WO2019179703A1 - Ladesysteme zum laden von elektrischen energiespeichern von elektrofahrzeugen sowie dazugehörige verfahren - Google Patents

Ladesysteme zum laden von elektrischen energiespeichern von elektrofahrzeugen sowie dazugehörige verfahren Download PDF

Info

Publication number
WO2019179703A1
WO2019179703A1 PCT/EP2019/053832 EP2019053832W WO2019179703A1 WO 2019179703 A1 WO2019179703 A1 WO 2019179703A1 EP 2019053832 W EP2019053832 W EP 2019053832W WO 2019179703 A1 WO2019179703 A1 WO 2019179703A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charging system
energy storage
electrical energy
outlet
Prior art date
Application number
PCT/EP2019/053832
Other languages
English (en)
French (fr)
Inventor
Sebastian Bode
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN201980033872.9A priority Critical patent/CN112118982A/zh
Priority to EP19707306.7A priority patent/EP3749544A1/de
Priority to US16/981,803 priority patent/US11407324B2/en
Publication of WO2019179703A1 publication Critical patent/WO2019179703A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to charging systems for charging electric energy storage devices of electric vehicles. Moreover, the present invention relates to methods for charging electric energy storage of electric vehicles.
  • the interest here is directed to charging systems for La the electric energy storage of electric vehicles.
  • Such an electric vehicle may be a purely electrically driven vehicle or a hybrid vehicle.
  • different charging systems and charging methods are known. For example, a so-called
  • DC charging are performed, which is also referred to as DC fast charging.
  • an alternating current which is provided by a power supply network, converted using at least one transducer element or rectified rectified.
  • AC charging or AC charging is known.
  • the measuring devices used for this purpose or electricity meter must cover both in terms of electrical voltage, as well as in terms of electrical current a high dynamic range. While there are areas of the electrical voltage where charging actually does not take place, the charging current can become very small, even with a trickle charge.
  • Currently available measuring equipment for high DC currents reach a dynamic range of the current between 20 A and 550 A. With such measuring devices is thus an eichrechtskonforme measurement of electrical energy or performance in the trickle charge due to the required accuracy and the limited achievable dynamic range of the transducers and counter is not possible.
  • a charging system is used to charge an electric energy storage device of an electric vehicle.
  • the charging system includes an input for an alternating current, which is provided with an electrical energy source.
  • the charging system comprises at least one converter element for converting the alternating current into a direct current.
  • the charging system includes a charging outlet for connecting the La desystems with the electric vehicle.
  • the charging system is adapted to the at least one transducer element for
  • the charging system is adapted to the input for performing an alternating current of the electric energy storage to connect to the charging outlet.
  • the charging system can be used to charge the electrical energy storage of the electric vehicle.
  • the elec- cal energy storage can be in particular a battery, which may have a plurality of battery cells. This battery can also be referred to as a traction battery.
  • the electric vehicle may be a purely electrically powered vehicle.
  • the electric vehicle can also be a hybrid vehicle whose electrical energy store or its battery can be charged via a charging connection.
  • the charging system comprises the input to which the charging system is connected to an electrical energy source or a power supply network. An alternating current and / or an alternating voltage can be supplied to the charging system via this input. This alternating current can then with the at least one
  • Transducer element are converted into the direct current and / or a DC voltage clamping.
  • the at least one transducer element may comprise a rectifier.
  • the charging system has a plurality of transducer elements, which may be connected, for example, electrically in parallel.
  • the charging system comprises a charging outlet, where it can be electrically connected to the electric vehicle or to a charging port of the electric vehicle. At the charging outlet, a corresponding plug, a socket and / or a cable can be provided. If the electrical cal energy storage of the electric vehicle is supplied with the DC power, a DC charge or a so-called DC fast charging can be performed.
  • the charging system is also smartbil det to bind the input to perform an AC charging of the electrical energy storage with the charging outlet to ver.
  • the DC charging or the DC fast charging can be carried out. be led.
  • the AC charging or AC charging is possible.
  • the La desystems two different charging methods realized who the. Therefore, the charging system can be operated more flexible overall.
  • the charging system is adapted to first perform the DC charging and then switch to the AC power, if a current of the DC current falls below a predetermined threshold.
  • the water predetermined threshold can be, for example, 20 A.
  • a charging process in accordance with IEC 61851 can start. This can be made by means of a so-called 5% signaling on ISO 15118 order. After starting the charging process, the electric vehicle is charged with the DC fast charging technology. With increasing state of charge (SoC), the
  • Electric vehicle reduce the requested charging current or DC.
  • the charging system decides whether the charging process should be continued as a DC charging. For this purpose, it can be considered in particular special, whether the current intensity of the DC current falls below the threshold. It may also be provided that a change from the DC charging to the AC charging takes place if the state of charge of the battery has reached a predetermined value.
  • the switching or the change from the DC charging to the AC charging in dependence on at least one further criterion is performed.
  • a criterion for a customer request can come from a profile or an input.
  • the profile or the customer request can also be transferred from the electric vehicle to the charging system.
  • the current network situation or a state of electrical energy source or the Power supply network, which provides the alternating current are taken into account.
  • a current load that is, whether the components are needed for Schnellla tion at another charging outlet, be taken into account. Overall, this allows an efficient and user-friendly operation of the charging system.
  • the charging system has a direct current charging measuring device for determining the DC power required electric power or electrical energy.
  • the charging system in particular an AC charging measuring device for determining the electrical power required in the AC charging relationship or electrical energy. Characterized in that preferably switched from the DC charging to the AC charging tet, if the current of the DC current falls below the threshold value, it can be achieved that the dynamic range of the DC charging measuring device is sufficient. As already explained at the beginning, the dynamic range of the DC charging measuring device or of the energy meter for the direct current can be between 20 A and 550 A.
  • the electrical power required in DC charging can be averaged with the required accuracy.
  • the DC measurement can be done with a currently available DC charging measuring device or a DC counter in the first place.
  • the precision requirements for the components of the DC meter will be reduced by introducing the minimum measurable current, which will never be reflected in lower costs for the DC meter.
  • the required electrical power or energy can be determined using the AC charging measuring device or a corresponding energy meter for the AC and / or AC voltage.
  • Corresponding alternating current charging measuring devices or AC counters which are approved for all possible combinations of currents and voltages in AC charging, are on the market available.
  • billing can be done. By switching between the DC charging and the AC charging described above, the respective required electrical power can be accurately determined and thus the billing be performed precise.
  • the charging system preferably comprises a first switching device between the at least one converter element and the charging output, a second switching device between the input and the charging output and a control device for controlling the first switching device and the second switching device.
  • first switching device By means of the first switching device, the electrical connection between the at least one transducer element and the charging outlet can be switched. With the second Druckein direction, the electrical connection between the input of the charging system and the charging outlet can be switched.
  • the first and the second switching device can be controlled by means of the control device. Thus, it is easy to switch from the DC charging to the AC charging.
  • the charging system is configured to output a predetermined signal upon switching from the DC charging to the AC charging. If the charging system decides to change to the AC charge, it can signal this to the electric vehicle via the ISO 15118 protocol and charge again
  • the state "State E" can be signaled for a short time in order to avoid manipulation, the state-E signaling can be carried out in such a way that instead of the normatively required voltage of 0 V, a higher voltage is applied via a high-impedance resistor Actual unplugging of a charging cable can be detected in this way. strhack are released and may optionally be used otherwise.
  • the charging system is adapted to receive authentication data from the electric vehicle and to store the authentication data.
  • the authentication takes place via a method known from the prior art.
  • the authentication data who filed the so that they can be used for a subsequent charging again can be transferred and stored in the DC charging and thus used in the fol lowing AC charging.
  • the authentication data can be stored on a corresponding memory of the charging system.
  • the charging outlet is compatible with a Combo-2 vehicle clutch.
  • the charging outlet is designed as a so-called Combined Charging System (CCS).
  • CCS Combined Charging System
  • This vehicle clutch may correspond to the Type 2 vehicle clutch with two additional DC poles.
