WO2019179076A1 - 空调器室内机及空调器 - Google Patents

空调器室内机及空调器 Download PDF

Info

Publication number
WO2019179076A1
WO2019179076A1 PCT/CN2018/108965 CN2018108965W WO2019179076A1 WO 2019179076 A1 WO2019179076 A1 WO 2019179076A1 CN 2018108965 W CN2018108965 W CN 2018108965W WO 2019179076 A1 WO2019179076 A1 WO 2019179076A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial flow
wind wheel
air
flow wind
air conditioner
Prior art date
Application number
PCT/CN2018/108965
Other languages
English (en)
French (fr)
Inventor
汪先送
蔡序杰
周向阳
周何杰
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810233515.4A external-priority patent/CN108317613A/zh
Priority claimed from CN201821382190.8U external-priority patent/CN208936310U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2019179076A1 publication Critical patent/WO2019179076A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to an air conditioner indoor unit and an air conditioner.
  • a conventional air conditioner indoor unit is usually provided with a centrifugal fan or a cross flow fan, and the airflow in the indoor unit of the air conditioner is blown out by the rotation of the centrifugal fan or the cross flow fan.
  • the air supply distance of the indoor unit of the air conditioner is short, and when the air is blown away from the indoor unit of the air conditioner, the motor in the indoor unit of the air conditioner needs to drive the centrifugal fan or the cross flow fan at a higher rotation speed. Rotation, thereby causing a large noise of the indoor unit of the air conditioner.
  • the present application provides an air conditioner indoor unit that can reduce noise generated by a fan assembly of an indoor unit of an air conditioner.
  • the present application provides an air conditioner indoor unit, and the air conditioner indoor unit includes:
  • a housing having an opposite front panel and a back panel, the front panel is provided with a first air outlet, the middle portion of the back panel is provided with an air inlet, and the air inlet and the first air outlet are oppositely disposed ;
  • a heat exchanger disposed in the housing and corresponding to a position of the air inlet
  • the fan assembly includes a first drive assembly, a first axial flow wind wheel and a second axial flow wind wheel, the first shaft
  • the flow wind wheel and the second axial flow wind wheel have the same axial direction
  • the first drive assembly is coupled to the first axial flow wind wheel and the second axial flow wind wheel to drive the first shaft
  • the flow wind wheel and the second axial flow wheel rotate, and the first axial flow wind wheel and the second axial flow wind wheel have the same air supply direction.
  • the fan assembly further includes a mounting cylinder having an air inlet end and an air outlet end, the inner wall of the mounting cylinder being provided with a first bracket and a second bracket arranged along an axial direction of the mounting cylinder ;
  • the first driving assembly includes a first motor mounted on the first bracket, and a second motor mounted on the second bracket, the first axial flow wind wheel and a rotating shaft of the first motor Connected, the second axial flow wind wheel is coupled to the rotating shaft of the second motor.
  • first axial flow wind wheel and the second axial flow wind wheel are located between the first motor and the second motor.
  • a bending direction of the first blade of the first axial flow wind wheel is opposite to a bending direction of the second blade of the second axial flow wind wheel, and the first axial flow wind wheel The direction of rotation is opposite to the direction of rotation of the second axial flow wheel.
  • the fan assembly further includes a third axial flow wind wheel, the third axial flow wind wheel is rotatably connected to the installation cylinder, and the third axial flow wind wheel and the first axial flow wind The axis of the wheel is in the same direction;
  • the third axial flow wind wheel, the first axial flow wind wheel and the second axial flow wind wheel are arranged in sequence along a front side to a rear side of the casing, or the first axial flow wind wheel
  • the second axial flow wind wheel and the third axial flow wind wheel are arranged in sequence along a front side to a rear side of the casing.
  • the first driving component includes a third motor
  • an inner wall of the mounting cylinder is provided with a third bracket
  • the third motor is mounted on the third bracket
  • the third axial wind turbine is The rotating shaft of the third motor is connected, and the air blowing direction of the third axial flow wind wheel and the first axial flow wind wheel are the same.
  • the second motor is a two-axis motor, and the second axial flow wind wheel and the third axial flow wind wheel are respectively sleeved on the output shafts at two ends of the second motor; or
  • the first motor is a two-axis motor, and the first axial flow wind wheel and the third axial flow wind wheel are respectively sleeved on the output shafts at two ends of the first motor; or
  • the mounting cylinder has a support portion corresponding to the position of the third axial flow wind wheel, and the third axial flow wind wheel is rotatably connected to the support portion.
  • a first mounting plate is disposed in the housing, and the first mounting plate defines a mounting hole corresponding to the position of the first air outlet, and the fan assembly is installed in the mounting hole.
  • the number of the first air outlets is multiple, the fan assembly is movably connected to the housing, the air conditioner indoor unit includes a second driving component, and the second driving component and the fan Connecting the components and driving the fan assembly to move the fan assembly to correspond to at least one of the plurality of first air outlets; or
  • the number of the first air outlets is plural, and the plurality of first air outlets are arranged along a height direction of the indoor unit of the air conditioner, and at least two of the plurality of first air outlets are first
  • the tuyere is correspondingly provided with the fan assembly.
  • a plurality of the first air outlets are arranged along a height direction of the indoor unit of the air conditioner, and the second driving component drives the fan assembly to move or swing along a height direction of the indoor unit of the air conditioner; and /or,
  • a plurality of the first air outlets are laterally arranged, and the second driving assembly drives the fan assembly to move or swing laterally.
  • the housing is provided with a sealing plate and a third driving component
  • the sealing plate is slidably connected to the housing
  • the third driving component is connected with the sealing plate to drive the sealing plate Moving along the height direction of the indoor unit of the air conditioner, the sealing plate seals one of the plurality of first air outlets.
  • a second air outlet is defined in the housing, and the first air outlet and the second air outlet are arranged at intervals in a height direction of the air conditioner, and the air conditioner indoor unit includes a centrifugal fan.
  • the centrifugal fan is installed in the casing, and the centrifugal fan blows air to the second air outlet.
  • the fan assembly is located above the centrifugal fan.
  • the fan assembly is located below the centrifugal fan.
  • the housing has an upper air duct for mounting the fan assembly, and a lower air duct for the centrifugal fan to be installed; the heat exchanger is installed in the upper air duct, and the fan assembly is located in the exchange The front side of the heater.
  • a projection plane is defined, the projection plane is perpendicular to a rotation axis of the first axial flow wind wheel, and a projection of the heat exchanger on the projection plane is defined as a heat transfer projection, the heat exchange a length direction of the projection is set to a first direction, a width direction of the heat exchange projection is set to a second direction, the heat exchange projection has a first bisector in the first direction, and in the second a second bisector in the direction; a projection defining a rotation axis of the first axial flow wind wheel on the projection plane as a blowing center point; the air supply center point being disposed adjacent to the first bisector line And/or, the air supply center point is disposed adjacent to the second bisector.
  • the housing includes a base having an upper surface facing the lower air duct, the centrifugal fan being mounted on an upper surface of the base; and/or
  • a second mounting plate for mounting the fan assembly is disposed in the housing, a lower end of the second mounting plate extends downward to the lower air duct, and the centrifugal fan is installed at a lower portion of the second mounting plate.
  • the second air outlet is disposed at a lower portion of the front panel.
  • the centrifugal fan is mounted on a lower portion of the backboard; and/or,
  • the housing is provided with a water receiving tray located below the heat exchanger, and the centrifugal fan is mounted on the water receiving tray.
  • the present application also provides an air conditioner including an outdoor unit and an air conditioner indoor unit as described above, the air conditioner indoor unit including:
  • a housing having an opposite front panel and a back panel, the front panel is provided with a first air outlet, the middle portion of the back panel is provided with an air inlet, and the air inlet and the first air outlet are oppositely disposed ;
  • a heat exchanger disposed in the housing and corresponding to a position of the air inlet
  • the fan assembly includes a first drive assembly, a first axial flow wind wheel and a second axial flow wind wheel, the first shaft
  • the flow wind wheel and the second axial flow wind wheel have the same axial direction
  • the first drive assembly is coupled to the first axial flow wind wheel and the second axial flow wind wheel to drive the first shaft
  • the flow wind wheel and the second axial flow wheel rotate, and the first axial flow wind wheel and the second axial flow wind wheel have the same air supply direction.
  • the present application makes the axial direction of the two axial flow winds uniform by making the fan assembly of the indoor unit of the air conditioner include two axial flow wind wheels, and drives the plurality of axial flow wind wheels to rotate through the first drive component to make the plurality of shafts
  • the flow winds blow air in the same direction to reduce the rotational speed of each axial flow wind wheel, thereby reducing the noise generated when the fan assembly is blown.
  • a first air outlet is opened on the front panel, and the air inlet is corresponding to the first air outlet, thereby reducing the airflow direction of the housing.
  • the change the wind speed at the first air outlet is increased, the rotation speed of the plurality of axial flow wind wheels is reduced, and the noise generated by the fan assembly is reduced.
  • FIG. 1 is a schematic structural view of an indoor unit of an air conditioner of the present application
  • Figure 2 is a cross-sectional view of the indoor unit of the air conditioner of Figure 1, taken along the axial direction of the indoor unit of the air conditioner;
  • FIG. 3 is a schematic structural view of an embodiment of a fan assembly of the present application, which is cross-sectional view along the axial direction of the fan assembly;
  • FIG. 4 is a schematic structural view of an embodiment of a first cylinder, a first motor, and a first axial flow wind wheel according to the present application;
  • Figure 5 is a schematic view showing the assembly of the first cylinder, the first motor and the first axial flow wind wheel of Figure 4;
  • FIG. 6 is a schematic structural view of an embodiment of a second cylinder, a second motor, and a second axial flow wind wheel of the present application;
  • Figure 7 is a schematic view showing the assembly of the second cylinder, the second motor and the second axial flow wind wheel of Figure 6;
  • Figure 8 is a schematic structural view of an embodiment of a mounting plate of the present application.
  • Figure 9 is a schematic view showing the assembly of the mounting plate and the fan assembly of the present application.
  • Figure 10 is a schematic structural view of another embodiment of the fan assembly of the present application.
  • FIG. 11 is a schematic structural view of an implementation of a second driving component and a third driving component of the present application.
  • FIG. 12 is a schematic structural view of another embodiment of an indoor unit of an air conditioner according to the present application, wherein an indoor unit of the air conditioner is in a first state;
  • Figure 13 is a cross-sectional view of the indoor unit of the air conditioner of Figure 12, taken along the axial direction of the indoor unit of the air conditioner;
  • Figure 14 is a schematic structural view of the air conditioner indoor unit of Figure 12 in a second state
  • Figure 15 is a cross-sectional view of the indoor unit of the air conditioner of Figure 14, taken along the axial direction of the indoor unit of the air conditioner;
  • 16 is a schematic structural view of still another embodiment of an indoor unit of an air conditioner according to the present application.
  • FIG. 17 to 19 are cross-sectional views of the indoor unit of the air conditioner of Fig. 16, which are cross-sectional view taken along the axial direction of the indoor unit of the air conditioner;
  • FIG. 20 is a schematic structural view of still another embodiment of an indoor unit of an air conditioner according to the present application.
  • Figure 21 is a cross-sectional view taken along line A-A of Figure 20;
  • Figure 22 is a schematic view showing the corresponding arrangement of the fan assembly of Figure 20 and the upper portion of the heat exchanger;
  • Figure 23 is another installation manner of the centrifugal fan of the air conditioner of Figure 20;
  • Figure 24 is a further installation of the centrifugal fan of the air conditioner of Figure 20;
  • Figure 25 is still another installation manner of the centrifugal fan of the air conditioner of Figure 20;
  • Second rack 30 Fan assembly 101 Inlet 32 First axial flow wind wheel 102 First air outlet 33 Second axial flow wind wheel 321 First leaf 34 Mounting cylinder 331 Second leaf 35 Third axial flow wind wheel 311 First motor 36 Support 312 Second motor 37 Installation disk 341 First bracket 38 Motor mount 342 Second bracket 40 First mounting plate 343 First cylinder 41 Mounting holes 344 Second cylinder 100 Air conditioner indoor unit 133b Second motor 100a Air conditioner indoor unit 150a Cross louver 110 case 150b Vertical blind 111 Backplane 160 water tray 112 Front panel 170 Second mounting plate 113 Base 180 Partition plate 120 Centrifugal fan 190 Deflector 130 Fan assembly 101a Inlet 131 Mount 102a First air outlet 132a First axial flow wind wheel 102b Second outlet 132b Second axial flow wind wheel 30a Upper wind 133a First motor 30b Downwind
  • first”, “second”, and the like in this application are used for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. Nor is it within the scope of protection required by this application.
  • the present application proposes an indoor unit of an air conditioner, which is mainly used for an air conditioner to adjust the temperature of the air.
  • the air conditioner indoor unit 100 includes a housing 10, and a heat exchanger 20 and a fan assembly 30 disposed in the housing 10.
  • the surface of the housing 10 is provided with an air inlet 101 and a first outlet.
  • the tuyere 102; the heat exchanger 20 is disposed in the casing 10 and corresponds to the position of the first air outlet 102 on the casing 10; the fan assembly 30 is disposed in the casing 10 and opposite to the first air outlet 102,
  • the wind wheel of the fan unit 30 rotates, and the indoor air is sucked into the casing 10 from the air inlet port 101, and exchanges heat with the heat exchanger 20 in the casing 10, since The first air outlet 102 is discharged to achieve the purpose of adjusting the temperature of the indoor air.
  • a style grille may be installed at the air inlet 101, and a filter mesh is arranged inside the inlet grille to filter the air entering the air inlet 101 to prevent dust in the air from entering the casing 10. It affects the life of the air conditioner indoor unit 100.
  • the fan assembly 30 may include a first drive assembly first axial flow wheel 32 and a second axial flow wind wheel 33, a first axial flow wind wheel 32 and a first
  • the axial direction of the biaxial flow wind wheel 33 is uniform, and the first drive assembly is coupled to the first axial flow wind wheel 32 and the second axial flow wind wheel 33 to drive the first axial flow wind wheel 32 and the second axial flow wind wheel 33.
  • the rotation causes the first axial flow wind wheel 32 and the second axial flow wind wheel 33 to have the same air blowing direction.
  • the axis of the first axial flow wind wheel 32 and the axis of the second axial flow wind wheel 33 may be coaxial, or may be offset by a certain distance, or have a certain angle, of course, when the first axial flow wind wheel 32 When the axis and the axis of the second axial flow wind wheel 33 are coaxial, the air supply effect of the fan assembly 30 is better.
  • the fan assembly 30 rotates the first axial flow wind wheel 32 and the second axial flow wind wheel 33 distributed along the axial direction of the fan assembly 30 to make the first axial flow wind wheel 32 and the second axial flow wind
  • the wheel 33 simultaneously supplies air to the first air outlet 102, whereby the rotation speeds of the first axial flow wheel 32 and the second axial flow wind wheel 33 can be reduced when the wind speed is satisfactory, so that the fan assembly 30 can be reduced.
  • the housing 10 has an opposite front panel 10b and a back panel 10a, so that the air inlet 101 can be located in the back panel 10a of the housing 10, so that the first air outlet 102 is located in front of the housing 10.
  • the panel 10b has the air inlet 101 opposed to the first air outlet 102 to avoid the problem that the airflow in the casing 10 is diverted and the wind speed is lowered.
  • the fan assembly 30 can further include a mounting cylinder 34 having an air inlet end and an air outlet end.
  • the mounting cylinder 34 is further provided with a bracket structure, the first driving.
  • the assembly, the first axial flow wheel 32 and the second axial flow wind wheel 33 are mounted on a support structure within the mounting barrel 34, whereby the mounting barrel 34 can be directed to the first drive assembly, the first axial flow wheel 32 and The biaxial flow wind wheel 33 is protected and fixed to allow the fan assembly 30 to be more easily installed in the housing 10.
  • the first driving component may include the first motor 311 and the second motor 312, connect the first axial flow wind wheel 32 with the rotating shaft of the first motor 311, and connect the second axial flow wind wheel 33 with the second motor. 312's hinge connection.
  • the manner of installing the first axial flow wind wheel 32 and the first motor 311, and the manner of installing the second axial flow wind wheel 33 and the second motor 312 may be determined according to the types of the first motor 311 and the second motor 312. .
  • the first motor 311 and the second motor 312 are in the inner rotor motor
  • the first axial flow wind wheel 32 and the second axial flow wind wheel 33 may be respectively sleeved on the rotating shafts of the first motor 311 and the second motor 312.
  • the first axial flow wheel 32 and the second axial flow wind wheel 33 may be respectively coupled to the outer rotors of the first motor 311 and the second motor 312. .
  • the overall length of the fan assembly 30 is shorter, which is advantageous for saving the internal space of the casing 10.
  • the bracket structure may include the first bracket 341 and the second bracket 342 arranged along the axial direction of the mounting cylinder 34, and the first motor 311 and the second motor 312 are respectively mounted to the first bracket 341 and On the second bracket 342.
  • the bracket structure of the mounting cylinder 34 can be simplified, and the hindrance of the bracket structure to the airflow in the mounting cylinder 34 can be reduced.
  • the first bracket 341 and the mounting cylinder 34 may be integrally disposed, or may be detachably connected by means of a buckle, a screw, or the like, or may be fixedly connected by welding, pasting, etc., and the connection manner thereof is specific. It depends on the structure of the first bracket 341 and the mounting cylinder 34.
  • the second bracket 342 and the mounting cylinder 34 may be integrally disposed, or may be detachably connected by means of a buckle, a screw, or the like, or may be fixedly connected by welding, pasting, etc., Let me repeat.
  • the mounting cylinder 34 may be integrally formed, or the first cylinder 343 and the second cylinder 344 distributed along the circumferential direction of the mounting cylinder 34 may be connected to each other, and the first bracket 341 may be located in the first cylinder. In 343, the second bracket 342 is located in the second cylinder 344.
  • the mounting cylinder 34 includes the first cylinder 343 and the second cylinder 344
  • the first axial flow wind wheel 32 and the second axial flow wind wheel 33 can be installed into the installation cylinder 34.
  • the first axial flow wind wheel 32 and the second axial flow wind wheel 33 are respectively installed into the first cylindrical body 343 and the second cylindrical body 344, and then the first cylindrical body 343 and the second cylindrical body 344 are connected to each other. Therefore, it is possible to prevent the length of the mounting cylinder 34 from being too long, which causes the first axial flow wind wheel 32 and the second axial flow wind wheel 33 to be inconveniently fixed to the bracket structure in the mounting cylinder 34.
  • the first bracket 341 can be disposed in a substantially "ten" shape, and the center is provided with a mounting position for mounting the first motor 311.
  • the first bracket 341 can also be in a "one" shape. Settings, or in a Y-shaped setting, just ensure that it has better stability.
  • the first axial flow wind wheel 32 may be installed on the outer side of the first bracket 341 or on the inner side of the first bracket 341.
  • the positional relationship and structure of the second bracket 342, the second motor 312, and the second axial flow wind wheel 33 are similar to those of the first bracket 341, the first motor 311, and the first axial flow wind wheel 32, and are no longer Narration.
