WO2019176779A1 - 差動装置 - Google Patents
差動装置 Download PDFInfo
- Publication number
- WO2019176779A1 WO2019176779A1 PCT/JP2019/009374 JP2019009374W WO2019176779A1 WO 2019176779 A1 WO2019176779 A1 WO 2019176779A1 JP 2019009374 W JP2019009374 W JP 2019009374W WO 2019176779 A1 WO2019176779 A1 WO 2019176779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- case
- differential
- pinion
- differential case
- shaft
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/06—Differential gearings with gears having orbital motion
- F16H48/08—Differential gearings with gears having orbital motion comprising bevel gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/38—Constructional details
- F16H48/40—Constructional details characterised by features of the rotating cases
Definitions
- the present invention relates to a differential, particularly a hollow differential case rotatable around a first axis, a differential mechanism housed in the differential case, lubricating oil introducing means capable of introducing lubricating oil from the outside into the differential case, and a differential case
- a pinion shaft that is coupled to the outer peripheral flange portion and meshes with a drive gear connected to a power source, and a differential mechanism is disposed on a second axis perpendicular to the first axis and supported by the differential case;
- the present invention relates to a gear having a pinion gear rotatably supported by a pinion shaft, and a pair of side gears meshed with the pinion gear and rotatable about a first axis.
- the “axial direction” refers to the axial direction of the differential case (that is, the direction along the first axis)
- the “radial direction” refers to the radial direction of the differential case (that is, centered on the first axis).
- the “circumferential direction” refers to the circumferential direction of the differential case (that is, the circumferential direction of the circle with the first axis as the center line).
- a differential case of the above differential device in which a differential case is divided into a pair of case halves that are joined to each other with their open end faces as a mating surface is already known, for example, as disclosed in Patent Document 1 below.
- the differential mechanism can be assembled or the inner surface of the differential case can be machined in a state in which the pair of case halves constituting the differential case are separated from each other. There is no need to provide a large working window in the differential case. Therefore, even in the differential shown in Patent Document 1, a large working window is not provided in the differential case.
- the differential case does not have a large window hole, which is advantageous in ensuring the rigidity of the differential case, but on the other hand, smooth discharge of the lubricating oil introduced into the differential case becomes difficult and lubrication is difficult. There is a risk that the oil will deteriorate early, causing problems such as seizure of the differential mechanism.
- the present invention has been proposed in view of the above, and an object thereof is to provide a differential device that can solve the above-described problems of conventional devices with a simple structure.
- the present invention provides a hollow differential case rotatable around a first axis, a differential mechanism housed in the differential case, and a lubricating oil capable of introducing lubricating oil into the differential case from the outside.
- the differential case includes: A pair of case halves coupled to each other with each open end face as a mating surface, and the pair of case halves are mutually connected on the first axis. Concentric fitting annular recesses and annular projections are provided on one and the other of the mating surfaces, and the tip surface of the annular projection and the inner bottom surface of the annular recess are opposed to each other with a gap in the axial direction.
- an oil groove that opens to the inner surface of the differential case is formed at a position spaced apart from the pinion shaft in the axial direction by the opposing surfaces, and the pinion shaft is inserted between the mating surfaces.
- a shaft hole is formed, and between the shaft hole and the pinion shaft, a radially inner end communicates with the oil groove and a radially outer end communicates with the outside of the differential case.
- the first feature is that a gap space serving as an oil passage is interposed.
- the annular convex portion is partially cut away in a circumferential direction at a portion corresponding to the pinion shaft, and the oil groove and the gap space are interposed through the cutout portion. Is a second feature.
- a pinion support surface that rotatably supports the back surface of the pinion gear via a pinion washer is formed in a concave shape on the inner surface of the differential case.
- a third feature is that the opening to the inner surface of the differential case is disposed on the axially outer side of the contact surface of the pinion support surface with the pinion washer.
- the present invention provides a mating surface of one case half having the annular recess with respect to the other case half in a plane perpendicular to the first axis.
- a groove portion having a U-shaped cross section that forms the shaft hole in cooperation with the flat surface is recessed in the mating surface of the other case half formed with the one case half. Is the fourth feature.
- a part of the lubricating oil in the differential case is formed on the mating surfaces of the pair of case halves (particularly, the opposing surfaces of the annular convex portion and the annular concave portion that are concentrically fitted) by centrifugal force. It enters the oil groove and reaches the shaft hole formed between the mating surfaces of both case halves. Then, the reached lubricating oil flows in the gap space between the shaft hole and the pinion shaft, that is, the oil passage to the radially outer side by the action of centrifugal force, and from the radially outer end of the oil passage to the outside of the differential case. To be discharged.
- the lubricating oil in the differential case can be smoothly discharged out of the case, and the oil for lubricating the differential mechanism can be efficiently distributed inside and outside the differential case. This can contribute to preventing seizure of each part of the mechanism.
- the oil groove and the clearance space in the shaft hole, which serve as the lubricating oil discharge path use the clearance between the mating surfaces of the two case halves, thus simplifying the structure of the lubricating oil discharge path. And can greatly contribute to cost savings.
- the annular convex portion provided on one of the mating surfaces of both case halves is partially cut away in the circumferential direction at a portion corresponding to the pinion shaft, and oil is passed through the cutout portion. Since the groove and the gap space communicate with each other, a simple communication structure in which a notch is provided in the annular convex portion provides a communication path between the oil groove and the gap space, thereby further simplifying the structure. Can contribute to cost savings.
- the inner surface of the differential case is formed with a concave pinion support surface that rotatably supports the back surface of the pinion gear via a pinion washer, and the oil groove has an opening to the inner surface of the differential case. Since the pinion support surface is disposed on the axially outer side than the pinion washer contact surface, even if the clearance space serving as the oil passage is formed in the shaft hole as described above, the clearance space in the radial direction The opening on the end side can be closed by the pinion washer or the back surface of the pinion gear.
- the oil groove opening can be sufficiently offset axially outward from the pinion washer contact surface of the pinion shaft or pinion support surface, the maximum diameter portion of the inner surface of the differential case (i.e., the corresponding portion of the pinion shaft or pinion gear)
- the lubricating oil can be easily stored in the entire peripheral area including the oil, and the amount of lubricating oil flowing out from the maximum diameter portion toward the oil groove or the gap space can be suppressed. Thereby, each part (for example, tooth part, back, pinion shaft fitting part, etc.) of the pinion gear can be efficiently lubricated.
- the mating surface of one case half having an annular recess with respect to the other case half is formed in a plane perpendicular to the first axis, and one case half of the other case half
- a groove portion having a U-shaped cross section that forms a shaft hole in cooperation with the flat surface is formed in the mating surface with the case half body so that one case half body is flattened with the mating surface.
- the structure is simplified and the machining is facilitated.
- the U-shaped groove need only be formed in the mating surface of the other case half to obtain the shaft hole. Since drilling is not required, machining is easy and it can greatly contribute to cost saving.
- FIG. 1 is a longitudinal sectional view (a sectional view taken along line 1-1 of FIG. 2) showing a differential device and its peripheral devices according to an embodiment of the present invention.
- FIG. 2 is a right side view of the above-described differential device with the transmission case, the axle, the bearings, and the gears of the differential mechanism omitted.
- FIG. 3 is a right side view (corresponding to FIG. 2) showing the differential case of the differential device alone.
- FIG. 4 is a perspective view of the first case half as viewed from the mating surface f1 side.
- FIG. 5 is a perspective view of the second case half and the pinion washer viewed from the mating surface f2.