  • the charging output can have an AC part which has, for example, three connections for the phases, a connection for the neutral conductor and a connection for the protective conductor.
  • the AC part can have a connection to the dialogue between the charging system and the electric vehicle and a connection for limiting the charging current.
  • the charging outlet can also have a DC part with a positive and a negative terminal.
  • DC charging can be enabled.
  • the charging system has at least two charging outlets.
  • Each of the charging outputs can be connected to an electric vehicle.
  • the charging system may have a corresponding Steuerein direction and switching devices.
  • the high-priced components which are required for the DC charging when switching to the AC charging already be dynamically assigned to the other charging outlet of the charging system. Over there, a better utilization of the high-priced components can be achieved.
  • the charging system includes an input for an alternating current, which is provided with an electric power source.
  • the charging system includes at least one
  • the charging system comprises a charging outlet for connecting the charging system to the electric vehicle.
  • the charging system is designed to at least one
  • the charging system comprises a first DC charging device for determining the first
  • the charging system is designed to perform a second DC charging after the first DC charging, wherein the charging system has a second DC charging measuring device for Be tune the electrical power required in the second DC charging has.
  • another DC charging process can be performed after egg nem DC rapid charging, in which case another measuring device is used ge.
  • the current strength can be higher than the second DC charging.
  • the first direct current charging measuring device and the second direct current charging measuring device differ from one another with regard to their dynamic range.
  • a method according to the invention is used to charge an electric energy storage of an electric vehicle. The method includes converting an alternating current provided at an input of a charging system into a direct current by means of at least one transducer element.
  • the method involves performing a DC charging of the electrical energy storage device by connecting the at least one transducer element to a charging outlet of the charging system, wherein the electric vehicle is connected to the charging outlet.
  • the method comprises performing a Wech selstromladens the electrical energy storage after DC charging by connecting the input to the charging output.
  • a further method for charging an electrical energy store of an electric vehicle comprises converting an alternating current provided at an input of a charging system into a direct current by means of at least one converter element.
  • the method comprises performing a first DC charging of the electrical energy store by connecting the at least one
  • the method includes determining an electrical power required during the first DC charging by means of a first DC charging measuring device. Further, the method includes performing a second direct-current charging of the electric energy storage device after the first DC charging and determining an electric power required at the second DC charging by means of a second DC charging measuring device.
  • FIG. 1 shows a charging system for performing a Gleichstromla dens of the electrical energy storage of a
  • FIG. 2 shows a charging system according to an embodiment of the invention He for performing a DC charging as well as an AC charging of the electric energy gie appointmentss;
  • FIG. 3 shows a schematic representation of the charging system currency end of the AC charging
  • the charging system 1 shows a charging system 1 according to the prior art in a schematic representation.
  • the charging system 1 comprises egg nen input 2, which with an electrical energy source. 3 connected is.
  • the charging system 1 comprises at least one transducer element 4.
  • the charging system 1 comprises four transducer elements 4, which are electrically connected in parallel. When the transducer elements 4 is rectifier. With the rectifiers or the
  • Transducer elements 4 the voltage applied to the input 2 alternating current can be converted into a direct current.
  • the charging system 1 includes a charging outlet 5, with which an electric vehicle for charging the electric energy gieaires the electric vehicle can be connected.
  • the charging outlet 5 comprises an AC part 6, which can be used for a Wech selstromladen, and a DC part 7, which can be used for a DC charging of the electrical energy storage.
  • the charging outlet 5 is designed as a combined charging system.
  • the DC part 7 has a positive and a negative terminal.
  • the AC part 6 has a protective conductor.
  • the AC part 6 has a connection to the dialogue between the charging system 1 and vehicle by means of analog signal (CP, control pin) and a connection for limiting the charging current by means of resistance coding (PP, Proximity Pilot) on.
  • CP analog signal
  • PP resistance coding
  • the controller 8 may receive data from an isolation monitor 9.
  • the charging system 1 comprises a first switching device 10, which can be controlled by means of the control device 8. In this way, the transducer elements 4 can be connected to the charging outlet 5.
  • a contactor 11 is provided.
  • the charging system 1 comprises a Gleichstromla the measuring device 12, by means of which the electrical Leis device can be determined during DC charging of the electrical energy storage.
  • This DC charging measuring device 12 has a dynamic range with respect to the current of about 20 A to 550 A. Thus, it is not possible that, for example, very low charging currents can be detected in accordance with legal requirements in a maintenance case.
  • FIG. 2 shows a charging system 1 according to an embodiment of the invention.
  • the charging outlet 5 or its AC part 6 is fully populated here.
  • the AC part 6 also has connections for three phases and a neutral conductor.
  • a second path is provided, via which the input 2 can be connected directly to the charging outlet 5 or the AC part 6 of the charging outlet 5.
  • a second switching device 13 is provided, which can also be controlled by means of the control device 8.
  • an AC charging measuring device 14 located in this path, an AC charging measuring device 14. By means of this AC charging measuring device 14, the required during AC charging electrical power can be true.
  • a DC charging or a so-called DC rapid charging can be performed first.
  • the first switching device 11 can be closed and the second switching device 13 can be opened.
  • information can also be transmitted from the electric vehicle to the charging outlet 5 and thus to the control device 8.
  • This information may contain authentication information.
  • This authentication data can then be stored accordingly.
  • the required electric power can be summarized by means of the DC charging measuring device 12. If the current intensity of the direct current falls below a predetermined threshold value and / or the state of charge of the energy store has reached a predetermined value, the control device 8 can control the switching devices 11, 13 so control that the first switching device 11 is opened and the second switching device 13 is closed.
  • this threshold value is selected such that it lies within a dynamic range of the DC charging measuring device. Below this threshold for the DC current is then switched to the AC charging. During the AC charging, the required electric power can be accurately detected by the AC charging measuring device 14. Before switching between DC charging and AC charging, a signal from the control device 8 can be transmitted to the vehicle. For this purpose, a predetermined voltage applied to a resistor who the or a voltage of 0 V are output. Thus, the DC charging can be stopped. In the subsequent AC charging, the stored authentication data can be used.
  • FIG 3 shows an example of the charging system 1 during the Wech selstromladens.
  • the input 2 via the second switching element 13 to the charging outlet 5 and the AC part 6 is connected.
  • the required electric power is detected by the AC charging measuring device 14.
  • the information regarding the required electrical power can then be transferred to the control device 8.
  • FIG. 4 shows a schematic representation of a charging system 1 according to another embodiment.
  • This charging system 1 to 2 summarizes charging 6.
  • the control device 8 Kings nen the respective switching devices 13 are controlled.
  • each charging outlet 6 is associated with a DC charging measuring device 12.
  • ei ne AC charging measuring device 14 for the two Ladeab gears 6 is provided.
  • FIG. 5 shows a charging system 1 according to an alternative embodiment.
  • This charging system 1 differs from the charging system 1 according to FIG. 1 by a further DC charging system.
  • Measuring device 12 ' In the present case, this DC charging measuring device 12 'is assigned to one of the converter elements 4.
  • a first DC charging process can be performed.
  • the required electric power using the DC charging measuring device 12 be true. If the current of the DC current falls below the predetermined threshold value, the first DC charging process can be terminated and a second DC charging process
  • the DC charging process can be started with a lower current.
  • the required electric power is determined using the second DC charging measuring device 12 '.
  • This second DC charging measuring device 12 ' may have a dynamic range that is below the dynamic range of the first DC charging measuring device 12.
  • the electrical power can be precisely determined and thus an accurate billing is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Ladesystem (1) zum Laden eines elektrischen Energiespeichers eines Elektrofahrzeugs umfassend: einen Eingang (2) für einen Wechselstrom, welcher mit einer elektrischen Energiequelle (3) bereitgestellt wird, zumindest einen Wandlerelement (4) zum Wandeln des Wechselstroms in einen Gleichstrom und einen Ladeabgang (5) zum Verbinden des Ladesystems (1) mit dem Elektrofahrzeug, wobei das Ladesystem (1) dazu ausgebildet ist, das zumindest eine Wandlerelement (4) zum Durchführen eines Gleichstromladens des elektrischen Energiespeichers mit dem Ladeabgang (5) zu verbinden und wobei das Ladesystem (1) dazu ausgebildet ist, den Eingang (2) zum Durchführen eines Wechselstromladens des elektrischen Energiespeichers mit dem Ladeabgang (5) zu verbinden.

