WO2019179079A1 - 压力可视化装置及其制备方法、检测设备 - Google Patents

压力可视化装置及其制备方法、检测设备 Download PDF

Info

Publication number
WO2019179079A1
WO2019179079A1 PCT/CN2018/109851 CN2018109851W WO2019179079A1 WO 2019179079 A1 WO2019179079 A1 WO 2019179079A1 CN 2018109851 W CN2018109851 W CN 2018109851W WO 2019179079 A1 WO2019179079 A1 WO 2019179079A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
flexible substrate
piezoelectric
electrochromic
Prior art date
Application number
PCT/CN2018/109851
Other languages
English (en)
French (fr)
Inventor
李砚秋
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/329,325 priority Critical patent/US20210356345A1/en
Publication of WO2019179079A1 publication Critical patent/WO2019179079A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/071Mounting of piezoelectric or electrostrictive parts together with semiconductor elements, or other circuit elements, on a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • H10N30/702
    • H10N30/706
    • H10N30/708
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface

Definitions

  • the present disclosure relates to the field of detection technologies, and in particular, to a pressure visualization device, a preparation method thereof, and a detection device.
  • Traditional pressure detection systems primarily include pressure sensors and displays. During the detection process, the signal detected by the pressure sensor needs to be recorded in real time, and then the pressure curve is drawn according to the recorded signal, and finally the pressure curve drawn by the display is displayed to reflect the pressure change process.
  • An object of the present disclosure is to provide a pressure visualization device, a preparation method thereof, and a detection device.
  • a pressure visualization apparatus comprising a flexible substrate, a piezoelectric module and an electrochromic module on a surface of the flexible substrate;
  • the piezoelectric module includes a plurality of piezoelectric units including a first electrode proximate the flexible substrate, a second electrode remote from the flexible substrate, and the first electrode and the a piezoelectric layer between the second electrodes;
  • the electrochromic module includes a plurality of electrochromic cells including a third electrode proximate the flexible substrate, a fourth electrode remote from the flexible substrate, and a third electrode And an electrochromic layer between the fourth electrode;
  • the second electrode is electrically connected to the third electrode, and the fourth electrode is a transparent electrode.
  • a sum of a footprint of the piezoelectric module on the flexible substrate and a footprint of the electrochromic module on the flexible substrate is equal to the flexible liner The surface area of the bottom.
  • the materials of the first applicator layer and the second appendage layer each comprise a hydrogel.
  • the pressure visualization device further includes a first attachment layer located on a side of the piezoelectric module facing away from the flexible substrate, and located on another surface of the flexible substrate A second attachment layer obtained by physical crosslinking of amorphous calcium carbonate nanoparticles, polyacrylic acid, and sodium alginate.
  • the second electrode is disposed in the same layer as the third electrode and has the same material.
  • the pressure visualization device further includes a protective layer on a side of the electrochromic module facing away from the flexible substrate.
  • the protective layer includes a transparent resin layer, and a material of the transparent resin layer includes polydimethylsiloxane.
  • the piezoelectric module further includes a conductive layer between the first electrode and the piezoelectric layer, the piezoelectric layer including zinc oxide nanowires.
  • the electrochromic layer includes a tungsten trioxide pattern layer, and a current amplifying circuit is disposed in the tungsten trioxide pattern layer.
  • a method of preparing a pressure visualization device includes:
  • first electrode Forming a flexible substrate layer, a first electrode, and a resin layer in sequence over the glass substrate, and patterning the resin layer to obtain a hole in the first region and a resin retention layer in the second region.
  • the first area and the second area are adjacently disposed;
  • a third electrode, an electrochromic layer, and a fourth electrode sequentially above the resin retention layer; the third electrode is electrically connected to the second electrode, and the fourth electrode is a transparent electrode;
  • the first region is for setting a piezoelectric module
  • the piezoelectric module includes a plurality of piezoelectric units composed of the first electrode, the second electrode, and the piezoelectric layer
  • the two regions are for providing an electrochromic module
  • the electrochromic module includes a plurality of electrochromic cells composed of the third electrode, the fourth electrode, and the electrochromic layer.
  • a sum of an area of the first region and an area of the second region is equal to a surface area of the flexible substrate layer.
  • the method further includes:
  • the materials of the first applicator layer and the second applicator layer both comprise a hydrogel.
  • the hydrogel is obtained by physical crosslinking of amorphous calcium carbonate nanoparticles, polyacrylic acid, and sodium alginate.
  • the second electrode and the third electrode are prepared by performing the same patterning process on the same film layer
  • the preparation method further includes:
  • the resin retention layer is patterned to obtain a groove for forming the third electrode.
  • the manufacturing method further includes forming a protective layer over the fourth electrode.
  • the protective layer includes a transparent resin layer, and a material of the transparent resin layer includes polydimethylsiloxane.
  • the piezoelectric module further includes a conductive layer formed between the first electrode and the piezoelectric layer, the piezoelectric layer including zinc oxide nanowires.
  • the electrochromic layer includes a tungsten trioxide pattern layer, and a current amplifying circuit is further formed in the tungsten trioxide pattern layer.
  • a detection apparatus including the pressure visualization apparatus described above.
  • the detecting device includes a sphygmomanometer and an electrocardiograph.
  • the detecting device is a wearable device.
  • the pressure visualization device provided by the exemplary embodiment of the present disclosure, the preparation method thereof, and the detecting device can convert the pressure signal induced by the piezoelectric module into an electrical signal, and then activate the electrochromic module to emit color under the control of the electrical signal. It not only realizes the detection of pressure, but also visually displays the detected pressure instantly. It can be seen that the pressure visualization device can instantly display the pressure signal curve without external display device, thereby realizing the visualization of the pressure signal.
  • the piezoelectric module and the electrochromic module are integrated on the flexible substrate, the pressure visualization device also has the advantage of being small and portable.
  • FIG. 1 is a schematic block diagram showing a structure of a pressure visualization device in an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a state of use of a pressure visualization device in an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic view showing another use state of the pressure visualization device in the exemplary embodiment of the present disclosure.
  • FIG. 5 schematically shows a capacitance-pressure cycle curve of a hydrogel pressure sensor in an exemplary embodiment of the present disclosure
  • FIG. 6 schematically illustrates a real-time capacitive response curve of a hydrogel pressure sensor detecting a drop of water droplets in an exemplary embodiment of the present disclosure
  • FIG. 7 schematically illustrates a plurality of performance curves of the electrochromic module 30 of the tungsten trioxide electrochromic layer 303 in an exemplary embodiment of the present disclosure
  • FIG. 8 is a view schematically showing a distribution effect diagram of a piezoelectric unit in an exemplary embodiment of the present disclosure and a pattern imprint displayed by an electrochromic module under different pressures;
  • FIG. 9 is a view schematically showing a linear relationship between an enhancement ratio of a pattern imprint and an applied pressure in an exemplary embodiment of the present disclosure.
  • FIG. 10 is a flow chart schematically showing a method of preparing a pressure visualization device in an exemplary embodiment of the present disclosure
  • 11 to 14 are schematic diagrams showing a preparation process of a pressure visualization device in an exemplary embodiment of the present disclosure
  • 15 to 18 are schematic diagrams showing details of a preparation process of a pressure visualization device in an exemplary embodiment of the present disclosure.
  • the present example embodiment provides a pressure visualization device that can be used in the field of medical testing such as electrocardiogram monitoring or blood pressure monitoring.
  • the pressure visualization device may include a flexible substrate 10, a piezoelectric module 20 and an electrochromic module 30 disposed on a surface of the flexible substrate 10 and disposed adjacent to the piezoelectric module 20.
  • the first attaching layer 40 and the second attaching layer 50 may be attached to the surface of the test object for sensing the pressure change of the surface of the test object.
  • the piezoelectric module 20 may include a plurality of piezoelectric units 200, each of which may include a first electrode 201 on a side close to the flexible substrate 10, a second electrode 202 on a side away from the flexible substrate 10, And a piezoelectric layer 203 between the first electrode 201 and the second electrode 202.
  • the first electrode 201 may be laid on the entire surface of the flexible substrate 10 or only in the corresponding region of the piezoelectric module 20, the second electrode 202 may include a plurality of independent electrode blocks, and the piezoelectric layer 203 may correspond Including a plurality of independent piezoelectric layer units, the first electrode 201, the plurality of electrode blocks of the second electrode 202, and the plurality of piezoelectric layer units of the piezoelectric layer 203 can form a plurality of voltages of the piezoelectric module 20. Electrical unit 200.
  • the electrochromic module 30 may include a plurality of electrochromic cells 300, each of which may include a third electrode 301 near one side of the flexible substrate 10 and a fourth side away from the flexible substrate 10 side.
  • the third electrode 301 may include a plurality of independent electrode blocks
  • the fourth electrode 302 may be a transparent plate electrode or a plurality of electrically connected transparent block electrodes
  • the electrochromic layer 303 and the ion transport layer 304 may be Correspondingly comprising a plurality of independent electrochromic layer units and a plurality of independent ion transport layer units, respectively, a plurality of electrochromic layers of the plurality of electrode blocks of the third electrode 301, the fourth electrode 302, and the electrochromic layer 303
  • the layer unit, and the plurality of ion transport layer units of the ion transport layer 304 may form a plurality of electrochromic cells 300 of the electrochromic module 30.
  • electrochromic layer 303 and the ion transport layer 304 may constitute the electrochromic unit according to the present embodiment, however, the present disclosure is not limited thereto, and other electrochromic cells, for example, omitting the ion transport layer or based on others Principle or structural electrochromic elements can also be applied to the present disclosure.
  • the electrical connection between the second electrode 202 and the third electrode 301 should be maintained to facilitate the transmission of electrical signals generated in the piezoelectric module 20 to the electrochromic module 30.
  • the pressure visualization device provided by the exemplary embodiment of the present disclosure can convert the pressure signal induced by the piezoelectric module 20 into an electrical signal, and then excite the electrochromic module 30 to emit color change under the control of the electrical signal, which can not only realize For the detection of pressure, the detected pressure can be visually displayed immediately. It can be seen that the pressure visualization device can instantly display the pressure signal curve without external display device, thereby realizing the visualization of the pressure signal.
  • the piezoelectric module 20 and the electrochromic module 30 are integrally disposed on the flexible substrate 10, the pressure visualization device also has the advantage of being small and portable.