- 6 is an enlarged sectional view taken along line 6-6 of FIG.
- FIG. 7 is an enlarged sectional view taken along line 7-7 in FIG. (First embodiment)
- a transmission case 9 of a vehicle houses a differential device D that distributes power from a power source (not shown) (for example, an in-vehicle engine) to the left and right axles 11 and 12 for transmission.
- the differential device D includes a differential case C and a differential mechanism 20 built in the differential case C.
- the differential case C is divided into left and right first and second case halves C1 and C2 that are detachably connected to each other with the respective open end faces as mating faces f1 and f2.
- the left and right first and second case halves C1 and C2 are integrally connected to the main body portions Cm1 and Cm2 formed in a substantially hemispherical shape and the axially outer portions of the main body portions Cm1 and Cm2, and extend in the axial direction.
- Bearing bosses Cb1 and Cb2 and flange halves Cf1 and Cf2 that are integrally formed radially outwardly on the outer periphery of the body portions Cm1 and Cm2 and extend in the circumferential direction around the first axis X1 are provided. ing.
- the left and right bearing bosses Cb1 and Cb2 are rotatably supported around the first axis X1 by the transmission case 9 via the bearings 13 and 14 on the outer peripheral side thereof.
- left and right axles (drive shafts) 11 and 12 are rotatably fitted to the inner peripheral surfaces of the left and right bearing bosses Cb1 and Cb2, and spiral grooves 15 and 16 (FIG. 1) for drawing lubricating oil. , See FIG. 4).
- the spiral grooves 15 and 16 can exhibit a screw pump action that feeds the lubricating oil in the transmission case 9 into the differential case C as the bearing bosses Cb1 and Cb2 and the axles 11 and 12 rotate relative to each other. This is an example of the lubricating oil introducing means.
- the first and second case halves C1 and C2 are in a state where the opposed open end surfaces of the left and right body portions Cm1 and Cm2 are abutted and the opposed side surfaces of the left and right flange halves Cf1 and Cf2 are abutted.
- a plurality of bolts B described later are detachably coupled.
- the left and right flange halves Cf1 and Cf2 are overlapped with each other to form a flange portion Cf on the outer periphery of the differential case C.
- the two flange halves Cf1 and Cf2 are coupled with the ring gear R by a plurality of bolts B. It is tightened together.
- the ring gear R meshes with, for example, a drive gear 8 that is an output unit of a transmission connected to the engine. Thereby, the rotational driving force from the drive gear 8 is transmitted to the pinion shaft 21 and the differential case C via the ring gear R.
- the ring gear R includes a rim portion Ra having a helical gear-shaped tooth portion Rag on the outer periphery, and a ring plate-like spoke portion Rb protruding integrally from the inner peripheral surface of the rim portion Ra.
- the spoke portion Rb is concentrically fitted to an annular step portion 51 provided on the outer surface of the second flange half Cf2, and the fitted state passes through the spoke portion Rb and the second flange half Cf2. It is held by a plurality of bolts B that are screwed into one flange half Cf1 and tightened.
- the tooth portion Rag has a cross-sectional display along the tooth trace to simplify the display.
- the differential mechanism 20 is disposed on a second axis X2 orthogonal to the first axis X1 at the center of the differential case C and is supported by the differential case C, and a pair of rotatably supported by the pinion shaft 21.
- Pinion gears 22, 22 and left and right side gears 23, 23 that mesh with each pinion gear 22 are provided.
- the left and right side gears 23 and 23 function as output gears of the differential mechanism 20, and the inner ends of the left and right axles 11 and 12 are spline-fitted to the inner peripheral surfaces of the side gears 23 and 23, respectively. .
- the rear surfaces of the pinion gear 22 and the side gear 23 are rotatably supported on the inner surface Ci of the differential case C via pinion washers 25 and side gear washers 26.
- the inner surface Ci of the differential case C is exemplified as a spherical surface in the present embodiment, but it may be a tapered surface or a flat surface orthogonal to the first axis X1 or the second axis X2.
- the pinion shaft 21 is inserted into a shaft hole 40 (described later) of the differential case C, and both ends of the pinion shaft 21 are engaged with engagement recesses Rbi provided on the inner peripheral end of the ring gear R (that is, the inner peripheral surface of the spoke Rb). By combining, separation from the shaft hole 40 is prevented.
- first and second case halves C1 and C2 have an annular concave portion 31 and an annular convex portion 32 that are concentrically fitted to each other on the first axis X1, and the case halves C1 and C2 have mating surfaces f1 and f2. Have one and the other.
- the open end surface of the first case half C1, that is, the mating surface f1 with the second case half C2 is the end surface of the large diameter end of the main body Cm1 of the first case half C1 and the end surface thereof.
- the inner surface of the flange half Cf1 that is flush with the first surface is configured as a plane orthogonal to the first axis X1.
- An annular recess 31 is formed at the radially inner end of the mating surface f1 by being recessed one step from the mating surface f1 to the axially outer side (left side in FIG. 1). Moreover, the annular recess 31 opens not only on the mating surface f1 but also on the inner surface Ci of the differential case C (first case half C1).
- the open end face of the second case half C2 that is, the mating face f2 with the first case half C1 is flush with the end face of the large diameter end of the main body Cm2 of the second case half C2. It is comprised in the plane orthogonal to the 1st axis line X1 by the inner surface of the continuous flange half body Cf2.
- An annular convex portion 32 is formed at the radially inner end of the mating surface f2 so as to project from the mating surface f2 to the axially outer side (left side in FIG. 1).
- the inner peripheral surface of the annular convex portion 32 constitutes a part of the inner surface Ci of the differential case C (second case half C2).
- the axial tip surface 32t of the annular convex portion 32 and the axial inner bottom surface 31b of the annular concave portion 31 are opposed to each other with a gap in the axial direction.
- An annular oil groove 34 that opens to the inner surface Ci of the differential case C is formed at a position spaced apart from the pinion shaft 21 in the axial direction by the opposing surfaces.
- a shaft hole 40 into which the pinion shaft 21 is inserted is formed between the mating surfaces f1, f2 of the first and second case halves C1, C2.
- the shaft hole 40 includes a groove portion 43 having a U-shaped cross section that is recessed to receive the pinion shaft 21 on the mating surface f ⁇ b> 2 on the second case half C ⁇ b> 2 side, and a groove portion 43.
- a mating surface f1 on the first case half C1 side which is a flat surface that closes the open surface.
- a clearance 41 b between the shaft hole 40 and the pinion shaft 21 that allows some movement of at least the axial direction of the pinion shaft 21 in the shaft hole 40. Is provided. It is also possible to set such that the play 41b is not provided.
- a semi-cylindrical boss portion 44 corresponding to the groove portion 43 and covering the back side thereof with a sufficient thickness is integrally projected on the outer side surface of the second case half C2.
- the boss portion 44 ends at the root portion of the flange half body Cf2.
- the flange half body Cf2 has a radially outer side opened to a portion connected to the radially outer end of the boss portion 44 (and thus the groove portion 43).
- a notch 52 is formed. The notch 52 exposes the outer peripheral surfaces of both ends of the pinion shaft 21 to the outside of the differential case C.
- FIG. A gap space 41 is formed that extends along the pinion shaft 21 as shown (that is, in the radial direction of the differential case C).
- the gap space 41 includes a pair of corner-corresponding space portions 41a formed corresponding to both flat inner side surfaces of the groove portion 43 and the plane of the mating surface f1 orthogonal thereto, and the above-described axial clearance. 41b.
