WO2019179465A1 - 香加皮提取物在制备治疗心衰合并症的药物中的应用 - Google Patents

香加皮提取物在制备治疗心衰合并症的药物中的应用 Download PDF

Info

Publication number
WO2019179465A1
WO2019179465A1 PCT/CN2019/078887 CN2019078887W WO2019179465A1 WO 2019179465 A1 WO2019179465 A1 WO 2019179465A1 CN 2019078887 W CN2019078887 W CN 2019078887W WO 2019179465 A1 WO2019179465 A1 WO 2019179465A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart failure
tcm
group
administration
effect
Prior art date
Application number
PCT/CN2019/078887
Other languages
English (en)
French (fr)
Inventor
吴以岭
贾振华
赵韶华
Original Assignee
石家庄以岭药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄以岭药业股份有限公司 filed Critical 石家庄以岭药业股份有限公司
Publication of WO2019179465A1 publication Critical patent/WO2019179465A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/27Asclepiadaceae (Milkweed family), e.g. hoya
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics

Definitions

  • the invention belongs to the field of medicine and relates to the treatment of heart failure combined with other clinical symptoms.
  • Heart failure (referred to as heart failure) is a complex clinical syndrome in which ventricular filling or impaired ejection capacity is impaired due to abnormal cardiac structure or function.
  • the main clinical manifestations are dyspnea and fatigue (limited activity tolerance), and fluid Shift (pulmonary congestion and peripheral edema).
  • Heart failure is a serious and terminal stage of various heart diseases, and its incidence is high. It is one of the most important cardiovascular diseases today. [Chinese Medical Association Cardiovascular Diseases Branch, Editorial Board of Chinese Journal of Cardiovascular Diseases. Guidelines for Diagnosis and Treatment of Heart Failure in China 2014. Chinese Journal of Cardiovascular Diseases. 2014, 42(2): 98-122].
  • heart failure is divided into acute heart failure and chronic heart failure.
  • Acute heart failure is caused by a significant decrease in myocardial contractility or a significant increase in ventricular load in a short period of time, resulting in a decrease in acute cardiac output, which is common in acute myocardial infarction, acute valvular insufficiency, hypertensive crisis, etc.
  • Acute heart failure is rapid and can worsen in minutes to hours (such as acute heart failure caused by AMI) or days to weeks. Symptoms can vary from dyspnea, peripheral edema, to life-threatening pulmonary edema or cardiogenic shock.
  • Acute heart failure symptoms can also vary with different causes and clinical conditions.
  • Chronic heart failure is the final outcome of a variety of heart disease changes, myocardial damage, myocardial structure and functional changes, and central remodeling and neuroendocrine activation are important in the development of heart failure.
  • the treatment of acute heart failure focuses on rapidly increasing myocardial strength and alleviating symptoms, such as the use of opioids, diuretics, vasodilators, positive inotropic drugs, and vasoconstrictor drugs.
  • Representative drugs for the treatment of acute heart failure such as cedilan, can rapidly strengthen myocardial contraction and slow heart rate and conduction.
  • such drugs have problems such as incomplete absorption and unstable drugs in the body.
  • patients with heart failure are sometimes accompanied by other diseases, such as atrial fibrillation, valvular heart disease, coronary heart disease, hypertension, acute severe myocarditis, renal insufficiency, lung disease, etc., in the course of treatment, need to be combined with specific conditions, Avoid losing or hurting more.
  • diseases such as atrial fibrillation, valvular heart disease, coronary heart disease, hypertension, acute severe myocarditis, renal insufficiency, lung disease, etc.
  • the inventors of the present application have conducted intensive studies and found that the extract of Xiangjiapi has an unintended benefit in treating complication of heart failure. Based on this, it is an object of the present invention to provide a new option for treating heart failure complications.
  • a savory extract for the preparation of a medicament for the treatment of heart failure comorbidities.
  • the active ingredient of the scented extract is peritoxin, and the mass content of periplocin in the savory extract is >99%.
  • the dosage form of the medicament is: a water needle preparation.
  • the heart failure is acute heart failure.
  • the heart failure comorbidity is heart failure and atrial fibrillation.
  • a medicament for treating a heart failure complication comprising a scented extract.
  • the active ingredient of the scented extract is peritoxin, and the mass content of periplocin in the savory extract is >99%.
  • the dosage form of the medicament is: a water needle preparation.
  • the medicinal extract has a content of 0.05 to 0.2 mg/ml.
  • the aqueous needle preparation is usually formulated in a 2 ml size, that is, in a water needle preparation, the amount of the extract is 0.1-0.4 mg.
  • the drug-treated heart failure comorbidity is heart failure and atrial fibrillation.
  • a method of treating a heart failure complication comprising administering to a subject in need thereof a medicament comprising a scented extract, such as the medicament of the second aspect of the invention.
  • the invention utilizes the effect of the extract of Xiangjiapi on the animal heart failure model and its comorbidity model, and finds that the extract of Xiangjiapi has a very good therapeutic effect on acute heart failure and heart failure and atrial fibrillation, and is more than the conventional medicine west.
  • Diland has a fast onset, good effect, and a long or long duration. It can be used as a clinical treatment for acute heart failure and heart failure and atrial fibrillation.
  • Figure 1 Duration of atrial fibrillation in each group of animals after rapid stimulation.
  • the reagents and instruments used in the examples are conventional reagents and instruments in the art, and can be obtained by commercially available methods; the methods used are all conventional experimental methods, and those described by those skilled in the art according to the examples are described. The experimental process was carried out and the corresponding results were obtained.
  • Example 1 Extraction of fragrant skin extract and preparation of water needle preparation
  • the fragrant skin was extracted according to the contents of Example 1 of CN1594353A. After testing and analysis, the purity (mass content) of periplocin in the obtained extract was 99.1%, which was used for subsequent experiments.
  • a water needle was prepared according to a conventional method. Specifically, adding medicinal sodium hydroxide to the water for injection to adjust the pH to 9.5; adding the extract of the scented skin prepared above, stirring and dissolving, so that the amount of the scented extract is 0.1 mg/ml, and the 0.45 ⁇ m PP filter Filtration, filtration with 0.2 ⁇ m PES filter, filling 2 ml / support.
  • Example 2 Effect of intravenous injection of fragrant skin extract on acute heart failure induced by pentobarbital sodium in rats
  • a rat model of acute heart failure was induced by sodium pentobarbital, and Xidilan (XDL) was used as a control to observe the cardiac function of the animal model of acute heart failure by intravenous injection of the extract of Xiangjiapi (TCM) prepared in Example 1. The effect of urine output. Administered intravenously.
  • Rat information SD rats, SPF grade, 170-190g, male and female, 150, from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd., normal feeding.
  • Test group TCM 0.2, 0.15, 0.1, 0.08, 0.05 mg/kg dose
  • model control group 0.9% sodium chloride injection (NS)
  • NS information Shijiazhuang Four Medicine Co., Ltd. , National Pharmaceutical Standard H13023202, product batch number 1602163102, specification: 0.9g: 100ml
  • positive control group XDL 0.2, 0.135, 0.036mg / kg
  • Sydialand information deacetyl geranin injection, drug name: Westland , Shanghai Xudong Haipu Pharmaceutical Co., Ltd., National Pharmaceutical Standard H31021178, product batch number AF160102, specifications: 2ml: 0.4mg, 2ml * 5).
  • method rat intraperitoneal injection of chloral hydrate anesthesia, separation of the right common carotid artery, intubation to detect cardiac function indicators, separation of the left external jugular vein, intubation for pentobarbital sodium replication acute heart failure model.
  • the femoral vein is isolated for administration.
  • the cannula enters the left ventricle, and is connected with a physiological recorder to collect the left ventricular pressure (LVSP) and the maximum rate of increase of the left ventricular pressure (+dp/dt max ) in a normal state; the microinjection pump is used to inject 1.5 into the vein.
  • the flow rate of the microinjection pump was adjusted to 1ml/h, and the cardiac function index after modeling was recorded;
  • the test group was intravenously injected with the test substance
  • the model control group was intravenously injected with NS
  • the positive control group was intravenously injected with the above concentration of XDL. Changes in cardiac function were measured 1, 3, 5, 8, 10, 15, 20, 30 min after administration.
  • the +dp/dt max of the animals in each group was significantly decreased (P ⁇ 0.05, P ⁇ 0.01), which indicated that the heart function of the animals was obviously impaired.
  • the +dp/dt max of the model control group continued to decrease after administration, and the decrease was more obvious at 30 min after administration (P ⁇ 0.05).
  • the +dp/dt max of the XDL 0.2mg/kg, TCM 0.2mg/kg, TCM 0.15mg/kg dose group was also increased after administration, and XDL0.2mg/kg was administered.
  • the LVSP of each group of animals was significantly decreased (P ⁇ 0.01), suggesting that the left ventricular pressure was reduced due to impaired systolic function, and the cardiac function was significantly impaired.
  • Animal LVSP was elevated, and XDL 0.2mg/kg could significantly increase animal LVSP at 1min and 30min after administration (P ⁇ 0.05, P ⁇ 0.01), XDL 0.135mg/ The LVSP was significantly increased in kg at 30 min after administration (P ⁇ 0.05).
  • TCM 0.2, 0.15, and 0.1 mg/kg also significantly increased LVSP in animals 1 min and 30 min after administration (P ⁇ 0.05, P ⁇ 0.01).
  • the results suggest that injection of TCM can significantly increase LVSP in rats with acute heart failure and improve cardiac pumping function. The results are shown in Table 3 and Table 4.
  • Table 5 Effects of sodium pentobarbital on lung weight and urine volume in rats with acute heart failure
  • TCM0.15 12 1.3759 ⁇ 0.0703 3.7799 ⁇ 0.2731 0.59 ⁇ 0.56 1.59 ⁇ 1.48
  • TCM0.1 12 1.3582 ⁇ 0.0906 3.8562 ⁇ 0.2139 0.47 ⁇ 0.40 1.30 ⁇ 1.10
  • TCM0.08 12 1.3356 ⁇ 0.0929 4.1123 ⁇ 0.2480 0.38 ⁇ 0.22 1.17 ⁇ 0.71
  • TCM0.05 12. 1.3791 ⁇ 0.1147 3.7497 ⁇ 0.2653 0.32 ⁇ 0.30 0.88 ⁇ 0.83
  • TCM 0.2 and 0.15 mg/kg could significantly increase +dp/dt max
  • TCM 0.2 and 0.1 mg/kg could significantly increase LVSP
  • TCM 0.15mg/kg can significantly increase the increase of +dp/dt max
  • TCM 0.2, 0.15, 0.1mg/kg can significantly increase the increase of LVSP
  • TCM can also increase the acute heart failure.
  • Example 3 Effect of intravenous injection of fragrant skin extract on acute heart failure induced by propafenone in rats
  • propafenone (propazone hydrochloride injection, Shanghai Xinyi Jinzhu Pharmaceutical Co., Ltd., National Pharmaceutical Standard H31022214, product batch number 1610501, specification 20ml: 70mg, 5pcs/box) was used to induce rats (SD rats, SPF grade, 150-190g, male and female, 130, from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd., normal feeding) acute heart failure model, XDL as a control, observe the intravenous injection of Example 1 prepared Skin extract (TCM) was used as a cardiotonic effect in rats with acute heart failure, and the effect of TCM on urine volume, renal blood flow and pulmonary edema was observed. Administered intravenously.
  • rats SD rats, SPF grade, 150-190g, male and female, 130, from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd., normal feeding
  • TCM Skin extract
  • Test group TCM 0.2, 0.15, 0.1, 0.08, 0.05, 0.026 mg/kg dose was established; model control group was injected with NS (NS: 0.9% sodium chloride injection, Shijiazhuang Four Medicine Co., Ltd., Chinese medicine) The standard word H13023202, product batch number 1602163102, specification 0.9g: 100ml); positive control group: XDL 0.2, 0.135, 0.107, 0.07, 0.036mg/kg.
  • Rats were intraperitoneally injected with chloral hydrate for anesthesia, and the right common carotid artery was isolated for intubation to detect cardiac function indicators, and the left external jugular vein was separated for intubation to give propafenone and to separate the femoral vein. Prepare for administration.
  • the cannula enters the left ventricle, and the physiological recorder is connected to collect the left ventricular pressure (LVSP) and the maximum rate of increase of the left ventricular pressure (+dp/dt max ) in the normal state; the micro-injection pump is used to pump the constant flow into the Pro
  • the flow rate of the microinjection pump was adjusted to 0.5 ml/h.
  • the test group was intravenously injected with the above concentration of TCM.
  • the control group received intravenous NS, and the positive control group received the above-mentioned concentration of XDL intravenously to detect changes in cardiac function at 3, 5, 10, 15, 20, 30, 40, 50, 60, 90, and 120 minutes after administration.
  • the +dp/dt max of the animals in each group was significantly decreased (P ⁇ 0.05, P ⁇ 0.01), indicating that the animal's heart function was significantly impaired; intravenous administration after model establishment, and before administration Compared with the model control group, the +dp/dt max was significantly decreased at 60 min, 90 min, and 120 min after administration (P ⁇ 0.05), while the XDL 0.2 mg/kg and TCM 0.2 and 0.15 mg/kg groups were +dp/dt.
  • +dp/dt max also increased, of which XDL 0.2mg/kg was administered 50min, 90min, 120min and TCM 0.2mg/kg after administration 60min, 90min, 120min and TCM0.15mg/kg after administration
  • the increase of 120min was more obvious (P ⁇ 0.05, P ⁇ 0.01).
  • the results showed that the injection of TCM significantly increased +dp/dt max in acute heart failure rats and improved cardiac function.
  • the results are shown in Tables 6 and 7.
  • the LVSP of each group of animals was significantly decreased after modeling (P ⁇ 0.05, P ⁇ 0.01), indicating that the left ventricular pressure was reduced due to impaired contractile function, and the cardiac function was significantly impaired.
  • Intravenous administration compared with before administration, there was no significant change in LVSP in the model control group after administration, while LVSP in the XDL 0.2, 0.135 mg/kg, and TCM 0.2, 0.15, and 0.1 mg/kg dose groups increased.
  • the LVSP (P ⁇ 0.01) was significantly increased in the XDL 0.2 mg/kg group at 120 min after administration, and the LVSP was significantly increased in the TCM 0.2 mg/kg group at 10 min and 120 min after administration (P ⁇ 0.05).
  • TCM 0.15, 0.1 mg / kg group can also significantly increase animal LVSP (P ⁇ 0.05) 120 minutes after administration; the results indicate that injection of TC After M, the LVSP of acute heart failure rats can be significantly increased, and the blood pumping function of the heart is improved.
