WO2019178854A1 - 重传处理的方法和装置 - Google Patents

重传处理的方法和装置 Download PDF

Info

Publication number
WO2019178854A1
WO2019178854A1 PCT/CN2018/080288 CN2018080288W WO2019178854A1 WO 2019178854 A1 WO2019178854 A1 WO 2019178854A1 CN 2018080288 W CN2018080288 W CN 2018080288W WO 2019178854 A1 WO2019178854 A1 WO 2019178854A1
Authority
WO
WIPO (PCT)
Prior art keywords
amd
pdus
amd pdus
probe
receiving
Prior art date
Application number
PCT/CN2018/080288
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/080288 priority Critical patent/WO2019178854A1/zh
Priority to CN201880003565.1A priority patent/CN109792327A/zh
Priority to US16/342,411 priority patent/US11121829B2/en
Priority to EP18849395.1A priority patent/EP3570477B1/en
Publication of WO2019178854A1 publication Critical patent/WO2019178854A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and apparatus for retransmission processing.
  • the transmitting end can trigger the receiving end to report the status report by using a polling mechanism. Therefore, the sender can know which Acknowledged Mode Data (AMD) Protocol Data Unit (PDU) is correctly received and which is not received correctly.
  • RLC Radio Link Control
  • AM Acknowledged Mode Data
  • PDU Protocol Data Unit
  • the transmitting end may carry the detection indication in the packet header of an AMD PDU.
  • the receiving end receives the AMD PDU with the detection indication, if the certain condition is met, the receiving end reports the status report to the transmitting end.
  • the sender After the sender adds the probe indication to the AMD PDU, the sender maintains a parameter value. When the sender receives the status report sent by the receiver, it can confirm whether the sequence number (SN) is equal to the status report. The receiving condition of the AMD PDU of the parameter value, if not, continues to maintain the probe retransmission timer, that is, it may continue to query the receiving end for the reception of the previously transmitted AMD PDU. In the New Radio (NR) system, due to the pre-processing situation, it is very likely that the sender will repeatedly poll for the previous AMD PDU for a period of time, resulting in unnecessary overhead.
  • NR New Radio
  • the present application provides a method and apparatus for retransmission processing, which is advantageous in reducing unnecessary overhead.
  • the first aspect provides a method for retransmission processing, where the method includes: the sending end sends a probe indication to the receiving end, where the probe indication is used to instruct the receiving end to feed back the multiple acknowledge mode data AMD protocol data sent by the sending end. a receiving status of the unit PDU, the sending end receiving a status report sent by the receiving end, the status report is used to indicate a receiving status of the at least one AMD PDU of the multiple AMD PDUs; if the first AMD PDU in the at least one AMD PDU The serial number is equal to the first value, and the sending end stops sending a sounding indication to the receiving end for the multiple AMD PDUs, the first value being less than or equal to the largest serial number in the serial number of the multiple AMD PDUs.
  • the probe indication is included in a header of the second AMD PDU of the multiple AMD PDUs.
  • the first value is equal to the maximum sequence number, or the first value is equal to the sequence number of the second AMD PDU.
  • the method further includes: after the second AMD PDU is delivered from the radio link control RLC layer to the medium access control MAC layer, the sending end starts or restarts the probe retransmission. Timer.
  • the sending end stops sending the detection indication for the multiple AMD PDUs to the receiving end, including: the sending end stops and resets the probe retransmission timer.
  • the method further includes: if the sequence number of each AMD PDU in the at least one AMD PDU is not equal to the first value, the sending end is within the duration of the probe retransmission timer A probe indication for the plurality of AMD PDUs is continued to be sent to the receiving end.
  • the method further includes: when the probe retransmission timer expires, the sending end retransmits all unreviewed AMD PDUs in the multiple AMD PDUs according to the received status report. .
  • the multiple AMD PDUs are transmitted through the first radio link of the transmitting end to control the RLC layer, and the transmitting end retransmits all the unreviewed AMD PDUs in the multiple AMD PDUs, including: If the buffer of the first RLC layer is empty, or the packet data convergence protocol PDCP layer of the transmitting end has no data transmission, or the PDCP layer has data transmission but the PDCP layer switches from the first RLC layer to the second RLC layer, The transmitting end retransmits all the unreviewed AMD PDUs in the multiple AMD PDUs according to the received status report.
  • the sending end is a terminal device or a network device.
  • an apparatus for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • an apparatus comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a computer storage medium for storing computer software instructions for performing the method of any of the above first aspect or any of the possible implementations of the first aspect, comprising program.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic block diagram showing a method of retransmission processing of an embodiment of the present application.
  • FIG. 3 shows another schematic block diagram of a method of retransmission processing in an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an apparatus for retransmission processing of an embodiment of the present application.
  • FIG. 5 is another schematic block diagram of an apparatus for retransmission processing of an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolved
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SCMA) system, and a low-density signature (Low). Density Signature (LDS) system, etc., of course, the SCMA system and the LDS system may also be referred to as other names in the communication field; further, the technical solution of the embodiment of the present application can be applied to multi-carrier using non-orthogonal multiple access technology.