  • the sum of the occupied area of the piezoelectric module 20 on the flexible substrate 10 and the occupied area of the electrochromic module 30 on the flexible substrate 10 may be equal to the surface area of the flexible substrate 10,
  • the area of the piezoelectric module 20 and the area of the electrochromic module 30 can be, for example, exactly equal.
  • the second electrode 202 and the third electrode 301 may be disposed in the same layer and have the same material, for example, the second electrode 202 and the third electrode 301 may be patterned by the same layer of the conductive film.
  • the first electrode 201, the second electrode 202, the third electrode 301, and the fourth electrode 302 may each be a transparent electrode such as Indium Tin Oxide (ITO), but not limited thereto.
  • the fourth electrode 302 is ensured to be a transparent electrode so as to display a discoloration phenomenon, and the specific materials of the other electrodes are not forcibly defined.
  • the bottom surface of the electrochromic module 30 is higher than the top surface of the piezoelectric module 20, so the embodiment can also be used in the flexible substrate 10
  • a resin layer 60 is disposed between the electrochromic modules 30 for adjusting the gap therebetween.
  • both the first attaching layer 40 and the second attaching layer 50 can be used as the attaching surface to detect the pressure change of the surface of the test object, so both should have good viscoelastic properties and high The sensitivity is thus suitable as the sensing surface of the piezoelectric module 20.
  • the pressure visualization device can be folded along the boundary line between the piezoelectric module 20 and the electrochromic module 30 to pass the second sticker.
  • the adhesive layer 50 sticks the folded flexible substrate 10 together, and then attaches the first adhesive layer 40 to the surface of the test object for sensing the pressure change of the surface of the test object, and transmits the induced pressure to the pressure.
  • the electrical module 20 is further presented by an electrochromic module 30.
  • the pressure visualization device can directly attach the second attaching layer 50 to the surface of the test object for sensing the surface of the test object.
  • the pressure changes and the sensed pressure is transmitted to the piezoelectric module 20, which is further presented by the electrochromic module 30.
  • the pressure visualization device has two usage states as shown in FIG. 2 and FIG. 3, which can be used for medical detection such as electrocardiographic monitoring, as long as the pressure visualization device is attached to the heart of the detection object, with detection
  • the heartbeat signal curve appears immediately after the heartbeat of the subject, so that the heartbeat pattern of the detected object can be observed in real time.
  • the pressure visualization device only needs to be connected with a power source such as a lithium battery of about -6V as a basic working voltage for ensuring its normal operation.
  • first attachment layer 40 and the second attachment layer 50 may also be omitted or other attachments or A fixing device is used in place of the first attachment layer 40 and/or the second attachment layer 50.
  • the flexible substrate 10 can be made of polyimide (Polyimide, PI), polycarbonate (Polycarbonate, PC), polyethylene (Polyethylene, PE), And a flexible material such as polyethylene terephthalate (PET), and the length of the area occupied by the piezoelectric module 20 preferably does not exceed half of the total length of the flexible substrate 10, so as to facilitate the piezoelectric
  • the module 20 is folded to the back of the electrochromic module 30.
  • the pressure visualization device not only has a smaller volume when folded, but also the first attachment layer 40 directly contacts the piezoelectric module 20, compared to between the second attachment layer 50 and the piezoelectric module 20.
  • the flexible substrate 10 is also provided with higher sensitivity.
  • the materials of the first attaching layer 40 and the second attaching layer 50 may each be a hydrogel.
  • the present embodiment can form a hydrogel by physical crosslinking using Amorphous Calcium Carbonate (ACC) nanoparticles, Polyacrylic Acid (PAA), and sodium alginate.
  • ACC has the properties of variability, plasticity, controllability, etc.; sodium alginate can form a gel rapidly under mild conditions. Due to the presence of Ca 2+ in ACC, Na + on the G unit can exchange ions with divalent cations. In the reaction, the G units are stacked to form a crosslinked network structure, thereby rapidly forming a hydrogel; and the PAA can form a stable compound with Ca 2+ to make the structure of the hydrogel more stable.
  • the hydrogel prepared in this embodiment has a unique viscoelastic property on the one hand, which can stick the two parts after folding, and has good mechanical adaptability (including flexibility, stretchability and easy processing). , completely self-repairing) and high sensitivity, as well as a high degree of matching and fitting effect on non-linear surfaces and dynamic surfaces, which can sense small changes in external pressure such as human motion or water droplets, and on the other hand, the effect on the skin. It is small and therefore suitable for direct attachment to the skin surface.
  • 4 shows the capacitance-pressure response curve of the hydrogel pressure sensor in the pressure range of 0 to 1 kPa
  • FIG. 5 shows the capacitance-pressure cycle curve of the hydrogel pressure sensor
  • FIG. 6 shows the water condensation curve.
  • the glue pressure sensor detects the real-time capacitive response curve of the drop of water droplets. It can be seen that the hydrogel pressure sensor, that is, the piezoelectric module 20 with the hydrogel as the sensing surface, has high sensitivity and good repair performance.
  • the piezoelectric unit 200 of the piezoelectric module 20 may be composed of at least a first electrode 201, a second electrode 202, and a piezoelectric layer 203.
  • a conductive layer 204 such as a gold conductive layer may be disposed between the first electrode 201 and the piezoelectric layer 203, and the conductive layer 204 may include a plurality of independent conductive blocks, and the plurality The conductive blocks may be disposed in one-to-one correspondence with the plurality of piezoelectric layer units of the piezoelectric layer 203.
  • the piezoelectric layer 203 may include a film layer composed of a piezoelectric material such as zinc oxide nanowire, graphene or carbon nanotube, wherein the zinc oxide nanowire has excellent conductance transmission efficiency, light transmittance, and bacteriostasis.
  • a piezoelectric material such as zinc oxide nanowire, graphene or carbon nanotube, wherein the zinc oxide nanowire has excellent conductance transmission efficiency, light transmittance, and bacteriostasis.
  • the electrochromic cell 300 of the electrochromic module 30 may be composed of at least a third electrode 301, a fourth electrode 302, an electrochromic layer 303, and an ion transport layer 304.
  • a protective layer 305 such as a transparent resin layer may be disposed on a side of the fourth electrode 302 facing away from the flexible substrate 10, and specifically, polydimethylsiloxane (Polydimethylsiloxane) may be used. Resin material such as PDMS), and in order not to affect the piezoelectric sensing effect, the protective layer 305 covers only the area where the electrochromic module 30 is located.
  • the electrochromic layer 303 may include a pattern layer composed of an electrochromic material such as tungsten trioxide, polyaniline or a derivative thereof, wherein the electroluminescence property of the tungsten trioxide can exhibit good cycle stability, for example, It maintains more than 85% color contrast after 300 cycles.
  • a current amplifying circuit may also be built in the electrochromic layer 303 for amplifying the minute current to drive the electrochromic layer 303 to emit light efficiently. It should be noted that the technology of the current amplifying circuit is relatively mature, so it will not be described here.
  • FIG. 7 shows a plurality of performance curves of an electrochromic module 30 employing a tungsten trioxide electrochromic layer 303.
  • Figure a is a cyclic voltammetry curve of tungsten trioxide flakes showing cyclic volt-ampere curves of voltages between -0.5 and 0.8 V at scan rates of 20, 50 and 100 mV/s;
  • Figure b is at -2V And the UV-visible spectrum of the electrochromic partial coloring and de-coloring process at a bias voltage of +2V;
  • Figure c is the color conversion behavior measured at a wavelength of 632.8 nm, where the inset is an enlarged view of a single conversion cycle; Schematic diagram of cycle stability after more than 300 cycles;
  • Figure e is a test plot of optical density and carrier density at a wavelength of 632.8 nm with a coloring efficiency of 27.94 cm 2 /C;
  • Figure f is a wavelength of 632.8 nm
  • the pressure visualization device provided by the exemplary embodiment of the present disclosure, by connecting each piezoelectric unit 200 of the piezoelectric module 20 to the electroluminescent unit 300 of the electroluminescence module 30, can be used in either side of the water.
  • the gel is attached to the surface of the object to be detected.
  • a current is generated in the piezoelectric module 20 due to the piezoelectric effect, and the higher the pressure, the larger the current is, and the current is transmitted to the electrochromic.
  • the module 30 excites the electrochromic layer 303 to illuminate according to the position of the current, and records the path or pattern at which the pressure is generated at the piezoelectric layer 203.
  • the piezoelectric module 20 can only generate a weak current, and the current amplifying circuit disposed in the electrochromic layer 303 enlarges the weak current, and the amplified The current is sufficient to excite the electrochromic layer 303 to undergo chromophoric discoloration to record a path or pattern of pressure at the piezoelectric layer 203.
  • a partial pressure such as a pentagonal pressure
  • it can generate a piezoelectric polarization charge at the edge of the piezoelectric module 20, thereby causing current transport in the system, and finally by electrolysis.
  • the color change of the color changing module 30 is expressed.
  • FIG. 8 shows a distribution effect diagram of the piezoelectric unit 200 in the piezoelectric module 20 and a pattern imprint displayed by the electrochromic module 30 under different pressures, for example, the pressure generated by a pentagonal object is displayed after current amplification.
  • Fig. 9 is a view showing a linear relationship between the enhancement ratio of the pattern imprint and the applied pressure, for example, a linear graph in which the pentagon pattern imprint is increased from 0 to 900% when the applied pressure is increased from 0 to 120.20 MPa. It should be understood that the linear relationship of FIG. 9 is merely an example. In practical applications, other functional relationships may also be satisfied between the enhancement ratio of the pattern imprint and the applied pressure depending on the specifically employed structure and/or material.
  • the exemplary embodiment also provides a method of preparing a pressure visualization device that can be used to prepare the pressure visualization device described above. As shown in FIG. 10, the method for preparing the pressure visualization device may include:
  • a flexible substrate 10, a first electrode 201, and a resin layer 60 which are flexible substrate layers, are sequentially formed over the glass substrate 01, and the resin layer is patterned to obtain the first region 10a.
  • first region 10a and the second region 10b are disposed adjacent to each other, and the first electrode 201 may be laid flat on the surface of the entire flexible substrate 10 or only in the first region 10a.
  • the piezoelectric layer 203 and the second electrode 202 are sequentially formed in the slot 601, and a first attaching layer 40 is formed above the second electrode 202;
  • the second electrode 202 may include a plurality of independent electrode blocks
  • the piezoelectric layer 203 may include a plurality of independent piezoelectric layer units corresponding to the plurality of electrode blocks of the second electrode 202.
  • a third electrode 301, an electrochromic layer 303, an ion transport layer 304, and a fourth electrode 302 are sequentially formed over the resin retention layer 602;
  • the second electrode 202 and the third electrode 301 are electrically connected to each other, and the third electrode 301 may include a plurality of independent electrode blocks, and the fourth electrode 302 may be a transparent plate electrode or a transparent block including a plurality of electrical connections.
