WO2019178959A1 - 一种选换挡执行机构及方法 - Google Patents

一种选换挡执行机构及方法 Download PDF

Info

Publication number
WO2019178959A1
WO2019178959A1 PCT/CN2018/091970 CN2018091970W WO2019178959A1 WO 2019178959 A1 WO2019178959 A1 WO 2019178959A1 CN 2018091970 W CN2018091970 W CN 2018091970W WO 2019178959 A1 WO2019178959 A1 WO 2019178959A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
sub
shifting
screw
shift
Prior art date
Application number
PCT/CN2018/091970
Other languages
English (en)
French (fr)
Inventor
车文超
房永�
王德军
乔运乾
孙立鹏
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820389667.9U external-priority patent/CN208153713U/zh
Priority claimed from CN201810234304.2A external-priority patent/CN108561551B/zh
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to EP18910896.2A priority Critical patent/EP3770468B1/en
Priority to US16/957,221 priority patent/US11506283B2/en
Publication of WO2019178959A1 publication Critical patent/WO2019178959A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/20Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/2807Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted using electric control signals for shift actuators, e.g. electro-hydraulic control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/30Hydraulic or pneumatic motors or related fluid control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2053Screws in parallel arrangement driven simultaneously with an output member moved by the screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H2061/2884Screw-nut devices

