the method is not limited to this method, and the method of fixing is not limited.
  • pressure may be applied to the coated core members 12 by applying pressure to each other.
  • parts different from the first embodiment have been described.
  • the other parts are the same as those in the first embodiment.
  • the fibers can be pulled evenly by bundling the covering core material 12 together.
  • the strength utilization factor of the rope core 11 in which the covering core material 12 is bundled and integrated can be increased, and the strength of the elevator rope 10 can be increased.
  • the mass specific strength can be further increased.
  • the core material covering material 8 prevents direct contact between the steel strand 3 and the fiber bundle 4, damage to the fiber bundle 4 can be suppressed. Moreover, by having a rope core coating
  • Embodiment 3 FIG.
  • the present embodiment is different from the first and second embodiments in that the number of steel strands 16 disposed on the outer periphery of the rope core 11 is twelve.
  • FIG. 11 is a sectional view of the elevator rope 15 according to the third embodiment.
  • the rope core 11 of the second embodiment has a fiber bundle 4 as a core material, and a coated core material 12 in which the fiber bundle 4 is coated with a core material coating material 8.
  • the rope core 11 is coated with the rope core coating material 7.
  • the rope core 11 is applied, but the present invention is not limited to this, and any rope core having a higher mass specific strength may be used.
  • the rope cores 2 and 6 described in the first and second embodiments are also included.
  • the breaking of the steel strand 16 with respect to the cross-sectional area of the elevator rope 15 is reduced.
  • the area ratio is low, and the weight of the elevator rope is reduced.
  • the cross-sectional area ratio of the steel strands 3 is 46%
  • 12 steel strands 16 are used, the cross-sectional area ratio is 36%. is there.
  • sectional area of the elevator rope 15 is calculated from the nominal diameter of the elevator rope 15.
  • the parts different from the first and second embodiments have been described.
  • the other parts are the same as in the first and second embodiments.
  • the diameter of the rope core 11 can be increased even with an elevator rope having the same diameter as the ratio of the cross-sectional area of the steel strand 16 is reduced, and the shared load of the rope core 11 can be increased. .
  • the weight of the elevator rope 15 can be reduced without reducing the strength, and the mass specific strength of the elevator rope 15 can be further improved.
  • the configurations of the first to third embodiments can be applied to elevator ropes having any outer diameter. Further, the outer diameter of the rope core is appropriately set with respect to the outer diameter of the elevator rope. Further, the number of bundles of fiber bundles and the number of fibers included in the fiber bundles are also appropriately set according to the set outer diameter of the rope core. Furthermore, the wire configuration of each steel strand is not particularly limited.
  • the steel of the present invention can be applied not only to the main rope that suspends the car and the suspension weight but also to the compen- sion rope that is suspended from the cage and the suspension weight.
  • effects related to the first to third embodiments will be described based on comparison of measurement results of different types of elevator ropes.
  • FIG. 12 is a diagram showing performance values for each type of elevator rope measured for each of the elevator ropes having different conditions.
  • the performance value means mass per unit length (kg / m), load at 0.5% elongation (kN), breaking load (kN), mass specific strength (kN / kg / m), bending fatigue test The post-high residual rate (%).
  • the rope 1 is a rope that is twisted using 28 polyoctylate fibers Vectran HT (manufactured by Kuraray Co., Ltd.) 1670 dtex (configuration of 300 fibers) to form a fiber bundle.
  • the strand shrinkage (Lf ⁇ Ly) / Lf of this fiber bundle is 9%. Seven prepared fiber bundles were arranged in the longitudinal direction without twisting to prepare a rope core having an outer diameter of about 7 mm.
  • the rope 1 is an elevator rope that bundles fiber bundles without twisting to form a rope core.
  • the rope 2 is a rope that is twisted by using 21 strands of polyarylate fiber Vectran HT (manufactured by Kuraray) 1670 dtex (configuration of 300 fibers) to form a fiber bundle.
  • the strand shrinkage (Lf ⁇ Ly) / Lf of this fiber bundle is 9%.
  • Seven prepared fiber bundles were arranged in the longitudinal direction without twisting, and the outer periphery was covered with polyethylene resin Novatec HB530 (manufactured by Nippon Polyethylene Co., Ltd.) by extrusion to produce a rope core having an outer diameter of about 7 mm.
  • the rope 2 is an elevator rope in which fiber bundles are bundled without twisting to form a rope core, and the rope core is further covered with a resin.
  • the rope 3 is a rope formed by twisting 21 pieces of polyarylate fiber Vectran HT (manufactured by Kuraray Co., Ltd.) 1670 dtex (configuration of 300 fibers) into a fiber bundle.
  • the strand shrinkage (Lf ⁇ Ly) / Lf of this fiber bundle is 9%.
  • the outer periphery of the produced fiber bundle was covered with polyethylene resin Novatec HB530 (manufactured by Nippon Polyethylene Co., Ltd.) by extrusion molding. Seven coated fiber bundles were arranged in the longitudinal direction without twisting, and after pressure-contacting at 150 ° C., cooling was performed to produce a rope core having an outer diameter of about 7 mm.
  • the rope 3 is an elevator rope that covers and bundles each of the fiber bundles to form an integrated rope core.
  • the rope 4 is a rope that is twisted by using 28 poly acrylate fiber Vectran HT (manufactured by Kuraray Co., Ltd.) 1670 dtex (configuration of 300 fibers) to form a fiber bundle.
  • the strand shrinkage (Lf ⁇ Ly) / Lf of this fiber bundle is 9%.
  • the outer periphery of the produced fiber bundle was covered with polyethylene resin Novatec HB530 (manufactured by Nippon Polyethylene Co., Ltd.) by extrusion molding. Seven coated fiber bundles were arranged in the longitudinal direction without twisting, and after pressure-contacting at 150 ° C., cooling was performed to produce a rope core having an outer diameter of about 8 mm.
  • the rope 4 increases the number of strands of the rope core integrated by covering and bundling each of the fiber bundles, increasing the number of the strands to 12 and reducing the total cross-sectional area of the steel strands. If the diameters are the same, there is room for increasing the outer diameter of the rope core, so the elevator rope has an outer diameter increased from 7 mm to 8 mm.
  • the fiber core rope is an 8 ⁇ S (19) elevator rope with an outer diameter of 12 mm, using a three-strand hemp fiber rope as the rope core, and 8 steel strands wrapped around a rope core with an outer diameter of about 7 mm. is there.
  • This elevator rope is generally used.
  • the steel core rope is a general elevator with an 8xS (19) rope core with an outer diameter of 12 mm, wrapped with 8 steel strands of IWRC (Independent Wire Rope Core), whose rope core is a steel core. It is a rope.
  • the fiber core rope is a general conventional elevator rope
  • the steel core rope is a general IWRC rope. It can be seen that the ropes 1 to 4 of the present invention have higher mass specific strength than these.
  • the ropes 1 to 4 are stretched 0.55 despite the same outer diameter of the rope core, the number of steel strands, and the outer diameter of the elevator rope. % Load is high. As a result, it can be seen that the rope core formed by bundling the fiber bundle without twisting like the ropes 1 to 3 can share the load at the beginning of the elongation of the elevator rope, that is, the elongation is 0.5%.
  • rope 1 When comparing rope 1 and rope 2, rope 1 has a higher breaking load. This is because the rope 2 has the same outer diameter of the rope core as the rope 1 and the amount of polyarylate fibers in the fiber bundle is reduced from 28 to 21 in the rope 1 in order to provide the rope core coating. Presumed to be due. On the other hand, the residual strength rate after the bending fatigue test is higher in the rope 2. This is presumably because the fiber core damage can be suppressed in the bending fatigue test by providing the rope core coating.
  • rope 3 When comparing rope 2 and rope 3, rope 3 has a higher breaking load.
  • the difference between the rope 2 and the rope 3 is whether the outer periphery of the rope core is covered with a resin or whether each fiber bundle is covered with a resin and integrated. It can be seen that the breaking load increases when each of the fiber bundles is coated and integrated with a resin.
  • rope 3 has a higher breaking load. This is presumably because the total cross-sectional area of the eight steel strands of the rope 3 is larger than the total cross-sectional area of the twelve steel strands of the rope 4.
  • the mass specific strength is higher in the rope 4 than in the rope 3.
  • the outer diameter of the rope core of the rope 4 is larger, and the cross-sectional area of the rope core of the rope 4 is larger than the cross-sectional area of the rope core of the rope 3, but the rope core is made of light synthetic fiber.
  • the rope 4 has a higher mass specific strength.
  • FIG. 13 is a diagram showing an example when the elevator rope 5 of the present invention is attached to an elevator.
  • the elevator rope 5 is connected to a general elevator cage 17.
  • the elevator rope 5 is pulled through the sheave 18 when the elevator rod 17 moves up and down.
  • the elevator rope passes through the sheep 18, the elevator rope 5 is bent, and after passing, the bending returns.
  • FIG. 13 is an example, and the way the elevator rope 5 is connected is not limited.
  • the method of connecting the elevator rope 5 is not limited as long as it is directly and indirectly connected to the kite 17 and can be raised and lowered.
  • the elevator rope 5 according to the first embodiment is illustrated in FIG. 13, the elevator rope 5 is not limited thereto, and may be the elevator ropes 10 and 15 described in the second and third embodiments.

Landscapes

  • Ropes Or Cables (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

When a bend in an elevator rope is loosened, some core materials may remain displaced. Further application of a load on these materials in the tensile direction may not be smooth. The present invention is characterized by being provided with: a rope core (2) that is configured by a plurality of core materials being integrated without being twisted; and strands that are arranged on the outer periphery of the rope core.

