WO2019174426A1 - 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置 - Google Patents

衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置 Download PDF

Info

Publication number
WO2019174426A1
WO2019174426A1 PCT/CN2019/073947 CN2019073947W WO2019174426A1 WO 2019174426 A1 WO2019174426 A1 WO 2019174426A1 CN 2019073947 W CN2019073947 W CN 2019073947W WO 2019174426 A1 WO2019174426 A1 WO 2019174426A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
grooves
optical element
diffractive optical
diffraction
Prior art date
Application number
PCT/CN2019/073947
Other languages
English (en)
French (fr)
Inventor
周奇群
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810201709.6A external-priority patent/CN108490523A/zh
Priority claimed from CN201810200435.9A external-priority patent/CN108490521A/zh
Priority claimed from CN201810201149.4A external-priority patent/CN108490522A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019174426A1 publication Critical patent/WO2019174426A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present application relates to the field of consumer electronic products, and in particular, to a method for manufacturing a diffractive optical element, a diffractive optical element, a laser projection module, a depth camera, and an electronic device.
  • the diffractive optical element in the prior art laser projection module is used to diffract the laser light collimated by the collimating element to form a laser pattern.
  • Embodiments of the present application provide a method of manufacturing a diffractive optical element, a diffractive optical element, a laser projection module, a depth camera, and an electronic device.
  • a method of manufacturing a diffractive optical element of the present application includes: providing a substrate; and forming a plurality of multi-step type diffraction grooves on the substrate.
  • a diffractive optical element of the present application includes a substrate on which a plurality of multi-step type diffraction grooves are formed.
  • a laser projection module of the present application includes a lens barrel, a light source, a collimating element, and the diffractive optical element described above;
  • the lens barrel includes a side wall of the lens barrel and is provided with a receiving cavity;
  • the light source is received in the receiving
  • the collimating element is received in the receiving cavity and is used for collimating the laser light emitted by the light source;
  • the diffractive optical element is received in the receiving cavity, and the diffraction groove is oriented
  • the light source is for diffracting the laser light after collimation of the collimating element to form a laser pattern.
  • the depth camera of the present application includes the laser projection module and the image collector described above, and the image collector is configured to collect the laser pattern projected by the laser projection module into a target space.
  • An electronic device of the present application includes a housing and the depth camera described above, the depth camera being disposed on the housing and exposed from the housing to acquire the depth image.
  • FIG. 2 is a schematic flow chart of a method of manufacturing a diffractive optical element according to some embodiments of the present application.
  • FIG. 4 is a cross-sectional view of a diffractive optical element of some embodiments of the present application.
  • Figure 10 is a cross-sectional view of a diffractive optical element of some embodiments of the present application.
  • FIG. 18 is a schematic structural diagram of a laser projection module according to some embodiments of the present application.
  • 24 is a schematic structural diagram of an electronic device according to some embodiments of the present application.
  • a method for manufacturing a diffractive optical element 15 of the present application includes:
  • Forming a plurality of multi-step type diffraction grooves 1521 on the substrate 151 including:
  • the embossed layer 152 is imprinted using a nanoimprint technique to form a plurality of diffractive grooves 1521.
  • the providing a substrate 151 includes:
  • Forming a plurality of multi-step type diffraction grooves 1521 on the substrate 151 including:
  • the diffractive structure on the conventional diffractive optical element is relatively complicated, resulting in a large number of manufacturing steps of the diffractive optical element and difficulty in manufacturing, and further, the manufacturing efficiency of the diffractive optical element is low and the manufacturing cost is high.
  • the diffractive optical element 15 of the present embodiment is obtained by forming a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of a transparent plastic by imprinting, thereby eliminating the number of steps for manufacturing the diffractive optical element 15.
  • the manufacturing efficiency of the diffractive optical element 15 reduces the manufacturing cost of the diffractive optical element 15.
  • the diffractive optical element 15 is made of plastic, the manufacturing cost can be saved compared to the diffractive optical element made of glass.
  • the substrate 151 is imprinted using a nanoimprint technique to form a plurality of diffractive grooves 1521.
  • the overall depth of the diffractive groove 1521 is less than the thickness of the substrate 151.
  • Forming a plurality of multi-step type diffraction grooves 1521 on the substrate 151 including:
  • the substrate 151 is etched to form a plurality of diffraction grooves 1521 on the substrate 151.
  • the diffractive structure on the conventional diffractive optical element is relatively complicated, resulting in a large number of manufacturing steps of the diffractive optical element and difficulty in manufacturing, and further, the manufacturing efficiency of the diffractive optical element is low and the manufacturing cost is high.
  • the diffractive optical element 15 of the present embodiment is obtained by forming a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass by etching, and the diffraction grooves 1521 are formed on the substrate 151 by etching.
  • the intensity of the diffractive optical element 15 formed by etching is relatively large.
  • the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the substrate 151 includes a front surface 1512 , and the step of etching the substrate 151 to form a plurality of diffraction grooves 1521 on the substrate 151 includes:
  • a plurality of glue grooves 191 are formed on the photoresist 19, and the glue grooves 191 penetrate the photoresist 19;
  • the diffractive optical element 15 of the present application includes a substrate 151 on which a plurality of multi-step type diffraction grooves 1521 are formed.
  • the diffractive optical element 15 further includes an imprinting layer 152, the substrate 151 is made of quartz glass, and an imprinting layer 152 is formed on the front surface 1512 of the substrate 151, and the imprinting layer 152 A plurality of diffraction grooves 1521 are formed by embossing.
  • a plurality of diffractive grooves 1521 are formed by imprinting the imprinting layer 152 by a nanoimprint technique.
  • the overall depth of the diffractive groove 1521 is less than the thickness of the embossed layer 152.
  • the substrate 151 is made of a transparent plastic, and the substrate 151 is formed by embossing to form a plurality of diffraction grooves 1521.
  • a plurality of diffractive grooves 1521 are formed by imprinting the substrate 151 by a nanoimprint technique.
  • the overall depth of the diffractive groove 1521 is less than the thickness of the substrate 151.
  • the substrate 151 is made of quartz glass, and the substrate 151 is formed with a plurality of diffraction grooves 1521 by etching.
  • the substrate 151 includes a front surface 1512.
  • the diffraction recess 1521 forms a photoresist 19 on the front surface 1512, a plurality of adhesive recesses 1521 on the photoresist 19, and a plurality of adhesive recesses.
  • a substrate 151 corresponding to 1521 and a photoresist 19 are removed.
  • a laser projection module 10 of the present application includes a lens barrel 12, a light source 13, a collimating element 14 and a diffractive optical element 15;
  • the lens barrel 12 includes a lens barrel sidewall 122 and is provided with a receiving cavity 121; 13 is received in the receiving cavity 121 and used to emit laser light;
  • the collimating element 14 is received in the receiving cavity 121 and used to collimate the laser light emitted by the light source 13;
  • the diffractive optical element 15 is received in the receiving cavity 121, and the diffractive groove 1521 faces the light source 13
  • the diffractive optical element 15 is used to diffract the collimated laser light of the collimating element 14 to form a laser pattern.
  • light source 13 includes a vertical cavity surface emitting laser or edge emitting laser 131.
  • the light source 13 includes an edge emitting laser 131, and the edge emitting laser 131 includes a light emitting surface 1311 that faces the collimating element 14.
  • the laser projection module 10 further includes a circuit board 112 assembly 11 and a fixture 18 for securing the light source 13 on the circuit board assembly 11.
  • the fixing member 18 includes a sealant 181, and the sealant 181 is disposed between the edge emitting laser 131 and the circuit board 112 assembly 11.
  • the sealant 181 is a thermal conductive adhesive.
  • the fixing member 18 includes at least two elastic supporting frames 182 disposed on the assembly 11 of the circuit board 112.
  • the at least two supporting frames 182 collectively form a receiving space 183, and the receiving space 183 is used for
  • the light source 13 is housed, and at least two support frames 182 are used to support the light source 13.
  • a depth camera 100 of the present application includes a laser projection module 10 and an image collector 20 for acquiring a laser pattern projected by the laser projection module 10 into a target space.
  • an electronic device 1000 of the present application includes a housing 200 and a depth camera 100 disposed on the housing 200 and exposed from the housing 200 to acquire a depth image.
  • the manufacturing method of the diffractive optical element 15 of the embodiment of the present application includes:
  • the substrate 151 may be pretreated with a plasma beam to remove oil, dust, and the like from the front surface 1512 of the substrate 151, thereby avoiding the presence of oil, dust, or the like due to the front surface 1512 of the substrate 151.
  • the surface adhesion is poor, and at the same time, the front surface 1512 of the substrate 151 can be ionized, thereby increasing the adhesion of the embossed layer 152 to the front surface 1512 of the substrate 151.
  • the embossed layer 152 in step 012 can be formed by coating an embossed material on the front side 1512 of the substrate 151.
  • the imprint material of the imprint layer 152 may include one of an ultraviolet curable resin, a thermosetting adhesive, a photocurable adhesive, a photoresist, and a self-drying adhesive.
  • Light-solid glue, thermosetting glue or self-drying glue cures quickly, has low curing conditions, high strength, simple process and low cost during curing.
  • the optical adhesive can be UV curable adhesive, OCA optical film or liquid optical adhesive.
  • the optical adhesive has good bonding effect with water glass, metal, plastic, etc., and the optical adhesive has high bonding strength, high transparency and fast curing speed, thereby enabling The manufacturing efficiency of the embossed layer 152 is greatly improved.
  • Step 013 is formed by embossing a embossed layer 152 by forming a raised master mold (not shown) that cooperates with the diffraction groove 1521 to form a diffraction groove 1521.
  • the convex pattern on the master mold is matched with the diffraction groove 1521. It can be formed by electron beam direct writing technology.
  • the multi-step type diffraction groove 1521 is a cross-sectional shape of the diffraction groove 1521 formed along a cross section perpendicular to the front surface 1512. Referring to FIG. 4, the number of steps (steps) in the multi-step type diffraction groove 1521 includes at least two.
  • the multi-step type diffraction groove 1521 includes two stepped grooves and three stepped grooves. Four-step grooves, five-step grooves, six-step grooves, and any number of stepped grooves.
  • the shapes of the diffraction grooves 1521 having the same number of steps may be the same, different or not identical, wherein the shape of the plurality of diffraction grooves 1521 may be understood as the shape of any two diffraction grooves 1521 (including the steps).
  • the length, width, height, and the like are completely identical; the shape of the plurality of diffraction grooves 1521 having the same number of steps is different, and it can be understood that at least one of the length, the width, and the height of the step are different.
  • the number of steps in the plurality of diffraction grooves 1521 formed on the embossed layer 152 may be the same or not identical, and the shapes of the plurality of diffraction grooves 1521 may be different, all the same or not identical.
  • the plurality of diffraction grooves 1521 formed on the embossed layer 152 may each be a six-step groove, and the plurality of diffraction grooves 1521 have the same shape; or a plurality of diffraction grooves formed on the embossed layer 152 1521 may be six-step grooves, and the plurality of diffraction grooves 1521 are different in shape; or, the plurality of diffraction grooves 1521 formed on the embossed layer 152 may be six-step grooves, and a plurality of grooves
  • the shape of the diffraction groove 1521 is not completely the same; or, the plurality of diffraction grooves 1521 formed on the embossed layer 152 include four stepped grooves and six stepped grooves
  • the plurality of diffraction grooves 1521 formed on the embossed layer 152 include four stepped grooves and six stepped grooves, and the four stepped grooves have the same shape and six stepped grooves.
  • the shapes are not completely the same; or, the plurality of diffraction grooves 1521 formed on the embossed layer 152 include four stepped grooves and six stepped grooves, and the shapes of the four stepped grooves are not identical, and the six steps are The shapes of the grooves are the same.
  • the shape of the orthographic projection of the outer contour of the diffraction groove 1521 on the front surface 1512 of the substrate 151 may be circular, rectangular, elliptical, polygonal, or irregular.
  • the plurality of diffraction grooves 1521 on the embossed layer 152 may be distributed according to a predetermined rule. For example, referring to FIG. 5 and FIG. 6, the plurality of diffraction grooves 1521 on the embossed layer 152 may be distributed in an array, specifically, The diffraction grooves 1521 may be distributed in a rectangular array (as shown in FIG. 6) or in an annular array (as shown in FIG.
  • the plurality of diffraction grooves 1521 on the embossed layer 152 may be in one direction (for example, in the row direction).
  • the equally spaced distributions are distributed at unequal intervals in the other direction (eg, in the column direction).
  • a plurality of diffractive grooves 1521 may also be discretely distributed over the embossed layer 152 (as shown in FIG. 7).
  • the manufacturing method of the diffractive optical element 15 of the embodiment of the present application forms a plurality of multi-step type diffraction grooves 1521 on the imprint layer 152 by forming an imprint layer 152 on the substrate 151 to obtain diffraction.
  • the optical element 15 has a small number of steps for manufacturing the diffractive optical element 15, which improves the manufacturing efficiency of the diffractive optical element 15 and reduces the manufacturing cost of the diffractive optical element 15.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the step of stamping the embossed layer 152 to form a plurality of multi-step type diffraction grooves 1521 on the embossed layer 152 includes:
  • a plurality of diffraction grooves 1521 are formed by imprinting the imprint layer 152 using a nano imprint technique.
  • the embossed layer 152 may be embossed by a hot embossing method to form a plurality of diffraction grooves 1521.
  • the bump on the master mold for stamping the stamp layer 152 is a nano-grating pattern formed by an electron beam direct writing technique, and the stamp layer 152 is a thermoplastic polymer resist coated on the substrate 151.
  • the front side 1512 is formed.
  • the step of stamping the embossed layer 152 by hot embossing to form a plurality of diffraction grooves 1521 includes: 01311, heating the embossed layer 152 to soften the photoresist and continuously heating the embossed layer 152; 01312, the master mold is pressed Into the softened embossed layer 152; 01313, stop heating the embossed layer 152; 01314, after the photoresist is cooled and solidified, the master mold is separated from the embossed layer 152 to form a diffraction groove 1521 on the embossed layer 152. .
  • the method of stamping the embossed layer 152 using the nanoimprint technique to form the plurality of diffraction grooves 1521 further includes forming a plurality of diffraction grooves 1521 on the embossed layer 152 by an ultraviolet hard embossing method.
  • the master for embossing the embossed layer 152 is made of a material that is permeable to ultraviolet rays, for example, the master is made of a quartz material, and the bumps on the master are made by electron beam direct writing.
  • the nano-grating pattern; the embossed layer 152 is formed by coating a low-viscosity, ultraviolet-sensitive liquid polymer photoresist on the surface 11 of the substrate 151.
  • the step of stamping the embossed layer 152 by the ultraviolet hard embossing to form the plurality of diffraction grooves 1521 includes: 01311, pressing the master mold onto the embossed layer 152; 01312, illuminating the photoresist with ultraviolet light to make the photoresist A polymerization hardening process occurs; 01313, the master mold is separated from the stamp layer 152 to form a diffraction groove 1521 on the stamp layer 152.
  • the present embodiment utilizes a nanoimprint technique to imprint the imprinting layer 152 to form a diffractive groove 1521 having a smaller size and a finer structure on the imprinting layer 152, so that more diffractive diffraction can be formed on the diffractive optical element 15 of the same size.
  • the groove 1521 further enhances the diffraction performance of the diffractive optical element 15.
  • the diffractive optical element 15 of the embodiment of the present application includes a substrate 151 and an imprint layer 152 .
  • the substrate 151 is made of quartz glass.
  • the embossed layer 152 is formed on the front surface 1512 of the substrate 151, and the embossed layer 152 is formed by embossing a plurality of multi-step type diffraction grooves 1521.
  • the substrate 151 has a circular sheet-like structure, and the embossed layer 152 is disposed on the substrate 151 and aligned with the edge of the substrate 151.
  • the substrate 151 may also have an elliptical sheet structure, a rectangular sheet structure, and a polygonal sheet structure.
  • the diffractive optical element 15 of the embodiment of the present invention forms a plurality of multi-step type diffraction grooves 1521 on the embossed layer 152 by imprinting to obtain the diffractive optical element 15, so that the process of manufacturing the diffractive optical element 15 is less, and the process is improved.
  • the manufacturing efficiency of the diffractive optical element 15 is reduced and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the base material 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • a plurality of diffractive grooves 1521 on the embossed layer 152 can be formed by imprinting the embossed layer 152 by a nanoimprint technique.
  • the overall depth D of the diffractive groove 1521 is less than the thickness H of the embossed layer 152.
  • the overall depth H of the diffraction groove 1521 refers to the maximum depth of the diffraction groove 1521.
  • the laser projection module 10 of the embodiment of the present invention includes a lens barrel 12 , a light source 13 , a collimating element 14 , and the diffractive optical element 15 of any of the above embodiments.
  • the lens barrel 12 includes a lens barrel side wall 122 and is provided with a receiving cavity 121.
  • the light source 13 is housed in the housing cavity 121 and is used to emit laser light.
  • the collimating element 14 is housed in the receiving cavity 121 and is used to collimate the laser light emitted by the light source 13.
  • the diffractive optical element 15 is housed in the housing cavity 121, the diffractive groove 1521 faces the light source 13, and the diffractive optical element 15 is used to diffract the collimated laser light of the collimating element 14 to form a laser pattern.
  • the diffractive optical element 15 forms a plurality of multi-step type diffraction grooves 1521 on the imprint layer 152 by imprinting.
  • the diffractive optical element 15 in the laser projection module 10 of the embodiment of the present invention is obtained by forming a plurality of multi-step type diffraction grooves 1521 on the imprint layer 152 by imprinting, thereby manufacturing the laser projection module 10.
  • the manufacturing efficiency of the laser projection module 10 is improved and the manufacturing cost of the laser projection module 10 is reduced.
  • the base material 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the diffractive optical element 15 generates heat when it operates, resulting in an increase in the temperature of the diffractive optical element 15 itself.
  • the diffractive optical element 15 is caused to generate a large temperature drift, that is, the center wavelength projected by the laser projection module 10 is shifted, and thus, when the laser projection module 10 is in the diffractive optical element 15
  • the filter band corresponding to the filter of the image collector 20 shown in FIG. 13
  • the laser projection module 10 is emitted by the temperature drift. The portion of the laser beam whose wavelength exceeds the filter band cannot be acquired by the image collector 20.
  • the image collector 20 cannot accurately acquire the laser pattern projected by the laser projection module 10, further affecting the acquisition of the high-precision depth image. Since the substrate 151 of the diffractive optical element 15 in the laser projection module 10 of the present application is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the generated temperature drift is small, so that the acquisition of the subsequent high-precision depth image can be ensured.
  • a method for manufacturing the diffractive optical element 15 includes:
  • the substrate 151 may be composed of polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), acrylonitrile-butadiene-styrene (Acrylonitrile Butadiene). Styrene, ABS), polyethylene terephthalate (PET), polyimide (PI), allyl diglycol carbonate (ADC) Made of one or more materials.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PS polystyrene
  • PS acrylonitrile-butadiene-styrene
  • Adiene acrylonitrile Butadiene
  • Styrene ABS
  • PET polyethylene terephthalate
  • PI polyimide
  • ADC allyl diglycol carbonate
  • Step 022 is formed by embossing a positive mold (not shown) formed with a diffraction groove 1521 to the front surface 1512 of the substrate 151 to form a diffraction groove 1521, and the diffraction pattern 1521 is matched on the master mold.
  • the bumps can be formed using electron beam direct writing techniques.
  • the multi-step type diffraction groove 1521 is a cross-sectional shape of the diffraction groove 1521 formed along a cross section perpendicular to the surface of the substrate 151. Referring to FIG. 10, the number of steps (steps) in the multi-step type diffraction groove 1521 includes at least two.
  • the multi-step type diffraction groove 1521 includes two stepped grooves and three stepped grooves.
  • the shapes of the diffraction grooves 1521 having the same number of steps may be the same, different or not identical, wherein the shape of the plurality of diffraction grooves 1521 may be understood as the shape of any two diffraction grooves 1521 (including the steps).
  • the length, width, height, and the like are completely identical; the shape of the plurality of diffraction grooves 1521 having the same number of steps is different, and it can be understood that at least one of the length, the width, and the height of the step are different.
  • the number of steps in the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 (or the substrate 151) may be the same or not identical, and the shapes of the plurality of diffraction grooves 1521 having the same number of steps may be different. , all the same or not exactly the same.
  • the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 may each be a six-step groove, and the plurality of diffraction grooves 1521 are all the same in shape; or a plurality of diffraction grooves formed on the diffractive optical element 15 1521 may be six-step grooves, and the shapes of the plurality of diffraction grooves 1521 are different; or the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 may be six-step grooves, a plurality of The shape of the diffraction groove 1521 is not completely the same; or, the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 include four stepped grooves and six stepped grooves, and the shapes of the four stepped grooves are the same The shapes of the grooves of the six steps are all the same; or, the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 include four stepped grooves and six stepped grooves, and
  • the shape of the orthographic projection of the outer contour of the diffraction groove 1521 on the front surface 1512 of the substrate 151 may be circular, rectangular, elliptical, polygonal, or irregular.
  • the plurality of diffraction grooves 1521 on the diffractive optical element 15 may be distributed according to a predetermined rule.
  • the plurality of diffraction grooves 1521 on the diffractive optical element 15 may be distributed in an array, specifically, The diffraction grooves 1521 may be distributed in a rectangular array (as shown in FIG. 12) or in an annular array (as shown in FIG.
  • the plurality of diffraction grooves 1521 on the diffractive optical element 15 may be in one direction (for example, in the row direction).
  • the equally spaced distributions are distributed at unequal intervals in the other direction (eg, in the column direction).
  • a plurality of diffractive grooves 1521 may also be discretely distributed on the diffractive optical element 15 (as shown in Figure 13).
  • the manufacturing method of the diffractive optical element 15 of the embodiment of the present application forms a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of a transparent plastic by imprinting to obtain a diffractive optical element 15, thereby fabricating diffractive optics.
  • the number of steps of the element 15 is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the diffractive optical element 15 is made of plastic, the manufacturing cost can be saved compared to the diffractive optical element made of glass.
  • the step of forming the plurality of multi-step type diffraction grooves 1521 on the substrate 151 by the imprint substrate 151 includes:
  • the substrate 151 is embossed using a nano imprint technique to form a plurality of diffractive grooves 1521.
  • the protrusions on the master mold for the imprint substrate 151 are nano-grating patterns formed by electron beam direct writing techniques.
  • the step of stamping the substrate 151 by hot stamping to form a plurality of diffraction grooves 1521 includes: 02211, heating the substrate 151 to soften the substrate 151 and continuously heating the substrate 151; 02212, pressing the master mold into the softening In the substrate 151; 02213, the heating of the substrate 151 is stopped; 02214, after the substrate 151 is cooled and solidified, the master mold is separated from the substrate 151 to form a diffraction groove 1521 on the substrate 151.
  • the present embodiment utilizes a nanoimprint technique to imprint the substrate 151 to form a diffractive groove 1521 having a smaller size and a finer structure on the substrate 151, so that more diffractive grooves can be formed on the diffractive optical element 15 of the same size. 1521 further enhances the diffraction performance of the diffractive optical element 15.
  • the diffractive optical element 15 of another embodiment of the present application includes a substrate 151 made of a transparent plastic.
  • the substrate 151 is formed with a plurality of multi-step type diffraction grooves 1521 by embossing.
  • the base material 151 has a circular sheet structure.
  • the substrate 151 may also have an elliptical sheet structure, a rectangular sheet structure, and a polygonal sheet structure.
  • the diffractive optical element 15 of the embodiment of the present application forms a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of a transparent plastic by embossing to obtain a diffractive optical element 15, thereby fabricating the diffractive optical element 15.
  • the number of steps is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the diffractive optical element 15 is made of plastic, the manufacturing cost can be saved compared to the diffractive optical element made of glass.
  • a plurality of diffractive grooves 1521 on diffractive optical element 15 can be formed by imprinting substrate 151 by nanoimprint techniques.
  • the overall depth D of the diffractive groove 1521 is less than the thickness H of the substrate 151 (or the diffractive optical element 15).
  • the overall depth H of the diffraction groove 1521 refers to the maximum depth of the diffraction groove 1521.
  • the laser projection module 10 includes a lens barrel 12 , a light source 13 , a collimating element 14 , and the diffractive optical element 15 of the above embodiment.
  • the lens barrel 12 includes a lens barrel side wall 122 and is provided with a receiving cavity 121.
  • the light source 13 is housed in the housing cavity 121 and is used to emit laser light.
  • the collimating element 14 is housed in the receiving cavity 121 and is used to collimate the laser light emitted by the light source 13.
  • the diffractive optical element 15 is housed in the housing cavity 121, the diffractive groove 1521 faces the light source 13, and the diffractive optical element 15 is used to diffract the collimated laser light of the collimating element 14 to form a laser pattern.
  • the diffractive optical element 15 forms a plurality of multi-step type diffraction grooves 1521 on the substrate 151 made of transparent plastic by embossing.
  • the diffractive optical element 15 in the laser projection module 10 of the embodiment of the present invention is obtained by embossing a plurality of multi-step type diffraction grooves 1521 formed on a substrate 151 made of transparent plastic, thereby manufacturing a diffractive optical element.
  • the number of steps of 15 is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the diffractive optical element 15 is made of plastic, the manufacturing cost can be saved compared to the diffractive optical element made of glass.
  • a method for manufacturing the diffractive optical element 15 of some embodiments of the present application includes:
  • the substrate 151 is etched to form a plurality of multi-step type diffraction grooves 1521 on the substrate 151.
  • the diffraction groove 1521 may be formed on the front surface 1512 of the substrate 151 by an etching process; or, the diffraction groove 1521 may be formed by etching the front surface 1512 of the substrate 151 by a plurality of etching processes.
  • an etching process includes: forming a photoresist 19 on the front surface 1512; forming a plurality of adhesive recesses 191 on the photoresist 19, the adhesive recess 191 penetrating the photoresist 19; etching
  • the plurality of glue grooves 191 correspond to the substrate 151 to form a plurality of substrate grooves 1513 on the substrate 151; the photoresist 19 is removed.
  • the multi-step type diffraction groove 1521 is a cross-sectional shape in which the diffraction groove 1521 is perpendicular to the cross section of the front surface 1512 of the substrate 151.
  • the number of steps (steps) in the multi-step type diffraction groove 1521 includes at least two.
  • the multi-step type diffraction groove 1521 includes two stepped grooves and three stepped grooves. Four-step grooves, five-step grooves, six-step grooves, and any number of stepped grooves.
  • the shapes of the diffraction grooves 1521 having the same number of steps may be the same, different or not identical, wherein the shape of the plurality of diffraction grooves 1521 may be understood as the shape of any two diffraction grooves 1521 (including the steps).
  • the length, width, height, and the like are completely identical; the shape of the plurality of diffraction grooves 1521 having the same number of steps is different, and it can be understood that at least one of the length, the width, and the height of the step are different.
  • the number of steps in the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 (or the substrate 151) may be the same or not identical, and the shapes of the plurality of diffraction grooves 1521 having the same number of steps may be different. , all the same or not exactly the same.
  • the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 may each be a six-step groove, and the plurality of diffraction grooves 1521 are all the same in shape; or a plurality of diffraction grooves formed on the diffractive optical element 15 1521 may be six-step grooves, and the shapes of the plurality of diffraction grooves 1521 are different; or the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 may be six-step grooves, a plurality of The shape of the diffraction groove 1521 is not completely the same; or, the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 include four stepped grooves and six stepped grooves, and the shapes of the four stepped grooves are the same The shapes of the grooves of the six steps are all the same; or, the plurality of diffraction grooves 1521 formed on the diffractive optical element 15 include four stepped grooves and six stepped grooves, and
  • the shape of the orthographic projection of the outer contour of the diffraction groove 1521 on the front surface 1512 of the substrate 151 may be circular, rectangular, elliptical, polygonal, or irregular.
  • the plurality of diffraction grooves 1521 on the diffractive optical element 15 may be distributed according to a predetermined rule.
  • the plurality of diffraction grooves 1521 on the diffractive optical element 15 may be distributed in an array, specifically, The diffraction grooves 1521 may be distributed in a rectangular array (as shown in FIG. 12) or in an annular array (as shown in FIG.
  • the plurality of diffraction grooves 1521 on the diffractive optical element 15 may be in one direction (for example, in the row direction).
  • the equally spaced distributions are distributed at unequal intervals in the other direction (eg, in the column direction).
  • a plurality of diffractive grooves 1521 may also be discretely distributed on the diffractive optical element 15 (as shown in Figure 13).
  • the manufacturing method of the diffractive optical element 15 of the embodiment of the present application forms a plurality of multi-step type diffraction grooves 1521 on the substrate 151 made of quartz glass by etching to obtain the diffractive optical element 15 by etching.
  • the diffraction groove 1521 is formed to have a small influence on the strength of the substrate 151, and thus the intensity of the diffractive optical element 15 formed by etching is large.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the step of etching the substrate 151 to form a plurality of multi-step type diffraction grooves 1521 on the substrate 151 includes:
  • a plurality of glue grooves 191 are formed on the photoresist 19, and the glue grooves 191 penetrate the photoresist 19;
  • step 0325 repeating the forming of the photoresist 19 on the front surface 1512 (step 0221), forming a plurality of glue grooves 191 on the photoresist 19 (step 0322), and etching the plurality of glue grooves 191 corresponding to The substrate 151 (step 0323), and the photoresist 19 are removed (step 0324) to form a diffraction groove 1521 on the substrate 151.
  • the glue groove 191 of the embodiment of the present application can be formed by exposure and development.
  • the glue grooves 191 may also be formed by embossing and etching.
  • the glue grooves 191 may be formed by a nano-imprint lithography technique.
  • Step 0325 etches the substrate recess 1513 a plurality of times (etching process) on the basis of the substrate recess 1513 formed in step 0323.
  • the region where the substrate 151 is etched in each etching process is a region in which the diffraction groove 1521 is formed on a step to be etched (the cross section is parallel to the front surface 1512); each etching process etches the substrate 1513.
  • the depth is: the depth of the step. For example, referring to FIG.
  • the first etching process of etching the substrate 151 is: the region where the substrate 151 is etched is the diffraction groove 1521 A region formed by a section cut from a step (first step) closest to the front surface 1512, the depth of the etching substrate 151 is a depth of the first step; and the second etching step is: etching the region of the substrate 151 to be diffracted The depth of the etched substrate 151 is the depth of the second step in the region formed by the cross section of the groove 1521 on the step (second step) connected to the first step; the third etching process is: etching the substrate 151 The area is the area formed by the cross section of the diffraction groove 1521 on the step (third step) connected to the second step, and the depth of the etching substrate 151 is the depth of the third step; the fourth etching process is: The region where the substrate 151 is etched is a region formed
  • the area of the substrate 151 is etched in each etching process: a region in which one step of the diffraction groove 1521 is projected on the front surface 1512; the depth of the etching substrate 1513 in each etching process is: the depth of the step.
  • the first etching process of etching the substrate 151 is: the area of the etching substrate 151 is the closest to the front surface 1512.
  • a step (first step) is formed in a region formed by the front surface 1512, and a depth of the etching substrate 151 is a depth of the first step; and a second etching step is: etching the region of the substrate 151 to be a step connected to the first step ( The second step is a region formed by the projection of the front surface 1512, the depth of the etched substrate 151 is the depth of the second step; the third etching step is: the region etching the substrate 151 is a step connected to the second step (third step In the region formed by the projection of the front surface 1512, the depth of the etched substrate 151 is the depth of the third step; the fourth etching process is: the region etching the substrate 151 is the step connected to the third step (fourth step) on the front side The region formed by the projection of 1512 is etched to a depth of the fourth step to obtain a diffraction groove 1521.
  • the etching method has the same width of the etching region in each etch
  • the diffraction grooves 1521 of any plurality of steps can be obtained by repeatedly performing the etching process.
  • the diffractive optical element 15 of some embodiments of the present application includes a substrate 151 made of quartz glass, and the substrate 151 is formed by etching to form a plurality of stepped diffraction grooves 1521.
  • the base material 151 has a circular sheet structure.
  • the substrate 151 may also have an elliptical sheet structure, a rectangular sheet structure, and a polygonal sheet structure.
  • the diffractive optical element 15 of the embodiment of the present application forms a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass by etching to obtain a diffractive optical element 15, which is formed by etching.
  • the groove 1521 has a small influence on the strength of the substrate 151, and thus the intensity of the diffractive optical element 15 formed by etching is large.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the substrate 151 includes a front surface 1512.
  • the diffraction groove 1521 forms a photoresist 19 on the front surface 1512, a plurality of glue grooves 191 on the photoresist 19, and a plurality of glue grooves.
  • a substrate 151 corresponding to 191 and a photoresist 19 are removed. That is, the diffraction groove 1521 is formed by repeatedly performing an etching process.
  • the laser projection module 10 of the embodiment of the present invention includes a lens barrel 12 , a light source 13 , a collimating element 14 , and the diffractive optical element 15 of the above embodiment.
  • the lens barrel 12 includes a lens barrel side wall 122 and is provided with a receiving cavity 121.
  • the light source 13 is housed in the housing cavity 121 and is used to emit laser light.
  • the collimating element 14 is housed in the receiving cavity 121 and is used to collimate the laser light emitted by the light source 13.
  • the diffractive optical element 15 is housed in the housing cavity 121, the diffractive groove 1521 faces the light source 13, and the diffractive optical element 15 is used to diffract the collimated laser light of the collimating element 14 to form a laser pattern.
  • the diffractive optical element 15 is obtained by etching a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass.
  • the diffractive optical element 15 of the embodiment of the present invention is obtained by etching a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass, and the diffraction groove 1521 is formed on the substrate by etching.
  • the intensity influence of 151 is small, and thus the intensity of the diffractive optical element 15 formed by etching is large.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the diffractive optical element 15 generates heat when it operates, resulting in an increase in the temperature of the diffractive optical element 15 itself.
  • the diffractive optical element 15 is caused to generate a large temperature drift, that is, the center wavelength projected by the laser projection module 10 is shifted, and thus, when the laser projection module 10 is in the diffractive optical element 15
  • the filter band corresponding to the filter of the image collector 20 shown in FIG. 24
  • the laser projection module 10 is emitted by the temperature drift. The portion of the laser beam whose wavelength exceeds the filter band cannot be acquired by the image collector 20.
  • the image collector 20 cannot accurately acquire the laser pattern projected by the laser projection module 10, further affecting the acquisition of the high-precision depth image. Since the substrate 151 of the diffractive optical element 15 in the laser projection module 10 of the present application is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the generated temperature drift is small, so that the acquisition of the subsequent high-precision depth image can be ensured.
  • the laser projection module 10 of the embodiment of the present application includes a circuit board assembly 11 , a lens barrel 12 , a light source 13 , a collimating element 14 , and a diffractive optical element 15 of any of the above embodiments.
  • the circuit board assembly 11 includes a substrate 111 and a circuit board 112 carried on the substrate 111.
  • the substrate 111 is used to carry the lens barrel 12, the light source 13, and the circuit board 112.
  • the material of the substrate 111 may be plastic, such as Polyethylene Glycol Terephthalate (PET), Polymethyl Methacrylate (PMMA), Polycarbonate (PC), Polyacyl. At least one of imine (Polyimide, PI). That is, the substrate 111 can be made of a single plastic material of any of PET, PMMA, PC or PI. As such, the substrate 111 is lighter in weight and has sufficient support strength.
  • the circuit board 112 may be any one of a printed circuit board, a flexible circuit board, and a soft and hard board.
  • the circuit board 112 may be provided with a through hole 113.
  • the through hole 113 may be used for accommodating the light source 13.
  • a part of the circuit board 112 is covered by the lens barrel 12, and another part is extended and connected to the connector 17, and the connector 17 can be
  • the laser projection module 10 is coupled to a motherboard of an electronic device 1000 (shown in Figure 24).
  • the lens barrel 12 is disposed on the circuit board assembly 11.
  • the lens barrel 12 includes a first face 124 and a second face 125 opposite to each other.
  • the second surface 125 of the lens barrel 12 is disposed on the circuit board 112.
  • the second surface 125 may be disposed on the circuit board 112 by at least one of gluing, snapping, screwing, and the like.
  • the second side 125 of the lens barrel 12 can also be disposed on the substrate 111.
  • the lens barrel 12 includes a barrel side wall 122 and an annular step 123.
  • the lens barrel sidewall 122 is formed with a receiving cavity 121, and the receiving cavity 121 penetrates through the first surface 124 and the second surface 125.
  • the lens barrel sidewall 122 includes an inner surface 1221 adjacent to the receiving cavity 121, and the step 123 extends from the inner surface 1221 toward the receiving cavity 121.
  • the annular step 123 encloses a light passing hole 1231, and the light passing hole 1231 can serve as a part of the receiving cavity 121.
  • the step 123 includes a first limiting surface 1232 and a second limiting surface 1233. The first limiting surface 1232 is opposite to the second limiting surface 1233.
  • the step 123 is located between the first surface 124 and the second surface 125.
  • the first limiting surface 1232 is closer to the first surface 124 than the second limiting surface 1233.
  • the first limiting surface 1232 and the second limiting surface are 1233 can be a parallel plane.
  • the lens barrel 12 of the present embodiment has a circular cross section.
  • the outer contour of the cross section of the lens barrel 12 may be circular, elliptical, rectangular or arbitrary, and the inner contour of the cross section of the lens barrel 12 may also be circular, elliptical, rectangular or arbitrary.
  • An outer shape of the cross section of the lens barrel 12 is circular, and the inner contour is elliptical; or, the outer contour of the cross section of the lens barrel 12 is circular, and the inner contour is rectangular; or, the lens barrel 12
  • the outer contour of the cross section is circular, and the inner contour is polygonal; or, the outer contour of the cross section of the lens barrel 12 is rectangular, and the inner contour is circular.
  • the light source 13 is disposed on the circuit board assembly 11 and housed in the housing cavity 121. Specifically, the light source 13 can be disposed on the circuit board 112 and electrically connected to the circuit board 112. The light source 13 can also be disposed on the substrate 111 and housed in the via hole 113. At this time, the light source 13 and the circuit board can be arranged by arranging wires. 112 electrical connection.
  • the light source 13 is for emitting laser light, and the laser light may be infrared light.
  • the light source 13 may include a semiconductor substrate and a transmitting laser disposed on the semiconductor substrate.
  • the semiconductor substrate is disposed on the substrate 111, and the emitting laser may be vertical. Vertical Cavity Surface Emitting Laser (VCSEL).
  • the semiconductor substrate may be provided with a single emitting laser, or an array laser composed of a plurality of transmitting lasers. Specifically, the plurality of transmitting lasers may be arranged on the semiconductor substrate in a regular or irregular two-dimensional pattern.
  • the collimating element 14 can be an optical lens, the collimating element 14 is used to collimate the laser light emitted by the light source 13, the collimating element 14 is received in the receiving cavity 121, and the collimating element 14 can be directed along the second side 125 to the first side 124. The direction is assembled into the receiving cavity 121.
  • the collimating element 14 includes a bonding surface 143. When the bonding surface 143 is combined with the second limiting surface 1233, the collimating element 14 can be considered to be in place.
  • the collimating element 14 includes an optical portion 141 and a mounting portion 142 for engaging with the lens barrel sidewall 122 to fix the collimating element 14 in the receiving cavity 121.
  • the diffractive optical element 15 is housed in the receiving cavity 121.
  • the diffractive optical element 15 is obtained by forming an embossed layer 152 on a substrate 151 and forming a plurality of multi-step grooves 1521 on the embossed layer 152 by embossing.
  • the diffractive optical element 15 includes a substrate 151 and an imprinting layer 152 that is closer to the first side 124 than the imprinting layer 152.
  • the substrate 151 is made of quartz glass.
  • the embossed layer 152 is formed on the front surface 1512 of the substrate 151, and the embossed layer 152 is formed by embossing a plurality of multi-step type diffraction grooves 1521 formed on the embossed layer 152 away from the substrate.
  • the diffractive optical element 15 includes a diffractive mounting surface 150, and in particular, the diffractive mounting surface 150 is a surface of the imprinting layer 152 that is remote from the substrate 151.
  • the diffractive mounting surface 150 is disposed on the first limiting surface 1232.
  • the diffractive optical element 15 is for diffracting the collimated laser light of the collimating element 14 to form a laser pattern.
  • the plurality of multi-step type diffraction grooves 1521 on the diffraction mounting surface 150 may correspond to the position of the light passing hole 1231.
  • the plurality of multi-step type diffraction grooves 1521 of the diffractive optical element 15 diffract the laser light collimated by the collimating element 14 to a laser pattern corresponding to the diffraction structure.
  • the diffractive optical element 15 in the laser projection module 10 of the embodiment of the present application forms a plurality of multi-step type diffraction grooves 1521 on the imprint layer 152 by imprinting to obtain the diffractive optical element 15, thereby fabricating the diffractive optical element.
  • the number of steps of 15 is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the generated temperature drift is small, and the subsequent high-accuracy depth image can be obtained.
  • the diffractive optical element 15 is obtained by embossing a plurality of multi-step type diffraction grooves 1521 formed on a substrate 151 made of a transparent plastic.
  • the diffractive optical element 15 includes a diffractive mounting surface 150 closer to the second surface 125, and a plurality of multi-step diffractive grooves 1521 on the diffractive optical element 15 are formed on the diffractive mounting surface 150, that is, the diffractive mounting surface 150 is The front side 1512 of the substrate 151.
  • the diffractive mounting surface 150 is disposed on the first limiting surface 1232 and is in contact with the first limiting surface 1232.
  • the diffractive optical element 15 is for diffracting the collimated laser light of the collimating element 14 to form a laser pattern.
  • the plurality of multi-step type diffraction grooves 1521 on the diffraction mounting surface 150 may correspond to the position of the light passing hole 1231.
  • the plurality of multi-step type diffraction grooves 1521 of the diffractive optical element 15 diffract the laser light collimated by the collimating element 14 to a laser pattern corresponding to the diffraction structure.
  • the diffractive optical element 15 in the laser projection module 10 of the embodiment of the present invention is obtained by embossing a plurality of multi-step type diffraction grooves 1521 formed on a substrate 151 made of transparent plastic, thereby manufacturing a diffractive optical element.
  • the number of steps of 15 is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the diffractive optical element 15 is made of plastic, the manufacturing cost can be saved compared to the diffractive optical element made of glass.
  • the diffractive optical element 15 is obtained by etching a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass.
  • the diffractive optical element 15 includes a diffractive mounting surface 150 closer to the second surface 125, and a plurality of multi-step diffractive grooves 1521 on the diffractive optical element 15 are formed on the diffractive mounting surface 150, that is, the diffractive mounting surface 150 is The front side 1512 of the substrate 151.
  • the diffractive mounting surface 150 is disposed on the first limiting surface 1232 and is in contact with the first limiting surface 1232.
  • the diffractive optical element 15 in the laser projection module 10 of the embodiment of the present invention is formed by etching a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass, which is formed by etching.
  • the diffraction groove 1521 has a small influence on the strength of the substrate 151, and thus the intensity of the diffractive optical element 15 formed by etching is large.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the light source 13 includes an edge-emitting laser (EEL) 131.
  • the edge emitting laser 131 may be a distributed feedback laser (DFB). ).
  • the side emitting laser 131 is entirely columnar, and an end surface of the side emitting laser 131 away from the circuit board assembly 11 is formed with a light emitting surface 1311, and laser light is emitted from the light emitting surface 1311, and the light emitting surface 1311 faces the collimating element 14.
  • the edge-emitting laser 131 is used as the light source.
  • the temperature of the edge-emitting laser 131 is smaller than that of the VCSEL array. In the other direction, since the edge-emitting laser 131 is a single-point light-emitting structure, it is not necessary to design an array structure, and the laser projection module is simple.
  • the light source of 10 has a lower cost.
  • the laser projection module 10 further includes a fixing member 18 for fixing the edge emitting laser 131 to the circuit board assembly 11.
  • a fixing member 18 for fixing the edge emitting laser 131 to the circuit board assembly 11.
  • the edge emitting laser 131 When the light emitting surface 1311 of the edge emitting laser 131 faces the collimating element 14, the side emitting laser 131 is placed vertically, and since the side emitting laser 131 has an elongated strip structure, the side emitting laser 131 is liable to fall, shift or shake. Therefore, the edge emitting laser 131 can be fixed by providing the fixing member 18, preventing accidents such as dropping, shifting, or shaking of the edge emitting laser 131.
  • the fixture 18 includes a sealant 181 disposed between the edge emitting laser 131 and the circuit board assembly 11. More specifically, in the example shown in FIG. 19, the side of the side-emitting laser 131 opposite to the light-emitting surface 1311 is bonded to the circuit board assembly 11. In the example shown in FIG. 20, the side surface 1312 of the edge emitting laser 131 may also be bonded to the circuit board assembly 11, and the sealant 181 may wrap around the side surface 1312, or may bond only one side of the side surface 1312. The circuit board assembly 11 or a plurality of faces and circuit board assemblies 11 are bonded.
  • the fixing member 18 includes at least two elastic supporting frames 182 disposed on the circuit board assembly 11, and at least two supporting frames 182 collectively form a receiving space 183 for receiving the receiving space 183.
  • the side emitting laser 131 has at least two support frames 182 for supporting the edge emitting laser 131 to further prevent the edge emitting laser 131 from shaking.
  • the substrate 111 can be omitted and the light source 13 can be directly attached to the circuit board 112 to reduce the overall thickness of the laser projector 10.
  • the step 123 is provided with a detecting through hole 1234 extending through the first limiting surface 1232 and the second limiting surface 1233.
  • the detecting through hole 1234 is spaced apart from the light passing hole 1231.
  • the central axis of the detecting through hole 1234 may be a straight line.
  • the laser diffraction module 10 also includes a detection device 16 that includes a transmitter 161 and a receiver 162.
  • the emitter 161 and the receiver 162 are mounted one on the collimating element 14 and the other on the diffractive optical element 15.
  • the emitter 161 may be disposed on the bonding surface 143, and the receiver 162 may be disposed on the diffraction mounting surface 150; or the emitter 161 may be disposed on the diffraction mounting surface 150, and the receiver 162 is disposed on the bonding surface 143.
  • the embodiment of the present application is described by taking the emitter 161 on the joint surface 143 and the receiver 162 on the diffraction mounting surface 150 as an example.
  • the transmitter 161 and the receiver 162 are both mounted at opposite ends of the detecting through hole 1234.
  • the transmitter 161 is configured to emit a detection signal from one end into the detecting through hole 1234, and the detecting signal passes through the detecting through hole 1234 to reach the other end, and Received by receiver 162.
  • the receiver 162 analyzes the intensity, phase, and the like of the received detection signal to determine whether the mounting position of the collimating element 14 and the diffractive optical element 15 is correct at this time.
  • the transmitter 161 may be an acoustic wave transmitter and used to transmit the detected sound wave.
  • the receiver 162 may be an acoustic wave receiver and used to receive the detected sound wave passing through the detecting through hole 1234, and the detected sound wave may be an ultrasonic wave;
  • the transmitter 161 may be a light emitting device.
  • the receiver 162 may be a light receiver and used to receive the detection light passing through the detection through hole 1234, and the detection light may be a laser.
  • the transmitter 161 is an optical transmitter
  • the receiver 162 is an optical receiver
  • the transmitter 161 transmits a detection signal only to the surface of the receiver 162, and the receiver 162 faces only the surface of the transmitter 161.
  • the receiving surface receives the detection signal.
  • the detection signal emitted by the emitter 161 passes through the detecting through hole 1234 and is reflected by the inner wall of the undetected through hole 1234, and the detection signal
  • the propagation path to the receiver 162 is short, and at this time, the detection signal is incident perpendicularly to the receiving surface of the receiver 161, and the intensity of the detection signal received by the receiver 162 is high.
  • the detection signal emitted by the transmitter 161 passes through the detecting through hole 1234, and the detection signal is reflected by the inner wall of the detecting through hole 1234 multiple times before being received by the receiver.
  • 162 receives that the propagation path of the detection signal to the receiver 162 is long, and the strength of the detection signal received by the receiver 162 is weak.
  • the receiving surface of the receiver 162 is no longer facing the transmitter 161, and the detection signal received by the receiver 162 is not perpendicularly incident on the receiving surface, or part of the receiving surface at this time
  • the detection signal is not received in alignment with the detection via 1234, and the intensity of the detection signal received by the receiver 162 is weak. Therefore, the receiver 162 can judge whether or not the collimating element 14 and the diffractive optical element 15 are in the correct mounting position by judging the strength of the received detection signal.
  • the depth camera 100 of the embodiment of the present application includes the laser projection module 10 and the image collector 20 of any of the above embodiments.
  • a projection window 40 corresponding to the laser projection module 10 and an acquisition window 50 corresponding to the image collector 20 may be formed on the depth camera 100.
  • the laser projection module 10 is configured to project a laser pattern into the target space through the projection window 40
  • the image collector 20 is configured to collect the laser pattern modulated by the target object through the acquisition window 50.
  • the laser projected by the laser projection module 10 is infrared light
  • the image capture device 20 is an infrared camera.
  • the diffractive optical element in the depth camera 100 of the embodiment of the present invention forms a plurality of multi-step type diffraction grooves 1521 on the imprint layer 152 by imprinting to obtain the diffractive optical element 15, thereby manufacturing the diffractive optical element 15. Less, the manufacturing efficiency of the diffractive optical element 15 is improved and the manufacturing cost of the diffractive optical element 15 is lowered. In addition, since the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the generated temperature drift is small, and the subsequent high-accuracy depth image can be obtained.
  • the diffractive optical element 15 in the depth camera 100 is obtained by embossing a plurality of multi-step type diffraction grooves 1521 formed on a substrate 151 made of transparent plastic, thereby fabricating a diffractive optical element.
  • the number of steps of 15 is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the diffractive optical element 15 is made of plastic, the manufacturing cost can be saved compared to the diffractive optical element made of glass.
  • the diffractive optical element 15 in the depth camera 100 is obtained by etching a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass, which is formed by etching.
  • the diffraction groove 1521 has a small influence on the strength of the substrate 151, and thus the intensity of the diffractive optical element 15 formed by etching is large.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • the depth camera 100 further includes a processor 30.
  • the processor 30 is coupled to both the laser projection module 10 and the image capture unit 20 for processing the laser pattern to obtain a depth image.
  • the processor 30 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains a depth image of the laser pattern according to the offset value.
  • the image matching algorithm may be a Digital Image Correlation (DIC) algorithm. Of course, other image matching algorithms can be used instead of the DIC algorithm.
  • the electronic device 1000 of the embodiment of the present application includes a housing 200 and a depth camera 100 .
  • the electronic device 1000 can be a mobile phone, a tablet computer, a laptop computer, a game machine, a head display device, an access control system, a teller machine, etc.
  • the embodiment of the present application is described by taking the electronic device 1000 as a mobile phone as an example. It can be understood that the specific form of the electronic device 1000 It can be other and is not limited here.
  • the depth camera 100 is disposed in the housing 200 and exposed from the housing 200 to obtain a depth image, and the housing 200 can provide protection against dust, water, drop, etc. to the depth camera 100, and the housing 200 is provided with a depth camera 100.
  • the holes are such that light passes through or penetrates the housing 200.
  • the diffractive optical element 15 in the electronic device 1000 of the embodiment of the present application forms a plurality of multi-step type diffraction grooves 1521 on the imprint layer 152 by imprinting to obtain the diffractive optical element 15, thereby fabricating the diffractive optical element 15.
  • the number of steps is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the generated temperature drift is small, and the subsequent high-accuracy depth image can be obtained.
  • the diffractive optical element 15 in the electronic device 1000 is obtained by embossing a plurality of multi-step type diffraction grooves 1521 formed on a substrate 151 made of transparent plastic, thereby manufacturing a diffractive optical element.
  • the number of steps of 15 is small, the manufacturing efficiency of the diffractive optical element 15 is improved, and the manufacturing cost of the diffractive optical element 15 is lowered.
  • the diffractive optical element 15 is made of plastic, the manufacturing cost can be saved compared to the diffractive optical element made of glass.
  • the diffractive optical element 15 in the electronic device 1000 is formed by etching a plurality of multi-step type diffraction grooves 1521 on a substrate 151 made of quartz glass, which is formed by etching.
  • the diffraction groove 1521 has a small influence on the strength of the substrate 151, and thus the intensity of the diffractive optical element 15 formed by etching is large.
  • the substrate 151 is made of quartz glass, the diffractive optical element 15 is less affected by temperature, and the resulting temperature drift is small.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, for example two, three, unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种电子装置(1000)、深度相机(100)、激光投射模组(10)、衍射光学元件(15)及衍射光学元件(15)的制造方法,衍射光学元件(15)的制造方法包括:提供一基材(151);及,在基材(151)上形成多个多阶梯型的衍射凹槽(1521)。

Description

衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
优先权信息
本申请请求2018年03月12日向中国国家知识产权局提交的、专利申请号为201810200435.9、201810201149.4以及201810201709.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及消费性电子产品技术领域,特别涉及一种衍射光学元件的制造方法、衍射光学元件、激光投射模组、深度相机及电子装置。
背景技术
现有的激光投射模组中的衍射光学元件用于衍射经准直元件准直后的激光以形成激光图案。
发明内容
本申请的实施方式提供了一种衍射光学元件的制造方法、衍射光学元件、激光投射模组、深度相机及电子装置。
本申请的一种衍射光学元件的制造方法包括:提供一基材;及,在所述基材上形成多个多阶梯型的衍射凹槽。
本申请的一种衍射光学元件包括基材,所述基材上形成有多个多阶梯型的衍射凹槽。
本申请的一种激光投射模组包括镜筒、光源、准直元件及上述所述的衍射光学元件;所述镜筒包括镜筒侧壁并开设有收容腔;所述光源收容在所述收容腔内并用于发射激光;所述准直元件收容在所述收容腔内并用于准直所述光源发射的激光;所述衍射光学元件收容在所述收容腔内,所述衍射凹槽朝向所述光源,所述衍射光学元件用于衍射所述准直元件准直后的激光以形成激光图案。
本申请的深度相机包括上述所述的激光投射模组及图像采集器,所述图像采集器用于采集由所述激光投射模组向目标空间中投射的所述激光图案。
本申请的一种电子装置包括壳体和上述所述的深度相机,所述深度相机设置在所述壳体上并从所述壳体上暴露以获取所述深度图像。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的衍射光学元件的制造方法的流程示意图。
图2是本申请某些实施方式的衍射光学元件的制造方法的流程示意图。
图3是本申请某些实施方式的衍射光学元件的立体结构示意图。
图4是本申请某些实施方式的衍射光学元件的剖视图。
图5至图7是本申请某些实施方式的衍射光学元件的衍射凹槽的分布示意图。
图8是本申请某些实施方式的衍射光学元件的制造方法的流程示意图。
图9是本申请某些实施方式的衍射光学元件的立体结构示意图。
图10是本申请某些实施方式的衍射光学元件的剖视图。
图11至图13是本申请某些实施方式的衍射光学元件的衍射凹槽的分布示意图。
图14及图15是本发明某些实施方式的衍射光学元件的制造方法的流程示意图。
图16及图17是本发明某些实施方式的衍射光学元件的制造方法的原理示意图。
图18是本申请某些实施方式的激光投射模组的结构示意图。
图19是图18中的激光投射模组XIX处的放大示意图。
图20至图22是本申请实施方式的激光投射模组的部分结构示意图。
图23是本申请某些实施方式的深度相机的结构示意图。
图24是本申请某些实施方式的电子装置的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能 理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1、图3及图4,本申请的一种衍射光学元件15的制造方法,包括:
01,提供一基材151;及
02,在基材151上形成多个多阶梯型的衍射凹槽1521。
请参阅图2至图4,在某些实施方式中,所述提供一基材151,包括:
011,提供一石英玻璃制成的基材151;
所述在基材151上形成多个多阶梯型的衍射凹槽1521,包括:
012,在基材151的正面1512形成压印层152;及
013,压印压印层152以在压印层152上形成多个衍射凹槽1521。
现有的衍射光学元件上的衍射结构比较复杂,从而导致衍射光学元件的制造工序较多及制造难度较大,进而导致衍射光学元件的制造效率较低及制造成本较高。本实施方式的衍射光学元件15通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521得到,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于基材151由石英玻璃制成,则衍射光学元件15受温度影响较小,产生的温漂较小。
在某些实施方式中,所述压印压印层152以在压印层152上形成多个衍射凹槽1521的步骤包括:
利用纳米压印技术压印压印层152形成多个衍射凹槽1521。
请参阅图4,在某些实施方式中,衍射凹槽1521的整体深度小于压印层152的厚度。
请参阅图8至图10,在某些实施方式中,所述提供一基材151,包括:
021,提供一透明塑料制成的基材151;
所述在基材151上形成多个多阶梯型的衍射凹槽1521,包括:
022,压印基材151以在基材151上形成多个衍射凹槽1521。
现有的衍射光学元件上的衍射结构比较复杂,从而导致衍射光学元件的制造工序较多及制造难度较大,进而导致衍射光学元件的制造效率较低及制造成本较高。本实施方式的衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于衍射光学元件15由塑料制成,相较于由玻璃制成的衍射光学元件而言,能够节省制作成本。
在某些实施方式中,所述压印基材151以在基材151上形成多个衍射凹槽1521的步骤包括:
利用纳米压印技术压印基材151形成多个衍射凹槽1521。
请参阅图10,在某些实施方式中,衍射凹槽1521的整体深度小于基材151的厚度。
请参阅图9、图10及图14,在某些实施方式中,所述提供一基材151,包括:
031,提供一石英玻璃制成的基材151;
所述在基材151上形成多个多阶梯型的衍射凹槽1521,包括:
032,蚀刻基材151以在基材151上形成多个衍射凹槽1521。
现有的衍射光学元件上的衍射结构比较复杂,从而导致衍射光学元件的制造工序较多及制造难度较大,进而导致衍射光学元件的制造效率较低及制造成本较高。本实施方式的衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,由于采用蚀刻的方式形成衍射凹槽1521对基材151的强度影响较小,因而采用蚀刻方式形成的衍射光学元件15的强度较大。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
请参阅图9、图10及图15,在某些实施方式中,基材151包括正面1512,所述蚀刻基材151以在基材151上形成多个衍射凹槽1521的步骤包括:
0321,在正面1512形成光刻胶19;
0322,在光刻胶19上形成多个胶凹槽191,胶凹槽191贯穿光刻胶19;
0323,蚀刻多个胶凹槽191对应的基材151以在基材151上形成多个基材凹槽1513;
0324,去除光刻胶19;及
0325,重复执行在正面1512形成光刻胶19、在光刻胶19上形成多个胶凹槽1521、蚀刻多个胶凹槽1521对应的基材151、及去除光刻胶19以在基材151上形成衍射凹槽1521。
请参阅图4及图10,本申请的衍射光学元件15包括基材151,基材151上形成有多个多阶梯型的 衍射凹槽1521。
请参阅图4,在某些实施方式中,衍射光学元件15还包括压印层152,基材151由石英玻璃制成,压印层152形成在基材151的正面1512上,压印层152通过压印形成多个衍射凹槽1521。
在某些实施方式中,多个衍射凹槽1521通过纳米压印技术压印压印层152形成。
请参阅图4,在某些实施方式中,衍射凹槽1521的整体深度小于压印层152的厚度。
请参阅图10,在某些实施方式中,基材151由透明塑料制成,基材151通过压印形成多个衍射凹槽1521。
在某些实施方式中,多个衍射凹槽1521通过纳米压印技术压印基材151形成。
请参阅图10,在某些实施方式中,衍射凹槽1521的整体深度小于基材151的厚度。
请参阅图10,在某些实施方式中,基材151由石英玻璃制成,基材151通过蚀刻形成有多个衍射凹槽1521。
在某些实施方式中,基材151包括正面1512,衍射凹槽1521通过重复执行在正面1512形成光刻胶19、在光刻胶19上形成多个胶凹槽1521、蚀刻多个胶凹槽1521对应的基材151、及去除光刻胶19形成。
请参阅图18,本申请的一种激光投射模组10包括镜筒12、光源13、准直元件14及衍射光学元件15;镜筒12包括镜筒侧壁122并开设有收容腔121;光源13收容在收容腔121内并用于发射激光;准直元件14收容在收容腔121内并用于准直光源13发射的激光;衍射光学元件15收容在收容腔121内,衍射凹槽1521朝向光源13,衍射光学元件15用于衍射准直元件14准直后的激光以形成激光图案。
请参阅图20,在某些实施方式中,光源13包括垂直腔面发射激光器或边发射激光器131。
请参阅图20,在某些实施方式中,光源13包括边发射激光器131,边发射激光器131包括发光面1311,发光面1311朝向准直元件14。
请参阅图20至图22,在某些实施方式中,激光投射模组10还包括电路板112组件11和固定件18,固定件18用于固定光源13在电路板112组件11上。
请参阅图20及图21,在某些实施方式中,固定件18包括封胶181,封胶181设置在边发射激光器131与电路板112组件11之间,封胶181为导热胶。
请参阅图22,在某些实施方式中,固定件18包括设置在电路板112组件11上的至少两个弹性支撑架182,至少两个支撑架182共同形成收容空间183,收容空间183用于收容光源13,至少两个支撑架182用于支撑住光源13。
请参阅图23,本申请的一种深度相机100包括激光投射模组10及图像采集器20,图像采集器20用于采集由激光投射模组10向目标空间中投射的激光图案。
请参阅图24,本申请的一种电子装置1000包括壳体200和深度相机100,深度相机100设置在壳体200上并从壳体200上暴露以获取深度图像。
请参阅图2至图4,本申请实施方式的衍射光学元件15的制造方法包括:
011,提供一石英玻璃制成的基材151;
012,在基材151的正面1512形成压印层152;及
013,压印压印层152以在压印层152上形成多个多阶梯型的衍射凹槽1521。
在步骤012之前,基材151可以采用等离子束进行预处理,以去除基材151的正面1512的油污、灰尘等,从而避免由于基材151的正面1512存在油污、灰尘等而导致基材151的表面附着力较差,同时,可以使基材151的正面1512离子化,从而增加压印层152附着在基材151的正面1512上的附着力。
步骤012中的压印层152可以通过在基材151的正面1512涂布压印材料形成。压印层152的压印材料可包括紫外固化树脂、热固胶、光固胶、光刻胶和自干胶中的一种。光固胶、热固胶或自干胶固化快、固化条件低、强度高,固化时工艺简单且成本较低。光学胶可以是UV固化胶、OCA光学胶片或液态光学胶,光学胶与水玻璃、金属、塑料等的粘接效果好,并且光学胶的粘接强度高、透明度高、固化速度快,从而能够极大地提高了压印层152的制造效率。
步骤013通过形成有与衍射凹槽1521相配合的凸起的母模(图未示)压印到压印层152上形成衍射凹槽1521,母模上的与衍射凹槽1521相配合的凸起可以利用电子束直写技术制作形成。多阶梯型的衍射凹槽1521为衍射凹槽1521沿垂直于正面1512的剖面形成的截面形状。请参阅图4,多阶梯型的衍射凹槽1521中的阶梯(台阶)的数量至少包括两个,例如,多阶梯型的衍射凹槽1521包括两个阶梯的凹槽、三个阶梯的凹槽、四个阶梯的凹槽、五个阶梯的凹槽、六个阶梯的凹槽及任意多个阶梯的凹槽。具有相同的阶梯数量的衍射凹槽1521的形状可以均相同、均不相同或不完全相同,其中,多个衍射凹槽1521的形状相同可以理解为任意两个衍射凹槽1521的形状(包括阶梯的长度、宽度及高度等)完全一致;具有相同的阶梯数量的多个衍射凹槽1521的形状不相同可以理解为阶梯的长度、宽度和高度中 的至少一个不相同。
压印层152上形成的多个衍射凹槽1521中的阶梯的数量可以均相同或不完全相同,多个衍射凹槽1521的形状可以均不相同、均相同或不完全相同。例如,压印层152上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状均相同;或者,压印层152上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状均不相同;或者,压印层152上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状不完全相同;或者,压印层152上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均相同、六个阶梯的凹槽的形状均相同;或者,压印层152上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均不相同、六个阶梯的凹槽的形状均不相同;或者,压印层152上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状不完全相同、六个阶梯的凹槽的形状不完全相同;或者,压印层152上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均相同、六个阶梯的凹槽的形状不完全相同;或者,压印层152上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状不完全相同、六个阶梯的凹槽的形状均相同。
请参阅图5至图7,衍射凹槽1521的外轮廓在基材151的正面1512上的正投影的形状可以为圆形、矩形、椭圆形、多边形、或不规则形状。压印层152上的多个衍射凹槽1521可以按预设规则分布,例如,请参阅图5及图6,压印层152上的多个衍射凹槽1521可以呈阵列分布,具体地,多个衍射凹槽1521可以呈矩形阵列分布(如图6所示)或环形阵列分布(如图5所示);或者,压印层152上的多个衍射凹槽1521在一个方向(例如行方向上)等间隔分布,在另一个方向上(例如列方向上)呈不等间隔分布。在其他实施方式中,多个衍射凹槽1521也可以离散地分布在压印层152上(如图7所示)。
本申请实施方式的衍射光学元件15的制造方法通过在基材151上形成压印层152,并通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
在某些实施方式中,所述压印压印层152以在压印层152上形成多个多阶梯型的衍射凹槽1521的步骤(步骤013)包括:
0131,利用纳米压印技术(Nano Imprint)压印压印层152形成多个衍射凹槽1521。
具体地,本实施方式可以利用热压印的方法压印压印层152形成多个衍射凹槽1521。此时,用于压印压印层152的母模上的凸起为利用电子束直写技术制作形成的纳米光栅图案,压印层152为热塑性高分子光刻胶涂布在基材151的正面1512形成。利用热压印的方法压印压印层152形成多个衍射凹槽1521的步骤包括:01311,加热压印层152以使光刻胶软化并持续给压印层152加热;01312,将母模压入软化的压印层152内;01313,停止给压印层152加热;01314,待光刻胶冷却固化后将母模与压印层152分离,以在压印层152上形成衍射凹槽1521。
在其他实施方式中,利用纳米压印技术压印压印层152形成多个衍射凹槽1521的方法还包括紫外硬化压印方法在压印层152上形成多个衍射凹槽1521。此时,用于压印压印层152的母模由能够透过紫外线的材料制成,例如,母模由石英材料制成,母模上的凸起为利用电子束直写技术制作带有纳米光栅图案;压印层152为低粘度、对紫外光敏感的液态高分子光刻胶涂布在基材151的表面11形成。利用紫外硬化压印的方法压印压印层152形成多个衍射凹槽1521的步骤包括:01311,将母模压入压印层152上;01312,利用紫外光照射光刻胶以使光刻胶发生聚合反应硬化成形;01313,将母模与压印层152分离,以在压印层152上形成衍射凹槽1521。
本实施方式利用纳米压印技术压印压印层152能够在压印层152上形成尺寸更小,结构更加精细的衍射凹槽1521,从而相同大小的衍射光学元件15上能够形成更多的衍射凹槽1521,进而提升衍射光学元件15的衍射性能。
请参阅图3及图4,本申请实施方式的衍射光学元件15包括基材151及压印层152。基材151由石英玻璃制成。压印层152形成在基材151的正面1512上,压印层152通过压印形成有多个多阶梯型的衍射凹槽1521。本实施方式中,基材151呈圆形片状结构,压印层152设置在基材151上并与基材151的边缘对齐。在其他实施方式中,基材151还可以呈椭圆形片状结构、矩形片状结构、多边形片状结构。
本申请实施方式的衍射光学元件15通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于基材151由石英玻璃制成,则衍射光学元件15受温度影响较小,产生的温漂较小。
在某些实施方式中,压印层152上的多个衍射凹槽1521可以通过纳米压印技术压印压印层152形 成。
请参阅图4,在某些实施方式中,衍射凹槽1521的整体深度D小于压印层152的厚度H。衍射凹槽1521的整体深度H指的是衍射凹槽1521的最大深度。如此,利用母模压印压印层152时,母模不会与基材151相接触,避免了母模刮花基材151的正面1512的情况发生。
请参阅图3及图18,本申请实施方式的激光投射模组10包括镜筒12、光源13、准直元件14及上述任意一项实施方式的衍射光学元件15。镜筒12包括镜筒侧壁122并开设有收容腔121。光源13收容在收容腔121内并用于发射激光。准直元件14收容在收容腔121内并用于准直光源13发射的激光。衍射光学元件15收容在收容腔121内,衍射凹槽1521朝向光源13,衍射光学元件15用于衍射准直元件14准直后的激光以形成激光图案。其中,衍射光学元件15通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521。
本申请实施方式的激光投射模组10中的衍射光学元件15通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521得到,从而制造激光投射模组10的工序较少,提升了激光投射模组10的制造效率并降低了激光投射模组10的制造成本。另外,由于基材151由石英玻璃制成,则衍射光学元件15受温度影响较小,产生的温漂较小。
另外,可以理解,衍射光学元件15工作时会产生热量,导致衍射光学元件15自身的温度升高。衍射光学元件15的温度升高后,导致衍射光学元件15产生较大的温漂,即激光投射模组10投射出的中心波长产生偏移,如此,当激光投射模组10在衍射光学元件15温漂较大时,由于与激光投射模组10配合使用的图像采集器20(图13所示)的滤光片对应的滤光波段是有限的,温漂导致的激光投射模组10发射的激光的波长超出滤光波段的部分无法被图像采集器20采集得到,因此,图像采集器20无法准确获取激光投射模组10投射的激光图案,进一步地影响高精度深度图像的获取。由于本申请激光投射模组10中衍射光学元件15的基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小,能够保证后续高精度深度图像的获取。
请参阅图8至图10,本申请另一实施方式的衍射光学元件15的制造方法包括:
021,提供一透明塑料制成的基材151;及
022,压印基材151以在基材151上形成多个多阶梯型的衍射凹槽1521。
基材151可以由聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、聚苯乙烯(Polystyrene,PS)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)、聚酰亚胺(Polyimide,PI)、烯丙基二甘醇碳酸脂(Allgl diglycol carbonate,ADC)中的任意一种或多种材料制成。
步骤022通过形成有与衍射凹槽1521相配合的凸起的母模(图未示)压印到基材151的正面1512上形成衍射凹槽1521,母模上的与衍射凹槽1521相配合的凸起可以利用电子束直写技术制作形成。多阶梯型的衍射凹槽1521为衍射凹槽1521沿垂直于基材151表面的剖面形成的截面形状。请参阅图10,多阶梯型的衍射凹槽1521中的阶梯(台阶)的数量至少包括两个,例如,多阶梯型的衍射凹槽1521包括两个阶梯的凹槽、三个阶梯的凹槽、四个阶梯的凹槽、五个阶梯的凹槽、六个阶梯的凹槽及任意多个阶梯的凹槽。具有相同的阶梯数量的衍射凹槽1521的形状可以均相同、均不相同或不完全相同,其中,多个衍射凹槽1521的形状相同可以理解为任意两个衍射凹槽1521的形状(包括阶梯的长度、宽度及高度等)完全一致;具有相同的阶梯数量的多个衍射凹槽1521的形状不相同可以理解为阶梯的长度、宽度和高度中的至少一个不相同。
衍射光学元件15(或基材151)上形成的多个衍射凹槽1521中的阶梯的数量可以均相同或不完全相同,具有相同的阶梯数量的多个衍射凹槽1521的形状可以均不相同、均相同或不完全相同。例如,衍射光学元件15上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状均相同;或者,衍射光学元件15上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状均不相同;或者,衍射光学元件15上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状不完全相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均相同、六个阶梯的凹槽的形状均相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均不相同、六个阶梯的凹槽的形状均不相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状不完全相同、六个阶梯的凹槽的形状不完全相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均相同、六个阶梯的凹槽的形状不完全相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状不完全相同、六个阶梯的凹槽的形状均相同。
请参阅图11至图13,衍射凹槽1521的外轮廓在基材151的正面1512上的正投影的形状可以为圆形、矩形、椭圆形、多边形、或不规则形状。衍射光学元件15上的多个衍射凹槽1521可以按预设规则分布,例如,请参阅图11及图12,衍射光学元件15上的多个衍射凹槽1521可以呈阵列分布,具体地,多个衍射凹槽1521可以呈矩形阵列分布(如图12所示)或环形阵列分布(如图11所示);或者,衍射光学元件15上的多个衍射凹槽1521在一个方向(例如行方向上)等间隔分布,在另一个方向上(例如列方向上)呈不等间隔分布。在其他实施方式中,多个衍射凹槽1521也可以离散地分布在衍射光学元件15上(如图13所示)。
本申请实施方式的衍射光学元件15的制造方法通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于衍射光学元件15由塑料制成,相较于由玻璃制成的衍射光学元件而言,能够节省制作成本。
在某些实施方式中,所述压印基材151以在基材151上形成多个多阶梯型的衍射凹槽1521的步骤(步骤022)包括:
0221,利用纳米压印技术(Nano Imprint)压印基材151以形成多个衍射凹槽1521。
具体地,用于压印基材151的母模上的凸起为利用电子束直写技术制作形成的纳米光栅图案。利用热压印的方法压印基材151以形成多个衍射凹槽1521的步骤包括:02211,加热基材151以使基材151软化并持续给基材151加热;02212,将母模压入软化的基材151内;02213,停止给基材151加热;02214,待基材151冷却固化后将母模与基材151分离,以在基材151上形成衍射凹槽1521。
本实施方式利用纳米压印技术压印基材151能够在基材151上形成尺寸更小,结构更加精细的衍射凹槽1521,从而相同大小的衍射光学元件15上能够形成更多的衍射凹槽1521,进而提升衍射光学元件15的衍射性能。
请参阅图9及图10,本申请另一实施方式的衍射光学元件15包括由透明塑料制成的基材151。基材151通过压印形成有多个多阶梯型的衍射凹槽1521。本实施方式中,基材151呈圆形片状结构。在其他实施方式中,基材151还可以呈椭圆形片状结构、矩形片状结构、多边形片状结构。
本申请实施方式的衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于衍射光学元件15由塑料制成,相较于由玻璃制成的衍射光学元件而言,能够节省制作成本。
在某些实施方式中,衍射光学元件15上的多个衍射凹槽1521可以通过纳米压印技术压印基材151形成。
请参阅图10,在某些实施方式中,衍射凹槽1521的整体深度D小于基材151(或衍射光学元件15)的厚度H。衍射凹槽1521的整体深度H指的是衍射凹槽1521的最大深度。如此,利用母模压印基材151时,母模不会贯穿基材151,。
请参阅图9及图18,本申请另一实施方式的激光投射模组10包括镜筒12、光源13、准直元件14及上述实施方式的衍射光学元件15。镜筒12包括镜筒侧壁122并开设有收容腔121。光源13收容在收容腔121内并用于发射激光。准直元件14收容在收容腔121内并用于准直光源13发射的激光。衍射光学元件15收容在收容腔121内,衍射凹槽1521朝向光源13,衍射光学元件15用于衍射准直元件14准直后的激光以形成激光图案。其中,衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521。
本申请实施方式的激光投射模组10中的衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于衍射光学元件15由塑料制成,相较于由玻璃制成的衍射光学元件而言,能够节省制作成本。
请参阅图14、图9及图10,本申请某些实施方式的衍射光学元件15的制造方法包括:
031,提供一石英玻璃制成的基材151;
032,蚀刻基材151以在基材151上形成多个多阶梯型的衍射凹槽1521。
具体地,衍射凹槽1521可以通过一个蚀刻工序在基材151的正面1512上形成;或者,衍射凹槽1521可以通过多个蚀刻工序蚀刻基材151的正面1512形成。其中,请参阅图16及图17,一个蚀刻工序包括:在正面1512上形成光刻胶19;在光刻胶19上形成多个胶凹槽191,胶凹槽191贯穿光刻胶19;蚀刻多个胶凹槽191对应的基材151以在基材151上形成多个基材凹槽1513;去除光刻胶19。
多阶梯型的衍射凹槽1521为衍射凹槽1521被垂直于基材151的正面1512的截面截得的截面形状。请参阅图10,多阶梯型的衍射凹槽1521中的阶梯(台阶)的数量至少包括两个,例如,多阶梯型的衍 射凹槽1521包括两个阶梯的凹槽、三个阶梯的凹槽、四个阶梯的凹槽、五个阶梯的凹槽、六个阶梯的凹槽及任意多个阶梯的凹槽。具有相同的阶梯数量的衍射凹槽1521的形状可以均相同、均不相同或不完全相同,其中,多个衍射凹槽1521的形状相同可以理解为任意两个衍射凹槽1521的形状(包括阶梯的长度、宽度及高度等)完全一致;具有相同的阶梯数量的多个衍射凹槽1521的形状不相同可以理解为阶梯的长度、宽度和高度中的至少一个不相同。
衍射光学元件15(或基材151)上形成的多个衍射凹槽1521中的阶梯的数量可以均相同或不完全相同,具有相同的阶梯数量的多个衍射凹槽1521的形状可以均不相同、均相同或不完全相同。例如,衍射光学元件15上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状均相同;或者,衍射光学元件15上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状均不相同;或者,衍射光学元件15上形成的多个衍射凹槽1521可以均为六个阶梯的凹槽,多个衍射凹槽1521的形状不完全相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均相同、六个阶梯的凹槽的形状均相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均不相同、六个阶梯的凹槽的形状均不相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状不完全相同、六个阶梯的凹槽的形状不完全相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状均相同、六个阶梯的凹槽的形状不完全相同;或者,衍射光学元件15上形成的多个衍射凹槽1521包括四个阶梯的凹槽及六个阶梯的凹槽,四个阶梯的凹槽的形状不完全相同、六个阶梯的凹槽的形状均相同。
请参阅图11至图13,衍射凹槽1521的外轮廓在基材151的正面1512上的正投影的形状可以为圆形、矩形、椭圆形、多边形、或不规则形状。衍射光学元件15上的多个衍射凹槽1521可以按预设规则分布,例如,请参阅图11及图12,衍射光学元件15上的多个衍射凹槽1521可以呈阵列分布,具体地,多个衍射凹槽1521可以呈矩形阵列分布(如图12所示)或环形阵列分布(如图11所示);或者,衍射光学元件15上的多个衍射凹槽1521在一个方向(例如行方向上)等间隔分布,在另一个方向上(例如列方向上)呈不等间隔分布。在其他实施方式中,多个衍射凹槽1521也可以离散地分布在衍射光学元件15上(如图13所示)。
本申请实施方式的衍射光学元件15的制造方法通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,由于采用蚀刻的方式形成衍射凹槽1521对基材151的强度影响较小,因而采用蚀刻方式形成的衍射光学元件15的强度较大。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
请参阅图15至图17,在某些实施方式中,所述蚀刻基材151以在基材151上形成多个多阶梯型的衍射凹槽1521的步骤(步骤032)包括:
0321,在正面1512形成光刻胶19;
0322,在光刻胶19上形成多个胶凹槽191,胶凹槽191贯穿光刻胶19;
0323,蚀刻多个胶凹槽191对应的基材151以在基材151上形成多个基材凹槽1513;
0324,去除光刻胶19;
0325,重复执行所述在正面1512形成光刻胶19(步骤0321)、所述在光刻胶19上形成多个胶凹槽191(步骤0322)、所述蚀刻多个胶凹槽191对应的基材151(步骤0323)、及所述去除光刻胶19(步骤0324)以在基材151上形成衍射凹槽1521。
本申请实施方式的胶凹槽191可以通过曝光、显影的方式形成。在其他实施方式中,胶凹槽191还可以通过压印和蚀刻的方式共同形成,例如,胶凹槽191可以纳米压印光刻(Namo Imprint Lithography)技术形成。
步骤0325在步骤0323形成的基材凹槽1513的基础上对基材凹槽1513进行多次蚀刻(蚀刻工序)。具体地,每个蚀刻工序蚀刻基材151的区域为:衍射凹槽1521在所要蚀刻的阶梯上所截得的截面(该截面平行于正面1512)形成的区域;每个蚀刻工序蚀刻基材1513的深度为:该阶梯的深度。例如,请参阅图16,当多阶梯型的衍射凹槽1521为包括四个阶梯的凹槽时,蚀刻基材151的第一个蚀刻工序为:蚀刻基材151的区域为衍射凹槽1521在离正面1512最近的一个阶梯(第一阶梯)上所截得的截面形成的区域,蚀刻基材151的深度为第一阶梯的深度;第二个蚀刻工序为:蚀刻基材151的区域为衍射凹槽1521在与第一阶梯连接的阶梯(第二阶梯)上所截得的截面形成的区域,蚀刻基材151的深度为第二阶梯的深度;第三个蚀刻工序为:蚀刻基材151的区域为衍射凹槽1521在与第二阶梯连接的阶梯(第三阶梯)上所截得的截面形成的区域,蚀刻基材151的深度为第三阶梯的深度;第四个蚀刻工序为:蚀刻基材151的区域为衍射凹槽1521在与第三阶梯连接的阶梯(第四阶梯)上所截得的截面形成的区域, 蚀刻基材151的深度为第四阶梯的深度以得到衍射凹槽1521。此种蚀刻方式在每个蚀刻工序中的蚀刻区域的深度(即,阶梯的深度)均相同,而蚀刻区域的宽度逐渐减小。
在其他实施方式中,每个蚀刻工序蚀刻基材151的区域为:衍射凹槽1521的一个阶梯在正面1512投影形成的区域;每个蚀刻工序蚀刻基材1513的深度为:该阶梯的深度。例如,请参阅图17,当多阶梯型的衍射凹槽1521为包括四个阶梯的凹槽时,蚀刻基材151的第一个蚀刻工序为:蚀刻基材151的区域为离正面1512最近的一个阶梯(第一阶梯)在正面1512投影形成的区域,蚀刻基材151的深度为第一阶梯的深度;第二个蚀刻工序为:蚀刻基材151的区域为与第一阶梯连接的阶梯(第二阶梯)在正面1512投影形成的区域,蚀刻基材151的深度为第二阶梯的深度;第三个蚀刻工序为:蚀刻基材151的区域为与第二阶梯连接的阶梯(第三阶梯)在正面1512投影形成的区域,蚀刻基材151的深度为第三阶梯的深度;第四个蚀刻工序为:蚀刻基材151的区域为与第三阶梯连接的阶梯(第四阶梯)在正面1512投影形成的区域,蚀刻基材151的深度为第四阶梯的深度以得到衍射凹槽1521。此种蚀刻方式在每个蚀刻工序中的蚀刻区域的宽度均相同,而蚀刻区域的深度(即,阶梯的深度)逐渐增大或减小。
请参阅图9及图10,本实施方式的制造方法通过重复执行蚀刻工序从而能够得到任意多个阶梯的衍射凹槽1521。
本申请某些实施方式的衍射光学元件15包括由石英玻璃制成的基材151,基材151通过蚀刻的方式形成有多个阶梯型的衍射凹槽1521。本实施方式中,基材151呈圆形片状结构。在其他实施方式中,基材151还可以呈椭圆形片状结构、矩形片状结构、多边形片状结构。
本申请实施方式的衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,由于采用蚀刻的方式形成衍射凹槽1521对基材151的强度影响较小,因而采用蚀刻方式形成的衍射光学元件15的强度较大。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
在某些实施方式中,基材151包括正面1512,衍射凹槽1521通过重复执行在正面1512形成光刻胶19、在光刻胶19上形成多个胶凹槽191、蚀刻多个胶凹槽191对应的基材151、及去除光刻胶19形成。也就是说,衍射凹槽1521是通过重复执行蚀刻工序形成。
请参阅图9及图18,本申请实施方式的激光投射模组10包括镜筒12、光源13、准直元件14及上述实施方式的衍射光学元件15。镜筒12包括镜筒侧壁122并开设有收容腔121。光源13收容在收容腔121内并用于发射激光。准直元件14收容在收容腔121内并用于准直光源13发射的激光。衍射光学元件15收容在收容腔121内,衍射凹槽1521朝向光源13,衍射光学元件15用于衍射准直元件14准直后的激光以形成激光图案。其中,衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521得到。
本申请实施方式的衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,由于采用蚀刻的方式形成衍射凹槽1521对基材151的强度影响较小,因而采用蚀刻方式形成的衍射光学元件15的强度较大。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
另外,可以理解,衍射光学元件15工作时会产生热量,导致衍射光学元件15自身的温度升高。衍射光学元件15的温度升高后,导致衍射光学元件15产生较大的温漂,即激光投射模组10投射出的中心波长产生偏移,如此,当激光投射模组10在衍射光学元件15温漂较大时,由于与激光投射模组10配合使用的图像采集器20(图24所示)的滤光片对应的滤光波段是有限的,温漂导致的激光投射模组10发射的激光的波长超出滤光波段的部分无法被图像采集器20采集得到,因此,图像采集器20无法准确获取激光投射模组10投射的激光图案,进一步地影响高精度深度图像的获取。由于本申请激光投射模组10中衍射光学元件15的基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小,能够保证后续高精度深度图像的获取。
请参阅图18,本申请实施方式的激光投射模组10包括电路板组件11、镜筒12、光源13、准直元件14及上述任意一项实施方式的衍射光学元件15。
电路板组件11包括基板111及承载在基板111上的电路板112。基板111用于承载镜筒12、光源13和电路板112。基板111的材料可以是塑料,比如聚对苯二甲酸乙二醇酯(Polyethylene Glycol Terephthalate,PET)、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、聚酰亚胺(Polyimide,PI)中的至少一种。也就是说,基板111可以采用PET、PMMA、PC或PI中任意一种的单一塑料材质制成。如此,基板111质量较轻且具有足够的支撑强度。
电路板112可以是印刷电路板、柔性电路板、软硬结合板中的任意一种。电路板112上可以开设有过孔113,过孔113内可以用于容纳光源13,电路板112一部分被镜筒12罩住,另一部分延伸出来并可以与连接器17连接,连接器17可以将激光投射模组10连接到电子装置1000(如图24所示)的主板 上。
镜筒12设置在电路板组件11上。镜筒12包括相背的第一面124及第二面125。本实施方式中,镜筒12的第二面125设置在电路板112上,具体地,第二面125可以通过胶合、卡合、螺纹连接等方式中的至少一种设置在电路板112上。在其他实施方式中,镜筒12的第二面125也可以设置在基板111上。
镜筒12包括镜筒侧壁122及环形台阶123。镜筒侧壁122环绕形成有收容腔121,并且收容腔121贯穿第一面124及第二面125。镜筒侧壁122包括靠近收容腔121的内表面1221,台阶123自内表面1221朝收容腔121内延伸形成。环形台阶123围成过光孔1231,过光孔1231可以作为收容腔121的一部分。台阶123包括第一限位面1232和第二限位面1233,第一限位面1232与第二限位面1233相背。具体地,台阶123位于第一面124与第二面125之间,第一限位面1232较第二限位面1233更靠近第一面124,第一限位面1232与第二限位面1233可以是平行的平面。本实施方式的镜筒12的横截面呈圆环形。在其他实施方式中,镜筒12的横截面的外轮廓可以呈圆形、椭圆形、矩形或任意边形,镜筒12的横截面的内轮廓也可以呈圆形、椭圆形、矩形或任意边形,例如,镜筒12的横截面的外轮廓为圆形、内轮廓为椭圆形;或者,镜筒12的横截面的外轮廓为圆形、内轮廓为矩形;或者,镜筒12的横截面的外轮廓为圆形、内轮廓为多边形;或者,镜筒12的横截面的外轮廓为矩形、内轮廓为圆形。
光源13设置在电路板组件11上并收容在收容腔121内。具体地,光源13可以设置在电路板112上并与电路板112电连接,光源13也可以设置在基板111上并收容在过孔113内,此时,可以通过布置导线将光源13与电路板112电连接。光源13用于发射激光,激光可以是红外光,在一个例子中,光源13可以包括半导体衬底及设置在半导体衬底上的发射激光器,半导体衬底设置在基板111上,发射激光器可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)。半导体衬底可以设置单个发射激光器,也可以设置由多个发射激光器组成的阵列激光器,具体地,多个发射激光器可以以规则或者不规则的二维图案的形式排布在半导体衬底上。
准直元件14可以是光学透镜,准直元件14用于准直光源13发射的激光,准直元件14收容在收容腔121内,准直元件14可以沿第二面125指向第一面124的方向组装到收容腔121内,具体地,准直元件14包括结合面143,当结合面143与第二限位面1233结合时,可以认为准直元件14安装到位。准直元件14包括光学部141和安装部142,安装部142用于与镜筒侧壁122结合以使准直元件14固定在收容腔121内,在本申请实施例中,结合面143为安装部142的一个端面,光学部141包括位于准直元件14相背两侧的两个曲面。准直元件14的其中一个曲面伸入过光孔1231内。
请结合图4,衍射光学元件15收容在收容腔121内。衍射光学元件15通过在基材151上形成压印层152,并通过压印的方式在压印层152上形成多个多阶梯型的凹槽1521以得到。衍射光学元件15包括基材151及压印层152,基材151较压印层152更靠近第一面124。基材151由石英玻璃制成。压印层152形成在基材151的正面1512上,压印层152通过压印形成有多个多阶梯型的衍射凹槽1521,多个衍射凹槽1521形成在压印层152的远离基材151的一侧上。衍射光学元件15包括衍射安装面150,具体地,衍射安装面150为压印层152的远离基材151的表面。衍射安装面150设置在第一限位面1232上。衍射光学元件15用于衍射准直元件14准直后的激光以形成激光图案,具体地,衍射安装面150上的多个多阶梯型的衍射凹槽1521可以与过光孔1231的位置对应,衍射光学元件15的多个多阶梯型的衍射凹槽1521将经准直元件14准直后的激光衍射出与衍射结构对应的激光图案。
本申请实施方式的激光投射模组10中的衍射光学元件15通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小,能够保证后续高精度深度图像的获取。
在另一实施方式中,请结合图10,衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521得到。衍射光学元件15包括更靠近第二面125的衍射安装面150,衍射光学元件15上的多个多阶梯型的衍射凹槽1521形成在衍射安装面150上,也就是说,衍射安装面150为基材151的正面1512。衍射安装面150设置在第一限位面1232上并与第一限位面1232抵触。衍射光学元件15用于衍射准直元件14准直后的激光以形成激光图案,具体地,衍射安装面150上的多个多阶梯型的衍射凹槽1521可以与过光孔1231的位置对应,衍射光学元件15的多个多阶梯型的衍射凹槽1521将经准直元件14准直后的激光衍射出与衍射结构对应的激光图案。
本申请实施方式的激光投射模组10中的衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于衍射光学元件15由塑料制成,相较于由玻璃制成的衍射光学元件而言,能够节省制作成本。
在另一实施方式中,请结合图10,衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521得到。衍射光学元件15包括更靠近第二面125的衍射安装面150,衍射光学元件15上的多个多阶梯型的衍射凹槽1521形成在衍射安装面150上,也就是说,衍射安装面150为基材151的正面1512。衍射安装面150设置在第一限位面1232上并与第一限位面1232抵触。衍射光学元件15用于衍射准直元件14准直后的激光以形成激光图案,具体地,衍射安装面150上的多个多阶梯型的衍射凹槽1521可以与过光孔1231的位置对应,衍射光学元件15的多个多阶梯型的衍射凹槽1521将经准直元件14准直后的激光衍射出与衍射结构对应的激光图案。
本申请实施方式的激光投射模组10中的衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,由于采用蚀刻的方式形成衍射凹槽1521对基材151的强度影响较小,因而采用蚀刻方式形成的衍射光学元件15的强度较大。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
请参阅图18和图20,在某些实施方式中,光源13包括边发射激光器(edge-emitting laser,EEL)131,具体地,边发射激光器131可以是分布反馈式激光器(Distributed Feedback Laser,DFB)。边发射激光器131整体呈柱状,边发射激光器131远离电路板组件11的一个端面形成有发光面1311,激光从发光面1311发出,发光面1311朝向准直元件14。采用边发射激光器131作为光源,一方面边发射激光器131较VCSEL阵列的温漂较小,另一方向,由于边发射激光器131为单点发光结构,无需设计阵列结构,制作简单,激光投射模组10的光源成本较低。
请参阅图20和图21,在某些实施方式中,激光投射模组10还包括固定件18,固定件18用于将边发射激光器131固定在电路板组件11上。分布反馈式激光器的激光在传播时,经过光栅结构的反馈获得功率的增益。要提高分布反馈式激光器的功率,需要通过增大注入电流和/或增加分布反馈式激光器的长度,由于增大注入电流会使得分布反馈式激光器的功耗增大并且出现发热严重的问题,因此,为了保证分布反馈式激光器能够正常工作,需要增加分布反馈式激光器的长度,导致分布反馈式激光器一般呈细长条结构。当边发射激光器131的发光面1311朝向准直元件14时,边发射激光器131呈竖直放置,由于边发射激光器131呈细长条结构,边发射激光器131容易出现跌落、移位或晃动等意外,因此通过设置固定件18能够将边发射激光器131固定住,防止边发射激光器131发生跌落、移位或晃动等意外。
具体地,请参阅图20,在某些实施方式中,固定件18包括封胶181,封胶181设置在边发射激光器131与电路板组件11之间。更具体地,在如图19所示的例子中,边发射激光器131的与发光面1311相背的一面粘接在电路板组件11上。在如图20所示的例子中,边发射激光器131的侧面1312也可以粘接在电路板组件11上,封胶181包裹住四周的侧面1312,也可以仅粘结侧面1312的某一个面与电路板组件11或粘结某几个面与电路板组件11。进一步地,封胶181可以为导热胶,以将光源13工作产生的热量传导至电路板组件11中。为了提高散热效率,基板111上还可以开设有散热孔1111,光源13或电路板112工作产生的热量可以由散热孔1111散出,散热孔1111内还可以填充导热胶,以进一步提高电路板组件11的散热性能。
请参阅图22,在某些实施方式中,固定件18包括设置在电路板组件11上的至少两个弹性支撑架182,至少两个支撑架182共同形成收容空间183,收容空间183用于收容边发射激光器131,至少两个支撑架182用于支撑住边发射激光器131,以进一步防止边发射激光器131发生晃动。
在某些实施方式中,基板111可以省去,光源13可以直接固定在电路板112上以减小激光投射器10的整体厚度。
请参阅图18及图19,在某些实施方式中,台阶123上开设有贯穿第一限位面1232和第二限位面1233的检测通孔1234,检测通孔1234与过光孔1231间隔,检测通孔1234的中心轴线可以是直线。激光衍射模组10还包括检测装置16,检测装置16包括发射器161和接收器162。发射器161和接收器162一个安装在准直元件14上,另一个安装在衍射光学元件15上。具体地,发射器161可以设置在结合面143上,且接收器162设置在衍射安装面150上;或者发射器161可以设置在衍射安装面150上,且接收器162设置在结合面143上。本申请实施方式以发射器161设置在结合面143上,且接收器162设置在衍射安装面150上为例进行说明。发射器161和接收器162均对准检测通孔1234的两端安装,发射器161用于从一端向检测通孔1234内发射检测信号,检测信号穿过检测通孔1234后到达另一端,并由接收器162接收。接收器162通过分析接收到的检测信号的强度、相位等信息,以判断此时准直元件14与衍射光学元件15的安装位置是否正确。
发射器161可以是声波发射器并用于发射检测声波,此时接收器162可以是声波接收器并用于接收穿过检测通孔1234的检测声波,检测声波可以是超声波;发射器161可以是光发射器并用于发射检测光,此时接收器162可以是光接收器并用于接收穿过检测通孔1234的检测光,检测光可以是激光。本申请以发射器161是光发射器,接收器162是光接收器为例进行说明,且发射器161仅正对接收器162 的面发射检测信号,接收器162仅正对发射器161的面(接收面)接收检测信号。在本申请实施例中,当准直元件14与衍射光学元件15的位置均安装正确时,发射器161发射的检测信号穿过检测通孔1234且未经检测通孔1234的内壁反射,检测信号到达接收器162的传播路程较短,且此时检测信号垂直入射到接收器161的接收面上,接收器162接收到的检测信号的强度较高。
当准直元件14发生移位、倾斜或脱落时,发射器161发射的检测信号在穿过检测通孔1234的过程中,检测信号会经检测通孔1234的内壁多次反射后再由接收器162接收,检测信号到达接收器162的传播路程较长,接收器162接收到的检测信号的强度较弱。当衍射光学元件15发生移位、倾斜或脱落时,接收器162的接收面不再正对发射器161,接收器162接收到的检测信号不是垂直入射到接收面上,或部分接收面此时未与检测通孔1234对准而接收不到检测信号,接收器162接收到的检测信号的强度较弱。因此,接收器162通过判断接收到的检测信号的强度就可以判断准直元件14与衍射光学元件15是否处于正确的安装位置。
请参阅图23,本申请实施方式的深度相机100包括上述任一项实施方式的激光投射模组10及图像采集器20。深度相机100上可以形成有与激光投射模组10对应的投射窗口40,和与图像采集器20对应的采集窗口50。激光投射模组10用于通过投射窗口40向目标空间投射激光图案,图像采集器20用于通过采集窗口50采集被标的物调制后的激光图案。在一个例子中,激光投射模组10投射的激光为红外光,图像采集器20为红外摄像头。
本申请实施方式的深度相机100中的衍射光学元件通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小,能够保证后续高精度深度图像的获取。
在另一实施方式中,深度相机100中的衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于衍射光学元件15由塑料制成,相较于由玻璃制成的衍射光学元件而言,能够节省制作成本。
在另一实施方式中,深度相机100中的衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,由于采用蚀刻的方式形成衍射凹槽1521对基材151的强度影响较小,因而采用蚀刻方式形成的衍射光学元件15的强度较大。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
请参阅图23,在某些实施方式中,深度相机100还包括处理器30。处理器30与激光投射模组10及图像采集器20均连接,处理器30用于处理激光图案以获得深度图像。具体地,处理器30采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据该偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。
请参阅图24,本申请实施方式的电子装置1000包括壳体200和深度相机100。电子装置1000可以是手机、平板电脑、手提电脑、游戏机、头显设备、门禁系统、柜员机等,本申请实施例以电子装置1000是手机为例进行说明,可以理解,电子装置1000的具体形式可以是其他,在此不作限制。深度相机100设置在壳体200内并从壳体200暴露以获取深度图像,壳体200可以给深度相机100提供防尘、防水、防摔等保护,壳体200上开设有与深度相机100对应的孔,以使光线从孔中穿出或穿入壳体200。
本申请实施方式的电子装置1000中的衍射光学元件15通过压印的方式在压印层152上形成多个多阶梯型的衍射凹槽1521以得到衍射光学元件15,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小,能够保证后续高精度深度图像的获取。
在另一实施方式中,电子装置1000中的衍射光学元件15通过压印的方式在由透明塑料制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,从而制造衍射光学元件15的工序较少,提升了衍射光学元件15的制造效率并降低了衍射光学元件15的制造成本。另外,由于衍射光学元件15由塑料制成,相较于由玻璃制成的衍射光学元件而言,能够节省制作成本。
在另一实施方式中,电子装置1000中的衍射光学元件15通过蚀刻的方式在由石英玻璃制成的基材151上形成多个多阶梯型的衍射凹槽1521得到,由于采用蚀刻的方式形成衍射凹槽1521对基材151的强度影响较小,因而采用蚀刻方式形成的衍射光学元件15的强度较大。另外,由于基材151由石英玻璃制成,衍射光学元件15受温度影响较小,产生的温漂较小。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、 结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (26)

  1. 一种衍射光学元件的制造方法,其特征在于,包括:
    提供一基材;及
    在所述基材上形成多个多阶梯型的衍射凹槽。
  2. 根据权利要求1所述的制造方法,其特征在于,所述提供一基材,包括:
    提供一石英玻璃制成的基材;
    所述在所述基材上形成多个多阶梯型的衍射凹槽,包括:
    在所述基材的正面形成压印层;及
    压印所述压印层以在所述压印层上形成多个所述衍射凹槽。
  3. 根据权利要求2所述的制造方法,其特征在于,所述压印所述压印层以在所述压印层上形成多个所述衍射凹槽的步骤包括:
    利用纳米压印技术压印所述压印层形成多个所述衍射凹槽。
  4. 根据权利要求2所述的制造方法,其特征在于,所述衍射凹槽的整体深度小于所述压印层的厚度。
  5. 根据权利要求1所述的制造方法,其特征在于,所述提供一基材,包括:
    提供一透明塑料制成的基材;
    所述在所述基材上形成多个多阶梯型的衍射凹槽,包括:
    压印所述基材以在所述基材上形成多个所述衍射凹槽。
  6. 根据权利要求5所述的制造方法,其特征在于,所述压印所述基材以在所述基材上形成多个所述衍射凹槽的步骤包括:
    利用纳米压印技术压印所述基材形成多个所述凹槽。
  7. 根据权利要求5所述的制造方法,其特征在于,所述衍射凹槽的整体深度小于所述基材的厚度。
  8. 根据权利要求1所述的制造方法,其特征在于,所述提供一基材,包括:
    提供一石英玻璃制成的基材;
    所述在所述基材上形成多个多阶梯型的衍射凹槽,包括:
    蚀刻所述基材以在所述基材上形成多个所述衍射凹槽。
  9. 根据权利要求8所述的制造方法,其特征在于,所述基材包括正面,所述蚀刻所述基材以在所述基材上形成多个所述衍射凹槽的步骤包括:
    在所述正面形成光刻胶;
    在所述光刻胶上形成多个胶凹槽,所述胶凹槽贯穿所述光刻胶;
    蚀刻多个所述胶凹槽对应的所述基材以在所述基材上形成多个基材凹槽;
    去除所述光刻胶;及
    重复执行所述在所述正面形成光刻胶、所述在所述光刻胶上形成多个胶凹槽、所述蚀刻多个所述胶凹槽对应的所述基材、及所述去除所述光刻胶以在所述基材上形成所述衍射凹槽。
  10. 一种衍射光学元件,其特征在于,包括基材,所述基材上形成有多个多阶梯型的衍射凹槽。
  11. 根据权利要求10所述的衍射光学元件,其特征在于,所述衍射光学元件还包括压印层,所述基材由石英玻璃制成,所述压印层形成在所述基材的正面上,所述压印层通过压印形成有多个所述衍射凹槽。
  12. 根据权利要求11所述的衍射光学元件,其特征在于,多个所述衍射凹槽通过纳米压印技术压印所述压印层形成。
  13. 根据权利要求12所述的衍射光学元件,其特征在于,所述凹槽的整体深度小于所述压印层的厚度。
  14. 根据权利要求10所述的衍射光学元件,其特征在于,所述基材由透明塑料制成,所述基材通过压印形成有多个所述凹槽。
  15. 根据权利要求14所述的衍射光学元件,其特征在于,多个所述衍射凹槽通过纳米压印技术压印所述基材形成。
  16. 根据权利要求14所述的衍射光学元件,其特征在于,所述衍射凹槽的整体深度小于所述基材的厚度。
  17. 根据权利要求10所述的衍射光学元件,其特征在于,所述基材由石英玻璃制成,所述基材通过蚀刻形成有多个所述衍射凹槽。
  18. 根据权利要求17所述的衍射光学元件,其特征在于,所述基材包括正面,所述衍射凹槽通过重复执行所述在所述正面形成光刻胶、所述在所述光刻胶上形成多个胶凹槽、所述蚀刻多个所述胶凹槽对应的所述基材、及所述去除所述光刻胶形成。
  19. 一种激光投射模组,其特征在于,包括:
    镜筒,所述镜筒包括镜筒侧壁并开设有收容腔;
    光源,所述光源收容在所述收容腔内并用于发射激光;及
    准直元件,所述准直元件收容在所述收容腔内并用于准直所述光源发射的激光;及
    权利要求10至18任意一项所述的衍射光学元件,所述衍射光学元件收容在所述收容腔内,所述衍射凹槽朝向所述光源,所述衍射光学元件用于衍射所述准直元件准直后的激光以形成激光图案。
  20. 根据权利要求19所述的激光投射模组,其特征在于,所述光源包括垂直腔面发射激光器或边发射激光器。
  21. 根据权利要求19所述的激光投射模组,其特征在于,所述光源包括边发射激光器,所述边发射激光器包括发光面,所述发光面朝向所述准直元件。
  22. 根据权利要求21所述的激光投射模组,其特征在于,所述激光投射模组还包括电路板组件和固定件,所述固定件用于固定所述光源在所述电路板组件上。
  23. 根据权利要求22所述的激光投射模组,其特征在于,所述固定件包括封胶,所述封胶设置在所述边发射激光器与所述电路板组件之间,所述封胶为导热胶。
  24. 根据权利要求22所述的激光投射模组,其特征在于,所述固定件包括设置在所述电路板组件上的至少两个弹性支撑架,至少两个所述支撑架共同形成收容空间,所述收容空间用于收容所述光源,至少两个所述支撑架用于支撑住所述光源。
  25. 一种深度相机,其特征在于,包括:
    权利要求19-24任意一项所述的激光投射模组;
    图像采集器,所述图像采集器用于采集由所述激光投射模组向目标空间中投射的所述激光图案。
  26. 一种电子装置,其特征在于,包括:
    壳体;和
    权利要求25所述的深度相机,所述深度相机设置在所述壳体上并从所述壳体上暴露以获取所述深度图像。
PCT/CN2019/073947 2018-03-12 2019-01-30 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置 WO2019174426A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810201709.6A CN108490523A (zh) 2018-03-12 2018-03-12 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN201810201709.6 2018-03-12
CN201810200435.9 2018-03-12
CN201810200435.9A CN108490521A (zh) 2018-03-12 2018-03-12 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN201810201149.4 2018-03-12
CN201810201149.4A CN108490522A (zh) 2018-03-12 2018-03-12 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置

Publications (1)

Publication Number Publication Date
WO2019174426A1 true WO2019174426A1 (zh) 2019-09-19

Family

ID=67907381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073947 WO2019174426A1 (zh) 2018-03-12 2019-01-30 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置

Country Status (1)

Country Link
WO (1) WO2019174426A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100054A (zh) * 1985-04-01 1986-08-06 清华大学 用于云纹干涉法的闪耀衍射光栅及试件栅制备工艺
CN101349773A (zh) * 2005-06-08 2009-01-21 冲电气工业株式会社 衍射光学元件
CN104570181A (zh) * 2015-01-08 2015-04-29 北京理工大学 二氧化硅基衍射光栅的一步式制作方法
CN107102506A (zh) * 2017-07-07 2017-08-29 深圳奥比中光科技有限公司 光学投影装置及其深度相机
CN108490521A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN108490522A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN108490523A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100054A (zh) * 1985-04-01 1986-08-06 清华大学 用于云纹干涉法的闪耀衍射光栅及试件栅制备工艺
CN101349773A (zh) * 2005-06-08 2009-01-21 冲电气工业株式会社 衍射光学元件
CN104570181A (zh) * 2015-01-08 2015-04-29 北京理工大学 二氧化硅基衍射光栅的一步式制作方法
CN107102506A (zh) * 2017-07-07 2017-08-29 深圳奥比中光科技有限公司 光学投影装置及其深度相机
CN108490521A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN108490522A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN108490523A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置

Similar Documents

Publication Publication Date Title
US7412133B2 (en) Wavelength selective optical focusing device using optical fiber and optical module using the same
US20180004077A1 (en) Integrated light pipe for optical projection
WO2019174382A1 (zh) 激光投射模组、深度相机和电子装置
JP2842132B2 (ja) 光学デバイス
US11048155B2 (en) Diffractive optical assembly, laser projection unit, and depth camera
CN108490631B (zh) 结构光投射器、图像获取结构和电子装置
CN108344377B (zh) 激光投射模组、深度相机和电子装置
JP2006506803A (ja) 発光素子
US10895753B2 (en) Structured light generation device and diffractive optical element thereof
CN108344378B (zh) 激光投射模组及其损坏的检测方法、深度相机和电子装置
CN108303757B (zh) 激光投射模组、深度相机和电子装置
CN108490521A (zh) 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
KR20230041078A (ko) 광학 소자 및 광학 모듈
CN110716377A (zh) 投影模组、光电装置和电子设备
US20150192745A1 (en) Optical fiber connecter and optical communication module
CN108490572B (zh) 激光投射模组、深度相机及电子装置
WO2019174426A1 (zh) 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN110908131A (zh) 投影模组、结构光三维成像装置和电子设备
CN108508687B (zh) 激光投射模组、深度相机和电子装置
CN108490522A (zh) 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
TWI683138B (zh) 鐳射投射模組、深度相機和電子裝置
US20210141199A1 (en) Small scale light projection device facilitating the structuring of light emitted for depth-calculating purposes
WO2020052300A1 (zh) 投影模组、结构光三维成像装置和电子设备
CN108490595B (zh) 结构光投射模组、图像获取装置及电子设备
JP7379145B2 (ja) 発光装置および光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767709

Country of ref document: EP

Kind code of ref document: A1