  • the results are shown in Table 8 and Table 9.
  • the test group and the positive control group were given urine.
  • the volume and urine coefficient increased in different degrees.
  • the urine volume of XDL 0.2mg/kg group increased significantly (P ⁇ 0.05), and the urine volume of rats in TCM 0.15mg/kg group also increased significantly (P ⁇ 0.05).
  • the XDL0.2mg/kg dose group had obvious effect (P ⁇ 0.01), indicating that the intravenous test substance had a certain improvement effect on the lung index of acute heart failure.
  • the results are shown in Table 10.
  • the renal blood flow of the rats was detected by small animal ultrasound before modeling, before administration and 120 min after administration.
  • the results showed that the renal blood flow of the rats in each group was significantly decreased before the administration (P ⁇ 0.05, P ⁇ 0.01).
  • the renal blood flow decreased in each group, and the increase of XDL0.2, 0.135 mg/kg and TCM0.2, 0.15, 0.1 mg/kg was more obvious (P ⁇ 0.05, P). ⁇ 0.01), indicating that TCM has a significant effect on improving renal blood flow in rats with heart failure.
  • Table 11 The results are shown in Table 11.
  • TCM 0.2 and 0.15 mg/kg can significantly increase +dp/dt max
  • TCM 0.2, 0.15, 0.1 mg/kg can significantly increase LVSP, calculate +dp/dt max at each time point
  • TCM 0.2 and 0.15 mg/kg could significantly increase the increase of +dp/dt max
  • TCM 0.2, 0.15, and 0.1 mg/kg could significantly increase the increase of LVSP, TCM. It can also significantly increase the urine volume of rats with acute heart failure and significantly increase renal blood flow. The results show that TCM has obvious cardiotonic and diuretic effects, and the effective dose is 0.1 mg/kg.
  • TCM has a strong heart.
  • the effective dose of TCM was 0.1 mg/kg, and the maximum effective dose was 0.2 mg/kg.
  • TCM tripeptide kinase inhibitor 3
  • pentabital sodium model and propafenone model injection of TCM can increase the amount of urine in rats with acute heart failure
  • TCM can also improve propafenone-induced acute heart failure in rats Renal blood flow, indicating the diuretic effect of TCM.
  • Example 4 Effect of intravenous injection of Xiangjiapi extract on acute cardiac insufficiency in dogs
  • Test sample The extract prepared in Example 1 has a white powder appearance, is easily soluble in water, and has a molecular weight of 696.82; it is dissolved in physiological saline before use, and can be completely dissolved by shaking and vortexing, and the corresponding concentration is temporarily prepared according to the concentration requirement.
  • Deacetyl safflower injection (Sidilan injection): Shanghai Xudong Haipu Pharmaceutical Co., Ltd. production, specifications: 0.4mg / 2ml / support, molecular weight: 943.09, approval number: national drug quasi-word H31021178, production batch number: AF150201.
  • Heparin sodium Shanghai Yuanchuang Biotechnology Co., Ltd. production, specifications: 1g / bottle, production batch number: Lot73685321.
  • Canine free fatty acid ELISA test kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Canine Lactic Acid ELISA Test Kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Canine Myocardial ADP ELISA Test Kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Canine ATP ELISA test kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Canine AMP test kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Canine angiotensin II ELISA test kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Canine renin ELISA test kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Canine aldosterone ELISA test kit produced by Shanghai Xinyu Biotechnology Co., Ltd., 48t, valid until November 2018.
  • Model control group normal saline, 1 ml/kg.
  • Test group TCM was set to three low-medium-high dose groups: 0.01 mg/kg, 0.015 mg/kg, and 0.02 mg/kg, respectively. The dosage was 1 ml/kg according to the equal volume.
  • the positive control group (deacetyl glucoside injection, cedilan) was set at a dose of 0.04 mg/kg and the administration volume was 1 ml/kg.
  • Beagle information about 40 healthy Beagle dogs (36 in 6 groups, several other pre-experiments required), 10 ⁇ 1kg, male and female, half-class, from Shanghai Jiagan Biotechnology Co., Ltd.
  • the route of administration was intravenous injection at a rate of 2 ml/kg/min; the administration time was after the heart failure reached the required index and was stabilized for 60 minutes; the number of administrations was a single administration.
  • Surgical instruments scalpels, surgical scissors, hemostats, etc.
  • Gender male and female
  • the dog was raised normally in the kennel before the experiment, and the night before the experiment, the fasting could not be stopped.
  • the dog was anesthetized with 3% pentobarbital sodium 30mg/kg intravenously, placed on the operating table at a constant temperature of 39 °C on the operating table, skin preparation on the neck, iodophor and 75% alcohol to disinfect the skin, and the trachea was cut to make a inverted "T" incision. Insert the trachea, the instrument is ventilated, set the ventilator, the ventilator sets the respiratory rate 22 times / min, the breathing ratio is 1:2, and the tidal volume is 30ml/kg.
  • the limbs were inserted into the needle electrode to connect the bioelectric module, and the PowerLab was connected to the computer for monitoring and recording the electrocardiogram; the neck and one side of the groin were prepared for skin, 75% alcohol was disinfected, the femoral artery was exposed and inserted into the arterial tube for monitoring blood pressure, and the femoral vein was separated.
  • a constant-speed bolus pump to inject 3% sodium pentobarbital intravenously at a rate of 10 ml per minute until the mean arterial pressure drops below 60 mmHg and dp/dtmax decreases.
  • 4-6mg / min, after 60min began intravenous injection of the test article and recorded blood pressure at 5, 15, 30, 60, 120 minutes after administration, Heart rate, left ventricular hemodynamics.
  • Left ventricular hemodynamics mean arterial pressure (MBP); left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), left ventricular maximum systolic and diastolic rate ( ⁇ dp/dtmax); common carotid artery blood flow.
  • MBP mean arterial pressure
  • LVSP left ventricular systolic pressure
  • LVEDP left ventricular end-diastolic pressure
  • ⁇ dp/dtmax left ventricular maximum systolic and diastolic rate
  • ECG indicators heart rate, QRS complex wave time, QT time, ST segment, T wave changes.
  • Pulmonary edema index bilateral lung wet weight, HE staining to observe pathological changes in lung tissue.
  • RAAS related indicators serum angiotensin II, aldosterone, and renin levels.
  • Heart rate The heart rate of the dog was 160-180 beats/min before the heart failure model. The heart rate decreased to 100 beats/min after the heart failure model was stabilized. After intravenous injection of TCM, the heart rate of the dog did not change significantly, and there was no arrhythmia. (Table 12).
  • LVSP Left ventricular systolic pressure
  • cedilan The change of left ventricular systolic pressure is basically the same as that of blood pressure. Compared with before administration (0 min), LVSP increased after intravenous injection of cedilan, and it was significant at 30 min and reached the highest value, then decreased. After TCM intravenous injection, the rate of LVSP elevation was faster than that of cedilan (4% after intravenous injection, 4% for cedilan; TCM low, medium and high three doses were above 10%) (Table 14). The duration of TCM maintenance is comparable to or slightly longer than that of cedilan.
  • LVEDP Left ventricular end-diastolic pressure
  • ⁇ dp/dtmax The maximal rate of rise and fall of the isovolumic systolic pressure in the left ventricle ( ⁇ dp/dtmax): ⁇ dp/dtmax is the most important indicator of cardiac function, representing the agility of ventricular contraction and relaxation.
  • the +dp/dtmax fluctuated within a narrow range of 750-800 before and after injection of normal saline in the model control group; +dp/dtmax gradually after intravenous injection of cedilan Increased, reached the peak after 30min, then began to decrease, the maximum increase was 23.5% higher than before administration (0min);
  • +dp/dtmax increased rapidly after TCM intravenous injection, +dp between low dose and medium dose
  • the TCM group maintained a relatively long duration of efficacy.
  • Carotid blood flow In order to avoid serious trauma to heart failure dogs, the blood flow probe was placed in the carotid artery during the experiment, and the change of carotid blood flow represented the change of cardiac output. The experiment found that the ratio of the model control group After reaching the standard of heart failure model, the carotid blood flow gradually decreased with the prolongation of time; the carotid blood flow of the dog in the positive control group gradually increased after intravenous injection of cedilan, before administration (0 min) In comparison, it rose from 14.3% at 5 min after administration, 21.8% at 15 min, to 34.5% at 30 min, and then the blood flow gradually decreased.
  • the carotid blood flow increased significantly after intravenous injection of TCM, and there was a significant dose-effect relationship between the low, medium and high dose groups. Taking high dose as an example, the carotid blood flow increased 5 minutes after administration. At 25.3%, the 15min increase reached a peak of 30.9%, and then gradually decreased (Table 18).
  • Free fatty acids Compared with the model group, the positive drug cedilan and the test sample TCM did not affect the content of free fatty acids in the serum.
  • the average free fatty acid in the model group was 22.2 mmol/L, while the drug treatment group was 19.5-22.62 mmol/L. There is no significant difference between the two.
  • Lactic acid Compared with the model group, the serum lactate level of the dogs in the Westland group was decreased, but it did not show significant significance. The serum lactate level of the dog in the TCM group decreased with the dose of the drug, and there was a significant amount between the two. There was a significant difference between the medium and high dose groups and the model group (Table 24).
  • ATP adenosine triphosphate
  • ADP adenosine diphosphate
  • AMP adenosine monophosphate
  • (1) can significantly increase the maximum rate of increase and decrease of left ventricular pressure
  • (6) can reduce serum renin, aldosterone, lactate levels and slightly reduce myocardial ATP content.
  • TCM Compared with the positive control drug cedilan, TCM is faster and stronger in improving cardiac function indicators of acute heart failure, and the duration of efficacy is comparable to or longer than that of cedilan. It is superior to cedilan in reducing myocardial lactic acid accumulation and improving the general index of lung tissue. These characteristics are conducive to the treatment of acute heart failure.
  • Dose-effect relationship the positive control drug, Westland Blue, has a molecular weight of 943.09, and the dose used is 0.04 mg/kg; the test drug TCM has a molecular weight of 696.82, and the low, medium, and high doses used are 0.01 mg/kg, 0.015 mg/kg, and 0.02, respectively. Mg/kg.
  • the dose of cedilan was higher, which was 3 times, 2 times, and 1.5 times lower than the low, medium and high doses of TCM.
  • the low, medium and high doses of TCM have a dose-effect relationship for the treatment of acute heart failure.
  • TCM 0.06mg/kg had no obvious ECG toxicity; TCM 0.07mg/kg could cause ECG toxicity, and it could be restored to normal within 60min.
  • TCM 0.06mg/kg as the safest dose, the effective dose of TCM tested in this experiment is 1/6, 1/4, 1/3 of the highest safe dose respectively. Therefore, TCM has certain safety as a first-aid medicine for acute heart failure. Sex.
  • Example 5 Effect of intravenous injection of Xiangjiapi extract on heart failure and atrial fibrillation in dogs
  • a canine heart failure combined with atrial fibrillation model was used, and Xidilan (XDL) was used as a control to observe the therapeutic effect of the intravenous injection of the extract of the scented extract (TCM) prepared in Example 1 on a heart failure combined with atrial fibrillation model animals.
  • the dog information is: healthy beagle, ordinary grade, 10-11kg, male and female, 36 (30 for trial, several for pre-test), from Beijing Max Biotechnology Co., Ltd., normal feeding.
  • Mode of administration intravenous administration.
  • TCM 0.01, 0.02 mg/kg dose group was set up in the test object, sham operation group (surgical operation in the sham operation group was the same as other groups, but no pulsation, intravenous saline was administered), model control group (model In the control group, the operation was the same as the other groups, and the pacemaker was required to perform the injection.
  • the saline was administered intravenously and the positive control group (XDL 0.04 mg/kg).
  • the pacemaker was immersed in iodophor before installation, the electrode was inserted into the pacemaker, the pacemaker was started, and the limb lead electrocardiogram was used to detect the pace rhythm.
  • the heart rate showed instability, and then stabilized at 240 beats/min.
  • the electrocardiogram showed The wide deformity QRS wave proves that the pacing is intact.
  • the pacemaker is buried under the skin and at the opening of the neck.
  • the implant site is disinfected to prevent infection and the neck skin is sutured.
  • the pacing was performed.
  • the voltage was adjusted to 2 to 3 times the threshold voltage, the pulse width was 0.5 to 0.8 mA, and the pacing frequency was 250 times/min.
  • the ECG was observed every day and the behavior of the animals was observed.
  • the pacing time was 7 ⁇ . 14d.
  • the sham operation group only performed the above operation and was not able to fight.
  • Hemodynamics After anesthesia, the dog is fixed on the operating table. Under the sterile conditions, the left and right common carotid arteries, the right femoral vein, the right common carotid artery are intubated, and the left ventricle is connected.
  • PowerLab physiological recorder to detect hemodynamic parameters (left ventricular pressure LVSP, left ventricular end-diastolic pressure LVEDP, left chamber pressure rise and fall maximum rate ⁇ dp / dtmax); 2) carotid blood flow: separation of left neck total Arterial connection blood flow measurement probe, recording blood flow of common carotid artery with electromagnetic blood flow meter; 3) duration of atrial fibrillation: limb II lead, connected with PowerLab physiological recorder to detect electrocardiogram; Next, the right atrial electrode is placed through the sheath tube, and multiple electrophysiological recorders are connected. After the ideal right atrial signal is obtained, the electrode is fixed and the right atrial stimulation is given.
  • hemodynamic parameters left ventricular pressure LVSP, left ventricular end-diastolic pressure LVEDP, left chamber pressure rise and fall maximum rate ⁇ dp / dtmax
  • carotid blood flow separation of left neck total Arterial connection blood flow measurement probe, recording blood flow of common carotid artery with
  • the base stimulation (S1S1) has a circumference of 300 ms and the premature beat interval. (S1S2) is decremented in 5ms steps.