- the gap space 41 functions as an oil passage in which the radially inner end communicates with the oil groove 34 and the radially outer end opens to the outside of the differential case C.
- the annular convex portion 32 is partially cut away in the circumferential direction at a portion corresponding to the pinion shaft 21. . That is, the notch 32k of the annular protrusion 32 communicates the gap space 41 and the oil groove 34 through this.
- the notch 32k may be integrally formed with the second case half C2, or may be formed by post-processing after the second case half C2.
- the pinion support surface Cip that supports the back surface of the pinion gear 22 through the pinion washer 25 around the second axis X ⁇ b> 2 is formed in a slightly concave shape on the inner surface Ci forming the spherical shape of the differential case C.
- the opening part of the oil groove 34 is arrange
- the first and second case halves C1 and C2 of the differential case C are integrally formed of a metal material (for example, aluminum, aluminum alloy, cast iron, etc.) (for example, forging or casting), and after the forming, the first half
- the parts of the first and second case halves C1 and C2 are machined to finish the final form of the product (first and second case halves C1 and C2).
- the first and second case halves C1 and C2 are separated from each other, and each component of the differential mechanism 20, that is, the pinion shaft 21, the pinion gear 22, and the side gear 23 is interposed therebetween.
- the mating surfaces f1, f2 of the first and second case halves C1, C2 are butted together.
- the case halves C1 and C2 are correctly arranged concentrically by fitting the annular concave portions 31 and the annular convex portions 32 of the mating surfaces f1 and f2.
- the inner peripheral end portion of the spoke portion Rb of the ring gear R is concentrically fitted to the annular step portion 51 on the side surface of the second case half C2, and the ring gear R and the flange halves Cf1 and Cf2 are fastened together with a plurality of bolts B. .
- the ring gear R is prevented from coming out from the shaft hole 40 of the pinion shaft 21 by engaging engagement recesses Rbi on the inner periphery of the spoke portion Rb with both ends of the pinion shaft 21. And the pinion shaft 21 are connected so that torque can be directly transmitted.
- the first and second bearing bosses Cb1 and Cb2 of the differential case C housing the differential mechanism 20 are rotatably supported by the transmission case 9 via bearings 13 and 14, and the inner end portions of the left and right axles 11 and 12 are further supported. Is inserted into the first and second bearing bosses Cb1 and Cb2 and fitted to the inner circumferences of the left and right side gears 23 and 23 to complete the assembly of the differential device D to the automobile.
- a part of the lubricating oil introduced into the differential case C and lubricated each part of the differential mechanism 20 is caused by centrifugal force, and the annular recesses 31 that are concentrically fitted to the mating surfaces f1, f2 of the first and second case halves C1, C2. And flows into the annular oil groove 34 between the axially opposed surfaces of the annular protrusion 32.
- the inflowing lubricating oil flows in the annular oil groove 34 in the circumferential direction, and the shaft hole 40 formed between the mating surfaces f1 and f2 from the notch 32k of the annular protrusion 32 as illustrated by the arrow a in FIG.
- the inner clearance space 41 is reached.
- the reached lubricating oil further flows through the clearance space 41 in the shaft hole 40 radially outward by the action of centrifugal force, and is smoothly discharged out of the differential case C from the radially outward end. Is done.
- the lubricating oil in the differential case C can be smoothly discharged out of the differential case C without specially providing a large window hole in the differential case C, and the oil for lubricating the differential mechanism 20 can be efficiently distributed and replaced inside and outside the differential case C. Therefore, the lubrication function of each part of the differential mechanism 20 can be satisfactorily exhibited, which can contribute to prevention of seizure of each part of the differential mechanism 20. Also, if the wear metal powder generated by the gear engagement of the differential mechanism 20 remains without being discharged out of the differential case C together with the lubricating oil, abnormal noise is generated from each part of the differential mechanism 20 and the durability of the differential mechanism 20 is reduced. However, in this embodiment, since the lubricating oil can be efficiently circulated and exchanged inside and outside the differential case C as described above, a large amount of metal wear powder remains in the differential case C. This prevents the differential mechanism 20 from operating smoothly and improves durability.
- the clearance groove 41 in the oil groove 34 and the shaft hole 40 serving as a lubricating oil discharge path to the outside of the differential case C is a clearance between the mating surfaces f1 and f2 between the first and second case halves C1 and C2. Therefore, it is possible to simplify the structure for discharging the lubricating oil in the differential case C. Therefore, it is not necessary to add a large window hole to the differential case C, so that cost saving is achieved.
- the window hole is not required to be formed, so that the structure of the forging die is simplified and the cost can be further reduced. .
- the annular convex portion 32 provided on the mating surface f2 of the second case half C2 with the first case half C1 is partially cut away in the circumferential direction at a portion corresponding to the pinion shaft 21.
- the gap space 41 and the oil groove 34 communicate with each other through the notch 32k.
- a pinion support surface Cip that rotatably supports the back surface of the pinion gear 22 via a pinion washer 25 is formed to be slightly concave from the inner surface Ci,
- the opening to the inner surface Ci of the differential case is disposed on the axially outer side of the contact surface 54 of the pinion support surface Cip with the pinion washer 25.
- the opening position of the oil groove 34 can be sufficiently offset in the axially outward direction with respect to the pinion washer abutment surface 54 of the pinion washer 25 or the pinion support surface Cip, the maximum diameter portion (that is, the pinion) of the differential case inner surface Ci Lubricating oil can be easily accumulated in the entire peripheral region including the corresponding portions of the shaft 21 and the pinion gear 22, that is, the amount of lubricating oil flowing out from the maximum diameter portion toward the oil groove 34 or the gap space 41 is suppressed. As a result, each part of the pinion gear 22 (for example, a tooth part, a back surface, a pinion shaft fitting part, etc.) can be efficiently lubricated.
- the mating surface f1 of the first case half C1 of the present embodiment with respect to the second case half C2 is formed on a plane orthogonal to the first axis X1, and the first case half of the second case half C2 is formed.
- a groove 43 having a U-shaped cross section that forms a shaft hole 40 in cooperation with the flat surface of the mating surface f1 is recessed in the mating surface f2 with C1.
- first and second case halves C1 and C2 of the present embodiment integrally have first and second flange halves Cf1 and Cf2 that are overlapped with each other to form the flange portion Cf, respectively, at the outer peripheral end portions.
- the first and second flange halves Cf1 and Cf2 and the spoke portion Rb of the ring gear R are fastened by a common bolt B, and both end portions of the pinion shaft 21 are connected to the inner peripheral portion (engagement recess Rbi) of the spoke portion Rb. Are engaged with the concave and convex portions so that torque can be transmitted.
- the case halves C1 and C2 and the ring gear R can be fastened with a simple coupling structure.
- the point that the rotational torque can be directly transmitted from the ring gear R to the pinion shaft 21 side and the point that the pinion shaft 21 is floatingly supported in the shaft hole 40 with some play 41b in the axial direction are combined. It is possible to reduce the load burden on the individual case halves C1 and C2 during transmission. This effect is particularly advantageous when the case halves C1 and C2 are formed of a relatively low-rigidity material (for example, aluminum or aluminum alloy).
- the differential device D is implemented in a vehicle differential device, but in the present invention, the differential device D may be implemented in various mechanical devices other than the vehicle.
- the coupling between the flange portion Cf of the differential case C and the ring gear R is exemplified by a plurality of bolts B.
- the coupling between the flange portion Cf and the ring gear R is welded (for example, (Laser welding, electron beam welding, etc.).