  • the mounting disk 37 may be sleeved on the rotating shaft of the first motor 311 and/or the second motor 312 of the fan assembly 30, and the first axial flow wind wheel 32 or The second axial flow wind wheel 33 is mounted to the mounting plate 37 to facilitate the installation of the first axial flow wind wheel 32 or the second axial flow wind wheel 33.
  • the fan assembly 30 can also include a motor mount 38 for mounting the first motor 311 and the second motor 312, the motor mount 38 being mounted on the mounting position of the first bracket 341 or the second bracket 342 so that The installation of the motor is more convenient.
  • first axial flow wheel 32 and the second axial flow wind wheel 33 may be positioned between the first electric motor 311 and the second electric motor 312 such that the first axial flow wind wheel 32 and the second axial flow current A small axial distance can be maintained between the wind wheels 33 to reduce air turbulence generated by the rotation of the first axial flow wheel 32 and the second axial flow wind wheel 33, reducing noise.
  • the bending direction of the first blade 321 of the first axial flow wind wheel 32 may be opposite to the bending direction of the second blade 331 of the second axial flow wind wheel 33.
  • the drive assembly can drive the direction of rotation of the first axial flow wheel 32 to be opposite to the direction of rotation of the second axial flow wheel 33 (ie, the first axial flow wind wheel 32 directs air flow from the fan
  • the direction of rotation when the air inlet end of the assembly 30 is guided to the air outlet end is opposite to the direction of rotation when the second axial flow wind wheel 33 directs the air flow from the air inlet end of the fan assembly 30 to the air outlet end, thereby making the first axial flow
  • the airflow field generated by the rotation of the rotor 32 cancels the airflow field generated by the second axial wind turbine 33 to further reduce noise.
  • the bending direction of the first blade 321 of the first axial flow wind wheel 32 may be the same as the bending direction of the second blade 331 of the second axial flow wind wheel 33, and then the fan assembly 30 is driven when it is operated.
  • the rotation direction of the component-driven first axial flow wheel 32 is also the same as the rotation direction of the second axial flow wind wheel 33.
  • the amount of airflow at the air outlet 101 of the air conditioner indoor unit 100 can be made large at the same time. Reduce the speed of each motor to reduce noise.
  • first motor 311 and the second motor 312 may be located between the first axial flow wheel 32 and the second axial flow wind wheel 33, or the first axial flow wind wheel 32 and the second axial flow wind wheel One of the 33 is located between the first motor 311 and the second motor 312, depending on the structure of the air conditioner indoor unit 100.
  • a first mounting plate 40 can be disposed in the housing 10 and the fan assembly 30 can be mounted on the first mounting plate 40 to reduce sloshing of the fan assembly 30 within the housing 10, such that the fan assembly The work of 30 is more stable.
  • the mounting hole 41 may be opened at a position corresponding to the first air outlet 102 of the first mounting board 40, and the fan assembly 30 is installed in the mounting hole 41.
  • the mounting cylinder 34 can be mounted into the mounting hole 41 and fixedly coupled to the side surface of the first mounting plate 40 to facilitate the connection of the fan assembly 30.
  • the fan assembly 30 can also be directly fixedly coupled to the housing 10, depending on the structure of the housing 10.
  • the fan assembly 30 may further include a third axial flow wind wheel 35, the first axial flow wind wheel 35 and the first axial flow wind wheel 32 and the second shaft.
  • the axial direction of the flow wind wheel 33 is uniform to disperse the air flow, so that the fan assembly 30 has a windless effect.
  • the third axial flow wind wheel 35, the first axial flow wind wheel 32, and the second axial flow wind wheel 33 may be arranged in sequence along the front side to the rear side of the casing 10, or the first axial flow wind wheel 32 may be arranged.
  • the second axial flow wind wheel 33 and the third axial flow wind wheel 35 are arranged in sequence along the front side to the rear side of the casing 10.
  • the third axial flow wind wheel 35, the first axial flow wind wheel 32, and the second axial flow wind wheel 33 are sequentially arranged along the front side to the rear side of the casing 10, the windless air supply effect of the fan assembly 30 is obtained. better.
  • the third axial flow wind wheel 35 may be rotatably connected to the housing 10 or may be rotatably connected to the mounting cylinder 34. Of course, when the third axial flow wind wheel 35 is rotatably connected with the mounting cylinder 34, the third axial flow wind wheel The installation of 35 is more convenient.
  • the first motor 311 can be a two-axis motor, and the first axial flow wind wheel 32 and the third axial flow wind wheel 35 are respectively sleeved on the rotating shafts at both ends of the two-axis motor, so that the third axial flow is performed.
  • the wind wheel 35 is located on the side of the first axial flow wind wheel 32 facing away from the second axial flow wind wheel 33, whereby the rotational speed of the first electric motor 311 can be reduced, and the noise of the air conditioner indoor unit 100 can be reduced.
  • the second motor 312 may be a two-axis motor, and the second axial flow wheel 33 and the third axial flow wheel 35 may be respectively sleeved on the rotating shafts at both ends of the two-axis motor, so that the third axial flow wind wheel 35 is located on the side of the second axial flow wind wheel 33 facing away from the first axial flow wind wheel 32, and details are not described herein.
  • the first driving assembly may also include a third motor (not shown), a third bracket (not shown) is disposed on the inner wall of the mounting cylinder 34, and the third motor is mounted on the third bracket, and the third shaft is windy.
  • the wheel 35 is coupled to the rotating shaft of the third motor. Thereby, the third axial flow wind wheel 35 can be driven to rotate by the third motor, and the air can be blown to further reduce the rotation speed of each of the axial flow wind wheels to reduce noise.
  • the support portion 36 may be disposed at a position corresponding to the third axial flow wind wheel 35 of the mounting cylinder 34 or the casing 10, and the third axial flow wind wheel 35 and the support portion 36 may be rotatably connected and freely rotated to enter the The airflow in the fan assembly 30 is dispersed to achieve a windless effect.
  • the number of the first air outlets 102 opened on the front panel 10b may be multiple, so that the fan assembly 30 is movably connected to the housing 10, and the air conditioner is
  • the indoor unit 100 includes a second drive assembly that is coupled to the fan assembly 30 and that drives the fan assembly 30 to move such that the fan assembly 30 corresponds to at least one of the plurality of first air outlets 102 such that the fan The assembly 30 blows air from the housing 10 out of the first air outlet 102.
  • the second driving component can drive the fan assembly 30 to move, swing, and the like, depending on the structure of the housing 10 and the position of the first air outlet 102.
  • the fan assembly 30 can be opposed to at least one of the plurality of air outlets, thereby changing the air outlet height or the left and right of the air conditioner indoor unit 100.
  • the direction of the air outlet makes the air supply mode of the air conditioner indoor unit 100 more flexible.
  • the plurality of first air outlets 102 may be arranged along the height direction of the air conditioner indoor unit 100, and the second drive unit drives the fan unit 30 to move or swing in the height direction of the air conditioner indoor unit 100, so that The fan assembly 30 is opposite one of the plurality of first air outlets 102.
  • the user can move the fan unit 30 to a position opposite to the first air outlet 102 of the upper portion of the air conditioner indoor unit 100 as shown in FIGS. 12 and 13 when the air conditioner performs cooling, or to cause the fan unit 30 to be moved.
  • the air is swung to the position of the first air outlet 102 toward the upper portion of the air conditioner indoor unit 100, and the air enters the air conditioner indoor unit 100 in the direction of the arrow in FIG.
  • the fan assembly 30 can be moved to a position opposite to the first air outlet 102 in the middle or lower portion of the air conditioner indoor unit 100, Alternatively, the fan unit 30 is swung to a position toward the first air outlet 102 in the middle or lower portion of the air conditioner indoor unit 100, so that air enters the air conditioner indoor unit 100 in the direction of the arrow in FIG. 15 and is blown out from the air outlet 101. Therefore, the hot air in the air conditioner indoor unit 100 is blown out from the middle or the lower portion of the air conditioner indoor unit 100, and then flows upward, so that the temperature distribution in the room is uniform, and the air blowing comfort is good.
  • the number of the first air outlets 102 may be two, three or even more, which may be determined according to the structure of the first air outlet 102 and the air conditioner indoor unit 100.
  • the number of the first air outlets 102 may be two and located in the upper and middle portions of the air conditioner indoor unit 100, respectively.
  • the plurality of first air outlets 102 may be arranged laterally, or the plurality of first air outlets 102 may be arranged in the horizontal direction and the height direction of the air conditioner indoor unit 100 at the same time.
  • the second driving component drives the fan assembly 30 to move or swing laterally so that the fan assembly 30 is opposite to at least one of the plurality of first air outlets 102, Let me repeat.
  • a sealing plate 50 and a third driving assembly may be disposed on the housing, the sealing plate 50 is movable relative to the housing 10, and the third driving assembly is coupled to the sealing plate 50 to drive the sealing plate 50 along the air conditioner.
  • the indoor unit 100 is moved in the height direction to move the sealing plate 50 to a position opposing one of the plurality of first air outlets 102, and seal the first air outlet 102.
  • the third driving assembly can control the sealing plate 50 to move to the set position along the height direction of the air conditioner indoor unit 100 to seal the remaining portions.
  • the air in the mode chamber enters the casing 10 from the first air outlet 102 that has not been blown, and affects the air supply temperature of the air conditioner indoor unit 100.
  • the second driving component for driving the fan assembly 30 to move along the height direction of the air conditioner indoor unit 100, and the third driving component for driving the sealing plate structure to move along the height direction of the air conditioner indoor unit 100 may be various, specifically It can be determined according to the shape of the sealing plate and the fan assembly.
  • the second drive assembly may include a first rack 60 coupled to the fan assembly 30, and a gear 61 rotatably coupled to the housing 10 and meshing with the first rack 60, the first rack 60 extends in the height direction of the air conditioner indoor unit 100, and the gear 61 receives the rotational force from the motor in the air conditioner indoor unit 100, and drives the first rack 60 to move in the height direction of the air conditioner indoor unit 100.
  • the first rack 60 can be driven to move in the height direction of the air conditioner indoor unit 100, and the fan unit 30 can be controlled to move in the height direction of the air conditioner indoor unit 100.
  • the third drive assembly may also include a second rack 62 coupled to the sealing plate 50, and a gear rotatably coupled to the housing 10 and meshing with the second rack 62, the second rack 62 along the air conditioner
  • the height direction of the indoor unit 100 extends, whereby by controlling the rotation of the gear, the second rack 62 can be driven to move in the height direction of the indoor unit 100 of the air conditioner, thereby controlling the height direction of the sealing plate 50 along the indoor unit 100 of the air conditioner. Move to the set position.
  • the number of air outlets 101 may be two, and the gear 61 is simultaneously meshed with the first rack 60 and the second rack 60, wherein the gear 61 is located at the first rack 60 and the second Between the racks 62, whereby when the gear 61 drives the first rack 60 to move upward, the gear 61 simultaneously drives the second rack 62 to move downward through the pair of gears 61, the first rack 60 and the second
  • the size of the rack 60 and the distance between the two air outlets 101 are provided to move the fan assembly 30 to the opposite of one of the two air outlets 101a, the sealing plate 50 and the two air outlets 101.
  • the other of the opposite faces seals the tuyere 101 while making the structure of the second drive assembly and the third drive assembly more compact.
  • the gear unit 30 can be provided with a gear, and the gear can be meshed with the gear 61.
  • the rotation of the gear 61 can drive the fan assembly 30 to rotate or swing.
  • the fan assembly 30 can be moved or oscillated by a hydraulic cylinder, a pneumatic cylinder, a belt, or the like, and will not be described herein.
  • the fan assembly 30 when there are a plurality of outlet winds 101 on the front panel 10b, as shown in FIG. 16 and FIG. 17, at least two of the plurality of air outlets 101 may be provided with the fan assembly 30 correspondingly.
  • the fan unit 30 in the plurality of air outlets 101 is rotated and blown, the air enters the air conditioner indoor unit 100 in the direction of the arrow in FIG. 17 and is blown out from the plurality of air outlets 101.
  • the fan unit 30 in the upper air outlet 101 of the air conditioner indoor unit 100 is separately blown, and the air enters the air conditioner indoor unit 100 in the direction indicated by the arrow in Fig. 18, and The first air outlet 102 of the upper portion of the air conditioner indoor unit 100 is blown to increase the conveying distance of the cold air in the air conditioner indoor unit 100.
  • the fan unit 30 in the central air outlet 101 of the air conditioner indoor unit 100 can be separately blown, and the air enters the air conditioner indoor unit 100 in the direction indicated by the arrow in FIG.
  • the first air outlet 102 in the middle of the air conditioner indoor unit 100 is blown to increase the air supply distance of the warm air in the air conditioner indoor unit 100, and to improve the air supply comfort.
  • the indoor air enters the casing 10 from the unventilated air outlet 101, thereby affecting the temperature adjustment effect of the air conditioner indoor unit 100, in addition to A sealing plate is disposed at the first air outlet 102 that is not blown to seal the outside of the first air outlet 102, and the fan assembly 30 corresponding to the unvented first air outlet 102 can be blown outward with a small power.
  • a sealing plate is disposed at the first air outlet 102 that is not blown to seal the outside of the first air outlet 102, and the fan assembly 30 corresponding to the unvented first air outlet 102 can be blown outward with a small power.
  • two outlet winds 101 may be opened on the front panel 10b, and the fan assembly 30 is disposed in the housing 10 corresponding to the two air outlets 11, wherein the two air outlets 101 are respectively located in the air conditioner indoor unit.
  • the middle portion and the upper portion of the 100 are provided so that the air conditioner indoor unit 100 has better air blowing comfort, and the structure of the casing 10 is simpler.
  • the present application discloses an indoor unit of an air conditioner, which can realize distributed air supply and improve the flexibility of the air supply mode of the indoor unit of the air conditioner.
  • the indoor unit of the air conditioner may be a floor-standing air conditioner indoor unit or a wall-mounted air conditioner indoor unit, and an indoor unit of the floor-standing air conditioner is taken as an example for explanation.
  • the realization of the arrow indicates a structure such as a groove, a hole or a space, and the dotted arrow indicates the flow direction of the airflow.
  • the air conditioner indoor unit 100a includes a housing 110, a centrifugal fan 120, and a fan assembly 130.
  • the casing 110 has a first air outlet 102a and a second air outlet 102b, and the first air outlet 102a and the second air outlet 102b are arranged at intervals in the height direction of the air conditioner indoor unit 100a.
  • the fan assembly 130 is mounted in the housing 110 to supply air to the first air outlet 102a.
  • the fan assembly 130 may be the fan assembly 30 of any of the above embodiments, or may be as shown in FIGS. 20 and 21.
  • the centrifugal fan 120 is mounted in the housing 110 to supply air to the second air outlet 102b.
  • the housing 110 includes a back plate 111 and a front panel 112, and a section (virtual section) of the housing 110 taken along a plane perpendicular to the up and down direction may be square or circular, or polygonal.
  • the housing 110 is provided with an air inlet 101a on the back plate 111, and an inlet grille 101a.
  • the housing 110 is provided with a first air outlet 102a and a second air outlet 102b on the front panel 112.
  • a louver for adjusting the wind angle is provided at an air outlet 102a and a second air outlet 102b, and the louver includes a horizontal louver 150a and a longitudinal louver 150b.
  • the first air outlet 102a and the second air outlet 102b may be arranged along the height direction of the floor-standing air conditioner indoor unit.
  • the second air outlet 102b is located at the first air outlet 102a.
  • the second air outlet 102b is located below the first air outlet 102a (refer to FIG. 23 to FIG. 25).
  • the first air outlet 102a and the second air outlet 102b may be arranged along the length direction of the indoor unit of the floor-standing air conditioner. If the indoor unit of the wall-mounted air conditioner is a vertical type air conditioner indoor unit, the first air outlet 102a and the second air outlet 102b may be arranged along the height direction of the floor air conditioner indoor unit.
  • the front panel of the ceiling machine is mostly circular or square, so that the first air outlet 102a and the second air outlet 102b can be arranged along the width or length direction of the front panel.
  • the first air outlet 102a and the second air outlet 102b may be spaced apart or connected, and the shapes of the first air outlet 102a and the second air outlet 102b may be It may be set to a circle, a square or an ellipse, and is not specifically limited.
  • the first air outlet 102a is arranged in a square or a circle; the second air outlet 102b is disposed in an elongated shape to correspond to the cross flow wind wheel 120.
  • the air conditioner indoor unit 100a further includes a heat exchanger 140 installed in the housing 110, and the heat exchanger 140 covers the air inlet 101a.
  • the outside air enters from the air inlet 101a and passes through the heat exchanger 140 to enter the inside of the casing 110, at which time the outside air exchanges heat with the heat exchanger 140 to form the blast air; A part of the effluent air is blown from the first air outlet 102a into the room under the driving of the fan assembly 130. This part of the blast air is dissipated by the fan assembly 130 to the circumferential direction, thereby effectively reducing the wind speed; the other part of the blast air is The centrifugal fan 120 is driven to blow from the second air outlet 102b into the room.
  • the air conditioner indoor unit 100a separates the relatively strong air from the two air outlets, and the air volume of each air outlet is relatively small to avoid concentrated blowing to the user; further, the fan assembly 130 will emit air. Disperse along its circumference, making the air out of the air softer, thus achieving a soft wind.
  • the first air outlet 102a and the second air outlet 102b are disposed on the casing 110, and the fan assembly 130 that supplies air to the first air outlet 102a is installed in the casing 110, and the second air outlet is provided.
  • the air blower 120b sends the air to the centrifugal fan 120.
  • the air conditioner indoor unit 100a separates the relatively strong air from the two air outlets, and the air volume of each air outlet. It is relatively small, avoiding concentrated blowing to the user; in addition, the fan assembly 130 disperses the blast air along its circumference, making the venting air softer, thereby achieving a soft wind feeling and improving comfort.
  • the air conditioner indoor of the present application is compared to the air conditioner indoor unit 100a having two fan assemblies 130 or two first axial flow wind wheels.
  • the noise of the machine 100a is lower. Since the first air outlet 102a and the second air outlet 102b are spaced apart, the heights of the first air outlet 102a and the second air outlet 102b are different, so that the first air outlet can be realized by controlling the switches of the centrifugal fan 120 and the fan assembly 130.
  • the 102a and the second air outlets 102b supply air to the spaces of different height layers to realize distributed air supply up and down.
  • the centrifugal fan 120 and the fan assembly 130 can be simultaneously opened, and the first air outlet 102a and the second air outlet 102b are simultaneously supplied with air.
  • only one of the centrifugal fan 120 and the fan assembly 130 is opened, so that the corresponding air outlets of the first air outlet 102a and the second air outlet 102b are separately supplied with air.
  • the air supply mode of the air conditioner indoor unit 100a can be made more flexible, and the user can adjust the air supply mode according to his own needs.
  • the heating state is The generated warm air does not easily reach the user's foot, affecting its comfort.
  • the second air outlet 102b is disposed at a lower portion of the front panel 112 of the housing 110, so that when the heating state is performed, the second air outlet 102b is opened to warm The wind blows from the second air outlet 102b to the user's foot to achieve a warm foot effect.
  • the air blowing angle of the second air outlet 102b may be adjusted by the louver so that the cold air does not blow the user's foot; or, a damper is movably installed at the second air outlet 102b.
  • the second air outlet 102b is closed by the damper to prevent the cold wind from directly blowing the user's foot.
  • the housing 110 has an upper air duct 30a for the fan assembly 130, and the upper air duct 30a communicates with the air inlet 101a and the first The air outlet 102a; the housing 110 further has a lower air duct 30b for the centrifugal fan 120, and the lower air duct 30b connects the upper air duct 30a and the second air outlet 102b.