  • the longest S1S2 interval in which premature beat does not cause atrial activation is atrial effective refractory period, repeated 3 times, and averaged. This value is used as the experimental stimulation circumference.
  • the hemodynamics and carotid blood flow were stabilized for 30 minutes, and the pre-dose values were recorded. After the pre-dose values were recorded, the test substances were intravenously administered, and 10, 20, 30, 60, 90, and 120 min after the administration was recorded. Hemodynamics, changes in carotid blood flow. At 120 min after the administration, the stimulator was given a stimulus, stimulated for 1 min, and the atrial fibrillation was observed to calculate the duration of atrial fibrillation in each dog.
  • the LVSP, +dp/dt max and -dp/dt max of the model control group were significantly decreased (P ⁇ 0.05, P ⁇ 0.01), and LVEDP was significantly increased (P ⁇ 0.01), suggesting that the heart was passed. Rapid pacing, the heart function of the dog is significantly reduced.
  • XDL and TCM 0.01 and 0.02 mg/kg dose groups can increase the LVSP, +dp/dt max and -dp/dt max in dogs to varying degrees.
  • Canine LVSP and +dp/dt max (P ⁇ 0.05) were significantly increased 30 min and 60 min after administration.
  • TCM 0.01 mg/kg could significantly induce LVSP and +dp/dt max in dogs 20 min, 30 min and 60 min after administration. Elevated (P ⁇ 0.05), TCM 0.02mg/kg can significantly increase LVSP and +dp/dt max in dogs 10min, 20min, 30min, 60min after administration (P ⁇ 0.01), TCM 0.02mg/kg in giving Canine + dp / dt max was significantly increased 90 min and 120 min after the drug (P ⁇ 0.05); the results suggest that TCM can significantly improve the heart systolic function of heart failure dogs, have a strong cardiotonic effect, and Time is faster than XDL.
  • TCM 0.02mg/kg increased the effect of LVSP in dogs 10min, 20min, 30min, 60min significantly stronger than XDL (P ⁇ 0.05), and TCM 0.02mg/kg increased 10min and 20min after administration.
  • the effect of canine + dp / dt max was also significantly stronger than XDL (P ⁇ 0.05). This result suggests that the cardiotonic effect of TCM is better than XDL.
  • TCM 0.02 mg/kg also had the effect of reducing LVEDP in dogs 20 min after administration (P ⁇ 0.05), and increased the effect of canine-dp/dt max 10 min after administration (P ⁇ 0.05), suggesting TCM pair Cardiac diastolic function also has a certain effect.
  • the results are shown in Table 27, Table 28, Table 29, and Table 30.
  • the blood flow probe was placed in the carotid artery during the test, and the change of carotid blood flow represented the change of cardiac output.
  • the average duration of atrial fibrillation induced by each group was 167.0 ⁇ 47.6 in the sham operation group, 406.3 ⁇ 70.2 in the model control group, 310.2 ⁇ 61.6 in the XDL group, and 293.5 ⁇ 52.8 in the TCM 0.01 mg/kg dose group.
  • the TCM 0.02 mg/kg dose group was 239.3 ⁇ 41.2.
  • the duration of atrial fibrillation was significantly increased in the model control group (P ⁇ 0.01).
  • TCM has obvious cardiotonic effect, and compared with XDL, it has the advantages of quick action and strong effect; it has the effect of increasing carotid blood flow, and has the advantage of quick effect compared with XDL; it has the effect of shortening the duration of atrial fibrillation. Therefore, TCM has a therapeutic effect on heart failure and atrial fibrillation, and has the advantages of quick action and strong effect compared with XDL.
  • Example 6 Effect of in vitro perfusion of fragrant skin extract on heart failure and ventricular arrhythmia in guinea pigs
  • a model of guinea pig heart failure combined with ventricular arrhythmia was used to observe the effect of extracting the extract of Xiangjiapi (TCM) prepared in Example 1 on the incidence of arrhythmia in heart failure patients with ventricular arrhythmia.
  • Guinea pig information Hartley guinea pig, ordinary grade, 200-250g, male and female, 300, from Beijing Longan experimental animal breeding center, normal feeding.
  • Mode of administration administration by in vitro perfusion.
  • grouping the test object set up TCM 1 * 10 -8 , 0.5 * 10 -8 , 0.25 * 10 -8 , 0.125 * 10 -8 , 0.0625 * 10 -8 M concentration group, another sham operation group (sham operation) Group animals were operated with other groups, but did not stenosis of the thoracic aorta, ie, did not cause a heart failure model, perfused normal perfusate during perfusion of the heart, no drug added), model control group (model control group stenosis thoracic aorta caused heart The aging model, perfusion of normal perfusate during perfusion of the heart, without the addition of drugs).
  • guinea pigs 200-250 g, male and female, and 15 rats in each treatment group were tested.
  • the guinea pig heart failure model was replicated by thoracic aortic stenosis. After successful model, the ejection fractions were grouped and grouped.
  • the guinea pig heart was taken and connected to the Langendorff perfusion device to perfuse the test substance, and ventricular arrhythmia was induced by programmed electrical stimulation to observe the effect of the test substance on heart failure combined with ventricular arrhythmia.
  • Heart failure model construction guinea pig intraperitoneal injection of pentobarbital sodium 30mg / kg anesthesia, supine position fixed, orally intubated, into the trachea, connected to small animal ventilator, positive pressure ventilation; surgical procedures are carried out under sterile conditions,
  • the third intercostal space on the left side of the chest cuts the skin longitudinally, the muscles and fascia open the thoracic cavity, the thoracic cavity is fully exposed using a thoracotomy device, the aorta is separated, and the thoracic aorta is padded on line 0, the thin tube is withdrawn, and the aorta is narrowed.
  • the thoracic cavity was sutured layer by layer, and a plastic tube was used to connect the syringe to the chest to induce negative pressure. Penicillin was used to prevent infection, the tracheal intubation was removed, spontaneous breathing was resumed, and the cage was returned to normal feeding. The sham operation group only opened the chest. Not narrow.
  • Isolated guinea pig heart perfusion KH solution is routinely configured. After guinea pig anesthesia, the heart is removed by thoracotomy, and the heart is quickly connected to the Langendorff perfusion device. The oxygen-saturated perfusion solution is continuously perfused. The two electrocardiographic recording electrodes are connected to the aortic root and apex. Stable perfusion for 20 min, the signal is input into the physiological recorder to stabilize the ECG pattern.
  • programmed electrical stimulation induces ventricular arrhythmia in guinea pigs: programmed electrical stimulation S1S2 induces ventricular arrhythmia in guinea pigs.
  • the pacing electrodes are silver bipolar pacing electrodes. The electrodes are placed in the left ventricle and apex, respectively. 1mm, using 200% threshold stimulation intensity, the basic frequency is 150ms S1S2 stimulation, S1-S2 interval is reduced from the initial 150ms to the heart refractory period every 5ms, S1:S2 is 8:1, ie 8 One S2 stimulation after sub-S1 stimulation, according to the cardiac stimulation procedure until 3 consecutive pre-stimuli were repeated to determine whether ventricular arrhythmia could be induced.
  • the model control group was perfused into the isolated heart. After the heartbeat was stable, the electrocardiogram was recorded, and the ventricular arrhythmia was induced by S1S2 premature ventricular contraction.
  • the TCM in the drug-administered group was perfused into the perfusate and perfused into the isolated heart. After 30 minutes, the perfusion was continued. After the heart beats stable, the electrocardiogram is recorded, and the ventricular arrhythmia is induced by the S1S2 ventricular premature beat method. Chi-square test was used to analyze whether there was a statistical difference in the occurrence of ventricular arrhythmia between groups.
  • the cardiac stimulation of the heart failure model can significantly induce the occurrence of ventricular arrhythmia (P ⁇ 0.01); after TCM intervention, TCM itself does not induce ventricular arrhythmia, superimposed electrical stimulation factors Later, ventricular arrhythmia can be induced, compared with the model control group, TCM1*10 -8 , 0.5*10 -8 , 0.25*10 -8 , 0.125*10 -8 , 0.0625*10 -8 M concentration group heart rhythm There was no significant decrease in the incidence of abnormalities, and there was no statistical difference. The results suggest that TCM has no effect in improving heart failure and ventricular arrhythmia. The results are shown in Table 31.
  • Example 7 Effect of intravenous injection of Xiangjiapi extract on heart failure and hypertension in rats
  • a rat heart failure combined with hypertension model was used, and the therapeutic effect of the medicinal extract (TCM) prepared in Example 1 on heart failure and hypertensive model animals was observed.
  • Rat information SD rats, SPF grade, 150-170g, male and female, 90, from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd., normal feeding.
  • Mode of administration intravenous administration.
  • EF ejection fraction
  • Hemodynamics After anesthesia in rats, hemodynamic parameters (ejection fraction (EF), left ventricular shortening rate (FS), left ventricular end-diastolic volume (LVVd), left End-systolic volume (LVVs), left ventricular end-diastolic diameter (LVDd), left ventricular end-systolic diameter (LVDs); 2) Non-invasive detection of tail artery blood pressure.
  • hemodynamic parameters ejection fraction (EF), left ventricular shortening rate (FS), left ventricular end-diastolic volume (LVVd), left End-systolic volume (LVVs), left ventricular end-diastolic diameter (LVDd), left ventricular end-systolic diameter (LVDs);
  • EF ejection fraction
  • FS left ventricular shortening rate
  • LVd left ventricular end-diastolic volume
  • LVVs left End-systolic volume
  • LPDdd left ventricular end-
  • the small heart ultrasound was used to detect the cardiac function of the rats.
  • the cardiac EF of the model control group was significantly decreased (P ⁇ 0.05)
  • FS was significantly decreased (P ⁇ 0.01)
  • the left ventricular end systole was closed.
  • Volume and left ventricular end-systolic diameter were significantly increased (P ⁇ 0.05), suggesting that the cardiac function of the rats was significantly reduced after abdominal aortic coarctation.
  • TCM 0.1, 0.2 mg/kg compared with the model control group. There was no significant improvement in the cardiac function of the rats in the dose group, suggesting that TCM did not significantly improve the cardiac function of heart failure patients with hypertension.
  • Table 32 The results are shown in Table 32.
  • the tail blood pressure measuring instrument non-invasively detected blood pressure, and the mean arterial pressure was analyzed. Compared with the sham operation group, the mean arterial pressure of the model control group was significantly increased (P ⁇ 0.01). After drug intervention, the model was given. Compared with the control group, the mean arterial pressure of the rats in the TCM0.1 and 0.2 mg/kg dose groups did not decrease significantly, and there was no statistical difference, suggesting that TCM did not reduce the blood pressure in rats with heart failure. The results are shown in Table 33.
  • Rat model of heart failure and hypertension was replicated by abdominal aortic stenosis.
  • the guinea pigs in the model control group had decreased heart function and elevated blood pressure.
  • TCM intervention no effect of TCM was found to improve cardiac function, and no TCM was found to reduce heart.
  • the role of blood pressure in aging rats The role of blood pressure in aging rats.
  • Example 8 Effect of intravenous injection of Xiangjiapi extract on heart failure and myocarditis in rats
  • a rat heart failure model with myocarditis was used, and the therapeutic effect of the medicinal extract (TCM) prepared in Example 1 on heart failure and myocarditis model animals was observed.
  • Rat information SD rats, SPF grade, 150-170g, male and female, 130, from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd., normal feeding.
  • Mode of administration intravenous administration.
  • TCM 0.1, 0.2 mg/kg dose group was set up in the test object, and the vehicle control group and model control group were set up. (At the time of modeling, the vehicle control group did not give doxorubicin, and only intraperitoneal injection of the same dose of normal saline. The model control group received intraperitoneal injection of doxorubicin. When administered, both groups received intravenous saline.
  • Rats, 150-170 g were randomly divided into groups. At least 14 animals in each group were obtained, half male and half female. Each group of animals received intraperitoneal injection of doxorubicin hydrochloride 2mg/kg for 10 times, the first 5 times every 3 days, the next 5 times every 7 days, the cumulative dose of doxorubicin was 20mg/kg, the vehicle control group Physiological saline was administered simultaneously. The rats were intravenously injected for the fourth week after the start of administration of doxorubicin hydrochloride for 4 weeks. The animals in each group were normally reared. 24 hours after the last administration, the animals were anesthetized, and the hemodynamic parameters of small animals were detected by ultrasound.
  • EF Blood fraction
  • FS left ventricular shortening rate
  • LVVd left ventricular end-diastolic volume
  • LVVs left ventricular end-systolic volume
  • LVDd left ventricular end-diastolic diameter
  • RVDs left ventricular end-systolic diameter
  • the cardiac function of the animals was detected by ultrasonography. Compared with the vehicle control group, the cardiac EF of the model control group was significantly decreased (P ⁇ 0.05), FS was significantly decreased (P ⁇ 0.01), and the left ventricular end systole was The inner diameter was significantly increased (P ⁇ 0.05), suggesting that the cardiac function of rats was significantly decreased after intraperitoneal injection of doxorubicin.
  • the rats in the TCM0.1 and 0.2 mg/kg dose groups were compared with the model control group. There were no significant improvements in functional indicators, suggesting that TCM did not significantly improve cardiac function in rats with heart failure and myocarditis. The results are shown in Table 34.
  • TNF- ⁇ (ng/ml) IL-6 (pg/ml)
  • Solvent control 10 3.15 ⁇ 1.23 49.47 ⁇ 13.36
  • Model control 12 5.42 ⁇ 1.39 ⁇ 68.66 ⁇ 14.63 ⁇ TCM 0.1mg/kg 11 5.19 ⁇ 1.09 65.89 ⁇ 16.71 TCM 0.2mg/kg 13 5.01 ⁇ 1.12 62.14 ⁇ 17.91
  • the model of heart failure and myocarditis in rats was induced by intraperitoneal injection of doxorubicin.
  • the heart function of the model control group was decreased, and the content of myocardial inflammatory factors was increased.
  • TCM intervention no effect of TCM on improving cardiac function was observed, and no TCM was observed. It has the effect of reducing the content of myocardial inflammatory factors in rats with heart failure.
  • the extract of Xiangjiapi has a significant therapeutic effect on heart failure, but it does not have any effect on heart failure complications.
  • the extract has a significant effect on heart failure and atrial fibrillation, and has a faster onset and better effect than the existing conventional treatment drug, cedilan.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