  • the electrode, electrochromic layer 303 may include a plurality of independent electrochromic layer units corresponding to the plurality of electrode blocks of the third electrode 301, and the ion transport layer 304 may include a full layer ion transport layer or include a plurality of independent Ion transport layer unit.
  • the flexible substrate layer is peeled off from the interface between the glass substrate 01 and the flexible substrate layer, that is, the flexible substrate 10, and a second surface is formed on the peeling surface of the flexible substrate layer, that is, the surface on which the glass substrate 01 is originally provided.
  • first attaching layer 40 and the second attaching layer 50 may be attached to the surface of the test object for sensing the pressure change of the surface of the test object.
  • the first region 10a can be used to set the piezoelectric module 20, and the piezoelectric module 20 can include a plurality of voltages composed of the first electrode 201, the second electrode 202, and the piezoelectric layer 203 therebetween.
  • the second unit 10b can be used to set the electrochromic module 30.
  • the electrochromic module 30 can include a plurality of electrochromic layers between the third electrode 301, the fourth electrode 302, and the two.
  • An electrochromic cell 300 composed of 303 and ion transport layer 304.
  • a method of manufacturing a pressure visualization device provided by an exemplary embodiment of the present disclosure, by forming a piezoelectric module 20 and an electrochromic module 30 on one side of a flexible substrate 10, and a first attachment layer located outside the piezoelectric module 20 40, and forming a second attaching layer 50 on the other side of the flexible substrate 10 while maintaining an electrical connection between the piezoelectric module 20 and the electrochromic module 30, so that the piezoelectric module 20 can be sensed.
  • the pressure signal is converted into an electrical signal, and then the electrochromic module 30 is excited to change color under the control of the electrical signal, which not only realizes the detection of the pressure, but also visually displays the detected pressure in real time.
  • the pressure visualization device thus obtained can display the pressure signal curve in real time without an external display device, thereby realizing the visualization of the pressure signal.
  • the piezoelectric module 20 and the electrochromic module 30 are integrally disposed on the flexible substrate 10, the pressure visualization device also has the advantage of being small and portable.
  • the occupied area of the piezoelectric module 20 on the flexible substrate 10 that is, the area of the first region 10a and the occupied area of the electrochromic module 30 on the flexible substrate 10, that is, the second region 10b
  • the sum of the areas of the area may be equal to the surface area of the flexible substrate 10, and the area of the first area 10a and the area of the second area 10b may be, for example, exactly equal.
  • step S1 a flexible substrate layer, that is, a flexible substrate 10, a first electrode 201, and a resin layer 60 are sequentially formed over the glass substrate 01, and the resin layer is patterned to obtain a slot in the first region 10a. 601 and a resin retention layer 602 located in the second region 10b.
  • the flexible substrate layer can be, for example, Polyimide (PI), Polycarbonate (PC), Polyethylene (PE), and Polyethylene terephthalate (PET).
  • the first electrode 201 may be an ITO electrode
  • the resin layer 60 may be, for example, a SU-8 negative photoresist, which is suitable for preparing a microstructure having a relatively high depth and width.
  • this step may sequentially form a flexible substrate layer such as a PI layer and a first electrode 201 such as an ITO layer over the glass substrate 01, and then form a resin layer over the first electrode 201 by a coating process.
  • 60 for example, a SU-8 negative photoresist, and a slot 601 for accommodating the piezoelectric module 20 is prepared on one side of the resin layer 60, for example, the left side region, and the actual area of the left region can be determined according to different needs.
  • the length preferably does not exceed half of the total length of the flexible substrate 10 to facilitate folding.
  • the process of forming the slot 601 can expose the resin layer 60 through the mask 90 and develop the exposed resin layer 60, thereby obtaining the slot 601 corresponding to the transparent region 901 of the mask and the corresponding mask.
  • the resin of the light region 902 retains the layer 602, and the slot 601 penetrates the resin layer 60 to a depth sufficient to prepare a subsequent patterned layer of the piezoelectric layer 203 and the second electrode 202.
  • step S2 the piezoelectric layer 203 and the second electrode 202 are sequentially formed in the slot 601, and the first attaching layer 40 is formed above the second electrode 202.
  • the piezoelectric layer 203 may be, for example, a thin film formed of zinc oxide nanowires, and the second electrode 202 may be, for example, a plurality of ITO electrode blocks, and the first adhesive layer 40 may be, for example, a hydrogel.
  • a conductive layer 204 such as a gold conductive layer may be formed over the first electrode 201 in the slot 601, and the conductive layer 204 may include a plurality of electrode blocks corresponding to the second electrode 202. Multiple independent conductive blocks.
  • the second electrode 202 and the third electrode 301 may be prepared separately or simultaneously.
  • the present embodiment preferably simultaneously forms the second electrode 202 and the third electrode 301 by one patterning process.
  • this step may sequentially form a conductive layer 204 such as a gold conductive layer and a piezoelectric layer 203 such as a zinc oxide nanowire film layer over the first electrode 201 exposed by the slot 601, and then in the resin layer 60.
  • the other side for example, the right side region, prepares a recess 603 for accommodating the third electrode 301 of the electrochromic module 30, which may specifically expose the resin-retained layer 602 of the right-side region through the mask 90 and after exposure
  • the resin retention layer 602 is developed to obtain a recess 603 corresponding to the transparent region 901 of the mask, and the lower surface of the recess 603 may be flush with the upper surface of the piezoelectric layer 203.
  • an electrode layer such as an ITO electrode layer is prepared on the surface of the entire substrate, wherein the electrode formed corresponding to the left side region is the second electrode 202, and the electrode formed corresponding to the right side region is the third electrode 301.
  • a first attaching layer 40 such as a hydrogel is formed over the second electrode 202, thereby completing the preparation of the piezoelectric module 20.
  • the hydrogel can be obtained by physical crosslinking using ACC nanoparticles, PAA and sodium alginate.
  • ACC has the properties of variability, plasticity, controllability, etc.; sodium alginate can form a gel rapidly under mild conditions. Due to the presence of Ca 2+ in ACC, Na + on the G unit can exchange ions with divalent cations.
  • the G units are stacked to form a crosslinked network structure, thereby rapidly forming a hydrogel; and the PAA can form a stable compound with Ca 2+ to make the structure of the hydrogel more stable.
  • step S3 a third electrode 301, an electrochromic layer 303, an ion transport layer 304, and a fourth electrode 302 are sequentially formed over the resin retention layer 602.
  • the third electrode 301 may be, for example, a plurality of ITO electrode blocks
  • the fourth electrode 302 may be, for example, an ITO plate electrode or a plurality of electrically connected ITO block electrodes
  • the electrochromic layer 303 may be, for example, a third electrode 301.
  • a plurality of electrode blocks corresponding to the tungsten trioxide pattern layer, and a current amplifying circuit may be formed in the tungsten trioxide pattern layer
  • the ion transport layer 304 may be, for example, a whole layer ion transport layer 304 containing lithium ion Li + or a plurality of Separate ion transport layer unit.
  • a protective layer 305 such as a PDMS resin layer may also be formed over the fourth electrode 302 in consideration of the protection of the electrode.
  • the third electrode 301 and the second electrode 202 can be simultaneously formed, and the forming process thereof has been described in detail in the previous step, the forming process of the third electrode 301 in this step is not described again.
  • the third electrode 301 may not be formed simultaneously with the second electrode 202.
  • the second electrode 202 is formed in the previous step, and the third electrode 302 is formed in this step.
  • this step may sequentially form an electrochromic layer 303 such as a tungsten trioxide pattern layer, an ion transport layer 304, for example, a lithium ion Li + + full layer ion transport over the third electrode 301, such as an ITO electrode.
  • the layer 304, the fourth electrode 302 such as an ITO electrode, and a protective layer 305 such as a PDMS resin layer complete the preparation of the electrochromic module 30.
  • a current amplifying circuit may be formed inside the electrochromic layer 303 such as the tungsten trioxide pattern layer for amplifying the minute current to drive the electrochromic layer 303 to perform effective light emission. It should be noted that the technology of the current amplifying circuit has been relatively mature, and will not be described here.
  • step S4 the flexible substrate layer is peeled off from the interface of the glass substrate 01 and the flexible substrate layer, that is, the flexible substrate 10, and the second attachment layer 50 is formed on the other side of the flexible substrate layer.
  • the second attaching layer 50 may be, for example, a hydrogel, and the hydrogel used in the hydrogel and the first attaching layer 40 may have the same composition, which can pass through ACC nanoparticles, PAA and sodium alginate. Made by physical cross-linking.
  • this step may use a laser lift-off technique to peel the glass substrate 01 from the flexible substrate 10, and then form a second adhesion layer 50 such as a hydrogel under the flexible substrate 10 to complete the pressure. Preparation of a visualization device.
  • the pressure visualization device obtained by the above method can attach the hydrogel on either side to the surface of the detection object, and the piezoelectric module 20 generates a current due to the piezoelectric effect as the surface pressure of the detection object changes. The greater the pressure, the greater the current.
  • the current is transmitted to the electrochromic module 30 to excite the electrochromic layer 303 to emit light according to the position of the current, and to record the path or pattern of pressure generated at the piezoelectric layer 203.
  • the piezoelectric module 20 can only generate a weak current, and the current amplifying circuit disposed in the electrochromic layer 303 enlarges the weak current, and the amplified The current is sufficient to excite the electrochromic layer 303 to illuminate, thereby recording a path or pattern of pressure at the piezoelectric layer 203.
  • the method for preparing the pressure visualization device can be adjusted according to actual conditions, but it should be within the protection scope of the present invention as long as the pressure visualization device provided by the exemplary embodiment can be formed.
  • the present example embodiment also provides a detection device including the above-described pressure visualization device, which may be a medical detection device such as a sphygmomanometer or an electrocardiograph.
  • the detection device can also be applied to other fields than the medical field, which is not specifically limited in this embodiment.
  • the detecting device considering the portability of the detecting device, based on the structure of the pressure visualization device, it can be set as a wearable device by adding a corresponding wearing connector, thereby facilitating medical devices such as an electrocardiograph. Ready to use.
  • modules or units of equipment for action execution are mentioned in the detailed description above, such division is not mandatory. Indeed, in accordance with embodiments of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one of the modules or units described above may be further divided into multiple modules or units.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physiology (AREA)
  • Ceramic Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本公开提供一种压力可视化装置及制备方法、检测设备,涉及检测技术领域。该压力可视化装置包括柔性衬底,位于柔性衬底的一表面上且相邻设置的压电模块和电致变色模块,位于压电模块背离柔性衬底一面的第一贴附层,以及位于柔性衬底另一表面上的第二贴附层;压电模块包括多个压电单元,压电单元包括第一电极、第二电极、位于第一电极和第二电极之间的压电层;电致变色模块包括多个电致变色单元,电致变色单元包括第三电极、第四电极、位于第三电极和第四电极之间的电致变色层;其中,第二电极与第三电极之间电连接,第四电极为透明电极。本公开的压力可视化装置小巧便携、且能即时显示压力信号曲线。