  • SCMA sparse code multiple access
  • LDS Density Signature
  • Orthogonal Frequency Division Multiplexing OFDM
  • Filter Bank Multi-Carrier FBMC
  • General Frequency Division Multiplexing Generalized Frequency Division Multiplexing (OFDM)) Frequency Division Multiplexing (GFDM)
  • Filtered Orthogonal Frequency Division Multiplexing Filtered-OFDM, F-OFDM
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system. And may be an evolved base station (eNB or eNodeB) in the LTE system, or may be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be The embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • CRAN cloud radio access network
  • the embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • the sending end involved in the embodiment of the present application may be a terminal device or a network device. That is, the terminal device may send the AMD PDU to the network device, and the network device feeds back the status report to the terminal device; or the network device sends the AMD PDU to the terminal device, and the terminal device feeds back the status report to the network device.
  • the sender can carry the probe indication in the packet header of an AMD PDU.
  • the receiver receives the AMD PDU with the probe indication, if the certain condition is met, the receiver sends feedback to the sender. status report.
  • the sender adds the probe indication to the AMD PDU, the sender maintains a parameter value.
  • the sender receives the status report sent by the receiver, it can confirm whether the sequence number (SN) is equal to the status report. If the AMD PDU of the parameter value is received, if not, the probe retransmission timer is continuously maintained. That is to say, if the timer expires, the receiver may continue to be asked about the reception status of the previously transmitted AMD PDU.
  • the Packet Data Convergence Protocol can be pre-delivered to the RLC in advance.
  • the sender may send 3 AMD PDUs at a time, and the sender In addition to delivering the 3 AMD PDUs from the RLC layer to the Media Access Control (MAC), another 2 AMD PDUs are also forwarded from the RLC to the MAC.
  • a parameter Tx-NEXT
  • FIG. 2 shows a schematic block diagram of a method 100 of retransmission processing in accordance with an embodiment of the present application. As shown in FIG. 2, the method 100 includes some or all of the following:
  • the sending end sends a sounding indication to the receiving end, where the sounding indication is used to instruct the receiving end to feed back the receiving state of the plurality of acknowledge mode data AMD protocol data unit PDUs sent by the sending end;
  • the sending end receives a status report sent by the receiving end, where the status report is used to indicate a receiving status of at least one of the multiple AMD PDUs.
  • the sending end stops sending the detection indication for the multiple AMD PDUs to the receiving end.
  • the first value is less than or equal to a maximum sequence number in a sequence number of the at least one AMD PDU.
  • the sender can set the POLL_SN to a value less than or equal to 3.
  • the POLL_SN can be set to the maximum SN of the AMD PDU sent by the sender, that is, 3.
  • the POLL_SN may be set to the SN carrying the probe indication in the AMD PDU sent by the sender, that is, 2.
  • the method of retransmission processing in the embodiment of the present application is advantageous in reducing unnecessary overhead.
  • the sending end may carry the detection indication in a packet header of a certain AMD PDU.
  • the detection indication may be carried in which AMD PDU is carried out in the following two manners.
  • the network device can configure two parameters pollPDU and pollbyte, and maintain two count values of PDU_WITHOUT_POLL and BYTE_WITHOUT_POLL, when the two count values are respectively greater than the network device configuration values (that is, PDU_WITHOUT_POLL>pollPDU, and BYTE_WITHOUT_POLL>pollbyte
  • a probe indication is added to the current AMD PDU.
  • the method further includes: after the sending end delivers the second AMD PDU from a radio link control RLC layer to a media access control MAC layer, where the sending end is Start or restart the probe retransmission timer.
  • the transmitting end may start or restart the probe retransmission timer. Specifically, the transmitting end may send an AMD PDU carrying the detection indication from the RLC layer to the MAC layer, and the Tx-NEXT is also updated. If the detection retransmission timer is not timing, the transmitting end may The probe retransmission timer is started; if the probe retransmission timer is already timing, the probe retransmission timer can be restarted.
  • the sending end stops sending the detection indication for the multiple AMD PDUs to the receiving end, including: the sending end stops and resets the detecting retransmission timer. .
  • the transmitting end may stop the foregoing probe retransmission timer and reset the probe retransmission timer.
  • the sender may retransmit the AMD PDUs that failed to receive according to the reception status of the AMD PDU included in the status report.
  • the so-called restart timer is to start timing from the beginning.
  • the duration of this timer is the same as the duration of the timer that was started last time.
  • the reset timer refers to resetting the duration of the timer. At this time, it is not necessary to start the timer.
  • the timer is started only when there is a startup operation, and the timer after startup is started. The length of time is likely to be different from the duration of the timer that was started the previous time.
  • the sending end is in the duration of the probe retransmission timer.
  • the detecting indication for the plurality of AMD PDUs is continuously sent to the receiving end.
  • the probe retransmission timer will continue to count until the probe retransmission timer expires, and the sender will report the status according to the feedback from the receiver.
  • Each AMD PDU retransmits the AMD PDUs without feedback to the receiving end.
  • retransmitting the AMD PDUs without feedback may be empty in the transmission buffer, or there is no data transmission in the PDCP, or the PDCP has data but the PDCP switches from one RLC to another.
