WO2019174624A1 - 一种远红外负离子炭复合板及其制作工艺 - Google Patents

一种远红外负离子炭复合板及其制作工艺 Download PDF

Info

Publication number
WO2019174624A1
WO2019174624A1 PCT/CN2019/078204 CN2019078204W WO2019174624A1 WO 2019174624 A1 WO2019174624 A1 WO 2019174624A1 CN 2019078204 W CN2019078204 W CN 2019078204W WO 2019174624 A1 WO2019174624 A1 WO 2019174624A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
far
carbon
composite board
mesh
Prior art date
Application number
PCT/CN2019/078204
Other languages
English (en)
French (fr)
Inventor
赵星安
Original Assignee
赵星安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵星安 filed Critical 赵星安
Priority to AU2019233259A priority Critical patent/AU2019233259B2/en
Priority to KR1020207027520A priority patent/KR20210003092A/ko
Priority to US16/981,296 priority patent/US11904293B2/en
Publication of WO2019174624A1 publication Critical patent/WO2019174624A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0097Anion- and far-infrared-emitting materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00025Aspects relating to the protection of the health, e.g. materials containing special additives to afford skin protection
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of plate manufacturing, in particular to a far infrared negative ion carbon composite plate and a manufacturing process thereof.
  • the object of the present invention is to provide a far-infrared negative ion carbon composite board and a manufacturing process thereof, which solves the problems of high cost of various traditional plates and decoration materials, unstable product performance, high pollution, and unfavorable health problems, and also releases a large number of human body needs.
  • Far infrared and negative ions, as well as adjusting dry humidity, can be used for packaging materials, tableware and other materials.
  • the present invention provides a far-infrared anion carbon composite board having the following composition (by weight): 10-6000 mesh mica powder 0.5% to 95%; 10-200 mesh carbon powder 5%-91% Resin 15% - 90%; dispersant 0.1% - 10%; zeolite powder 1% - 50%; foaming agent 0.1% - 20%, regulator 0.1-20%.
  • the invention also provides a manufacturing process of a far-infrared anion carbon composite board, comprising the following steps: comprising the steps of: high temperature carbon and mica powder with a weight percentage of 1 to 3:1 at 30-300 degrees Celsius 5000r/
  • the high-speed mixer on the min mixes the collision to form the masterbatch.
  • the second step mix the other materials in proportion and put them into the mixer to stir evenly;
  • the third step heating, the heating temperature is 10-300 degrees Celsius, and the heating time is 2- 20 minutes;
  • the fourth step adding mixed masterbatch (based on mica powder), the fifth step: heating again under high speed;
  • the sixth step cooling and cutting according to the extrusion of the mold.
  • the invention has the beneficial effects that the invention is a novel far-infrared, negative ion plate and decoration material and a manufacturing process thereof, and the physical properties of various plates of the invention: the formulation and temperature of the material can be used It can adjust the hardness, density, and bending strength to withstand high and low temperature functions. It can withstand more than 60% of the normal plate to withstand pressure and wear resistance, and has a certain cushioning performance. Chemical properties: no harmful or harmful substances, high-temperature carbon, carbonization time, and ratio of various materials to adjust the indicators of far-infrared, negative ions, and formaldehyde reduction.
  • High-quality mica powder has a far-infrared emissivity of more than 95%, and the release of negative oxygen ions is more than 1000/cc.
  • Small-size negative ions can effectively eliminate carcinogens such as home decoration pollution, decomposition of formaldehyde and playfulity, and the decomposition products are non-toxic and tasteless.
  • the combination of carbon and zeolite powder accelerates the adsorption and reduction of harmful substances such as sulfides, nitrides, formaldehyde, benzene, phenols (the amount of formaldehyde reduction of 6 kg of plate in a cubic cubicle of 24 hours is more than 65%) It also has strong moisture absorption, moisture absorption, moisture removal and odor removal.
  • a far-infrared, negative ion plate having the following composition (by weight percentage): 80% bamboo charcoal powder 20%; resin 20%; 100 mesh mica powder 1%; flame retardant 8%; dispersant 3%; 200 mesh zeolite powder 20%; other plant charcoal 24%; foaming agent 1%; regulator 3%.