- the tooth portion Rag of the ring gear R has a helical gear shape.
- the ring gear of the present invention is not limited to the embodiment, and may be a bevel gear, a hypoid gear, a spur gear, or the like.
- the shaft hole 40 is formed by the mating surface f1 (plane) of one case half C1 and the groove 43 of the mating surface f2 of the other case half C2.
- a groove part facing the groove part 43 may also be provided on the f1 side so that the shaft hole 40 is formed between the groove parts of the mating surfaces f1 and f2.
- the spiral grooves 15 and 16 for drawing the lubricating oil provided on the inner peripheral surfaces of the bearing bosses Cb1 and Cb2 are shown as an example of the lubricating oil introducing means.
- the lubricating oil introducing means is limited to the embodiment.
- a lubricating oil path that serves as a lubricating oil introduction means on the side gear boss that extends long on the back surface of the side gear 23 and extends outside the differential case C
- a spiral groove may be provided.
- means for injecting or dripping the lubricating oil from the ceiling or side wall of the transmission case 9 toward the outer end opening (gap space 41) of the shaft hole 40 may be used as the lubricating oil introduction means.
- annular convex part 32 as a communication means which connects between the oil groove 34 and the clearance gap 41 in the shaft hole 40 was shown.
- the communication means is not limited to the embodiment.
- the oil groove 34 and the gap space 41 may be communicated with each other through a communication hole provided in the first or second case half C1 (C2).
- annular recessed part 31 and the annular convex part 32 were continuous in the circumferential direction, the shape of these annular recessed part 31 and the annular convex part 32 is not limited to embodiment, For example, a discontinuous part is formed. An annular concave part and an annular convex part may be included.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
- General Details Of Gearings (AREA)
Abstract
デフケースが一対のケース半体を含む差動装置において、一対のケース半体(C1,C2)は、同心嵌合する環状凹部(31)及び環状凸部(32)を、ケース半体相互の合せ面(f1,f2)の一方と他方に有し、環状凸部の先端面と環状凹部の内底面とは、軸方向に空隙を挟んで相対向していて、その相対向面により、ピニオンシャフト(21)から軸方向に離間した位置でデフケース内面(Ci)に開口する油溝(34)が形成され、合せ面の相互間には、ピニオンシャフトが嵌挿されるシャフト孔(40)が形成され、シャフト孔とピニオンシャフトとの間には、径方向内方側の端部が油溝に連通し且つ径方向外方側の端部がデフケース(C)外に連通する隙間空間(41)が介在する。これにより、デフケースに窓孔を特設せずとも、両ケース半体相互の合せ面を利用した簡単な油路構造でデフケース内の潤滑油をケース外にスムーズに排出することができる。
Description
本発明は、差動装置、特に第1軸線回りに回転可能な中空のデフケースと、デフケース内に収容されるデフ機構と、デフケース内に外部から潤滑油を導入可能な潤滑油導入手段と、デフケース外周のフランジ部に結合されて、動力源に連なる駆動ギヤと噛合するリングギヤとを備え、デフ機構が、第1軸線と直交する第2軸線上に配置されてデフケースに支持されるピニオンシャフトと、ピニオンシャフトに回転自在に支持されるピニオンギヤと、ピニオンギヤに噛合し第1軸線回りに回転可能な一対のサイドギヤとを有するものに関する。
本発明及び本明細書において、「軸方向」とは、デフケースの軸方向(即ち第1軸線に沿う方向)をいい、また「径方向」とは、デフケースの径方向(即ち第1軸線を中心線とした円の半径方向)をいい、また「周方向」とは、デフケースの周方向(即ち第1軸線を中心線とした円の円周方向)をいう。
上記差動装置のデフケースを、各々の開放端面を合せ面として互いに結合される一対のケース半体で分割構成したものは、例えば、下記特許文献1に開示されるように既に知られている。
上記した差動装置では、デフケースを分割構成する一対のケース半体間を分離した状態で、デフ機構を組付けたり或いはデフケース内面に対し機械加工を施したりできるため、それら作業を許容するための大きな作業窓をデフケースに設ける必要が元々ない。したがって、特許文献1に示す差動装置においても、デフケースに大きな作業窓は設けられていない。
このような差動装置では、デフケースが大きな窓孔を持たないことで、デフケースの剛性確保上、有利であるが、その反面、デフケース内に導入された潤滑油のスムーズな排出が困難となり、潤滑油が早期に劣化してデフ機構の焼き付け等の不具合が起きる虞れがある。
また、上記問題を解決するために、分割型のデフケースにおいても大きな窓孔を追加工した場合には、デフケースの剛性強度が低下するばかりか、窓孔の追加工分だけコスト増となってしまう不都合がある。
本発明は、上記に鑑み提案されたもので、従来装置の上記した問題を簡単な構造で解決可能とした差動装置を提供することを目的とする。