香加皮提取物在制备治疗心衰合并症的药物中的应用。所述香加皮提取物中杠柳毒苷含量>99%,可治疗心衰并房颤。

Description

[根据细则37.2由ISA制定的发明名称] 香加皮提取物在制备治疗心衰合并症的药物中的应用 技术领域
本发明属于医药领域,涉及心衰合并其它临床症状的治疗。
背景技术
心力衰竭(简称心衰)是由于心脏结构或功能异常导致心室充盈或射血能力受损的一组复杂的临床综合征,其主要临床表现为呼吸困难和乏力(活动耐量受限),以及液体潴留(肺淤血和外周水肿)。心衰为各种心脏疾病的严重和终末阶段,发病率高,是当今最重要的心血管病之一。[中华医学会心血管病学分会,中华心血管病杂志编辑委员会.中国心力衰竭诊断和治疗指南2014.中华心血管病杂志.2014,42(2):98-122]。
根据病情进展,心力衰竭分为急性心力衰竭和慢性心力衰竭。
急性心力衰竭是在短时间内发生心肌收缩力明显降低或心室负荷明显加重而导致急性心排血量减少,常见于急性心肌梗死、急性心脏瓣膜功能不全、高血压危象等,也可见于慢性心脏病过程中病情突然恶化。急性心衰发作迅速,可以在几分钟到几小时(如AMI引起的急性心衰),或数天至数周内恶化。患者的症状也可有所不同,从呼吸困难、外周水肿加重到威胁生命的肺水肿或心原性休克,均可出现。急性心衰症状也可因不同病因和伴随临床情况而不同。
慢性心力衰竭是逐渐进行的各种心脏病变、心肌损伤、心肌结构和功能改变的最后结局,在心力衰竭发展过程中心室重构和神经内分泌的激活十分重要。[高修仁,许顶立.心力衰竭——基础到临床.中山大学出版社.广州:2013,213]。
急性心力衰竭和慢性心力衰竭的临床表现有明显区别:
特点 急性心力衰竭 慢性心力衰竭
症状严重性 显著 轻-中度
肺水肿 常见 罕见
外周水肿 罕见 常见
体重增加 无-轻度 常见
总的体液容量负荷 不变或轻度增加 增加
心脏扩大 不常见 常见
心室收缩功能 降低、正常或升高 降低
室壁应力 升高 升高
交感神经系统激活 明显 轻-明显
RASS激活 常增加 轻-明显增加
由于急性心衰和慢性心衰的起因和临床表征相差甚远,在治疗上,二者也有明显差异。急性心衰的治疗侧重于快速增加心肌力,减轻症状,如使用阿片类药物、利尿剂、血管扩张 药物、正性肌力药物、血管收缩药物等。代表性的治疗急性心衰的药物,如西地兰等,都能够快速加强心肌收缩,减慢心率与传导。但这类药物存在吸收不完全、药物在体内不稳定等问题。
此外,心衰患者有时会伴有其它疾病,如房颤、心脏瓣膜病、冠心病、高血压、急性重症心肌炎、肾功能不全、肺部疾病等,在治疗过程中需要结合具体病情给药,避免因此失彼或出现更大伤害。
发明内容
本申请发明人经过深入的研究发现,香加皮提取物对治疗心衰合并症具有意向不到的好处。基于此,本发明的目的是提供一种治疗心衰合并症的新选择。
在第一个方面,提供香加皮提取物在制备治疗心衰合并症的药物中的应用。
优选地,所述香加皮提取物的有效成分是杠柳毒苷,杠柳毒苷在香加皮提取物中的质量含量为>99%。杠柳毒苷,CAS:13137-64-9,分子式:C 36H 56O 13,分子量:696.82。
优选地,所述药物的剂型是:水针制剂。
优选地,所述心衰为急性心衰。
优选地,所述心衰合并症为心衰并房颤。
第二个方面,提供一种治疗心衰合并症的药物,所述药物包含香加皮提取物。
优选地,所述香加皮提取物的有效成分是杠柳毒苷,杠柳毒苷在香加皮提取物中的质量含量为>99%。
优选地,所述药物的剂型是:水针制剂。
本发明中的香加皮提取物的提取、纯化,水针制剂的制备及其所需要的辅料等均采用本领域常规技术实现。
进一步优选地,所述药物中,香加皮提取物的含量为0.05-0.2mg/ml。为使用计,水针制剂通常配制成2ml规格,即,一份水针制剂中,香加皮提取物的量为0.1-0.4mg。
更优选地,所述药物治疗的心衰合并症为心衰并房颤。
第三个方面,提供一种治疗心衰合并症的方法,包括对需要的人施用含香加皮提取物的药物,如本发明第二个方面所述的药物。
本发明利用香加皮提取物对动物心衰模型及其合并症模型的影响进行实验,发现香加皮提取物对急性心衰以及心衰并房颤具有非常好的治疗效果,比常规药物西地兰起效快、效果好、维持时间相当或更长,可以作为急性心衰以及心衰并房颤的临床救治药物。
附图说明
图1:快速刺激后各组动物房颤持续时间。
具体实施方式
以下将结合具体实施例说明本发明,但本发明的保护范围不限于此。
如无具体说明,实施例中所使用的试剂和仪器都是本领域常规试剂和仪器,可以通过商购途径获得;所使用的方法都是常规实验方法,本领域技术人员根据实施例描述的内容实施实验过程并得到相应的结果。
如无特殊说明,以下实施例中的简写、缩写等具有本领域常规意义。
实施例1:香加皮提取物的提取以及水针制剂的制备
根据CN1594353A实施例1的内容提取香加皮。经检测分析,所得提取物中杠柳毒苷的纯度(质量含量)为99.1%,用于后续实验。
根据常规方法制备水针。具体为:向注射用水中加入药用氢氧化钠,调节pH值至9.5;加入上述制备的香加皮提取物,搅拌溶解,使香加皮提取物的量为0.1mg/ml,0.45μmPP滤芯过滤,再用0.2μmPES滤芯过滤,灌装2ml/支。
实施例2:静脉注射香加皮提取物对戊巴比妥钠诱导大鼠急性心衰的影响
本实施例采用戊巴比妥钠诱导大鼠急性心衰模型,以西地兰(XDL)作对照,观察静脉注射实施例1制备的香加皮提取物(TCM)对急性心衰模型动物心功能、尿量的影响。静脉注射给药。
大鼠信息:SD大鼠,SPF级,170-190g,雌雄各半,150只,来源于北京维通利华实验动物技术有限公司,正常饲养。
戊巴比妥钠:德国Merck生物技术公司生产,进口分装,规格:5g/瓶,生产批号:P11011。
1、分组:受试物组:设立TCM 0.2、0.15、0.1、0.08、0.05mg/kg剂量;模型对照组:注射0.9%氯化钠注射液(N.S.),N.S.信息是:石家庄四药有限公司,国药准字H13023202,产品批号1602163102,规格:0.9g:100ml;阳性对照组:XDL 0.2、0.135、0.036mg/kg(西地兰信息:去乙酰毛花苷注射液,药品名:西地兰,上海旭东海普药业有限公司,国药准字H31021178,产品批号AF160102,规格:2ml:0.4mg,2ml*5支)。
2、方法:大鼠腹腔注射水合氯醛麻醉,分离右侧颈总动脉,以备插管检测心功能指标,分离左侧颈外静脉,以备插管给予戊巴比妥钠复制急性心衰模型。分离股静脉,以备给药。插管进入左心室,连接生理记录仪采集正常状态下左心室压力(LVSP)、左心室内压最大上升速率(+dp/dt max)等心功能指标;采用微量注射泵静脉恒流泵入1.5%戊巴比妥钠溶液(12ml/h),以+dp/dt max降低30%为造模成功标准,造模成功后调节微量注射泵流速为1ml/h,记录造模后心功能指标;受试物组静脉注射受试物,模型对照组静脉注射N.S.,阳性对照组静脉注射上述浓度XDL。检测给药后1、3、5、8、10、15、20、30min心功能的变化。
检测指标如下:1)强心作用:心功能指标LVSP、+dp/dt max;2)利尿作用:下腹部开口,暴露膀胱,插管,收集尿液,观察给药期间动物尿量的变化,并计算尿系数=尿量/体重;3)对肺水肿的影响:实验结束后,立即摘取大鼠肺组织,称重,并计算肺系数=肺重量/体重。
3、统计方法:所有数据用均数±标准差
Figure PCTCN2019078887-appb-000001
表示,采用SPSS 22统计软件,首先进 行正态性检验,符合正态分布的数据,进行单因素方差分析,若方差齐,则采用Dunnett双侧检验;对非正态或方差不齐的数据进行适当的变量转换,待满足正态分布或方差齐要求后,用转换后的数据进行统计,若变量转换后仍未达到正态分布或方差齐的目的,则采用秩和检验进行统计分析。
4、试验结果
4.1对戊巴比妥钠诱导大鼠急性心衰大鼠+dp/dt max的影响
与造模前比较,各组动物造模后+dp/dt max均明显降低(P<0.05,P<0.01),提示动物心功能明显受损;造模后静脉注射给药,与给药前比较,给药后模型对照组动物+dp/dt max继续降低,在给药后30min降低更明显(P<0.05)。XDL 0.036mg/kg剂量组也在给药后20min动物+dp/dt max明显降低(P<0.01),而XDL 0.2mg/kg、TCM 0.2mg/kg、TCM 0.15mg/kg剂量组动物+dp/dt max则有所升高;计算给药前后+dp/dt max变化百分比(变化百分比=(给药后数值-给药前数值)*100/给药前数值),将所得百分比进行组间比较发现,与模型组比较,给药后XDL 0.2mg/kg、TCM 0.2mg/kg、TCM 0.15mg/kg剂量组动物+dp/dt max也有所升高,其中XDL0.2mg/kg在给药后20、30min和TCM 0.2mg/kg在给药后30min升高更明显(P<0.05);该结果提示,注射给予TCM后可明显升高急性心衰大鼠+dp/dt max,改善心功能,结果见表1、表2。
表1:对戊巴比妥钠诱导急性心衰大鼠+dp/dt max的影响
Figure PCTCN2019078887-appb-000002
组别 n 造模前 给药前(造模) 给药1min 给药3min 给药5min
模型对照 12 6420.6±1032.5 4188.8±995.2 ΔΔ 4473.8±1427.9 4637.2±1287.5 4728.7±1038.5
XDL0.2 12 5846.7±974.5 4210.9±499.8 ΔΔ 4100.1±959.8 4568.2±1085.5 4848.9±912.9
XDL0.135 12 6022.1±1114.7 4089.0±774.0 ΔΔ 3693.0±645.5 3939.0±820.4 4222.6±824.2
XDL0.036 12 6267.0±1428.7 4418.7±854.8 ΔΔ 4484.7±991.5 4240.1±891.7 4061.9±811.4
TCM 0.2 12 6772.4±1225.1 4306.2±873.7 ΔΔ 4355.1±1078.8 4751.7±1009.7 5023.4±1206.9
TCM 0.15 12 5972.4±1750.7 4139.2±661.8 Δ 4066.5±1370.0 4198.5±1339.5 4065.5±905.3
TCM 0.1 12 5836.9±930.9 4235.7±566.2 ΔΔ 4127.8±720.5 4235.9±888.4 4213.3±986.6
TCM 0.08 12 5644.3±939.9 4205.8±555.5 ΔΔ 3933.5±570.2 4226.6±622.4 4270.1±725.4
TCM 0.05 12 5567.7±1115.2 4263.4±1006.7 Δ 4133.9±1081.3 4143.4±1022.1 4142.8±1106.9
组别 n 给药8min 给药10min 给药15min 给药20min 给药30min
模型对照 12 4328.4±923.8 4510.3±1222.6 4240.5±1260.2 3863.8±1132.4 3364.3±1683.6*
XDL0.2 12 4798.5±741.6 4691.1±683.3 4377.5±693.2 4268.0±750.7 4518.6±1025.4
XDL0.135 12 4102.8±689.1 4125.8±700.3 3917.5±626.3 3667.7±592.2 3606.4±676.1
XDL0.036 12 4001.5±885.8 4065.2±849.5 3625.6±688.7 3361.9±854.3** 3452.4±1015.0
TCM 0.2 12 5095.0±988.9 4936.3±982.0 4799.3±1187.6 4846.6±1264.6 5007.9±1440.5
TCM 0.15 12 4451.1±1296.1 4720.3±1906.1 4673.6±1782.4 4378.3±1819.4 4250.3±1693.4
TCM 0.1 12 4413.2±1027.4 4372.6±859.4 4424.6±829.3 4112.6±904.7 4146.1±866.8
TCM 0.08 12 4156.3±644.7 4107.5±640.1 4033.6±555.4 3609.1±660.2 3489.6±993.8
TCM 0.05 12 4143.6±927.0 4103.3±903.5 3883.7±880.3 3639.9±1003.7 3416.7±1266.0
注:与造模前比较: ΔP<0.05, ΔΔP<0.01;与给药前比较:*P<0.05,**P<0.01。
表2:对戊巴比妥钠诱导急性心衰大鼠+dp/dt max变化百分比的影响
Figure PCTCN2019078887-appb-000003
Figure PCTCN2019078887-appb-000004
注:与模型对照组比较:*P<0.05。
4.2对戊巴比妥钠诱导大鼠急性心衰大鼠LVSP的影响
与造模前比较,各组动物造模后LVSP均显著降低(P<0.01),提示动物心脏因收缩功能受损而导致左心室压力降低,心功能明显受损;造模后静脉注射给药,与给药前比较,给药后模型对照组动物LVSP无明显改变,而XDL 0.2、0.135mg/kg和TCM 0.2、0.15、0.1mg/kg剂量组动物LVSP则有所升高,其中XDL 0.2mg/kg剂量组在给药后3min、5min时LVSP明显升高(P<0.05),TCM 0.2mg/kg剂量组在给药后1min、3min、5min、8min、10min时LVSP显著升高(P<0.05,P<0.01),TCM 0.1mg/kg在给药后1min、3min时LVSP也有所升 高(P<0.05);计算给药前后LVSP变化百分比(变化百分比=(给药后数值-给药前数值)*100/给药前数值),将所得百分比进行组间比较发现,与模型对照组比较,给药后XDL 0.2、0.135mg/kg和TCM 0.2、0.15、0.1mg/kg剂量组动物LVSP均有所升高,其中XDL 0.2mg/kg在给药后1min、30min可明显升高动物LVSP(P<0.05,P<0.01),XDL 0.135mg/kg在给药后30min可明显升高动物LVSP(P<0.05),TCM 0.2、0.15、0.1mg/kg在给药后1min、30min也可明显升高动物LVSP(P<0.05,P<0.01);该结果提示,注射给予TCM后可明显升高急性心衰大鼠LVSP,改善心脏泵血功能,结果见表3、表4。
表3:对戊巴比妥钠诱导急性心衰大鼠LVSP的影响
Figure PCTCN2019078887-appb-000005
Figure PCTCN2019078887-appb-000006
注:与造模前比较: ΔΔP<0.01;与给药前比较:*P<0.05,**P<0.01。
表4:对戊巴比妥钠诱导急性心衰大鼠LVSP变化百分比的影响
Figure PCTCN2019078887-appb-000007
Figure PCTCN2019078887-appb-000008
Figure PCTCN2019078887-appb-000009
注:与模型对照组比较:*P<0.05,**P<0.01。
4.3对戊巴比妥钠诱导大鼠急性心衰大鼠肺重量及尿量的影响
试验前膀胱插管收集尿液,观察给药期间动物尿量的变化,并计算尿系数(尿系数=尿量/体重),与模型对照组比较,受试物组和阳性对照大鼠尿量、尿系数均有不同程度的增加,其中XDL 0.135mg/kg剂量组增加明显(P<0.05),TCM 0.2、0.15、0.1、0.08mg/kg剂量组大鼠尿量及尿系数也有明显增加,但无统计学差异。试验结束后摘取大鼠肺称重,并计算肺系数(肺系数=肺重量/体重),与模型组比较,各给药组肺系数有不同程度的降低,其中XDL0.135mg/kg剂量组作用较明显(P<0.05),说明静脉注射受试物对急性心衰肺大鼠指标有一定的改善作用,结果见表5。
表5:对戊巴比妥钠诱导急性心衰大鼠肺重量及尿量的影响
Figure PCTCN2019078887-appb-000010
组别 n 肺(g) 肺系数(g/kg) 尿(ml) 尿系数(ml/kg)
模型对照 12 1.2365±0.1653 4.3715±0.4901 0.16±0.13 0.52±0.48
XDL0.2 12 1.2975±0.0910 4.0186±0.2949 0.27±0.17 0.83±0.52
XDL0.135 12 1.4172±0.0863 3.8172±0.1967* 0.50±0.25* 1.33±0.66*
XDL0.036 12 1.3313±0.0773 4.0663±0.2051 0.09±0.12 0.26±0.37
TCM0.2 12 1.2952±0.1404 4.0079±0.2513 0.44±0.34 1.35±1.02