  • the heat exchanger 140 is mounted within the housing 110 and is located in the upper air duct 30a.
  • the upper air duct 30a is substantially linear, and the upper air duct 30a includes a rear air inlet section on the rear side of the fan assembly 130, and a front air outlet section on the rear side of the fan assembly 130;
  • the lower air duct 30b is substantially L-shaped and has a downwind
  • the track 30b includes a longitudinal air inlet section that communicates with the rear air inlet section, and a lateral airflow section that communicates the longitudinal air inlet section and the second air outlet section 102b.
  • the first air outlet 102a and the second air outlet 102b can be separated by a distance, that is, the first air outlet 102a is located at the upper part of the air conditioner indoor unit 100a, and the position is high, and the air can be sent to the upper space at a long distance.
  • a large air supply distance is reached;
  • the second air outlet 102b is located at a lower portion of the air conditioner indoor unit 100a, and the position is low, and the air can be blown to the lower layer space, so that the hot air can be blown to the user to achieve a better warm foot. effect.
  • the blast air formed by exchanging heat between the outside air and the heat exchanger 140 enters the upper air duct 30a, and a part of the blast air flows from the upper air duct 30a to the first air driven by the fan unit 130.
  • the air outlet 102a is blown out from the first air outlet 102a into the room; the other part of the air is branched from the upper air duct 30a into the lower air duct 30b, and is driven by the centrifugal fan 120 to flow from the lower air duct 30b to the second air outlet 102b. And blowing out from the second air outlet 102b into the room.
  • the structure of the fan assembly 130 will be described in detail below.
  • the fan assembly 130 includes a mounting seat 131, a first axial flow wheel 132a, a second axial flow wheel 132b, and a first The motor 133a, wherein the first axial flow wheel 132a is mounted to the mounting seat 131 and coupled to the first motor 133a; the second axial flow wind wheel 132b is rotatably mounted to the mounting seat 131 and located at the first axial flow wind wheel The front side of 132a.
  • first axial flow wind wheel 132a and the second axial flow wind wheel 132b For the structure of the first axial flow wind wheel 132a and the second axial flow wind wheel 132b, reference may be made to the structures of the first axial flow wind wheel 132 and the second axial flow wind wheel 132.
  • the mounting seat 131 may refer to the first support frame 341 and the first The structure of the two brackets 342 will not be described here.
  • the first axial flow wheel 132a is driven to rotate by the first motor 133a.
  • the first driving mode is that the second axial flow wind wheel 132b is driven to rotate by other motors.
  • the motor drives the second axial flow wheel 132b and the first axial flow wheel 132a to rotate in opposite directions to blow the blast air forward in the axial direction thereof, thereby extending the air supply distance.
  • the second driving mode is that the second axial flow wind wheel 132b is connected to the first axial flow wind wheel 132a through the reverse transmission structure to drive the second axial flow wind wheel 132b to rotate through the first axial flow wind wheel 132a.
  • the third driving mode is that the second axial flow wind wheel 132b is driven to rotate by the air flow generated by the rotation of the first axial flow wind wheel 132a. At this time, the rotation direction of the second axial flow wind wheel 132b and the first axial flow wind wheel 132a. The direction of rotation is the same. The latter two drive modes save motor costs and generate noise from the motor.
  • the rotation direction when the first axial flow wind wheel 132a guides the airflow to the air outlet is clockwise, for example.
  • the external air passes through the heat exchanger 140 and flows to the front of the first axial flow wheel 132a.
  • the air flow has a rotational kinetic energy in a clockwise direction and a wind wheel along the first axis. Axial kinetic energy in the axial direction of 132a.
  • the second axial flow wind wheel 132b If the second axial flow wind wheel 132b is actively propelling the wind forward, the rotation direction thereof coincides with the rotation direction of the first axial flow wind wheel 132a, then the air flow finally led out by the second axial flow wind wheel 132b has a high rotation. kinetic energy.
  • the first axial flow wind wheel 132a coincides with the axial direction of the second axial flow wind wheel 132b, and the first axial flow wind wheel 132a guides the air flow from the rotation center to the air outlet end.
  • the direction of rotation is opposite to the direction of rotation of the second axial flow wheel 132b when the airflow is directed from the center of rotation to the air outlet end.
  • the fan assembly 130 further includes a second motor 133b connected to the second axial flow wind wheel 132b, and second.
  • the axial flow wheel 132b is driven to rotate by the second motor 133b.
  • the rotational speeds of the first motor 133a and the second motor 133b during operation may be the same or different.
  • the rotation speed of the first motor 133a may be greater than the rotation speed of the second motor 133b, or the rotation speed of the first motor 133a may be smaller than the rotation speed of the second motor 133b. It can be that when the two motors are controlled to decelerate, the speed of one of the motors is decelerated to zero.
  • the air supply distance of the fan assembly 130 is increased or The lowering speed increases the air supply range of the air conditioner indoor unit 100a.
  • the air conditioner indoor unit 100a when the air conditioner indoor unit 100a is operated, the first axial flow wind wheel 132a rotates, and the air flow is introduced into the casing 110 from the air inlet 101a and guided to the front of the first axial flow wind wheel 132a.
  • the rotation speed of the second axial flow wind wheel 132b can be increased.
  • the rotation speed of the second axial flow wind wheel 132b may be lowered, or the second axial flow wind wheel 132b may be stopped, or the second axial flow wind wheel 132b may be reversed (relative to the second axial flow wind wheel). 132b rotation direction when blowing air)).
  • it is also possible to simultaneously adjust the rotational speeds of the first axial flow wind wheel 132a and the second axial flow wind wheel 132b for example, simultaneously increase the first axial flow wind wheel 132a and the second axial flow wind wheel 132b.
  • the rotation speed of the first axial flow wind wheel 132a can also be reduced, and the rotation speed of the second axial flow wind wheel 132b can be increased; and the rotation speed of the first axial flow wind wheel 132a and the second axial flow wind wheel 132b can be simultaneously reduced.
  • the rotation speed of the first axial flow wind wheel 132a can also be increased to reduce the rotation speed of the second axial flow wind wheel 132b.
  • the rotational speed of the first motor 133a is greater than the rotational speed of the second motor 133b.
  • the rotational kinetic energy generated when the first axial flow wind wheel 132a and the second axial flow wind wheel 132b rotate will be superimposed, and the axial kinetic energy is reduced. This reduces the amount of air output.
  • the rotational speed of the first motor 133a and the rotational speed of the second motor 133b are optionally different. In this way, the superposition of the rotational kinetic energy generated when the first axial flow wind wheel 132a and the second axial flow wind wheel 132b rotate can be avoided, and most of the rotational kinetic energy can be converted into axial kinetic energy, thereby greatly improving the air supply volume of the soft wind feeling. , improved soft wind comfort.
  • the rotational speed of the first motor 133a is greater than the rotational speed of the second motor 133b.
  • the fan assembly 130 includes a reverse transmission structure
  • the first motor 133a has a motor shaft, one end of the motor shaft is connected to the first axial flow wheel 132a, and the other end of the motor shaft is connected to the second axial flow wheel 132b through a reverse drive structure to drive the first axial flow wheel 132a to rotate at the first motor 133a.
  • the second axial flow wheel 132b is driven to rotate in the reverse direction by the reverse transmission structure.
  • the reverse drive structure reduces the use of the motor, which in turn reduces the cost and noise generated by the motor.
  • the specific structure of the reverse transmission structure it is more common in the mechanical field, and will not be detailed here.
  • heat exchanger 140 is located on the rear side of fan assembly 130 and covers air inlet 101a.
  • the heat exchanger 140 is preferably disposed in a regular shape; for example, the heat exchanger 140 may be configured as an in-line structure, or a V-shaped structure, or a W-shaped structure, or a U-shaped structure, or a C-shaped structure, ie,
  • the transverse section of the heat exchanger 140 is arranged in a straight shape, or a V shape, or a W shape, or a U shape, or a C shape. As such, the heat exchanger 140 can be easily produced and installed.
  • the heat exchange area can be easily increased, thereby facilitating the improvement of the air conditioner indoor unit 100a. Thermal efficiency.
  • the heat exchanger 140 can also be arranged in an irregular shape.
  • the heat exchanger 140 is a straight heat exchanger.
  • the air inlet surface of the fan assembly 130 may face the heat exchange surface of the heat exchanger 140.
  • heat exchanger 140 defines a projection on said projection plane is projected exchanger S 0, the The length direction of the heat exchange projection S 0 is set to a first direction, the width direction of the heat exchange projection S 0 is set to a second direction, and the heat exchange projection S 0 has a first average in the first direction a line L 1 and a second bisector L 2 in the second direction; a projection defining a rotation axis of the first axial flow wheel 132a on the projection plane as a blow center point; blowing center point closer to the first line L 1 provided average, and / or the blower of the second split line close to the center point L 2 is provided.
  • the "axis" of the fan assembly 130 refers to the axis of rotation of the first axial flow wheel 132a, or the axis of rotation of the second axial flow wheel 132b, or for mounting the first axial flow of wind
  • the "projection plane” is a dummy plane, and the projection plane has a characteristic perpendicular to the axis of the first axial flow wheel 132a, which is a clear and accurate concept for those skilled in the art; the projection is defined The plane is for ease of understanding of the application.
  • the first bisector L 1 refers to a line extending in the second direction and dividing the heat transfer projection S 0 into two portions equal in the first direction
  • the second bisector L 2 refers to a line that extends in the first direction and divides the heat transfer projection S 0 into two portions that are equal in the second direction.
  • the projection of the heat exchanger 140 on the projection plane that is, the heat transfer projection S 0 is generally rectangular or quasi-rectangular; at this time, the first bisector L 1 refers to The line connecting the midpoints of the two pairs of sides in the two directions, and the second bisector L 2 refers to the line connecting the midpoints of the two pairs of sides in the first direction.
  • the first bisector L 1 extends in the second direction and divides the heat transfer projection S 0 into two parts equal in the first direction
  • the second The dividing line L 2 extends in the first direction and divides the heat transfer projection S 0 into two equal parts in the second direction.
  • the first bisector L 1 / the second bisector L 2 may be either a straight line or a curved line.
  • the first axial flow wheel 132a and the second axial flow wheel 132b are preferably disposed coaxially.
  • the "coaxial" in the present application is not a coaxial in a strict sense, and an error is allowed in the actual production (assembly) process, which still does not contradict the inventive concept of the present application, and does not cause the technical effect of the present application.
  • the rotation axis of the first axial flow wheel 132a, the rotation axis of the second axial flow wheel 132b, and the center line of the mount 131 are collinearly disposed.
  • the experiment shows that, when the axis of the fan assembly 130 close to the first line L 1 average disposed in a first direction, and / or, when the axis of the fan assembly 130 close to the second average line in the second direction L 2 arranged
  • the air suction efficiency of the fan assembly 130 can be improved, but also the noise is reduced; and the air inlet speed of different regions on the heat exchanger 140 is also made uniform, so that the heat exchange efficiency of the heat exchanger 140 can be improved.
  • the heat exchanger may be such that the wind speed and the intake air flow into two portions 140 equally divided in its longitudinal direction chemotaxis The same; when the axis of the fan assembly 130 is disposed in the second direction close to the second bisector L 2 , the air inlet speed and the intake air volume of the heat exchanger 140 which are equally divided in the width direction thereof are apt to the same.
  • the air conditioner indoor unit 100a of the present application can increase the fan unit 130 and the air conditioner indoor unit 100a by providing the first axial flow wind wheel 132a and the second axial flow wind wheel 132b disposed adjacent to each other in the axial direction.
  • the air volume and the air supply distance can effectively improve the air supply comfort of a room with a large space such as a living room.
  • the air intake efficiency of the fan assembly 130 can be improved and the noise can be reduced.
  • the air inlet speed of different regions of the heat exchanger 140 can be made uniform, thereby reducing the noise and heat exchange of the heat exchanger 140 during heat exchange.
  • the heat exchange efficiency of the heater 140 can improve the work efficiency of the air conditioner indoor unit 100a.
  • blower assembly and the first axis line L 1 having a first average distance H1
  • the fan assembly 130 and the axis line L 2 having a second average in the second direction in the first direction 130 The second distance H2.
  • the parameters for evaluating the performance are noise, the air intake speed of different regions on the heat exchanger 140, and the like, and the factors affecting the above parameters are the first distance H1 and the second distance H2.
  • the present application interprets the present application with a change in the second distance H2 (the second distance H2 is equal to 0 mm) and the first distance H1.
  • the first distance H1 is greater than or equal to 0 mm, and the first distance H1 is less than or equal to 150 mm; optionally, the first distance H1 is greater than or equal to 0 mm, and the first distance H1 is less than or equal to 100 mm.
  • the air supply distance of the fan assembly 130 is about 14 meters, and the power is 36 W, that is, other conditions remain unchanged.
  • the first distance H1 is greater than or equal to 0 mm, and the first distance H1 is less than or equal to 150 mm; optionally, the first distance H1 is greater than or equal to 0 mm, first The distance H1 is less than or equal to 100 mm.
  • the second distance H2 is greater than or equal to 0 millimeters and the second distance is less than or equal to 100 millimeters.
  • the intersection point is the heat exchange center point P 1 , the heat exchange center point P 1
  • the core of the heat exchanger 140 can be represented. According to the above experiment, the analysis shows that the axis of the fan assembly 130 is away from the heat exchange center point P. 1 The closer the noise is, the more uniform the air inlet speed in different regions of the heat exchanger 140 is, and the better the air suction efficiency of the fan assembly 130 is, the higher the heat exchange efficiency of the heat exchanger 140 is. Therefore, in a specific embodiment Should be such that the axis of the fan assembly 130 is close to the heat exchange center point P 1 Settings.
  • the heat exchange center point P1 when the heat exchange center point P1 is located on the axis of the fan assembly 130, the noise is the smallest, the air inlet speed of the different areas on the heat exchanger 140 is the most uniform, and the suction efficiency of the fan assembly 130 is the best, and the heat exchanger 140 is the same. The heat exchange efficiency is the highest.
  • the center of rotation of the fan assembly 130 can also be at the same height position as the upper portion of the heat exchanger 140, so that the position of the fan assembly 130 is relatively high, and can be thought further.
  • the azimuth air supply effectively extends the air supply distance of the first air outlet 102a.
  • the specific installation position of the centrifugal fan 120 will be described in detail below.
  • the centrifugal fan 120 may be mounted on the side wall of the longitudinal air inlet section or at the bottom of the longitudinal air inlet section.
  • the specific selection can be made according to the requirements and the difficulty of installation, and is not limited herein.
  • the centrifugal fan 120 may be installed at a lower portion of the backing plate 111. That is, the lower end of the backing plate 111 faces the longitudinal air inlet section and forms the rear side wall of the longitudinal air inlet section.
  • the centrifugal fan 120 is installed at a lower portion of the back plate 111, that is, mounted on the rear side wall of the longitudinal air inlet section, such that the gravity of the centrifugal fan 120 is applied to the rear end of the air conditioner indoor unit 100a;
  • the assembly 130 is closer to the front panel 112, and the gravity of the fan assembly 130 is applied to the front end of the air conditioner indoor unit 100a.
  • the fan assembly 130 and the centrifugal fan 120 cooperate to maintain the balance of the air conditioner indoor unit 100a with high stability.
  • the housing 110 is provided with a water receiving tray 160 located below the heat exchanger 140 , and the centrifugal fan 120 is mounted on the water receiving tray 160 .
  • the water receiving tray 160 is actually mounted on the backing plate 111, and the centrifugal fan 120 is mounted on the water receiving tray 160.
  • the gravity of the centrifugal fan 120 can also be applied to the rear end of the air conditioner indoor unit 100a, thereby cooperating with the fan assembly 130.
  • the air conditioner indoor unit 100a is balanced and has high stability.
  • a second mounting plate 170 for mounting the fan assembly 130 is disposed in the housing 110, and a lower end of the second mounting plate 170 extends downward to the lower air passage 30b.
  • the centrifugal fan 120 is mounted at a lower portion of the second mounting plate 170. That is, the lower end of the second mounting plate 170 forms the front side wall of the longitudinal air inlet section, and the centrifugal fan 120 is mounted on the front side wall of the longitudinal air inlet section.
  • the installation manner of the second mounting plate 170 and the fan assembly 130 reference may be made to the installation manner of the first mounting plate 40 and the fan assembly 30, and details are not described herein again.
  • both the fan assembly 130 and the centrifugal fan 120 are mounted on the second mounting plate 170, in order to avoid resonance between the two, optionally, the rotational speed of the motor of the fan assembly 130 and the motor rotational speed of the centrifugal fan 120 are different.
  • the housing 110 includes a base 113 having an upper surface facing the lower air passage 30b, and the centrifugal fan 120 is mounted on the upper surface of the base 113. That is, the upper surface of the base 113 forms the bottom wall of the lateral air outlet section, and the centrifugal fan 120 is mounted on the bottom wall of the lateral air outlet section.
  • the gravity of the centrifugal fan 120 is applied to the base of the air conditioner indoor unit 100a, so that the center of gravity of the air conditioner indoor unit 100a is lower, so that the air conditioner indoor unit 100a can maintain balance and stability.
  • the effluent air after entering the longitudinal air inlet section can directly enter from the center of the centrifugal fan 120, and directly blows out from the periphery of the centrifugal fan 120 to the second air outlet 102b, thereby greatly reducing the flow of the effluent air. Wind resistance, while reducing the noise generated when the centrifugal fan 120 is working.
  • the rotation center of the fan assembly 130 is located on the axial extension line of the centrifugal fan 120, so that when the air conditioner indoor unit 100a is placed upright, the fan assembly 130 and the centrifugal fan 120 The gravity action is applied to the center position of the base 113, and it is possible to ensure that the air conditioner indoor unit 100a is balanced and is not easily dumped.
  • the installation may be performed according to one of the above various installation manners.
  • the plurality of centrifugal fans 120 may be configured as described above. Two or more of the installation methods are installed.
  • the present application also provides an air conditioner, which includes an outdoor unit and an indoor unit of an air conditioner.
  • the indoor unit and the outdoor unit of the air conditioner are connected through a condensing line, and the specific structure of the indoor unit of the air conditioner is referred to.
  • the above embodiment It can be understood that, since the air conditioner proposed in the present application includes all the solutions of all the embodiments of the above-mentioned air conditioner indoor unit, it has at least the same technical effects as the air conditioner indoor unit, which will not be explained here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种空调室内机(100)及空调器,该空调室内机(100,100a)包括壳体(10,110)、换热器(20)以及风机组件(30,130),壳体(10,110)具有相对的前面板(10b,112)和背板(10a,111),前面板(10b,112)上开设有出风口,背板(10a,111)的中上部开设有进风口(101,101a),且进风口(101,101a)和出风口相对设置;换热器(20)设置在壳体(10,110)内,且与进风口(101,101a)的位置相对应;风机组件(30,130)包括第一驱动组件、第一轴流风轮(32,132a)和第二轴流风轮(33,132b),第一轴流风轮(32,132a)和第二轴流风轮(33,132b)的轴线方向一致,第一驱动组件与第一轴流风轮(32,132a)和第二轴流风轮(33,132b)连接,以驱动第一轴流风轮(32,132a)和第二轴流风轮(33,132b)转动,第一轴流风轮(32,132a)和第二轴流风轮(33,132b)的送风方向相同。