Description

Beschreibung
Ladesysteme zum Laden von elektrischen Energiespeichern von Elektrofahrzeugen sowie dazugehörige Verfahren
Die vorliegende Erfindung betrifft Ladesysteme zum Laden von elektrischen Energiespeichern von Elektrofahrzeugen. Darüber hinaus betrifft die vorliegende Erfindung Verfahren zum Laden von elektrischen Energiespeichern von Elektrofahrzeugen.
Das Interesse richtet sich vorliegend auf Ladesysteme zum La den von elektrischen Energiespeichern von Elektrofahrzeugen. Ein solches Elektrofahrzeug kann ein rein elektrisch ange triebenes Fahrzeug oder ein Hybridfahrzeug sein. Aus dem Stand der Technik sind unterschiedliche Ladesysteme und Lade verfahren bekannt. Beispielsweise kann ein sogenanntes
Gleichstromladen durchgeführt werden, welches auch als DC- Schnellladen bezeichnet wird. Hierbei wird ein Wechselstrom, der von einem Energieversorgungsnetz bereitgestellt wird, mithilfe zumindest eines Wandlerelements gewandelt bezie hungsweise gleichgerichtet. Darüber hinaus ist das sogenannte Wechselstromladen beziehungsweise AC-Laden bekannt.
Für die Abrechnung gelieferter elektrischer Energie beim Gleichstromladen ist nach den gesetzlichen Anforderungen eine Messung des gelieferten Gleichstroms nach Kilowattstunden er forderlich. Die hierzu verwendeten Messeinrichtungen bezie hungsweise Elektrizitätszähler müssen sowohl hinsichtlich der elektrischen Spannung, als auch hinsichtlich des elektrischen Stroms einen hohen Dynamikumfang abdecken. Während es hin sichtlich der elektrischen Spannung Bereiche gibt, in denen eine Ladung tatsächlich nicht stattfindet, kann der Ladestrom gerade bei einer Erhaltungsladung sehr klein werden. Derzeit erhältliche Messeinrichtungen für hohe Gleichströme erreichen einen Dynamikumfang des Stroms zwischen 20 A und 550 A. Mit solchen Messeinrichtungen ist also eine eichrechtskonforme Messung der elektrischen Energie beziehungsweise Leistung bei der Erhaltungsladung aufgrund der geforderten Genauigkeit und des begrenzten erreichbaren Dynamikumfangs der Messwandler und Messzähler nicht möglich.
Es sind Regelungen bekannt, welche die Erfassung der benötig ten AC-Energie, welche dann umgerichtet und geladen wird, ge statten. Darüber hinaus werden Geschäftsmodelle realisiert, welcher auf eine eichrechtskonforme Erfassung der Energie verzichten. Beispielsweise sind Zeittarife, Pauschaltarife und/oder kostenlose Abgaben bekannt. Darüber hinaus sind die DC-Schnellladesysteme für Ströme bis 500 A gerade erst im Aufbau, sodass sich das Problem in dieser Weise nicht stellt. Durch eine Reduktion des größten messbaren Stroms kann auch der kleinste messbare Strom reduziert werden.
Es ist Aufgabe der vorliegenden Erfindung, eine Lösung aufzu zeigen, wie ein Ladesystem zum Laden eines elektrischen Ener giespeichers eines Elektrofahrzeugs, insbesondere ein Lade system, welches ein Gleichstromladen ermöglicht, flexibler betrieben werden kann.
Diese Aufgabe wird durch Ladesysteme sowie durch dazugehörige Verfahren gemäß den Merkmalen der unabhängigen Patentansprü che gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.
Ein erfindungsgemäßes Ladesystem dient zum Laden eines elekt rischen Energiespeichers eines Elektrofahrzeugs. Das Ladesys tem umfasst einen Eingang für einen Wechselstrom, welcher mit einer elektrischen Energiequelle bereitgestellt wird. Darüber hinaus umfasst das Ladesystem zumindest ein Wandlerelement zum Wandeln des Wechselstroms in einen Gleichstrom. Ferner umfasst das Ladesystem einen Ladeabgang zum Verbinden des La desystems mit dem Elektrofahrzeug. Dabei ist das Ladesystem dazu ausgebildet, das zumindest eine Wandlerelement zum
Durchführen eines Gleichstromladens des elektrischen Energie speichers mit dem Ladeabgang zu verbinden. Darüber hinaus ist das Ladesystem dazu ausgebildet, den Eingang zum Durchführen eines Wechselstromladens des elektrischen Energiespeichers mit dem Ladeabgang zu verbinden.
Das Ladesystem kann dazu verwendet werden, den elektrischen Energiespeicher des Elektrofahrzeugs zu laden. Bei dem elekt rischen Energiespeicher kann es sich insbesondere um eine Batterie handelt, welche mehrere Batteriezellen aufweisen kann. Diese Batterie kann auch als Traktionsbatterie bezeich net werden. Bei dem Elektrofahrzeug kann es sich um ein rein elektrisch angetriebenes Fahrzeug handeln. Das Elektrofahr zeug kann auch ein Hybridfahrzeug sein, dessen elektrischer Energiespeicher beziehungsweise dessen Batterie über einen Ladeanschluss aufgeladen werden kann. Das Ladesystem umfasst den Eingang, an dem das Ladesystem mit einer elektrischen Energiequelle beziehungsweise einem Energieversorgungsnetz verbunden ist. Über diesen Eingang kann dem Ladesystem ein Wechselstrom und/oder eine Wechselspannung zugeführt werden. Dieser Wechselstrom kann dann mit dem zumindest einen
Wandlerelement in den Gleichstrom und/oder eine Gleichspan nung gewandelt werden. Das zumindest eine Wandlerelement kann einen Gleichrichter aufweisen. Es kann auch vorgesehen sein, dass das Ladesystem mehrere Wandlerelemente aufweist, welche beispielsweise elektrisch parallel geschaltet sein können. Darüber hinaus umfasst das Ladesystem einen Ladeabgang, an welchem es elektrisch mit dem Elektrofahrzeug beziehungsweise mit einem Ladeanschluss des Elektrofahrzeugs verbunden werden kann. An dem Ladeabgang kann ein entsprechender Stecker, eine Buchse und/oder ein Kabel vorgesehen sein. Wenn der elektri sche Energiespeicher des Elektrofahrzeugs mit dem Gleichstrom versorgt wird, kann eine Gleichstromladung beziehungsweise ein sogenanntes DC-Schnellladen durchgeführt werden.
Gemäß einem wesentlichen Aspekt der vorliegenden Erfindung ist es vorgesehen, dass das Ladesystem ferner dazu ausgebil det ist, den Eingang zum Durchführen eines Wechselstromladens des elektrischen Energiespeichers mit dem Ladeabgang zu ver binden. Mithilfe des Ladesystems kann also einerseits das Gleichstromladen beziehungsweise das DC-Schnellladen durchge- führt werden. Darüber hinaus wird das Wechselstromladen be ziehungsweise AC-Laden möglich. Somit können mithilfe des La desystems zwei unterschiedliche Ladeverfahren realisiert wer den. Daher kann das Ladesystem insgesamt flexibler betrieben werden .
Bevorzugt ist das Ladesystem dazu ausgebildet, zunächst das Gleichstromladen durchzuführen und danach auf das Wechsel stromladen umzuschalten, falls eine Stromstärke des Gleich stroms einen vorbestimmten Schwellenwert unterschreitet. Die ser vorbestimmte Schwellwert kann beispielsweise bei 20 A liegen. Nach dem Verbinden des Ladesystems mit dem Elektro fahrzeug beziehungsweise nach dem Einstecken des Ladekabels kann ein Ladevorgang gemäß IEC 61851 starten. Dieser kann mittels einer sogenannten 5%-Signalisierung auf ISO 15118 um gestellt werden. Nach dem Start des Ladevorgangs wird das Elektrofahrzeug mit der DC-Schnellladetechnik geladen. Mit steigendem Ladezustand (SoC - State of Charge) wird das