上記目的を達成するために、本発明は、第1軸線回りに回転可能な中空のデフケースと、前記デフケース内に収容されるデフ機構と、前記デフケース内に外部から潤滑油を導入可能な潤滑油導入手段と、前記デフケース外周のフランジ部に結合されて、動力源に連なる駆動ギヤと噛合するリングギヤとを備え、前記デフ機構は、前記第1軸線と直交する第2軸線上に配置されて前記デフケースに支持されるピニオンシャフトと、該ピニオンシャフトに回転自在に支持されるピニオンギヤと、該ピニオンギヤに噛合し前記第1軸線回りに回転可能な一対のサイドギヤとを有する差動装置において、前記デフケースは、各々の開放端面を合せ面として互いに結合される一対のケース半体を含み、前記一対のケース半体は、前記第1軸線上で互いに同心嵌合する環状凹部及び環状凸部を前記合せ面の一方と他方に有しており、前記環状凸部の先端面と前記環状凹部の内底面とは、軸方向に空隙を挟んで相対向していて、その相対向面により、前記ピニオンシャフトから軸方向に離間した位置で前記デフケースの内面に開口する油溝が形成され、前記合せ面の相互間には、前記ピニオンシャフトが嵌挿されるシャフト孔が形成され、前記シャフト孔と前記ピニオンシャフトとの間には、径方向内方側の端部が前記油溝に連通し且つ径方向外方側の端部が前記デフケースの外部に連通する油通路となる隙間空間が介在することを第1の特徴とする。
また本発明は、第1の特徴に加えて、前記環状凸部が、前記ピニオンシャフトに対応する部位で周方向に一部切欠かれていて、その切欠部を介して前記油溝と前記隙間空間とが連通していることを第2の特徴とする。
また本発明は、第2の特徴に加えて、前記デフケースの内面には、前記ピニオンギヤの背面をピニオンワッシャを介して回転自在に支持するピニオン支持面が凹状に形成され、前記油溝の、前記デフケースの内面への開口部は、前記ピニオン支持面の、前記ピニオンワッシャとの当接面よりも軸方向外方側に配置されることを第3の特徴とする。
さらに本発明は、第1~第3の何れかの特徴に加えて、前記環状凹部を有する一方のケース半体の、他方のケース半体に対する合せ面が、前記第1軸線と直交する平面に形成され、前記他方のケース半体の、前記一方のケース半体との合せ面には、前記平面と協働して前記シャフト孔を形成する横断面U字状の溝部が凹設されることを第4の特徴としている。
第1の特徴によれば、デフケース内の潤滑油の一部は遠心力で、一対のケース半体相互の合せ面(特に同心嵌合する環状凸部及び環状凹部の相対向面)に形成した油溝に入り、そこから両ケース半体の合せ面間に形成したシャフト孔に到達する。そして、その到達した潤滑油は、シャフト孔とピニオンシャフトとの隙間空間即ち油通路を遠心力の作用で径方向外方側に流れ、この油通路の径方向外方側の端部からデフケース外に排出される。これにより、デフケースに大きな窓孔を特設せずとも、デフケース内の潤滑油をケース外にスムーズに排出できて、デフ機構を潤滑する油をデフケースの内外で効率よく流通させることができるため、デフ機構各部の焼付き防止に寄与することができる。しかも潤滑油の排出路となる上記した油溝及びシャフト孔内の隙間空間は、両ケース半体相互の合せ面相互のクリアランスを利用したものであるため、潤滑油の排出路構造を頗る簡素化でき、コスト節減に大いに寄与することができる。
また第2の特徴によれば、両ケース半体の合せ面の一方に設けた環状凸部が、ピニオンシャフトに対応する部位で周方向に一部切欠かれていて、その切欠部を介して油溝と上記隙間空間とが連通するので、環状凸部に切欠部を設けるだけの簡単な連通構造で、上記油溝と隙間空間との間の連通路が得られ、これにより、更なる構造簡素化、延いてはコスト節減に寄与することができる。
また第3の特徴によれば、デフケースの内面には、ピニオンギヤの背面をピニオンワッシャを介して回転自在に支持するピニオン支持面が凹状に形成され、油溝の、デフケース内面への開口部は、ピニオン支持面のピニオンワッシャ当接面よりも軸方向外方側に配置されるので、前述のように油通路となる隙間空間がシャフト孔内に形成されても、その隙間空間の、径方向内端側の開口部をピニオンワッシャやピニオンギヤ背面により塞ぐことができる。しかも油溝の開口を、ピニオンシャフトやピニオン支持面のピニオンワッシャ当接面に対し軸方向外方側に十分にオフセット配置できるため、デフケース内面の最大径部(即ちピニオンシャフトやピニオンギヤの対応部位を含む全周領域)に潤滑油を溜め易くなり、その最大径部から油溝或いは隙間空間の側への潤滑油の流出量が抑えられる。これにより、ピニオンギヤ各部(例えば歯部、背面、ピニオンシャフト嵌合部等)を効率よく潤滑可能となる。
また第4の特徴によれば、環状凹部を有する一方のケース半体の、他方のケース半体に対する合せ面が、第1軸線と直交する平面に形成され、他方のケース半体の、一方のケース半体との合せ面には、平面と協働してシャフト孔を形成する横断面U字状の溝部が凹設されるので、一方のケース半体は、これの上記合せ面を平面化し得たことで、構造簡素化が図られるばかりか加工が容易となり、また他方のケース半体の上記合せ面においても、シャフト孔を得るのに単にU字状の溝加工を行うだけで足りて孔加工は不要であることから、加工容易でコスト節減に大いに寄与することができる。
C・・・・・・デフケース
C1・・・・・第1ケース半体(一方のケース半体)
C2・・・・・第2ケース半体(他方のケース半体)
Cf・・・・・フランジ部
Ci・・・・・デフケースの内面
Cip・・・・ピニオン支持面
D・・・・・・差動装置
f1,f2・・合せ面
R・・・・・・リングギヤ
Rag・・・・歯部
X1,X2・・第1,第2軸線
8・・・・・・駆動ギヤ
15,16・・螺旋溝(潤滑油導入手段)
20・・・・・デフ機構
21・・・・・ピニオンシャフト
22・・・・・ピニオンギヤ
23・・・・・サイドギヤ
25・・・・・ピニオンワッシャ
31・・・・・環状凹部
32・・・・・環状凸部
32k・・・・切欠部
34・・・・・油溝
40・・・・・シャフト孔
41・・・・・隙間空間
43・・・・・溝部
54・・・・・ピニオン支持面のピニオンワッシャとの当接面
C1・・・・・第1ケース半体(一方のケース半体)
C2・・・・・第2ケース半体(他方のケース半体)
Cf・・・・・フランジ部
Ci・・・・・デフケースの内面
Cip・・・・ピニオン支持面
D・・・・・・差動装置
f1,f2・・合せ面
R・・・・・・リングギヤ
Rag・・・・歯部
X1,X2・・第1,第2軸線
8・・・・・・駆動ギヤ
15,16・・螺旋溝(潤滑油導入手段)
20・・・・・デフ機構
21・・・・・ピニオンシャフト
22・・・・・ピニオンギヤ
23・・・・・サイドギヤ
25・・・・・ピニオンワッシャ
31・・・・・環状凹部
32・・・・・環状凸部
32k・・・・切欠部
34・・・・・油溝
40・・・・・シャフト孔
41・・・・・隙間空間
43・・・・・溝部
54・・・・・ピニオン支持面のピニオンワッシャとの当接面
本発明の実施形態を添付図面に基づいて以下に説明する。
図1において、車両(例えば自動車)のミッションケース9内には、図示しない動力源(例えば車載のエンジン)からの動力を左右の車軸11,12に分配して伝達する差動装置Dが収容される。差動装置Dは、デフケースCと、デフケースCに内蔵されるデフ機構20とを備える。
デフケースCは、各々の開放端面を合せ面f1,f2として相互間が着脱可能に結合される左右の第1,第2ケース半体C1,C2より分割構成される。
左右の第1,第2ケース半体C1,C2は、概略半球状に形成される本体部Cm1,Cm2と、本体部Cm1,Cm2の軸方向外側部に一体に連設されて軸方向に延びる軸受ボスCb1,Cb2と、本体部Cm1,Cm2の外周部に径方向外向きに一体に形成されて、第1軸線X1を中心とした円周方向に延びるフランジ半体Cf1,Cf2とを各々備えている。
左右の軸受ボスCb1,Cb2は、それらの外周側において軸受13,14を介してミッションケース9に第1軸線X1回りに回転自在に支持される。また、左右の軸受ボスCb1,Cb2の内周面には、左右の車軸(ドライブ軸)11,12がそれぞれ回転自在に嵌合されると共に、潤滑油引込み用の螺旋溝15,16(図1,図4参照)が設けられる。螺旋溝15,16は、軸受ボスCb1,Cb2と車軸11,12との相対回転に伴いミッションケース9内の潤滑油をデフケースC内に送り込むねじポンプ作用を発揮し得るものであって、本発明の潤滑油導入手段の一例である。
第1,第2ケース半体C1,C2は、左右の本体部Cm1,Cm2の相対向する開放端面相互が突き合わされ且つ左右のフランジ半体Cf1,Cf2の対向側面相互が突き合わされた状態で、後述する複数のボルトBで着脱可能に結合される。左右のフランジ半体Cf1,Cf2は、互いに重ね合わせてデフケースC外周のフランジ部Cfを構成するものであり、その重ね合わせ状態で両フランジ半体Cf1,Cf2は、リングギヤRと共に複数のボルトBで共締めされる。