Description

压力可视化装置及其制备方法、检测设备
相关申请的交叉引用
本申请要求于2018年03月23日递交的中国专利申请第201810247405.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及检测技术领域,尤其涉及一种压力可视化装置及其制备方法、检测设备。
背景技术
传统的压力检测系统主要包括压力传感器和显示器。在检测过程中,需要先将压力传感器检测到的信号实时记录,然后根据记录的信号绘制压力曲线,最后再通过显示器将绘制的压力曲线显示出来,以此来反映压力变化过程。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种压力可视化装置及其制备方法、检测设备。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供一种压力可视化装置,包括柔性衬底,位于所述柔性衬底的一表面上的压电模块和电致变色模块;
所述压电模块包括多个压电单元,所述压电单元包括靠近所述柔性衬底的第一电极、远离所述柔性衬底的第二电极、以及位于所述第一电极和所述第二电极之间的压电层;
所述电致变色模块包括多个电致变色单元,所述电致变色单元 包括靠近所述柔性衬底的第三电极、远离所述柔性衬底的第四电极、以及位于所述第三电极和所述第四电极之间的电致变色层;
其中,所述第二电极与所述第三电极之间电连接,所述第四电极为透明电极。
本公开的一种示例性实施例中,所述压电模块在所述柔性衬底上的占用面积与所述电致变色模块在所述柔性衬底上的占用面积的总和等于所述柔性衬底的表面面积。
本公开的一种示例性实施例中,所述第一贴附层和所述第二贴附层的材质均包括水凝胶。
本公开的一种示例性实施例中,压力可视化装置还包括,位于所述压电模块背离所述柔性衬底一面的第一贴附层,以及位于所述柔性衬底的另一表面上的第二贴附层,所述水凝胶由无定形碳酸钙纳米粒子、聚丙烯酸、以及海藻酸钠通过物理交联而得。
本公开的一种示例性实施例中,所述第二电极与所述第三电极同层设置且具有相同的材质。
本公开的一种示例性实施例中,所述压力可视化装置还包括位于所述电致变色模块背离所述柔性衬底一侧的保护层。
本公开的一种示例性实施例中,所述保护层包括透明树脂层,所述透明树脂层的材料包括聚二甲基硅氧烷。
本公开的一种示例性实施例中,所述压电模块还包括位于所述第一电极与所述压电层之间的导电层,所述压电层包括氧化锌纳米线。
本公开的一种示例性实施例中,所述电致变色层包括三氧化钨图案层,所述三氧化钨图案层中设有电流放大电路。
根据本公开的一个方面,提供一种压力可视化装置的制备方法,包括:
在玻璃基板的上方依次形成柔性衬底层、第一电极、以及树脂层,并对所述树脂层进行图案化处理,以得到位于第一区域的槽孔和位于第二区域的树脂保留层,所述第一区域和所述第二区域相邻设置;
在所述槽孔中依次形成压电层和第二电极;
在所述树脂保留层的上方依次形成第三电极、电致变色层、以及第四电极;所述第三电极与所述第二电极电性连接,所述第四电极为透明电极;
自所述玻璃基板与所述柔性衬底层的界面处剥离所述柔性衬底层;
其中,所述第一区域用于设置压电模块,所述压电模块包括多个由所述第一电极、所述第二电极、以及所述压电层构成的压电单元;所述第二区域用于设置电致变色模块,所述电致变色模块包括多个由所述第三电极、所述第四电极、所述电致变色层构成的电致变色单元。
本公开的一种示例性实施例中,所述第一区域的面积与所述第二区域的面积的总和等于所述柔性衬底层的表面面积。
本公开的一种示例性实施例中,所述方法还包括:
在所述槽孔中依次形成压电层和第二电极之后,在所述第二电极的上方形成第一贴附层;以及
自所述玻璃基板与所述柔性衬底层的界面处剥离所述柔性衬底层之后,在所述柔性衬底层的剥离面上形成第二贴附层,
其中所述第一贴附层和所述第二贴附层的材质均包括水凝胶。
本公开的一种示例性实施例中,所述水凝胶由无定形碳酸钙纳米粒子、聚丙烯酸、以及海藻酸钠通过物理交联而得。
本公开的一种示例性实施例中,所述第二电极与所述第三电极通过对同一膜层进行同一次构图工艺制备而得;
在形成所述第二电极和所述第三电极之前,所述制备方法还包括:
对所述树脂保留层进行图案化处理,以得到用于形成所述第三电极的凹槽。
本公开的一种示例性实施例中,所述制备方法还包括:在所述第四电极的上方形成保护层。
本公开的一种示例性实施例中,所述保护层包括透明树脂层,所述透明树脂层的材料包括聚二甲基硅氧烷。
本公开的一种示例性实施例中,所述压电模块还包括形成在所述第一电极与所述压电层之间的导电层,所述压电层包括氧化锌纳米线。
本公开的一种示例性实施例中,所述电致变色层包括三氧化钨图案层,所述三氧化钨图案层中还形成有电流放大电路。
根据本公开的一个方面,提供一种检测设备,包括上述的压力可视化装置。
本公开的一种示例性实施例中,所述检测设备包括血压计和心电监测仪。
本公开的一种示例性实施例中,所述检测设备为可穿戴设备。
本公开示例性实施方式所提供的压力可视化装置及其制备方法、检测设备,可将压电模块感应到的压力信号转换为电信号,再在该电信号的控制下激发电致变色模块发光变色,其不仅可以实现对压力的检测,还能将检测到的压力即时进行可视化显示。由此可知,该压力可视化装置无需外接显示设备便可即时显示压力信号曲线,从而实现压力信号的可视化。此外,由于压电模块和电致变色模块集成设置在柔性衬底之上,因此该压力可视化装置还具有小巧便携的优点。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。本节提供本公开中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出本公开示例性实施例中压力可视化装置的结构示意图;
图2示意性示出本公开示例性实施例中压力可视化装置的一种使用状态示意图;
图3示意性示出本公开示例性实施例中压力可视化装置的另一种使用状态示意图;
图4示意性示出本公开示例性实施例中水凝胶压力传感器的电容-压力响应曲线;
图5示意性示出本公开示例性实施例中水凝胶压力传感器的电容-压力循环曲线;
图6示意性示出本公开示例性实施例中水凝胶压力传感器检测水滴下落的实时电容响应曲线;
图7示意性示出本公开示例性实施例中三氧化钨电致变色层303的电致变色模块30的多项性能曲线;
图8示意性示出本公开示例性实施例中压电单元的分布效果图以及不同压力作用下电致变色模块显示的图案印记图;
图9示意性示出本公开示例性实施例中图案印记的增强比例与外加压力的线性关系示意图;
图10示意性示出本公开示例性实施例中压力可视化装置的制备方法流程图;
图11至图14示意性示出本公开示例性实施例中压力可视化装置的制备过程示意图;
图15至图18示意性示出本公开示例性实施例中压力可视化装置的制备过程细节示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。 图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
本示例实施方式提供了一种压力可视化装置,可用于进行医疗检测领域例如心电监测或者血压监测等。如图1所示,所述压力可视化装置可以包括柔性衬底10,位于柔性衬底10的一表面上且相邻设置的压电模块20和电致变色模块30,位于压电模块20背离柔性衬底10一面的第一贴附层40,以及位于柔性衬底10的另一表面上的第二贴附层50。其中,第一贴附层40和第二贴附层50均可贴附在测试对象的表面,以用于感应测试对象表面的压力变化。
所述压电模块20可以包括多个压电单元200,每个压电单元200均可以包括靠近柔性衬底10一侧的第一电极201、远离柔性衬底10一侧的第二电极202、以及位于第一电极201和第二电极202之间的压电层203。其中,第一电极201可以平铺在整个柔性衬底10的表面、或者仅设置在压电模块20对应的区域,第二电极202可以包括多个独立的电极块,而压电层203可以相应的包括多个独立的压电层单元,则第一电极201、第二电极202的多个电极块、以及压电层203的多个压电层单元便可形成压电模块20的多个压电单元200。
所述电致变色模块30可以包括多个电致变色单元300,每个电致变色单元300均可以包括靠近柔性衬底10一侧的第三电极301、远离柔性衬底10一侧的第四电极302、以及位于第三电极301和第四电极302之间的电致变色层303和离子传输层304。其中,第三电极301可以包括多个独立的电极块,第四电极302可以为透明板状电极、或者包括多个电连接的透明块状电极,而电致变色层303和离子传输层304可以相应的分别包括多个独立的电致变色层单元和多个独立的离子传输层单元,则第三电极301的多个电极块、第四电极302、电致变色层303的多个电致变色层单元、以及离子传输层304的多个离子传输层单元便可形成电致变色模块30的多个电致变色单 元300。应当理解的是,电致变色层303和离子传输层304可以构成根据本实施例的电致变色单元,然而本公开并不限于此,其它电致变色单元,例如省略了离子传输层或基于其它原理或结构的电致变色单元也可以被应用于本公开。
需要说明的是:第二电极202与第三电极301之间应当保持电连接,以便于将压电模块20中产生的电信号传输至电致变色模块30。