  • RLC such as split or duplication scenarios
  • AMD PDUs without feedback are retransmitted. That is, if the transmission buffer is not empty, or the PDCP has data and the RLC is not switched, the sender can retransmit the AMD PDUs that failed to receive according to the status report of the feedback.
  • FIG. 4 shows a schematic block diagram of an apparatus 200 of an embodiment of the present application. As shown in FIG. 4, the device is a transmitting end, and the device 200 includes:
  • the sending unit 210 is configured to send a probe indication to the receiving end, where the probe indication is used to indicate that the receiving end feeds back a receiving status of the multiple acknowledge mode data AMD protocol data unit PDU sent by the sending end;
  • the receiving unit 220 is configured to receive a status report sent by the receiving end, where the status report is used to indicate a receiving status of at least one AMD PDU of the multiple AMD PDUs;
  • the processing unit 230 is configured to stop sending, when the sequence number of the first AMD PDU in the at least one AMD PDU is equal to the first value, a detection indication for the multiple AMD PDUs, where the first value is less than or equal to the The largest serial number in the serial number of multiple AMD PDUs.
  • the apparatus for retransmission processing of the embodiment of the present application is advantageous in reducing unnecessary overhead.
  • the probe indication is included in a header of the second AMD PDU of the multiple AMD PDUs.
  • the first value is equal to the maximum sequence number, or the first value is equal to the sequence number of the second AMD PDU.
  • the apparatus further includes: a timing unit, configured to: after the second AMD PDU is delivered from the radio link control RLC layer to the media access control MAC layer, start or Restart the probe retransmission timer.
  • a timing unit configured to: after the second AMD PDU is delivered from the radio link control RLC layer to the media access control MAC layer, start or Restart the probe retransmission timer.
  • the processing unit is specifically configured to: stop and reset the probe retransmission timer.
  • the sending unit is further configured to: if the sequence number of each AMD PDU in the at least one AMD PDU is not equal to the first value, the duration of the probe retransmission timer The detection indication for the plurality of AMD PDUs is continuously sent to the receiving end.
  • the apparatus further includes: a retransmission unit, configured to retransmit all the multiple AMD PDUs according to the received status report if the probe retransmission timer expires AMD PDUs that are not fed back.
  • a retransmission unit configured to retransmit all the multiple AMD PDUs according to the received status report if the probe retransmission timer expires AMD PDUs that are not fed back.
  • the multiple AMD PDUs are transmitted through the first radio link of the sending end to control the RLC layer, where the retransmission unit is specifically configured to: the cache in the first RLC layer is empty, or If the PDCP layer of the packet data transmission protocol has no data transmission, or if the PDCP layer has data transmission but the PDCP layer switches from the first RLC layer to the second RLC layer, retransmit the information according to the received status report. All AMD PDUs that are not fed back in multiple AMD PDUs.
  • the device is a terminal device or a network device.
  • the apparatus 200 may correspond to the transmitting end in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the apparatus 200 are respectively implemented to implement the corresponding end of the method in the method of FIG. The process, for the sake of brevity, will not be described here.
  • the embodiment of the present application further provides an apparatus 300, which may be the apparatus 200 in FIG. 4, which can be used to execute the content of the sender corresponding to the method 100 of FIG.
  • the apparatus 300 includes an input interface 310, an output interface 320, a processor 330, and a memory 340.
  • the input interface 310, the output interface 320, the processor 330, and the memory 340 can be connected by a bus system.
  • the memory 340 is for storing programs, instructions or codes.
  • the processor 330 is configured to execute a program, an instruction or a code in the memory 340 to control the input interface 310 to receive a signal, control the output interface 320 to transmit a signal, and complete the operations in the foregoing method embodiments.
  • the apparatus for retransmission processing of the embodiment of the present application is advantageous in reducing unnecessary overhead.
  • the processor 330 may be a central processing unit (CPU), and the processor 330 may also be other general-purpose processors, digital signal processors, application specific integrated circuits, and ready-made Program gate arrays or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 340 can include read only memory and random access memory and provides instructions and data to the processor 330. A portion of the memory 340 may also include a non-volatile random access memory. For example, the memory 340 can also store information of the device type.
  • each content of the above method may be completed by an integrated logic circuit of hardware in the processor 330 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 340, and the processor 330 reads the information in the memory 340 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the transmitting unit in the device 200 can be implemented by the output interface 320 in FIG. 5.
  • the processing unit in the device 200 can be implemented by the processor 330 in FIG. 5, and the receiving unit in the device 200 can be represented by a map.
  • the input interface 310 in 5 is implemented.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种重传处理的方法和装置,该方法包括:发送端向接收端发送探测指示,该探测指示用于指示该接收端反馈该发送端发送的多个确认模式数据AMD协议数据单元PDU的接收状态;该发送端接收该接收端发送的状态报告,该状态报告用于指示该多个AMD PDU中至少一个AMD PDU的接收状态;若该至少一个AMD PDU中的第一AMD PDU的序列号等于第一值,该发送端停止向该接收端发送针对该多个AMD PDU的探测指示,该第一值小于或等于该多个AMD PDU的序列号中的最大序列号。本申请实施例的方法和装置,有利于减少不必要的开销。