  • a manufacturing process of far-infrared and negative ion plates comprises the following steps: First step: mixing carbon powder after high temperature: mica powder (weight ratio 2:1) on a high-speed mixer of 30-300 degrees Celsius 5000r/min Form (masterbatch). Step 2: Mix the other raw materials in proportion and put them into the mixer to stir evenly; the third step: heating, the heating temperature is 80 degrees Celsius, the heating time is 3 minutes; the fourth step: adding the mixed masterbatch (to Mica powder is the base), the fifth step: high-speed stirring and heating; the sixth step: cooling and cutting according to the extrusion of the mold, the zeolite powder increases adsorption and rapid degradation to eliminate the function of toxic heavy metal ions.
  • Mica generates heat in the carbon fiber "Brown Movement" of high-temperature carbon, and generates about 85% of far-infrared rays to radiate heat, resulting in permanent release of important far-infrared and negative ions for human health.
  • the obtained sheet does not contain any substances which are toxic to the human body. According to the hardness and bending strength of the tested sheet, the stability can far exceed the wood board and other recycled boards currently on the market, and the fire level is B grade, which can be used for decoration in public places.
  • a far-infrared, negative ion plate having the following composition (by weight percentage): 200% of bamboo charcoal powder of 200 mesh; 6% of resin; 5% of mica powder of 1000 mesh; 0.5% of flame retardant; 0.5% of dispersant; 10% of zeolite powder ; other plant charcoal 10%; blowing agent 2%, regulator 6%.
  • a far infrared and negative ion plate manufacturing process comprises the following steps: First step: mixing a small portion of the high temperature carbon powder: mica powder (weight ratio 1:1) on a high speed mixer of 30-300 degrees Celsius 5000r/min. Collision formation (masterbatch). Step 2: Mix the other raw materials in proportion and put them into the mixer to stir evenly; the third step: heating, the heating temperature is 100 degrees Celsius, the heating time is 3 minutes; the fourth step: adding the mixed masterbatch (to Mica powder is the base), the fifth step: high-speed stirring and heating; the sixth step: cooling and cutting according to the extrusion of the mold, the zeolite powder increases adsorption and rapid degradation to eliminate the function of toxic heavy metal ions.
  • Mica generates heat in the carbon fiber "Brown Movement" of high-temperature carbon, and generates about 85% of far-infrared rays to radiate heat, resulting in permanent release of important far-infrared and negative ions for human health.
  • the plates and decoration materials made of the above materials as the main materials do not contain any substances that are toxic to the human body. According to the hardness and bending strength of the tested plates, the stability can far exceed the other plates and recycled plates currently on the market.
  • the release amount of negative ions is 3850/cc.
  • the high carbon content is used for furniture and home decoration.
  • the dry humidity can be adjusted.
  • the release of negative ions can also produce various foods and fruit packaging materials to extend the shelf life of various foods.
  • Negative ions not only promote the synthesis and storage of vitamins in adults, but also strengthen and activate the physiological activities of the human body, which have a very important impact on the life activities of human body and other organisms.
  • a far-infrared, negative ion plate having the following composition (by weight percentage): 80% carbon powder 10%; resin 10%; 80 mesh mica powder 73.7%; flame retardant 1%; dispersant 1%; 100 mesh zeolite powder 3%; foaming agent 0.3%; regulator 1%.
  • a manufacturing process of far-infrared and negative ion plates comprises the following steps: First step: mixing carbon powder after high temperature: mica powder (weight ratio 2:1) on a high-speed mixer of 30-300 degrees Celsius 5000r/min Form (masterbatch). Step 2: Mix the other raw materials in proportion and put them into the mixer to stir evenly; the third step: heating, the heating temperature is 80 degrees Celsius, the heating time is 3 minutes; the fourth step: adding the mixed masterbatch (to Mica powder is the base), the fifth step: high-speed stirring and heating; the sixth step: cooling and cutting according to the extrusion of the mold, the zeolite powder increases adsorption and rapid degradation to eliminate the function of toxic heavy metal ions.
  • Mica generates heat in the carbon fiber "Brown Movement" of high-temperature carbon, and generates about 85% of far-infrared rays to radiate heat, resulting in permanent release of important far-infrared and negative ions for human health.
  • the obtained board does not contain any substances that are toxic to the human body. According to the hardness and bending strength of the tested board, the stability can far exceed the wood board and other recycled boards currently on the market, and the negative ion release amount is 5000/cc, and the fire level is AB. It can be used for public places such as entertainment, shopping malls and many other places.
  • a far-infrared, negative ion plate whose composition is as follows (by weight): 50% carbon powder 80%; resin 3%; mica 3%; flame retardant 10%; dispersant 0.5%; zeolite powder 3%; 0.1% of the agent and 0.4% of the modifier.
  • a far infrared and negative ion plate manufacturing process comprises the following steps: First step: carbon powder after high temperature: mica powder (weight ratio 3:1) is mixed and formed on a high speed mixer of 30-300 degrees Celsius 5000r/min ( Masterbatch). Step 2: Mix the other raw materials in proportion and put them into the mixer to stir evenly; the third step: heating, the heating temperature is 50 degrees Celsius, the heating time is 3 minutes; the fourth step: adding the mixed masterbatch (to Mica powder is the base), the fifth step: high-speed stirring and heating; the sixth step: cooling and cutting according to the extrusion of the mold, the zeolite powder increases adsorption and rapid degradation to eliminate the function of toxic heavy metal ions.
  • Mica generates heat in the carbon fiber "Brown Movement" of high-temperature carbon, and generates about 85% of far-infrared rays to radiate heat, resulting in permanent release of important far-infrared and negative ions for human health.
  • the obtained plate does not contain any substances which are toxic to the human body. According to the hardness and bending strength of the test plate, the stability can far exceed the other plates and recycled plates currently on the market.
  • the high temperature carbon content is high, resistant to ultraviolet rays, rain, high and low temperature, suitable for Outdoor use.
  • a far-infrared anion carbon composite board comprising the following components (by weight percentage): 10% carbon powder 1%; resin 80%; 6000 mesh mica powder 5%; flame retardant 1%; dispersant 3%; zeolite powder 1%; 3% foaming agent, 6% modifier.
  • a far-infrared anion carbon composite board comprising the following components (by weight percentage): 10% of 250-mesh toner; 80% of 1000-mica powder; 3% of flame retardant; 5% of dispersant; 1% of zeolite powder; 1% foaming agent and 1% conditioning agent.
  • a far-infrared anion carbon composite board characterized in that the composition comprises the following (by weight percentage): 5% carbon powder of 100 mesh; 30% of resin; 30% of mica powder of 1000 mesh; 1% of flame retardant; and dispersant 10 %; zeolite powder 5%; foaming agent 10%, regulator 10%.
  • the test result of the product of the invention has a specific surface area of 280 square meters per gram; the aperture area of the plate is 256 square meters per gram; the far-infrared emissivity is 94.6%, the negative ion release is 1500 ions, the methylene blue adsorption value is 210 mg per gram, ethylene gas The adsorption value was 5.45 ml per gram; the pH was 5.3.
  • the invention relates to a novel far-infrared, negative ion plate and decoration material and a manufacturing process thereof, and the physical properties of various plates of the invention: the formula of the material, the temperature adjustment hardness, the density, the bending strength, the high and low temperature functions It can withstand more than 60% of the normal board withstand pressure and wear resistance, and has a certain cushioning performance. Chemical properties: no harmful or harmful substances, high-temperature carbon, carbonization time, and ratio of various materials to adjust the indicators of far-infrared, negative ions, and formaldehyde reduction.
  • High-quality mica powder has a far-infrared emissivity of more than 95%, and a negative oxygen ion release of more than 30,000/cc.
  • Small-size negative ions can effectively eliminate carcinogens such as home decoration pollution, decomposition of formaldehyde, wrongity, and decomposition products are non-toxic and tasteless.
  • the combination of carbon and zeolite powder accelerates the adsorption and reduction of harmful substances such as sulfides, nitrides, formaldehyde, benzene, phenols (the amount of formaldehyde reduction of 6 kg of plate in a cubic cubicle of 24 hours is more than 65%) It also has strong moisture absorption, moisture absorption, moisture removal and odor removal. It has strong health care function.
  • the formaldehyde adsorption amount corresponding to the same size material is the best, reaching 72 mg/g.
  • the carbon powder is heated at a temperature of 700-850 ° C for bamboo charcoal powder, and the heating time is 4-6 h.
  • the bamboo charcoal-based activated carbon activated by KOH is mixed with KOH at a mass ratio of 1:2, and is kept at 900 ° C for 2 h in an inert gas atmosphere.
  • Activated carbon powder obtained by activation. Its constant current charge and discharge capacitance at a current density of 0.06 mA / g can reach 250 F / g, showing good high current charge and discharge performance.

Abstract

一种远红外负离子炭复合板及其制作工艺,复合板成分及重量百分比为:10-6000目的云母粉0.5%-95%;10-200目的炭粉5%-91%;树脂15%-90%;分散剂0.1%-10%;沸石粉1%-50%;发泡剂0.1%-20%,调节剂0.1-20%。可以用材料的配方、温度调整复合板材物理性能如硬度、密度、抗弯强度及耐高、低温的功能,其能抵抗大于普通板80%以上的承压能力及抗磨损性,具有一定的缓冲性能。该复合板无不良有害物质,具有高达80%以上的远红外发射率,负氧离子释放量1000个/cc以上。

Description

一种远红外负离子炭复合板及其制作工艺 技术领域
本发明涉及板材制造技术领域,尤其涉及一种远红外负离子炭复合板及其制作工艺。
背景技术
近几年各种家装、家具市场推出了不同类型不同材质的板材和配套产品,打着健康环保的概念,使消费者眼花缭乱,不知如何选择,不少商家为了使效果好看、快装、成本低达到不当获利目的,特别是市面上的所谓竹木纤维板产品相互竞争激烈,不惜添加有害物质或者就是用回收的廉价PVC材料作粘合剂等材料,性能不稳定、使用寿命短,从而使消费者受到不同程度的经济损失和健康危害。市面上的室内外装修材料板存在着污染大不利于健康和产品性能不稳定的问题,而且成本也不低,一般使用的产品树脂配比都比较高。
发明内容
本发明的目的提供一种远红外负离子炭复合板及其制作工艺,解决了传统的各种板材、装修材料成本高,产品性能不稳定,污染大不利于健康的问题,还释放大量人体需要的远红外和负离子以及调节干湿度,可自接用于的包装物、餐具等材料。
为了解决上述技术问题,本发明提供一种远红外负离子炭复合板,其成分如下(按重量百分比):10-6000目的云母粉0.5%一95%;10-200目的炭粉5%一91%;树脂15%一90%;分散剂0.1%一10%;沸石粉1%一50%;发泡 剂0.1%一20%,调节剂0.1-20%。
本发明还提供一种远红外负离子炭复合板的制造工艺,包括以下步骤:包括以下步骤:包括以下步骤:将重量百分比为1 3:1的高温炭和云母粉在30-300摄氏度5000r/min的高速混合机上混合碰撞形成母料.第二步:将其他原料按比例混合并置入搅拌机中搅拌均匀;第三步:加热,加热的温度为10-300摄氏度,加热的时间为2-20分钟;第四步:加混合好的母料(以云母粉料为基数),第五步:再高速搅拌加热;第六步:根据模具挤成型冷却裁切。
与现有技术相比,本发明的有益效果是:本发明为一种新型的远红外、负离子板材以及装修材料及其制造工艺,本发明的各种板材物理性能:可以用材料的配方、温度调整硬度、密度、抗弯强度耐高、低温的功能,能抵抗大于普通板60%以上的承受压力抗磨损,有一定的缓冲性能。化学性能:无不良有害物质,用各种材料的高温炭、碳化时间、以及配比来调整远红外、负离子、降减甲醛等指标。优质云母粉具有高达95%以上的远红外发射率,负氧离子释放量1000个/cc以上,小粒径负离子还能有效消除家装污染、分解甲醛、笨等致癌物质,分解产物是无毒无味的二氧化碳和水。炭、沸石粉的结合加快对硫化物、氮化物、甲醛、苯、酚等有害物质的吸附和降减(3公斤板材在一立方的密封舱内24h的甲醛降减量达65%以上)作用以及很强的吸湿防潮、放湿、去除异味的作用,自带极强的保健功能。在本发明的材料里加入10%以上的云母粉和高温炭、沸石粉结合制作的产品,利用云母在高温炭的碳分子“布朗运动”中产生热量,同时会源源不断的产生90%左右的远红外线来辐射热量,导致恒久的释放对人体健康具有及其重要远红外和 负离子,装修的各种房子相当于居住在全世界最长寿地巴马或者是原始森林里。
具体实施方式
结合工艺流程对本发明的具体加工工艺作进一步的详细描述:
实施例1
一种远红外、负离子板,其成分如下(按重量百分比):80目的竹炭粉20%;树脂20%;100目的云母粉1%;阻燃剂8%;分散剂3%;200目的沸石粉20%;其他植物炭24%;发泡剂1%;调节剂3%。
一种远红外、负离子板板的制造工艺,包括以下步骤:第一步:将高温后的炭粉:云母粉(重量百分比2:1)在30-300摄氏度5000r/min的高速混合机上混合碰撞形成(母料)。第二步:将其他原料按比例混合并置入搅拌机中搅拌均匀;第三步:加热,加热的温度为80摄氏度,加热的时间为3分钟;第四步:加混合好的母料(以云母粉料为基数),第五步:再高速搅拌加热;第六步:根据模具挤成型冷却裁切,沸石粉增加吸附和迅速降解消除有毒重金属离子功能。云母在高温炭的碳分子“布朗运动”中产生热量,同时会产生85%左右的远红外线来辐射热量,导致恒久的释放对人体健康具有及其重要远红外和负离子。所得的板材不含任何对人体用毒的物质,根据检测板材硬度、抗弯强度,稳定性能远远超过目前市面上的木工板和其他再生板材,防火级别B级,可用于公共场所装修。
实施例2
一种远红外、负离子板,其成分如下(按重量百分比):200目的竹炭粉60%;树脂6%;1000目的云母粉5%;阻燃剂0.5%;分散剂0.5%;沸石粉 10%;其他植物炭10%;发泡剂2%,调节剂6%。
一种远红外、负离子板的制造工艺,包括以下步骤:第一步:将小部分高温后的炭粉:云母粉(重量百分比1:1)在30-300摄氏度5000r/min的高速混合机上混合碰撞形成(母料)。第二步:将其他原料按比例混合并置入搅拌机中搅拌均匀;第三步:加热,加热的温度为100摄氏度,加热的时间为3分钟;第四步:加混合好的母料(以云母粉料为基数),第五步:再高速搅拌加热;第六步:根据模具挤成型冷却裁切,沸石粉增加吸附和迅速降解消除有毒重金属离子功能。云母在高温炭的碳分子“布朗运动”中产生热量,同时会产生85%左右的远红外线来辐射热量,导致恒久的释放对人体健康具有及其重要远红外和负离子。用以上材料为主要材料制造的板材、装修材料不含任何对人体用毒的物质,根据检测板材硬度、抗弯强度,稳定性能远远超过目前市面上的其他板材和再生板材,防火级别BE级,负离子的释放量3850个/cc,炭含量高用于家具、家装还能调节干湿度,负离子释放量大还可以制作各种食品、水果包装物延长各种食品保质期,可以制作餐具等产品。
云母和高温炭的远红外作用恒久的释放负离子,负离子不仅能促成人体合成和储存维生素,强化和激活人体的生理活动,对人体及其他生物的生命活动有着十分重要的影响。
实施例3
一种远红外、负离子板,其成分如下(按重量百分比):80目的炭粉10%;树脂10%;80目的云母粉73.7%;阻燃剂1%;分散剂1%;100目的沸石粉3%;发泡剂0.3%;调节剂1%。
一种远红外、负离子板板的制造工艺,包括以下步骤:第一步:将高温后的炭粉:云母粉(重量百分比2:1)在30-300摄氏度5000r/min的高速混合机上混合碰撞形成(母料)。第二步:将其他原料按比例混合并置入搅拌机中搅拌均匀;第三步:加热,加热的温度为80摄氏度,加热的时间为3分钟;第四步:加混合好的母料(以云母粉料为基数),第五步:再高速搅拌加热;第六步:根据模具挤成型冷却裁切,沸石粉增加吸附和迅速降解消除有毒重金属离子功能。云母在高温炭的碳分子“布朗运动”中产生热量,同时会产生85%左右的远红外线来辐射热量,导致恒久的释放对人体健康具有及其重要远红外和负离子。所得的板材不含任何对人体用毒的物质,根据检测板材硬度、抗弯强度,稳定性能远远超过目前市面上的木工板和其他再生板材,负离子释放量5000个/cc,防火级别AB级,可用于娱乐、商场等人多的公共场所装修。
实施例4
一种远红外、负离子板其成分如下(按重量百分比):50目的炭粉80%;树脂3%;云母份3%;阻燃剂10%;分散剂0.5%;沸石粉3%;发泡剂0.1%,调节剂0.4%。
一种远红外、负离子板的制造工艺,包括以下步骤:第一步:高温后的炭粉:云母粉(重量百分比3:1)在30-300摄氏度5000r/min的高速混合机上混合碰撞形成(母料)。第二步:将其他原料按比例混合并置入搅拌机中搅拌均匀;第三步:加热,加热的温度为50摄氏度,加热的时间为3分钟;第四步:加混合好的母料(以云母粉料为基数),第五步:再高速搅拌加热;第六步:根据模具挤成型冷却裁切,沸石粉增加吸附和迅速降解消除有毒 重金属离子功能。云母在高温炭的碳分子“布朗运动”中产生热量,同时会产生85%左右的远红外线来辐射热量,导致恒久的释放对人体健康具有及其重要远红外和负离子。所得的板材不含任何对人体用毒的物质,根据检测板材硬度、抗弯强度,稳定性能远远超过目前市面上的其他板材和再生板材,高温炭含量高耐紫外线、雨水、高低温差,适合户外使用。
实施例5
一种远红外负离子炭复合板,其成分包括如下(按重量百分比):10目的碳粉1%;树脂80%;6000目的云母粉5%;阻燃剂1%;分散剂3%;沸石粉1%;发泡剂3%,调节剂6%。
工艺与实施例1相同。
实施例6
一种远红外负离子炭复合板,其成分包括如下(按重量百分比):250目的碳粉10%;1000目的云母粉80%;阻燃剂3%;分散剂5%;沸石粉1%;发泡剂1%,调节剂1%。
工艺与实施例2相同。
实施例7
一种远红外负离子炭复合板,其特征在于:其成分包括如下(按重量百分比):100目的碳粉5%;树脂30%;1000目的云母粉30%;阻燃剂1%;分散剂10%;沸石粉5%;发泡剂10%,调节剂10%。
工艺与实施例3相同。
本发明产品的检测结果:比表面积为280平方米每克;板材的孔径面积为256平方米每克;远红外线发射率94.6%,负离子释放量1500ions,亚甲 基蓝吸附值为210毫克每克,乙烯气体吸附值为5.45毫升每克;ph值为5.3.
本发明为一种新型的远红外、负离子板材以及装修材料及其制造工艺,本发明的各种板材物理性能:可以用材料的配方、温度调整硬度、密度、抗弯强度耐高、低温的功能,能抵抗大于普通板60%以上的承受压力抗磨损,有一定的缓冲性能。化学性能:无不良有害物质,用各种材料的高温炭、碳化时间、以及配比来调整远红外、负离子、降减甲醛等指标。优质云母粉具有高达95%以上的远红外发射率,负氧离子释放量30000个/cc以上,小粒径负离子还能有效消除家装污染、分解甲醛、笨等致癌物质,分解产物是无毒无味的二氧化碳和水。炭、沸石粉的结合加快对硫化物、氮化物、甲醛、苯、酚等有害物质的吸附和降减(3公斤板材在一立方的密封舱内24h的甲醛降减量达65%以上)作用以及很强的吸湿防潮、放湿、去除异味的作用,自带极强的保健功能。在本发明的材料里加入10%以上的云母粉和高温炭、沸石粉结合制作的产品,利用云母在高温炭的碳分子“布朗运动”中产生热量,同时会源源不断的产生90%左右的远红外线来辐射热量,导致恒久的释放对人体健康具有及其重要远红外和负离子,装修的各种房子相当于居住在全世界最长寿地巴马或者是原始森林里。
当炭粉为220目的竹炭粉时,同等大小材料所对应的甲醛吸附量最好,达72mg/g。
作为优选,炭粉为竹炭粉加热温度700-850℃,加热时间4-6h,经KOH活化后的竹炭基活性炭竹炭与KOH以1:2质量比混合,在900℃惰性气体氛围保温2h的条件下活化获得的活性炭粉。其在0.06mA/g电流密度下恒流充放电的电容比容量可达250F/g,显示出很好的大电流充放电性能。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (9)

  1. 一种远红外负离子炭复合板,其特征在于:其成分包括如下(按重量百分比):10-6000目的云母粉0.5%一95%;10-250目的炭粉0.5%一95%;树脂15%一90%;分散剂0.1%一10%;沸石粉1%一50%;发泡剂0.1%一20%,调节剂0.1-20%。
  2. 根据权利要求1所述的一种远红外负离子炭复合板,其特征在于:其成分包括如下(按重量百分比):50目的碳粉75%;树脂15%;云母粉1%;阻燃剂5%;分散剂0.5%;沸石粉3%;发泡剂0.1%,调节剂0.4%。
  3. 根据权利要求1所述的一种远红外负离子炭复合板,其特征在于:其成分包括如下(按重量百分比):10目的碳粉1%;树脂80%;6000目的云母粉5%;阻燃剂1%;分散剂3%;沸石粉1%;发泡剂3%,调节剂6%。
  4. 根据权利要求1所述的一种远红外负离子炭复合板,其特征在于:其成分包括如下(按重量百分比):250目的碳粉10%;1000目的云母粉80%;阻燃剂3%;分散剂5%;沸石粉1%;发泡剂1%,调节剂1%。
  5. 根据权利要求1所述的一种远红外负离子炭复合板,其特征在于:其成分包括如下(按重量百分比):100目的碳粉5%;树脂30%;1000目的云母粉30%;阻燃剂1%;分散剂10%;沸石粉5%;发泡剂10%,调节剂10%。
  6. 根据权利要求1-5之一所述的一种远红外负离子炭复合板,其特征在于:所述炭粉为220目的竹炭粉。
  7. 根据权利要求6所述的一种远红外负离子炭复合板,其特征在于:所述竹炭粉中还有2倍重量的KOH。
  8. 一种制作权利要求1所述远红外负离子炭复合板的制造工艺,其特征在于,包括以下步骤:第一步:将小部分高温炭:云母粉(2:1)在30-300摄氏度5000r/min的高速混合机上混合碰撞形成(母料).第二步:将其他原料按比例混合并置入搅拌机中搅拌均匀;第三步:加热,加热的温度为80摄氏度,加热的时间为3分钟;第四步:加混合好的母料(以云母粉料为基 数),第五步:再高速搅拌加热;第六步:根据模具挤成型冷却裁切.
  9. 根据权利要求8所述的一种远红外负离子炭复合板的制造工艺,其特征在于:所述其他原料中的炭粉为竹炭粉在加热温度700-850℃,加热时间4-6h的条件下加热后,经KOH活化后的竹炭基活性炭竹炭与KOH以1:2质量比混合,在900℃惰性气体氛围保温2h的条件下活化获得的活性炭粉。
PCT/CN2019/078204 2018-03-16 2019-03-15 一种远红外负离子炭复合板及其制作工艺 WO2019174624A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2019233259A AU2019233259B2 (en) 2018-03-16 2019-03-15 Far-infrared negative ion carbon composite board and manufacturing process thereof
KR1020207027520A KR20210003092A (ko) 2018-03-16 2019-03-15 원적외선 음이온 카본 복합판 및 이의 제조 공정
US16/981,296 US11904293B2 (en) 2018-03-16 2019-03-15 Far-infrared negative ion carbon composite plate and manufacturing process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810220066.XA CN108409196B (zh) 2018-03-16 2018-03-16 一种远红外负离子炭复合板及其制作工艺
CN201810220066.X 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174624A1 true WO2019174624A1 (zh) 2019-09-19

Family

ID=63131914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078204 WO2019174624A1 (zh) 2018-03-16 2019-03-15 一种远红外负离子炭复合板及其制作工艺

Country Status (5)

Country Link
US (1) US11904293B2 (zh)
KR (1) KR20210003092A (zh)
CN (1) CN108409196B (zh)
AU (1) AU2019233259B2 (zh)
WO (1) WO2019174624A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409196B (zh) 2018-03-16 2020-12-25 赵星安 一种远红外负离子炭复合板及其制作工艺
CN113603922A (zh) * 2021-08-20 2021-11-05 浙江昌信建筑装饰新材料有限公司 一种复合地板
CN113718557A (zh) * 2021-08-20 2021-11-30 乔永恒 一种环保新型无污染负离子装饰纸

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010433A (ja) * 2002-06-07 2004-01-15 Nikken Jushi Kako Kk 建築用ボード原料及び建築用ボード
CN103924756A (zh) * 2014-03-22 2014-07-16 烟台斯坦普精工建设有限公司 一种具有净化室内空气功能的天花板及其制备方法
CN104961384A (zh) * 2015-06-25 2015-10-07 朱利雄 一种碳板及其制造工艺
CN106117800A (zh) * 2016-07-22 2016-11-16 安徽省三乐节能技术咨询服务有限公司 一种玻璃纤维增强、可除甲醛的竹塑发泡材料及其制备方法
CN106432977A (zh) * 2016-10-21 2017-02-22 叶爱云 一种植物纤维环保装饰板
CN106566087A (zh) * 2016-11-15 2017-04-19 山东鑫海新材料股份有限公司 有净化室内空气功能的负离子墙板、地板基材的制备方法
CN108409196A (zh) * 2018-03-16 2018-08-17 赵星安 一种远红外负离子炭复合板及其制作工艺
CN108676275A (zh) * 2018-04-03 2018-10-19 丁清波 一种具有发射远红外和释放负离子功能的复合装饰板及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010433A (ja) * 2002-06-07 2004-01-15 Nikken Jushi Kako Kk 建築用ボード原料及び建築用ボード
CN103924756A (zh) * 2014-03-22 2014-07-16 烟台斯坦普精工建设有限公司 一种具有净化室内空气功能的天花板及其制备方法
CN104961384A (zh) * 2015-06-25 2015-10-07 朱利雄 一种碳板及其制造工艺
CN106117800A (zh) * 2016-07-22 2016-11-16 安徽省三乐节能技术咨询服务有限公司 一种玻璃纤维增强、可除甲醛的竹塑发泡材料及其制备方法
CN106432977A (zh) * 2016-10-21 2017-02-22 叶爱云 一种植物纤维环保装饰板
CN106566087A (zh) * 2016-11-15 2017-04-19 山东鑫海新材料股份有限公司 有净化室内空气功能的负离子墙板、地板基材的制备方法
CN108409196A (zh) * 2018-03-16 2018-08-17 赵星安 一种远红外负离子炭复合板及其制作工艺
CN108676275A (zh) * 2018-04-03 2018-10-19 丁清波 一种具有发射远红外和释放负离子功能的复合装饰板及其制备方法

Also Published As

Publication number Publication date
AU2019233259B2 (en) 2022-06-02
KR20210003092A (ko) 2021-01-11
CN108409196A (zh) 2018-08-17
US20210008520A1 (en) 2021-01-14
CN108409196B (zh) 2020-12-25
US11904293B2 (en) 2024-02-20
AU2019233259A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2019174624A1 (zh) 一种远红外负离子炭复合板及其制作工艺
CN106977844B (zh) 一种环保、阻燃的pvc木塑复合材料及其制备方法
CN103102109B (zh) 一种相变储能地板砖及其制造方法
CN105111752A (zh) 一种能有效吸附和自动降解甲醛的环保竹炭板材及其制备工艺
CN101139199A (zh) 一种纸面石膏板
CN102924801B (zh) 一种复合发泡材料的制备方法
CN107082940A (zh) 一种可净化空气的耐火塑木复合材料及其制备方法
CN107954654A (zh) 一种吸附甲醛的硅藻土涂料及制备方法
KR100964580B1 (ko) 수용성 아크릴 수지계 친환경 벽지 결합제 조성물의 제조방법
CN111286102A (zh) 一种轻质尼龙弹性体发泡材料及其制备方法
KR20100123667A (ko) 왕겨 및 중공체 고강도 세라믹 배합 합성목재 제조방법
CN107033493A (zh) 一种植物纤维环保装饰板
CN107098619A (zh) 一种环保装饰板材
CN108559203A (zh) 多功能木塑复合材料及其制备方法
CN103804710B (zh) 一种含有低羟甲基三聚氰胺甲醛树脂的泡沫材料的制备方法
CN109732727B (zh) App-多级孔分子筛复合阻燃剂及其制备方法与应用
CN110435065B (zh) 一种天然乳胶床垫的制造方法
CN110845858A (zh) 一种纳米负离子木塑及其制造方法
KR100938595B1 (ko) 친환경 폴리비닐아세테이트 수지를 사용한 발포벽지 조성물
KR20160100663A (ko) 활성탄 숯 타일제조방법
CN104893061A (zh) 一种吸附异味的环保阻燃发泡塑料及其制备方法
CN109161085A (zh) 一种石墨烯-发泡eva复合材料及其制备方法
KR100938594B1 (ko) 친환경 폴리비닐아세테이트 수지를 사용한 발포벽지 조성물의 제조 방법
CN108342063B (zh) 一种彩绒板及其制备方法
CN102453293A (zh) 一种高密度隔音材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019233259

Country of ref document: AU

Date of ref document: 20190315

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19766719

Country of ref document: EP

Kind code of ref document: A1