Description

空调器室内机及空调器
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器室内机及空调器。
背景技术
现有的空调器室内机通常设置有离心风机或贯流风机,通过离心风机或贯流风机的转动,以将空调器室内机内的气流吹出。
但是,这种空调器室内机的送风距离较短,对距离空调器室内机较远的地方进行送风时,需要空调器室内机内的电机以较高的转速带动离心风机或贯流风机转动,由此,会导致空调器室内机的噪声较大。
发明内容
本申请提供一种空调器室内机,其可降低空调器室内机的风机组件产生的噪声。
本申请提出一种空调器室内机,所述空调器室内机包括:
壳体,具有相对的前面板和背板,所述前面板上开设有第一出风口,所述背板的中上部开设有进风口,且所述进风口和所述第一出风口相对设置;
换热器,设置在所述壳体内,且与所述进风口的位置相对应;
风机组件,设置在所述壳体内,并与所述第一出风口相对应;所述风机组件包括第一驱动组件、第一轴流风轮和第二轴流风轮,所述第一轴流风轮和所述第二轴流风轮的轴线方向一致,所述第一驱动组件与所述第一轴流风轮和所述第二轴流风轮连接,以驱动所述第一轴流风轮和所述第二轴流风轮转动,所述第一轴流风轮和所述第二轴流风轮的送风方向相同。
可选地,所述风机组件还包括安装筒,该安装筒具有进风端和出风端,所述安装筒的内壁设置有沿该安装筒的轴线方向排布的第一支架和第二支架;
所述第一驱动组件包括安装于所述第一支架上的第一电机,及安装于所述第二支架上的第二电机,所述第一轴流风轮与所述第一电机的转轴连接,所述第二轴流风轮与所述第二电机的转轴连接。
可选地,所述第一轴流风轮和所述第二轴流风轮位于所述第一电机和所述第二电机之间。
可选地,所述第一轴流风轮的第一扇叶的弯曲方向,与所述第二轴流风轮的第二扇叶的弯曲方向相反,并且,所述第一轴流风轮的旋转方向与所述第二轴流风轮的旋转方向相反。
可选地,所述风机组件还包括第三轴流风轮,所述第三轴流风轮与所述安装筒旋转连接,且所述第三轴流风轮与所述第一轴流风轮的轴线方向一致;
所述第三轴流风轮、所述第一轴流风轮及所述第二轴流风轮沿所述壳体的前侧至后侧依次排列,或者,所述第一轴流风轮、所述第二轴流风轮及所述第三轴流风轮沿所述壳体的前侧至后侧依次排列。
可选地,所述第一驱动组件包括第三电机,所述安装筒的内壁设置有第三支架,所述第三电机安装于所述第三支架上,所述第三轴流风轮与所述第三电机的转轴连接,所述第三轴流风轮和所述第一轴流风轮的送风方向相同。
可选地,所述第二电机为双轴电机,所述第二轴流风轮和所述第三轴流风轮分别套接于所述第二电机两端的输出轴上;或者,
所述第一电机为双轴电机,所述第一轴流风轮和所述第三轴流风轮分别套接于所述第一电机两端的输出轴上;或者,
所述安装筒对应所述第三轴流风轮的位置具有支撑部,所述第三轴流风轮与所述支撑部旋转连接。
可选地,所述壳体内设置有第一安装板,所述第一安装板对应所述第一出风口的位置开设有安装孔,所述风机组件安装在所述安装孔内。
可选地,所述第一出风口的数量为多个,所述风机组件与所述壳体活动连接,所述空调器室内机包括第二驱动组件,所述第二驱动组件与所述风机组件连接,并驱动所述风机组件活动,以使所述风机组件与多个所述第一出风口中的至少一个相对应;或者,
所述第一出风口的数量为多个,多个所述第一出风口沿所述空调器室内机的高度方向排列,多个所述第一出风口中至少有两个所述第一出风口对应设置有所述风机组件。
可选地,多个所述第一出风口沿所述空调器室内机的高度方向排列,所述第二驱动组件驱动所述风机组件沿所述空调器室内机的高度方向移动或摆动;和/或,
多个所述第一出风口横向排列,所述第二驱动组件驱动所述风机组件横向移动或摆动。
可选地,所述壳体上设置有密封板及第三驱动组件,所述密封板与所述壳体滑动连接,所述第三驱动组件与所述密封板连接,以驱动所述密封板沿所述空调器室内机的高度方向移动,使所述密封板对多个所述第一出风口中的一个进行密封。
可选地,所述壳体上开设有第二出风口,所述第一出风口和所述第二出风口在所述空调器的高度方向间隔排布,所述空调器室内机包括离心风机,所述离心风机安装在所述壳体内,所述离心风机向所述第二出风口送风。
可选地,所述风机组件位于所述离心风机的上方。
可选地,所述风机组件位于所述离心风机的下方。
可选地,所述壳体具有供所述风机组件安装的上风道,以及供所述离心风机安装的下风道;所述换热器安装在所述上风道内,所述风机组件位于所述换热器的前侧。
可选地,定义一投影平面,所述投影平面垂直于所述第一轴流风轮的旋转轴线,所述换热器在所述投影平面上的投影定义为换热投影,所述换热投影的长度方向设置为第一方向,所述换热投影的宽度方向设置为第二方向,所述换热投影具有在所述第一方向上的第一均分线、及在所述第二方向上的第二均分线;定义所述第一轴流风轮的旋转轴线在所述投影平面上的投影为送风中心点;所述送风中心点靠近所述第一均分线设置,和/或,所述送风中心点靠近所述第二均分线设置。
可选地,所述壳体包括底座,所述底座具有面向所述下风道的上表面,所述离心风机安装在所述底座的上表面;和/或,
所述壳体内设有供所述风机组件安装的第二安装板,所述第二安装板的下端向下延伸至所述下风道,所述离心风机安装在所述第二安装板的下部。
可选地,所述第二出风口设置在所述前面板的下部。
可选地,所述离心风机安装在所述背板的下部;和/或,
所述壳体设有位于所述换热器下方的接水盘,所述离心风机安装于所述接水盘。
本申请还提出一种空调器,该空调器包括室外机及如上所述的空调器室内机,所述空调器室内机包括:
壳体,具有相对的前面板和背板,所述前面板上开设有第一出风口,所述背板的中上部开设有进风口,且所述进风口和所述第一出风口相对设置;
换热器,设置在所述壳体内,且与所述进风口的位置相对应;
风机组件,设置在所述壳体内,并与所述第一出风口相对应;所述风机组件包括第一驱动组件、第一轴流风轮和第二轴流风轮,所述第一轴流风轮和所述第二轴流风轮的轴线方向一致,所述第一驱动组件与所述第一轴流风轮和所述第二轴流风轮连接,以驱动所述第一轴流风轮和所述第二轴流风轮转动,所述第一轴流风轮和所述第二轴流风轮的送风方向相同。
本申请通过使空调器室内机的风机组件包括两个轴流风轮,使两个轴流风轮的轴线方向一致,并通过第一驱动组件驱动多个轴流风轮旋转,使多个轴流风轮朝向相同的方向送风,以降低每个轴流风轮的旋转速度,从而降低风机组件送风时所产生的噪声。而且,通过在空调器室内机的壳体背板上开设进风口,在前面板上开设第一出风口,并使进风口和第一出风口中相对应,从而减少壳体对其内气流方向的改变,提高第一出风口处的风速,降低多个轴流风轮的转动速度,进而降低风机组件产生的噪声。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请空调器室内机一实施例的结构示意图;
图2为图1中空调器室内机的剖视图,其沿空调器室内机的轴向进行了剖视;
图3为本申请风机组件一实施例的结构示意图,其沿风机组件的轴向进行了剖视;
图4为本申请第一筒体、第一电机及第一轴流风轮一实施例的结构示意图;
图5为图4中第一筒体、第一电机及第一轴流风轮的装配示意图;
图6本申请第二筒体、第二电机及第二轴流风轮一实施例的结构示意图;
图7为图6中第二筒体、第二电机及第二轴流风轮的装配示意图;
图8为本申请安装板一实施例的结构示意图;
图9为本申请安装板及风机组件的装配示意图;
图10为本申请风机组件另一实施例的结构示意图;
图11为本申请第二驱动组件及第三驱动组件一实施的结构示意图;
图12为本申请空调器室内机另一实施例的结构示意图,其空调器室内机处于第一状态;
图13为图12中空调器室内机的剖视图,其沿空调器室内机的轴向进行了剖视;
图14为图12中空调器室内机处于第二状态时的结构示意图;
图15为图14中空调器室内机的剖视图,其沿空调器室内机的轴向进行了剖视;
图16为本申请空调器室内机又一实施例的结构示意图;
图17至19为图16中空调器室内机的剖视图,其沿空调器室内机的轴向进行了剖视;
图20为本申请的空调器室内机再一实施例的结构示意图;
图21为图20中沿A-A线的剖视图;
图22为图20中风机组件与换热器上部对应设置的示意图;
图23为图20中空调器的离心风机的另一种安装方式;
图24为图20中空调器的离心风机的再一种安装方式;
图25为图20中空调器的离心风机的又一种安装方式;
图26为图20中风机组件与换热器在投影平面内的位置关系图,其中,H1=200mm,H2=0mm;
图27为图20中风机组件与换热器在投影平面内的位置关系图,其中,H1=0mm,H2=0mm;
图28为图20中风机组件与换热器在投影平面内的位置关系图,其中,H1=-200mm,H2=0mm。
附图标号说明:
标号 名称 标号 名称
10 壳体 50 密封板
10a 背板 60 第一齿条
10b 前面板 61 齿轮
20 换热器 62 第二齿条
30 风机组件 101 进风口
32 第一轴流风轮 102 第一出风口
33 第二轴流风轮 321 第一扇叶
34 安装筒 331 第二扇叶
35 第三轴流风轮 311 第一电机
36 支撑部 312 第二电机
37 安装盘 341 第一支架
38 电机安装座 342 第二支架
40 第一安装板 343 第一筒体
41 安装孔 344 第二筒体
100 空调器室内机 133b 第二电机
100a 空调器室内机 150a 横百叶
110 壳体 150b 纵百叶
111 背板 160 接水盘
112 前面板 170 第二安装板
113 底座 180 分隔板
120 离心风机 190 导流板
130 风机组件 101a 进风口
131 安装座 102a 第一出风口
132a 第一轴流风轮 102b 第二出风口
132b 第二轴流风轮 30a 上风道
133a 第一电机 30b 下风道
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种空调器室内机,该空调器室内机主要用于空调器,以对空气的温度进行调节。
参照图1及图2,上述空调器室内机100包括壳体10,以及,设置在壳体10内的换热器20和风机组件30,壳体10的表面开设有进风口101和第一出风口102;换热器20设置在壳体10内,并与壳体10上的第一出风口102的位置相对应;风机组件30设置在壳体10内,并与第一出风口102相对,当空调器室内机100进行工作时,风机组件30的风轮转动,将室内的空气自进风口101吸入到壳体10内,并与壳体10内的换热器20进行热交换后,自第一出风口102排出,以达到调节室内空气温度的目的。其中,还可以在进风口101处安装进风格栅,并在进风格栅内侧设置过滤网,以对进入到进风口101内的空气进行过滤,避免空气中的灰尘进入到壳体10内而对空调器室内机100的寿命造成影响。
在一实施例中,如图3至图7所示,可以使风机组件30包括第一驱动组件第一轴流风轮32和第二轴流风轮33,第一轴流风轮32和第二轴流风轮33的轴线方向一致,第一驱动组件与第一轴流风轮32和第二轴流风轮33连接,以驱动第一轴流风轮32和第二轴流风轮33转动,使第一轴流风轮32和第二轴流风轮33的送风方向相同。其中,第一轴流风轮32的轴线和第二轴流风轮33的轴线可以同轴,也可以错开一定的距离,或者具有一定的夹角,当然,当第一轴流风轮32的轴线和第二轴流风轮33的轴线同轴时,风机组件30的送风效果更好。
可以理解的是,风机组件30通过驱动沿风机组件30的轴向分布的第一轴流风轮32和第二轴流风轮33旋转,使第一轴流风轮32和第二轴流风轮33同时向第一出风口102方向送风,由此,能够在风速满足要求的情况下,降低第一轴流风轮32和第二轴流风轮33的转速,以实现降低风机组件30工作时所产生的噪声的目的。
可选地,如图2所示,壳体10具有相对的前面板10b和背板10a,可以使进风口101位于壳体10的背板10a,使第一出风口102位于壳体10的前面板10b,并使进风口101与第一出风口102相对,以避免壳体10内的气流转向而导致风速降低的问题。
在一实施例中,如图3至图7所示,可以使风机组件30还包括安装筒34,该具有进风端及出风端,在安装筒34内还设置有支架结构,第一驱动组件、第一轴流风轮32和第二轴流风轮33安装在安装筒34内的支架结构上,由此,安装筒34能够对第一驱动组件、第一轴流风轮32和第二轴流风轮33进行保护和固定,以使风机组件30能够更加方便的安装壳体10内。
具体地,可以使第一驱动组件包括第一电机311和第二电机312,将第一轴流风轮32与第一电机311的转轴连接,并将第二轴流风轮33与第二电机312的转轴连接。其中,第一轴流风轮32和第一电机311的安装方式,以及,第二轴流风轮33和第二电机312的安装方式可根据第一电机311和第二电机312的类型而定。例如:当第一电机311和第二电机312内转子电机时,可以将第一轴流风轮32和第二轴流风轮33分别套接到第一电机311和第二电机312的转轴上;当第一电机311和第二电机312外转子电机时,可以将第一轴流风轮32和第二轴流风轮33分别套接到第一电机311和第二电机312的外转子上。其中,当第一电机311和第二电机312外转子电机时,风机组件30的整体长度更短,有利于节省壳体10的内部空间。
在一实施例中,可以使支架结构包括沿安装筒34的轴向排布的第一支架341和第二支架342,并使第一电机311和第二电机312分别安装到第一支架341和第二支架342上。由此,能够简化安装筒34的支架结构,降低支架结构对安装筒34内的气流的阻碍。
其中,第一支架341和安装筒34之间可以一体设置,也可以通过卡扣、螺钉等方式可拆卸的连接在一起,或者,还通过焊接、粘贴等方式固定连接在一起,其连接方式具体可根据第一支架341和安装筒34的结构而定。同样地,第二支架342和安装筒34之间可以一体设置,也可以通过卡扣、螺钉等方式可拆卸的连接在一起,或者,还通过焊接、粘贴等方式固定连接在一起,此处不再赘述。
另外,安装筒34可以是一体成型的,也可以是沿安装筒34的周向分布的第一筒体343和第二筒体344相互连接而成,并使第一支架341位于第一筒体343内,第二支架342位于第二筒体344内。
可以理解的是,当安装筒34包括第一筒体343和第二筒体344时,可以在将第一轴流风轮32和第二轴流风轮33安装到安装筒34内的过程中,先将第一轴流风轮32和第二轴流风轮33分别安装到第一筒体343和第二筒体344内,然后在将第一筒体343和第二筒体344相互连接,由此,能够避免安装筒34的长度过长而导致第一轴流风轮32和第二轴流风轮33与安装筒34内的支架结构固定不方便。