TCM0.15 12 1.3759±0.0703 3.7799±0.2731 0.59±0.56 1.59±1.48
TCM0.1 12 1.3582±0.0906 3.8562±0.2139 0.47±0.40 1.30±1.10
TCM0.08 12 1.3356±0.0929 4.1123±0.2480 0.38±0.22 1.17±0.71
TCM0.05 12 1.3791±0.1147 3.7497±0.2653 0.32±0.30 0.88±0.83
注:与模型对照组比较:*P<0.05。
4.4结论:
与给药前比较,TCM 0.2、0.15mg/kg可明显升高+dp/dt max,TCM 0.2、0.1mg/kg可明显升高LVSP,计算各时间点+dp/dt max、LVSP增加百分比后,与模型组比较,发现TCM 0.15mg/kg可明显提高+dp/dt max升高的幅度,TCM 0.2、0.15、0.1mg/kg可明显提高LVSP增加的幅度,TCM还可增加急性心衰大鼠尿量及尿系数,该结果提示,TCM有明显的强心、利尿的作用,起效剂量为0.1mg/kg。
实施例3:静脉注射香加皮提取物对普罗帕酮诱导大鼠急性心衰的影响
本实施例采用普罗帕酮(盐酸普罗帕酮注射液,上海信谊金朱药业有限公司,国药准字H31022214,产品批号1610501,规格20ml:70mg,5支/盒)诱导大鼠(SD大鼠,SPF级,150-190g,雌雄各半,130只,来源于北京维通利华实验动物技术有限公司,正常饲养)急性心衰模型,以XDL做对照,观察静脉注射实施例1制备的香加皮提取物(TCM)对急性心衰模型大鼠强心作用,观察TCM对尿体积、肾血流、肺水肿影响。静脉注射给药。
1、分组:受试物组:设立TCM 0.2、0.15、0.1、0.08、0.05、0.026mg/kg剂量;模型对照组注射N.S.(N.S.:0.9%氯化钠注射液,石家庄四药有限公司,国药准字H13023202,产品批号1602163102,规格0.9g:100ml);阳性对照组:XDL 0.2、0.135、0.107、0.07、0.036mg/kg。
2、方法:大鼠腹腔注射水合氯醛麻醉,分离右侧颈总动脉,以备插管检测心功能指标,分离左侧颈外静脉,以备插管给予普罗帕酮,分离股静脉,以备给药。插管进入左心室,连接生理记录仪采集正常状态下左心室压力(LVSP)、左心室内压最大上升速率(+dp/dt max)等心功能指标;采用微量注射泵静脉恒流泵入普罗帕酮16.5mg/kg(24ml/h),+dp/dt max不继续下降时调节微量注射泵流速为0.5ml/h,待模型稳定后给药:受试物组静脉注射上述浓度TCM,模型对照组静脉注射N.S.,阳性对照组静脉注射上述浓度XDL,检测给药后3、5、10、15、20、30、40、50、60、90、120min心功能的变化。
检测指标如下:1)强心作用:LVSP、+dp/dtmax;2)利尿作用:插管收集尿液,观察给药期间动物尿量的变化,并计算尿系数=尿量/体重,小动物超声检测正常、造模后、给药后120min时的肾血流;3)对肺水肿的影响:实验结束后,立即摘取大鼠肺组织,称重,并计算肺系数=肺重量/体重。
3、统计方法:所有数据用均数±标准差
Figure PCTCN2019078887-appb-000011
表示,采用SPSS 22统计软件,首先进行正态性检验,符合正态分布的数据,进行单因素方差分析,若方差齐,则采用Dunnett双 侧检验;对非正态或方差不齐的数据进行适当的变量转换,待满足正态分布或方差齐要求后,用转换后的数据进行统计,若变量转换后仍未达到正态分布或方差齐的目的,则采用秩和检验进行统计分析。
4、试验结果
4.1对普罗帕酮诱导大鼠急性心衰大鼠+dp/dt max的影响
与造模前比较,各组动物造模后+dp/dt max均明显降低(P<0.05,P<0.01),说明动物心功能明显受损;造模后静脉注射给药,与给药前比较,模型对照组动物+dp/dt max在给药后60min、90min、120min显著降低(P<0.05),而XDL 0.2mg/kg和TCM 0.2、0.15mg/kg组则可使+dp/dt max升高,其中XDL 0.2mg/kg剂量组在给药后120min升高最明显(P<0.05);计算给药前后+dp/dt max变化百分比(变化百分比=(给药后数值-给药前数值)*100/给药前数值),将所得百分比进行组间比较发现,与模型对照组比较,给药后XDL 0.2mg/kg、TCM 0.2mg/kg、TCM0.15mg/kg剂量组动物+dp/dt max也有所升高,其中XDL 0.2mg/kg在给药后50min、90min、120min和TCM 0.2mg/kg在给药后60min、90min、120min以及TCM0.15mg/kg在给药后120min升高更明显(P<0.05,P<0.01);该结果说明,注射给予TCM后可明显升高急性心衰大鼠+dp/dt max,改善心功能,结果见表6、表7。
表6:对普罗帕酮诱导急性心衰大鼠+dp/dt max的影响
Figure PCTCN2019078887-appb-000012
Figure PCTCN2019078887-appb-000013
Figure PCTCN2019078887-appb-000014
注:与造模前比较: ΔP<0.05, ΔΔP<0.01;与给药前比较:*P<0.05。
表7:对普罗帕酮诱导急性心衰大鼠+dp/dt max变化百分比的影响
Figure PCTCN2019078887-appb-000015
Figure PCTCN2019078887-appb-000016
Figure PCTCN2019078887-appb-000017
注:与模型对照组比较:*P<0.05,**P<0.01。
4.2对普罗帕酮诱导大鼠急性心衰大鼠LVSP的影响
与造模前比较,各组动物造模后LVSP均显著降低(P<0.05,P<0.01),说明动物心脏因收缩功能受损而导致左心室压力降低,心功能明显受损;造模后静脉注射给药,与给药前比较,给药后模型对照组动物LVSP无明显改变,而XDL 0.2、0.135mg/kg和TCM 0.2、0.15、0.1mg/kg剂量组动物LVSP则有所升高,其中TCM 0.2、0.15mg/kg剂量组在给药后120min时LVSP明显升高(P<0.05);计算给药前后LVSP变化百分比(变化百分比=(给药后数值-给药前数值)*100/给药前数值),将所得百分比进行组间比较发现,与模型对照组比较,给药后XDL 0.2、0.135mg/kg和TCM 0.2、0.15、0.1mg/kg剂量组动物LVSP均有所升高,其中XDL 0.2mg/kg组在给药后120min可显著升高动物LVSP(P<0.01),TCM 0.2mg/kg组在给药后10min、120min可明显升高动物LVSP(P<0.05),TCM 0.15、0.1mg/kg组在给药后120min也可明显升高动物LVSP(P<0.05);该结果说明,注射给予TCM后可明显升高急性心衰大鼠LVSP,改善心脏泵血功能,结果见表8、表9。
表8:对普罗帕酮诱导急性心衰大鼠LVSP的影响
Figure PCTCN2019078887-appb-000018
Figure PCTCN2019078887-appb-000019
Figure PCTCN2019078887-appb-000020
注:与造模前比较: ΔP<0.05, ΔΔP<0.01;与给药前比较:*P<0.05。
表9:对普罗帕酮诱导急性心衰大鼠LVSP变化百分比的影响
Figure PCTCN2019078887-appb-000021
Figure PCTCN2019078887-appb-000022
Figure PCTCN2019078887-appb-000023
注:与模型对照组比较:*P<0.05,**P<0.01。
4.3对普罗帕酮诱导大鼠急性心衰大鼠肺重量及尿量的影响
试验前膀胱插管收集尿液,观察给药期间动物尿量的变化,并计算尿系数(尿系数=尿量/体重),与模型对照组比较,受试物组和阳性对照组大鼠尿体积、尿系数均有不同程度的增加,其中XDL 0.2mg/kg剂量组尿体积增加明显(P<0.05),TCM 0.15mg/kg剂量组大鼠尿量也有明显增加(P<0.05)。试验结束后摘取大鼠肺称重,并计算肺系数(肺系数=肺重量/体重),与模型对照组比较,受试物组和阳性对照组大鼠肺系数有不同程度的降低,其中XDL0.2mg/kg剂量组作用明显(P<0.01),说明,静脉注射受试物对对急性心衰肺大体指标有一定的改善作用,结果见表10。
在造模前、给药前及给药后120min均用小动物超声检测大鼠肾血流,结果发现,给药前各组大鼠肾血流显著降低(P<0.05,P<0.01),在给药后120min,各组大鼠降低的肾血流有所升高,其中XDL0.2、0.135mg/kg和TCM0.2、0.15、0.1mg/kg升高更明显(P<0.05,P<0.01),说明TCM有明显改善心衰大鼠肾血流的作用,结果见表11。
表10:对普罗帕酮诱导急性心衰大鼠肺重量及尿量的影响
Figure PCTCN2019078887-appb-000024
Figure PCTCN2019078887-appb-000025
注:与模型对照组比较:*P<0.05,**P<0.01。
表11:对普罗帕酮诱导急性心衰大鼠肾血流的影响
Figure PCTCN2019078887-appb-000026
组别 n 造模前 给药前(造模) 给药后120min
模型对照 8 6.6±1.6 2.4±0.9 ΔΔ 3.5±1.6
XDL0.2 8 9.0±1.9 4.3±0.7 ΔΔ 6.3±2.0*
XDL0.135 8 8.1±1.8 4.1±0.6 ΔΔ 6.3±1.0**
XDL0.107 8 8.9±1.5 4.4±0.5 ΔΔ 5.4±1.5
XDL0.07 8 6.8±2.0 3.8±1.0 ΔΔ 4.3±1.0
XDL0.036 8 8.0±2.4 4.4±1.3 ΔΔ 4.9±1.2
TCM0.2 8 8.8±3.3 3.3±0.7 ΔΔ 6.1±1.8**
TCM0.15 8 7.8±1.2 4.1±0.6 ΔΔ 5.5±0.8**
TCM0.1 8 7.8±1.7 4.0±0.9 ΔΔ 5.6±1.3*
TCM0.08 8 7.9±2.4 4.1±1.4 ΔΔ 3.8±1.4
TCM0.05 8 8.5±3.0 4.4±1.1 Δ 4.5±1.2
TCM0.026 8 9.5±2.4 5.5±1.3 4.5±0.6
注:与造模前比较: ΔP<0.05, ΔΔP<0.01;与给药前比较:*P<0.05,**P<0.05。
根据实施例2和3可见:
1、与给药前比较,TCM 0.2、0.15mg/kg可明显升高+dp/dt max,TCM 0.2、0.15、0.1mg/kg可明显升高LVSP,计算各时间点+dp/dt max、LVSP增加百分比后,与模型对照组比较,发现TCM 0.2、0.15mg/kg可明显提高+dp/dt max升高的幅度,TCM 0.2、0.15、0.1mg/kg可明显提高LVSP增加的幅度,TCM还可明显增加急性心衰大鼠尿量、明显升高肾血流,该结果说明,TCM有明显的强心、利尿的作用,起效剂量为0.1mg/kg。
2、两种急性心衰模型(戊巴比妥钠模型和普罗帕酮模型)中注射给予TCM随着剂量的增加,可使降低的+dp/dtmax和LVSP升高,有较好的量效关系,同样说明TCM有强心作用。两种模型中TCM起效剂量均为0.1mg/kg,最大有效剂量为0.2mg/kg。
3、两种急性心衰模型(戊巴比妥钠模型和普罗帕酮模型)中注射给予TCM均可增加急性心衰大鼠尿量,TCM还可改善普罗帕酮诱导急性心衰大鼠的肾血流,说明TCM有利尿作用。
实施例4:香加皮提取物静脉注射对比格犬急性心功能不全的影响
1、试验品:
供试品:实施例1制备的提取物,外观为白色粉末,易溶于水,分子量696.82;使用前用生理盐水溶解,经震荡涡旋即可完全溶解,按浓度要求使用前临时配制相应浓度。
去乙酰毛花苷注射液(西地兰注射液):上海旭东海普药业有限公司生产,规格:0.4mg/2ml/支,分子量:943.09,批准文号:国药准字H31021178,生产批号:AF150201。
2、试验试剂:
戊巴比妥钠:德国Merck生物技术公司生产,进口分装,规格:25g/瓶,生产批号: WS20130112。
0.9%氯化钠注射液:浙江天瑞药业有限公司生产,规格:250ml/袋,生产批号:716041404.
肝素钠:上海圆创生物科技有限公司生产,规格:1g/瓶,生产批号:Lot73685321。
犬游离脂肪酸ELISA检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
犬乳酸ELISA检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
犬心肌ADP ELISA检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
犬ATP ELISA检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
犬AMP检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
犬血管紧张素II ELISA检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
犬肾素ELISA检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
犬醛固酮ELISA检测试剂盒:上海信裕生物科技有限公司生产,48t,有效期至2018年11月。
3、实验分组:
模型对照组:生理盐水,1ml/kg。
供试组:TCM设低中高三个剂量组,分别为:0.01mg/kg、0.015mg/kg、0.02mg/kg,按照等容积不等浓度配制,给药容积为1ml/kg。
阳性对照组(去乙酰毛花苷注射液,西地兰),设置剂量为0.04mg/kg,给药容积1ml/kg。
每组实验动物比格犬数量为6只。比格犬信息:健康Beagle犬,约40只(共6组36只,另有数只预实验所需),10±1kg,雄雌各半,普通级,来源于上海甲干生物科技有限公司。
4、给药途径、给药时间与给药次数
给药途径为静脉注射,速度为2ml/kg/min;给药时间在心衰达到要求指标并稳定60min后;给药次数为单次给药。
5、实验仪器
四通道PowerLab8/30高速记录仪,产地:澳大利亚。
生物电放大器,型号:ML211,产地:澳大利亚。
压力换能器,型号:MLT844,产地:澳大利亚。
电子天平,型号:AL204,梅特勒-托利多仪器(上海)有限公司生产。
Transonic电磁血流量仪,型号:T420,产地:美国。
震荡涡旋器,型号:QL-861,海门市其林贝尔仪器制造有限公司生产。
手术器械:手术刀、手术剪、止血钳等。
6、实验动物
品系:健康成年Beagle犬;
数量:40只;
体重:10±1.0kg;
性别:雄雌各半;
清洁级:普通级。
犬实验前在犬舍正常饲养,实验前一天晚上禁食不禁水。
7、实验方法:
犬用3%戊巴比妥钠30mg/kg静脉注射麻醉,仰卧固定于恒温39℃手术台,颈部备皮,碘伏和75%酒精消毒皮肤,切开气管做倒“T”型切口,插入气管,器械通气,设定呼吸机,呼吸机设定呼吸频率22次/min,呼吸比1:2,潮气量30ml/kg。四肢插入针状电极连接生物电模块,经PowerLab与电脑连接用于监测记录心电图;颈部及一侧腹股沟部位备皮,75%酒精消毒,暴露股动脉并插入动脉管用于监测血压,分离股静脉并插管用于给药;分离右侧颈总动脉,逆行插入心室导管至左心室用于监测左心室内压力指标;分离左侧颈总动脉连接血流量测量探头,用电磁血流量仪记录颈总动脉血流量;股动脉与颈总动脉导管连接压力换能器和压力模块,经PowerLab与电脑连接实时监测血压和左心室内压力指标的变化;下腹部正中切口,找出双侧输尿管,剪断后将远心端结扎,将导管插进双侧导尿管,记录心衰造模前、心衰达标后、给药后各30min尿量。手术结束后稳定30min,记录指标作为基础值,然后用恒速推注泵,用每分钟10ml的速度静脉推注3%戊巴比妥钠,直到平均动脉压降低到60mmHg以下、dp/dtmax下降到基础值的25-30%,随后戊巴比妥改维持量,4-6mg/min,维持60min后开始静脉注射供试品并记录给药后5、15、30、60、120min时血压、心率、左心室血流动力学指标。
8、观察指标:
左心室血流动力学指标:平均动脉压(MBP);左心室收缩压(LVSP),左心室舒张末压(LVEDP),左心室最大收缩与舒张速率(±dp/dtmax);颈总动脉血流量。
心电图指标:心率,QRS综合波时间、QT时间、ST段、T波变化。
利尿作用指标:尿量。
肺水肿指标:双侧肺湿重,HE染色观察肺组织病理改变。
RAAS相关指标:血清血管紧张素Ⅱ、醛固酮、肾素水平。