Description

エレベータロープElevator rope
 この発明は、エレベータロープに関する。 This invention relates to an elevator rope.
 エレベータロープの構造は、エレベータロープ中心にロープ芯が配置され、ロープ芯の外周に複数本の鋼製のストランドである鋼製ストランドが撚り合わせられていることが一般的である。ロープ芯は、鋼製のものや繊維でできたもの等、様々な材質のものがあり、芯材が撚られて形成される。ロープ芯が繊維である場合は、芯材は繊維束からなる。この繊維束は麻等の一般的な繊維や、合成繊維等を撚り合わせたものが一般的である。 The structure of an elevator rope is generally such that a rope core is disposed at the center of the elevator rope, and steel strands, which are a plurality of steel strands, are twisted around the outer periphery of the rope core. Rope cores are made of various materials such as steel and fibers, and are formed by twisting the core material. When the rope core is a fiber, the core material is a fiber bundle. This fiber bundle is generally made by twisting general fibers such as hemp or synthetic fibers.
エレベータロープには、かごの重量、カウンタウェイトの重量、及びエレベータロープ自身の重量の負荷がかかる。高層の建造物では、かごの昇降距離も長いため、使用されるエレベータロープの長さも長くなる。エレベータロープの長さが長くなると、エレベータロープ自身の重量の影響が大きくなるため、ロープの強度及びロープの重量によって、かごの最大昇降距離が制限される。即ち、かごの昇降距離を拡大するためには、より質量比強度(強度/単位長さあたり重量)の高い、軽量で高強度なロープが必要であった。軽量で高強度なロープを得る手段として、軽量な合成繊維からなるロープ芯に、引張荷重を分担させる手法がとられる場合がある。 The elevator rope is loaded with the weight of the car, the weight of the counterweight, and the weight of the elevator rope itself. In a high-rise building, the lift distance of the car is long, so the length of the elevator rope used is also long. As the length of the elevator rope becomes longer, the influence of the weight of the elevator rope itself becomes larger, so the maximum lifting distance of the car is limited by the strength of the rope and the weight of the rope. That is, in order to increase the lifting distance of the car, a light and high strength rope having a higher mass specific strength (strength / weight per unit length) is required. As a means for obtaining a light and high-strength rope, there is a case in which a tensile load is shared by a rope core made of a lightweight synthetic fiber.
 また、エレベータロープは、エレベータロープの破断強度の10%以下となる荷重で使用されることが一般的である。この際、エレベータロープの引張方向への伸びは1%未満ぐらいとなる。それ故、エレベータロープは、伸び1%未満のような小さい伸びの間に、より高い荷重を発生させることが重要になる。 Also, the elevator rope is generally used with a load that is 10% or less of the breaking strength of the elevator rope. At this time, the elongation of the elevator rope in the tensile direction is less than 1%. Therefore, it is important for elevator ropes to generate higher loads during small elongations, such as less than 1% elongation.
 エレベータロープの鋼製ストランドは鋼製であるので、エレベータロープは、エレベータロープの引張方向の伸び1%未満のような小さい伸びの間においても高い荷重を発生させることができる。しかし、ロープ芯を繊維とした場合、撚られた繊維は撚りの分だけ伸び縮みが発生しやすいので、ロープ芯が伸び1%未満のような小さい伸びの間に高い荷重を発生させることは難しい。 Since the steel strand of the elevator rope is made of steel, the elevator rope can generate a high load even during a small elongation such as an elongation of less than 1% in the tensile direction of the elevator rope. However, when the rope core is made of fiber, the twisted fiber is likely to be stretched and contracted by the amount of twist, so it is difficult to generate a high load while the rope core is stretched as small as less than 1%. .
 エレベータロープ全体の強度を上げることを考えた場合、ロープ芯にも荷重を負担させることが重要になる。つまり、引張方向の伸び1%未満のような小さい伸びの間において、ロープ芯がより高い荷重を発生させることが重要となる。そこで、エレベータロープのロープ芯の撚りをより少なくする為に、芯材の繊維束を撚らずに束ねてロープ芯とすることが考えられる。引用文献1では、芯材として、繊維ヤーン多数本を平行に束ねる旨について開示がある。 When considering the strength of the entire elevator rope, it is important to load the rope core. In other words, it is important that the rope core generates a higher load during a small elongation such as less than 1% in the tensile direction. Therefore, in order to further reduce the twist of the rope core of the elevator rope, it is conceivable to bundle the fiber bundle of the core material without twisting to form the rope core. Cited Document 1 discloses that a large number of fiber yarns are bundled in parallel as a core material.
平10-140490号公報Japanese Patent Publication No. 10-140490
 芯材を撚らずに束ねてロープ芯とした場合、エレベータロープが屈曲した場合に、屈曲の内側と外側で曲率に差がでることで芯材同士がずれることがある。この状態のエレベータロープの曲がりを緩めた場合、一部の芯材のずれが戻らないことがある。このずれが戻っていない芯材に再び引張方向へ荷重をかけた場合、この芯材には荷重がかかりにくくなる。ずれた芯材が荷重を負担できない分、他の芯材に過剰に荷重がかかってしまう。その結果、エレベータロープ全体としての強度が落ちてしまう問題がある。 When the rope core is bundled without twisting the core material, when the elevator rope is bent, the core materials may be shifted due to a difference in curvature between the inside and outside of the bend. When the bending of the elevator rope in this state is loosened, the deviation of some core materials may not return. When a load is applied again to the core material in which the deviation has not returned, the core material is less likely to be loaded. Since the shifted core material cannot bear the load, the other core material is excessively loaded. As a result, there exists a problem that the intensity | strength as the whole elevator rope will fall.
 上記課題を解決する為に、本発明は、複数本の芯材同士を撚らずに一体化したロープ芯と、前記ロープ芯の外周に配置されるストランドとを備えることを特徴とする。 In order to solve the above problems, the present invention is characterized by comprising a rope core integrated without twisting a plurality of core members, and a strand disposed on the outer periphery of the rope core.
 この発明によれば、撚らない芯材をもつロープ芯のあるエレベータロープにおいて、エレベータロープの曲がり戻りにより、強度が落ちることを抑制できる効果がある。 According to the present invention, in an elevator rope having a rope core having a core material that is not twisted, there is an effect that it is possible to suppress a decrease in strength due to the bending back of the elevator rope.
繊維束を束ねてなるロープ芯を持つエレベータロープの断面図である。It is sectional drawing of an elevator rope with a rope core formed by bundling fiber bundles. 繊維束を束ねてなるロープ芯の図である。It is a figure of a rope core formed by bundling fiber bundles. 繊維束を束ねてなるロープ芯を構成する繊維束の図である。It is a figure of the fiber bundle which comprises the rope core formed by bundling the fiber bundle. 合成繊維ロープを引っ張ったときの伸びと荷重の関係の概念図である。It is a conceptual diagram of the relationship between elongation and load when a synthetic fiber rope is pulled. 撚り縮み率の異なる繊維ロープを引っ張ったときの伸びと荷重の関係の一例を表す図である。It is a figure showing an example of the relationship between elongation and load when the fiber rope from which a twist shrinkage differs is pulled. 実施の形態1のエレベータロープの断面図である。1 is a sectional view of an elevator rope according to a first embodiment. 実施の形態1のロープ芯を示す図である。FIG. 3 is a diagram illustrating a rope core according to the first embodiment. 実施の形態2のエレベータロープの断面図である。It is sectional drawing of the elevator rope of Embodiment 2. 実施の形態2のロープ芯を示す図である。It is a figure which shows the rope core of Embodiment 2. FIG. 実施の形態2のロープ芯を構成する繊維束を示す図である。It is a figure which shows the fiber bundle which comprises the rope core of Embodiment 2. FIG. 実施の形態3のエレベータロープの断面図である。It is sectional drawing of the elevator rope of Embodiment 3. 条件のことなるエレベータロープそれぞれの、測定したエレベータロープの性能値を表す図である。It is a figure showing the performance value of the measured elevator rope of each elevator rope from which conditions differ. エレベータロープがエレベータに取り付けられた場合の一例を示す図である。It is a figure which shows an example at the time of an elevator rope being attached to the elevator.
 以下に、本発明の実施の形態に係るエレベータロープを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an elevator rope according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 実施の形態1.
 まず、芯材である繊維束4を撚らずに複数本束ねてなるロープ芯2を持つエレベータロープ1の構造について説明する。その後に、繊維束4を撚らずに束ねてなるロープ芯2を持つエレベータロープ1の強度について説明し、本発明の特徴を説明する。
Embodiment 1 FIG.
First, the structure of the elevator rope 1 having the rope core 2 formed by bundling a plurality of fiber bundles 4 that are core materials without twisting them will be described. After that, the strength of the elevator rope 1 having the rope core 2 formed by bundling the fiber bundle 4 without twisting will be described, and the features of the present invention will be described.
 図1は芯材である繊維束4を束ねてなるロープ芯2を持つエレベータロープ1の断面図である。実施の形態1のエレベータロープ1は、ロープ芯2の外周に配置され撚り合わせられている撚り線からなる複数本(この例では8本)の鋼製ストランド3を有している。エレベータロープ1は、ロープ芯2に8本の鋼製ストランド3が巻きつけられた構造であり、例えばJISG3525に定義されている8×S(19)、8×W(19)、又は8×Fi(25)の構造である。本実施の形態のエレベータロープ1は鋼製ストランド3としているが、ストランドであれば何でもよく材質は限定されない。 FIG. 1 is a cross-sectional view of an elevator rope 1 having a rope core 2 formed by bundling fiber bundles 4 as core materials. The elevator rope 1 according to the first embodiment has a plurality of steel strands 3 (eight in this example) made of stranded wires arranged on the outer periphery of the rope core 2 and twisted together. The elevator rope 1 has a structure in which eight steel strands 3 are wound around a rope core 2, for example, 8 × S (19), 8 × W (19), or 8 × Fi defined in JIS G3525. This is the structure of (25). Although the elevator rope 1 of this Embodiment is made from the steel strand 3, what is necessary is just a strand, and a material is not limited.
 図2は繊維束4を束ねてなるロープ芯2を示す図である。図2はロープ芯2の断面図と斜視図からなる。ロープ芯2は、芯材である複数本(この例では7本)の繊維束4が撚らずに束ねられた構成となっている。芯材である繊維束4は合成繊維からなる。複数本束ねてなるロープ芯2とは、図2のように、おおよそ平行に複数本の繊維束4を重ねて一本のロープ芯2となったものをいう。言い換えると、ロープ芯2は、複数本の繊維束4がおおよそ平行になるように纏められることで構成されている。 FIG. 2 is a view showing a rope core 2 in which fiber bundles 4 are bundled. FIG. 2 includes a cross-sectional view and a perspective view of the rope core 2. The rope core 2 has a configuration in which a plurality of (7 in this example) fiber bundles 4 that are core materials are bundled without being twisted. The fiber bundle 4 as the core material is made of synthetic fiber. As shown in FIG. 2, the rope core 2 formed by bundling a plurality of pieces means a single rope core 2 formed by superposing a plurality of fiber bundles 4 approximately in parallel. In other words, the rope core 2 is configured by collecting a plurality of fiber bundles 4 so as to be approximately parallel.
 本実施の形態では芯材は合成繊維であるが一般的な繊維でもよく、芯材の材質は限定されない。芯材は、繊維状のものであれば何でもよい。一般的なエレベータロープでは各繊維は細すぎるので、複数本の繊維を撚り合わせて繊維束4とし、そこからロープ芯2を生成することが多い。 In the present embodiment, the core material is a synthetic fiber, but it may be a general fiber, and the material of the core material is not limited. The core material may be anything as long as it is fibrous. Since each fiber is too thin in a general elevator rope, a plurality of fibers are twisted to form a fiber bundle 4, and the rope core 2 is often generated therefrom.