Description

重传处理的方法和装置 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种重传处理的方法和装置。
背景技术
在现有协议中,在无线链路控制(Radio Link Control,RLC)确认模式(Acknowledged Mode,AM)下,发送端可以通过轮询(polling)机制来触发接收端上报状态报告(state report),从而发送端就可以知道哪些确认模式数据(Acknowledged Mode Data,AMD)协议数据单元(Protocol Data Unit,PDU)被正确接收,哪些没有被正确接收。
发送端可以通过在某个AMD PDU的包头中携带探测指示,当接收端接收到该带有探测指示的AMD PDU时,如果满足一定条件,接收端就会向发送端反馈状态报告。
发送端在给AMD PDU添加完探测指示之后,发送端会维护一个参数值,当发送端接收到接收端发送的状态报告时,可以确认该状态报告中是否包括序列号(Sequence Number,SN)等于该参数值的AMD PDU的接收情况,若没有,则继续保持探测重传定时器,也就是说可能继续向接收端询问前一次发送的AMD PDU的接收情况。在新空口(New Radio,NR)系统中,由于存在预处理的情况,很有可能会导致发送端在一段时间内一直针对前一次的AMD PDU反复轮询的问题,从而导致不必要的开销。
发明内容
有鉴于此,本申请提供了一种重传处理的方法和装置,有利于减少不必要的开销。
第一方面,提供了一种重传处理的方法,该方法包括:发送端向接收端发送探测指示,该探测指示用于指示该接收端反馈该发送端发送的多个确认模式数据AMD协议数据单元PDU的接收状态;该发送端接收该接收端发送的状态报告,该状态报告用于指示该多个AMD PDU中至少一个AMD PDU的接收状态;若该至少一个AMD PDU中的第一AMD PDU的序列号 等于第一值,该发送端停止向该接收端发送针对该多个AMD PDU的探测指示,该第一值小于或等于该多个AMD PDU的序列号中的最大序列号。
在一种可能的实现方式中,该多个AMD PDU中的第二AMD PDU的包头中包括该探测指示。
在一种可能的实现方式中,该第一值等于该最大序列号,或该第一值等于该第二AMD PDU的序列号。
在一种可能的实现方式中,该方法还包括:在该发送端将该第二AMD PDU从无线链路控制RLC层递交到媒体接入控制MAC层之后,该发送端启动或重启探测重传定时器。
在一种可能的实现方式中,该发送端停止向该接收端发送针对该多个AMD PDU的探测指示,包括:该发送端停止并重置该探测重传定时器。
在一种可能的实现方式中,该方法还包括:若该至少一个AMD PDU中的每个AMD PDU的序列号均不等于该第一值,该发送端在该探测重传定时器的时长内继续向该接收端发送针对该多个AMD PDU的探测指示。
在一种可能的实现方式中,该方法还包括:在该探测重传定时器超时的情况下,该发送端根据接收到的状态报告,重传该多个AMD PDU中所有未反馈的AMD PDU。
在一种可能的实现方式中,该多个AMD PDU通过该发送端的第一无线链路控制RLC层传输,该发送端重传该多个AMD PDU中所有未反馈的AMD PDU,包括:在该第一RLC层的缓存为空,或该发送端的分组数据汇聚协议PDCP层没有数据传输,或该PDCP层有数据传输但该PDCP层从该第一RLC层切换到第二RLC层的情况下,该发送端根据接收到的状态报告,重传该多个AMD PDU中所有未反馈的AMD PDU。
在一种可能的实现方式中,该发送端为终端设备或网络设备。
第二方面,提供了一种装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第三方面,提供了一种装置,该装置包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第五方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了本申请实施例的重传处理的方法的示意性框图。
图3示出了本申请实施例的重传处理的方法的另一示意性框图。
图4示出了本申请实施例的重传处理的装置的示意性框图。
图5示出了本申请实施例的重传处理的装置的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolved,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系 统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
应理解,本申请实施例中涉及的发送端可以是终端设备,也可以是网络设备。也就是说,可以是终端设备向网络设备发送AMD PDU,由网络设备向终端设备反馈状态报告;也可以是网络设备向终端设备发送AMD PDU, 由终端设备向网络设备反馈状态报告。
在目前的协议中,发送端可以通过在某个AMD PDU的包头中携带探测指示,当接收端接收到该带有探测指示的AMD PDU时,如果满足一定条件,接收端就会向发送端反馈状态报告。发送端在给AMD PDU添加完探测指示之后,发送端会维护一个参数值,当发送端接收到接收端发送的状态报告时,可以确认该状态报告中是否包括序列号(Sequence Number,SN)等于该参数值的AMD PDU的接收情况,若没有,则继续保持探测重传定时器,也就是说在定时器超时的情况下,可能继续向接收端询问前一次发送的AMD PDU的接收情况。
在NR系统中,由于存在预处理的情况,可以提前将分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)预先递交到RLC中,换句话说,发送端可能一次发送3个AMD PDU,而发送端除了将该3个AMD PDU从RLC层递交到媒体接入控制(Media Access Control,MAC)之外,还会将另外2个AMD PDU从RLC递交到MAC处。此时在发送端会维护一个参数(Tx-NEXT),该参数值为当前RLC层递交的AMD PDU以及预处理的AMD PDU的数量之和+1,也就是说该参数值Tx-NEXT=6,此时发送端还会维护第二个参数值POLL_SN,并且将POLL_SN的值设为Tx-NEXT的值,即POLL_SN=6,假设探测指示添加于SN=2的AMD PDU中,当发送端向接收端发送了SN为1、2和3的AMD PDU之后,发送端接收的状态报告无论如何都不会包括SN=6的AMD PDU的接收情况,因为SN=6的AMD PDU还处于未发送状态。在此情况下,发送端很有可能就一直向接收端发送探测指示,导致不必要的开销。在一定时间之后,发送端可能进一步地根据状态报告的反馈情况向接收端进行重传。
图2示出了本申请实施例的重传处理的方法100的示意性框图。如图2所示,该方法100包括以下部分或全部内容:
S110,发送端向接收端发送探测指示,所述探测指示用于指示所述接收端反馈所述发送端发送的多个确认模式数据AMD协议数据单元PDU的接收状态;
S120,所述发送端接收所述接收端发送的状态报告,所述状态报告用于指示所述多个AMD PDU中至少一个AMD PDU的接收状态;
S130,若所述至少一个AMD PDU中的第一AMD PDU的序列号等于第 一值(也就是上述POLL_SN),所述发送端停止向所述接收端发送针对所述多个AMD PDU的探测指示,所述第一值小于或等于所述至少一个AMD PDU的序列号中的最大序列号。