在一实施例中,可以使第一支架341可以大致呈“十”字形设置,其中心设置有供第一电机311安装的安装位,当然,该第一支架341也可以是呈“一”字形设置,或者呈Y字形设置均可,只需保证其具有较佳的稳定性即可。另外,第一轴流风轮32可以安装在第一支架341的外侧,也可以位于第一支架341的内侧。
对于第二支架342、第二电机312和第二轴流风轮33的位置关系及结构,对应与第一支架341、第一电机311和第一轴流风轮32相类似,此处不再赘述。
可选地,如图4及图6所示,还可以在风机组件30的第一电机311和/或第二电机312的转轴上套设安装盘37,并将第一轴流风轮32或第二轴流风轮33安装到安装盘37上,以使第一轴流风轮32或第二轴流风轮33的安装更加方便。
另外,还可以使风机组件30包括用于安装第一电机311和第二电机312的电机安装座38,该电机安装座38安装在第一支架341或第二支架342的安装位上,以使电机的安装更加方便。
在一实施例中,可以使第一轴流风轮32和第二轴流风轮33位于第一电机311和第二电机312之间,以使第一轴流风轮32和第二轴流风轮33之间能够保持较小的轴向距离,以减少第一轴流风轮32和第二轴流风轮33旋转所产生的空气涡流,降低噪声。
可选地,可以使第一轴流风轮32的第一扇叶321的弯曲方向,与第二轴流风轮33的第二扇叶331的弯曲方向相反。由此,当风机组件30工作时,驱动组件能够驱动第一轴流风轮32的旋转方向与第二轴流风轮33的旋转方向相反(也即第一轴流风轮32将气流由风机组件30的进风端导向出风端时的旋转方向,与第二轴流风轮33将气流由风机组件30的进风端导向出风端时的旋转方向相反),从而使第一轴流风轮32旋转产生的气流场与第二轴流风轮33产生的气流场相抵消,以进一步降低噪声。
当然,也可以使第一轴流风轮32的第一扇叶321的弯曲方向,与第二轴流风轮33的第二扇叶331的弯曲方向相同,则当风机组件30工作时,驱动组件驱动第一轴流风轮32的旋转方向与第二轴流风轮33的旋转方向也相同,此时,同样能够使空调器室内机100的出风口101处的出风量较大的同时,降低每个电机的转速,进而降低噪声。
另外,也可以使第一电机311和第二电机312位于第一轴流风轮32和第二轴流风轮33之间,或者,使第一轴流风轮32和第二轴流风轮33中的一个位于第一电机311和第二电机312之间,具体可根据空调器室内机100的结构而定。
在一实施例中,可以在壳体10内设置第一安装板40,并将风机组件30安装在该第一安装板40上,以减少风机组件30在壳体10内的晃动,使风机组件30的工作更加稳定。
具体地,可以在第一安装板40对应第一出风口102的位置开设安装孔41,并将风机组件30安装在该安装孔41内。
其中,当风机组件30包括安装筒34时,可以使安装筒34安装到安装孔41内,并与第一安装板40的侧表面固定连接,以使风机组件30的连接更加方便。
当然,风机组件30也可以直接与壳体10固定连接,具体可根据壳体10的结构而定。
在上述任意一实施例的基础上,如图10所示,风机组件30还可以包括第三轴流风轮35,该第三轴流风轮35与第一轴流风轮32和第二轴流风轮33的轴线方向一致,以对气流进行分散,使风机组件30具有无风感的效果。其中,可以使第三轴流风轮35、第一轴流风轮32及第二轴流风轮33沿壳体10的前侧至后侧依次排列,也可以使第一轴流风轮32、所述第二轴流风轮33及所述第三轴流风轮35沿壳体10的前侧至后侧依次排列。当然,当第三轴流风轮35、第一轴流风轮32及第二轴流风轮33沿壳体10的前侧至后侧依次排列时,风机组件30的无风感送风效果更好。
其中,第三轴流风轮35可以与壳体10旋转连接,也可以与安装筒34旋转连接,当然,当第三轴流风轮35与安装筒34旋转连接时,第三轴流风轮35的安装更加方便。
在一实施例中,可以使第一电机311为双轴电机,第一轴流风轮32和第三轴流风轮35分别套接在双轴电机两端的转轴上,以使第三轴流风轮35位于第一轴流风轮32背离第二轴流风轮33的一侧,由此,能够降低第一电机311的旋转速度,进而降低空调器室内机100的噪声。或者,也可以使第二电机312为双轴电机,第二轴流风轮33和第三轴流风轮35分别套接在该双轴电机两端的转轴上,以使第三轴流风轮35位于第二轴流风轮33背离第一轴流风轮32的一侧,此处不再赘述。
另外,也可以使第一驱动组件包括第三电机(未示出),在安装筒34的内壁设置第三支架(未示出),第三电机安装在第三支架上,第三轴流风轮35与第三电机的转轴连接。由此,能够通过第三电机驱动第三轴流风轮35旋转,送风,以进一步降低每个轴流风轮的转速,降低噪声。或者,也可以在安装筒34或壳体10对应第三轴流风轮35的位置设置支撑部36,使第三轴流风轮35与支撑部36旋转连接,并自由旋转,以对进入到风机组件30内的气流进行分散,实现无风感的效果。
在另一些实施例中,如图12至图15所示,可以使前面板10b上开设的第一出风口102的数量为多个,使风机组件30与壳体10活动连接,并使空调器室内机100包括第二驱动组件,该第二驱动组件与风机组件30连接,并驱动风机组件30活动,以使风机组件30与多个第一出风口102中的至少一个相对应,从而使风机组件30将壳体10内的空气自第一出风口102吹出。其中,第二驱动组件可以驱动风机组件30移动、摆动等等,具体可根据壳体10的结构及第一出风口102的位置而定。
可以理解的是,通过第二驱动组件驱动风机组件30在壳体10内活动,可以使风机组件30与多个出风口中的至少一个相对,从而改变空调器室内机100的出风高度或左右出风的方向,使空调器室内机100的送风方式更加灵活。
在一实施例中,可以使多个第一出风口102沿空调器室内机100的高度方向排列,并使第二驱动组件驱动风机组件30沿空调器室内机100的高度方向移动或摆动,使风机组件30与多个第一出风口102中的至少一个相对。由此,用户可以在空调器进行制冷时,如图12及图13所示,将风机组件30移动至与空调器室内机100上部的第一出风口102相对的位置,或者,使风机组件30摆动至朝向空调器室内机100上部的第一出风口102的位置,使空气沿图13中的箭头方向进入到空调器室内机100内,并自出风口101吹出,从而增加风机组件30的送风距离,以实现快速制冷;当空调器在进行制热时,如图14及图15,可以将风机组件30移动至与空调器室内机100中部或下部的第一出风口102相对的位置,或者,使风机组件30摆动至朝向空调器室内机100中部或下部的第一出风口102的位置,使空气沿图15中的箭头方向进入到空调器室内机100内,并自出风口101吹出,从而使空调器室内机100内的热风自空调器室内机100的中部或下部吹出后向上流动,使室内的温度分布均匀,送风舒适性好。
其中,第一出风口102的数量可以为两个、三个甚至更多,具体可根据第一出风口102及空调器室内机100的结构而定。可以使第一出风口102的数量为两个,且分别位于空调器室内机100的上部和中部。
当然,也可以使多个第一出风口102横向排布,或者,使多个第一出风口102同时沿横向以及空调器室内机100的高度方向排布。其中,当多个第一出风口102横向排布时,第二驱动组件驱动风机组件30横向移动或摆动,以使风机组件30与多个第一出风口102中的至少一个相对,此处不再赘述。
在一实施例中,还可以在壳体上设置有密封板50及第三驱动组件,该密封板50相对壳体10活动,第三驱动组件与密封板50连接,以驱动密封板50沿空调器室内机100的高度方向移动,以使密封板50移动至对多个第一出风口102中的一个相对的位置,并对该第一出风口102进行密封。由此,当风机组件30与多个第一出风口102中的一个相对时,第三驱动组件可以控制密封板50沿空调器室内机100的高度方向移动至设定位置,以密封其余的第一出风口102,方式室内的空气从未送风的第一出风口102进入到壳体10内而影响空调器室内机100的送风温度。
其中,用于驱动风机组件30沿空调器室内机100的高度方向移动的第二驱动组件,以及驱动密封板结构沿空调器室内机100的高度方向移动的第三驱动组件可以有多种,具体可根据密封板及风机组件的形状而定。
例如图11所示,可以使第二驱动组件包括与风机组件30连接的第一齿条60,以及与壳体10旋转连接,并与该第一齿条60啮合的齿轮61,第一齿条60沿空调器室内机100的高度方向延伸,齿轮61用于接受来自空调器室内机100内的电机的旋转力,并驱动第一齿条60沿空调器室内机100的高度方向移动。由此,通过控制齿轮61转动,即可驱动第一齿条60沿空调器室内机100的高度方向移动,进而控制风机组件30沿空调器室内机100的高度方向移动。
同样地,也可以使第三驱动组件包括与密封板50连接的第二齿条62,以及与壳体10旋转连接,并与该第二齿条62啮合的齿轮,第二齿条62沿空调器室内机100的高度方向延伸,由此,通过控制齿轮转动,即可驱动第二齿条62沿空调器室内机100的高度方向移动,进而控制密封板50沿空调器室内机100的高度方向移动至设定位置。
在一实施例中,可以使出风口101的数量可以为两个,并使齿轮61同时与第一齿条60和第二齿条60啮合,其中,齿轮61位于第一齿条60和第二齿条62之间,由此,当齿轮61驱动第一齿条60向上移动时,该齿轮61会同时驱动第二齿条62向下移动,通过对齿轮61、第一齿条60和第二齿条60的尺寸,以及,对两个出风口101之间的距离进行设置,即可使风机组件30移动到与两个出风口101a中的一个相对时,密封板50与两个出风口101中的另一个相对,并密封出风口101,同时使第二驱动组件和第三驱动组件的结构更加紧凑。
当风机组件30与壳体10摆动连接时,可以使在风机组件30上设置齿轮,并使该齿轮与上述齿轮61啮合,则通过齿轮61的转动,既可以带动风机组件30转动或摆动。
另外,还可以通过液压缸、气压缸、皮带等传动方式使风机组件30移动或摆动,此处不再赘述。
当然,当前面板10b上的出口风101的数量为多个时,如图16及图17所示,也可以在多个出风口101中的至少两个出风口101对应设置有风机组件30,由此,能够控制一个或多个风机组件30旋转,以使空调器室内机100具有不同的送风高度。例如:使多个出风口101内的风机组件30旋转送风,则空气沿图17中的箭头方向进入到空调器室内机100内,并从多个出风口101吹出。或者,在空调器制冷时,单独使空调器室内机100上部出风口101内的风机组件30进行送风,则空气沿图18中箭头所示的方向进入到空调器室内机100内,并从空调器室内机100上部第一出风口102吹出,以增大空调器室内机100内冷气的输送距离。当空调器制热时,可以单独使空调器室内机100中部出风口101内的风机组件30进行送风,则空气沿图19中箭头所示的方向进入到空调器室内机100内,并从空调器室内机100中部的第一出风口102吹出,以提高空调器室内机100内暖风的送风距离,并提高送风舒适性。
其中,为避免一个或多个风机组件30在送风的过程中,室内的空气自未送风的出风口101进入到壳体10内,而影响空调器室内机100的温度调节效果,除了可以在未送风的第一出风口102处设置密封板以密封该第一出风口102外,还可以使与未送风的第一出风口102相对应的风机组件30以小功率向外送风,以防止室内的空气进入自该第一出风口102进入到壳体10内。
在一实施例中,可以在前面板10b上开设两个出口风101,并在壳体10内对应两出风口11的位置设置风机组件30,其中,两个出风口101分别位于空调器室内机100的中部和上部,以使空调器室内机100具有较好的送风舒适性的同时,的壳体10的结构更加简单。
本申请公开一种空调器室内机,所述空调器室内机能够实现分布式送风,提高所述空调器室内机送风方式的灵活性。所述空调器室内机可以是落地式空调器室内机,或者是壁挂式空调器室内机,在此以落地式空调器室内机为例进行解释说明。本申请的说明书附图中,实现箭头指示的是槽、孔或空间等结构,虚线箭头指示的是气流流动方向。
请参阅图20和图21,本申请的空调器室内机100a的一实施例中,空调器室内机100a包括壳体110、离心风机120、以及风机组件130。其中,壳体110具有第一出风口102a和第二出风口102b,第一出风口102a和第二出风口102b在空调器室内机100a的高度方向间隔排布。风机组件130安装在壳体110内,以向第一出风口102a送风,该风机组件130可以为上述任意一实施例的中的风机组件30,也可以为图20和图21中所示的对旋风机的结构,下面会对图20和图21中的对旋风机的结构进行详细描述,此处不再赘述。离心风机120安装在壳体110内,以向第二出风口102b送风。
具体而言,壳体110包括背板111和前面板112,壳体110的沿垂直于上下方向的平面所截得的截面(虚拟截面)可以呈方形或圆形设置,或者多边形。壳体110在其背板111上设有进风口101a,进风口101a处设有进风格栅;壳体110在其前面板112上设有第一出风口102a和第二出风口102b,第一出风口102a和第二出风口102b处设有用以调节出风角度的百叶,所述百叶包括横百叶150a和纵百叶150b。
对于第一出风口102a和第二出风口102b的具体位置,可依据不同的空调器类型尺寸进行相应设计。其中,对于落地式空调器室内机而言,第一出风口102a和第二出风口102b可以沿落地式空调器室内机的高度方向排布,例如,第二出风口102b位于第一出风口102a的上方(可参阅图20至图22);或者,第二出风口102b位于第一出风口102a的下方(可参阅图23至图25)。对于壁挂式空调器室内机而言,如果该壁挂式空调器室内机为横挂式空调器,则第一出风口102a和第二出风口102b可以沿落地式空调器室内机的长度方向排布;如果该壁挂式空调器室内机为竖挂式空调器室内机,则第一出风口102a和第二出风口102b可以沿落地式空调器室内机的高度方向排布。对于天花机而言,天花机的前面板大多为圆形或者方形,因此,第一出风口102a和第二出风口102b可沿其前面板的宽度或长度方向排布均可。此外,上述任意机型的空调器室内机,其第一出风口102a和第二出风口102b均可以是间隔设置,也可以是连通设置;第一出风口102a和第二出风口102b的形状,可以设置为圆形、方形或者椭圆形均可,并没有具体限定。具体在此,第一出风口102a呈方形或圆形设置;第二出风口102b呈长条形设置,以与贯流风轮120对应。空调器室内机100a还包括安装在壳体110内的换热器140,换热器140遮盖进风口101a。