 図3はロープ芯2を構成する繊維束4を示す図である。繊維束4を斜めから見た図である。図2の7本ある繊維束4のうち、一本を拡大した図である。繊維束4は、外径が数μm~数十μmの合成繊維を数百本~数万本撚り合わせたものである。 FIG. 3 is a view showing a fiber bundle 4 constituting the rope core 2. It is the figure which looked at the fiber bundle 4 from diagonally. FIG. 3 is an enlarged view of one of the seven fiber bundles 4 in FIG. 2. The fiber bundle 4 is obtained by twisting hundreds to tens of thousands of synthetic fibers having an outer diameter of several μm to several tens of μm.
 ここで、複数本の芯材を撚らずに束ねてなる構成とは、撚られた芯材である繊維束4のうち全ての芯材同士が撚られずに束ねてなる必要はない。例えば、10本の芯材のうち9本は撚り合わされているが、1本だけは撚り合わされていないような場合が考えられる。また、10本の芯材に対して、2本ずつ撚られて5組が構成され、この5組が平行に配置されているような場合も考えられる。芯材を撚らずにとは、このように全ての芯材同士が撚られていない状態だけではなく、芯材の一部同士が撚られていない場合も含まれる概念であり、限定されない。 Here, the configuration in which a plurality of core materials are bundled without being twisted does not have to be bundled without twisting all the core materials in the fiber bundle 4 that is a twisted core material. For example, nine of the ten core materials are twisted together, but only one is not twisted. In addition, two sets of 10 core members are twisted to form 5 sets, and the 5 sets may be arranged in parallel. “Not twisting the core material” is not limited to the state in which all the core materials are not twisted in this way, but also includes a case where a part of the core material is not twisted, and is not limited.
 また、複数本の芯材を撚らずに束ねてなる構成とは、芯材自体が撚られていない場合も含む概念である。例えば芯材の繊維を撚らずに芯材が構成されており、芯材同士が撚られている場合や、芯材も撚られず、芯材同士も撚られない場合等が考えられる。全ての芯材同士が撚られずに束ねてなるとは、各繊維束4が長手方向に概ね平行に配置されている状態をいう。 Further, the configuration in which a plurality of core materials are bundled without being twisted is a concept including the case where the core materials themselves are not twisted. For example, the case where the core material is formed without twisting the fibers of the core material and the core materials are twisted, the case where the core material is not twisted, and the core materials are not twisted is also conceivable. That all the core members are bundled without being twisted means a state in which each fiber bundle 4 is arranged substantially parallel to the longitudinal direction.
 繊維束4を構成する繊維材料は、引張強度、引張弾性率の高い繊維で構成されていることが好ましい。繊維の引張強度が20cN/dtex以上、引張弾性率が500cN/dtex以上であることが好ましい。具体的には、パラ型アラミド繊維、メタ型アラミド繊維、炭素繊維、ポリアリレート繊維、ポリパラフェニレンベンズオキサゾール繊維から1種もしくは2種以上が使用される。次に繊維束4が撚られず束ねられたロープ芯2を持つエレベータロープ1の強度について説明する為に、まず、一般的なエレベータロープの強度について説明する。 The fiber material constituting the fiber bundle 4 is preferably composed of fibers having high tensile strength and tensile modulus. It is preferable that the fiber has a tensile strength of 20 cN / dtex or more and a tensile modulus of 500 cN / dtex or more. Specifically, one or more of para-type aramid fiber, meta-type aramid fiber, carbon fiber, polyarylate fiber, and polyparaphenylene benzoxazole fiber are used. Next, in order to explain the strength of the elevator rope 1 having the rope core 2 in which the fiber bundle 4 is not twisted but bundled, the strength of a general elevator rope will be explained first.
 先にも述べた通り、一般的にエレベータロープの強度を上げる為に、ロープ芯は歪み1%未満のようなより小さい歪みでより大きな荷重を発生させる必要がある。そのためには、後述する構造伸びを小さくすることが重要である。また、エレベータロープの強度を上げる為には、ロープ芯の特定の繊維束に荷重が偏らないように、全ての繊維が均等に引っ張られることも重要である。つまり、強度利用率を高めることも重要となる。ここで、強度利用率とは、使用している繊維束の強度×使用している繊維束の本数を理論強度とした場合、実際の強度/理論強度×100で表される値をいう。 As mentioned above, in general, in order to increase the strength of the elevator rope, the rope core needs to generate a larger load with a smaller strain such as a strain of less than 1%. For that purpose, it is important to reduce the structural elongation described later. In order to increase the strength of the elevator rope, it is also important that all the fibers are pulled evenly so that the load is not biased to a specific fiber bundle of the rope core. In other words, it is important to increase the strength utilization rate. Here, the strength utilization rate means a value represented by actual strength / theoretical strength × 100, where the strength of the fiber bundle used × the number of the fiber bundles used is the theoretical strength.
 また、ロープ芯をより軽く、より強くすることで、エレベータロープ全体の質量比強度を上げることができる。ロープ芯の材質を鋼製にすることも考えられるが、そうすると強度はあがる傾向にあるが、質量が大きくなってしまう。その為に、ロープ芯2は繊維のような軽いものであり、より強度が高いものが好ましい。本実施の形態ではロープ芯として合成繊維を想定している為、一般的な合成繊維ロープの強度について説明する。ここでの説明の合成繊維ロープは撚られている合成繊維ロープをいう。 Moreover, the mass specific strength of the entire elevator rope can be increased by making the rope core lighter and stronger. Although it is conceivable that the material of the rope core is made of steel, the strength tends to increase, but the mass increases. Therefore, the rope core 2 is light like a fiber and preferably has a higher strength. In this embodiment, since a synthetic fiber is assumed as a rope core, the strength of a general synthetic fiber rope will be described. The synthetic fiber rope described here refers to a synthetic fiber rope that is twisted.
 図4は一般的な合成繊維ロープを引っ張ったときの伸びと荷重の関係の概念図を示す図である。図4で示すように合成繊維ロープの伸びは、構造伸びと、材質伸びとに分けることができる。構造伸びとは、合成繊維ロープを引っ張る過程の初期に起こるものであり、合成繊維ロープを構成する撚られた繊維が、相互に十分な密着状態にない状態で引っ張られることにより、繊維が合成繊維ロープの中心方向に締まっていきながら、繊維同士が密着状態に至る過程で生じるものである。このため構造伸びが生じている間は、繊維の材質の影響が現れず、荷重が殆ど発生しない。 FIG. 4 is a diagram showing a conceptual diagram of the relationship between elongation and load when a general synthetic fiber rope is pulled. As shown in FIG. 4, the elongation of the synthetic fiber rope can be divided into structural elongation and material elongation. Structural elongation occurs at the beginning of the process of pulling the synthetic fiber rope. The twisted fibers that make up the synthetic fiber rope are pulled in a state where they are not in close contact with each other. This occurs in the process where the fibers come into close contact with each other while tightening toward the center of the rope. For this reason, while the structural elongation occurs, the influence of the material of the fiber does not appear and a load is hardly generated.
 引っ張り続け伸びが大きくなり、繊維が十分な密着状態になると、材質伸びとなる。材質伸びは合成繊維ロープを構成する繊維が伸びて生じるもので、荷重が高くなり始める。即ち、構造伸びを小さくすることで、合成繊維ロープはより小さい伸びで高い荷重が発生するようになる。 When the tension continues to grow and the fiber becomes sufficiently close, the material becomes stretched. The material elongation is caused by the elongation of the fibers constituting the synthetic fiber rope, and the load begins to increase. In other words, by reducing the structural elongation, the synthetic fiber rope generates a high load with a smaller elongation.
 構造伸びを小さくするためには、撚りを理由とした伸びを小さくする必要があるので、繊維の撚り縮率を小さくすることが必要である。ここで撚り縮率とは、撚られた繊維の長さをLa、Laの長さの繊維を解撚した繊維の長さをLbとした場合、(Lb-La)/Lbの値で表される。 In order to reduce the structural elongation, it is necessary to reduce the elongation due to twisting, so it is necessary to reduce the twist reduction ratio of the fiber. Here, the twist reduction ratio is expressed by a value of (Lb−La) / Lb, where La is the length of the twisted fiber and Lb is the length of the fiber untwisted from the length of La. The
 図5は撚り縮み率の異なる合成繊維ロープを引っ張ったときの伸びと荷重の関係の一例を示す図である。一般的に、エレベータロープは引張方向への伸びは1%未満で使用されるので、伸び1%未満で大きな荷重を発生させることが重要になる。図5によると、撚り縮率15%となったときに、伸び1%での荷重が高くなり、撚り縮率15%以下で伸び1%以下の荷重が高くなっていることが分かる。逆に撚り縮率が15%より高くなると伸び1%以下での荷重が低くなる。 FIG. 5 is a view showing an example of the relationship between elongation and load when pulling synthetic fiber ropes having different twist shrinkage rates. In general, elevator ropes are used with an elongation in the tensile direction of less than 1%, so it is important to generate a large load with an elongation of less than 1%. According to FIG. 5, it can be seen that when the twist reduction ratio is 15%, the load at an elongation of 1% is high, and the load at an elongation of 1% or less is high at a twist reduction ratio of 15% or less. Conversely, when the twist reduction ratio is higher than 15%, the load at an elongation of 1% or less decreases.
 このことから、エレベータロープの荷重を合成繊維ロープのロープ芯に分担させることを考える場合、伸び1%以下で荷重が高くなることが要求されるので、撚り縮率15%以下が好ましいことが言える。本実施の形態では繊維束それぞれが撚られているので、そのそれぞれの繊維束4の長さをLy、またLyの長さの繊維束4を解撚した繊維の長さをLfとした場合、(Lf-Ly)/Lfが繊維束4の撚り縮率となる。繊維束4が撚られずに束ねられたロープ芯2の長さをLcとしたとき、LcとLyの値は同じ値になるので、(Lf-Lc)/Lfの値は、(Lf-Ly)/Lfの値と、自ずと同一となる。 From this, when considering that the load of the elevator rope is shared by the rope core of the synthetic fiber rope, it is required that the load is increased when the elongation is 1% or less, and therefore it can be said that the twist reduction rate is preferably 15% or less. . In this embodiment, since each fiber bundle is twisted, when the length of each fiber bundle 4 is Ly, and the length of the fiber obtained by untwisting the fiber bundle 4 of Ly length is Lf, (Lf−Ly) / Lf is the twist reduction ratio of the fiber bundle 4. When the length of the rope core 2 in which the fiber bundle 4 is bundled without being twisted is Lc, the values of Lc and Ly are the same value, so the value of (Lf−Lc) / Lf is (Lf−Ly) ) / Lf and the same value.
 つまり、繊維束4を撚らずに束ねてなるロープ芯2であり、複数本の芯材である繊維束4が撚られた芯材である場合、それぞれの繊維束4の撚り縮率を、ロープ芯2全体の撚り縮率と同視できる。撚り縮率が15%以下の繊維束4を撚らずに束ねてなるロープ芯2は、前述した撚り縮率が15%以下とする合成繊維ロープと同視できるので、繊維束4の撚り縮率を15%以下とすることでより強度の高いエレベータロープとすることができる。また、エレベータロープの荷重をより合成繊維のような軽いロープ芯2に分担させることができので、エレベータロープの質量比強度を高めることになる。 That is, when the rope core 2 is formed by bundling the fiber bundle 4 without twisting, and the fiber bundle 4 that is a plurality of core members is a twisted core material, the twist reduction ratio of each fiber bundle 4 is It can be equated with the twist reduction ratio of the entire rope core 2. Since the rope core 2 formed by bundling the fiber bundle 4 having a twist reduction ratio of 15% or less without being twisted can be regarded as the above-described synthetic fiber rope having a twist reduction ratio of 15% or less, the twist reduction ratio of the fiber bundle 4 By setting the ratio to 15% or less, an elevator rope with higher strength can be obtained. Moreover, since the load of an elevator rope can be shared with the lighter rope core 2 like a synthetic fiber, the mass ratio intensity | strength of an elevator rope will be raised.