举例来说,如图3所示,发送端已经将SN=1,2,3的AMD PDU已经从RLC递交到MAC层,该RLC层有SN=5,6两个预处理的AMD PDU,Tx-NEXT=6。其中,SN=2的AMD PDU携带了探测指示,此时,发送端可以将POLL_SN设置为小于或等于3的值,例如,可以将POLL_SN设置为发送端发送的AMD PDU中的最大SN,也就是3。再例如,可以将POLL_SN设置为发送端发送的AMD PDU中携带探测指示的SN,也就是2。这样的话,发送端接收到的状态报告中携带的SN与POLL_SN,确定要不要停止继续向接收端发送针对该SN=1,2,3的AMD PDU的探测指示。假设该状态报告中携带了SN=1,2,3,无论POLL_SN为2还是3,发送端都可以停止继续向接收端发送针对该SN=1,2,3的AMD PDU的探测指示。
因此,本申请实施例的重传处理的方法,有利于减少不必要的开销。
可选地,在本申请实施例中,该POLL_SN可以是发送端发送的多个AMD PDU的序列号中的最大序列号,如图3中POLL_SN=3,或者该POLL_SN可以是发送端发送的多个AMD PDU中携带探测指示的AMD PDU的序列号,如图3中POLL_SN=2。应理解,此处仅以POLL_SN等于最大序列号和携带探测指示的AMD PDU的序列号为例,本申请实施例应不限于此。
可选地,在本申请实施例中,发送端可以在某个AMD PDU的包头中携带探测指示。具体地,可以通过以下两种方式选择在哪个AMD PDU中携带探测指示。第一,网络设备可以配置两个参数pollPDU和pollbyte,同时维护PDU_WITHOUT_POLL和BYTE_WITHOUT_POLL这两个计数值,当这两个计数值分别大于网络设备配置的值(也就是说PDU_WITHOUT_POLL>pollPDU,以及BYTE_WITHOUT_POLL>pollbyte)时,则会在当前AMD PDU中添加探测指示。第二,如果当前AMD PDU是最后一个上层包,或者传输缓存(buffer)清空了,则给当前的AMD PDU中添加探测指示。
可选地,在本申请实施例中,所述方法还包括:在所述发送端将所述第二AMD PDU从无线链路控制RLC层递交到媒体接入控制MAC层之后, 所述发送端启动或重启探测重传定时器。
也就是说,当发送端向接收端初传多个AMD PDU之后,发送端可以启动或者重启探测重传定时器。具体地,发送端可以在把一个携带有探测指示的AMD PDU从RLC层递交到MAC层之后,并且此时Tx-NEXT也已经更新完了,若此时探测重传定时器没有在计时,则可以启动该探测重传定时器;若此时探测重传定时器已经在计时了,则可以重启该探测重传定时器。
可选地,在本申请实施例中,所述发送端停止向所述接收端发送针对所述多个AMD PDU的探测指示,包括:所述发送端停止并重置所述探测重传定时器。
若接收端向发送端反馈的状态报告中携带有等于POLL_SN的SN,则发送端可以停止上述探测重传定时器,并且重置该探测重传定时器。发送端在停止该探测重传定时器的情况下,可以根据状态报告中包括的AMD PDU的接收情况,重传那些接收失败的AMD PDU。
这里需要强调一下重置和重启的区别,所谓重启定时器,就是从头开始计时,该定时器的时长与前一次启动的定时器的时长是相同的。而重置定时器则是指将定时器的时长重新设置一下,这时不一定是不启动定时器的,只有在有启动操作的情况下该定时器才是启动的,并且启动后的定时器的时长很有可能与前一次启动的定时器的时长是不同的。
可选地,在本申请实施例中,若所述至少一个AMD PDU中的每个AMD PDU的序列号均不等于所述第一值,所述发送端在所述探测重传定时器的时长内继续向所述接收端发送针对所述多个AMD PDU的探测指示。
也就是说,如果发送端接收到的状态报告中不携带等于POLL_SN的SN,则探测重传定时器会继续计时,直到探测重传定时器超时时,发送端才会根据接收端反馈的状态报告中各个AMD PDU,向接收端重传那些没有反馈的AMD PDU。
进一步地,在探测重传定时器超时时,重传那些没有反馈的AMD PDU,可以是在传输缓存为空,或者是PDCP没有数据传输,或者PDCP虽有数据但是PDCP从一个RLC切换到另一个RLC(比如分裂(split)或复制(duplication)场景)的情况下,重传那些没有反馈的AMD PDU。也就是说,如果在传输缓存不为空,或者PDCP有数据且没有切换RLC的场景下,发送端可以根据反馈的状态报告的情况,重传那些接收失败的AMD PDU。
图4示出了本申请实施例的装置200的示意性框图。如图4所示,该装置为发送端,该装置200包括:
发送单元210,用于向接收端发送探测指示,该探测指示用于指示该接收端反馈该发送端发送的多个确认模式数据AMD协议数据单元PDU的接收状态;
接收单元220,用于接收该接收端发送的状态报告,该状态报告用于指示该多个AMD PDU中至少一个AMD PDU的接收状态;
处理单元230,用于若该至少一个AMD PDU中的第一AMD PDU的序列号等于第一值,停止向该接收端发送针对该多个AMD PDU的探测指示,该第一值小于或等于该多个AMD PDU的序列号中的最大序列号。
因此,本申请实施例的重传处理的装置,有利于减少不必要的开销。
可选地,在本申请实施例中,该多个AMD PDU中的第二AMD PDU的包头中包括该探测指示。
可选地,在本申请实施例中,该第一值等于该最大序列号,或该第一值等于该第二AMD PDU的序列号。
可选地,在本申请实施例中,该装置还包括:定时单元,用于在该发送端将该第二AMD PDU从无线链路控制RLC层递交到媒体接入控制MAC层之后,启动或重启探测重传定时器。
可选地,在本申请实施例中,该处理单元具体用于:停止并重置该探测重传定时器。
可选地,在本申请实施例中,该发送单元还用于:若该至少一个AMD PDU中的每个AMD PDU的序列号均不等于该第一值,在该探测重传定时器的时长内继续向该接收端发送针对该多个AMD PDU的探测指示。
可选地,在本申请实施例中,该装置还包括:重传单元,用于在该探测重传定时器超时的情况下,根据接收到的状态报告,重传该多个AMD PDU中所有未反馈的AMD PDU。
可选地,在本申请实施例中,该多个AMD PDU通过该发送端的第一无线链路控制RLC层传输,该重传单元具体用于:在该第一RLC层的缓存为空,或该发送端的分组数据汇聚协议PDCP层没有数据传输,或该PDCP层有数据传输但该PDCP层从该第一RLC层切换到第二RLC层的情况下,根据接收到的状态报告,重传该多个AMD PDU中所有未反馈的AMD PDU。
可选地,在本申请实施例中,该装置为终端设备或网络设备。
应理解,根据本申请实施例的装置200可对应于本申请方法实施例中的发送端,并且装置200中的各个单元的上述和其它操作和/或功能分别为了实现图2方法中发送端的相应流程,为了简洁,在此不再赘述。
如图5所示,本申请实施例还提供了一种装置300,该装置300可以是图4中的装置200,其能够用于执行与图2中方法100对应的发送端的内容。该装置300包括:输入接口310、输出接口320、处理器330以及存储器340,该输入接口310、输出接口320、处理器330和存储器340可以通过总线系统相连。该存储器340用于存储包括程序、指令或代码。该处理器330,用于执行该存储器340中的程序、指令或代码,以控制输入接口310接收信号、控制输出接口320发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的重传处理的装置,有利于减少不必要的开销。