本公开示例性实施方式所提供的压力可视化装置,可将压电模块20感应到的压力信号转换为电信号,再在该电信号的控制下激发电致变色模块30发光变色,其不仅可以实现对压力的检测,还能将检测到的压力即时进行可视化显示。由此可知,该压力可视化装置无需外接显示设备便可即时显示压力信号曲线,从而实现压力信号的可视化。此外,由于压电模块20和电致变色模块30集成设置在柔性衬底10之上,因此该压力可视化装置还具有小巧便携的优点。
本示例实施方式中,所述压电模块20在柔性衬底10上的占用面积与所述电致变色模块30在柔性衬底10上的占用面积的总和可以等于柔性衬底10的表面面积,且压电模块20的面积与电致变色模块30的面积例如可以完全相等。
基于上述结构,考虑到制备工艺的简化,第二电极202和第三电极301可以同层设置且具有相同的材质,例如第二电极202和第三电极301可以通过对同一层导电薄膜进行图案化处理而得。其中,第一电极201、第二电极202、第三电极301和第四电极302均可以为透明电极例如氧化铟锡(Indium Tin Oxide,ITO),但不以此为限,本实施例仅需保证第四电极302为透明电极,以便于显示变色现象即可,至于其它电极的具体材质不作强制限定。在此基础上,由于第二电极202和第三电极301位于同一层,则电致变色模块30的底面会高于压电模块20的顶面,因此本实施例还可在柔性衬底10与电致变色模块30之间设置树脂层60,以用于调整其间的空隙。
本示例实施方式中,第一贴附层40和第二贴附层50均可用作贴附面以检测测试对象表面的压力变化,因此二者均应具有良好的粘弹性质以及较高的灵敏度,从而适合作为压电模块20的感应面。
可选的,在第一贴附层40作为贴附面时,如图2所示,该压力可视化装置可以沿压电模块20与电致变色模块30的分界线处折叠,以通过第二贴附层50将折叠后的柔性衬底10粘贴在一起,再将第一贴附层40贴附在测试对象的表面以用于感应测试对象表面的压力变化,并将感应到的压力传递至压电模块20,进一步通过电致变色模块30呈现出来。
可选的,在第二贴附层50作为贴附面时,如图3所示,该压力可视化装置可以直接将第二贴附层50贴附在测试对象的表面以用于感应测试对象表面的压力变化,并将感应到的压力传递至压电模块20,进一步通过电致变色模块30呈现出来。
由此可知,该压力可视化装置具有图2和图3所示的两种使用状态,其可用于医疗检测例如心电监测,只要将该压力可视化装置贴附至检测对象的心脏处,随着检测对象的心脏跳动便会立即出现心跳信号曲线,以便于实时观测检测对象的心跳规律。需要说明的是:该压力可视化装置在工作时仅需连接电源例如-6V左右的锂电池即可作为保证其正常工作的基本工作电压。
应当理解的是,本公开不限于此,在某些特定的实施例中,第一贴附层40和第二贴附层50中的一个或多个也可以被省略或者使用其它的贴附或固定装置来代替第一贴附层40和/或第二贴附层50。
在此基础上,考虑到该压力可视化装置的可折叠性能,其柔性衬底10可以采用聚酰亚胺(Polyimide,PI)、聚碳酸酯(Polycarbonate,PC)、聚乙烯(Polyethylene,PE)、以及聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)等柔性材料制备而得,且压电模块20所占区域的长度优选不超过柔性衬底10总长度的一半,以便于将压电模块20折叠至电致变色模块30的背面。这样一来,该压力可视化装置在折叠使用时不仅具有更小的体积,而且第一贴附层40直接接触压电模块20,相比于第二贴附层50与压电模块20之间还隔有柔性衬底10,其还具有更高的灵敏度。
更进一步的,第一贴附层40和第二贴附层50的材质均可以采用水凝胶。具体而言,本实施例可以利用无定形碳酸钙(Amorphous  Calcium Carbonate,ACC)纳米粒子、聚丙烯酸(Polyacrylic Acid,PAA)和海藻酸钠通过物理交联而形成水凝胶。其中,ACC具有可变性、可塑性、可控性等性能;海藻酸钠可在温和条件下快速形成凝胶,由于ACC中存在Ca 2+,G单元上的Na +可与二价阳离子发生离子交换反应,G单元堆积形成交联网络结构,从而快速形成水凝胶;而PAA能与Ca 2+形成稳定的化合物,以使水凝胶的结构更加稳定。
基于此,本实施例制备的水凝胶一方面具有独特的粘弹性质,可将折叠后的两部分粘贴在一起,另一方面具有良好的力学适应性能(包括柔性、可拉伸、易加工、完全自主修复)和较高的灵敏度,以及对非线性曲面和动态曲面的高度匹配和贴合效果,其可感知外界微小的压力变化例如人体运动或水滴下落,再一方面还对皮肤的影响较小,因此适于直接贴附在皮肤表面使用。其中,图4示出了水凝胶压力传感器在0~1kPa压力范围内的电容-压力响应曲线,图5示出了水凝胶压力传感器的电容-压力循环曲线,图6示出了水凝胶压力传感器检测水滴下落的实时电容响应曲线。由此可知,该水凝胶压力传感器即以水凝胶为感应面的压电模块20具有较高的灵敏度以及良好的修复性能。
本示例实施方式中,所述压电模块20的压电单元200至少可由第一电极201、第二电极202、以及压电层203构成。为了提升压电模块20的导电性能,在第一电极201与压电层203之间还可以设置导电层204例如金导电层,且该导电层204可以包括多个独立的导电块,而该多个导电块可与压电层203的多个压电层单元一一对应设置。其中,压电层203可以包括由氧化锌纳米线、石墨烯或碳纳米管等压电材料构成的膜层,其中氧化锌纳米线具有优良的电导传输效率、透光性、以及抑菌性。
本示例实施方式中,所述电致变色模块30的电致变色单元300至少可由第三电极301、第四电极302、电致变色层303、以及离子传输层304构成。为了保护电致变色模块30的表面不受损伤,还可在第四电极302背离柔性衬底10的一侧设置保护层305例如透明树脂层,其具体可以采用聚二甲基硅氧烷(Polydimethylsiloxane,PDMS) 等树脂材料,且为了不影响压电感应效果,该保护层305仅覆盖电致变色模块30所在的区域。其中,电致变色层303可以包括由三氧化钨、聚苯胺及其衍生物等电致变色材料构成的图案层,其中三氧化钨的电致发光特性能够表现出很好的循环稳定性,例如经过300次循环后仍能保持超过85%的颜色对比度。在电致变色层303中还可以内置电流放大电路,以用于对微小电流进行放大,从而驱动电致变色层303进行有效的发光。需要说明的是:电流放大电路的技术已经相对成熟,因此这里不再赘述。
图7示出了采用三氧化钨电致变色层303的电致变色模块30的多项性能曲线。其中:图a为三氧化钨薄片的循环伏安曲线,其示出了在20、50和100mV/s的扫描速率下电压在-0.5~0.8V的循环伏安曲线;图b为在-2V和+2V的偏置电压下电致变色部分着色和去着色过程的紫外可见光谱图;图c为在632.8nm波长下测量的色彩转换行为,其中的插图是单个转换周期的放大图;图d为在超过300次循环后的循环稳定性示意图;图e为在632.8nm波长下的光学密度和载流子密度的测试图,其着色效率为27.94cm 2/C;图f为在632.8nm波长下通过透射率进行的电致变色保色能力测试效果图。
本公开示例性实施方式所提供的压力可视化装置,通过将压电模块20的每个压电单元200与电致发光模块30的电致发光单元300对应相连,在使用时可将任一侧水凝胶贴附至检测对象的表面,随着检测对象的表面压力变化,压电模块20中就会因压电效应而产生电流,且压力越大电流就越大,该电流传输至电致变色模块30就会激发电致变色层303根据电流的位置进行发光变色,并对压电层203处产生压力的路径或图案进行记录。其中,如果检测对象产生的压力较小,压电模块20仅能产生微弱的电流,此时设置在电致变色层303内的电流放大电路就会对该部分微弱的电流进行放大,放大后的电流足以激发电致变色层303进行发光变色,从而对压电层203处产生压力的路径或图案进行记录。示例的,当对压电模块20的表面施加局部压力例如一五边形压力时,其可在压电模块20的边缘产生压电极化电荷,从而导致体系中电流的运输,最后通过电致变色模块30的 颜色变化而表现出来。图8示出了压电模块20中压电单元200的分布效果图以及不同压力作用下电致变色模块30显示出的图案印记,例如一五边形物体产生的压力经过电流放大作用之后显示出的图案印记。图9示出了图案印记的增强比例与外加压力的线性关系示意图,例如外加压力从0增加到120.20Mpa时该五边形图案印记从0增加到900%的线性图。应当理解的是,图9的线性关系仅仅是一个示例,在实际应用中,根据具体采用的结构和/或材料,图案印记的增强比例与外加压力之间也可以满足其他函数关系。
本示例实施方式还提供了一种压力可视化装置的制备方法,可用于制备上述的压力可视化装置。如图10所示,该压力可视化装置的制备方法可以包括:
S1、如图11所示,在玻璃基板01上方依次形成柔性衬底层即柔性衬底10、第一电极201、以及树脂层60,并对树脂层进行图案化处理,以得到位于第一区域10a的槽孔601和位于第二区域10b的树脂保留层602;
其中,第一区域10a和第二区域10b相邻设置,第一电极201可以平铺在整个柔性衬底10的表面、或者仅设置在第一区域10a。
S2、如图12所示,在槽孔601中依次形成压电层203和第二电极202,并在第二电极202的上方形成第一贴附层40;
其中,第二电极202可以包括多个独立的电极块,压电层203可以包括与第二电极202的多个电极块相对应的多个独立的压电层单元。
S3、如图13所示,在树脂保留层602的上方依次形成第三电极301、电致变色层303、离子传输层304、以及第四电极302;
其中,第二电极202与第三电极301之间电连接,第三电极301可以包括多个独立的电极块,第四电极302可以为透明板状电极、或者包括多个电连接的透明块状电极,电致变色层303可以包括与第三电极301的多个电极块相对应的多个独立的电致变色层单元,离子传输层304可以包括整层离子传输层、或者包括多个独立的离子传输层单元。
S4、如图14所示,自玻璃基板01与柔性衬底层即柔性衬底10的界面处剥离柔性衬底层,并在柔性衬底层的剥离面即原先设有玻璃基板01的表面上形成第二贴附层50;
其中,第一贴附层40和第二贴附层50均可贴附在测试对象的表面,以用于感应测试对象表面的压力变化。
基于此,所述第一区域10a可用于设置压电模块20,该压电模块20可以包括多个由第一电极201、第二电极202、以及二者之间的压电层203构成的压电单元200,所述第二区域10b可用于设置电致变色模块30,该电致变色模块30可以包括多个由第三电极301、第四电极302、以及二者之间的电致变色层303和离子传输层304构成的电致变色单元300。
本公开示例性实施方式所提供的压力可视化装置的制备方法,通过在柔性衬底10的一侧形成压电模块20和电致变色模块30,以及位于压电模块20外侧的第一贴附层40,并在柔性衬底10的另一侧形成第二贴附层50,同时保持压电模块20和电致变色模块30之间的电性连接,这样即可将压电模块20感应到的压力信号转换为电信号,再在该电信号的控制下激发电致变色模块30发光变色,其不仅可以实现对压力的检测,还能将检测到的压力即时进行可视化显示。这样一来,由此制得的压力可视化装置无需外接显示设备便可即时显示压力信号曲线,从而实现压力信号的可视化。此外,由于压电模块20和电致变色模块30集成设置在柔性衬底10之上,因此该压力可视化装置还具有小巧便携的优点。
本示例实施方式中,所述压电模块20在柔性衬底10上的占用面积即第一区域10a的面积与所述电致变色模块30在柔性衬底10上的占用面积即第二区域10b的面积的总和可以等于柔性衬底10的表面面积,且第一区域10a的面积与第二区域10b的面积例如可以完全相等。
下面结合附图对本示例实施方式提供的压力可视化装置的制备方法进行具体的描述。
在步骤S1中,在玻璃基板01上方依次形成柔性衬底层即柔性 衬底10、第一电极201、以及树脂层60,并对树脂层进行图案化处理,以得到位于第一区域10a的槽孔601和位于第二区域10b的树脂保留层602。
其中,柔性衬底层例如可以采用聚酰亚胺(Polyimide,PI)、聚碳酸酯(Polycarbonate,PC)、聚乙烯(Polyethylene,PE)、以及聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)等材料,第一电极201例如可以为ITO电极,树脂层60例如可以采用SU-8负性光刻胶,其可适用于制备深宽比较高的微结构。
示例的,如图15所示,本步骤可在玻璃基板01上方依次形成柔性衬底层例如PI层和第一电极201例如ITO层,然后采用涂覆工艺在第一电极201上方形成一层树脂层60例如SU-8负性光刻胶,并在树脂层60的一侧例如左侧区域制备用于容纳压电模块20的槽孔601,该左侧区域的实际面积可根据不同需求而定,其长度优选不超出柔性衬底10总长度的一半,以便于折叠使用。其中,所述槽孔601的形成过程可以通过掩模板90对树脂层60进行曝光并对曝光后的树脂层60显影,从而得到对应掩模板透光区域901的槽孔601以及对应掩模板非透光区域902的树脂保留层602,且该槽孔601穿透树脂层60,其深度应当足以制备后续的压电层203和第二电极202等图案层。
在步骤S2中,在槽孔601中依次形成压电层203和第二电极202,并在第二电极202的上方形成第一贴附层40。
其中,压电层203例如可以采用氧化锌纳米线形成的薄膜,第二电极202例如可以为多个ITO电极块,第一贴附层40例如可以采用水凝胶。在形成压电层203之前,还可以在槽孔601中的第一电极201上方形成导电层204例如金导电层,且该导电层204可以包括与第二电极202的多个电极块相对应的多个独立的导电块。
需要说明的是:第二电极202与第三电极301之间需要电连接,且二者可以采用相同的材料,因此第二电极202和第三电极301可以分别制备,也可以同时制备。考虑到制备工艺的简化,本实施例优选通过一次构图工艺同时形成第二电极202与第三电极301。
示例的,如图16所示,本步骤可在槽孔601露出的第一电极201上方依次形成导电层204例如金导电层和压电层203例如氧化锌纳米线膜层,然后在树脂层60的另一侧例如右侧区域制备用于容纳电致变色模块30的第三电极301的凹槽603,其具体可以通过掩模板90对右侧区域的树脂保留层602进行曝光并对曝光后的树脂保留层602显影,从而得到对应掩模板透光区域901的凹槽603,该凹槽603的下表面可与压电层203的上表面齐平。在此基础上,在整个基板的表面制备电极层例如ITO电极层,其中对应左侧区域形成的电极为第二电极202、对应右侧区域形成的电极为第三电极301。最后再在第二电极202的上方形成第一贴附层40例如水凝胶,从而完成压电模块20的制备。
其中,水凝胶可以利用ACC纳米粒子、PAA和海藻酸钠通过物理交联而制得。其中,ACC具有可变性、可塑性、可控性等性能;海藻酸钠可在温和条件下快速形成凝胶,由于ACC中存在Ca 2+,G单元上的Na +可与二价阳离子发生离子交换反应,G单元堆积形成交联网络结构,从而快速形成水凝胶;而PAA能与Ca 2+形成稳定的化合物,以使水凝胶的结构更加稳定。需要说明的是:关于水凝胶作为贴附层材料的优势以在上文中进行了详细的说明,因此这里不再赘述。
在步骤S3中,在树脂保留层602的上方依次形成第三电极301、电致变色层303、离子传输层304、以及第四电极302。
其中,第三电极301例如可以为多个ITO电极块,第四电极302例如可以为ITO板状电极或者多个电连接的ITO块状电极,电致变色层303例如可以为与第三电极301的多个电极块相对应的三氧化钨图案层,且三氧化钨图案层中还可以形成电流放大电路,离子传输层304例如可以为包含锂离子Li +的整层离子传输层304或者多个独立的离子传输层单元。考虑到电极的防护,在第四电极302的上方还可以形成保护层305例如PDMS树脂层。
需要说明的是:由于第三电极301与第二电极202可以同时形成,且其形成过程已经在上一步骤中进行了详细的描述,因此本步骤 对于第三电极301的形成过程不再赘述。当然,第三电极301也可以不与第二电极202同时形成,例如上一步骤仅形成第二电极202,本步骤再形成第三电极302。
示例的,如图17所示,本步骤可在第三电极301例如ITO电极上方依次形成电致变色层303例如三氧化钨图案层、离子传输层304例如包括锂离子Li +的整层离子传输层304、第四电极302例如ITO电极、以及保护层305例如PDMS树脂层,从而完成电致变色模块30的制备。其中,在电致变色层303例如三氧化钨图案层的内部还可以形成电流放大电路,以用于对微小电流进行放大,从而驱动电致变色层303进行有效的发光。需要说明的是:电流放大电路的技术已经相对成熟,这里不再赘述。
在步骤S4中,自玻璃基板01与柔性衬底层即柔性衬底10的界面处剥离柔性衬底层,并在柔性衬底层的另一侧形成第二贴附层50。
其中,第二贴附层50例如可以为水凝胶,该水凝胶与第一贴附层40采用的水凝胶可以具有相同的成分,其可以利用ACC纳米粒子、PAA和海藻酸钠通过物理交联而制得。
示例的,如图18所示,本步骤可采用激光剥离技术将玻璃基板01与柔性衬底10相剥离,然后在柔性衬底10下方形成第二贴附层50例如水凝胶,从而完成压力可视化装置的制备。
基于上述方法制得的压力可视化装置,可将任一侧水凝胶贴附至检测对象的表面,随着检测对象的表面压力变化,压电模块20中就会因压电效应而产生电流,且压力越大电流就越大,该电流传输至电致变色模块30就会激发电致变色层303根据电流的位置进行发光,并对压电层203处产生压力的路径或图案进行记录。其中,如果检测对象产生的压力较小,压电模块20仅能产生微弱的电流,此时设置在电致变色层303内的电流放大电路就会对该部分微弱的电流进行放大,放大后的电流足以激发电致变色层303进行发光,从而对压电层203处产生压力的路径或图案进行记录。
需要说明的是:所述压力可视化装置的制备方法可根据实际情况进行相应的调整,但只要能形成本示例实施方式所提供的压力可视 化装置,均应在本发明的保护范围之内。
本示例实施方式还提供了一种包括上述压力可视化装置的检测设备,该检测设备可以为医疗检测设备,例如血压计或者心电监测仪。当然,该检测设备还可以应用于除医疗领域之外的其它领域,本实施例对此不作具体限定。在此基础上,考虑到该检测设备的便携性,基于所述压力可视化装置的结构,通过增加相应的穿戴连接件便可将其设置为可穿戴设备,从而方便例如心电监测仪等医疗设备的随时使用。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。

Claims (21)

  1. 一种压力可视化装置,包括柔性衬底,位于所述柔性衬底的一表面上的压电模块和电致变色模块;
    所述压电模块包括多个压电单元,所述压电单元包括靠近所述柔性衬底的第一电极、远离所述柔性衬底的第二电极、以及位于所述第一电极和所述第二电极之间的压电层;
    所述电致变色模块包括多个电致变色单元,所述电致变色单元包括靠近所述柔性衬底的第三电极、远离所述柔性衬底的第四电极、以及位于所述第三电极和所述第四电极之间的电致变色层;
    其中,所述第二电极与所述第三电极之间电连接,所述第四电极为透明电极。
  2. 根据权利要求1所述的压力可视化装置,其中,所述压电模块在所述柔性衬底上的占用面积与所述电致变色模块在所述柔性衬底上的占用面积的总和等于所述柔性衬底的表面面积。
  3. 根据权利要求1所述的压力可视化装置,还包括,位于所述压电模块背离所述柔性衬底一面的第一贴附层,以及位于所述柔性衬底的另一表面上的第二贴附层,所述第一贴附层和所述第二贴附层的材质均包括水凝胶。
  4. 根据权利要求3所述的压力可视化装置,其中,所述水凝胶由无定形碳酸钙纳米粒子、聚丙烯酸、以及海藻酸钠通过物理交联而得。
  5. 根据权利要求1所述的压力可视化装置,其中,所述第二电极与所述第三电极同层设置且具有相同的材质。
  6. 根据权利要求1所述的压力可视化装置,其中,还包括位于所述电致变色模块背离所述柔性衬底一侧的保护层。
  7. 根据权利要求6所述的压力可视化装置,其中,所述保护层包括透明树脂层,所述透明树脂层的材料包括聚二甲基硅氧烷。
  8. 根据权利要求1-7任一项所述的压力可视化装置,其中,所述压电模块还包括位于所述第一电极与所述压电层之间的导电层,所述压电层包括氧化锌纳米线。
  9. 根据权利要求1-7任一项所述的压力可视化装置,其中,所述电致变色层包括三氧化钨图案层,所述三氧化钨图案层中设有电流放大电路。
  10. 一种压力可视化装置的制备方法,包括:
    在玻璃基板的上方依次形成柔性衬底层、第一电极、以及树脂层,并对所述树脂层进行图案化处理,以得到位于第一区域的槽孔和位于第二区域的树脂保留层,所述第一区域和所述第二区域相邻设置;
    在所述槽孔中依次形成压电层和第二电极;
    在所述树脂保留层的上方依次形成第三电极、电致变色层、以及第四电极;所述第三电极与所述第二电极电性连接,所述第四电极为透明电极;
    自所述玻璃基板与所述柔性衬底层的界面处剥离所述柔性衬底层;
    其中,所述第一区域用于设置压电模块,所述压电模块包括多个由所述第一电极、所述第二电极、以及所述压电层构成的压电单元;所述第二区域用于设置电致变色模块,所述电致变色模块包括多个由所述第三电极、所述第四电极、所述电致变色层构成的电致变色单元。
  11. 根据权利要求10所述的制备方法,其中,所述第一区域的面积与所述第二区域的面积的总和等于所述柔性衬底层的表面面积。
  12. 根据权利要求10所述的制备方法,还包括:
    在所述槽孔中依次形成压电层和第二电极之后,在所述第二电极的上方形成第一贴附层;以及
    自所述玻璃基板与所述柔性衬底层的界面处剥离所述柔性衬底层之后,在所述柔性衬底层的剥离面上形成第二贴附层,
    其中,所述第一贴附层和所述第二贴附层的材质均包括水凝胶。
  13. 根据权利要求12所述的制备方法,其中,所述水凝胶由无定形碳酸钙纳米粒子、聚丙烯酸、以及海藻酸钠通过物理交联而得。
  14. 根据权利要求10所述的制备方法,其中,所述第二电极与所述第三电极通过对同一膜层进行同一次构图工艺制备而得;
    在形成所述第二电极和所述第三电极之前,所述制备方法还包括:
    对所述树脂保留层进行图案化处理,以得到用于形成所述第三电极的凹槽。
  15. 根据权利要求10所述的制备方法,其中,所述制备方法还包括:
    在所述第四电极的上方形成保护层。
  16. 根据权利要求15所述的制备方法,其中,所述保护层包括透明树脂层,所述透明树脂层的材料包括聚二甲基硅氧烷。
  17. 根据权利要求10-16任一项所述的制备方法,其中,所述压电模块还包括形成在所述第一电极与所述压电层之间的导电层,所述压电层包括氧化锌纳米线。
  18. 根据权利要求10-16任一项所述的制备方法,其中,所述电致变色层包括三氧化钨图案层,所述三氧化钨图案层中还形成有电流放大电路。
  19. 一种检测设备,包括权利要求1-9任一项所述的压力可视化装置。
  20. 根据权利要求19所述的检测设备,其中,所述检测设备包括血压计或者心电监测仪。
  21. 根据权利要求19所述的检测设备,其中,所述检测设备为可穿戴设备。
PCT/CN2018/109851 2018-03-23 2018-10-11 压力可视化装置及其制备方法、检测设备 WO2019179079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,325 US20210356345A1 (en) 2018-03-23 2018-10-11 Pressure visualization device, manufacturing method thereof, and detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810247405.3A CN108534930B (zh) 2018-03-23 2018-03-23 压力可视化装置及其制备方法、检测设备
CN201810247405.3 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019179079A1 true WO2019179079A1 (zh) 2019-09-26