Elektrofahrzeug den angeforderten Ladestrom beziehungsweise Gleichstrom verringern. Basierend auf dem angeforderten Lade strom entscheidet das Ladesystem, ob der Ladevorgang als Gleichstromladen fortgeführt werden soll. Hierzu kann insbe sondere berücksichtigt werden, ob die Stromstärke des Gleich stroms den Schwellwert unterschreitet. Es kann auch vorgese hen sein, dass ein Wechsel von dem Gleichstromladen zu dem Wechselstromladen erfolgt, falls der Ladezustand der Batterie einen vorbestimmten Wert erreicht hat.
Dabei ist es bevorzugt vorgesehen, dass das Umschalten bezie hungsweise der Wechsel von dem Gleichstromladen auf das Wech selstromladen in Abhängigkeit von zumindest einem weiteren Kriterium durchgeführt wird. Beispielsweise kann als Kriteri um ein Kundenwunsch berücksichtigt werden. Dieser Kunden wunsch kann dabei aus einem Profil oder einer Eingabe stam men. Das Profil beziehungsweise der Kundenwunsch kann auch von dem Elektrofahrzeug zu dem Ladesystem übertragen werden. Darüber hinaus kann die aktuelle Netzsituation beziehungswei se ein Zustand elektrischen Energiequelle beziehungsweise des Energieversorgungsnetzes, welches den Wechselstrom bereit stellt, berücksichtigt werden. Außerdem kann eine aktuelle Auslastung, das heißt, ob die Komponenten für die Schnellla dung an einem anderen Ladeabgang benötigt werden, berücksich tigt werden. Dies ermöglicht insgesamt einen effizienten und nutzerfreundlichen Betrieb des Ladesystems.
In einer Ausführungsform weist das Ladesystem eine Gleich stromlade-Messeinrichtung zum Bestimmen der beim Gleichstrom laden benötigten elektrischen Leistung beziehungsweise elekt rischen Energie auf. Zudem weist das Ladesystem insbesondere eine Wechselstromlade-Messeinrichtung zum Bestimmen der beim Wechselstromladen benötigten elektrischen Leistung bezie hungsweise elektrischen Energie auf. Dadurch, dass bevorzugt von dem Gleichstromladen auf das Wechselstromladen umgeschal tet wird, falls die Stromstärke des Gleichstroms den Schwell wert unterschreitet, kann erreicht werden, dass der Dynamik umfang der Gleichstromlade-Messeinrichtung ausreichend ist. Wie bereits eingangs erläutert kann der Dynamikumfang der Gleichstromlade-Messeinrichtung beziehungsweise des Energie zählers für den Gleichstrom zwischen 20 A und 550 A liegen.
In diesem Bereich kann die beim Gleichstromladen benötigte elektrische Leistung mit der erforderlichen Genauigkeit er mittelt werden. Somit kann die DC-Messung mit einer derzeit erhältlichen Gleichstromlade-Messeinrichtung beziehungsweise einem DC-Zähler überhaupt erst erfolgen. Auch zukünftig wer den die Genauigkeitsanforderungen an die Komponenten des DC- Zählers durch Einführung des minimalen messbaren Stroms redu ziert, was sich in niedrigere Kosten für den DC-Zähler nie derschlägt. Falls dieser Bereich verlassen wird, kann bevor zugt auf das Wechselstromladen gewechselt werden. Hier kann dann die benötigte elektrische Leistung oder Energie mithilfe der Wechselstromlade-Messeinrichtung beziehungsweise einem entsprechenden Energiezähler für den Wechselstrom und/oder die Wechselspannung ermittelt werden. Entsprechende Wechsel stromlade-Messeinrichtungen beziehungsweise AC-Zähler, welche für alle beim Wechselstromladen möglichen Kombinationen von Strömen und Spannungen zugelassen sind, sind auf dem Markt erhältlich. Auf Grundlage der jeweils benötigten elektrischen Leistung während des Gleichstromladens und des Wechselstrom ladens kann dann eine Abrechnung erfolgen. Durch das zuvor beschriebene Umschalten zwischen dem Gleichstromladen und dem Wechselstromladen kann die jeweils benötigte elektrische Leistung genau bestimmt werden und somit die Abrechnung prä zise durchgeführt werden.
Bevorzugt umfasst das Ladesystem eine erste Schalteinrichtung zwischen dem zumindest einen Wandlerelement und dem Ladeab gang, eine zweite Schalteinrichtung zwischen dem Eingang und dem Ladeabgang und eine Steuereinrichtung zum Steuern der ersten Schalteinrichtung und der zweiten Schalteinrichtung. Mithilfe der ersten Schalteinrichtung kann die elektrische Verbindung zwischen dem zumindest einen Wandlerelement und dem Ladeabgang geschaltet werden. Mit der zweiten Schaltein richtung kann die elektrische Verbindung zwischen dem Eingang des Ladesystems und dem Ladeabgang geschaltet werden. Die erste und die zweite Schalteinrichtung können mithilfe der Steuereinrichtung angesteuert werden. Somit kann auf einfache Weise von dem Gleichstromladen auf das Wechselstromladen um geschaltet werden.
In einer weiteren Ausführungsform ist das Ladesystem dazu ausgebildet, bei dem Umschalten von dem Gleichstromladen zu dem Wechselstromladen ein vorbestimmtes Signal auszugeben. Entscheidet sich das Ladesystem zum Wechsel auf die AC-Ladung kann sie dies dem Elektrofahrzeug über das Protokoll gemäß ISO 15118 signalisieren und einen neuen Ladevorgang auf
Grundlage von IEC 61851 alleine starten. Hierzu kann bei spielsweise kurzfristig der Zustand „State E" signalisiert werden. Zur Vermeidung von Manipulationen kann die State-E- Signalisierung in der Weise ausgeführt sein, dass anstelle der normativ geforderten Spannung von 0 V eine höhere Span nung über einen hochohmigen Widerstand angelegt wird. Ein tatsächliches Abstecken eines Ladekabels kann auf diese Weise erkannt werden. Parallel hierzu wird der gesamte Schnelllade- sträng freigegeben werden und kann gegebenenfalls anderweitig verwendet werden.
Gemäß einer weiteren Ausführungsform ist das Ladesystem dazu ausgebildet, Authentifizierungsdaten von dem Elektrofahrzeug zu empfangen und die Authentifizierungsdaten zu speichern.
Die Authentifizierung erfolgt über ein aus dem Stand der Technik bekanntes Verfahren. Die Authentifizierungsdaten wer den allerdings abgelegt, sodass sie für einen nachfolgenden Ladevorgang wieder verwendet werden können. Beispielsweise können die Authentifizierungsdaten bei dem Gleichstromladen übertragen und gespeichert werden und somit bei dem nachfol genden Wechselstromladen genutzt werden. Insbesondere können die Authentifizierungsdaten auf einem entsprechenden Speicher des Ladesystems gespeichert werden. Somit kann eine Abrech nung auch nach dem Wechsel von dem Gleichstromladen auf das Wechselstromladen garantiert werden.