应理解,在本申请实施例中,该处理器330可以是中央处理单元(Central Processing Unit,CPU),该处理器330还可以是其他通用处理器、数字信号处理器、专用集成电路、现成可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器340可以包括只读存储器和随机存取存储器,并向处理器330提供指令和数据。存储器340的一部分还可以包括非易失性随机存取存储器。例如,存储器340还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器330中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器340,处理器330读取存储器340中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,装置200中的发送单元可以由图5中的输出接口320实现,装置200中的处理单元可以由图5中的处理器330实现,装置200中的接收单元可以由图5中的输入接口310实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种重传处理的方法,其特征在于,包括:
    发送端向接收端发送探测指示,所述探测指示用于指示所述接收端反馈所述发送端发送的多个确认模式数据AMD协议数据单元PDU的接收状态;
    所述发送端接收所述接收端发送的状态报告,所述状态报告用于指示所述多个AMD PDU中至少一个AMD PDU的接收状态;
    若所述至少一个AMD PDU中的第一AMD PDU的序列号等于第一值,所述发送端停止向所述接收端发送针对所述多个AMD PDU的探测指示,所述第一值小于或等于所述多个AMD PDU的序列号中的最大序列号。
  2. 根据权利要求1所述的方法,其特征在于,所述多个AMD PDU中的第二AMD PDU的包头中包括所述探测指示。
  3. 根据权利要求2所述的方法,其特征在于,所述第一值等于所述最大序列号,或所述第一值等于所述第二AMD PDU的序列号。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    在所述发送端将所述第二AMD PDU从无线链路控制RLC层递交到媒体接入控制MAC层之后,所述发送端启动或重启探测重传定时器。
  5. 根据权利要求4所述的方法,其特征在于,所述发送端停止向所述接收端发送针对所述多个AMD PDU的探测指示,包括:
    所述发送端停止并重置所述探测重传定时器。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若所述至少一个AMD PDU中的每个AMD PDU的序列号均不等于所述第一值,所述发送端在所述探测重传定时器的时长内继续向所述接收端发送针对所述多个AMD PDU的探测指示。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述探测重传定时器超时的情况下,所述发送端根据接收到的状态报告,重传所述多个AMD PDU中所有未反馈的AMD PDU。
  8. 根据权利要求7所述的方法,其特征在于,所述多个AMD PDU通过所述发送端的第一无线链路控制RLC层传输,所述发送端重传所述多个AMD PDU中所有未反馈的AMD PDU,包括:
    在所述第一RLC层的缓存为空,或所述发送端的分组数据汇聚协议PDCP层没有数据传输,或所述PDCP层有数据传输但所述PDCP层从所述 第一RLC层切换到第二RLC层的情况下,所述发送端根据接收到的状态报告,重传所述多个AMD PDU中所有未反馈的AMD PDU。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述发送端为终端设备或网络设备。
  10. 一种重传处理的装置,其特征在于,所述装置为发送端,所述装置包括:
    发送单元,用于向接收端发送探测指示,所述探测指示用于指示所述接收端反馈所述发送端发送的多个确认模式数据AMD协议数据单元PDU的接收状态;
    接收单元,用于接收所述接收端发送的状态报告,所述状态报告用于指示所述多个AMD PDU中至少一个AMD PDU的接收状态;
    处理单元,用于若所述至少一个AMD PDU中的第一AMD PDU的序列号等于第一值,停止向所述接收端发送针对所述多个AMD PDU的探测指示,所述第一值小于或等于所述多个AMD PDU的序列号中的最大序列号。
  11. 根据权利要求10所述的装置,其特征在于,所述多个AMD PDU中的第二AMD PDU的包头中包括所述探测指示。
  12. 根据权利要求11所述的装置,其特征在于,所述第一值等于所述最大序列号,或所述第一值等于所述第二AMD PDU的序列号。
  13. 根据权利要求11或12所述的装置,其特征在于,所述装置还包括:
    定时单元,用于在所述发送端将所述第二AMD PDU从无线链路控制RLC层递交到媒体接入控制MAC层之后,启动或重启探测重传定时器。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元具体用于:
    停止并重置所述探测重传定时器。
  15. 根据权利要求13所述的装置,其特征在于,所述发送单元还用于:
    若所述至少一个AMD PDU中的每个AMD PDU的序列号均不等于所述第一值,在所述探测重传定时器的时长内继续向所述接收端发送针对所述多个AMD PDU的探测指示。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    重传单元,用于在所述探测重传定时器超时的情况下,根据接收到的状态报告,重传所述多个AMD PDU中所有未反馈的AMD PDU。
  17. 根据权利要求16所述的装置,其特征在于,所述多个AMD PDU通过所述发送端的第一无线链路控制RLC层传输,所述重传单元具体用于:
    在所述第一RLC层的缓存为空,或所述发送端的分组数据汇聚协议PDCP层没有数据传输,或所述PDCP层有数据传输但所述PDCP层从所述第一RLC层切换到第二RLC层的情况下,根据接收到的状态报告,重传所述多个AMD PDU中所有未反馈的AMD PDU。
  18. 根据权利要求10至17中任一项所述的装置,其特征在于,所述装置为终端设备或网络设备。
PCT/CN2018/080288 2018-03-23 2018-03-23 重传处理的方法和装置 WO2019178854A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/080288 WO2019178854A1 (zh) 2018-03-23 2018-03-23 重传处理的方法和装置
CN201880003565.1A CN109792327A (zh) 2018-03-23 2018-03-23 重传处理的方法和装置
US16/342,411 US11121829B2 (en) 2018-03-23 2018-03-23 Method and device for retransmission processing
EP18849395.1A EP3570477B1 (en) 2018-03-23 2018-03-23 Method and apparatus for retransmission processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080288 WO2019178854A1 (zh) 2018-03-23 2018-03-23 重传处理的方法和装置