 繊維束4の撚り縮み率は、10%以下がより好ましい。15%より高い撚り縮み率(Lf-Ly)/Lfで撚ると、構造伸びが大きくなり、エレベータロープ1にかかる荷重をロープ芯2で殆ど分担できなくなる。 The twist shrinkage of the fiber bundle 4 is more preferably 10% or less. When twisted at a twist reduction ratio (Lf−Ly) / Lf higher than 15%, the structural elongation becomes large, and the load applied to the elevator rope 1 can hardly be shared by the rope core 2.
 また、先にも述べた通り、エレベータロープ1の強度を高める為には、強度利用率が高くなることも重要である。つまり、この撚り縮率が全ての繊維束4で等しいことが理想である。これにより、全ての繊維束4を均一に引っ張ることが可能となり、強度利用率を高めることができる。その為、繊維束4を撚らずに束ねてなる場合は、それぞれの繊維束4の撚り縮率を15%以下であり、等しくすることで、よりエレベータロープ1全体の強度を上げることができる。また、一般的に繊維は撚り合わせると、もとの繊維の強度よりも弱くなってしまうことが知られている。撚り合わせないことでより、強度を上げることができる。 Also, as described above, in order to increase the strength of the elevator rope 1, it is also important that the strength utilization rate is increased. In other words, it is ideal that the twist reduction rate is the same for all the fiber bundles 4. Thereby, all the fiber bundles 4 can be pulled uniformly, and the strength utilization rate can be increased. Therefore, when the fiber bundles 4 are bundled without being twisted, the twist reduction rate of each fiber bundle 4 is 15% or less, and the strength of the entire elevator rope 1 can be further increased by making the fiber bundles 4 equal. . In general, it is known that when fibers are twisted together, the strength of the fibers becomes weaker than that of the original fibers. The strength can be increased by not twisting together.
 前述のような構成を持つロープ芯2と鋼製ストランド3とを組み合わせてなるエレベータロープ1は、従来の三つ打ち合成繊維ロープをロープ芯として有する8×S(19)、8×W(19)、又は8×Fi(25)ロープと比較して、破断荷重が高い。エレベータロープの破断荷重(kN)を単位長さあたり質量(kg/m)で割った質量比強度(kN/kg/m)は、160kN/kg/m以上、好ましくは180kN/kg/m以上である。次に本発明の特徴を説明する。本発明は、以下の特徴を持つ。 The elevator rope 1 formed by combining the rope core 2 having the above-described configuration and the steel strand 3 has 8 × S (19) and 8 × W (19) having a conventional three-ply synthetic fiber rope as a rope core. ) Or 8 × Fi (25) rope, the breaking load is high. The mass specific strength (kN / kg / m) obtained by dividing the breaking load (kN) of the elevator rope by the mass per unit length (kg / m) is 160 kN / kg / m or more, preferably 180 kN / kg / m or more. is there. Next, features of the present invention will be described. The present invention has the following features.
 図6は実施の形態1のエレベータロープ5の断面図である。実施の形態1のエレベータロープ5は、繊維束4が樹脂9で固着され一体化されている状態を示す。図6の通り、複数本の芯材である繊維束4同士のそれぞれが樹脂9を介して一体化される。エレベータロープ5は、樹脂9で一体化されたロープ芯6の外周に配置され撚り合わせられている撚り線からなる複数本(この例では8本)の鋼製ストランド3を有している。 FIG. 6 is a cross-sectional view of the elevator rope 5 according to the first embodiment. The elevator rope 5 of Embodiment 1 shows a state in which the fiber bundle 4 is fixed and integrated with a resin 9. As shown in FIG. 6, the fiber bundles 4 that are a plurality of core materials are integrated with each other through a resin 9. The elevator rope 5 has a plurality (eight in this example) of steel strands 3 made of stranded wires arranged on the outer periphery of a rope core 6 integrated with a resin 9 and twisted together.
 図7は実施の形態1のロープ芯6を示す図である。図7は、図1、図2で説明した芯材である繊維束4を束ねてなるロープ芯2を持つエレベータロープ1の繊維束4同士を樹脂9で固めたロープ芯6である。図7はロープ芯6の断面図と側面図からなる。繊維束4の樹脂9によって固着され一体化されている点でエレベータロープ1と異なっている。ここで、一体化とは、隣り合う繊維束4同士の長手方向の相対位置が不可逆的に変化しないことを示す。繊維束4同士の相対位置が不可逆的に変化しない状態であれば、必ずしも樹脂9によって固着されて一体化されている必要はなく、一体化のされ方は限定されない。樹脂9を介して一体化される場合は、各繊維束4の間まで樹脂が入り込み、各繊維束4間が樹脂9を介して一体化することが好適であるがこれに限定されない。 FIG. 7 shows the rope core 6 of the first embodiment. FIG. 7 shows a rope core 6 in which fiber bundles 4 of an elevator rope 1 having a rope core 2 formed by bundling the fiber bundles 4 that are the core materials described in FIGS. FIG. 7 includes a cross-sectional view and a side view of the rope core 6. It differs from the elevator rope 1 in that it is fixed and integrated by the resin 9 of the fiber bundle 4. Here, the integration means that the relative position in the longitudinal direction between adjacent fiber bundles 4 does not change irreversibly. As long as the relative positions of the fiber bundles 4 do not change irreversibly, the fiber bundles 4 are not necessarily fixed and integrated by the resin 9, and the way of integration is not limited. In the case of integration through the resin 9, it is preferable that the resin enters between the fiber bundles 4 and the fiber bundles 4 are integrated through the resin 9, but the present invention is not limited to this.
 繊維束4が樹脂9で一体化されている場合、エレベータロープ5がシーブ上で曲げられる際、隣り合う繊維束4同士の長手方向の相対位置は一時的に可逆的に変化する。このとき、隣り合う繊維束4同士の長手方向の相対位置の一時的な変化は、樹脂9の弾性変形によるものである。従って、エレベータロープがシーブを通り過ぎて、エレベータロープが曲げられていた状態から直線状に戻る際、樹脂9が弾性変形状態から回復し、繊維束4同士の長手方向の相対位置が、シーブを通過する前と同じ位置に戻る。 When the fiber bundle 4 is integrated with the resin 9, when the elevator rope 5 is bent on the sheave, the relative position in the longitudinal direction between adjacent fiber bundles 4 temporarily changes reversibly. At this time, the temporary change in the relative position in the longitudinal direction between adjacent fiber bundles 4 is due to elastic deformation of the resin 9. Therefore, when the elevator rope passes through the sheave and returns to the linear shape from the state where the elevator rope is bent, the resin 9 recovers from the elastic deformation state, and the relative position in the longitudinal direction of the fiber bundles 4 passes through the sheave. Return to the same position as before.
 また、樹脂9の種類は限定されないが、例えば、熱可塑性樹脂のような耐摩耗性が高く、柔軟な樹脂が好ましい。具体的には、ポリエチレン、ポリプロピレン、ポリウレタンから選択されるが、この限りではない。樹脂9は、繊維束4の外周まで被覆することにより、鋼製ストランド3と繊維束4の直接接触を防いで、エレベータロープ5使用中に繊維束4が損傷するのを抑制する効果もある。 Further, the type of the resin 9 is not limited, but for example, a flexible resin having high wear resistance such as a thermoplastic resin is preferable. Specifically, it is selected from polyethylene, polypropylene, and polyurethane, but not limited thereto. The resin 9 covers the outer periphery of the fiber bundle 4, thereby preventing direct contact between the steel strand 3 and the fiber bundle 4 and suppressing the damage of the fiber bundle 4 during use of the elevator rope 5.
 本発明は、撚らずに束ねてなる芯材である繊維束4を一体化することで、エレベータロープ5が曲げられてから曲げが戻った場合において、芯材である繊維束4同士がずれてしまうことを抑制できる。繊維束4がずれてしまうと、ずれにより一部の繊維束4への荷重の偏りがでてしまうことがある。各繊維束4が均等に荷重を分散して受け止めることができなくなるので、そうするとエレベータロープ全体でみたときの強度が低下してしまう。 The present invention integrates the fiber bundle 4 that is a core material that is bundled without twisting, so that when the elevator rope 5 is bent and the bending returns, the fiber bundles 4 that are the core material are displaced from each other. Can be suppressed. If the fiber bundle 4 is displaced, the load on some of the fiber bundles 4 may be biased due to the displacement. Since each fiber bundle 4 cannot receive the load evenly distributed, the strength when viewed as a whole of the elevator rope is lowered.
 芯材である繊維束4を一体化することで、繊維束4を束ねてなる仕組みにおいても、エレベータロープ5の曲がり戻りによる、繊維束4間のずれによるエレベータロープ5の強度の低下を抑制できる効果がある。また、本発明の仕組みにより芯材である繊維束4を撚らずに束ねてなる状態でロープ芯6を形成することができるので、ロープ芯6により高い荷重を負担させ、エレベータロープ全体の強度をあげることができる。また、ロープ芯6が合成繊維であるので、より質量比強度をあげることができる。 By integrating the fiber bundle 4 that is the core material, even in a mechanism in which the fiber bundles 4 are bundled, a decrease in the strength of the elevator rope 5 due to the deviation between the fiber bundles 4 due to the bending back of the elevator rope 5 can be suppressed. effective. Moreover, since the rope core 6 can be formed in a state where the fiber bundle 4 as the core material is bundled without being twisted by the mechanism of the present invention, a high load is borne by the rope core 6 and the strength of the entire elevator rope is increased. Can give. Moreover, since the rope core 6 is a synthetic fiber, the mass specific strength can be further increased.
 ロープ芯6により大きな荷重を負担させることができるので、エレベータロープ5断面積に対して鋼製ストランド3の断面積の割合を低減することができ、これにより更なるエレベータロープ5全体の軽量化及び質量比強度の向上を図ることができる。また、隣り合う繊維束4同士を一体化することにより、それぞれの繊維束4を均等に引っ張りやすくなる。その結果、繊維束4を束ねてなるロープ芯6の強度利用率を高めることもでき、よりエレベータロープの強度を上げることが出来る。 Since a large load can be borne by the rope core 6, the ratio of the cross-sectional area of the steel strand 3 to the cross-sectional area of the elevator rope 5 can be reduced, thereby further reducing the weight of the entire elevator rope 5 and The mass specific strength can be improved. Moreover, it becomes easy to pull each fiber bundle 4 equally by integrating adjacent fiber bundles 4 mutually. As a result, the strength utilization factor of the rope core 6 formed by bundling the fiber bundle 4 can be increased, and the strength of the elevator rope can be further increased.
 実施の形態2.
 本実施の形態では、芯材である繊維束4のそれぞれの外周が、樹脂である芯材被覆材8によって被覆されて、芯材被覆材8で被覆された被覆芯材12が束ねられることで、ロープ芯11が一体化されている点で、実施の形態1と異なっている。本実施の形態でも芯材の材質は限定されない。芯材として繊維束4で本実施の形態は説明する。
Embodiment 2. FIG.
In the present embodiment, the outer periphery of each of the fiber bundles 4 as the core material is covered with the core material coating material 8 as the resin, and the coated core material 12 covered with the core material coating material 8 is bundled. This is different from the first embodiment in that the rope core 11 is integrated. Even in this embodiment, the material of the core material is not limited. This embodiment will be described using a fiber bundle 4 as a core material.
 図8は実施の形態2のエレベータロープ10の断面図である。実施の形態2のエレベータロープ10は、実施の形態1と同様に、ロープ芯11の外周に配置され撚り合わせられている撚り線からなる複数本(この例では8本)の鋼製ストランド3とを有している。ロープ芯11はロープ芯被覆材7により被覆される。複数本の芯材である繊維束4のそれぞれが芯材被覆材8の樹脂で被覆され被覆芯材12となる。図8のように被覆芯材12同士が樹脂を介して一体化される。 FIG. 8 is a sectional view of the elevator rope 10 according to the second embodiment. Similarly to the first embodiment, the elevator rope 10 according to the second embodiment includes a plurality of (8 in this example) steel strands 3 made of twisted wires arranged on the outer periphery of the rope core 11 and twisted together. have. The rope core 11 is covered with a rope core covering material 7. Each of the fiber bundles 4, which are a plurality of core materials, is coated with the resin of the core material coating material 8 to form a coated core material 12. As shown in FIG. 8, the coated core members 12 are integrated with each other through a resin.

 図9は実施の形態2のロープ芯11を示す図である。図9はロープ芯11の断面図と側面図からなる。図9では、ロープ芯被覆材7は図示しない。本実施の形態では、被覆芯材12が束ねられて一体化されるロープ芯11の外周が樹脂であるロープ芯被覆材7により被覆されているが、これに限定されるわけではなく、ロープ芯11を取り囲む被覆はなくてもよく限定されない。
.
FIG. 9 is a view showing the rope core 11 of the second embodiment. FIG. 9 includes a cross-sectional view and a side view of the rope core 11. In FIG. 9, the rope core covering material 7 is not shown. In the present embodiment, the outer periphery of the rope core 11 in which the coated core material 12 is bundled and integrated is covered with the rope core coating material 7 that is a resin. However, the present invention is not limited to this. There may be no coating surrounding 11 and it is not limited.
 ロープ芯被覆材7は、鋼製ストランド3と繊維束4の直接接触を防いで、エレベータロープ10使用中に繊維束4が損傷するのを抑制する役割を持つ。ロープ芯被覆材7は、撚られた、あるいは編まれた合成繊維か、押出成形によって成形される樹脂が良い。 The rope core covering material 7 has a role of preventing direct contact between the steel strand 3 and the fiber bundle 4 and suppressing damage of the fiber bundle 4 during use of the elevator rope 10. The rope core covering material 7 is preferably a twisted or knitted synthetic fiber or a resin formed by extrusion.
 合成繊維の場合、耐摩耗性の高い合成繊維が好ましく、例えばパラ型アラミド繊維、メタ型アラミド繊維、ポリアリレート繊維、ポリエステル繊維などから選択されるが、この限りではない。 In the case of a synthetic fiber, a synthetic fiber having high wear resistance is preferable, and is selected from, for example, para-type aramid fiber, meta-type aramid fiber, polyarylate fiber, and polyester fiber, but is not limited thereto.
 押出成形でロープ芯被覆材7を成形する場合の樹脂は、耐摩耗性が高く、柔軟な樹脂が好ましく、例えばポリエチレン、ポリプロピレン、ポリウレタンから選択されるが、この限りではない。ただし、繊維束4で使用する樹脂の融点よりも低い温度で成形される樹脂が良い。繊維束4で使用する樹脂の融点よりも高い温度で成形される樹脂を使う場合、成形時の熱で繊維束4が融解、損傷する恐れがあるためである。押出成形の方法としては、電線などの線状物を樹脂で被覆する方法と同様の方法が適用できる。 The resin for forming the rope core covering material 7 by extrusion molding is preferably a flexible resin having high wear resistance and is selected from, for example, polyethylene, polypropylene, and polyurethane, but is not limited thereto. However, a resin molded at a temperature lower than the melting point of the resin used in the fiber bundle 4 is preferable. This is because when the resin molded at a temperature higher than the melting point of the resin used in the fiber bundle 4 is used, the fiber bundle 4 may be melted and damaged by heat during molding. As the extrusion molding method, a method similar to the method of coating a linear object such as an electric wire with a resin can be applied.
 ロープ芯の被覆は二重以上の構成であってもよい。例えば、繊維束4を束ねてなるロープ芯11の外周を合成繊維で編んで被覆し、その外周がさらに押出成形で樹脂により被覆されていても構わない。ロープ芯被覆材7により、ロープ芯11の繊維と鋼製ストランド3の直接接触を防ぎ、エレベータロープ使用中におけるロープ芯11の繊維の損傷を抑制することができる。 The covering of the rope core may be a double or more structure. For example, the outer periphery of the rope core 11 formed by bundling the fiber bundle 4 may be knitted and covered with synthetic fiber, and the outer periphery may be further covered with a resin by extrusion molding. The rope core covering material 7 can prevent direct contact between the fibers of the rope core 11 and the steel strands 3, and can suppress damage to the fibers of the rope core 11 during use of the elevator rope.
 図10は実施の形態2のロープ芯11を構成する被覆芯材12を示す図である。図10は被覆芯材12の断面図と側面図からなる。被覆芯材12は、それぞれが被覆される。またロープ芯11は、被覆芯材12が束ねられることで一体化されている。ここで一体化とは、芯材被覆材8同士が固着されて一体化されている場合だけでなく、被覆芯材12が束ねられることによる芯材被覆材8同士の摩擦で一体化するものも含まれる。一体化の定義は実施の形態1で述べた通りである。 FIG. 10 is a view showing a coated core material 12 constituting the rope core 11 of the second embodiment. FIG. 10 includes a cross-sectional view and a side view of the coated core material 12. Each of the coated core materials 12 is coated. The rope core 11 is integrated by bundling the coated core material 12. Here, the term “integrated” refers not only to the case where the core material covering materials 8 are fixed and integrated, but also the case where the core material covering materials 8 are integrated by friction between the core material covering materials 8 being bundled. included. The definition of integration is as described in the first embodiment.
 芯材被覆材8は、押出成形で、電線などの線状物を熱可塑性樹脂で被覆する方法と同様の方法が適用できる。芯材被覆材8に使用する樹脂は、耐摩耗性が高く、柔軟な樹脂が好ましく、例えばポリエチレン、ポリプロピレン、ポリウレタンから選択されるが、この限りではない。ただし、被覆芯材12で使用する樹脂の融点よりも低い温度で成形される樹脂が良い。被覆芯材12で使用する樹脂の融点よりも高い温度で成形される樹脂を使う場合、成形時の熱で繊維束4が融解、損傷する恐れがあるためである。 The core material covering material 8 can be applied by a method similar to the method of covering a linear object such as an electric wire with a thermoplastic resin by extrusion molding. The resin used for the core material covering material 8 has high wear resistance and is preferably a flexible resin, and is selected from, for example, polyethylene, polypropylene, and polyurethane, but is not limited thereto. However, a resin molded at a temperature lower than the melting point of the resin used for the coated core material 12 is preferable. This is because, when using a resin that is molded at a temperature higher than the melting point of the resin used for the coated core material 12, the fiber bundle 4 may be melted and damaged by heat during molding.
 本実施の形態では、樹脂で被覆された被覆芯材12を束ねることで一体化しているが、一体化のされ方は限定されない。例えば、先述した通り、被覆芯材12同士を固着せず、摩擦力で一体化してもよいし、芯材被覆材8同士を固着して一体化してもよい。芯材被覆材8は摩擦力の高い材質が好適である。芯材被覆材8を熱可塑性樹脂とすることでより摩擦力をあげて一体化できる。 In this embodiment, the covering core material 12 coated with resin is integrated by bundling, but the way of integration is not limited. For example, as described above, the coated core materials 12 may not be fixed to each other and may be integrated by frictional force, or the core material coating materials 8 may be fixed to be integrated. The core material covering material 8 is preferably made of a material having a high frictional force. When the core material covering material 8 is made of a thermoplastic resin, it can be integrated with higher frictional force.
 被覆芯材12同士の固着の仕方としては、例えば、被覆芯材12の芯材被覆材8の樹脂同士をそれぞれ熱融着することで、被覆芯材12同士を一体化してもよい。被覆芯材12を芯材被覆材8の融点あるいは融点以上かつ繊維束4の融点以下に加熱された状態にして、複数本の被覆芯材12同士の芯材被覆材8を熱融着させて一体化する方法がある。芯材被覆材8が熱可塑性樹脂であれば熱融着させやすく好適である。これにより接着剤など使わずに、被覆芯材12同士の芯材被覆材8を固着させることが可能となる。 As a method of fixing the coated core materials 12, the coated core materials 12 may be integrated by, for example, thermally fusing the resins of the core material coated material 8 of the coated core material 12. The coated core material 12 is heated to the melting point of the core coating material 8 or higher than the melting point and lower than the melting point of the fiber bundle 4, and the core coating material 8 of the plurality of coated core materials 12 is heat-sealed. There is a way to integrate. If the core material covering material 8 is a thermoplastic resin, it is suitable for easy thermal fusion. Accordingly, the core material covering material 8 between the coated core materials 12 can be fixed without using an adhesive or the like.
 また、被覆芯材12の芯材被覆材8の樹脂同士をそれぞれ接着剤により接着して一体化してもよい。被覆芯材12の芯材被覆材8同士の接着の仕方としては、芯材被覆材8の外周に接着剤を塗布した状態で、複数本の被覆芯材12の芯材被覆材8同士を密着させて一体化する方法がある。本実施の形態では固着のさせ方として、熱融着と接着剤による接着を説明したが、この方法に限定される訳ではなく、固着のされ方は限定されない。その他の固着の方法としては、例えば被覆芯材12同士に圧力をかけることで圧着させるようにしてもよい。 Further, the resins of the core material covering material 8 of the coated core material 12 may be integrated by bonding with an adhesive. As a method of bonding the core material coating materials 8 of the coated core material 12, the core material coating materials 8 of the plurality of coated core materials 12 are in close contact with each other with the adhesive applied to the outer periphery of the core material coating material 8. There is a method of integrating them. In the present embodiment, as a method of fixing, heat fusion and adhesion using an adhesive have been described. However, the method is not limited to this method, and the method of fixing is not limited. As another fixing method, for example, pressure may be applied to the coated core members 12 by applying pressure to each other.
 なお、本実施の形態では実施の形態1と異なる部分を説明した。それ以外の部分については実施の形態1と同様であるとする。繊維は一般に束ねる本数が多くなるほど、全ての繊維を均等に引っ張ることは困難になるが、被覆芯材12を束ねて一体化することにより、均等に引っ張ることが可能となる。その結果、被覆芯材12を束ねて一体化したロープ芯11の強度利用率を高めることができ、エレベータロープ10の強度を高めることができる。芯材を繊維束4とすることで、より質量比強度を高めることができる。 In the present embodiment, parts different from the first embodiment have been described. The other parts are the same as those in the first embodiment. Generally, the more fibers are bundled, the more difficult it is to pull all the fibers evenly. However, the fibers can be pulled evenly by bundling the covering core material 12 together. As a result, the strength utilization factor of the rope core 11 in which the covering core material 12 is bundled and integrated can be increased, and the strength of the elevator rope 10 can be increased. By making the core material into the fiber bundle 4, the mass specific strength can be further increased.
 さらに、芯材被覆材8は鋼製ストランド3と繊維束4の直接接触も防ぐため、繊維束4の損傷を抑制できる。また、ロープ芯被覆を有することにより、エレベータロープ10使用中に発生する繊維束4の損傷をよりいっそう抑制することができ、エレベータロープ10の長寿命化を図る事ができる。 Furthermore, since the core material covering material 8 prevents direct contact between the steel strand 3 and the fiber bundle 4, damage to the fiber bundle 4 can be suppressed. Moreover, by having a rope core coating | cover, the damage of the fiber bundle 4 which generate | occur | produces during use of the elevator rope 10 can be suppressed further, and the lifetime of the elevator rope 10 can be achieved.
 実施の形態3.
 本実施の形態では、ロープ芯11の外周に配置される鋼製ストランド16の本数が12本となっている点で実施の形態1、2とは異なっている。
Embodiment 3 FIG.
The present embodiment is different from the first and second embodiments in that the number of steel strands 16 disposed on the outer periphery of the rope core 11 is twelve.
 図11は実施の形態3のエレベータロープ15の断面図である。図11では実施の形態2のロープ芯11が適用された場合の図である。実施の形態2のロープ芯11は、芯材として繊維束4、繊維束4が芯材被覆材8で被覆された被覆芯材12を有し、ロープ芯11はロープ芯被覆材7で被覆される。本実施の形態では、ロープ芯11を適用しているが、これに限定される訳ではなく、質量比強度のより高いロープ芯であれば何でもよい。実施の形態1、2で説明してきたロープ芯2、6も含まれる。 FIG. 11 is a sectional view of the elevator rope 15 according to the third embodiment. In FIG. 11, it is a figure at the time of the rope core 11 of Embodiment 2 being applied. The rope core 11 of the second embodiment has a fiber bundle 4 as a core material, and a coated core material 12 in which the fiber bundle 4 is coated with a core material coating material 8. The rope core 11 is coated with the rope core coating material 7. The In this embodiment, the rope core 11 is applied, but the present invention is not limited to this, and any rope core having a higher mass specific strength may be used. The rope cores 2 and 6 described in the first and second embodiments are also included.
 実施の形態3のエレベータロープ15では、実施の形態1、2で示した8本の鋼製ストランド3が巻きつけられた構造と比較して、エレベータロープ15の断面積に対する鋼製ストランド16の断面積の割合が低く、エレベータロープが軽量化される。具体的には、8本の鋼製ストランド3を用いる場合、鋼製ストランド3の断面積の割合は46%であり、12本の鋼製ストランド16を用いる場合、断面積の割合は36%である。 In the elevator rope 15 of the third embodiment, compared to the structure in which the eight steel strands 3 shown in the first and second embodiments are wound, the breaking of the steel strand 16 with respect to the cross-sectional area of the elevator rope 15 is reduced. The area ratio is low, and the weight of the elevator rope is reduced. Specifically, when 8 steel strands 3 are used, the cross-sectional area ratio of the steel strands 3 is 46%, and when 12 steel strands 16 are used, the cross-sectional area ratio is 36%. is there.
 なお、エレベータロープ15の断面積は、エレベータロープ15の公称径から計算することとする。なお、本実施の形態では実施の形態1、2と異なる部分を説明した。それ以外の部分については実施の形態1、2と同様であるとする。 Note that the sectional area of the elevator rope 15 is calculated from the nominal diameter of the elevator rope 15. In the present embodiment, the parts different from the first and second embodiments have been described. The other parts are the same as in the first and second embodiments.
 このように、鋼製ストランド16の断面積の割合が低くなった分、同じ径のエレベータロープでも、ロープ芯11の径を太くすることができ、ロープ芯11の分担荷重を増加させることができる。その結果、エレベータロープ15の強度を低下させずに軽量化でき、エレベータロープ15の質量比強度をさらに向上させることができる。 In this way, the diameter of the rope core 11 can be increased even with an elevator rope having the same diameter as the ratio of the cross-sectional area of the steel strand 16 is reduced, and the shared load of the rope core 11 can be increased. . As a result, the weight of the elevator rope 15 can be reduced without reducing the strength, and the mass specific strength of the elevator rope 15 can be further improved.
 なお、実施の形態3では12本の鋼製ストランド16を用いた例を示したが、13本以上の鋼製ストランドを用いて、鋼製ストランドの断面積の割合をさらに低下させ、ロープ芯11の径を更に太くし、エレベータロープ15をさらに軽量化することも可能である。 In addition, although the example which used 12 steel strands 16 was shown in Embodiment 3, the ratio of the cross-sectional area of steel strands is further reduced using 13 or more steel strands, and the rope core 11 is used. It is also possible to further increase the diameter of the elevator rope 15 and further reduce the weight of the elevator rope 15.
 なお、実施の形態1~3の構成は、あらゆる外径のエレベータロープに適用できる。また、ロープ芯の外径は、エレベータロープの外径に対して適宜設定される。また設定されるロープ芯の外径に応じて、繊維束を束ねる本数、および繊維束に含める繊維の数も適宜設定される。更に、各鋼製ストランドの素線構成は特に制限されない。 The configurations of the first to third embodiments can be applied to elevator ropes having any outer diameter. Further, the outer diameter of the rope core is appropriately set with respect to the outer diameter of the elevator rope. Further, the number of bundles of fiber bundles and the number of fibers included in the fiber bundles are also appropriately set according to the set outer diameter of the rope core. Furthermore, the wire configuration of each steel strand is not particularly limited.
 さらにまた、この発明の鋼製は、かご及び吊り合い錘を吊り下げる主ロープだけでなく、かご及び吊り合いおもりから吊り下げられるコンペンロープにも適用することが出来る。次に、実施の形態1~3に関する効果について種類の異なるエレベータロープの測定結果の比較を基に説明する。 Furthermore, the steel of the present invention can be applied not only to the main rope that suspends the car and the suspension weight but also to the compen- sion rope that is suspended from the cage and the suspension weight. Next, effects related to the first to third embodiments will be described based on comparison of measurement results of different types of elevator ropes.
 図12は条件のことなるエレベータロープそれぞれの、測定したエレベータロープのロープ種別ごとの性能値を表す図である。ここで性能値とは、単位長さあたり質量(kg/m)、伸び0.5%時の荷重(kN)、破断荷重(kN)、質量比強度(kN/kg/m)、曲げ疲労試験後高度残存率(%)をいう。まず、図12のロープ種別のロープ1~4、繊維心ロープ、鋼心ロープについて詳しく説明する。 FIG. 12 is a diagram showing performance values for each type of elevator rope measured for each of the elevator ropes having different conditions. Here, the performance value means mass per unit length (kg / m), load at 0.5% elongation (kN), breaking load (kN), mass specific strength (kN / kg / m), bending fatigue test The post-high residual rate (%). First, the ropes 1 to 4 of the rope type shown in FIG. 12, the fiber core rope, and the steel core rope will be described in detail.
 ロープ1は、ポリアリレート繊維のベクトランHT(クラレ社製)1670dtex(繊維300本構成)を28本使用して撚り、繊維束としたロープである。この繊維束の撚り縮み率(Lf-Ly)/Lfは、9%である。作製した繊維束7本を撚らずに長手方向に配列させ、外径約7mmのロープ芯を作製した。 The rope 1 is a rope that is twisted using 28 polyoctylate fibers Vectran HT (manufactured by Kuraray Co., Ltd.) 1670 dtex (configuration of 300 fibers) to form a fiber bundle. The strand shrinkage (Lf−Ly) / Lf of this fiber bundle is 9%. Seven prepared fiber bundles were arranged in the longitudinal direction without twisting to prepare a rope core having an outer diameter of about 7 mm.
 このロープ芯の外周に、ロープ芯に50kgfの荷重を付与した状態で、8本の鋼製ストランドを巻き付け、外径12mmの8×S(19)のエレベータロープをロープ1として作製した。ロープ1はこのように、繊維束を撚らずに束ねてロープ芯としたエレベータロープである。 8 Steel strands were wound around the outer periphery of the rope core in a state where a load of 50 kgf was applied to the rope core, and an 8 × S (19) elevator rope having an outer diameter of 12 mm was produced as the rope 1. In this way, the rope 1 is an elevator rope that bundles fiber bundles without twisting to form a rope core.
 ロープ2は、ポリアリレート繊維のベクトランHT(クラレ社製)1670dtex(繊維300本構成)を21本使用して撚り、繊維束としたロープである。この繊維束の撚り縮み率(Lf-Ly)/Lfは、9%である。作製した繊維束7本を撚らずに長手方向に配列させ、外周をポリエチレン樹脂ノバテックHB530(日本ポリエチレン社製)で押出成形により被覆し、外径約7mmのロープ芯を作製した。 The rope 2 is a rope that is twisted by using 21 strands of polyarylate fiber Vectran HT (manufactured by Kuraray) 1670 dtex (configuration of 300 fibers) to form a fiber bundle. The strand shrinkage (Lf−Ly) / Lf of this fiber bundle is 9%. Seven prepared fiber bundles were arranged in the longitudinal direction without twisting, and the outer periphery was covered with polyethylene resin Novatec HB530 (manufactured by Nippon Polyethylene Co., Ltd.) by extrusion to produce a rope core having an outer diameter of about 7 mm.
 このロープ芯の外周に、ロープ芯に50kgfの荷重を付与した状態で、8本の鋼製ストランドを巻き付け、外径12mmの8×S(19)のエレベータロープをロープ2として作製した。ロープ2はこのように、繊維束を撚らずに束ねてロープ芯として、更にロープ芯を樹脂により被覆したエレベータロープである。 8 Steel strands were wound around the outer periphery of the rope core in a state where a load of 50 kgf was applied to the rope core, and an 8 × S (19) elevator rope having an outer diameter of 12 mm was produced as the rope 2. In this way, the rope 2 is an elevator rope in which fiber bundles are bundled without twisting to form a rope core, and the rope core is further covered with a resin.
 ロープ3は、ポリアリレート繊維のベクトランHT(クラレ社製)1670dtex(繊維300本構成)を21本使用して撚り、繊維束としたロープである。この繊維束の撚り縮み率(Lf-Ly)/Lfは、9%である。作製した繊維束の外周をポリエチレン樹脂ノバテックHB530(日本ポリエチレン社製)で押出成形により被覆した。被覆した繊維束7本を撚らずに長手方向に配列させ、150℃で加圧密着後、冷却させ、外径約7mmのロープ芯を作製した。 The rope 3 is a rope formed by twisting 21 pieces of polyarylate fiber Vectran HT (manufactured by Kuraray Co., Ltd.) 1670 dtex (configuration of 300 fibers) into a fiber bundle. The strand shrinkage (Lf−Ly) / Lf of this fiber bundle is 9%. The outer periphery of the produced fiber bundle was covered with polyethylene resin Novatec HB530 (manufactured by Nippon Polyethylene Co., Ltd.) by extrusion molding. Seven coated fiber bundles were arranged in the longitudinal direction without twisting, and after pressure-contacting at 150 ° C., cooling was performed to produce a rope core having an outer diameter of about 7 mm.
 このロープ芯の外周に、ロープ芯に50kgfの荷重を付与した状態で、8本の鋼製ストランドを巻き付け、外径12mmの8×S(19)のエレベータロープをロープ3として作製した。ロープ3はこのように、繊維束のそれぞれを被覆して束ねて一体化したロープ芯としたエレベータロープである。 8 Steel strands were wound around the outer periphery of the rope core in a state where a load of 50 kgf was applied to the rope core, and an 8 × S (19) elevator rope having an outer diameter of 12 mm was produced as the rope 3. In this way, the rope 3 is an elevator rope that covers and bundles each of the fiber bundles to form an integrated rope core.
 ロープ4は、ポリアリレート繊維のベクトランHT(クラレ社製)1670dtex(繊維300本構成)を28本使用して撚り、繊維束としたロープである。この繊維束の撚り縮み率(Lf-Ly)/Lfは、9%である。作製した繊維束の外周をポリエチレン樹脂ノバテックHB530(日本ポリエチレン社製)で押出成形により被覆した。被覆した繊維束7本を撚らずに長手方向に配列させ、150℃で加圧密着後、冷却させ、外径約8mmのロープ芯を作製した。 The rope 4 is a rope that is twisted by using 28 poly acrylate fiber Vectran HT (manufactured by Kuraray Co., Ltd.) 1670 dtex (configuration of 300 fibers) to form a fiber bundle. The strand shrinkage (Lf−Ly) / Lf of this fiber bundle is 9%. The outer periphery of the produced fiber bundle was covered with polyethylene resin Novatec HB530 (manufactured by Nippon Polyethylene Co., Ltd.) by extrusion molding. Seven coated fiber bundles were arranged in the longitudinal direction without twisting, and after pressure-contacting at 150 ° C., cooling was performed to produce a rope core having an outer diameter of about 8 mm.
 このロープ芯の外周に、ロープ芯に50kgfの荷重を付与した状態で、12本の鋼製ストランドを巻き付け、外径12mmの12×S(19)のエレベータロープをロープ4として作製した。ロープ4はこのように、繊維束のそれぞれを被覆して束ねて一体化したロープ芯のストランドの数を12本と数を増やして、鋼製ストランド合計の断面積を小さくし、エレベータロープの外径が同じであると、ロープ芯の外径を大きくする余裕ができるので、ロープ芯の外径を7mmから8mmに大きくしたエレベータロープである。 12 steel strands were wound around the outer periphery of the rope core with a load of 50 kgf applied to the rope core, and a 12 × S (19) elevator rope having an outer diameter of 12 mm was produced as the rope 4. In this way, the rope 4 increases the number of strands of the rope core integrated by covering and bundling each of the fiber bundles, increasing the number of the strands to 12 and reducing the total cross-sectional area of the steel strands. If the diameters are the same, there is room for increasing the outer diameter of the rope core, so the elevator rope has an outer diameter increased from 7 mm to 8 mm.
 繊維心ロープは、ロープ芯に三つ打ちの麻繊維ロープを使用し、外径約7mmのロープ芯に8本の鋼製ストランドを巻き付けた外径12mmの8×S(19)のエレベータロープである。本エレベータロープは一般的に使用されているものである。 The fiber core rope is an 8 × S (19) elevator rope with an outer diameter of 12 mm, using a three-strand hemp fiber rope as the rope core, and 8 steel strands wrapped around a rope core with an outer diameter of about 7 mm. is there. This elevator rope is generally used.
 鋼心ロープは、ロープ芯が鋼芯であるIWRC(Independent Wire Rope Core)の8本の鋼製ストランドを巻き付けた外径12mmの8×S(19)のロープ芯が鋼芯の一般的なエレベータロープである。 The steel core rope is a general elevator with an 8xS (19) rope core with an outer diameter of 12 mm, wrapped with 8 steel strands of IWRC (Independent Wire Rope Core), whose rope core is a steel core. It is a rope.
 ロープ1~4および繊維心ロープ、鋼心ロープについての各性能値の測定値を比較する。繊維心ロープは一般的な従来のエレベータロープであり、鋼心ロープは一般的なIWRCロープである。これらよりも、本発明でのロープ1~4の方が質量比強度が高いことがわかる。 Compare the measured values of each performance value for ropes 1 to 4, fiber core rope, and steel core rope. The fiber core rope is a general conventional elevator rope, and the steel core rope is a general IWRC rope. It can be seen that the ropes 1 to 4 of the present invention have higher mass specific strength than these.
 また繊維心ロープとロープ1~3を比較した場合、ロープ芯の外径、鋼製ストランドの本数、エレベータロープの外径が同じであるにも関わらずロープ1~4の方が伸び0.5%時の荷重が高い。これにより、ロープ1~3のように、繊維束を撚らずに束ねてなるロープ芯の方がより伸び0.5%という、エレベータロープの伸び始めに荷重を分担できていることが分かる。 When comparing the fiber core rope and the ropes 1 to 3, the ropes 1 to 4 are stretched 0.55 despite the same outer diameter of the rope core, the number of steel strands, and the outer diameter of the elevator rope. % Load is high. As a result, it can be seen that the rope core formed by bundling the fiber bundle without twisting like the ropes 1 to 3 can share the load at the beginning of the elongation of the elevator rope, that is, the elongation is 0.5%.
 ロープ1とロープ2を比較した場合、ロープ1の方が破断荷重が高い。これは、ロープ2はロープ1同一のロープ芯の外径で、ロープ芯被覆を設けるために、繊維束のポリアリレート繊維の使用量をロープ1の28本から21本に減少させていることに起因していると推定される。一方、曲げ疲労試験後の強度残存率は、ロープ2の方が高くなっている。これは、ロープ芯被覆を設けていることにより、曲げ疲労試験での繊維の損傷を抑制できているためであると推定される。 When comparing rope 1 and rope 2, rope 1 has a higher breaking load. This is because the rope 2 has the same outer diameter of the rope core as the rope 1 and the amount of polyarylate fibers in the fiber bundle is reduced from 28 to 21 in the rope 1 in order to provide the rope core coating. Presumed to be due. On the other hand, the residual strength rate after the bending fatigue test is higher in the rope 2. This is presumably because the fiber core damage can be suppressed in the bending fatigue test by providing the rope core coating.
 ロープ2とロープ3を比較した場合、ロープ3の方が破断荷重が高い。ロープ2とロープ3の違いは、ロープ芯の外周を樹脂で被覆しているのか、繊維束のそれぞれを樹脂で被覆して一体化しているかの違いである。繊維束のそれぞれを樹脂で被覆して一体化したほうが破断荷重が高くなることが分かる。 When comparing rope 2 and rope 3, rope 3 has a higher breaking load. The difference between the rope 2 and the rope 3 is whether the outer periphery of the rope core is covered with a resin or whether each fiber bundle is covered with a resin and integrated. It can be seen that the breaking load increases when each of the fiber bundles is coated and integrated with a resin.
 これは、繊維束のそれぞれを樹脂で被覆することにより、全ての繊維束を均等に引っ張れており、ロープ芯内に含まれる繊維の強度利用率を高めることができているためと推定される。全ての繊維束を均等に引っ張れるということは、繊維束同士のずれがおきていないことも推定される。また、ロープ2とロープ3の重さの差は大きくなく、それ故、質量比強度も大きく上がっている。 This is presumably because all the fiber bundles are evenly pulled by coating each of the fiber bundles with a resin, and the strength utilization rate of the fibers contained in the rope core can be increased. The fact that all fiber bundles can be pulled evenly is also assumed that there is no deviation between the fiber bundles. Further, the difference in weight between the rope 2 and the rope 3 is not large, and therefore the mass specific strength is greatly increased.
 ロープ3とロープ4を比較した場合、破断荷重はロープ3の方が高い。これは、ロープ3の鋼製ストランド8本合計の断面積のほうが、ロープ4の鋼製ストランド12本合計の断面積よりも大きいためであると推定される。 比較 When rope 3 and rope 4 are compared, rope 3 has a higher breaking load. This is presumably because the total cross-sectional area of the eight steel strands of the rope 3 is larger than the total cross-sectional area of the twelve steel strands of the rope 4.
 単位長さあたり質量は、鋼製ストランド合計の断面積が小さいほど軽いため、質量比強度はロープ4の方がロープ3より高い結果となる。ロープ4のロープ芯の外径のほうが大きく、ロープ4のロープ芯の断面積がロープ3のロープ芯の断面積より大きくなっているが、ロープ芯は軽い合成繊維でできているので、結果として質量比強度はロープ4が高くなる。 Since the mass per unit length is lighter as the total cross-sectional area of the steel strand is smaller, the mass specific strength is higher in the rope 4 than in the rope 3. The outer diameter of the rope core of the rope 4 is larger, and the cross-sectional area of the rope core of the rope 4 is larger than the cross-sectional area of the rope core of the rope 3, but the rope core is made of light synthetic fiber. The rope 4 has a higher mass specific strength.
 同じエレベータロープの外径で、破断荷重を多少低下させてでも質量比強度を高めたい場合、鋼製ストランド断面積を減少させ、ロープ芯を太くすることが効果的であると分かる。 It can be seen that it is effective to reduce the cross-sectional area of the steel strand and make the rope core thicker when it is desired to increase the mass specific strength even if the breaking load is slightly reduced with the same outer diameter of the elevator rope.
 図13は、本発明のエレベータロープ5がエレベータに取り付けられた場合の一例を示す図である。図13では一般的なエレベータの籠17にエレベータロープ5が接続される。エレベータの籠17が昇降する場合に、エレベータロープ5はシーブ18を通じて引っ張られる。エレベータロープがシープ18を通過する際に、エレベータロープ5が曲げられ、通過した後に、曲げが戻る。 FIG. 13 is a diagram showing an example when the elevator rope 5 of the present invention is attached to an elevator. In FIG. 13, the elevator rope 5 is connected to a general elevator cage 17. The elevator rope 5 is pulled through the sheave 18 when the elevator rod 17 moves up and down. When the elevator rope passes through the sheep 18, the elevator rope 5 is bent, and after passing, the bending returns.
 図13は一例であって、エレベータロープ5の接続のされ方は限定されない。籠17に直接、間接的に接続され、籠17を昇降させることができればエレベータロープ5の接続の仕方は限定されない。図13では実施の形態1のエレベータロープ5としているが、これに限定される訳ではなく、実施の形態2や実施の形態3で説明されたエレベータロープ10,15であってもよい。 FIG. 13 is an example, and the way the elevator rope 5 is connected is not limited. The method of connecting the elevator rope 5 is not limited as long as it is directly and indirectly connected to the kite 17 and can be raised and lowered. Although the elevator rope 5 according to the first embodiment is illustrated in FIG. 13, the elevator rope 5 is not limited thereto, and may be the elevator ropes 10 and 15 described in the second and third embodiments.
 1、5、10、15:エレベータロープ、2、6、11:ロープ芯、3、12、16:鋼製ストランド、4:繊維束、9:樹脂、8:芯材被覆材、12:被覆芯材 1, 5, 10, 15: Elevator rope, 2, 6, 11: Rope core, 3, 12, 16: Steel strand, 4: Fiber bundle, 9: Resin, 8: Core material covering material, 12: Coated core Material