Bevorzugt ist der Ladeabgang zu einer Combo-2- Fahrzeugkupplung kompatibel. Insbesondere ist der Ladeabgang als sogenanntes Combinded Charging System (CCS) ausgebildet. Diese Fahrzeugkupplung kann der Typ-2-Fahrzeugkupplung mit zwei zusätzlichen Gleichstrom Polen entsprechen. Der Ladeab gang kann einen AC-Teil aufweisen, der beispielsweise drei Anschlüsse für die Phasen, einen Anschluss für den Nullleiter und einen Anschluss für den Schutzleiter aufweist. Zudem kann der AC-Teil einen Anschluss zum Dialog zwischen dem Ladesys tem und dem Elektrofahrzeug und einen Anschluss zur Begren zung des Ladestroms aufweisen. Der Ladeabgang kann zudem ei nen DC-Teil mit einem positiven und einem negativen Anschluss aufweisen. Somit kann einerseits ein ein- und dreiphasiges Wechselstromladen ermöglicht werden. Zudem kann das Gleich stromladen ermöglicht werden.
Gemäß einer weiteren Ausgestaltung weist das Ladesystem zu mindest zwei Ladeabgänge auf. Dabei kann jeder der Ladeabgän ge mit einem Elektrofahrzeug verbunden werden. Somit wird es insbesondere ermöglicht, dass zumindest zwei Elektrofahrzeuge beziehungsweise deren elektrischen Energiespeicher gleichzei tig beziehungsweise parallel geladen werden können. Wie zuvor erläutert, kann das Ladesystem eine entsprechende Steuerein richtung und Schalteinrichtungen aufweisen. Darüber hinaus wird es somit ermöglicht, dass insbesondere die hochpreisigen Komponenten, welche für das Gleichstromladen benötigt werden, beim Umschalten zu dem Wechselstromladen bereits dynamisch dem anderen Ladeabgang des Ladesystems zugeordnet werden. Da rüber kann eine bessere Auslastung der hochpreisigen Kompo nenten erreicht werden.
Ein weiteres erfindungsgemäßes Ladesystem dient zum Laden ei nes elektrischen Energiespeichers eines Elektrofahrzeugs. Das Ladesystem umfasst einen Eingang für einen Wechselstrom, wel cher mit einer elektrischen Energiequelle bereitgestellt wird. Zudem umfasst das Ladesystem zumindest ein
Wandlerelement zum Wandel des Wechselstroms in einen Gleich strom. Ferner umfasst das Ladesystem einen Ladeabgang zum Verbinden des Ladesystems mit dem Elektrofahrzeug. Dabei ist das Ladesystem dazu ausgebildet, das zumindest eine
Wandlerelement zum Durchführen eines ersten Gleichstromladens des elektrischen Energiespeichers mit dem Ladeabgang zu ver binden. Außerdem umfasst das Ladesystem eine erste Gleich stromlade-Messeinrichtung zum Bestimmen der beim ersten
Gleichstromladen benötigten elektrischen Leistung. Dabei das Ladesystem dazu ausgebildet, nach dem ersten Gleichstromladen ein zweites Gleichstromladen durchzuführen, wobei das Lade system eine zweite Gleichstromladen-Messeinrichtung zum Be stimmen der beim zweiten Gleichstromladen benötigten elektri schen Leistung aufweist. Bei diesem Ladesystem kann nach ei nem DC-Schnellladevorgang ein weiterer DC-Ladevorgang durch geführt werden, wobei hier eine andere Messeinrichtung ge nutzt wird. Bei dem ersten Gleichstromladen kann die Strom stärke höher sein als beim zweiten Gleichstromladen. Dabei ist es insbesondere vorgesehen, dass sich die erste Gleich stromlade-Messeinrichtung und die zweite Gleichstromladen- Messeinrichtung bezüglich ihres Dynamikumfangs voneinander unterscheiden . Ein erfindungsgemäßes Verfahren dient zum Laden eines elekt rischen Energiespeichers eines Elektrofahrzeugs. Das Verfah ren umfasst das Wandeln eines an einem Eingang eines Ladesys tems bereitgestellten Wechselstroms in einen Gleichstrom mit tels zumindest eines Wandlerelements. Zudem umfasst das Ver fahren das Durchführen eines Gleichstromladens des elektri schen Energiespeichers durch Verbinden des zumindest einen Wandlerelements mit einem Ladeabgang des Ladesystems, wobei das Elektrofahrzeug mit dem Ladeabgang verbunden ist.
Schließlich umfasst das Verfahren das Durchführen eines Wech selstromladens des elektrischen Energiespeichers nach dem Gleichstromladen durch Verbinden des Eingangs mit dem Ladeab gang .
Ein weiteres erfindungsgemäßes Verfahren zum Laden eines elektrischen Energiespeichers eines Elektrofahrzeugs umfasst das Wandeln eines an einem Eingang eines Ladesystems bereit gestellten Wechselstroms in einen Gleichstrom mittels zumin dest eines Wandlerelements. Zudem umfasst das Verfahren das Durchführen eines ersten Gleichstromladens des elektrischen Energiespeichers durch Verbinden des zumindest einen
Wandlerelements mit einem Ladeabgang des Ladesystems, wobei das Elektrofahrzeug mit dem Ladeabgang verbunden ist. Des Weiteren beinhaltet das Verfahren das Bestimmen einer beim ersten Gleichstromladen benötigten elektrischen Leistung mit tels einer ersten Gleichstromlade-Messeinrichtung. Ferner um fasst das Verfahren das Durchführen eines zweiten Gleich stromladens des elektrischen Energiespeichers nach dem ersten Gleichstromladen und das Bestimmen einer beim zweiten Gleich stromladen benötigten elektrischen Leistung mittels einer zweiten Gleichstromlade-Messeinrichtung .
Die mit Bezug auf das erfindungsgemäße Ladesystem vorgestell ten bevorzugten Ausführungsformen und deren Vorteile gelten entsprechend für das weitere erfindungsgemäße Ladesystem so wie für die erfindungsgemäßen Verfahren. Weitere Merkmale der Erfindung ergeben sich aus den Ansprü chen, den Figuren und der Figurenbeschreibung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinati onen sowie die nachfolgend in der Figurenbeschreibung genann ten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebe nen Kombination, sondern auch in anderen Kombinationen ver wendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Erfindung wird nun anhand von bevorzugten Ausführungsbei spielen sowie unter Bezugnahme auf die beigefügten Zeichnun gen näher erläutert. Dabei zeigen:
FIG 1 ein Ladesystem zum Durchführen eines Gleichstromla dens des elektrischen Energiespeichers eines
Elektrofahrzeugs gemäß dem Stand der Technik;
FIG 2 ein Ladesystem gemäß einer Ausführungsform der Er findung zum Durchführen eines Gleichstromladens so wie eines Wechselstromladens des elektrischen Ener giespeichers ;
FIG 3 eine schematische Darstellung des Ladesystems wäh rend des Wechselstromladens;
FIG 4 ein Ladesystem, welches zwei Ladeabgänge aufweist;
und
FIG 5 ein weiteres erfindungsgemäßes Ladesystem zum
Durchführen von aufeinanderfolgenden Gleichstromla- de-Vorgängen .
In den Figuren werden gleiche oder funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen.
FIG 1 zeigt eine Ladesystem 1 gemäß dem Stand der Technik in einer schematischen Darstellung. Das Ladesystem 1 umfasst ei nen Eingang 2, welcher mit einer elektrischen Energiequelle 3 verbunden ist. Die elektrische Energiequelle 3, welche bei spielsweise durch ein Energieversorgungsnetz bereitgestellt werden kann, dient dazu, einen Wechselstrom und/oder eine Wechselspannung bereitzustellen. Darüber hinaus umfasst das Ladesystem 1 zumindest ein Wandlerelement 4. In dem vorlie genden Ausführungsbeispiel umfasst das Ladesystem 1 vier Wandlerelemente 4, welche elektrisch parallel geschaltet sind. Bei den Wandlerelementen 4 handelt es sich um Gleich richter. Mit den Gleichrichtern beziehungsweise den