Definitions

  • the invention relates to the technical field of gear shifting and shifting of an AMT gearbox, in particular to a gear shifting actuator and method.
  • New energy power vehicles are developing rapidly, and their convenient power resources have accelerated the development of automatic control of automobiles.
  • Automatic shifting has become the mainstream of new energy vehicles.
  • the faster development of AMT gearboxes is through the addition of a set of conventional gearboxes.
  • the shifting actuator and the TCU controller are selected to implement the automatic shifting function.
  • the reliability of AMT gearbox shifting is not ideal, the unsuccessful gear shifting and the incomplete fault removal frequently occur, which seriously affects driving safety.
  • the working principle of the mainstream selection shifting actuator in the market is to realize the gear selection function by using the ball screw drive system, and the shift function is realized by the ball screw drive system. Since the gap of each fork is only 1.8mm, plus the existing in the drive train The matching clearances increase the difficulty of screw position control, which is also the reason for the occurrence of gear selection failure during vehicle operation. And it is necessary to judge the displacement of the selected gear, and the shifting force is unbalanced and the reliability is poor.
  • Another object of the present invention is to provide a shift selector actuator to improve reliability. Another object of the present invention is to provide a shift selection execution method based on the above-described shift selector actuator.
  • the present invention provides the following technical solutions:
  • a shift selection actuator for an AMT gearbox including a shifting motor, a first transmission gear, a second transmission gear, a shifting screw, a push block, a shift fork, a dial block, and a linear drive device, wherein There are a plurality of dialing blocks, the plurality of linear driving devices are plural, the plurality of shifting forks are plural, and the number of the dialing blocks, the linear driving device and the shifting fork are the same and correspondingly arranged.
  • the output shaft of the shifting motor is provided with the first transmission gear, the first transmission gear and the second transmission gear are meshed, and the second transmission gear is fixedly connected with the shift screw.
  • the shifting screw is screwed to the push block,
  • the push block is provided with a through hole, one end of the dial block is connected to the linear driving device, and the other end is inserted into the through hole and is aligned with the groove on the fork.
  • the second transmission gear includes a first sub-gear and a second sub-gear, the first sub-gear is located at one side of the first transmission gear and meshes, and the second sub-gear is located at the first transmission The other side of the gear is engaged,
  • the shift spindle includes a first sub-screw and a second sub-screw, and a top end of the first sub-screw is coaxially fixedly coupled to the first sub-gear, and a top end of the second sub-screw Concentrically fixedly coupled to the second sub-gear,
  • the push block is provided with a first threaded hole and a second threaded hole which are disposed at intervals, the first sub-screw is disposed in the first threaded hole, and the second sub-screw is disposed in the second In the threaded hole,
  • the through hole is disposed between the first threaded hole and the second threaded hole.
  • the axis of the through hole is perpendicular to the axes of the first threaded hole and the second threaded hole.
  • the linear driving device is a cylinder.
  • the diameter of the second transmission gear is larger than the diameter of the first transmission gear.
  • the shifting screw is screwed to the push block, and specifically, the shifting screw is provided with a nut, and the nut is fixedly connected to the push block.
  • the above-described shift selection actuator further includes a sensor that detects whether the dial is inserted into the groove of the fork.
  • the present invention also provides a shift selection execution method based on the selected shift actuator described above,
  • the linear drive device corresponding to the required gear drives the dial movement to be inserted into the shift fork
  • the shifting motor provides shifting power to drive the first transmission gear to rotate, the first transmission gear drives the second transmission gear to rotate, and the second transmission gear drives the shifting screw to rotate
  • the shifting screw drives the push block to move by its own rotation, and the shifting block is used to shift the shifting fork by the dial.
  • the second transmission gear includes a first sub-gear and a second sub-gear, the first sub-gear is located at one side of the first transmission gear and meshes, and the second sub-gear is located at the first transmission The other side of the gear is engaged,
  • the shift spindle includes a first sub-screw and a second sub-screw, and a top end of the first sub-screw is coaxially fixedly coupled to the first sub-gear, and a top end of the second sub-screw Concentrically fixedly coupled to the second sub-gear,
  • the push block is provided with a first threaded hole and a second threaded hole which are disposed at intervals, the first sub-screw is disposed in the first threaded hole, and the second sub-screw is disposed in the second In the threaded hole,
  • the through hole is disposed between the first threaded hole and the second threaded hole
  • the number of the dial blocks is plural, the plurality of linear driving devices are plural, the number of the shifting forks is plural, and the number of the three is the same.
  • the linear drive device corresponding to the required gear drives the dial movement to be inserted into the shift fork
  • the shifting motor providing shifting power to drive the first transmission gear to rotate, the first transmission gear transmitting power symmetry to the first sub gear and the second sub gear, the a sub-gear and the second sub-gear respectively transmit power to the first sub-screw and the second sub-screw, and the first sub-screw and the second sub-screw will rotate
  • the motion form is converted into a linear reciprocating motion of the push block, and the shifting fork is used to shift the shifting fork by the dial.
  • the invention provides a shift selection actuator for an AMT gearbox, including a shifting motor, a first transmission gear, a second transmission gear, a shifting screw, a push block, a shift fork, a dial block and a linear drive device, wherein
  • the plurality of dialing blocks are plural, the plurality of linear driving devices are plural, and the plurality of shifting forks are plural, and the number of the dialing blocks, the linear driving device and the shifting fork are the same and correspondingly arranged
  • the output shaft of the shifting motor is provided with the first transmission gear, the first transmission gear and the second transmission gear are meshed, and the second transmission gear is fixedly connected with the shift spindle, and the replacement a threaded rod is threadedly connected to the push block, and the push block is provided with a through hole, one end of the dial block is connected to the linear driving device, and the other end is inserted into the through hole and is worn out Align the grooves on the fork.
  • the linear drive device corresponding to the required gear drives the dial block to be inserted into the shift fork, and then selects the gear, and the shift motor provides the shifting power to drive the first transmission gear to rotate, the first transmission
  • the gear drives the second transmission gear to rotate
  • the second transmission gear drives the shifting screw to rotate.
  • the shifting screw drives the push block to move by its own rotation.
  • FIG. 1 is a schematic structural diagram of a shift selection actuator according to an embodiment of the present invention.
  • Shifting motor 1 first transmission gear 2, first sub-gear 3, second sub-gear 4, first sub-screw 5, second sub-screw 6, push block 7, first cylinder 8, second cylinder 9
  • the third cylinder 10 the first dial block 11, the second dial block 12, the third dial block 13, the first shift fork 14, the second shift fork 15, the third shift fork 16, and the nut 17.
  • FIG. 1 is a schematic structural diagram of a shift selection actuator according to an embodiment of the present invention.
  • the shift selection actuator provided by the embodiment of the invention is used for the AMT gearbox, including the shifting motor 1, the first transmission gear 2, the second transmission gear 3, the shifting screw, the push block 7, the fork, the dial block And a linear driving device, wherein there are a plurality of dialing blocks, a plurality of linear driving devices, a plurality of shifting forks, and the same number and corresponding arrangement of the dialing block, the linear driving device and the shifting fork, and the output shaft of the shifting motor 1
  • the first transmission gear 2 is disposed, the first transmission gear 2 and the second transmission gear are meshed, the second transmission gear is fixedly connected with the shift screw, the shift screw is screwed to the push block, and the push block 7 is provided with a through hole.
  • One end of the dial block is connected to the linear driving device, and the other end is inserted into the through hole and is aligned with the groove on the fork.
  • the linear drive device corresponding to the required gear drives the dial block to be inserted into the shift fork, and then selects the gear.