Claims (8)

  1.  複数本の芯材同士を撚らずに一体化したロープ芯と、
     前記ロープ芯の外周に配置されるストランドと、
     を備えることを特徴とするエレベータロープ。
    A rope core integrated without twisting a plurality of cores;
    A strand disposed on the outer periphery of the rope core;
    An elevator rope characterized by comprising:
  2.  前記ロープ芯は、前記複数本の芯材のそれぞれが樹脂を介して一体化される
     ことを特徴とする請求項1に記載のエレベータロープ。
    The elevator rope according to claim 1, wherein each of the plurality of core members is integrated with the rope core via a resin.
  3.  前記ロープ芯は、前記複数本の芯材のそれぞれが樹脂で被覆され被覆芯材となり、前記被覆芯材同士が前記樹脂を介して一体化される
     ことを特徴とする請求項1に記載のエレベータロープ。
    The elevator according to claim 1, wherein each of the plurality of core materials is coated with a resin to form a coated core material, and the coated core materials are integrated with each other via the resin. rope.
  4.  前記ロープ芯は、前記被覆芯材の前記樹脂同士がそれぞれ接着されて一体化される
     ことを特徴とする請求項3に記載のエレベータロープ。
    The elevator rope according to claim 3, wherein the resin of the coated core material is bonded and integrated with the rope core.
  5.  前記ロープ芯は、前記被覆芯材の前記樹脂同士がそれぞれ熱融着されて一体化される
     ことを特徴とする請求項3に記載のエレベータロープ。
    The elevator rope according to claim 3, wherein the rope core is integrated by heat-sealing the resins of the coated core material.
  6.  前記複数本の芯材のそれぞれが、撚られた芯材である
     ことを特徴とする請求項1から請求項5のいずれか一項に記載のエレベータロープ。
    The elevator rope according to any one of claims 1 to 5, wherein each of the plurality of core members is a twisted core member.
  7.  前記ストランドは、鋼製である鋼製ストランドであり、
     前記ロープ芯の撚り縮率が15%以下である
     ことを特徴とする請求項6に記載のエレベータロープ。
    The strand is a steel strand made of steel,
    The elevator rope according to claim 6, wherein a twist reduction ratio of the rope core is 15% or less.
  8.  前記ストランドは、鋼製である鋼製ストランドであり、
     前記複数本の芯材のそれぞれの撚り縮率が15%以下であり等しくなる
     ことを特徴とする請求項6に記載のエレベータロープ。
    The strand is a steel strand made of steel,
    The elevator rope according to claim 6, wherein each of the plurality of core members has a twist reduction ratio equal to or less than 15%.
PCT/JP2018/010808 2018-03-19 2018-03-19 Elevator rope WO2019180783A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112018007311.4T DE112018007311T5 (en) 2018-03-19 2018-03-19 ELEVATOR ROPE
PCT/JP2018/010808 WO2019180783A1 (en) 2018-03-19 2018-03-19 Elevator rope
KR1020207026028A KR102486074B1 (en) 2018-03-19 2018-03-19 elevator rope
CN201880090672.2A CN111867960B (en) 2018-03-19 2018-03-19 Elevator rope
JP2018533279A JP6414370B1 (en) 2018-03-19 2018-03-19 Elevator rope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010808 WO2019180783A1 (en) 2018-03-19 2018-03-19 Elevator rope