Wandlerelementen 4 kann der am Eingang 2 anliegenden Wechsel strom in einen Gleichstrom gewandelt werden.
Darüber hinaus umfasst das Ladesystem 1 einen Ladeabgang 5, mit dem ein Elektrofahrzeug zum Laden des elektrischen Ener giespeichers des Elektrofahrzeugs verbunden werden kann. Der Ladeabgang 5 umfasst einen AC-Teil 6, welcher für ein Wech selstromladen verwendet werden kann, sowie einen DC-Teil 7, welcher für ein Gleichstromladen des elektrischen Energie speichers verwendet werden kann. Der Ladeabgang 5 ist als Combined Charging System ausgebildet. Der DC-Teil 7 weist ei nen positiven und einen negativen Anschluss auf. Vorliegend weist der AC-Teil 6 einen Schutzleiter auf. Zudem weist der AC-Teil 6 einen Anschluss zum Dialog zwischen dem Ladesystem 1 und Fahrzeug mittels Analogsignal (CP, Control Pin) sowie einen Anschluss zur Begrenzung des Ladestromes mittels Wider standscodierung (PP, Proximity Pilot) auf. Diese beiden An schlüsse sind mit einer Steuereinrichtung 8 des Ladesystems 1 verbunden. Zudem kann die Steuereinrichtung 8 Daten von einem Isolationsmonitor 9 empfangen. Des Weiteren umfasst das Lade system 1 eine erste Schalteinrichtung 10, die mittels der Steuereinrichtung 8 angesteuert werden kann. Auf diese Weise können die Wandlerelemente 4 mit dem Ladeabgang 5 verbunden werden. Darüber hinaus ist ein Schütz 11 vorgesehen.
Darüber hinaus umfasst das Ladesystem 1 eine Gleichstromla den-Messeinrichtung 12, mittels welcher die elektrische Leis tung beim Gleichstromladen des elektrischen Energiespeichers ermittelt werden kann. Diese Gleichstromlade-Messeinrichtung 12 weist einen Dynamikumfang bezüglich des Stroms von etwa 20 A bis 550 A auf. Somit ist es nicht möglich, dass bei spielsweise sehr geringe Ladeströme bei einer Erhaltungsla dung eichrechtskonform erfasst werden können.
FIG 2 zeigt ein Ladesystem 1 gemäß einer Ausführungsform der Erfindung. Im Vergleich zu dem Ladesystem 1 gemäß FIG 1 ist hier der Ladeabgang 5 beziehungsweise dessen AC-Teil 6 voll bestückt. Der AC-Teil 6 weist zudem Anschlüsse für drei Pha sen sowie einen Neutralleiter auf. Ferner ist bei dem Lade system ein zweiter Pfad vorgesehen, über den der Eingang 2 direkt mit dem Ladeabgang 5 beziehungsweise dem AC-Teil 6 des Ladeabgangs 5 verbunden werden kann. Hierzu ist eine zweite Schalteinrichtung 13 vorgesehen, die ebenfalls mittels der Steuereinrichtung 8 angesteuert werden kann. Somit kann auch ein Wechselstromladen des elektrischen Energiespeichers des Elektrofahrzeugs ermöglicht werden. Darüber hinaus befindet sich in diesem Pfad eine Wechselstromlade-Messeinrichtung 14. Mittels dieser Wechselstromlade-Messeinrichtung 14 kann die beim Wechselstromladen benötigte elektrische Leistung be stimmt werden.
Wenn das Elektrofahrzeug mit dem Ladeabgang 5 verbunden wird, kann zunächst ein Gleichstromladen beziehungsweise ein soge nanntes DC-Schnellladen durchgeführt werden. Hierzu kann die erste Schalteinrichtung 11 geschlossen werden und die zweite Schalteinrichtung 13 geöffnet werden. Mit dem Verbinden des Elektrofahrzeugs und dem Ladeabgang 5 können zudem Informati onen von dem Elektrofahrzeug an den Ladeabgang 5 und somit an die Steuereinrichtung 8 übertragen werden. Diese Informatio nen können Authentifizierungsdaten enthalten. Diese Authenti- fizierungsdaten können dann entsprechend gespeichert werden. Während des Gleichstromladens kann die benötigte elektrische Leistung mittels der Gleichstromlade-Messeinrichtung 12 er fasst werden. Falls die Stromstärke des Gleichstroms einen vorbestimmten Schwellwert unterschreitet und/oder der Ladezu stand des Energiespeichers einen vorbestimmten Wert erreicht hat, kann die Steuereinrichtung 8 die Schalteinrichtungen 11, 13 so ansteuern, dass die erste Schalteinrichtung 11 geöffnet wird und die zweite Schalteinrichtung 13 geschlossen wird. Insbesondere ist dieser Schwellwert so gewählt, dass dieser innerhalb eines Dynamikumfangs der Gleichstromlade- Messeinrichtung liegt. Unterhalb dieses Schwellwerts für den Gleichstrom wird dann auf das Wechselstromladen umgeschaltet. Während des Wechselstromladens kann die benötigte elektrische Leistung mithilfe der Wechselstromlade-Messeinrichtung 14 präzise erfasst werden. Vor dem Wechsel zwischen Gleichstrom laden und Wechselstromladen kann eine Signal von der Steuer einrichtung 8 an das Fahrzeug übertragen werden. Hierzu kann eine vorbestimmte Spannung an einem Widerstand angelegt wer den oder eine Spannung von 0 V ausgegeben werden. Somit kann das Gleichstromladen beendet werden. Bei dem nachfolgenden Wechselstromladen können die gespeicherten Authentifizie- rungsdaten genutzt werden.
FIG 3 zeigt beispielhaft das Ladesystem 1 während des Wech selstromladens. Hierbei ist der Eingang 2 über das zweite Schaltelement 13 mit dem Ladeabgang 5 beziehungsweise dem AC- Teil 6 verbunden. Während des Wechselstromladens wird die be nötigte elektrische Leistung mithilfe der Wechselstromlade- Messeinrichtung 14 erfasst. Die Informationen bezüglich der benötigten elektrischen Leistung können dann an die Steuer einrichtung 8 übertragen werden.
FIG 4 zeigt eine schematische Darstellung eines Ladesystems 1 gemäß einer weiteren Ausführungsform. Dieses Ladesystem 1 um fasst 2 Ladeabgänge 6. Mithilfe der Steuereinrichtung 8 kön nen die jeweiligen Schalteinrichtungen 13 angesteuert werden. In dem vorliegenden Beispiel ist jedem Ladeabgang 6 eine Gleichstromlade-Messeinrichtung 12 zugeordnet. Ferner ist ei ne Wechselstromlade-Messeinrichtung 14 für die beiden Ladeab gänge 6 vorgesehen.
FIG 5 zeigt ein Ladesystem 1 gemäß einer alternativen Ausfüh rungsform. Dieses Ladesystem 1 unterscheidet sich von dem La desystem 1 gemäß FIG 1 durch eine weitere Gleichstromladen- Messeinrichtung 12 ' . Diese Gleichstromladen-Messeinrichtung 12' ist vorliegend einem der Wandlerelemente 4 zugeordnet. Beim Laden des elektrischen Energiespeichers des Elektrofahr zeugs kann zunächst ein erster Gleichstromladen-Vorgang durchgeführt werden. Hierbei kann die benötigte elektrische Leistung mithilfe der Gleichstromlade-Messeinrichtung 12 be stimmt werden. Falls die Stromstärke des Gleichstroms den vorbestimmten Schwellwert unterschreitet, kann der erste Gleichstromlade-Vorgang beendet werden und ein zweiter
Gleichstromladen-Vorgang mit einer geringeren Stromstärke ge startet werden. In diesem Fall wird die benötigte elektrische Leistung mithilfe der zweiten Gleichstromladen- Messeinrichtung 12' bestimmt. Diese zweite Gleichstromladen- Messeinrichtung 12 ' kann einen Dynamikumfang aufweisen, der unterhalb des Dynamikumfangs der ersten Gleichstromladen- Messeinrichtung 12 liegt. Somit kann während der jeweiligen Gleichstromlade-Vorgänge die elektrische Leistung präzise be stimmt werden und somit eine genaue Abrechnung ermöglicht werden .