在空调器室内机100a工作时,外部空气从进风口101a进入,并从换热器140通过而进入到壳体110内部,此时外部空气与换热器140换热而形成出风空气;其中,一部分出风空气则在风机组件130的驱动下,从第一出风口102a吹向室内,这一部分出风空气被风机组件130向其周向打散,有效降低风速;另一部分出风空气在离心风机120驱动下,从第二出风口102b吹向室内。显然,空调器室内机100a将较为强劲的出风空气从两个出风口分流出风,每个出风口的出风量相对较小,避免集中吹向用户;再者,风机组件130将出风空气沿其周向打散,使得出风空气更为柔和,进而实现柔风感。
本申请的技术方案,通过在壳体110上设置第一出风口102a和第二出风口102b,并在壳体110内安装向第一出风口102a送风的风机组件130,以及向第二出风口102b送风的离心风机120,以在离心风机120和风机组件130的驱动下,空调器室内机100a将较为强劲的出风空气从两个出风口分流出风,每个出风口的出风量相对较小,避免集中吹向用户;再者,风机组件130将出风空气沿其周向打散,使得出风空气更为柔和,进而实现柔风感,提高舒适性。此外,由于离心风机120工作时所产生的噪音相对较小,故相较于具有两个风机组件130或两个第一轴流风轮的空调器室内机100a而言,本申请的空调器室内机100a的噪音更低。由于第一出风口102a和第二出风口102b间隔设置,第一出风口102a和第二出风口102b所处高度不同,从而通过控制离心风机120和风机组件130的开关,可实现第一出风口102a和第二出风口102b向不同的高度层的空间送风,实现上下分布式送风。例如,离心风机120和风机组件130可以同时开启,实现第一出风口102a和第二出风口102b同时送风。或者,离心风机120和风机组件130仅其中之一开启,使得第一出风口102a和第二出风口102b中与之对应的出风口单独送风。如此,可使得空调器室内机100a的送风方式更为灵活,用户可依据自身需求调节送风方式。
请参阅图20和图21,基于上述实施例,考虑到空调器室内机100a的整机高度较大,如果第一出风口102a和第二出风口102b的位置较高,则制热状态下所产生的暖风不易到达用户的足部,影响其舒适性。在此,为了使空调器室内机100a能够达到暖足效果,将第二出风口102b设置在壳体110前面板112的下部,从而在制热状态下时,打开第二出风口102b,使得暖风从第二出风口102b吹向用户的足部,达到暖足效果。而在制冷状态下,为避免冷风直吹用户,则可通过百叶调节第二出风口102b的送风角度,使得冷风吹不到用户足部;或者,在第二出风口102b活动安装一个风门,通过所述风门关闭第二出风口102b,避免冷风直吹用户足部亦可。
请继续参阅图20和图21,鉴于第二出风口102b位于第一出风口102a的下方,壳体110具有供风机组件130安装的上风道30a,上风道30a连通所述进风口101a和第一出风口102a;壳体110还具有供离心风机120安装的下风道30b,下风道30b连通上风道30a和第二出风口102b。换热器140安装在壳体110内,且位于上风道30a。
具体而言,上风道30a大致呈直线形,上风道30a包括位于风机组件130后侧的后进风段,以及位于风机组件130后侧的前出风段;下风道30b大致呈L形设置,下风道30b包括与所述后进风段连通的纵向进风段,以及连通所述纵向进风段和第二出风口102b的横向出风段。如此设计,可将第一出风口102a和第二出风口102b间隔分开一段距离,即第一出风口102a处于空调器室内机100a的上部,所处位置较高,可向上层空间远距离送风,达到较大的送风距离;第二出风口102b处于空调器室内机100a的下部,所述位置较低,可向下层空间送风,使得热空气可吹向用户,达到较佳的暖足效果。当空调器室内机100a工作时,外部空气与换热器140换热而形成的出风空气,进入上风道30a后,一部分出风空气在风机组件130的驱动下,从上风道30a流向第一出风口102a,并从第一出风口102a向室内吹出;另一部分出风空气则从上风道30a分流进入到下风道30b,在离心风机120的驱动下,从下风道30b流向第二出风口102b,并从第二出风口102b向室内吹出。
以下将对风机组件130的结构进行详细介绍。
请继续参阅图20和图21,基于上述任意一实施例,对于风机组件130的结构,风机组件130包括安装座131、第一轴流风轮132a、第二轴流风轮132b,以及第一电机133a,其中,第一轴流风轮132a安装于安装座131,并与第一电机133a连接;第二轴流风轮132b可转动地安装于安装座131,且位于第一轴流风轮132a的前侧。第一轴流风轮132a和第二轴流风轮132b的结构可以参照上述第一轴流风轮132和第二轴流风轮132的结构,安装座131可以参照上述第一支架341和第二支架342的结构,此处不再赘述。
请参阅图20和图21,对于第一轴流风轮132a而言,第一轴流风轮132a由第一电机133a驱动转动。对于第二轴流风轮132b而言,由于第二轴流风轮132b可转动地安装在安装座131上,因此,第一种驱动方式为:第二轴流风轮132b由其他电机驱动旋转,该电机驱动第二轴流风轮132b和第一轴流风轮132a向相反的方向旋转,以将出风空气沿其轴向向前吹出,如此可延长送风距离。第二种驱动方式为:第二轴流风轮132b通过反向传动结构与第一轴流风轮132a连接,以通过第一轴流风轮132a带动第二轴流风轮132b旋转。第三种驱动方式为:第二轴流风轮132b由第一轴流风轮132a旋转所产生的气流驱动旋转,此时第二轴流风轮132b的旋转方向与第一轴流风轮132a的旋转方向一致。后两种驱动方式可节省电机成本和由电机工作而产生噪音。这三种驱动方式,可依据需求相应选取,具体在后文中还有详细介绍。
请参阅图20和图21,考虑到空调器室内机100a在执行送风时,以第一轴流风轮132a将气流导引至所述出风口时的旋转方向为顺时针为例,此时,在第一轴流风轮132a的作用下,外部空气穿过换热器140并流向第一轴流风轮132a的前方,气流具有沿顺时针方向的旋转动能和沿第一轴流风轮132a轴向上的轴向动能。如果第二轴流风轮132b在向前主动送风时,其转动方向与第一轴流风轮132a的转动方向一致,那么最终由第二轴流风轮132b导出的气流具有较高的旋转动能。
在一实施例中,第一轴流风轮132a与第二轴流风轮132b的轴线方向一致,并且,第一轴流风轮132a将气流由所述旋转中心导向所述出风端时的旋转方向,与第二轴流风轮132b将气流由所述旋转中心导向所述出风端时的旋转方向相反。如此,位于两轴流风轮之间的气流从第二轴流风轮132b流出时,其绝大部分旋转动能会转化为轴向动能,如此,送风距离就更远。
请参阅图20和图21,对于驱动第二轴流风轮132b反向旋转的驱动方式,在此优选,风机组件130还包括与第二轴流风轮132b连接的第二电机133b,第二轴流风轮132b通过第二电机133b驱动转动。第一电机133a和第二电机133b工作时的转速可以相同,也可以不同。例如,在同时控制第一电机133a和第二电机133b工作时,第一电机133a的转速可以大于第二电机133b的转速,也可以是第一电机133a的转速小于第二电机133b的转速,也可以是当控制两个电机减速运行时,其中一个电机的转速减速至0。
显然,通过调节第一电机133a和第二电机133b的转速(即相当于第一轴流风轮132a和第二轴流风轮132b的转速),来实现风机组件130的送风距离的增加或降低,从而提高了空调器室内机100a的送风范围。例如,当该空调器室内机100a运行时,第一轴流风轮132a旋转,将气流从进风口101a导入壳体110内,并导向第一轴流风轮132a的前方。此时,如果需要增大送风距离,可以增加第二轴流风轮132b的转速。如果需要降低送风距离,可以降低第二轴流风轮132b的转速,或者停止第二轴流风轮132b运转,或者控制第二轴流风轮132b反转(相对于第二轴流风轮132b送风时的旋转方向)。当然,为了调整送风距离,还可以同时调节第一轴流风轮132a和第二轴流风轮132b的转速,例如,同时增大第一轴流风轮132a和第二轴流风轮132b的转速;也可以减小第一轴流风轮132a的转速,并增加第二轴流风轮132b的转速;还可以同时降低第一轴流风轮132a的转速和第二轴流风轮132b的转速;也可以增加第一轴流风轮132a的转速,减小第二轴流风轮132b的转速。
但是,如果第一电机133a的转速大于第二电机133b的转速相同,则第一轴流风轮132a和第二轴流风轮132b旋转时所产生的旋转动能会叠加,轴向动能减少,进而使得出风量减少。为避免这种情况发生,可选地,第一电机133a的转速和第二电机133b的转速相异。如此,可避免第一轴流风轮132a和第二轴流风轮132b旋转时所产生的旋转动能叠加,将绝大部分旋转动能会转化为轴向动能,大大改善柔风感的送风量,提高的柔风感舒适度。鉴于第一电机133a作为主要驱动装置,可选地,第一电机133a的转速大于第二电机133b的转速。
请参阅图20和图21,当然,驱动第二轴流风轮132b反向旋转的驱动方式并不局限于此,在其它实施例中,风机组件130包括反向传动结构,第一电机133a具有电机轴,电机轴的一端连接第一轴流风轮132a,电机轴的另一端通过反向驱动结构连接第二轴流风轮132b,以在第一电机133a驱动第一轴流风轮132a转动时,通过反向传动结构驱动第二轴流风轮132b反向转动。通过反向传动结构,可减少电机的使用,进而减小成本以及由电机所产生的噪音。至于反向传动结构具体结构,在机械领域较为常见,在此不一一详举。
还请参阅图20和图21,鉴于换热器140位于风机组件130的后侧,且遮盖进风口101a。所述换热器140优选设置为规则形状;比如,所述换热器140可设置为直排式结构、或V型结构、或W型结构、或U型结构、或C型结构,即所述换热器140的横向截面设置为直线形、或V形、或W形、或U形、或C形。如此,可便于生产和安装换热器140。且当换热器140的横向截面设置为直线形、或V形、或W形、或U形、或C形时,可便于增大换热面积,从而有利于提高空调器室内机100a的换热效率。当然,换热器140也可设置为不规则形状。
还请参阅图20、图21、图26,在本实施例中,换热器140为直排换热器。为了提高风机组件130的送风效果,可将风机组件130的进风面正对换热器140的换热面。为此优选,定义一投影平面,所述投影平面垂直于所述第一轴流风轮132a的旋转轴线,换热器140在所述投影平面上的投影定义为换热投影S0,所述换热投影S0的长度方向设置为第一方向,所述换热投影S0的宽度方向设置为第二方向,所述换热投影S0具有在所述第一方向上的第一均分线L1、及在所述第二方向上的第二均分线L2;定义所述第一轴流风轮132a的旋转轴线在所述投影平面上的投影为送风中心点;所述送风中心点靠近所述第一均分线L1设置,和/或,所述送风中心点靠近所述第二均分线L2设置。
在此应当指出:(1)风机组件130的“轴线”指的是第一轴流风轮132a的旋转轴线、或第二轴流风轮132b的旋转轴线、或者用于安装第一轴流风轮132a和第二轴流风轮132b的安装座131的中心线。(2)“投影平面”为一虚设的平面,且投影平面具有垂直于第一轴流风轮132a的轴线的特性,对于本领域技术人员来说这是一清楚、准确的概念;定义该投影平面是为了便于理解本申请。(3)所述第一均分线L1指的是沿第二方向延伸、并将换热投影S0均分成在第一方向上相等的两部分的线,所述第二均分线L2指的是沿第一方向延伸、并将换热投影S0均分成在第二方向上相等的两部分的线。
当换热器140为规则形状时,换热器140在投影平面上的投影,即换热投影S0一般为矩形或类矩形;此时,第一均分线L1指的是,位于第二方向上的两对边的中点的连线,第二均分线L2指的是,位于第一方向上的两对边的中点的连线。
当换热器140为不规则形状时,所述第一均分线L1沿第二方向延伸、并将换热投影S0均分成在第一方向上相等的两部分,所述第二均分线L2沿第一方向延伸、并将换热投影S0均分成在第二方向上相等的两部分。具体的,确定不规则形状的第一方向和第二方向时,可以参照:以换热投影S0的最长处的连线作为第一方向,垂直于第一方向的方向为第二方向;或者,以换热投影S0的最宽处的连线作为第二方向,垂直于第二方向的方向为第一方向。在本申请公开的基础上,本领域技术人员可以根据实际情况确定不规则形状的换热投影S0的长度方向和宽度方向,从而确定第一均分线L1和第二均分线L2,这些也应当属于本申请的保护范围内。
具体而言,第一均分线L1/第二均分线L2既可以为直线,也可以为曲线。还请参阅图20、图21、图26,第一轴流风轮132a与第二轴流风轮132b优选为同轴设置。但,本申请中的“同轴”并非严格意义上的同轴,在实际生产(装配)过程,允许有误差存在,这仍不违背本申请的发明构思,也不会对本申请的技术效果造成较为显著的影响;即,本申请允许第一轴流风轮132a的旋转轴与第二轴流风轮132b的旋转轴之间存在偏差。在本实施例中,所述第一轴流风轮132a的旋转轴线、第二轴流风轮132b的旋转轴线以及安装座131的中心线三者共线设置。
经实验可知,当风机组件130的轴线在第一方向上靠近第一均分线L1设置时,和/或,当风机组件130的轴线在第二方向上靠近第二均分线L2设置时,不仅可提高风机组件130的吸风效率,降低噪音;而且还有利于使换热器140上不同区域的进风速度趋于均匀,从而可提高换热器140的换热效率。
具体的,当风机组件130的轴线在第一方向上靠近第一均分线L1设置时,可使得换热器140的在其长度方向上均分的两部分的进风速度和进风量趋于相同;当风机组件130的轴线在第二方向上靠近第二均分线L2设置时,可使得换热器140在其宽度方向上均分的两部分的进风速度和进风量趋于相同。
可以理解,本申请空调器室内机100a,通过设置沿轴向相邻设置的第一轴流风轮132a和第二轴流风轮132b,可以增大风机组件130和空调器室内机100a的出风量和送风距离,从而可有效提高客厅等空间范围大的房间的送风舒适性。同时,同时通过将风机组件130的轴线在第一方向上靠近第一均分线L1设置,和/或,所述风机组件130的轴线在第二方向上靠近第二均分线L2设置,不仅可提高风机组件130的吸风效率、降低噪音;而且还有利于使换热器140上不同区域的进风速度趋于均匀,从而可降低换热器140换热时的噪音、提高换热器140的换热效率,从而可提高空调器室内机100a的工作效率。