リングギヤRは、例えばエンジンに連なる変速装置の出力部となる駆動ギヤ8と噛合する。これにより、駆動ギヤ8からの回転駆動力は、リングギヤRを介してピニオンシャフト21及びデフケースCに伝達される。
また、リングギヤRは、本実施形態ではヘリカルギヤ状の歯部Ragを外周に有するリム部Raと、このリム部Raの内周面から一体に突出するリング板状のスポーク部Rbとを備えている。スポーク部Rbは、第2フランジ半体Cf2の外側面に設けた環状段部51に同心状に嵌合され、その嵌合状態は、スポーク部Rb及び第2フランジ半体Cf2を貫通して第1フランジ半体Cf1に螺挿、緊締される複数のボルトBにより保持される。
尚、図1において、歯部Ragは、表示を簡略化するために、歯筋に沿う断面表示とした。
デフ機構20は、デフケースCの中心部で第1軸線X1と直交する第2軸線X2上に配置されてデフケースCに支持されるピニオンシャフト21と、ピニオンシャフト21に回転自在に支持される一対のピニオンギヤ22,22と、各ピニオンギヤ22と噛合する左右のサイドギヤ23,23とを備える。左右のサイドギヤ23,23は、デフ機構20の出力ギヤとして機能するものであり、それらサイドギヤ23,23の内周面には、左右の車軸11,12の内端部がそれぞれスプライン嵌合される。
ピニオンギヤ22及びサイドギヤ23の各々の背面は、デフケースCの内面Ciにピニオンワッシャ25及びサイドギヤワッシャ26を介して回転自在に支承される。尚、デフケースCの内面Ciは、本実施形態では球面状のものを例示したが、これをテーパ面、或いは第1軸線X1又は第2軸線X2と直交する平坦面としてもよい。
ピニオンシャフト21は、中間部がデフケースCの後述するシャフト孔40に嵌挿されると共に、両端部が、リングギヤRの内周端(即ちスポークRbの内周面)に設けた係合凹部Rbiに係合することでシャフト孔40からの離脱が阻止される。
而して、リングギヤRからフランジ部Cfを経てデフケースCに伝達された回転駆動力は、デフ機構20を介して左右の車軸11,12に対し差動回転を許容されつつ分配伝達される。尚、このようなデフ機構20の動力分配機能は従来周知であるので、これ以上の説明を省略する。
ところで第1,第2ケース半体C1,C2は、第1軸線X1上で互いに同心嵌合する環状凹部31及び環状凸部32を、両ケース半体C1,C2相互の合せ面f1,f2の一方と他方に有する。
本実施形態において、第1ケース半体C1の開放端面、即ち第2ケース半体C2との合せ面f1は、第1ケース半体C1の本体部Cm1の大径端部の端面と、これに面一に連続するフランジ半体Cf1の内側面とで、第1軸線X1と直交する平面に構成される。その合せ面f1の径方向内端部には、合せ面f1から軸方向外方側(図1で左側)に一段窪ませて環状凹部31が形成される。しかも環状凹部31は、合せ面f1のみならず、デフケースC(第1ケース半体C1)の内面Ciにも開口する。
一方、第2ケース半体C2の開放端面、即ち第1ケース半体C1との合せ面f2は、第2ケース半体C2の本体部Cm2の大径端部の端面と、これに面一に連続するフランジ半体Cf2の内側面とで、第1軸線X1と直交する平面に構成される。その合せ面f2の径方向内端部には、合せ面f2から軸方向外方側(図1で左側)に一段張出す環状凸部32が形成される。しかも環状凸部32の内周面は、デフケースC(第2ケース半体C2)の内面Ciの一部を構成している。
そして、環状凸部32の軸方向の先端面32tと、環状凹部31の軸方向の内底面31bとは、軸方向に空隙を挟んで相対向しており。その相対向面により、ピニオンシャフト21から軸方向に離間した位置でデフケースCの内面Ciに開口する環状の油溝34が形成される。
更に第1,第2ケース半体C1,C2の合せ面f1,f2の相互間には、ピニオンシャフト21が嵌挿されるシャフト孔40が形成される。このシャフト孔40は、図7に明示されるように、第2ケース半体C2側の合せ面f2にピニオンシャフト21を受容すべく凹設された横断面U字状の溝部43と、溝部43の開放面を塞ぐ平面よりなる第1ケース半体C1側の合せ面f1とにより形成される。
また本実施形態では、図6及び図7に示すように、シャフト孔40とピニオンシャフト21との間に、シャフト孔40内でのピニオンシャフト21の少なくとも軸方向の移動を多少許容する遊隙41bが設けられる。尚、そのような遊隙41bを設けない設定も可能である。
第2ケース半体C2の外側面には、溝部43に対応してその背面側を十分な肉厚で覆う半円筒状のボス部44が一体に突設される。このボス部44は、フランジ半体Cf2の根元部分で終わっており、フランジ半体Cf2には、ボス部44(従って溝部43)の径方向外端に連なる部位に、径方向外方側が開放された切欠部52が形成される。切欠部52は、ピニオンシャフト21の両端部外周面をデフケースC外に露出させる。
そして、シャフト孔40を形成する溝部43が横断面U字状であり且つ合せ面f1が平面であることで、シャフト孔40の内面とピニオンシャフト21の外周面との間には、図7に明示したようなピニオンシャフト21に沿って(即ちデフケースCの径方向に)延びる隙間空間41が形成される。その隙間空間41には、溝部43の平坦な両内側面と、それらと直交する合せ面f1の平面とに対応して形成される一対のコーナ対応空間部41aと、前記した軸方向の遊隙41bとが含まれる。
この隙間空間41は、径方向内方側の端部が油溝34に連通し且つ径方向外方側の端部がデフケースCの外部に開放した油通路として機能する。
また上記のように隙間空間41の径方向内方側の端部を油溝34と連通させるために、環状凸部32は、ピニオンシャフト21に対応する部位が周方向に一部切欠かれている。即ち、その環状凸部32の切欠部32kは、これを介して隙間空間41と油溝34とを連通させる。尚、切欠部32kは、第2ケース半体C2と一体成形してもよいし、或いは第2ケース半体C2の成形後に後加工で形成してもよい。
図5に示されるように、デフケースCの球面状をなす内面Ciには、第2軸線X2の周辺でピニオンギヤ22の背面をピニオンワッシャ25を介して支持するピニオン支持面Cipが僅かに凹状に形成されている。そして、油溝34の開口部は、ピニオン支持面Cipの、ピニオンワッシャ25との当接面54よりも軸方向外方側に配置(図6参照)される。
次に前記実施形態の作用を説明する。
デフケースCの第1,第2ケース半体C1,C2は、その全体が金属材料(例えばアルミ、アルミ合金、鋳鉄等)で一体成形(例えば鍛造成形、鋳造成形)され、その成形後に適宜、第1,第2ケース半体C1,C2の各部に対し機械加工が施され、製品(第1,第2ケース半体C1,C2)の最終形態に仕上げられる。
そして、差動装置Dの組立に際しては、第1,第2ケース半体C1,C2相互を分離した状態でその相互間にデフ機構20の各構成要素、即ちピニオンシャフト21、ピニオンギヤ22及びサイドギヤ23をセットしながら、第1,第2ケース半体C1,C2の合せ面f1,f2相互を突き合わせる。その際に合せ面f1,f2の環状凹部31及び環状凸部32を嵌合させることで両ケース半体C1,C2を正しく同心配置する。
次いで、リングギヤRのスポーク部Rbの内周端部を第2ケース半体C2側面の環状段部51に同心嵌合させ、複数のボルトBでリングギヤR及びフランジ半体Cf1,Cf2を共締めする。この共締め状態でリングギヤRは、これのスポーク部Rb内周の係合凹部Rbiがピニオンシャフト21の両端に係合することで、ピニオンシャフト21のシャフト孔40からの抜け出しが阻止され且つリングギヤRとピニオンシャフト21とが直接トルク伝達できるように連結される。
そして、デフ機構20を収納したデフケースCの第1,第2軸受ボスCb1,Cb2を軸受13,14を介してミッションケース9に回転自在に支持し、更に左右の車軸11,12の内端部を第1,第2軸受ボスCb1,Cb2に挿入し且つ左右のサイドギヤ23,23の内周にスプライン嵌合することで、差動装置Dの自動車への組付けが終了する。
差動装置Dが差動機能を果たすとき、デフケースCの左右の軸受ボスCb1,Cb2と車軸11,12とが相対回転し、これに伴い、軸受ボスCb1,Cb2内周の螺旋溝15,16がミッションケース9内の潤滑油をデフケースC内に送り込むねじポンプ作用を発揮する。これにより、デフケースCに窓孔が無くても、デフケースC外の潤滑油をデフケースC内のデフ機構20へ十分に導入可能となる。