Claims

Patentansprüche
1. Ladesystem (1) zum Laden eines elektrischen Energiespei chers eines Elektrofahrzeugs umfassend:
- einen Eingang (2) für einen Wechselstrom, welcher mit einer elektrischen Energiequelle (3) bereitgestellt wird,
- zumindest ein Wandlerelement (4) zum Wandeln des Wech selstroms in einen Gleichstrom und
- einen Ladeabgang (5) zum Verbinden des Ladesystems (1) mit dem Elektrofahrzeug,
- wobei das Ladesystem (1) dazu ausgebildet ist, das zu mindest eine Wandlerelement (4) zum Durchführen eines Gleichstromladens des elektrischen Energiespeichers mit dem Ladeabgang (5) zu verbinden,
dadurch gekennzeichnet, dass
- das Ladesystem (1) dazu ausgebildet ist, den Eingang (2) zum Durchführen eines Wechselstromladens des elektri schen Energiespeichers mit dem Ladeabgang (5) zu verbin den .
2. Ladesystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Ladesystem (1) dazu ausgebildet ist, zunächst das Gleichstromladen durchzuführen und danach auf das Wechsel stromladen umzuschalten, falls eine Stromstärke des Gleich stroms einen vorbestimmten Schwellwert unterschreitet.
3. Ladesystem (1) nach Anspruch 1 oder 2, dadurch gekenn zeichnet, dass das Ladesystem (1) eine Gleichstromlade- Messeinrichtung (12) zum Bestimmen der beim Gleichstromladen benötigten elektrischen Leistung und eine Wechselstromlade- Messeinrichtung (14) zum Bestimmen der beim Wechselstromladen benötigten elektrischen Leistung aufweist.
4. Ladesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ladesystem (1) eine erste Schalteinrichtung (10) zwischen dem zumindest einen
Wandlerelement (4) und dem Ladeabgang (5), eine zweite Schalteinrichtung (13) zwischen dem Eingang (2) und dem Lade abgang (5) und eine Steuereinrichtung (8) zum Steuern der ersten Schalteinrichtung (10) und der zweiten Schalteinrich tung (13) aufweist.
5. Ladesystem (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das Ladesystem (1) dazu ausgebildet ist, bei dem Umschalten von dem Gleichstromladen zu dem Wechsel stromladen ein vorbestimmtes Signal auszugeben.
6. Ladesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ladesystem (1) dazu ausge bildet ist, Authentifizierungsdaten von dem Elektrofahrzeug zu empfangen und die Authentifizierungsdaten zu speichern.
7. Ladesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ladeabgang (5) zu einer Com- bo-2-Fahrzeugkupplung kompatibel ist.
8. Ladesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ladesystem (1) zumindest zwei Ladeabgänge (6) aufweist.
9. Ladesystem (1) zum Laden eines elektrischen Energiespei chers eines Elektrofahrzeugs umfassend:
- einen Eingang (2) für einen Wechselstrom, welcher mit einer elektrischen Energiequelle (3) bereitgestellt wird,
- zumindest ein Wandlerelement (4) zum Wandeln des Wech selstroms in einen Gleichstrom und
- wobei das Ladesystem (1) dazu ausgebildet ist, das zu mindest eine Wandlerelement (4) zum Durchführen eines ersten Gleichstromladens des elektrischen Energiespei chers mit einem Ladeabgang (5) zu verbinden,
- eine erste Gleichstrommesseinrichtung (12) zum Bestimmen der beim ersten Gleichstromladen benötigten elektrischen Leistung,
dadurch gekennzeichnet, dass - das Ladesystem (1) dazu ausgebildet ist, nach dem ersten Gleichstromladen ein zweites Gleichstromladen durchzu führen,
- wobei das Ladesystem (1) eine zweite Gleichstrommessein richtung (12') zum Bestimmen der beim zweiten Gleich stromladen benötigten elektrischen Leistung aufweist.
10. Verfahren zum Laden eines elektrischen Energiespeichers eines Elektrofahrzeugs mit den Schritten:
- Wandeln eines an einem Eingang (2) eines Ladesystems (1) bereitgestellten Wechselstroms in einen Gleichstrom mit tels zumindest eines Wandlerelements (4), und
- Durchführen eines Gleichstromladens des elektrischen
Energiespeichers durch Verbinden des zumindest einen Wandlerelements (4) mit einem Ladeabgang (5) des Lade systems (1), wobei das Elektrofahrzeug mit dem Ladeab gang (5) verbunden ist,
gekennzeichnet durch
- Durchführen eines Wechselstromladens des elektrischen Energiespeichers nach dem Gleichstromladen durch Verbin den des Eingangs (2) mit dem Ladeabgang (5) .
11. Verfahren zum Laden eines elektrischen Energiespeichers eines Elektrofahrzeugs mit den Schritten:
- Wandeln eines an einem Eingang (2) eines Ladesystems (1) bereitgestellten Wechselstroms in einen Gleichstrom mit tels zumindest eines Wandlerelements (4),
- Durchführen eines ersten Gleichstromladens des elektri schen Energiespeichers durch Verbinden des zumindest ei nen Wandlerelements (4) mit einem Ladeabgang (5) des La desystems (1), wobei das Elektrofahrzeug mit dem Ladeab gang (5) verbunden ist, und
- Bestimmen einer beim ersten Gleichstromladen benötigten elektrischen Leistung mittels einer ersten Gleichstrom lade-Messeinrichtung (12),
gekennzeichnet durch Durchführen eines zweiten Gleichstromladens des elektri schen Energiespeichers nach dem ersten Gleichstromladen und
Bestimmen einer beim zweiten Gleichstromladen benötigten elektrischen Leistung mittels einer zweiten Gleichstrom lade-Messeinrichtung (12').
PCT/EP2019/053832 2018-03-19 2019-02-15 Ladesysteme zum laden von elektrischen energiespeichern von elektrofahrzeugen sowie dazugehörige verfahren WO2019179703A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980033872.9A CN112118982A (zh) 2018-03-19 2019-02-15 用于对电动车辆的电能存储器充电的充电系统以及相关方法
EP19707306.7A EP3749544A1 (de) 2018-03-19 2019-02-15 Ladesysteme zum laden von elektrischen energiespeichern von elektrofahrzeugen sowie dazugehörige verfahren
US16/981,803 US11407324B2 (en) 2018-03-19 2019-02-15 Charging systems for charging electrical energy storage devices of electric vehicles and associated methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018204126.1A DE102018204126A1 (de) 2018-03-19 2018-03-19 Ladesysteme zum Laden von elektrischen Energiespeichern von Elektrofahrzeugen sowie dazugehörige Verfahren
DE102018204126.1 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019179703A1 true WO2019179703A1 (de) 2019-09-26

Family

ID=65529662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/053832 WO2019179703A1 (de) 2018-03-19 2019-02-15 Ladesysteme zum laden von elektrischen energiespeichern von elektrofahrzeugen sowie dazugehörige verfahren

Country Status (5)

Country Link
US (1) US11407324B2 (de)
EP (1) EP3749544A1 (de)
CN (1) CN112118982A (de)
DE (1) DE102018204126A1 (de)
WO (1) WO2019179703A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018204126A1 (de) * 2018-03-19 2019-09-19 Siemens Aktiengesellschaft Ladesysteme zum Laden von elektrischen Energiespeichern von Elektrofahrzeugen sowie dazugehörige Verfahren
DE102018009848A1 (de) * 2018-12-14 2019-06-27 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223796A (ja) * 2010-04-13 2011-11-04 Mitsubishi Electric Corp 車両充電装置
DE102011007839A1 (de) * 2011-04-21 2012-10-25 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugladevorrichtung
DE102014109939A1 (de) * 2014-07-15 2016-01-21 EnBW Energie Baden-Württemberg AG Lokales Ladenetz mit wenigstens einem Ladesystem zum Laden von Elektrofahrzeugen, Ladesystem mit wenigstens einer Ladestation und Verfahren zum Betreiben eines Ladenetzes mit wenigstens einem Ladesystem zum Laden von Elektrofahrzeugen
DE102014223585A1 (de) * 2014-11-19 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3391227B2 (ja) * 1997-09-09 2003-03-31 松下電器産業株式会社 鉛蓄電池の充電方法
NL2004350C2 (en) * 2010-03-05 2011-09-06 Epyon B V System, devices and method for charging a battery of an electric vehicle.
JP2011232093A (ja) * 2010-04-26 2011-11-17 Kyocera Corp 電流センサ装置
CN103561999B (zh) * 2011-05-27 2016-07-06 丰田自动车株式会社 车辆
EP2559587B1 (de) * 2011-08-04 2020-02-19 Valeo Siemens eAutomotive Germany GmbH Umrichter zum Betreiben eines elektrischen Antriebsmotors eines Elektrofahrzeugs, Kraftwagen und Verfahren zum Betreiben des Umrichters
KR101428262B1 (ko) * 2012-12-10 2014-08-07 현대자동차주식회사 차량 배터리 전원 제어 장치
CN102998648B (zh) * 2012-12-13 2015-07-08 湖南省电力公司科学研究院 多功能交直流电测量仪
CN103457335B (zh) * 2013-09-17 2016-05-11 山东鲁能智能技术有限公司 电动汽车智能一体化充电机装置
CN103746418A (zh) * 2013-12-26 2014-04-23 国家电网公司 一种电动汽车交直流组合充电控制系统
CN204030698U (zh) * 2014-07-16 2014-12-17 青岛特锐德电气股份有限公司 一种多充电接口兼容的集中停车场箱式充电站及系统
CN104218644B (zh) * 2014-09-05 2016-09-21 国家电网公司 一种电动汽车交直流智能一体化充电设备及其控制方法
CN204314359U (zh) * 2014-12-05 2015-05-06 深圳市创荣发电子有限公司 一种自动切换档位的指针电流表
CN105406536B (zh) * 2015-12-07 2018-01-12 湖南深拓智能设备股份有限公司 一种使用互联网的智能移动充电系统及方法
CN205304343U (zh) * 2015-12-09 2016-06-08 上海贝岭股份有限公司 电动车充电装置
CN106740195B (zh) * 2016-12-12 2021-01-01 深圳市京科凌智技术有限公司 一种电动汽车充电电源及对电动汽车的充电方法
US10875406B2 (en) * 2017-01-19 2020-12-29 Solaredge Technologies Ltd. Electric-vehicle charging apparatus
CN107169603B (zh) 2017-05-16 2020-11-03 盐城工业职业技术学院 一种基于智慧城市的充电顾问云平台及其控制方法
DE102018202259A1 (de) 2018-02-14 2019-08-14 Siemens Aktiengesellschaft Ladestation zum Laden von Elektrofahrzeugen mit verteilter Energiemessung sowie Verfahren
DE102018204126A1 (de) * 2018-03-19 2019-09-19 Siemens Aktiengesellschaft Ladesysteme zum Laden von elektrischen Energiespeichern von Elektrofahrzeugen sowie dazugehörige Verfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223796A (ja) * 2010-04-13 2011-11-04 Mitsubishi Electric Corp 車両充電装置
DE102011007839A1 (de) * 2011-04-21 2012-10-25 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugladevorrichtung
DE102014109939A1 (de) * 2014-07-15 2016-01-21 EnBW Energie Baden-Württemberg AG Lokales Ladenetz mit wenigstens einem Ladesystem zum Laden von Elektrofahrzeugen, Ladesystem mit wenigstens einer Ladestation und Verfahren zum Betreiben eines Ladenetzes mit wenigstens einem Ladesystem zum Laden von Elektrofahrzeugen
DE102014223585A1 (de) * 2014-11-19 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs

Also Published As

Publication number Publication date
CN112118982A (zh) 2020-12-22
US20210046830A1 (en) 2021-02-18
EP3749544A1 (de) 2020-12-16
US11407324B2 (en) 2022-08-09
DE102018204126A1 (de) 2019-09-19

Similar Documents

Publication Publication Date Title
EP2994340B1 (de) Verfahren zum betrieb einer ladevorrichtung für das ein- und mehrphasige laden eines energiespeichers eines kraftfahrzeugs und ladevorrichtung
EP3521099B1 (de) Ladesystem mit mindestens einer ladesäule für elektrofahrzeuge und verfahren zum laden eines oder mehrerer elektrofahrzeuge
WO2019030125A1 (de) Akkuladevorrichtung für ein kraftfahrzeug, verfahren zum betreiben einer kraftfahrzeugseitigen akkuladevorrichtung, hochvoltbordnetz und verwendung einer akkuladevorrichtung
DE10102243A1 (de) Vorrichtung zur Erzeugung und Verteilung von elektrischer Energie an Verbraucher in einem Fahrzeug
DE102015004119A1 (de) Kraftfahrzeug mit einem elektrischen Energiespeicher und zwei Ladeschnittstellen, Ladesystem sowie Verfahren
DE102011107628A1 (de) Ladevorrichtung für elektrofahrzeuge und verfahren zum laden von elektrofahrzeugen
DE102011007839A1 (de) Fahrzeugladevorrichtung
DE102014016620A1 (de) Verfahren zum Betrieb einer Energiespeichereinrichtung in einem Kraftfahrzeug und Kraftfahrzeug
DE102010020609A1 (de) Schalteinrichtung
DE102009033185A1 (de) Ladesystem und Ladeverfahren zum Laden einer Batterie eines Fahrzeugs und Fahrzeug mit einem solchen Ladesystem
DE102018202259A1 (de) Ladestation zum Laden von Elektrofahrzeugen mit verteilter Energiemessung sowie Verfahren
DE102010009260A1 (de) Einrichtung zur Versorgung eines Bordnetzes
DE102016214050A1 (de) Anordnung aus einem Kraftfahrzeug und einem Verbindungsmittel, Kraftfahrzeug und Verbindungsmittel
DE102016015316A1 (de) On-Board-Gleichspannungsladevorrichtung für ein Fahrzeug
DE102015102517A1 (de) Fahrzeug mit einem Ladesystem für eine Batterie
WO2019179703A1 (de) Ladesysteme zum laden von elektrischen energiespeichern von elektrofahrzeugen sowie dazugehörige verfahren
DE102017206497B4 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs, sowie Kraftfahrzeug
DE102019201606A1 (de) Verfahren zum elektrischen Vorladen eines Zwischenkreiskondensators im Hochvoltsystem eines zumindest teilweise elektrisch angetriebenen Kraftfahrzeugs sowie ein derartiges Hochvoltsystem
EP2253059A1 (de) Elektrische lade- und/oder entladevorrichtung
EP3669199B1 (de) Vorrichtung und verfahren zum kalibrieren eines batteriesimulators
DE102017201241A1 (de) Batterieeinheit und Verfahren zum Betrieb einer Batterieeinheit
WO2019120684A1 (de) Steuervorrichtung für eine ladeeinrichtung und verfahren zum steuern der ladeeinrichtung
DE102018208357A1 (de) Adapter für das elektrische Laden eines Akkumulators eines Gerätes und Ladesystem hierfür
DE102016222271A1 (de) Schaltungsanordnung zur Ansteuerung einer Ladedose eines Elektro- oder Hybridfahrzeugs und Ladestecker
DE102019201962A1 (de) Vorrichtung zur Steuerung eines Ladevorgangs für ein Elektrofahrzeug, Ladepark für Elektrofahrzeuge und Verfahren zur Vorbereitung eines Ladevorgangs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19707306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019707306

Country of ref document: EP

Effective date: 20200911

NENP Non-entry into the national phase

Ref country code: DE