Family

ID=63484652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109851 WO2019179079A1 (zh) 2018-03-23 2018-10-11 压力可视化装置及其制备方法、检测设备

Country Status (3)

Country Link
US (1) US20210356345A1 (zh)
CN (1) CN108534930B (zh)
WO (1) WO2019179079A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047657A (zh) * 2022-06-27 2022-09-13 绵阳惠科光电科技有限公司 显示面板及其制备方法、显示装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534930B (zh) * 2018-03-23 2019-12-10 京东方科技集团股份有限公司 压力可视化装置及其制备方法、检测设备
CN109612610B (zh) * 2018-11-06 2020-11-03 重庆大学 一种基于水凝胶的可变色电子皮肤及其制备方法
CN109520647A (zh) * 2018-11-16 2019-03-26 东南大学 一种通过颜色指示压力的mems压力传感器及其测量方法
CN109283224A (zh) * 2018-11-16 2019-01-29 东南大学 一种mems湿度传感器及其操作方法
CN109282923B (zh) * 2018-11-16 2021-01-05 东南大学 一种半导体压力传感器及其压力测量方法
CN109764985A (zh) * 2018-12-28 2019-05-17 汕头大学 一种变色柔性电子皮肤及其制备
CN109822625A (zh) * 2019-03-21 2019-05-31 苏州大学 一种机器人手臂柔性安全预警器及其制造方法
CN109945996A (zh) * 2019-03-21 2019-06-28 苏州大学 一种新型机器人电子皮肤及其制备方法
CN110098233A (zh) * 2019-05-06 2019-08-06 京东方科技集团股份有限公司 一种显示装置及其形变检测方法
CN110667687B (zh) * 2019-10-23 2024-03-22 吉林大学 一种带有触觉手势识别功能的人机交互智能方向盘系统
US11783627B2 (en) * 2020-02-10 2023-10-10 Massachusetts Institute Of Technology Methods and apparatus for detecting and classifying facial motions
CN111750975B (zh) * 2020-06-19 2022-03-15 电子科技大学 一种具有压阻效应的柔性振动传感器及其制备方法
US11269440B1 (en) * 2020-08-12 2022-03-08 Universal Cement Corporation Foldable force sensing device
CN112485950A (zh) * 2020-12-14 2021-03-12 昆山微电子技术研究院 一种电致变色器件
CN113029406B (zh) * 2021-03-09 2022-04-15 电子科技大学 一种柔性压力可视化装置及其制备方法
CN113514996B (zh) * 2021-07-23 2022-05-13 中国科学技术大学 电致变色可视化压力传感器及其构建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571639B1 (en) * 1999-03-01 2003-06-03 Luna Innovations, Inc. Fiber optic system
CN101458134A (zh) * 2007-12-10 2009-06-17 精工爱普生株式会社 半导体压力传感器及其制造方法、半导体装置和电子设备
CN105092118A (zh) * 2015-09-25 2015-11-25 东南大学 一种具有高灵敏度的柔性压阻式压力传感器及其制备方法
CN106153223A (zh) * 2015-03-27 2016-11-23 北京纳米能源与系统研究所 应力传感器阵列及其制备方法和应力分布传感系统及传感方法
CN107290084A (zh) * 2017-06-28 2017-10-24 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件
CN108534930A (zh) * 2018-03-23 2018-09-14 京东方科技集团股份有限公司 压力可视化装置及其制备方法、检测设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762077B2 (en) * 2001-05-11 2004-07-13 Melexis Nv Integrated sensor packages and methods of making the same
CN102385208A (zh) * 2010-09-02 2012-03-21 介面光电股份有限公司 电致变色模块及结合该电致变色模块的显示装置
CN101973508B (zh) * 2010-09-17 2012-09-05 上海交通大学 基于柔性衬底mems技术的脑电图干电极阵列及其制备方法
CN102163687A (zh) * 2010-12-10 2011-08-24 清华大学 一种高压电响应氧化锌柔性压力传感器及其制备方法
EP2972573B1 (en) * 2013-03-15 2019-06-19 Ashwin-Ushas Corporation, Inc. Variable-emittance electrochromic devices and methods of preparing the same
CN104181720A (zh) * 2013-05-23 2014-12-03 深圳市亿思达显示科技有限公司 裸眼3d显示器
JP6786858B2 (ja) * 2015-06-19 2020-11-18 株式会社リコー エレクトロクロミック化合物及びエレクトロクロミック組成物
WO2017155295A1 (ko) * 2016-03-08 2017-09-14 주식회사 엘지화학 전기변색 소자
CN107561811A (zh) * 2016-07-01 2018-01-09 中国科学院上海硅酸盐研究所 一种基于三氧化钨/氧化锌的柔性电致变色电极及其制备方法和应用
CN205899213U (zh) * 2016-08-19 2017-01-18 京东方科技集团股份有限公司 一种显示装置
CN106886333B (zh) * 2017-01-13 2020-05-08 业成科技(成都)有限公司 感测装置
CN107450223B (zh) * 2017-08-18 2020-11-03 京东方科技集团股份有限公司 变色单元、显示模组及其制作方法和显示控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571639B1 (en) * 1999-03-01 2003-06-03 Luna Innovations, Inc. Fiber optic system
CN101458134A (zh) * 2007-12-10 2009-06-17 精工爱普生株式会社 半导体压力传感器及其制造方法、半导体装置和电子设备
CN106153223A (zh) * 2015-03-27 2016-11-23 北京纳米能源与系统研究所 应力传感器阵列及其制备方法和应力分布传感系统及传感方法
CN105092118A (zh) * 2015-09-25 2015-11-25 东南大学 一种具有高灵敏度的柔性压阻式压力传感器及其制备方法
CN107290084A (zh) * 2017-06-28 2017-10-24 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件
CN108534930A (zh) * 2018-03-23 2018-09-14 京东方科技集团股份有限公司 压力可视化装置及其制备方法、检测设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047657A (zh) * 2022-06-27 2022-09-13 绵阳惠科光电科技有限公司 显示面板及其制备方法、显示装置
CN115047657B (zh) * 2022-06-27 2023-06-09 绵阳惠科光电科技有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN108534930B (zh) 2019-12-10
CN108534930A (zh) 2018-09-14
US20210356345A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2019179079A1 (zh) 压力可视化装置及其制备方法、检测设备
Xu et al. Skin-interfaced sensors in digital medicine: from materials to applications
Lee et al. Wireless powered wearable micro light-emitting diodes
Lee et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system
CN103411710B (zh) 一种压力传感器、电子皮肤和触屏设备
Bandodkar et al. Wearable chemical sensors: Present challenges and future prospects
Han et al. A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays
Yamamoto et al. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring
Guan et al. Self-powered, wireless-control, neural-stimulating electronic skin for in vivo characterization of synaptic plasticity
Choi et al. Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials
Ma et al. Bimodal tactile sensor without signal fusion for user-interactive applications
Sekine et al. Low operating voltage and highly pressure-sensitive printed sensor for healthcare monitoring with analogic amplifier circuit
Cheong et al. Platform for wireless pressure sensing with built-in battery and instant visualization
CN105136378B (zh) 一种显示基板及显示装置
US8718740B2 (en) Biomedical sensor
Li et al. Ultrathin smart energy-storage devices for skin-interfaced wearable electronics
Tang et al. A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin
CN109974907A (zh) 一体化主动供电柔性压力传感器
US7718950B2 (en) High resolution thin film tactile device to detect distribution of stimuli on by touch
Baek et al. Flexible pressure-sensitive contact transistors operating in the subthreshold regime
CN109827700A (zh) 一种双片式石墨基压阻式柔性压力传感器及其制作工艺
Zhang et al. Challenges in materials and devices of electronic skin
CN110793676A (zh) 温度湿度压力传感器及其制备方法、电子皮肤
Fu et al. Stretchable and self-powered temperature–pressure dual sensing ionic skins based on thermogalvanic hydrogels
Yu et al. Soft human–machine interface sensing displays: materials and devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (22.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18910250

Country of ref document: EP

Kind code of ref document: A1