Publications (1)

Publication Number Publication Date
WO2019180783A1 true WO2019180783A1 (en) 2019-09-26

Family

ID=64017085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010808 WO2019180783A1 (en) 2018-03-19 2018-03-19 Elevator rope

Country Status (5)

Country Link
JP (1) JP6414370B1 (en)
KR (1) KR102486074B1 (en)
CN (1) CN111867960B (en)
DE (1) DE112018007311T5 (en)
WO (1) WO2019180783A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022044213A1 (en) * 2020-08-27 2022-03-03
WO2024013793A1 (en) * 2022-07-11 2024-01-18 三菱電機株式会社 Rope for elevator and elevator device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514226A (en) * 2011-04-14 2014-06-19 オーチス エレベータ カンパニー Covered rope or belt for elevator systems
WO2017138228A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Elevator rope and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0140490B1 (en) 1994-12-31 1999-02-18 김주용 Apparatus for opening and closing window by a hand in the case of accident
JPH10140490A (en) * 1996-11-13 1998-05-26 Tokyo Seiko Co Ltd Wire rope having fiber core
KR100830777B1 (en) * 2006-08-16 2008-05-20 미쓰비시덴키 가부시키가이샤 Rope for elevat0r and elevator
JP5404782B2 (en) * 2009-06-08 2014-02-05 三菱電機株式会社 Elevator rope and manufacturing method thereof
CN107577640B (en) * 2017-08-24 2020-07-03 常州纺织服装职业技术学院 Wool type yarn plying and twisting shrinkage prediction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514226A (en) * 2011-04-14 2014-06-19 オーチス エレベータ カンパニー Covered rope or belt for elevator systems
WO2017138228A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Elevator rope and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022044213A1 (en) * 2020-08-27 2022-03-03
WO2022044213A1 (en) * 2020-08-27 2022-03-03 三菱電機株式会社 Belt, method for producing same, and elevator
JP7357803B2 (en) 2020-08-27 2023-10-06 三菱電機株式会社 Belt, its manufacturing method, and elevator
WO2024013793A1 (en) * 2022-07-11 2024-01-18 三菱電機株式会社 Rope for elevator and elevator device

Also Published As

Publication number Publication date
JP6414370B1 (en) 2018-10-31
DE112018007311T5 (en) 2020-12-10
KR20200119295A (en) 2020-10-19
KR102486074B1 (en) 2023-01-06
CN111867960B (en) 2022-04-19
CN111867960A (en) 2020-10-30
JPWO2019180783A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP5478718B2 (en) Hybrid rope and manufacturing method thereof
US7650742B2 (en) Cable made of high strength fiber composite material
KR101088834B1 (en) Synthetic fiber rope for crane and the making method of it
JP4092237B2 (en) Fiber rope for rope
JP6305659B2 (en) Elevator rope and manufacturing method thereof
JP6414370B1 (en) Elevator rope
US11352743B2 (en) Synthetic fiber rope
JP5768568B2 (en) Elevator hoisting rope
EP1329413B1 (en) Hoisting rope
JP4034629B2 (en) Hybrid rope
US11578458B2 (en) Synthetic rope
WO2022079836A1 (en) Rope for elevators and process for producing same
CN107043059A (en) Elevator tensioning member
CN210315035U (en) Cable capable of resisting diagonal tear
JP7321390B2 (en) elevator rope

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533279

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207026028

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18910782

Country of ref document: EP

Kind code of ref document: A1