心肌能量代谢相关指标:血清游离脂肪酸、乳酸,心肌ADP、ATP、AMP含量。
9、统计学分析
实验结果以均数±标准差
Figure PCTCN2019078887-appb-000027
表示,用SPSS 18.0软件对组间数据采用ANOVA方差分析,配对和非配对t检验进行两组间比较,以P<0.05定义为具有显著的统计学差异。
10、实验结果
10.1、对比格犬左心室血流动力学指标的影响
心率:犬在造心衰模型前心率在160~180次/分,心衰模型稳定后心率降低到100次/分左右,静脉注射TCM后,犬的心率没有明显变化,也没有出现心律失常现象(表12)。
血压(平均动脉压MBP):所有参试犬的MBP在造模后较基础值降低了60%以上,心衰模型稳定后MBP在50mmHg左右,从表13可以看出,模型对照组注射生理盐水后,血压在一个较窄的范围波动,升高不明显。而供试组和阳性对照组给药后血压均有不同程度上升,阳性对照组在给药西地兰后血压升高在60min达最高值,较给药前(0min)升高了36.3%;与西地兰相比,TCM给药后血压上升起效快,给药5min血压就有显著升高,血压升高最大幅度为20.2%,疗效维持时间与西地兰相当或略长。
左心室收缩压(LVSP):左心室收缩压的变化与血压基本相同,与给药前(0min)比较,静脉注射西地兰后LVSP升高,30min时具有显著意义且达到最高值,随后降低;TCM静脉注射后对LVSP升高的速度比西地兰快(静脉注射后5min时,西地兰升高4%;TCM低中高三个剂量升高均在10%以上)(表14)。TCM维持疗效时间与西地兰相当或略长。
左心室舒张末压(LVEDP):从表15可见,该心衰模型成模前和成模后以及给药前后LVEDP变化不明显,均在正常范围内。
左心室等容收缩期压力上升与下降最大速率(±dp/dtmax):±dp/dtmax是反映心功能最重要的指标,代表了心室收缩与舒张的敏捷性。以左心室内压上升最大速率(+dp/dtmax)为例,模型对照组在注射生理盐水前后,+dp/dtmax在750-800窄幅范围波动;西地兰静脉注射后+dp/dtmax逐渐升高,30min后升高达高峰,然后开始降低,最大升幅较给药前(0min)升高了23.5%;TCM静脉注射后+dp/dtmax升高迅速,在低剂量和中高剂量之间+dp/dtmax的升高存在量效关系,最大升幅出现在给药后15min,中高剂量组升幅达30%(表16,表17)。TCM组维持疗效时间相对较长。
颈动脉血流量:为了避免开胸对心衰犬造成严重创伤,实验时将血流量探头放置在颈动脉,以颈动脉血流量的变化代表心输出量的变化,实验发现,模型对照组的比格犬在达到心衰模型标准后,随着时间的延长,颈动脉血流量逐渐降低;阳性对照组的犬在静脉注射西地兰后颈动脉血流量逐渐升高,与给药前(0min)相比,由给药后5min的14.3%、15min的21.8%升高到30min达到峰值的34.5%,随后血流量逐渐降低。供试品TCM静脉注射后颈动脉血流量升高非常明显,且在低中高三个剂量组之间有明显的量效关系存在,以高剂量为例,给药后5min颈动脉血流量即增加了25.3%,15min增幅达峰值,为30.9%,随后逐渐降低(表18)。
表12.TCM静脉注射对比格犬心率的影响(
Figure PCTCN2019078887-appb-000028
、变化百分率;n=6)
Figure PCTCN2019078887-appb-000029
Figure PCTCN2019078887-appb-000030
表13.TCM静脉注射对比格犬MBP的影响(
Figure PCTCN2019078887-appb-000031
变化百分率;n=6)
Figure PCTCN2019078887-appb-000032
Figure PCTCN2019078887-appb-000033
*P<0.05,**P<0.01,***P<0.001与给药前(0min)比较
表14.TCM静脉注射对比格犬LVSP的影响(
Figure PCTCN2019078887-appb-000034
变化百分率;n=6)
Figure PCTCN2019078887-appb-000035
*P<0.05,**P<0.01与给药前(0min)比较
表15.TCM静脉注射对比格犬LVEDP的影响(
Figure PCTCN2019078887-appb-000036
、变化百分率;n=6)
Figure PCTCN2019078887-appb-000037
Figure PCTCN2019078887-appb-000038
表16.TCM静脉注射对比格犬左心室收缩速率(+dp/dtmax)的影响(
Figure PCTCN2019078887-appb-000039
变化百分率;n=6)
Figure PCTCN2019078887-appb-000040
Figure PCTCN2019078887-appb-000041
*P<0.05,**P<0.01与给药前(0min)比较
表17.TCM静脉注射对比格犬左心室舒张速率(-dp/dtmax)的影响(
Figure PCTCN2019078887-appb-000042
变化百分率;n=6)
Figure PCTCN2019078887-appb-000043
Figure PCTCN2019078887-appb-000044
*P<0.05与给药前(0min)比较
表18.TCM静脉注射对比格犬颈总动脉血流量的影响(
Figure PCTCN2019078887-appb-000045
、变化百分率;n=6)
Figure PCTCN2019078887-appb-000046
Figure PCTCN2019078887-appb-000047
*P<0.05,**P<0.01与给药前(0min)比较
10.2对比格犬心电图的影响
给药前后比较,静脉注射阳性对照药西地兰与受试药TCM后,犬心电图的QRS综合波和QT时间没有明显延长,说明给药后对心电的室内传导时间没有影响;对ST、T波高度变化也没有影响(表19~表22)。
表19.TCM静脉注射对比格犬心电图QRS综合波的影响(
Figure PCTCN2019078887-appb-000048
n=6)
Figure PCTCN2019078887-appb-000049
表20.TCM静脉注射对比格犬心电图QT间期的影响(
Figure PCTCN2019078887-appb-000050
n=6)
Figure PCTCN2019078887-appb-000051
Figure PCTCN2019078887-appb-000052
表21.TCM静脉注射对比格犬心电图ST段的影响(
Figure PCTCN2019078887-appb-000053
n=6)
Figure PCTCN2019078887-appb-000054
表22.TCM静脉注射对比格犬心电图T波的影响(
Figure PCTCN2019078887-appb-000055
n=6)
Figure PCTCN2019078887-appb-000056
Figure PCTCN2019078887-appb-000057
10.3、对血清肾素、血管紧张素、醛固酮水平的影响
与模型对照组比较,阳性对照组和TCM受试组的血清肾素水平均有显著降低,TCM中剂量组的作用与西地兰相当,对醛固酮的降低作用也是TCM中剂量组的作用与西地兰相当。TCM对肾素、醛固酮影响的量效关系体现在低、中剂量,继续增加剂量,肾素、醛固酮没有进一步降低(表23)。
表23.对血清肾素、血管紧张素、醛固酮水平的影响(
Figure PCTCN2019078887-appb-000058
n=6)
Figure PCTCN2019078887-appb-000059
*P<0.05,***P<0.001与模型对照组比较
10.4.对血清中游离脂肪酸和乳酸水平的影响
游离脂肪酸:与模型组比较,阳性药物西地兰和供试品TCM均不影响血清中游离脂肪酸的含量,模型组游离脂肪酸平均为22.2mmol/L,而药物治疗组在19.5-22.62mmol/L之间,两者之间没有显著性差别。
乳酸:与模型组比较,西地兰组犬血清乳酸水平有所降低,但未显示显著意义;TCM受试组的犬血清乳酸水平随给药剂量增加而降低,两者之间有明显的量效关系存在,中高剂量组与模型组之间有显著差异(表24)。
表24.对血清游离脂肪酸和乳酸水平的影响(
Figure PCTCN2019078887-appb-000060
n=6)
Figure PCTCN2019078887-appb-000061
Figure PCTCN2019078887-appb-000062
*P<0.05,**P<0.01与模型对照组比较
10.5.对心肌组织中ATP、ADP、AMP水平的影响
经过对与心肌能量代谢有关的三磷酸腺苷(ATP)、二磷酸腺苷(ADP)、一磷酸腺苷(AMP)检测发现,阳性对照组西地兰注射液和供试组TCM中剂量组有降低血清中ATP的作用,而供试组高剂量与中剂量接近,但ATP没有显著降低,而ADP、AMP有轻微下降(表25)。
表25.对心肌组织中ATP、ADP、AMP水平的影响(
Figure PCTCN2019078887-appb-000063
n=6)
Figure PCTCN2019078887-appb-000064
*P<0.05,**P<0.01与模型对照组比较
10.6、对肺组织的影响
各组参试犬的体重无明显差别,但双侧肺湿重TCM治疗组明显低于模型组。采用肺系数(肺重/体重)考察,与模型对照组相比,TCM供试组有剂量依赖性的降低趋势,但未达到显著意义。阳性对照组,无论采用肺重量还是肺系数,与模型组相比,均无显著改变。这些说明,TCM对急性心衰肺大体指标有一定的改善作用(表26),而西地兰没有作用。
表26.对肺重量的影响(
Figure PCTCN2019078887-appb-000065
n=6)
Figure PCTCN2019078887-appb-000066
在肺组织病理切片中,采用盲法观察病理改变,结果显示各组间无明显差别。
由此可见,TCM单次静脉注射给药,对戊巴比妥钠诱导的比格犬急性心功能不全的指标影响如下:
(1)可显著提升左心室内压上升和下降最大速率;
(2)可显著提高平均动脉压和左心室内压;
(3)可显著升高颈总动脉血流量;
(4)对急性心衰引起的肺大体指标改变有一定的改善作用;
(5)对急性心衰犬的心率、心电图没有明显影响;
(6)可降低血清肾素、醛固酮、乳酸水平及轻微降低心肌ATP含量。
与阳性对照药西地兰相比,TCM在改善急性心衰的心功能指标方面,起效更快、更强,疗效维持时间与西地兰相当或较长。在减轻心肌乳酸堆积、改善肺组织大体指标方面,优于西地兰。这些特点有利于急性心衰救治。
量效关系:阳性对照药西地兰分子量为943.09,所用的剂量为0.04mg/kg;测试药TCM分子量为696.82,所用低、中、高剂量分别为0.01mg/kg、0.015mg/kg、0.02mg/kg。以摩尔剂量衡量,西地兰给药剂量较高,分别是TCM低、中、高剂量的3倍、2倍、1.5倍。TCM低中高剂量对急性心衰的治疗作用呈现一定的量效关系。
安全性:实验显示,TCM 0.06mg/kg无明显心电图毒性反应;TCM 0.07mg/kg可引起心电图毒性反应,60min内可恢复基本正常。以TCM 0.06mg/kg作为最高安全剂量,本实验测试的TCM有效剂量分别为最高安全剂量的1/6、1/4、1/3,因此,TCM作为急性心衰的急救药具有一定的安全性。
实施例5:静脉注射香加皮提取物对犬心衰合并房颤的影响
本实施例采用犬心衰合并房颤模型,以西地兰(XDL)作对照,观察静脉注射实施例1制备的香加皮提取物(TCM)对心衰合并房颤模型动物的治疗作用。犬信息为:健康比格犬,普通级,10-11kg,雌雄各半,36只(30只用于试验,数只用于预试),来源于北京玛斯生物技术有限公司,正常饲养。
1、给药方式:静脉注射给药。
2、分组:受试物设立TCM 0.01、0.02mg/kg剂量组,假手术组(假手术组手术操作同其他组,但是不起搏,给药时静脉注射生理盐水)、模型对照组(模型对照组手术操作同其他组,需要起搏造模,给药时静脉注射生理盐水)、阳性对照组(XDL 0.04mg/kg)。
3、方法:犬,随机分组,手术后每组存活6只,雌雄各半。实验前动物禁食12h,自由饮水,在无菌条件下进行手术,静脉注射30mg/kg戊巴比妥钠麻醉,固定于手术台上,肢体导联,连接PowerLab生理记录仪检测心电图。无菌条件下分离颈总静脉,将刺激电极(负极)通过颈总静脉插入右心室心尖部,X线透视下调整、观察电极位置,用缝线固定电极与血管,防止电极脱落。
起搏器安装前用碘伏浸泡,将电极插入起搏器,启动起搏器,肢体导联心电图检测起搏心律,开始时心率显示不稳定,后来稳定在240次/分左右,心电图显示为宽大畸形QRS波, 证明起搏完好。起搏器埋于皮下、颈部开口处,植入部位消毒防止感染,缝合颈部皮肤。术后7d犬恢复后进行起搏,电压调至阈电压的2~3倍,脉宽0.5~0.8mA,起搏频率250次/min,每天监测心电图和观察动物行为,起搏时间为7~14d。假手术组仅进行以上手术操作,不起搏。
指标检测:1)血流动力学:犬麻醉后,固定于手术台上,无菌条件下分离左右两侧颈总动脉、右侧股静脉,右侧颈总动脉插管,进入左心室,连接PowerLab生理记录仪,检测血流动力学指标(左心室压力LVSP、左心室舒张末期压LVEDP,左室内压上升和下降最大速率±dp/dtmax);2)颈动脉血流量:分离左侧颈总动脉连接血流量测量探头,用电磁血流量仪记录颈总动脉血流量;3)房颤持续时间:肢体Ⅱ导联,连接PowerLab生理记录仪检测心电图;行右侧股静脉穿剌,在X线下,经鞘管置入右房电极,连接多道电生理记录仪,待获得理想的右房信号后固定电极,给予右心房刺激,基础刺激(S1S1)周长为300ms、早搏联律间期(S1S2)以5ms步长递减,早搏不引起心房激动的最长S1S2间期为心房有效不应期,重复3次,取平均值,以该数值作为试验刺激周长。手术结束,血流动力学、颈动脉血流量稳定30min后记录给药前数值,记录给药前数值后,静脉给予受试物,记录给药后10、20、30、60、90、120min时血流动力学、颈动脉血流量的改变。并在给药后120min,刺激器给予刺激,刺激1min,观察诱发房颤情况,计算每只犬的房颤持续时间。
4、统计方法:所有数据用均数±标准差
Figure PCTCN2019078887-appb-000067
表示,采用SPSS 22统计软件,首先进行正态性检验,符合正态分布的数据,进行单因素方差分析,若方差齐,则采用Dunnett双侧检验;对非正态或方差不齐的数据进行适当的变量转换,待满足正态分布或方差齐要求后,用转换后的数据进行统计,若变量转换后仍未达到正态分布或方差齐的目的,则采用秩和检验进行统计分析。
5、试验结果
5.1对血流动力学的影响
与假手术组比较,模型对照组犬LVSP、+dp/dt max、-dp/dt max均明显降低(P<0.05,P<0.01),LVEDP则显著升高(P<0.01),提示通过心脏快速起搏,犬心功能明显降低。给予药物干预后,与给药前比较,XDL和TCM0.01、0.02mg/kg剂量组均可不同程度的使犬LVSP、+dp/dt max、-dp/dt max升高,其中,XDL在给药后30min、60min可明显升高犬LVSP、+dp/dt max(P<0.05),TCM 0.01mg/kg在给药后20min、30min、60min均可使犬LVSP、+dp/dt max明显升高(P<0.05),TCM 0.02mg/kg在给药后10min、20min、30min、60min可使犬LVSP、+dp/dt max显著升高(P<0.01),TCM 0.02mg/kg在给药后90min、120min还可使犬+dp/dt max明显升高(P<0.05);该结果提示,TCM可明显改善心衰犬心脏收缩功能,有较强的强心作用,并且,起效时间比XDL快。与XDL比较,TCM 0.02mg/kg在给药后10min、20min、30min、60min升高犬LVSP的作用明显强于XDL(P<0.05),TCM 0.02mg/kg在给药后10min、20min升高犬+dp/dt max的作用也明显强于XDL(P<0.05),该结果提示,TCM的强心作用优于XDL。通过分析血流动力学指标可以发现,TCM有明显的强心作用,并且,与XDL比较,有起效快、作用强的优点。此外,TCM 0.02mg/kg在给药后20min还有降低犬LVEDP的作用(P<0.05),在给 药后10min有升高犬-dp/dt max的作用(P<0.05),提示TCM对心脏舒张功能还有一定的作用,结果见表27、表28、表29、表30。
表27:对心衰伴房颤犬LVSP的影响(mmHg,
Figure PCTCN2019078887-appb-000068
)
Figure PCTCN2019078887-appb-000069
注:与假手术组比较比较: ΔΔP<0.01;与给药前比较:*P<0.05,**P<0.01;与XDL比较:#P<0.05。