具体的,所述风机组件130的轴线与第一均分线L1在第一方向上具有第一距离H1,所述风机组件130的轴线与第二均分线L2在第二方向上具有第二距离H2。
对于本申请空调器室内机100a,评价其性能的参数有噪音、换热器140上不同区域的进风速度等,而影响上述参数的因素有第一距离H1和第二距离H2。本申请以第二距离H2不变(第二距离H2等于0毫米)、第一距离H1变化来解释本申请。
如下表1所示,在本申请提供的实验中,当第二距离H2不变,H2=0毫米,风机组件130的送风距离约为14米,功率为36W,即其他条件不变,第一距离H1在-300毫米至300毫米之间变化时,换热器140产生的噪音的变化情况。其中“-”是指在第一均分线L1下方。
表1.噪音(dB)关于第一距离H1(毫米)的变化趋势表
序号 1 2 3 4 5 6 7 8 9 10 11
H1/mm -300 -200 -150 -100 -50 0 50 100 150 200 300
噪音/dB 48.5 48 47.5 47.2 46.9 46.5 47 47.3 47.6 48 48.6
从表1可以看出,H1的值越小,噪音越小,当H1=0毫米时,噪音最小。所以,应使:所述第一距离H1大于或等于0毫米,第一距离H1小于或等于150毫米;可选地,所述第一距离H1大于或等于0毫米,第一距离H1小于或等于100毫米。
还请参阅图20、图26至图28,在本申请提供的实验中,当第二距离H2等于0毫米,风机组件130的送风距离约为14米,功率为36W,即其他条件不变;第一距离H1分别为0毫米和200毫米时,换热器140上不同区域的进风速度的变化情况。
表2.换热器上不同区域的进风速度(m/s)关于第一距离H1(毫米)的变化趋势表
各个标记点对应的风速m/s
标记点
H1
H1=200mm 2.7 2.7 2.7 3 3 3 2.5 2.6 2.5 2 2 2 1.5 1.5 1.4
H1=0mm 2.1 2.1 2 2.6 2.7 2.6 3.1 3 3.1 2.6 2.6 2.7 2.1 2.1 2.1
H1=-200mm 1.4 1.5 1.4 2 2.1 2.6 2.5 2.6 3 3.1 3 2.7 2.7 2.7
从表2可以看出,H1的值越小,换热器140上不同区域的进风速度大小越均匀,换热器140的换热效率越高;当H1=0毫米时,换热器140上不同区域的进风速度大小最均匀,此时,换热器140的换热效率最高。
所以,从上述实验数据可知,第一距离H1越小,噪音越小,换热器140上不同区域的进风速度大小越均匀,风机组件130的吸风效率越好,换热器140的换热效率越高。在具体的实施例中,应使:所述第一距离H1大于或等于0毫米,第一距离H1小于或等于150毫米;可选地,所述第一距离H1大于或等于0毫米,第一距离H1小于或等于100毫米。
而当第二距离H2取其他数值,并控制第一距离H1变化时,也可得到上述类似结果,具体数据在此不必详述。
可选地,当第一距离H1不变,并控制第二距离H2变化时,得到:第二距离H2越小,噪音越小,换热器140上不同区域的进风速度大小越均匀,风机组件130的吸风效率越好,换热器140的换热效率越高;其具体数据在此不必详述。在具体的实施例中,应使:所述第二距离大于或等于0毫米,第二距离小于或等于100毫米。
定义第一均分线L1与第二均分线L2的交点为换热中心点P1 ,所述换热中心点P1可表示换热器140的型心。根据上述实验,分析可知,所述风机组件130的轴线距离换热中心点P1越近,噪音越小,换热器140上不同区域的进风速度大小越均匀,风机组件130的吸风效率越好,换热器140的换热效率越高;故,在具体实施例中,应使:所述风机组件130的轴线靠近换热中心点P1 设置。且,当换热中心点P1位于风机组件130的轴线上时,噪音最小,换热器140上不同区域的进风速度大小最均匀,风机组件130的吸风效率最好,换热器140的换热效率最高。
请参阅图22,除此之外,在其它实施例中,风机组件130的旋转中心也可以和换热器140的上部处于同一高度位置,这样风机组件130的位置相对较高,可以想更远的方位送风,有效延长第一出风口102a的送风距离。
以下将对离心风机120的具体安装位置进行详细介绍。
对于离心风机120的安装位置,离心风机120可安装在所述纵向进风段的侧壁上,或者安装于所述纵向进风段的底部。具体可依据需求及安装难易程度进行相应选取,在此不设限定。
请参阅图22,在上述第一实施例中,离心风机120可以安装在背板111的下部。也就是,背板111的下端面向所述纵向进风段,并形成所述纵向进风段的后侧壁。将离心风机120安装在背板111的下部,即是安装在所述纵向进风段的后侧壁上,如此使得离心风机120的重力作用施加到空调器室内机100a的后端;而由于风机组件130较为靠近前面板112,风机组件130的重力作用施加到空调器室内机100a的前端,如此,风机组件130和离心风机120配合使得空调器室内机100a保持平衡,稳定性较高。
请参阅图23,对于离心风机120另一种安装方式:壳体110的设有位于换热器140下方的接水盘160,离心风机120安装于接水盘160。接水盘160实际安装在背板111上,将离心风机120安装于接水盘160,也可以使得离心风机120的重力作用施加到空调器室内机100a的后端,进而与风机组件130配合使得空调器室内机100a保持平衡,稳定性也较高。
请参阅图24,对于离心风机120再一种安装方式:壳体110内设有供风机组件130安装的第二安装板170,所述第二安装板170的下端向下延伸至下风道30b,离心风机120安装在所述第二安装板170的下部。也就是,所述第二安装板170的下端形成所述纵向进风段的前侧壁,离心风机120安装在纵向进风段的前侧壁。第二安装板170和风机组件130的安装方式可参照上述第一安装板40与风机组件30的安装方式,此处不再赘述。鉴于风机组件130和离心风机120均安装在所述第二安装板170上,为避免此两者发生共振,可选地,风机组件130的电机的转速和离心风机120的电机转速相异。
请参阅图25,对于离心风机120又一种安装方式:壳体110包括底座113,底座113具有面向下风道30b的上表面,离心风机120安装在底座113的上表面。也就是,底座113的上表面形成所述横向出风段的底壁,离心风机120安装在所述横向出风段的底壁上。离心风机120的重力作用施加在空调器室内机100a的底座上,使得空调器室内机100a整机的重心较靠下,进而使得空调器室内机100a能够保持平衡,稳定性也较高。此外,进入所述纵向进风段之后的出风空气,能够直接从离心风机120的中心进入,并从离心风机120的周边直接向第二出风口102b吹出,大大减小了出风空气流动的风阻,同时减小离心风机120工作时所产生的噪音。
为提高空调器室内机100a的平衡性,可选地,风机组件130的旋转中心位于离心风机120的轴向延伸线上,从而在空调器室内机100a竖立放置时,风机组件130和离心风机120的重力作用施加在底座113的中心位置,能够确保空调器室内机100a保持平衡,不易倾倒。
需要说明的是,当离心风机120的数量为一个时,可以按照上述多种安装方式中的一种进行安装,当离心风机120的数量为多个时,可以使多个离心风机120按照上述多种安装方式中的两种或多种方式进行安装。
本申请还提出一种空调器,该空调器包括室外机及空调器室内机,在装配空调器的过程中,空调器室内机与室外机通过冷凝管路连接,空调器室内机的具体结构参照上述实施例。可以理解的是,由于本申请提出的空调器包括上述空调器室内机的所有实施例的所有方案,因此,至少具有与所述空调器室内机相同的技术效果,此处不一一阐述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种空调器室内机,其中,所述空调器室内机包括:
    壳体,具有相对的前面板和背板,所述前面板上开设有第一出风口,所述背板的中上部开设有进风口,且所述进风口和所述第一出风口相对设置;
    换热器,设置在所述壳体内,且与所述进风口的位置相对应;
    风机组件,设置在所述壳体内,并与所述第一出风口相对应;所述风机组件包括第一驱动组件、第一轴流风轮和第二轴流风轮,所述第一轴流风轮和所述第二轴流风轮的轴线方向一致,所述第一驱动组件与所述第一轴流风轮和所述第二轴流风轮连接,以驱动所述第一轴流风轮和所述第二轴流风轮转动,所述第一轴流风轮和所述第二轴流风轮的送风方向相同。
  2. 如权利要求1所述的空调器室内机,其中,所述风机组件还包括安装筒,该安装筒具有进风端和出风端,所述安装筒的内壁设置有沿该安装筒的轴线方向排布的第一支架和第二支架;
    所述第一驱动组件包括安装于所述第一支架上的第一电机,及安装于所述第二支架上的第二电机,所述第一轴流风轮与所述第一电机的转轴连接,所述第二轴流风轮与所述第二电机的转轴连接。
  3. 如权利要求2所述的空调器室内机,其中,所述第一轴流风轮和所述第二轴流风轮位于所述第一电机和所述第二电机之间。
  4. 如权利要求3所述的空调器室内机,其中,所述第一轴流风轮的第一扇叶的弯曲方向,与所述第二轴流风轮的第二扇叶的弯曲方向相反,并且,所述第一轴流风轮的旋转方向与所述第二轴流风轮的旋转方向相反。
  5. 如权利要求2所述的空调器室内机,其中,所述风机组件还包括第三轴流风轮,所述第三轴流风轮与所述安装筒旋转连接,且所述第三轴流风轮与所述第一轴流风轮的轴线方向一致;
    所述第三轴流风轮、所述第一轴流风轮及所述第二轴流风轮沿所述壳体的前侧至后侧依次排列,或者,所述第一轴流风轮、所述第二轴流风轮及所述第三轴流风轮沿所述壳体的前侧至后侧依次排列。
  6. 如权利要求5所述的空调器室内机,其中,所述第一驱动组件包括第三电机,所述安装筒的内壁设置有第三支架,所述第三电机安装于所述第三支架上,所述第三轴流风轮与所述第三电机的转轴连接,所述第三轴流风轮和所述第一轴流风轮的送风方向相同。
  7. 如权利要求5所述的空调器室内机,其中,所述第二电机为双轴电机,所述第二轴流风轮和所述第三轴流风轮分别套接于所述第二电机两端的输出轴上;或者,
    所述第一电机为双轴电机,所述第一轴流风轮和所述第三轴流风轮分别套接于所述第一电机两端的输出轴上;或者,
    所述安装筒对应所述第三轴流风轮的位置具有支撑部,所述第三轴流风轮与所述支撑部旋转连接。
  8. 如权利要求1所述的空调器室内机,其中,所述壳体内设置有第一安装板,所述第一安装板对应所述第一出风口的位置开设有安装孔,所述风机组件安装在所述安装孔内。
  9. 如权利要求1所述的空调器室内机,其中,所述第一出风口的数量为多个,所述风机组件与所述壳体活动连接,所述空调器室内机包括第二驱动组件,所述第二驱动组件与所述风机组件连接,并驱动所述风机组件活动,以使所述风机组件与多个所述第一出风口中的至少一个相对应;或者,
    所述第一出风口的数量为多个,多个所述第一出风口沿所述空调器室内机的高度方向排列,多个所述第一出风口中至少有两个所述第一出风口对应设置有所述风机组件。
  10. 如权利要求9所述的空调器室内机,其中,多个所述第一出风口沿所述空调器室内机的高度方向排列,所述第二驱动组件驱动所述风机组件沿所述空调器室内机的高度方向移动或摆动;和/或,
    多个所述第一出风口横向排列,所述第二驱动组件驱动所述风机组件横向移动或摆动。
  11. 如权利要求9所述的空调器室内机,其中,所述壳体上设置有密封板及第三驱动组件,所述密封板与所述壳体滑动连接,所述第三驱动组件与所述密封板连接,以驱动所述密封板沿所述空调器室内机的高度方向移动,使所述密封板对多个所述第一出风口中的一个进行密封。
  12. 如权利要求1所述的空调器室内机,其中,所述壳体上开设有第二出风口,所述第一出风口和所述第二出风口在所述空调器的高度方向间隔排布,所述空调器室内机包括离心风机,所述离心风机安装在所述壳体内,所述离心风机向所述第二出风口送风。
  13. 如权利要求12所述的空调器室内机,其中,所述风机组件位于所述离心风机的上方。
  14. 如权利要求12所述的空调器室内机,其中,所述风机组件位于所述离心风机的下方。
  15. 如权利要求14所述的空调器室内机,其中,所述壳体具有供所述风机组件安装的上风道,以及供所述离心风机安装的下风道;所述换热器安装在所述上风道内,所述风机组件位于所述换热器的前侧。
  16. 如权利要求15所述的空调器室内机,其中,定义一投影平面,所述投影平面垂直于所述第一轴流风轮的旋转轴线,所述换热器在所述投影平面上的投影定义为换热投影,所述换热投影的长度方向设置为第一方向,所述换热投影的宽度方向设置为第二方向,所述换热投影具有在所述第一方向上的第一均分线、及在所述第二方向上的第二均分线;定义所述第一轴流风轮的旋转轴线在所述投影平面上的投影为送风中心点;所述送风中心点靠近所述第一均分线设置,和/或,所述送风中心点靠近所述第二均分线设置。
  17. 如权利要求15所述的空调器室内机,其中,所述壳体包括底座,所述底座具有面向所述下风道的上表面,所述离心风机安装在所述底座的上表面;和/或,
    所述壳体内设有供所述风机组件安装的第二安装板,所述第二安装板的下端向下延伸至所述下风道,所述离心风机安装在所述第二安装板的下部。
  18. 如权利要求14所述的空调器室内机,其中,所述第二出风口设置在所述前面板的下部。
  19. 如权利要求14所述的空调器室内机,其中,所述离心风机安装在所述背板的下部;和/或,
    所述壳体设有位于所述换热器下方的接水盘,所述离心风机安装于所述接水盘。
  20. 一种空调器,其中,所述空调器包括空调器室外机及如权利要求1所述的空调器室内机。
PCT/CN2018/108965 2018-03-20 2018-09-30 空调器室内机及空调器 WO2019179076A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810233515.4 2018-03-20
CN201810233515.4A CN108317613A (zh) 2018-03-20 2018-03-20 空调柜机及空调器
CN201821382190.8 2018-08-24
CN201821382190.8U CN208936310U (zh) 2018-08-24 2018-08-24 空调器

Publications (1)

Publication Number Publication Date
WO2019179076A1 true WO2019179076A1 (zh) 2019-09-26

Family

ID=67988242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108965 WO2019179076A1 (zh) 2018-03-20 2018-09-30 空调器室内机及空调器

Country Status (1)

Country Link
WO (1) WO2019179076A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1250143A (zh) * 1998-10-01 2000-04-12 惠尔普尔公司 紧凑型空调机
JP2006526755A (ja) * 2003-06-04 2006-11-24 エルジー エレクトロニクス インコーポレイティド 空気調和機
EP2418430A2 (de) * 2010-07-02 2012-02-15 Ludwig Michelbach Klimatisierungseinrichtung sowie Verfahren zum Konditionieren eines Luftstroms
CN205037436U (zh) * 2015-09-17 2016-02-17 芜湖美智空调设备有限公司 空调室内机及具有其的空调器
CN107525154A (zh) * 2017-10-11 2017-12-29 珠海格力电器股份有限公司 空调内机及空调器
CN107747763A (zh) * 2017-09-25 2018-03-02 青岛海尔空调器有限总公司 空调室内机
CN108317613A (zh) * 2018-03-20 2018-07-24 广东美的制冷设备有限公司 空调柜机及空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1250143A (zh) * 1998-10-01 2000-04-12 惠尔普尔公司 紧凑型空调机
JP2006526755A (ja) * 2003-06-04 2006-11-24 エルジー エレクトロニクス インコーポレイティド 空気調和機
EP2418430A2 (de) * 2010-07-02 2012-02-15 Ludwig Michelbach Klimatisierungseinrichtung sowie Verfahren zum Konditionieren eines Luftstroms
CN205037436U (zh) * 2015-09-17 2016-02-17 芜湖美智空调设备有限公司 空调室内机及具有其的空调器
CN107747763A (zh) * 2017-09-25 2018-03-02 青岛海尔空调器有限总公司 空调室内机
CN107525154A (zh) * 2017-10-11 2017-12-29 珠海格力电器股份有限公司 空调内机及空调器
CN108317613A (zh) * 2018-03-20 2018-07-24 广东美的制冷设备有限公司 空调柜机及空调器

Similar Documents

Publication Publication Date Title
WO2018040550A1 (zh) 导风装置、空调柜机及其送风方法
WO2020130286A1 (ko) 공기조화기
WO2016043400A1 (ko) 기류제어장치를 구비한 공기조화장치
JPH08334255A (ja) 空気調和機の室内機
WO2019169715A1 (zh) 空调器及空调器的控制方法
JP2007205584A (ja) 空気調和機
EP3631307A1 (en) Air conditioner
WO2018217068A1 (ko) 천장형 공기조화기용 에어가이드 및 이를 구비하는 천장형 공기조화기
WO2018070648A1 (ko) 공기조화기
GB2354552A (en) Axial flow fan with transverse flow outlet
WO2019017610A1 (en) AIR CONDITIONER
WO2020057087A1 (zh) 空调器清洁装置、空调室内机及空调器
EP3714213A1 (en) Air conditioner
WO2020103579A1 (zh) 空调室内机和空调器
WO2019179076A1 (zh) 空调器室内机及空调器
WO2024159765A1 (zh) 一种导风板以及空调器
WO2019033701A1 (zh) 空气处理模块及空调器
WO2021153852A1 (ko) 송풍기
WO2022139255A1 (ko) 공기조화기
WO2022149782A1 (ko) 공기조화기
JP5516041B2 (ja) 浴室換気装置
WO2020052482A1 (zh) 横摆叶及具有该横摆叶的柜式空调室内机
KR102325063B1 (ko) 버스정거장 부스용 에어커튼장치
JPH08285300A (ja) 空気調和機
WO2023286975A1 (ko) 공기조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910608

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18910608

Country of ref document: EP

Kind code of ref document: A1