  • the shift motor 1 provides the shifting power to drive the first transmission gear 2 to rotate.
  • a transmission gear 2 drives the rotation of the second transmission gear, and the second transmission gear drives the rotation of the shifting screw.
  • the shifting screw drives the push block 7 to move by its own rotation. When the push block 7 moves, the shift fork is used to change. block. Therefore, the selection of the shifting displacement can be canceled, and the balance of the shifting force is ensured to be reliable, so as to improve the reliability.
  • the second transmission gear includes a first sub-gear 3 and a second sub-gear 4, the first sub-gear 3 is located at one side of the first transmission gear 2 and meshed, and the second sub-gear 4 is located at the other of the first transmission gear 2 Side and meshing,
  • the shifting screw includes a first sub-screw 5 and a second sub-screw 6, the top end of the first sub-screw 5 being coaxially fixedly connected with the first sub-gear 3, and the second sub-screw 6 The top end is coaxially fixedly connected with the second sub-gear 4, and the push block 7 is provided with a first threaded hole and a second threaded hole which are disposed at intervals, and the first sub-screw 5 is disposed in the first threaded hole, and the second sub-filament
  • the bar 6 is disposed in the second threaded hole, and the through hole is disposed between the first threaded hole and the second threaded hole.
  • the linear drive device corresponding to the required gear drives the dial block to be inserted into the shift fork, and then selects the gear, and the shift motor 1 provides the shifting power to drive the first transmission gear 2 to rotate, the first transmission gear 2 symmetry is transmitted to the first sub-gear 3 and the second sub-gear 4, and the first sub-gear 3 and the second sub-gear 4 respectively transmit power to the first sub-screw 5 and the second sub-screw 6
  • the rotational motion form is converted by the first sub-screw 5 and the second sub-screw 6 into a linear reciprocating motion of the push block 7, and when the push block 7 is moved, the shift fork is shifted by the dial.
  • the axis of the through hole is perpendicular to the axes of the first threaded hole and the second threaded hole.
  • the linear drive is a cylinder.
  • the diameter of the second transmission gear is larger than the diameter of the first transmission gear 2.
  • the shifting screw is screwed to the push block 7 .
  • the shifting screw is provided with a nut 17
  • the nut 17 is fixedly connected with the push block 7
  • the first sub-screw 5 and the second sub-screw 6 are provided with a nut 17 . .
  • the above-described shift selector actuator further includes a sensor for detecting whether the dial block is inserted into the groove of the shift fork, and when the linear drive device is a cylinder, the sensor is a cylinder stroke sensor.
  • the multi-gear selection function can be realized by increasing the number of gear selection functions according to the increase or decrease of the gear position:
  • the dial block is three, which are the first dial block 11, the second dial block 12, and the third dial block 13, respectively
  • the linear driving device is three, that is, three cylinders, respectively, the first cylinder 8, the first
  • the two cylinders 9 and the third cylinder 10 have three forks, respectively a first shift fork 14, a second shift fork 15, and a third shift fork 16, a first cylinder 8, a first dial 11 and a first shift fork
  • the second cylinder 9, the second dial 12 and the second shifting fork 15 are used in combination, and the third cylinder 10, the third dial 13 and the third shifting fork 16 are used together, wherein the first shifting fork 14 corresponds to 1st gear and reverse gear, the second shifting fork 15 corresponds to 2nd gear and 3rd gear, and the third shifting fork 16 corresponds to 4th gear and 5th gear.
  • the controller of the vehicle issues a 4-speed gear demand
  • the third cylinder 10 corresponding to the 4th and 5th gears performs an action
  • the third dial 13 is pressed down, and the third dial 13 moves along the through hole until it is inserted into the 4th.
  • the cylinder stroke sensor sends a signal to the controller to reach the target position, and thus the gear selection operation is completed, and then the shift motor 1 drives the push block 7 to move, thereby causing the shift fork to move. Finish the file. If the shift fork moves forward to the fourth gear, the shift motor 1 will drive the push block 7 forward. If the shift fork moves backward to the fourth gear, the shift motor 1 will drive the push block 7 to move backward.
  • the fork moves in the opposite direction and directly completes the 4th gear and the 5th gear.
  • the third dial 13 is operated by the third cylinder 10, and the shifting is performed by moving down 10 mm, and the time required for the completion of the action is faster than that of the prior art ball screw selection system. .
  • the shift motor 1 drives the push block to reset, and then the third cylinder 10 drives the third dial block 13 to withdraw from the third shift fork 16 and
  • the first cylinder 8 corresponding to the reverse gear performs an action to press the first dial 11 downward, and the two actions can be performed simultaneously, and the subsequent operations refer to the above description.
  • the shift-selecting actuator provided by the embodiment of the invention no longer uses a single shift-selecting shifting gear compared with the prior art, but uses three independent cylinders to individually control three dialing blocks for selecting gears. Then, the symmetrical ball screw drive is used for shifting, which eliminates the selection of the displacement of the selected gear and ensures the balance of the shifting force is reliable. Three independent cylinders can realize continuous selection and jump selection, which can realize continuous gear shifting and skipping gear.
  • the gear reduction mechanism is used to increase the secondary reduction ratio of the first transmission gear 2 and the second transmission gear before the first reduction ratio of the ball screw, thereby greatly achieving the effect of deceleration and twisting, that is, increasing The shifting force reduces the requirement on the motor power and increases the reliability of the motor.
  • the selector cylinder row has three independent identical cylinders; the shifting motor 1 provides shifting power, and the shifting motor 1 is provided with a pinion shaft for mounting the first transmission gear 2 as a power input shaft,
  • the pinion gear meshes with two large gears mounted on the lead screw, that is, the first sub-gear 3 and the second sub-gear 4 of the second transmission gear, and the power is symmetrically transmitted to the two large gears, and the large gear and the lead screw pass.
  • the fixed keyway is connected, and the two large gears respectively transmit the power to the lead screw.
  • the ball screw drive pair converts the rotating motion form into a linear reciprocating motion of the nut, and the two symmetric ball screw nut movements are synchronized, and the two nuts 17 and push Block 7 bolts are fixedly connected, and the thrust is synchronously transmitted to the push block 7.
  • the middle of the push block 7 there is a vertical block sliding groove, that is, a through hole, and the corresponding cylinder of the required gear presses the dial block into the shift fork, and the cylinder stroke
  • the sensor sends a signal to the controller to reach the target position. In this way, the gear selection action is completed.
  • the dial block is pushed by the push block to shift the shift fork.
  • the dial block involved in the shift selection actuator provided by the embodiment of the invention is a flat push manner to realize the hanging gear.
  • the hanging gear method has simple requirements on the structure of the dial block head, and is relatively easy to process and heat treatment.
  • the shift selection actuator provided by the embodiment of the invention adopts electric shifting and pneumatic gear selection, and each shift fork has its own independent dial block and cylinder, and each cylinder has an independent cylinder stroke sensor, which is different from the prior art.
  • the selection mode of the shift selection actuator provided by the embodiment of the invention only needs to remove the insertion block to complete the selection, and under the control of the controller of the vehicle, different dialing
  • the up and down actions of the block can be performed at the same time, which greatly shortens the time of the gear selection;
  • the shifting mode of the shifting actuator in the embodiment of the present invention is flat, which is different from the shifting gear shifting mode in the prior art.
  • Push type the direction of the force is the same as that of the fork shaft, which improves the transmission efficiency; the ball screw is symmetrically arranged to balance the force of the ball screw pair, which can extend the life of the ball screw;
  • the deceleration and twisting effect can reduce the power demand of the motor, increase the shifting force of the dial block, and ensure the reliability of shifting.
  • the selected shifting actuator provided by the embodiment of the invention has the advantages of a short shifting time, a high reliability of the shifting gear, and a large shifting force, and the vehicle is operated more smoothly;
  • the structure of the shifting actuator provided by the embodiment of the invention is Simple, only one motor can be used to shift gears, which is easier to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

一种选换挡执行机构及选换挡执行方法,该执行机构包括换挡电机(1)、第一传动齿轮(2)、第二传动齿轮(3、4)、换挡丝杠(5、6)、推块(7)、拨叉、拨块和直线驱动装置。换挡电机(1)的输出轴上设置有第一传动齿轮(2),第一传动齿轮(2)和第二传动齿轮(3、4)啮合,第二传动齿轮(3、4)与换挡丝杠(5、6)固定连接,换挡丝杠(5、6)与推块(7)螺纹连接,推块(7)上有通孔,拨块一端与直线驱动装置连接,另一端插入通孔后与拨叉上的凹槽对准;与挡位对应的直线驱动装置驱动拨块移动插入到拨叉中换挡,换挡电机(1)驱动第一传动齿轮(2)转动,进而驱动第二传动齿轮(3、4)转动,第二传动齿轮(3、4)带动换挡丝杠(5、6)转动,驱动推块(7)移动,推块(7)通过拨块拨动拨叉进行换挡。

Description

一种选换挡执行机构及方法
本申请要求于2018年03月21日提交中国专利局、申请号为201810234304.2、发明名称为“一种选换挡执行机构及方法”,2018年03月21日提交中国专利局、申请号为201820389667.9、发明名称为“一种选换挡执行机构”上述两个中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及AMT变速箱选档换挡技术领域,尤其涉及一种选换挡执行机构及方法。
背景技术
新能源动力汽车发展迅速,其便利的电资源加速了汽车自动控制的发展,自动换挡成为了新能源汽车发展的主流,目前发展较快的AMT变速箱是通过在传统变速箱上增加一套选换挡执行机构和TCU控制器来实现自动换挡功能。但AMT变速箱换挡可靠性并不理想,挂挡不成功及摘挡不彻底故障频出,严重影响行车安全。
目前市场主流选换挡执行机构工作原理为利用滚珠丝杠传动系统实现选挡功能,利用滚珠丝杠传动系统实现换挡功能,由于各拨叉间隙仅为1.8mm,加上传动系中存在的各项配合间隙,加大了丝杠位置控制的难度,这也是造成车辆运行中出现选挡失效的情况较多的原因。并且需要进行选挡位移判断,而且换挡受力不平衡,可靠性差。
因此,如何提供一种选换挡执行机构,以提高可靠性,是目前本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种选换挡执行机构,以提高可靠性。本发明的另一目的在于提供一种基于上述选换挡执行机构的选换挡执行方法。
为了达到上述目的,本发明提供如下技术方案:
一种选换挡执行机构,用于AMT变速箱,包括换挡电机、第一传动齿轮、 第二传动齿轮、换挡丝杠、推块、拨叉、拨块和直线驱动装置,其中,所述拨块为多个,所述直线驱动装置为多个,所述拨叉为多个,所述拨块、所述直线驱动装置和所述拨叉的数量相同且对应设置,
所述换挡电机的输出轴上设置有所述第一传动齿轮,所述第一传动齿轮和所述第二传动齿轮啮合,所述第二传动齿轮与所述换挡丝杠固定连接,所述换挡丝杠与所述推块螺纹连接,
所述推块上设置有通孔,所述拨块的一端与所述直线驱动装置连接,其另一端插入所述通孔中且穿出后与所述拨叉上的凹槽对准。
优选的,上述第二传动齿轮包括第一子齿轮和第二子齿轮,所述第一子齿轮位于所述第一传动齿轮的一侧且啮合,所述第二子齿轮位于所述第一传动齿轮的另一侧且啮合,
所述换挡丝杠包括第一子丝杠和第二子丝杠,所述第一子丝杠的顶端与所述第一子齿轮同轴心固定连接,所述第二子丝杠的顶端与所述第二子齿轮同轴心固定连接,
所述推块上开设有间隔设置的第一螺纹孔和第二螺纹孔,所述第一子丝杠设置在所述第一螺纹孔中,所述第二子丝杠设置在所述第二螺纹孔中,
所述通孔设置在所述第一螺纹孔和所述第二螺纹孔之间。
优选的,上述通孔的轴线与所述第一螺纹孔和所述第二螺纹孔的轴线垂直。
优选的,上述拨块为三个,所述直线驱动装置为三个,所述拨叉为三个。
优选的,上述直线驱动装置为气缸。
优选的,上述第二传动齿轮的直径大于所述第一传动齿轮的直径。
优选的,上述换挡丝杠与所述推块螺纹连接具体为所述换挡丝杠上设置有螺母,所述螺母与所述推块固定连接。
优选的,上述的选换挡执行机构还包括检测所述拨块是否插入到所述拨叉的凹槽中的传感器。
本发明还提供一种选换挡执行方法,基于上述所述的选换挡执行机构,
需要换挡时,与需要的挡位对应的所述直线驱动装置驱动所述拨块移动插入到所述拨叉中,
然后进行选档,换挡电机提供换挡动力驱动所述第一传动齿轮转动,所述第一传动齿轮驱动所述第二传动齿轮转动,所述第二传动齿轮带动所述换挡丝杠转动,所述换挡丝杠通过自身的转动驱动所述推块移动,所述推块移动时通过所述拨块拨动所述拨叉进行换挡。
优选的,上述第二传动齿轮包括第一子齿轮和第二子齿轮,所述第一子齿轮位于所述第一传动齿轮的一侧且啮合,所述第二子齿轮位于所述第一传动齿轮的另一侧且啮合,
所述换挡丝杠包括第一子丝杠和第二子丝杠,所述第一子丝杠的顶端与所述第一子齿轮同轴心固定连接,所述第二子丝杠的顶端与所述第二子齿轮同轴心固定连接,
所述推块上开设有间隔设置的第一螺纹孔和第二螺纹孔,所述第一子丝杠设置在所述第一螺纹孔中,所述第二子丝杠设置在所述第二螺纹孔中,
所述通孔设置在所述第一螺纹孔和所述第二螺纹孔之间,
所述拨块为多个,所述直线驱动装置为多个,所述拨叉为多个,且三者的数量相同,
需要换挡时,与需要的挡位对应的所述直线驱动装置驱动所述拨块移动插入到所述拨叉中,
然后进行选档,换挡电机提供换挡动力驱动所述第一传动齿轮转动,所述第一传动齿轮将动力对称传递到所述第一子齿轮和所述第二子齿轮上,所述第一子齿轮和所述第二子齿轮分别将动力传递到所述第一子丝杠和所述第二子丝杠上,由所述第一子丝杠和所述第二子丝杠将旋转的运动形式转换为推块的直线往复运动,所述推块移动时通过所述拨块拨动所述拨叉进行换挡。
本发明提供的选换挡执行机构,用于AMT变速箱,包括换挡电机、第一传动齿轮、第二传动齿轮、换挡丝杠、推块、拨叉、拨块和直线驱动装置,其中,所述拨块为多个,所述直线驱动装置为多个,所述拨叉为多个,所述拨块、 所述直线驱动装置和所述拨叉的数量相同且对应设置,所述换挡电机的输出轴上设置有所述第一传动齿轮,所述第一传动齿轮和所述第二传动齿轮啮合,所述第二传动齿轮与所述换挡丝杠固定连接,所述换挡丝杠与所述推块螺纹连接,所述推块上设置有通孔,所述拨块的一端与所述直线驱动装置连接,其另一端插入所述通孔中且穿出后与所述拨叉上的凹槽对准。
使用时,需要换挡时,与需要的挡位对应的直线驱动装置驱动拨块移动插入到拨叉中,然后进行选档,换挡电机提供换挡动力驱动第一传动齿轮转动,第一传动齿轮驱动第二传动齿轮转动,第二传动齿轮带动换挡丝杠转动,换挡丝杠通过自身的转动驱动推块移动,推块移动时通过拨块拨动拨叉进行换挡。从而取消了选挡位移判断,又保证了换挡受力平衡可靠,以提高可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的选换挡执行机构的结构示意图。
上图1中:
换挡电机1、第一传动齿轮2、第一子齿轮3、第二子齿轮4、第一子丝杠5、第二子丝杠6、推块7、第一气缸8、第二气缸9、第三气缸10、第一拨块11、第二拨块12、第三拨块13、第一拨叉14、第二拨叉15、第三拨叉16、螺母17。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明实施例提供的选换挡执行机构的结构示意图。
本发明实施例提供的选换挡执行机构,用于AMT变速箱,包括换挡电机1、第一传动齿轮2、第二传动齿轮3、换挡丝杠、推块7、拨叉、拨块和直线驱动装置,其中,拨块为多个,直线驱动装置为多个,拨叉为多个,拨块、直线驱动装置和拨叉的数量相同且对应设置,换挡电机1的输出轴上设置有第一传动齿轮2,第一传动齿轮2和第二传动齿轮啮合,第二传动齿轮与换挡丝杠固定连接,换挡丝杠与推块螺纹连接,推块7上设置有通孔,拨块的一端与直线驱动装置连接,其另一端插入通孔中且穿出后与拨叉上的凹槽对准。
使用时,需要换挡时,与需要的挡位对应的直线驱动装置驱动拨块移动插入到拨叉中,然后进行选档,换挡电机1提供换挡动力驱动第一传动齿轮2转动,第一传动齿轮2驱动第二传动齿轮转动,第二传动齿轮带动换挡丝杠转动,换挡丝杠通过自身的转动驱动推块7移动,推块7移动时通过拨块拨动拨叉进行换挡。从而能取消了选挡位移判断,又保证了换挡受力平衡可靠,以提高可靠性。
其中,第二传动齿轮包括第一子齿轮3和第二子齿轮4,第一子齿轮3位于第一传动齿轮2的一侧且啮合,第二子齿轮4位于第一传动齿轮2的另一侧且啮合,换挡丝杠包括第一子丝杠5和第二子丝杠6,第一子丝杠5的顶端与第一子齿轮3同轴心固定连接,第二子丝杠6的顶端与第二子齿轮4同轴心固定连接,推块7上开设有间隔设置的第一螺纹孔和第二螺纹孔,第一子丝杠5设置在第一螺纹孔中,第二子丝杠6设置在第二螺纹孔中,通孔设置在第一螺纹孔和第二螺纹孔之间。
需要换挡时,与需要的挡位对应的直线驱动装置驱动拨块移动插入到拨叉中,然后进行选档,换挡电机1提供换挡动力驱动第一传动齿轮2转动,第一传动齿轮2将动力对称传递到第一子齿轮3和第二子齿轮4上,第一子齿轮3和第二子齿轮4分别将动力传递到第一子丝杠5和第二子丝杠6上,由第一子丝杠5和第二子丝杠6将旋转的运动形式转换为推块7的直线往复运动,推块7移动时通过拨块拨动拨叉进行换挡。
其中,通孔的轴线与第一螺纹孔和第二螺纹孔的轴线垂直。直线驱动装置为气缸。第二传动齿轮的直径大于第一传动齿轮2的直径。换挡丝杠与推块7螺纹连接具体为换挡丝杠上设置有螺母17,螺母17与推块7固定连接,第一子丝杠5和第二子丝杠6上个设置一个螺母17。