表27:对心衰伴房颤犬LVEDP的影响(mmHg,
Figure PCTCN2019078887-appb-000070
)
Figure PCTCN2019078887-appb-000071
Figure PCTCN2019078887-appb-000072
注:与假手术组比较比较: ΔΔP<0.01;与给药前比较:*P<0.05。
表28:对心衰伴房颤犬+dp/dt max的影响(mmHg/s,
Figure PCTCN2019078887-appb-000073
)
Figure PCTCN2019078887-appb-000074
注:与假手术组比较比较: ΔP<0.05, ΔΔP<0.01;与给药前比较:*P<0.05,**P<0.01;与XDL比较:#P<0.05。
表29:对心衰伴房颤犬-dp/dt max的影响(mmHg/s,
Figure PCTCN2019078887-appb-000075
)
Figure PCTCN2019078887-appb-000076
Figure PCTCN2019078887-appb-000077
注:与假手术组比较比较: ΔP<0.05, ΔΔP<0.01;与给药前比较:*P<0.05。
5.2对颈动脉血流量的影响
为了避免开胸对心衰犬造成严重创伤,试验时将血流量探头放置在颈动脉,以颈动脉血流量的变化代表心输出量的变化,试验发现,与假手术组比较,模型对照组犬颈动脉血流量显著降低(P<0.01);给予药物干预后,XDL给药后20min、30min可使犬颈动脉血流量明显增加(P<0.05),TCM 0.01mg/kg在给药后10min、20min、60min、90min可使犬颈动脉血流量明显增加(P<0.05),TCM 0.02mg/kg在给药后10min、20min、30min、60min可使犬颈动脉血流量显著增加(P<0.01),在给药后90min、120min也可使犬颈动脉血流量明显增加(P<0.05);与XDL比较,TCM0.02mg/kg剂量组在给药后10min增加犬颈动脉血流量的作用明显优于XDL(P<0.05),该结果提示,TCM有增加颈动脉血流量的作用,与XDL比较,有起效快的优点。结果见表30。
表30:对心衰伴房颤犬颈动脉血流量的影响(ml/min,
Figure PCTCN2019078887-appb-000078
)
Figure PCTCN2019078887-appb-000079
注:与假手术组比较比较: ΔΔP<0.01;与给药前比较:*P<0.05,**P<0.01;与XDL比较:#P<0.05。
5.3对房颤持续时间的影响
给予试验犬快速刺激后,各组诱发出的平均房颤持续时间为:假手术组167.0±47.6,模型对照组406.3±70.2,XDL组310.2±61.6,TCM 0.01mg/kg剂量组293.5±52.8,TCM 0.02mg/kg剂量组239.3±41.2,与假手术组比较,模型对照组犬房颤持续时间显著增加(P<0.01);给予药物干预后,与模型对照组比较,XDL和TCM 0.01mg/kg剂量组犬房颤持续时间则明显降低(P<0.05),TCM 0.02mg/kg剂量组犬房颤持续时间则降低更明显(P<0.01)。结果见图1。
5.4小结
TCM有明显的强心作用,并且,与XDL比较,有起效快、作用强的优点;有增加颈动脉血流量的作用,与XDL比较,有起效快的优点;有缩短房颤持续时间的作用;因此,TCM对心衰伴房颤有治疗作用,且与XDL比较,有起效快、作用强的优点。
实施例6:离体灌注香加皮提取物对豚鼠心衰合并室性心律失常的影响
本实施例采用豚鼠心衰合并室性心律失常的模型,观察离体灌注实施例1制备的香加皮提取物(TCM)对心衰合并室性心律失常模型动物心律失常发生率的影响。豚鼠信息:Hartley豚鼠,普通级,200-250g,雌雄各半,300只,来源于北京隆安实验动物养殖中心,正常饲养。
1、给药方式:离体灌注给药。
2、分组:受试物设立TCM 1*10 -8、0.5*10 -8、0.25*10 -8、0.125*10 -8、0.0625*10 -8M浓度组,另设假手术组(假手术组动物手术操作同其他组,但不狭窄胸主动脉,即不造成心衰模型,离体心脏灌流时灌注正常灌注液,不添加药物)、模型对照组(模型对照组狭窄胸主动脉造成心衰模型,离体心脏灌注时灌注正常灌注液,不添加药物)。
3、方法:豚鼠,200-250g,雌雄各半,试验时保证每个处理组15只,采用胸主动脉狭窄法复制豚鼠心衰模型,模型成功后,按射血分数进行分组,分组后摘取豚鼠心脏,连接于Langendorff灌流装置灌注受试物,并采用程序性电刺激诱发室性心律失常,观察受试物对心衰合并室性心律失常的影响。
心衰模型构建:豚鼠腹腔注射戊巴比妥钠30mg/kg麻醉,仰卧位固定,经口插管,进入气管,连接小动物呼吸机,正压通气;手术过程均在无菌条件下进行,胸部左侧第3肋间隙纵行切开皮肤,肌肉、筋膜打开胸腔,使用开胸器充分暴露胸腔,分离主动脉,0号线垫扎胸主动脉后,抽出细管,缩窄主动脉,逐层缝合胸腔,关胸前用一根塑料管连接注射器抽吸胸腔致负压,青霉素预防感染,拔除气管插管,恢复自主呼吸,放回饲养笼正常饲养;假手术组只开胸,不狭窄。
分组:术后12周,小动物超声检测豚鼠心功能,根据射血分数随机分组,分为模型对照组(灌注正常灌流液+电刺激)、TCM 1*10 -8、0.5*10 -8、0.25*10 -8、0.125*10 -8、0.0625*10 -8M组(灌注正常灌流液+电刺激+TCM),此外假手术组心脏为正常豚鼠心脏,处理方式同模型对照组(灌注正常灌流液+电刺激),为排除TCM本身诱发心律失常,另设不叠加电刺激因素的TCM浓度对照组,即TCM 1*10 -8、0.5*10 -8、0.25*10 -8、0.125*10 -8、0.0625*10 -8M浓 度对照组(灌注正常灌流液+TCM)。
豚鼠离体心脏灌流:常规配置K-H液,豚鼠麻醉后,开胸取出心脏,快速连接于Langendorff灌流装置,氧饱和灌流液持续灌流,两根心电记录电极分别接在主动脉根部与心尖部,稳定灌流20min,信号输入生理记录仪,使心电图图形稳定。
程序性电刺激诱发豚鼠室性心律失常:程序性电刺激S1S2诱发豚鼠室性心律失常,起搏电极为银质双极起搏电极,将两电极分别置于左心室、心尖部,极间距为1mm,采用200%阀值的刺激强度,基础频率为150ms的S1S2刺激,S1-S2间隔由起始的150ms以每5ms的幅度递减至心脏不应期,S1:S2为8:1,即8次S1刺激后1次S2刺激,按心脏刺激程序直至重复使用3个连续期前刺激以确定是否能够诱发室性心律失常。模型对照组灌流离体心脏,心脏跳动稳定后,记录心电图,并采用S1S2室性早搏法诱发室性心律失常;给药组TCM溶于灌流液后灌流离体心脏,30min后继续灌流正常灌流液,心脏跳动稳定后,记录心电图,并采用S1S2室性早搏法诱发室性心律失常。采用卡方检验分析各组间室性心律失常的发生是否具有统计学差异。
4、试验结果:
为了排除自主神经系统对心脏电生理特性的调控,采用豚鼠离体心脏灌流条件下进行程序性电刺激诱发室性心律失常的发生,结果显示,假手术组(未心衰豚鼠)心脏无心律失常发生,与假手术组比较,心衰模型心脏给予电刺激,可明显诱发室性心律失常的发生(P<0.01);给予TCM干预后,TCM本身并不诱发室性心律失常,叠加电刺激因素后,则可诱发室性心律失常,与模型对照组比较,TCM1*10 -8、0.5*10 -8、0.25*10 -8、0.125*10 -8、0.0625*10 -8M浓度组心脏心律失常发生率均未见明显降低,无统计学差异,该结果提示,TCM未见改善心衰合并室性心律失常的作用。结果见表31。
表31:对心衰合并室性心律失常的影响
分组 室性心律失常 无心律失常 心律失常发生率(%)
假手术 0 15 0
模型对照 15 0 100 ΔΔ
TCM 0.0625*10 -8M 14 1 93.3
TCM 0.0625*10 -8M对照组 0 15 0
TCM 0.125*10 -8M 15 0 100
TCM 0.125*10 -8M对照组 0 15 0
TCM 0.25*10 -8M 14 1 93.3
TCM 0.25*10 -8M对照组 0 15 0
TCM 0.5*10 -8M 15 0 100
TCM 0.5*10 -8M对照组 0 15 0
TCM 1*10 -8M 13 2 86.7
TCM 1*10 -8M对照组 0 15 0
注:与假手术组比较: ΔΔP<0.01。
5、小结:
采用豚鼠心衰合并室性心律失常的模型,模型对照组豚鼠全部发生心律失常,未见TCM有降低心衰合并心律失常豚鼠的心律失常发生率的作用。
实施例7:静脉注射香加皮提取物对大鼠心衰合并高血压的影响
本实施例采用大鼠心衰合并高血压模型,观察静脉注射实施例1制备的香加皮提取物(TCM)对心衰合并高血压模型动物的治疗作用。大鼠信息:SD大鼠,SPF级,150-170g,雌雄各半,90只,来源于北京维通利华实验动物技术有限公司,正常饲养。
1、给药方式:静脉注射给药。
2、分组:受试物设立TCM 0.1、0.2mg/kg剂量组,另设假手术组(假手术组手术操作同其他组,但只开腹穿线不结扎)、模型对照组(需要结扎复制心衰合并高血压模型,给药时,两组均静脉注射生理盐水)。
3、方法:大鼠,150~170g,随机分组,手术后每组至少存活12只,雌雄各半。采用腹主动脉缩窄术,建立压力超负荷型大鼠慢性心衰,试验前动物禁食12h,自由饮水,在无菌条件下进行手术,腹腔注射30mg/kg戊巴比妥钠麻醉后,左侧卧位固定于鼠板上,腹部左侧备皮,于左肋弓下缘0.5cm处,肾脏在体表投影的正上方,脊柱前0.5cm处,行1.5~2.0cm的斜切口,并逐层切开皮肤、筋膜及肌肉,暴露出肾脏,用钝性镊子或棉签拨动肾,暴露肾门背侧,找到肾动脉与腹主动脉相连处的点,在上方约2mm处分离腹主动脉,并在下方穿入手术线,将针尖磨钝的6号针头延血管的走向放置在腹主动脉上,一并结扎后小心拔出针头,确认无出血,肾脏颜色变浅后,在腹腔滴入青霉素适量,并逐层关腹,缝合切口,术后清醒后恢复正常饮食,青霉素预防感染,并定时观察体征,假手术对照组只开腹穿线不结扎,其余同模型组。
术后4周,小动物超声检测心功能,射血分数(EF)低于60则视为心衰模型成立,尾部血压测量仪无创检测血压,血压未升高的动物剔除试验,将符合标准的动物随机分3组,给药4周后,检测指标。
指标检测:1)血流动力学:大鼠麻醉后,小动物超声检测血流动力学指标(射血分数(EF)、左室缩短率(FS)、左室舒张末期容积(LVVd)、左室收缩末期容积(LVVs)、左室舒张末期内径(LVDd)、左室收缩末期内径(LVDs));2)无创检测尾动脉血压。
4、统计方法:所有数据用均数±标准差
Figure PCTCN2019078887-appb-000080
表示,采用SPSS 22统计软件,首先进行正态性检验,符合正态分布的数据,进行单因素方差分析,若方差齐,则采用Dunnett双侧检验;对非正态或方差不齐的数据进行适当的变量转换,待满足正态分布或方差齐要求后,用转换后的数据进行统计,若变量转换后仍未达到正态分布或方差齐的目的,则采用秩和检验进行统计分析。
5、试验结果:
5.1对血流动力学的影响
给药4周后,小动物超声检测大鼠心功能发现:与假手术组比较,模型对照组大鼠心脏EF明显降低(P<0.05),FS显著降低(P<0.01),左心室收缩末期容积和左心室收缩末期内径则明显升高(P<0.05),提示,腹主动脉缩窄后大鼠心功能明显降低,给予药物干预后,与模型对照组比较,TCM 0.1、0.2mg/kg剂量组大鼠心功能各指标未见明显改善,提示,TCM对心衰合并高血压大鼠的心功能无明显改善作用。结果见表32。
表32:对心衰合并高血压大鼠心功能的影响
Figure PCTCN2019078887-appb-000081
Figure PCTCN2019078887-appb-000082
注:与假手术组比较: ΔP<0.05, ΔΔP<0.01。
5.2对血压的影响
给药4周后,尾部血压测量仪无创检测血压,分析平均动脉压发现,与假手术组比较,模型对照组大鼠平均动脉压显著升高(P<0.01),给予药物干预后,与模型对照组比较,TCM0.1、0.2mg/kg剂量组大鼠平均动脉压未见明显降低,无统计学差异,提示,TCM未见降低心衰大鼠血压的作用。结果见表33。
表33:对心衰合并高血压大鼠平均动脉压的影响
Figure PCTCN2019078887-appb-000083
分组 N 平均动脉压(mmHg)
假手术 10 103.2±13.2
模型对照 11 141.8±18.2 ΔΔ
TCM 0.1mg/kg 12 138.8±19.0
TCM 0.2mg/kg 11 141.1±24.9
注:与假手术组比较: ΔΔP<0.01。
5.3小结
采用腹主动脉狭窄法复制大鼠心衰合并高血压模型,模型对照组豚鼠心功能降低,血压升高,给予TCM干预后,未见TCM有改善心功能的作用,也未见TCM有降低心衰大鼠血压的作用。
实施例8:静脉注射香加皮提取物对大鼠心衰合并心肌炎的影响
本实施例采用大鼠心衰合并心肌炎模型,观察静脉注射实施例1制备的香加皮提取物(TCM)对心衰合并心肌炎模型动物的治疗作用。大鼠信息:SD大鼠,SPF级,150-170g, 雌雄各半,130只,来源于北京维通利华实验动物技术有限公司,正常饲养。
1、给药方式:静脉注射给药。
2、分组:受试物设立TCM 0.1、0.2mg/kg剂量组,另设溶媒对照组、模型对照组(造模时,溶媒对照组不给予阿霉素,只腹腔注射等剂量的生理盐水,模型对照组腹腔注射阿霉素,给药时,两组均静脉注射生理盐水)。
3、方法:大鼠,150~170g,随机分组,取材时每组至少存活14只,雌雄各半。各组动物腹腔注射盐酸阿霉素2mg/kg,共10次,前5次每3天注射一次,后5次则每7天注射一次,阿霉素累计用量为20mg/kg,溶媒对照组则同步给予生理盐水。各组在开始给予盐酸阿霉素后第四周开始静脉注射受试物,连续4周,各组动物正常饲养,末次给药后24h,动物麻醉,小动物超声检测血流动力学指标(射血分数(EF)、左室缩短率(FS)、左室舒张末期容积(LVVd)、左室收缩末期容积(LVVs)、左室舒张末期内径(LVDd)、左室收缩末期内径(LVDs));取心脏匀浆,检测心肌中IL-6、TNF-α的含量。
4、统计方法:所有数据用均数±标准差
Figure PCTCN2019078887-appb-000084
表示,采用SPSS 22统计软件,首先进行正态性检验,符合正态分布的数据,进行单因素方差分析,若方差齐,则采用Dunnett双侧检验;对非正态或方差不齐的数据进行适当的变量转换,待满足正态分布或方差齐要求后,用转换后的数据进行统计,若变量转换后仍未达到正态分布或方差齐的目的,则采用秩和检验进行统计分析。
5、试验结果
5.1对血流动力学的影响
给药4周后,小动物超声检测大鼠心功能发现:与溶媒对照组比较,模型对照组大鼠心脏EF明显降低(P<0.05),FS显著降低(P<0.01),左心室收缩末期内径则明显升高(P<0.05),提示,腹腔注射阿霉素后大鼠心功能明显降低,给予药物干预后,与模型对照组比较,TCM0.1、0.2mg/kg剂量组大鼠心功能各指标未见明显改善,提示,TCM对心衰合并心肌炎大鼠的心功能无明显改善作用。结果见表34。
表34:对心衰合并心肌炎大鼠心功能的影响
Figure PCTCN2019078887-appb-000085
Figure PCTCN2019078887-appb-000086
注:与假手术组比较: ΔP<0.05, ΔΔP<0.01。
5.2:对心肌炎症因子的影响
试验结束后取心脏,制作心肌匀浆,取上清液采用ELISA试剂盒检测TNF-α、IL-6的含量,结果发现,模型对照组大鼠心肌TNF-α、IL-6含量均显著升高(P<0.01),给予药物 干预后,与模型对照组比较,TCM 0.1、0.2mg/kg剂量组大鼠心肌TNF-α、IL-6含量未见降低,结果见表35。
表35:对心衰合并心肌炎大鼠炎症因子的影响
Figure PCTCN2019078887-appb-000087
分组 n TNF-α(ng/ml) IL-6(pg/ml)
溶媒对照 10 3.15±1.23 49.47±13.36
模型对照 12 5.42±1.39 ΔΔ 68.66±14.63 ΔΔ
TCM 0.1mg/kg 11 5.19±1.09 65.89±16.71
TCM 0.2mg/kg 13 5.01±1.12 62.14±17.91
注:与假手术组比较: ΔΔP<0.01。
5.3:小结
采用腹腔注射阿霉素复制大鼠心衰合并心肌炎模型,模型对照组大鼠心功能降低,心肌炎症因子含量升高,给予TCM干预后,未见TCM有改善心功能的作用,也未见TCM有降低心衰大鼠心肌炎症因子含量的作用。
根据实施例5~8的结果可知,香加皮提取物虽然对心衰有明显治疗作用,但对心衰合并症并非均有作用。该提取物对心衰并房颤的作用显著,与现有的常规治疗药物西地兰相比,起效快、效果好。

Claims (11)

  1. 香加皮提取物在制备治疗心衰合并症的药物中的应用。
  2. 根据权利要求1所述的应用,其中,所述药物的剂型是水针制剂。
  3. 根据权利要求1或2所述的应用,其中,所述心衰为急性心衰。
  4. 根据权利要求1-3任一项所述的应用,其中,所述心衰合并症为心衰并房颤。
  5. 根据权利要求1-4任一项所述的应用,其中,所述香加皮提取物的有效成分是杠柳毒苷,杠柳毒苷在香加皮提取物中的质量含量为>99%。
  6. 一种治疗心衰合并症的药物,所述药物包含香加皮提取物。
  7. 根据权利要求6所述的药物,其中,所述香加皮提取物的有效成分是杠柳毒苷,杠柳毒苷在香加皮提取物中的质量含量为>99%。
  8. 根据权利要求6或7所述的药物,其中,所述药物的剂型是水针制剂。
  9. 根据权利要求8所述的药物,其中,所述药物中香加皮提取物的含量为0.05-0.2mg/ml。
  10. 根据权利要求6-9任一项所述的药物,其中,所述心衰合并症为心衰并房颤。
  11. 一种治疗心衰合并症的方法,包括对需要的人施用权利要求6~10任一项所述的药物。
PCT/CN2019/078887 2018-03-22 2019-03-20 香加皮提取物在制备治疗心衰合并症的药物中的应用 WO2019179465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810240902.0A CN110292589A (zh) 2018-03-22 2018-03-22 香加皮提取物在治疗心衰合并症中的应用
CN201810240902.0 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019179465A1 true WO2019179465A1 (zh) 2019-09-26

Family

ID=67986744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078887 WO2019179465A1 (zh) 2018-03-22 2019-03-20 香加皮提取物在制备治疗心衰合并症的药物中的应用

Country Status (2)

Country Link
CN (1) CN110292589A (zh)
WO (1) WO2019179465A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594353A (zh) * 2004-07-12 2005-03-16 天津中医学院 杠柳毒苷的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265802C (zh) * 2004-07-13 2006-07-26 天津中医学院 香加皮强心作用有效提取物及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594353A (zh) * 2004-07-12 2005-03-16 天津中医学院 杠柳毒苷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALKANDARI A: "Epigenetic control of the post-bariatric phenotype: the role of microRNAs", DISSERTATION- DEPARTMENT OF SURGERY AND CANCER, 2015, pages 105, 124, 127, 136, 137, XP055637950 *
SUN, DA . ET AL.: "The . Toxicity Study on Single-dose of Periplocin", JOURNAL OF TOXICOLOGY, vol. 24, no. 6, 25 December 2010 (2010-12-25), pages 461 - 463 *

Also Published As

Publication number Publication date
CN110292589A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
Bloomfield et al. The effects of the cardiac glycosides upon the dynamics of the circulation in congestive heart failure. I. Ouabain
JP2002540144A (ja) 心血管及び関連病理学治療のためのピリドキシン化合物の使用
CN105748464B (zh) 一种治疗射血分数保留的心力衰竭的药物组合物及其应用
Tessler et al. Pulmonary oedema in two parturients with hypertrophic obstructive cardiomyopathy (HOCM)
NIEUWENHUIS et al. 1-Desamino-8-D-arginine vasopressin (desmopressin) shortens the bleeding time in storage pool deficiency
DE69832176T2 (de) Arzneimittel gegen diabetes-komplikationen
CN108567775B (zh) 硫辛酸在制备治疗压力负荷性心肌损伤的药物组合物中的应用
Deep et al. Role of vagal afferents in the reflex effects of capsaicin and lobeline in monkeys
WO2019179465A1 (zh) 香加皮提取物在制备治疗心衰合并症的药物中的应用
CN110478351A (zh) 多靶标作用化合物x7的新用途
CN115645402A (zh) 阿雷地平在制备治疗或预防急性心肌梗死药物中的应用
CN106421746A (zh) [Pyr1]‑Apelin‑13 作为长效酰胺类局麻药中毒所致心脏停搏的抢救药物的应用
CN109758497B (zh) 用于慢性心力衰竭的中药组合物、药物及其制备方法和应用
CN106344634B (zh) 一种芒果皮提取物及其制备方法和用途
CN115998737B (zh) 阿莫地喹在制备治疗压力负荷性心肌损伤的药物中的应用
CN100356952C (zh) 一种治疗心力衰竭的中药组合物及其口服制剂
CN115531459B (zh) 荆防颗粒在制备预防或治疗心肌梗死药物中的应用
Iodice et al. Hemodynamic and ventilatory effects of intravenous salbutamol in patients affected by cold
KR101391551B1 (ko) 심부전증 예방, 완화 및 치료용 약학 조성물 및 이를 포함하는 복합제제
Fesenko et al. Cardiac function during mini-invasive repair of Pectus Excavatum with the Nuss procedure
CN100490786C (zh) 一种治疗心脏病的中药制剂及其制备方法
Liu et al. The impact of dopamine on hemodynamics, oxygen metabolism, and cerebral resuscitation after restoration of spontaneous circulation in pigs
CN106727605B (zh) 环维黄杨星d在制备预防或治疗缺血性脑卒中药物中的应用
CN1330311C (zh) 3,4’,5-三羟基茋-3-β-D-葡萄糖甙在抗心肌缺血药物制备中的用途
Ganitafuri Perioperative Management in Patients with Temporary Pacemaker Who Underwent Craniotomy in Prone Position

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772446

Country of ref document: EP

Kind code of ref document: A1