Publications (1)

Publication Number Publication Date
WO2019178854A1 true WO2019178854A1 (zh) 2019-09-26

Family

ID=66499448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080288 WO2019178854A1 (zh) 2018-03-23 2018-03-23 重传处理的方法和装置

Country Status (4)

Country Link
US (1) US11121829B2 (zh)
EP (1) EP3570477B1 (zh)
CN (1) CN109792327A (zh)
WO (1) WO2019178854A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187415B (zh) * 2019-07-04 2022-06-28 大唐移动通信设备有限公司 一种重复传输维护方法、终端及网络设备
US11870583B2 (en) * 2020-01-31 2024-01-09 Qualcomm Incorporated Techniques for POLL bit trigger enhancement in a wireless communication system
CN112153694B (zh) * 2020-09-30 2023-06-16 Oppo广东移动通信有限公司 数据处理方法、装置、终端及存储介质
CN112399478B (zh) * 2020-10-28 2023-03-24 展讯半导体(成都)有限公司 防止上行失步方法、通信装置和可读存储介质
CN117596218A (zh) * 2022-08-15 2024-02-23 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889414A (zh) * 2005-06-30 2007-01-03 华为技术有限公司 一种基于丢失pdu检测机制发送状态pdu的方法
CN101489252A (zh) * 2008-01-03 2009-07-22 凌阳电通科技股份有限公司 应用强化无线链路控制状态协议数据的无线网络通信方法
CN101925195A (zh) * 2009-06-17 2010-12-22 中兴通讯股份有限公司 基于rlc协议确认模式中确认信息的处理方法及系统
US20130039192A1 (en) * 2011-08-08 2013-02-14 Renesas Mobile Corporation Methods, Apparatus and Wireless Device for Transmitting and Receiving Data Blocks