上述的选换挡执行机构还包括检测拨块是否插入到拨叉的凹槽中的传感器,当直线驱动装置为气缸时,传感器为气缸行程传感器。
为了方便理解,下面以5挡变速箱为例进行说明,当然也可以根据挡位的增减可增加选挡功能器件数量来实现多挡位选挡功能:
此时,拨块为三个,分别为第一拨块11、第二拨块12和第三拨块13,直线驱动装置为三个,即气缸为三个,分别为第一气缸8、第二气缸9和第三气缸10,拨叉为三个,分别为第一拨叉14、第二拨叉15和第三拨叉16,第一气缸8、第一拨块11和第一拨叉14配合使用,第二气缸9、第二拨块12和第二拨叉15配合使用,第三气缸10、第三拨块13和第三拨叉16配合使用,其中,第一拨叉14对应1挡和倒挡,第二拨叉15对应2挡和3挡,第三拨叉16对应4挡和5挡。
当车辆的控制器发出4挡挂挡需求时,那么与4、5挡对应的第三气缸10执行动作,将第三拨块13下压,第三拨块13沿通孔移动直到插入到4、5挡对应的第三拨叉16中,气缸行程传感器发出到达目标位置信号给控制器,到此为止完成了选挡动作,然后换挡电机1驱动推块7移动,从而使得拨叉移动,完成挂档。如果拨叉向前移动挂4挡,那么换挡电机1将驱动推块7向前移动,如果拨叉向后移动挂4挡,那么换挡电机1将驱动推块7向后移动。
若当前挡位在4挡,而车辆的控制器发出5挡需求,则无需选挡,在换挡电机1带动下,使得拨叉朝向相反的方向移动,直接完成4挡挂5挡。该选挡过程中,第三拨块13在第三气缸10作用下,下移10mm即可完成选挡,该动作完成所需要的时间比采用现有技术中的滚珠丝杠选挡系统要快。
若当前挡位在4挡,而车辆的控制器发出1挡需求,则换挡电机1带动推块复位,然后第三气缸10带动第三拨块13从第三拨叉16中退出,与1、倒 挡对应的第一气缸8执行动作,将第一拨块11下压,两个动作可以同时进行,之后的动作参照上面的说明。
倒挡、1挡、2挡和3挡的选档以及换挡同上。
本发明实施例提供的选换挡执行机构,该机构与现有技术相比,不再采用单一换挡指选换挡,而是用三个独立的气缸单独控制三个拨块进行选挡,然后采用对称式的滚珠丝杠传动进行换挡,这样既取消了选挡位移判断,又保证了换挡受力平衡可靠。三个独立的气缸可实现连续选挡和跳跃选挡,即可实现连续挂挡摘挡、也可实现跳跃挂挡摘挡。同时,采用齿轮减速机构,在滚珠丝杠一级减速比的之前又增加了第一传动齿轮2和第二传动齿轮的二级减速比,极大的实现了减速增扭的效果,即加大了换挡力又减小了对电机功率的要求,增加了电机的可靠性。
在实际工作时,选挡气缸排有三个独立的相同的气缸;换挡电机1提供换挡动力,在换挡电机1上装有小齿轮轴用于安装第一传动齿轮2,作为动力输入轴,小齿轮与两个装在丝杠上的大齿轮,即第二传动齿轮的第一子齿轮3和第二子齿轮4啮合,将动力对称传递到两个大齿轮上,大齿轮与丝杠通过固定键槽连接,两个大齿轮分别将动力传递到丝杠上,由滚珠丝杠传动副将旋转的运动形式转换为螺母的直线往复运动,两边对称的滚珠丝杠螺母运动同步,两边螺母17与推块7螺栓固定连接,将推力同步传递到推块7上,推块7中间有拨块上下滑动槽,即通孔,所需挡位对应的气缸将拨块下压到拨叉内,气缸行程传感器发出到达目标位置的信号给控制器,通过此方式完成选挡动作,拨块在推块的推动下,将拨动拨叉进行换挡。
本发明实施例提供的选换挡执行机构中涉及到的拨块是平推的方式实现挂挡,这种挂挡方式对拨块头部结构要求较简单,比较容易加工和做热处理。
本发明实施例提供的选换挡执行机构采用电动换挡和气动选挡,每个拨叉都有自己独立的拨块和气缸,每个气缸都有独立的气缸行程传感器,区别于现有技术中的滚珠丝杠式选挡方式,本发明实施例提供的选换挡执行机构中选挡方式仅需要拨块的拔插动作即可完成选挡,而且在车辆的控制器的控制下,不 同拨块的上行和下行动作可以同时进行,大大缩短了选挡时间;区别于现有技术中的换挡指滑磨换挡方式,本发明实施例提供的选换挡执行机构中换挡方式为平推式,力的方向和拨叉轴运动方向一样,提高了传动效率;通过滚珠丝杠对称布置平衡了滚珠丝杠副的受力,能够延长滚珠丝杠寿命;通过增加齿轮减速组合,实现了减速增扭效果,可降低电机功率需求,增大拨块的换挡力,保证换挡可靠性。本发明实施例提供的选换挡执行机构具有换挡时间较短,选换挡可靠性高,换挡力大的优点,进而车辆运行更平稳;本发明实施例提供的选换挡执行机构结构简单,只需一个电机即可实现换挡,比较容易实现。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种选换挡执行机构,用于AMT变速箱,其特征在于,包括换挡电机、第一传动齿轮、第二传动齿轮、换挡丝杠、推块、拨叉、拨块和直线驱动装置,其中,所述拨块为多个,所述直线驱动装置为多个,所述拨叉为多个,所述拨块、所述直线驱动装置和所述拨叉的数量相同且对应设置,
    所述换挡电机的输出轴上设置有所述第一传动齿轮,所述第一传动齿轮和所述第二传动齿轮啮合,所述第二传动齿轮与所述换挡丝杠固定连接,所述换挡丝杠与所述推块螺纹连接,
    所述推块上设置有通孔,所述拨块的一端与所述直线驱动装置连接,其另一端插入所述通孔中且穿出后与所述拨叉上的凹槽对准。
  2. 根据权利要求1所述的选换挡执行机构,其特征在于,所述第二传动齿轮包括第一子齿轮和第二子齿轮,所述第一子齿轮位于所述第一传动齿轮的一侧且啮合,所述第二子齿轮位于所述第一传动齿轮的另一侧且啮合,
    所述换挡丝杠包括第一子丝杠和第二子丝杠,所述第一子丝杠的顶端与所述第一子齿轮同轴心固定连接,所述第二子丝杠的顶端与所述第二子齿轮同轴心固定连接,
    所述推块上开设有间隔设置的第一螺纹孔和第二螺纹孔,所述第一子丝杠设置在所述第一螺纹孔中,所述第二子丝杠设置在所述第二螺纹孔中,
    所述通孔设置在所述第一螺纹孔和所述第二螺纹孔之间。
  3. 根据权利要求2所述的选换挡执行机构,其特征在于,所述通孔的轴线与所述第一螺纹孔和所述第二螺纹孔的轴线垂直。
  4. 根据权利要求2所述的选换挡执行机构,其特征在于,所述拨块为三个,所述直线驱动装置为三个,所述拨叉为三个。
  5. 根据权利要求1所述的选换挡执行机构,其特征在于,所述直线驱动装置为气缸。
  6. 根据权利要求1所述的选换挡执行机构,其特征在于,所述第二传动 齿轮的直径大于所述第一传动齿轮的直径。
  7. 根据权利要求1所述的选换挡执行机构,其特征在于,所述换挡丝杠与所述推块螺纹连接具体为所述换挡丝杠上设置有螺母,所述螺母与所述推块固定连接。
  8. 根据权利要求1所述的选换挡执行机构,其特征在于,还包括检测所述拨块是否插入到所述拨叉的凹槽中的传感器。
  9. 一种选换挡执行方法,其特征在于,基于上述权利要求1所述的选换挡执行机构,
    需要换挡时,与需要的挡位对应的所述直线驱动装置驱动所述拨块移动插入到所述拨叉中,
    然后进行选档,换挡电机提供换挡动力驱动所述第一传动齿轮转动,所述第一传动齿轮驱动所述第二传动齿轮转动,所述第二传动齿轮带动所述换挡丝杠转动,所述换挡丝杠通过自身的转动驱动所述推块移动,所述推块移动时通过所述拨块拨动所述拨叉进行换挡。
  10. 根据权利要求9所述的选换挡执行方法,其特征在于,所述第二传动齿轮包括第一子齿轮和第二子齿轮,所述第一子齿轮位于所述第一传动齿轮的一侧且啮合,所述第二子齿轮位于所述第一传动齿轮的另一侧且啮合,
    所述换挡丝杠包括第一子丝杠和第二子丝杠,所述第一子丝杠的顶端与所述第一子齿轮同轴心固定连接,所述第二子丝杠的顶端与所述第二子齿轮同轴心固定连接,
    所述推块上开设有间隔设置的第一螺纹孔和第二螺纹孔,所述第一子丝杠设置在所述第一螺纹孔中,所述第二子丝杠设置在所述第二螺纹孔中,
    所述通孔设置在所述第一螺纹孔和所述第二螺纹孔之间,
    需要换挡时,与需要的挡位对应的所述直线驱动装置驱动所述拨块移动插入到所述拨叉中,
    然后进行选档,换挡电机提供换挡动力驱动所述第一传动齿轮转动,所述第一传动齿轮将动力对称传递到所述第一子齿轮和所述第二子齿轮上,所述第 一子齿轮和所述第二子齿轮分别将动力传递到所述第一子丝杠和所述第二子丝杠上,由所述第一子丝杠和所述第二子丝杠将旋转的运动形式转换为推块的直线往复运动,所述推块移动时通过所述拨块拨动所述拨叉进行换挡。
PCT/CN2018/091970 2018-03-21 2018-06-20 一种选换挡执行机构及方法 WO2019178959A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18910896.2A EP3770468B1 (en) 2018-03-21 2018-06-20 Gear selection and shifting actuating mechanism and method
US16/957,221 US11506283B2 (en) 2018-03-21 2018-06-20 Gear selection and shifting actuating mechanism and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820389667.9 2018-03-21
CN201820389667.9U CN208153713U (zh) 2018-03-21 2018-03-21 一种选换挡执行机构
CN201810234304.2A CN108561551B (zh) 2018-03-21 2018-03-21 一种选换挡执行机构及方法
CN201810234304.2 2018-03-21

Publications (1)

Publication Number Publication Date
WO2019178959A1 true WO2019178959A1 (zh) 2019-09-26

Family

ID=67988126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091970 WO2019178959A1 (zh) 2018-03-21 2018-06-20 一种选换挡执行机构及方法

Country Status (3)

Country Link
US (1) US11506283B2 (zh)
EP (1) EP3770468B1 (zh)
WO (1) WO2019178959A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115370741A (zh) * 2022-07-22 2022-11-22 合肥智行通智能科技有限公司 一种基于滚珠丝杠和软轴传动的线控选换挡装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507196A (en) * 1991-11-12 1996-04-16 Zf Friedrichshafen Ag Gearshifting arrangement for actuating motor vehicle multi-speed gearboxes
CN102207191A (zh) * 2011-02-28 2011-10-05 中国北方车辆研究所 一种用于机械式自动变速系统的丝杠式换挡执行机构
CN103836174A (zh) * 2013-12-11 2014-06-04 潍柴动力股份有限公司 自动变速器及其选换挡执行机构
CN104482198A (zh) * 2014-12-11 2015-04-01 东风汽车公司 电控电动amt选换档执行机构总成
WO2015154769A1 (de) * 2014-04-11 2015-10-15 Schaeffler Technologies AG & Co. KG Getriebeaktor für ein kraftfahrzeuggetriebe sowie steuerung zur ansteuerung eines getriebeaktors
CN105909777A (zh) * 2016-06-23 2016-08-31 陕西法士特齿轮有限责任公司 一种自动操纵装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147602A (ja) 2000-11-15 2002-05-22 Exedy Corp 車両用変速機のギヤ変速装置
DE102008040207A1 (de) 2008-07-07 2010-01-14 Zf Friedrichshafen Ag Anordnung zum Wählen und Schalten von Gängen bei einem Schaltgetriebe eines Fahrzeuges
KR101251503B1 (ko) * 2010-12-01 2013-04-05 현대자동차주식회사 수동변속기용 변속 조작기구
CN103328866B (zh) * 2011-01-24 2015-04-29 康斯博格汽车股份公司 换档促动器
KR101699629B1 (ko) 2015-11-25 2017-01-24 현대다이모스(주) 더블 클러치 변속기의 변속장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507196A (en) * 1991-11-12 1996-04-16 Zf Friedrichshafen Ag Gearshifting arrangement for actuating motor vehicle multi-speed gearboxes
CN102207191A (zh) * 2011-02-28 2011-10-05 中国北方车辆研究所 一种用于机械式自动变速系统的丝杠式换挡执行机构
CN103836174A (zh) * 2013-12-11 2014-06-04 潍柴动力股份有限公司 自动变速器及其选换挡执行机构
WO2015154769A1 (de) * 2014-04-11 2015-10-15 Schaeffler Technologies AG & Co. KG Getriebeaktor für ein kraftfahrzeuggetriebe sowie steuerung zur ansteuerung eines getriebeaktors
CN104482198A (zh) * 2014-12-11 2015-04-01 东风汽车公司 电控电动amt选换档执行机构总成
CN105909777A (zh) * 2016-06-23 2016-08-31 陕西法士特齿轮有限责任公司 一种自动操纵装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770468A4

Also Published As

Publication number Publication date
US20210003212A1 (en) 2021-01-07
US11506283B2 (en) 2022-11-22
EP3770468A1 (en) 2021-01-27
EP3770468B1 (en) 2022-09-07
EP3770468A4 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
CN204061752U (zh) 一种两挡变速箱
CN101922522B (zh) 变速器耦合器中的冲击控制
RU2395738C2 (ru) Система управления переключением передач в автоматической трансмиссии
CN105065658A (zh) 一种电动汽车两挡自动变速器的滑块摆杆换档机构
CN208153713U (zh) 一种选换挡执行机构
WO2019178959A1 (zh) 一种选换挡执行机构及方法
CN107218392B (zh) 一种范围档互锁装置及操作方法
CN206439350U (zh) 九挡双离合器式自动变速器
CN105114583A (zh) 组合内置式离合器机构的双离合机械变速器
CN108561551B (zh) 一种选换挡执行机构及方法
CN204985588U (zh) 组合内置式离合器机构的双离合机械变速器
CN110725916A (zh) 杠杆式无级变速器
CN202280826U (zh) 液压控制变速机构
CN204061853U (zh) 一种两挡变速换挡机构
CN105736652A (zh) 一种双离合器式自动变速器
CN104896035A (zh) 一种6档双离合器自动变速器
KR20100004295A (ko) 이중 클러치 변속기의 독립 작동 영역 타입 변속 동력 장치
CN100451400C (zh) 不间断动力的齿轮变速器
CN2753924Y (zh) 不间断动力的齿轮变速器
CN103939533A (zh) 多离合器齿轮组合式变速传动装置
CN209444735U (zh) 一种双离合器
CN100400940C (zh) 不间断动力的齿轮变速器
CN107906196B (zh) 一种变速器的换挡操纵机构
CN102401116A (zh) 省略选档过程的快速换档机构及其使用方法
CN206439351U (zh) 一种新型的十挡双离合器式自动变速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018910896

Country of ref document: EP

Effective date: 20201021