ところでデフケースC内に導入されデフ機構20各部を潤滑した潤滑油の一部は、遠心力で第1,第2ケース半体C1,C2の合せ面f1,f2、特に同心嵌合する環状凹部31及び環状凸部32の軸方向対向面間の環状の油溝34に流入する。その流入した潤滑油は、環状の油溝34を周方向に流れ、図6の矢印aで例示したように環状凸部32の切欠部32kから、合せ面f1,f2間に形成したシャフト孔40内の隙間空間41に到達する。そして、その到達した潤滑油は、遠心力の作用で、更にシャフト孔40内の隙間空間41を径方向外方側に流れ、その径方向外方側の端部からデフケースC外にスムーズに排出される。
これにより、デフケースCに大きな窓孔を特設せずとも、デフケースC内の潤滑油をデフケースC外に円滑に排出できて、デフ機構20を潤滑する油をデフケースCの内外で効率よく流通、入替させることができるため、デフ機構20各部の潤滑機能が良好に発揮され、デフ機構20各部の焼付き防止に寄与することができる。また、デフ機構20のギヤ噛合等により発生した摩耗金属粉が潤滑油と共にデフケースC外に排出されずに残留したままだと、デフ機構20各部からの異音発生やデフ機構20の耐久性低下の要因となる虞れがあるが、本実施形態では、上記のようにデフケースCの内外で潤滑油が効率よく流通、入替可能であるため、金属摩耗粉がデフケースC内に大量に残留するのを防止してデフ機構20の作動円滑化、耐久性向上が図られる。
しかもデフケースC外への潤滑油の排出路となる上記した油溝34及びシャフト孔40内の隙間空間41は、第1,第2ケース半体C1,C2相互の合せ面f1,f2相互のクリアランスを利用したものであるため、デフケースCにおける潤滑油の排出路構造を頗る簡素化でき、従って、デフケースCに大きな窓孔を追加工する必要もないので、コスト節減が達成される。尚、第1,第2ケース半体C1,C2を鍛造成形する場合には、窓孔が成形不要となることで、それだけ鍛造用金型の構造が簡素化され、更なるコスト節減が図られる。
また本実施形態では、第2ケース半体C2の、第1ケース半体C1との合せ面f2に設けた環状凸部32が、ピニオンシャフト21に対応する部位で周方向に一部切欠かれていて、その切欠部32kを介して上記隙間空間41と油溝34とが連通している。これにより、環状凸部32を周方向に一部切欠くだけの簡単な連通構造で、油溝34と、シャフト孔40内の隙間空間41(油通路)との間を連通させることができるため、更なる構造簡素化、延いてはコスト節減が達成される。
また本実施形態のデフケースCの内面Ciには、ピニオンギヤ22の背面をピニオンワッシャ25を介して回転自在に支持するピニオン支持面Cipが、内面Ciより僅かに凹状に形成され、油溝34の、デフケース内面Ciへの開口部は、ピニオン支持面Cipの、ピニオンワッシャ25との当接面54よりも軸方向外方側に配置される。
これにより、シャフト孔40内に油通路となる隙間空間41が形成されたり或いは隙間空間41と油溝34とを連通させるために環状凸部32に切欠部32kが設けられても、それら隙間空間41や切欠部32kの、径方向内端側の開口部は、伝動時においてピニオンワッシャ25やピニオンギヤ22の背面により全部又は大部分が塞がれる。しかも油溝34の開口位置を、ピニオンワッシャ25やピニオン支持面Cipのピニオンワッシャ当接面54に対して軸方向外方側に十分にオフセット配置できるため、デフケース内面Ciの最大径部(即ちピニオンシャフト21やピニオンギヤ22の対応部位を含む全周領域)に潤滑油を溜め易くなり、即ち、その最大径部から油溝34或いは隙間空間41の側への潤滑油の流出量が抑えられる。その結果、ピニオンギヤ22の各部(例えば歯部、背面、ピニオンシャフト嵌合部等)を効率よく潤滑可能となる。
また本実施形態の第1ケース半体C1の、第2ケース半体C2に対する合せ面f1が、第1軸線X1と直交する平面に形成され、第2ケース半体C2の、第1ケース半体C1との合せ面f2には、合せ面f1の平面と協働してシャフト孔40を形成する横断面U字状の溝部43が凹設される。これにより、第1ケース半体C1は、これの合せ面f1を平面化し得たことで、構造簡素化が図られるばかりか加工が容易となる。また第2ケース半体C2の合せ面f2についても、ピニオンシャフト21をリングギヤRで固定し、デフケースCに接触させない構成であることにより、シャフト孔40を得るに当たり単なるU字状の溝加工だけで済み、孔加工や特殊形状の溝加工は不要である。これにより、加工工程が容易でコスト節減が図られる。この効果は、特に第2ケース半体C2を鍛造成形する場合にコスト面で有利となる。
また本実施形態の第1,第2ケース半体C1,C2は、互いに重ね合わせてフランジ部Cfを構成する第1,第2フランジ半体Cf1,Cf2を外周端部にそれぞれ一体に有しており、第1,第2フランジ半体Cf1,Cf2とリングギヤRのスポーク部Rbとが共通のボルトBで締結され、スポーク部Rbの内周部(係合凹部Rbi)にピニオンシャフト21の両端部がトルク伝達可能に凹凸係合されている。
これにより、デフケースCを二分割しても、その両ケース半体C1,C2及びリングギヤRを簡単な結合構造で締結することができる。しかもリングギヤRからピニオンシャフト21側へ回転トルクを直接伝達できる点と、ピニオンシャフト21がシャフト孔40に軸方向に多少の遊隙41bを存してフローティング支持される点とが相俟って、伝動時における個々のケース半体C1,C2の荷重負担軽減を図ることができる。この効果は、特にケース半体C1,C2を比較的低剛性の材料(例えばアルミ、アルミ合金等)で成形する場合に有利となる。
以上、本発明の実施形態について説明したが、本発明は、実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
例えば、上記実施形態では、差動装置Dを車両用差動装置に実施したものを示したが、本発明では、差動装置Dを車両以外の種々の機械装置に実施してもよい。
また、前記実施形態では、デフケースCのフランジ部CfとリングギヤRとの結合を複数のボルトBで結合するものを例示したが、本発明では、フランジ部CfとリングギヤRとの結合を溶接(例えばレーザ溶接、電子ビーム溶接等)するようにしてもよい。
また前記実施形態では、リングギヤRの歯部Ragをヘリカルギヤ状としたものを示したが、本発明のリングギヤは、実施形態に限定されず、例えば、ベベルギヤ、ハイポイドギヤ、スパーギヤ等でもよい。
また前記実施形態では、シャフト孔40を一方のケース半体C1の合せ面f1(平面)と、他方のケース半体C2の合せ面f2の溝部43とにより形成したものを示したが、合せ面f1側にも、溝部43と対向する溝部を凹設して、両合せ面f1,f2の溝部相互間でシャフト孔40を形成するようにしてもよい。
また前記実施形態では、軸受ボスCb1,Cb2の内周面に設けた潤滑油引込み用の螺旋溝15,16を潤滑油導入手段の一例として示したが、潤滑油導入手段は、実施形態に限定されない。例えば、螺旋溝15,16に代えて又は加えて、車軸11,12や、サイドギヤ23の背面に長く延設してデフケースC外に延びるサイドギヤボス等に潤滑油導入手段となる潤滑油路や、螺旋溝を設けてもよい。或いは、ミッションケース9の天井部や側壁部からシャフト孔40の外端開口部(隙間空間41)に向けて潤滑油を噴射又は滴下させる手段を潤滑油導入手段としてもよい。
また、前記実施形態では、油溝34と、シャフト孔40内の隙間空間41との間を連通させる連通手段として、環状凸部32に設けた周方向の切欠部32kを用いたものを示したが、連通手段は、実施形態に限定されない。例えば、第1又は第2ケース半体C1(C2)に設けた連通孔により、油溝34と隙間空間41との間を連通させるようにしてもよい。
また前記実施形態では、環状凹部31及び環状凸部32は、周方向に連続していたが、それら環状凹部31及び環状凸部32の形状は実施形態に限定されず、例えば、不連続部分を一部に有する環状凹部及び環状凸部であってもよい。
Claims (4)
- 第1軸線(X1)回りに回転可能な中空のデフケース(C)と、
前記デフケース(C)内に収容されるデフ機構(20)と、
前記デフケース(C)内に外部から潤滑油を導入可能な潤滑油導入手段(15,16)と、
前記デフケース(C)外周のフランジ部(Cf)に結合されて、動力源に連なる駆動ギヤ(8)と噛合するリングギヤ(R)とを備え、
前記デフ機構(20)は、前記第1軸線(X1)と直交する第2軸線(X2)上に配置されて前記デフケース(C)に支持されるピニオンシャフト(21)と、該ピニオンシャフト(21)に回転自在に支持されるピニオンギヤ(22)と、該ピニオンギヤ(22)に噛合し前記第1軸線(X1)回りに回転可能な一対のサイドギヤ(23)とを有する差動装置において、
前記デフケース(C)は、各々の開放端面を合せ面(f1,f2)として互いに結合される一対のケース半体(C1,C2)を含み
前記一対のケース半体(C1,C2)は、前記第1軸線(X1)上で互いに同心嵌合する環状凹部(31)及び環状凸部(32)を前記合せ面(f1,f2)の一方と他方に有しており、
前記環状凸部(32)の先端面(32t)と前記環状凹部(31)の内底面(31b)とは、軸方向に空隙を挟んで相対向していて、その相対向面により、前記ピニオンシャフト(21)から軸方向に離間した位置で前記デフケース(C)の内面(Ci)に開口する油溝(34)が形成され、
前記合せ面(f1,f2)の相互間には、前記ピニオンシャフト(21)が嵌挿されるシャフト孔(40)が形成され、
前記シャフト孔(40)と前記ピニオンシャフト(21)との間には、径方向内方側の端部が前記油溝(34)に連通し且つ径方向外方側の端部が前記デフケース(C)の外部に連通する油通路となる隙間空間(41)が介在することを特徴とする、差動装置。 - 前記環状凸部(32)が、前記ピニオンシャフト(21)に対応する部位で周方向に一部切欠かれていて、その切欠部(32k)を介して前記油溝(34)と前記隙間空間(41)とが連通していることを特徴とする、請求項1に記載の差動装置。
- 前記デフケース(C)の内面(Ci)には、前記ピニオンギヤ(22)の背面をピニオンワッシャ(25)を介して回転自在に支持するピニオン支持面(Cip)が凹状に形成され、
前記油溝(34)の、前記デフケース(C)の内面(Ci)への開口部は、前記ピニオン支持面(Cip)の、前記ピニオンワッシャ(25)との当接面(54)よりも軸方向外方側に配置されることを特徴とする、請求項2に記載の差動装置。 - 前記環状凹部(31)を有する一方のケース半体(C1)の、他方のケース半体(C2)に対する合せ面(f1)が、前記第1軸線(X1)と直交する平面に形成され、
前記他方のケース半体(C2)の、前記一方のケース半体(C1)との合せ面(f2)には、前記平面と協働して前記シャフト孔(40)を形成する横断面U字状の溝部(43)が凹設されることを特徴とする、請求項1~3の何れか1項に記載の差動装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018044409A JP2019157973A (ja) | 2018-03-12 | 2018-03-12 | 差動装置 |
JP2018-044409 | 2018-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176779A1 true WO2019176779A1 (ja) | 2019-09-19 |
Family
ID=67907103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009374 WO2019176779A1 (ja) | 2018-03-12 | 2019-03-08 | 差動装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019157973A (ja) |
WO (1) | WO2019176779A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4310366A4 (en) * | 2021-03-19 | 2024-08-14 | Jatco Ltd | POWER TRANSMISSION DEVICE |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09296857A (ja) * | 1996-05-01 | 1997-11-18 | Tochigi Fuji Ind Co Ltd | デファレンシャル装置 |
JP2012202525A (ja) * | 2011-03-28 | 2012-10-22 | Showa Corp | デフケース |
-
2018
- 2018-03-12 JP JP2018044409A patent/JP2019157973A/ja active Pending
-
2019
- 2019-03-08 WO PCT/JP2019/009374 patent/WO2019176779A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09296857A (ja) * | 1996-05-01 | 1997-11-18 | Tochigi Fuji Ind Co Ltd | デファレンシャル装置 |
JP2012202525A (ja) * | 2011-03-28 | 2012-10-22 | Showa Corp | デフケース |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4310366A4 (en) * | 2021-03-19 | 2024-08-14 | Jatco Ltd | POWER TRANSMISSION DEVICE |
Also Published As
Publication number | Publication date |
---|---|
JP2019157973A (ja) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110291309B (zh) | 传动装置 | |
CN109723790B (zh) | 差动装置 | |
JP4989066B2 (ja) | 車軸部におけるピニオンユニット | |
JP6487664B2 (ja) | 差動装置 | |
JP2016080152A5 (ja) | ||
WO2019188672A1 (ja) | 差動装置 | |
WO2019176779A1 (ja) | 差動装置 | |
JP6176266B2 (ja) | プラネタリギヤ装置 | |
CN113994125B (zh) | 传动装置 | |
US20220235857A1 (en) | Power transmission device | |
WO2020184707A1 (ja) | 差動装置 | |
US10948065B2 (en) | Differential device | |
WO2020153332A1 (ja) | 差動装置 | |
JP2007292123A (ja) | デファレンシャルとドライブシャフトとの連結構造 | |
JP6587892B2 (ja) | 差動装置 | |
US11300189B2 (en) | Differential device | |
JP7082035B2 (ja) | 差動装置 | |
JP2018096502A (ja) | 差動装置 | |
WO2020184428A1 (ja) | 差動装置 | |
WO2022102290A1 (ja) | デファレンシャルギヤ | |
JP2016080153A (ja) | 差動装置及びその製造方法 | |
JP2019086052A (ja) | 差動装置 | |
US20130281252A1 (en) | Differential Gear | |
WO2018100987A1 (ja) | 車両の伝動装置 | |
JP2016080151A (ja) | 差動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19766900 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19766900 Country of ref document: EP Kind code of ref document: A1 |