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765121B1 (ko) 2001-11-24 2007-10-11 엘지전자 주식회사 송신버퍼의 프로토콜 데이터 유닛 폴링 방법
US7558243B2 (en) 2004-09-15 2009-07-07 Innovative Sonic Limited Enhanced polling method for preventing deadlock in a wireless communications system
ES2377652T3 (es) * 2005-08-16 2012-03-29 Panasonic Corporation Método y aparato para configurar nuevamente un número de secuencias de transmisión (NST)
US8687495B2 (en) 2007-03-16 2014-04-01 Qualcomm Incorporated Method and apparatus for polling in a wireless communication system
CN101944984B (zh) 2010-09-14 2014-06-11 中兴通讯股份有限公司 一种协议数据单元的传输方法及系统
CN102761905B (zh) * 2011-04-26 2016-03-30 华为技术有限公司 消息处理方法、设备及系统
JP5147983B1 (ja) * 2011-10-06 2013-02-20 株式会社エヌ・ティ・ティ・ドコモ 基地局及び通信制御方法
CN103138905B (zh) * 2011-11-24 2016-08-03 华为技术有限公司 Rlc数据包传输的确认方法及rlc am实体发送方
GB2491050B (en) 2012-07-12 2014-12-10 Broadcom Corp Wireless communication system and method
US10201012B2 (en) 2014-04-10 2019-02-05 Lg Electronics Inc. Retransmission method at time of sharing transmission opportunity in wireless LAN system, and device therefor
EP3145105A1 (en) * 2014-06-17 2017-03-22 Huawei Technologies Co., Ltd. Radio resource scheduling method and apparatus
CN106788913A (zh) 2015-11-23 2017-05-31 华为技术有限公司 一种基于laa的混合自动重传处理方法和基站
CN107294652A (zh) 2016-04-13 2017-10-24 中兴通讯股份有限公司 一种数据混合重传处理方法和装置
US10924219B2 (en) * 2016-11-11 2021-02-16 Sony Corporation Transmitting node, receiving node, methods and mobile communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889414A (zh) * 2005-06-30 2007-01-03 华为技术有限公司 一种基于丢失pdu检测机制发送状态pdu的方法
CN101489252A (zh) * 2008-01-03 2009-07-22 凌阳电通科技股份有限公司 应用强化无线链路控制状态协议数据的无线网络通信方法
CN101925195A (zh) * 2009-06-17 2010-12-22 中兴通讯股份有限公司 基于rlc协议确认模式中确认信息的处理方法及系统
US20130039192A1 (en) * 2011-08-08 2013-02-14 Renesas Mobile Corporation Methods, Apparatus and Wireless Device for Transmitting and Receiving Data Blocks

Also Published As

Publication number Publication date
CN109792327A (zh) 2019-05-21
US11121829B2 (en) 2021-09-14
US20210075548A1 (en) 2021-03-11
EP3570477A1 (en) 2019-11-20
EP3570477B1 (en) 2021-09-01
EP3570477A4 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2019178854A1 (zh) 重传处理的方法和装置
TWI732000B (zh) 傳輸數據的方法和裝置
EP1768296A2 (en) Method and apparatus for transmitting signaling data messages in a wireless communications system
CN111294153B (zh) 传输数据的方法和设备
WO2016183705A1 (zh) 授权辅助接入系统中用于传输上行数据的方法和装置
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
CN108282292B (zh) 用于处理数据的方法、发送端和接收端
EP3582421B1 (en) Method for transmitting feedback information, terminal device and network device
EP3634076B1 (en) Method and device for processing data
US11483097B2 (en) Wireless communication method, network device, terminal device, and readable storage medium
CN112187414B (zh) 指示数据传输情况的方法和装置
US11343862B2 (en) Communication method and communication device
WO2019101122A1 (zh) 传输数据的方法和装置
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
WO2019028965A1 (zh) 传输数据的方法和装置
WO2023072147A1 (zh) 通信方法和装置
CN113518401B (zh) 无线通信方法、终端设备和网络设备
WO2018202046A1 (zh) 状态报告的上报方法、终端及网络侧设备
EP1993313A2 (en) Method and apparatus for polling transmission status in a wireless communications system
JP2020519066A (ja) 無線通信方法及び装置
WO2017084095A1 (zh) 传输数据的方法、终端和基站
WO2019192452A1 (zh) 一种信息传输方法、装置及可读存储介质
WO2019153367A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019028824A1 (zh) 用于传输数据的方法、终端设备和网络设备
WO2018058538A1 (zh) 传输信息的方法、网络设备和终端设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018849395

Country of ref document: EP

Effective date: 20190304

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE