WO2019174295A1 - 触控结构及其制作方法、触控装置和触摸定位方法 - Google Patents

触控结构及其制作方法、触控装置和触摸定位方法 Download PDF

Info

Publication number
WO2019174295A1
WO2019174295A1 PCT/CN2018/116225 CN2018116225W WO2019174295A1 WO 2019174295 A1 WO2019174295 A1 WO 2019174295A1 CN 2018116225 W CN2018116225 W CN 2018116225W WO 2019174295 A1 WO2019174295 A1 WO 2019174295A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
touch electrode
electrodes
unit
Prior art date
Application number
PCT/CN2018/116225
Other languages
English (en)
French (fr)
Inventor
何敏
谢晓冬
王静
张雷
李亚英
钟腾飞
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/477,588 priority Critical patent/US11543925B2/en
Priority to EP18897867.0A priority patent/EP3767446B1/en
Publication of WO2019174295A1 publication Critical patent/WO2019174295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • Embodiments of the present disclosure relate to a touch structure, a method of fabricating the same, a touch device, and a touch positioning method.
  • Touch technologies include single touch technology and multi-touch technology. In each touch, single touch can only be used to identify one touch point, and multi-touch technology can be used to identify at least two touch points simultaneously.
  • Capacitive touch technology is widely used due to its high sensitivity, long life, and high light transmittance.
  • Capacitive touch technology can be divided into touch technology using the principle of mutual capacitance and touch technology using the principle of self-capacitance. Compared with the touch technology using the mutual capacitance principle, the touch sensing technology using the self-capacitance principle has higher accuracy and signal-to-noise ratio.
  • the multi-touch technology using the self-capacitance principle has gradually become a new research hotspot.
  • An embodiment of the present disclosure provides a touch structure, a touch structure, a touch device including the touch structure, and a touch positioning method for the touch structure.
  • the self-capacitance principle realizes multi-touch.
  • At least one embodiment of the present disclosure provides a touch structure
  • the touch structure includes a first touch unit, and the first touch unit includes first touch electrodes and second touch electrodes that are adjacent and insulated from each other.
  • the first touch electrode and the second touch electrode are both self-capacitance electrodes and both include opposite thin ends and a thick end;
  • the touch structure further includes a first trace, the first walk The line includes a first sub-line and a second sub-line, the first sub-line is connected to the first touch electrode, and the second sub-line is connected to the second touch electrode.
  • the planar shape of the first touch electrode and the second touch electrode has a wedge shape
  • the first touch electrode and the first touch electrode The body of the second touch electrode has a grid shape.
  • the first touch electrodes and the second touch electrodes have the same planar shape and edges that are close to each other are substantially parallel to each other.
  • a width of a gap between the first touch electrode and the second touch electrode is less than or equal to 30 micrometers.
  • the materials of the first touch electrode and the second touch electrode include metal.
  • the body of the first trace has a grid shape.
  • the plurality of the first traces are located in the same layer as the first touch unit.
  • an extension length of the first touch electrode and the second touch electrode from the thin end to the thick end and a width of the thick end The ratio is [n, n+1), and n is a positive integer.
  • the touch structure includes a plurality of first touch units, and the plurality of first touch units are arranged in an array.
  • the thin ends of the plurality of first touch electrodes located in the same row have the same orientation, and the plurality of the second touch electrodes are located in the same row.
  • the orientation of the ends is the same.
  • the second touch electrodes of one of the first touch units are The adjacent edges of the first touch electrodes of the other first touch unit are substantially parallel to each other.
  • the thin end of the first touch electrode is close to the thick end of the second touch electrode; the thick end of the first touch electrode is close to the The thin end of the second touch electrode is described.
  • the planar shape of the first touch unit is substantially a parallelogram.
  • the touch structure provided by at least one embodiment of the present disclosure further includes a plurality of electrode legs electrically connected to the plurality of the first traces, where the plurality of electrode legs are located at the plurality of first touch units The same side of the touch area, and a plurality of the first traces are extended in the touch area to the side of the touch area where the electrode legs are disposed.
  • the touch structure provided by at least one embodiment of the present disclosure further includes a second touch unit, where the second touch unit includes third touch electrodes and fourth touch electrodes that are adjacent to each other and insulated from each other.
  • the three touch electrodes and the fourth touch electrodes are both self-capacitance electrodes and both include opposite thin ends and thick ends;
  • the touch structure further includes a plurality of second traces, and the plurality of second traces
  • the line includes a third sub-line and a fourth sub-line, the third sub-line is connected to the third touch electrode, and the fourth sub-line is connected to the fourth touch electrode;
  • the second touch unit is located in a different layer from the first touch unit and the second touch unit corresponds to a gap between the first touch units adjacent in the row direction.
  • At least one embodiment of the present disclosure further provides a touch device including the touch structure of any of the above.
  • At least one embodiment of the present disclosure further provides a method for fabricating a touch structure, the method comprising the steps of forming a first touch electrode layer, the first touch electrode layer comprising a first touch unit and a first trace,
  • the first touch unit includes a first touch electrode and a second touch electrode that are adjacent to each other, and the first touch electrode and the second touch electrode are both self-capacitance electrodes and both are oppositely disposed.
  • the first trace includes a first sub-line and a second sub-line
  • the first sub-line is connected to the first touch electrode
  • the second sub-line is The second touch electrodes are connected.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes forming a second touch electrode layer, the second touch electrode layer includes a second touch unit and a second trace, and the second touch unit includes The third touch electrode and the fourth touch electrode are adjacent to each other, and the third touch electrode and the fourth touch electrode are both self-capacitance electrodes and both include opposite thin ends and thick ends.
  • the second trace includes a third sub-line and a fourth sub-line.
  • the third sub-line is connected to the third touch electrode, and the fourth sub-line and the fourth touch
  • the second touch unit is located in a different layer from the first touch unit and the second touch unit corresponds to a gap between the first touch units adjacent in the row direction .
  • At least one embodiment of the present disclosure further provides a touch positioning method for the touch structure of the embodiment including only the first touch unit, including: according to the first touch unit The amount of change in the self-capacitance of the first touch electrode and the second touch electrode determines the touched electrode; and the touch position is determined according to the amount of change in self-capacitance of each region of the touched electrode.
  • At least one embodiment of the present disclosure further provides a touch positioning method for the touch structure of the embodiment including the first touch unit and the second touch unit, including: according to the first touch The first touch electrode and the second touch electrode included in the unit, and the self-capacitance of the third touch electrode and the fourth touch electrode included in the second touch unit Determining a touched electrode; and determining a touch position according to a change amount of self-capacitance of each region of the touched electrode.
  • the embodiments of the present disclosure provide a touch structure, a touch device, and a touch positioning method.
  • the touch structure includes a first touch unit, and the first touch unit includes adjacent and adjacent to each other.
  • the first touch electrode and the second touch electrode are both self-capacitance electrodes and both have opposite ends and a thick end; the touch structure further includes a first walk
  • the first trace includes a first sub trace and a second sub trace.
  • the first sub trace is connected to the first touch electrode, and the second sub trace is connected to the second touch electrode.
  • the touch structure can implement multi-touch, for example, a flexible three-sided borderless multi-point touch screen can be formed.
  • a touch structure with higher sensitivity can be realized.
  • a flexible three-sided borderless multi-point touch screen supporting an active pen can be formed.
  • FIG. 1A is a top plan view of a touch structure according to at least one embodiment of the present disclosure
  • 1B is a top plan view 2 of a touch structure provided by at least one embodiment of the present disclosure
  • 1C is a top plan view of a first touch electrode or a second touch electrode according to at least one embodiment of the present disclosure
  • FIG. 1D is a schematic cross-sectional view of the touch structure of FIG. 1A according to at least one embodiment of the present disclosure
  • FIG. 2A is a schematic diagram showing a region distribution of a first touch electrode and a second touch electrode in a touch structure according to at least one embodiment of the present disclosure
  • FIG. 2B is a schematic diagram of a touch structure provided by at least one embodiment of the present disclosure.
  • 3A is a top plan view 3 of a touch structure according to at least one embodiment of the present disclosure.
  • FIG. 3B is a top plan view of a plurality of first touch units in the touch structure of FIG. 3A according to at least one embodiment of the present disclosure
  • 3C is a top plan view of a plurality of second touch units in the touch structure of FIG. 3A according to at least one embodiment of the present disclosure
  • FIG. 3D is a schematic cross-sectional view of the touch structure of FIG. 3A according to at least one embodiment of the present disclosure
  • FIG. 4 is a flowchart of a touch positioning method provided by at least one embodiment of the present disclosure.
  • FIG. 5 is a flowchart of another touch positioning method according to at least one embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a touch structure, a method of fabricating the touch structure, a touch device including the touch structure, and a touch positioning method for the touch structure.
  • the touch structure includes one or more periodically arranged first touch units and a plurality of first traces, and the first touch unit includes first touch electrodes adjacent to each other, insulated from each other and being self-capacitance electrodes, and a second touch electrode, the first trace includes a first sub-line and a second sub-line, respectively applied to the first touch electrode through the first sub-line and the second touch electrode through the second sub-line
  • the touch driving signal and detecting the corresponding sensing signal can realize multi-touch by using the self-capacitance principle.
  • the first touch electrode and the second touch electrode are adjacent to each other, and no other touch is disposed between the first touch electrode and the second touch electrode. electrode.
  • the first touch electrode and the second touch electrode may be a first wedge-shaped touch electrode and a second wedge-shaped touch electrode, respectively, and the wedge shape includes a thick end and a thin end, and the thin end from the wedge shape The width is gradually increased to the thick end.
  • the wedge-shaped touch electrode means that the shape of the planar shape of the touch electrode is wedge-shaped, that is, the shape of the orthographic projection of the first touch electrode and the second touch electrode on the carrier substrate on which the touch electrode is located is wedge-shaped, in this case.
  • the first touch electrode and the second touch electrode respectively include opposite thin ends and thick ends, and the widths of the first touch electrode and the second touch electrode gradually increase from a thin end to a thick end.
  • the wedge shape described above may be triangular, or trapezoidal or any other similar triangular or trapezoidal shape as long as the width of the wedge gradually increases from the thin end to the thick end.
  • the wedge shape may be a right-angled triangle, an isosceles triangle, an equilateral triangle, a non-isoscelial right-angled triangle, a right-angled trapezoid, an isosceles trapezoid, a right-angled triangle whose hypotenuse is serrated, a fan-shaped or a non-isometric right-angled trapezoid.
  • the touch structure includes one or more first touch units 1 (eg, the plurality of first touch units 1 are arranged in multiple rows).
  • the first touch unit 1 includes a first touch electrode 11 and a second touch electrode 12 that are adjacent to each other, and the first touch electrode 11 and the second touch electrode 12 are self-capacitance electrodes. And both include the opposite ends (see 11A and 12A) and the thick ends (see 11B and 12B).
  • the touch structure further includes a first trace 13 .
  • the first trace 13 includes a first sub trace 131 and a second sub trace 132.
  • the first touch electrode 11 and the second touch electrode 12 respectively and the first sub trace
  • the trace 131 and the second sub trace 132 are connected to be electrically connected to the touch detection circuit (not shown) through the first sub trace 131 and the second sub trace 132.
  • the touch structure further includes a plurality of bonding pins 16 electrically connected to the plurality of first traces 13 for detecting the corresponding first traces 13 and touch detection.
  • the circuit is electrically connected.
  • FIG. 1D is a cross-sectional structural view of the touch structure shown in FIG. 1A.
  • the cross-sectional line is the a-a' line shown in FIG. 1A.
  • the touch structure further includes a black border.
  • the electrode leg 16 is located in the area where the black frame 15 is located to avoid being viewed by the user, which affects the appearance.
  • the first touch electrode 11 and the second touch electrode 12 are located in the same layer (see the first touch electrode layer 10) (for example, the two are located side by side on the carrier substrate 01 (see FIG. 1D). And the materials of the first touch electrode 11 and the second touch electrode 12 are the same. In this way, the first touch electrode 11 and the second touch electrode 12 can be formed by patterning the same film to simplify the manufacturing process of the touch structure.
  • the patterning process is a photolithography process including exposure, development, and etching steps.
  • the planar shapes of the first touch electrode 11 and the second touch electrode 12 are substantially the same and the edges adjacent to each other are substantially parallel.
  • the planar shape of the first touch electrode 11 and the second touch electrode 12 and the planar shape are substantially the same, and each is substantially a right triangle, so that the first touch electrode 11 and the second touch
  • the areas of the control electrodes 12 are approximately equal. Since the mutually adjacent edges of the first touch electrode 11 and the second touch electrode 12 (ie, the adjacent edges of the two) are substantially parallel, the planar shapes of the two touch electrodes 11 are complementary, so that the first touch electrodes 11 and the first touch electrodes are facilitated.
  • the second touch electrode 12 determines the touch position, which is advantageous for improving touch sensitivity and avoiding false positives.
  • the touch structure includes a plurality of first touch units 1 arranged in a plurality of rows and columns
  • the thin ends 11A of the plurality of first touch electrodes 11 located in the same row The orientations are the same, both toward the side facing away from the black frame 15; the thin ends 12A of the plurality of second touch electrodes 12 in the same row have the same orientation, all facing one side of the black frame 15; and, in the same row
  • the second touch electrode 12 of the first touch unit 1 on the left side and the adjacent edge of the first touch electrode 11 of the first touch unit 1 on the right side They are roughly parallel to each other.
  • Such a setting manner can make the plurality of first touch units 1 arranged neatly, simplify the preparation process, and more easily determine the gap between the adjacent first touch units, thereby improving the touch precision.
  • the thin end of the first touch electrode 11 is close to the thick end of the second touch electrode 12
  • the thick end of the first touch electrode 11 is close to the thin end of the second touch electrode 12 .
  • Such an arrangement is advantageous for achieving a complementary planar shape of the first touch electrode 11 and the second touch electrode 12.
  • the first touch unit 1 and the second touch unit 12 are substantially rectangular in shape, and the first touch unit 1 is first.
  • the two right-angle sides of the touch electrode 11 and the second touch electrode 12 are both outward and the oblique sides are parallel to each other.
  • first touch electrodes 11 and the second touch electrodes 12 are complementary to each other and the arrangement of the plurality of first touch units 11 is for illustrative purposes only, and embodiments of the present disclosure include but are not limited thereto.
  • the touch structure shown in FIG. 1A includes two rows and three columns of first touch units 1. In the row direction, adjacent first touch units 1 have gaps therebetween, and the widths of the gaps are the same or not.
  • the first sub-line 131 and the second sub-line 132 respectively connected to the first touch electrode 11 and the second touch electrode 12 in the first touch unit 1 on the leftmost side of the first row, and The first sub-line 131 connected to the first touch electrode 11 in the first touch unit 1 in the first row is located in the first gap, and the first gap is the leftmost first touch unit in the second row.
  • the design can be such that the first trace 13 is located between the first touch units 1 instead of being disposed on the entire periphery of all the first touch units, so that a narrow bezel design can be realized, and at all the first touches.
  • the outer periphery of the unit is formed with the black border 15 formed at the lowermost end, and the other three sides have no design border, so that the three-sided borderless multi-point touch can be realized.
  • FIG. 1B is a top view of a touch structure provided by at least one embodiment of the present disclosure.
  • the planar shapes of the first touch electrodes 11 and the second touch electrodes 12 are substantially the same and are both substantially right triangles, and the long right angles of the first touch electrodes 11 and the second touch electrodes 12 are The sides are close to each other and substantially parallel.
  • the planar shape of the first touch electrode 11 and the second touch electrode 12 and the planar shape are substantially the same, so that the areas of the first touch electrode 11 and the second touch electrode 12 are substantially equal.
  • the planar shapes of the two touch electrodes 11 are complementary, so that the first touch electrodes 11 and the first touch electrodes are facilitated.
  • the second touch electrode 12 determines the touch position, which is advantageous for improving touch sensitivity and avoiding false positives.
  • the touch structure includes a plurality of first touch units 1 arranged in a plurality of rows and columns
  • the thin ends 11A of the plurality of first touch electrodes 11 located in the same row The orientations are the same, both toward the side facing away from the black frame 15; the thin ends 12A of the plurality of second touch electrodes 12 in the same row have the same orientation, all facing one side of the black frame 15; and, in the same row
  • the second touch electrode 12 of the first touch unit 1 on the left side and the adjacent edge of the first touch electrode 11 of the first touch unit 1 on the right side They are roughly parallel to each other.
  • Such a setting manner can make the plurality of first touch units 1 arranged neatly, simplify the preparation process, and more easily determine the gap between the adjacent first touch units, thereby improving the touch precision.
  • the thin end of the first touch electrode 11 is close to the thick end of the second touch electrode 12
  • the thick end of the first touch electrode 11 is close to the thin end of the second touch electrode 12 .
  • the plane shape of the first touch unit 1 obtained by complementing the first touch electrode 11 and the second touch electrode 12 is a parallelogram.
  • the first The two right-angled sides of the touch electrode 11 and the second touch electrode 12 are all facing inward, and the long right-angled sides are parallel to each other, and the oblique sides are all facing outward.
  • FIG. 1C is a schematic top view of a first touch electrode or a second touch electrode according to at least one embodiment of the present disclosure.
  • the top shape and shape of the first touch electrode and the second touch electrode may be trapezoidal (including an isosceles trapezoid (1) and a right angle trapezoid (2)), a triangle (3), and a sector (4).
  • the sides of each shape may include a concave-convex structure, and the oblique sides of the triangles in FIG. 1C(3) are sawtooth; the central angle of the sector is 60 degrees or less.
  • the principle of implementing touch positioning by the touch structure provided by the embodiment of the present disclosure will be described below with reference to FIG. 2A and FIG. 2B.
  • the direction in which the shortest distance from the thin end to the thick end of each touch electrode is located is referred to as an extension length direction
  • the direction perpendicular to the extension length direction is referred to as a width direction of the touch electrode.
  • the top view shape of the first touch electrode and the second touch electrode are triangular, for example, in the extending length direction of each touch electrode (see the vertical direction in FIG. 2A).
  • the touch electrodes are divided into n regions (region 1, region 2, ... region n) whose area changes sequentially, and the n regions are substantially equal in size in the extending length direction.
  • the extended length of the touch electrode can be divided according to the thick end width of the touch electrode (see W0 in FIG. 2A).
  • the size of the divided n regions along the extending length direction is substantially equal to W0, and the ratio of the extended length L and the thick end width W0 of the first touch electrode 11 and the second touch electrode 12 is greater than Or equal to n and less than n+1, that is, both are [n, n+1), where n is a positive integer.
  • n is greater than or equal to 2.
  • the thick end width W0 is the shortest side length of the triangle
  • the extended length L is the height of the shortest side of the triangle
  • the thick end width W0 is the lower bottom edge of the trapezoid
  • the extension length L is trapezoidal height
  • the width W0 of the thick end is the length of the chord of the fan shape
  • the extension length L is the radius of the circle where the fan shape is located.
  • the areas of the regions 1 to n are sequentially increased, and the amount of signal change (ie, the amount of self-capacitance change) of the different regions due to the touch is different due to the difference in the area of the regions 1 to n.
  • the difference is also different. Therefore, the region 1 to the region n are intervals corresponding to the signal variation amounts in which n ranges are sequentially increased.
  • one touch may simultaneously cause three or more signals of the first touch electrodes 11 and the second touch electrodes 12 to change. Since the touched first touch electrode 11 and the second touch electrode 12 have thick ends and thin ends, for example, a wedge shape, different regions of each of the first touch electrodes 11 and each of the second touch electrodes 12 are touched. The amount of change in the self-capacitance is different, so that the touched first touch electrode 11 and/or the second touch electrode 12 can be determined according to the amount of self-capacitance change, the touched first touch electrode 11 and/or the second Which area of the touch electrode 12 is touched to obtain an accurate touch position.
  • a single touch causes a change in the signals of the electrodes 1, the electrodes 2, and the electrodes 3.
  • the region 1 of the electrode 1 is touched.
  • the area n of the electrode 2 is touched and the area n of the electrode 3 is touched, so that the touch position can be determined.
  • any one or two of the electrode 1, the electrode 2, and the electrode 3 may be touched.
  • the principle of the touch positioning includes: first inputting a driving signal to the first touch electrode and the second touch electrode in each of the first touch units in the touch structure without scanning, and then scanning each The sensing signals of the first touch electrode and the second touch electrode are used to obtain a basic signal; each of the first touch electrodes and the second touch electrodes are divided into n regions along the extending length direction thereof (as shown in FIG. 2A ). And determining the signal change amount intervals corresponding to the n regions, that is, obtaining n intervals; after that, detecting all the first touch electrodes and the second touch electrodes whose signals are changed to obtain the touched electrodes, for example, The signals of the electrode 1, the electrode 2 and the electrode 3 in FIG.
  • the positional relationship and the amount of signal change of each touched electrode determine the touch position. For example, it can be determined that the area 1 of the electrode 1 in FIG. 2B is touched, the area n of the electrode 2 is touched, and the area n of the electrode 3 is touched. This determines the touch position (dot position see Fig. 2B).
  • one touch may cause a change in signals of the plurality of first touch electrodes and/or second touch electrodes by using the plurality of first touch electrodes and/or
  • the analysis of the signal changes of the two touch electrodes can determine the touch position.
  • the first touch electrodes and/or the second touch electrodes whose signals corresponding to the different positions change are different, so that the positions can be accurately determined. That is, multi-touch can be realized.
  • the n regions divided by the touch electrodes correspond to different signals.
  • the variation interval, so the touch position can still be determined by analyzing the signal variation interval in which the signal variation of the touch electrode is located.
  • the plurality of first touch electrodes and/or the first touch electrode may be caused by making one touch.
  • the touch signal is realized by changing the signal of the touch electrode.
  • the contact area with the touch structure is about 5 mm*5 mm (mm). Therefore, in order to make the touch structure suitable for recognizing the touch of the finger, for example, the width of the touch electrode can be W0 Set to be greater than or equal to 4 mm and less than or equal to 8 mm. In this case, the size of each of the first touch units 1 in the row direction is approximately 4 mm to 8 mm.
  • the distance between the adjacent first touch electrodes and the second touch electrodes is not excessive.
  • a gap 14 is provided between the first touch electrode 11 and the second touch electrode 12 (for example, the gap is filled with an insulating material), and the width of the gap 14 (see w in FIG. 1A) Less than or equal to 30 ⁇ m (micrometers).
  • the width of the voids 14 is, for example, greater than or equal to 5 ⁇ m, limited by the precision of the photolithography process itself.
  • the insides of the outlines of the planar shapes of the first touch electrodes 11 and the second touch electrodes 12 are in a grid shape.
  • the use of a wedge-shaped touch electrode as a whole in a grid shape is advantageous for improving the transmittance of the touch structure.
  • the materials of the first touch electrode 11 and the second touch electrode 12 are both metal. Due to the good ductility of the metal, the grid-shaped first touch electrodes 11 and the second touch electrodes 12 are made of a metal material, so that the touch structure is suitable for use in a flexible touch device (for example, a flexible touch display device).
  • the carrier substrate 01 is a transparent flexible substrate for use in a flexible touch device.
  • first touch electrode 11 and the second touch electrode 12 may be formed of one or more of aluminum, aluminum alloy, copper, copper alloy, iron, zirconium or titanium.
  • the first touch electrode 11 and the second touch electrode 12 each include a plurality of mutually intersecting wires to form a grid shape having a plurality of closed hollow portions.
  • the wires constituting the grid pattern are inclined with respect to the row direction and the column direction.
  • each of the first traces 13 is a grid shape, and the hollowed out regions in the grid shape make the first traces 13 less visible to the user.
  • the first trace 13 is made of a metal material.
  • the first trace 13 may be made of one or more of metals such as aluminum, aluminum alloy, copper, copper alloy, iron, zirconium or titanium.
  • the first trace 13 , the first touch electrode 11 and the second touch electrode 12 are located in the same layer 10 and are formed of the same material, so that the first trace 13 , the first touch electrode 11 and the second touch
  • the electrode 12 can be formed by the same patterning process using the same film to simplify the manufacturing process and reduce the production cost.
  • a plurality of electrode legs 16 are located on the same side of the touch area surrounded by the plurality of first touch units 1 (see the side of the black frame 15 provided in FIG. 1A). And the plurality of first traces 13 extend in the touch area to the side of the touch area where the electrode legs 16 are disposed, and then are drawn from the side to be electrically connected to the electrode pins 16 .
  • each of the first traces 13 includes a first end electrically connected to the corresponding first touch electrode or the first touch electrode, a second end electrically connected to the electrode lead 16, and a first end and An extending portion between the second ends, the extending portion extends in the touch region and is connected to the electrode leg 16 after being drawn from a side of the touch region where the black frame 15 is disposed (the side is the length direction side of the black frame 15) .
  • a three-sided borderless for example, a flexible three-sided borderless multi-touch screen
  • the electrode legs 16 are made of a metal material.
  • the electrode legs 16 , the first traces 13 , the first touch electrodes 11 , and the second touch electrodes 12 are all formed by the same metallization process through the same metallization process to simplify the fabrication process and reduce the production cost.
  • the inventor of the present application noticed that if the touch structure is to be able to recognize the touch of the active pen, the size of the touch unit needs to be reduced to about 4 mm to obtain a higher touch sensitivity. The resulting frame will be larger.
  • At least one embodiment of the present disclosure further provides another touch structure including two touch electrode layers to achieve higher sensitivity.
  • the touch structure can support the active pen.
  • the traces in the two touch electrode layers it is possible to achieve a narrow border or a three-sided borderless while achieving higher sensitivity. Description will be made below with reference to Figs. 3A to 3D.
  • the touch control structure provided by the at least one embodiment of the present disclosure further includes a second touch unit 2 including the first touch unit 1 , and the second touch unit 2 includes
  • the third touch electrode 23 and the fourth touch electrode 24 are adjacent to each other, and the third touch electrode 23 and the fourth touch electrode 24 are both self-capacitance electrodes and both include opposite thin ends and thick ends.
  • the touch structure further includes a plurality of second traces 23 and a plurality of electrode legs 26 respectively connected to the second traces 23 , and the plurality of second traces 23 include the third sub traces 231 .
  • the fourth sub-line 232, the third touch electrode 23 and the fourth touch electrode 24 are respectively connected to the third sub-line 231 and the fourth sub-line 232, thereby passing different second lines 23 and different
  • the electrode leg 26 is electrically connected to the touch detection circuit.
  • the second touch unit 2 and the first touch unit 1 are located in different layers, that is, formed by films formed on different layers.
  • the first touch electrode 11 and the second touch electrode 12 in the first touch unit 1 are located in the first touch electrode layer 10
  • the second touch unit 2 The third touch electrode 23 and the fourth touch electrode 24 are located in the second touch electrode layer 20; and, as shown in FIG. 3D, the first touch electrode layer 10 is covered by an insulating layer (eg, a transparent insulating layer) 02
  • the second touch electrode layer 20 is located on a side of the insulating layer 02 remote from the first touch electrode layer 10 .
  • the second touch unit 2 corresponds to the gap between the first touch units 1 adjacent to each other in the row direction, that is, the orthographic projection of the second touch unit 2 on the carrier substrate 01 is in the row direction.
  • the adjacent first touch unit 1 is between the orthographic projections on the carrier substrate 01.
  • the dimensions of the first touch unit 1 and the second touch unit 2 in the row direction and the column direction are both 4 mm to 5 mm, for example, 4 mm to 4.5 mm.
  • the distance between the adjacent two first touch units 1 is also 4 mm to 5 mm.
  • the touch structure has high sensitivity by making the dimensions of the first touch unit 1 and the second touch unit 2 in the row direction and the column direction 4 mm - 5 mm. In this case, the touch The structure can support the active pen.
  • the touch position in the case of the design shown in FIG. 3A to FIG. 3D, in the case where the touch position is located between the adjacent first touch units 1 , since the first touch unit 1 and the second touch unit 2 are complementary, The touch position can be determined by the second touch unit 2 located between the adjacent first touch units 1. Therefore, the design can effectively improve the touch sensitivity, so that the touch object touches any point in the touch area. Can be recognized by the touch unit.
  • the electrode layer I and the electrode layer II are complementary, so that the entire screen function area can effectively recognize the signal change at the time of touch.
  • the manner in which the first touch unit 1 and the second touch unit 2 are located in different touch electrode layers is compared with the manner in which the first touch unit 1 and the second touch unit 2 are in the same layer.
  • the size of each of the first touch unit 1 and each of the second touch units 2 can be designed to be small, so that the active pen can be supported.
  • the manner in which the first touch unit 1 and the second touch unit 2 are located in different touch electrode layers can be compared with the manner in which the first touch unit 1 and the second touch unit 2 are in the same layer.
  • the distance between adjacent first touch units is relatively large (for example, 4 mm to 5 mm), and the distance between adjacent second touch units (for example, 4 mm to 5 mm) is also large, so that the first trace 13 And the corresponding second traces 23 can be arranged in different layers without being sequentially arranged on the same layer, so that the widths of the corresponding first traces 13 and second traces 23 can be larger, which can be effective. Reduce the impedance.
  • the plane shape, the forming material and the size of the third touch electrode 23 and the fourth touch electrode 24 can refer to the arrangement of the first touch electrode 11 and the second touch electrode 12, and the repeated description is omitted.
  • the planar shape of the second trace 23 (for example, the second trace 23 is a grid shape), the position (for example, the side of the touch region extending to the touch region where the black border 15 is provided), etc.
  • the setting of the line 13 will not be repeated here.
  • the materials of the first touch electrodes 11 to the second touch electrodes 24 are all metal, and the first traces 13 and the second traces 23 extend in the touch area to the proximity of the electrode pins 16 of the touch area.
  • One side of 26 is then led out from the side to electrically connect the touch detection circuitry. In this way, a flexible three-sided, borderless multi-touch screen supporting the active pen can be realized.
  • At least one embodiment of the present disclosure further provides a touch device including the touch structure provided by any of the above embodiments.
  • the touch device can be an add-on touch display device, an on-cell touch display device, or an in-cell touch display device.
  • the touch device may be a liquid crystal touch panel, an electronic paper, an OLED (Organic Light-Emitting Diode) touch panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, Any product or part with touch function, such as a navigator.
  • OLED Organic Light-Emitting Diode
  • At least one embodiment of the present disclosure further provides a method for fabricating a touch structure.
  • the touch structure shown in FIGS. 1A-2B and 3A to 3D is taken as an example.
  • the manufacturing method includes:
  • the first touch electrode layer 10 includes a first touch unit 1 and a plurality of first traces 13.
  • the first touch unit 1 includes first touch electrodes 11 and second touches that are adjacent to each other and insulated from each other.
  • the electrode 12, the first touch electrode 11 and the second touch electrode 12 are both self-capacitance electrodes and both include oppositely disposed thin ends (see 11A and 12A) and thick ends (see 11B and 12B), and the first touch The electrode 11 and the second touch electrode 12 are connected to the first sub-line 131 and the second sub-line 132, respectively.
  • the manufacturing method provided by at least one embodiment of the present disclosure includes the following steps S11 to S12.
  • Step S11 A black frame 15 is formed on the carrier substrate 01 as shown in FIG. 1D.
  • the carrier substrate 01 is a transparent flexible substrate.
  • Step S12 forming a metal layer on the carrier substrate 01, and performing a patterning process (for example, a photolithography process) on the metal layer by using a photomask to form the first touch electrode layer 10 as shown in FIGS. 1A and 1D.
  • a patterning process for example, a photolithography process
  • the first touch electrode layer 10 includes a first touch electrode 11 and a second touch electrode 12, a first trace 13 and an electrode leg 16 which are in a grid shape.
  • the manufacturing method provided by at least one embodiment of the present disclosure may be used to simultaneously fabricate a plurality of touch structures at a time.
  • the manufacturing method further includes the step S13: cutting the mother board obtained after the step S12 is completed into A plurality of daughter boards, each of which includes a touch structure.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes, after completing the above step S13, a flexible printed circuit board (FPC) electrically connected to the touch detection circuit (eg, an integrated circuit) and the carrier substrate 01.
  • the electrode pins 16 are electrically connected.
  • a single-layer (ie, only one layer of touch electrode layer) multi-touch screen with a narrow border or a three-sided borderless single layer can be realized.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes: forming a second touch electrode layer 20 including the second touch unit 2 and multiple
  • the second touch unit 23 includes a third touch electrode 23 and a fourth touch electrode 24 that are adjacent to each other and insulated from each other.
  • the third touch electrode 23 and the fourth touch electrode 24 are self-capacitances.
  • the electrodes also include oppositely disposed thin ends (see 23A and 24A) and thick ends (see 23B and 24B), and the third touch electrode 23 and the fourth touch electrode 24 are respectively associated with the third sub-line 231 and the fourth sub- The line 232 is connected; the second touch unit 2 corresponds to a gap between the adjacent first touch units 1.
  • the manufacturing method provided by at least one embodiment of the present disclosure includes the following steps S21 to S24.
  • Step S21 A black frame 15 is formed on the carrier substrate 01 as shown in FIG. 3D.
  • the carrier substrate 01 is a transparent flexible substrate.
  • Step S22 forming a first metal layer on the carrier substrate 01, and performing a patterning process (for example, a photolithography process) on the first metal layer by using the first photomask to form a first touch as shown in FIGS. 3A and 3B.
  • a patterning process for example, a photolithography process
  • the first touch electrode layer 10 includes a first touch electrode 11 and a second touch electrode 12, a first trace 13 and an electrode leg 16 which are in a grid shape.
  • Step S23 The insulating layer 02 covering the first touch electrode layer 10 is formed by using the second mask, and the area of the black border 15 (ie, the bonding area) is not covered.
  • the insulating layer 02 is a transparent insulating layer.
  • the insulating layer 02 covers the entire touch area.
  • Step S24 forming a second metal layer on the insulating layer 02, and performing a patterning process (for example, a photolithography process) on the second metal layer with the third photomask to form a second touch as shown in FIG. 3A and FIG. 3C Control electrode layer 20.
  • a patterning process for example, a photolithography process
  • the second touch electrode layer 20 includes a third touch electrode 23 and a fourth touch electrode 24 , a second trace 23 , and an electrode leg 26 which are integrally formed in a grid shape.
  • the manufacturing method provided by at least one embodiment of the present disclosure may be used to simultaneously manufacture a plurality of touch structures at a time.
  • the manufacturing method further includes the step S25: cutting the mother board obtained after the step S24 is completed into A plurality of daughter boards, each of which includes a touch structure.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes, after completing the above step S25, a flexible printed circuit board (FPC) electrically connected to the touch detection circuit (eg, an integrated circuit) and the carrier substrate 01. Electrode legs 16 and 26 are electrically connected.
  • FPC flexible printed circuit board
  • a double-sided multi-point touch screen with a narrow border or a three-sided borderless frame can be realized.
  • FIG. 4 is a touch positioning provided by at least one embodiment of the present disclosure.
  • a flowchart of the method, as shown in FIG. 4, the touch positioning method includes step S41 and step S42.
  • Step S41 Determine the touched electrode according to the amount of change of the self-capacitance of the first touch electrode and the second touch electrode included in the first touch unit.
  • the basic signal may be detected through the first trace; at least the first touch electrode and the second touch electrode When one of the touched electrodes is compared, the self-capacitance of the first touch electrode and the second touch electrode can be determined by comparing the detection signals of the first touch electrode and/or the second touch electrode with the basic signal. A change occurs to determine the touched electrode.
  • the driving signals are first input to all the first touch electrodes and all the second touch electrodes in the touch structure, and then each of the first touch electrodes and each second touch is scanned.
  • the electrode senses the signal to get the underlying signal.
  • Step S42 determining the touch position according to the amount of change in self-capacitance of each region of the touched electrode.
  • the touched electrode since the touched electrode has a thick end and a thin end, for example, a wedge shape, the amount of change in self-capacitance of the touched electrode is different when it is touched, so it can be determined according to the amount of change in self-capacitance of each region. Which area of the touch electrode is touched to get the touched position.
  • At least one embodiment of the present disclosure provides a touch positioning method for the touch structure in the embodiment including the first touch unit and the second touch unit.
  • FIG. 5 provides at least one embodiment of the present disclosure.
  • Another flowchart of the touch positioning method, as shown in FIG. 5, the touch positioning method includes step S51 and step S52.
  • Step S51 determining, according to the first touch electrode and the second touch electrode included in the first touch unit, and the self-capacitance of the third touch electrode and the fourth touch electrode included in the second touch unit, Touch the electrode.
  • the basic signal can be detected through the first trace and the second trace.
  • the first touch electrode and the second touch electrode are third.
  • the detection signals of the touch electrodes and the fourth touch electrodes are compared with the basic signals, and whether the self-capacitances of the first touch electrodes, the second touch electrodes, the third touch electrodes, and the fourth touch electrodes are changed. Thereby the touched electrode is determined.
  • the driving signals are first input to all the first touch electrodes, all the second touch electrodes, all the third touch electrodes, and all the fourth touch electrodes in the touch structure, and then scanned. Inductive signals of each of the first touch electrodes, each of the second touch electrodes, each of the third touch electrodes, and each of the fourth touch electrodes to obtain a base signal.
  • Step S52 determining the touch position according to the amount of change in self-capacitance of each region of the touched electrode.
  • the touched electrode since the touched electrode has a thick end and a thin end, for example, a wedge shape, different amounts of the self-capacitance of the different areas of the touched electrode are different when touched, and thus the self-capacitance of each area of the touched electrode can be used.
  • the amount of change is determined to which area of the touch electrode is touched to obtain the touch position.
  • the touch positioning method includes: first inputting a driving signal to all touch electrodes in the touch structure, and then scanning each touch electrode in the case where no touch occurs.
  • the sensing signal is obtained to obtain a basic signal; each touch electrode is divided into n regions along its extending length direction (as shown in FIG. 2A), and the signal variation interval corresponding to the n regions is determined, that is, n is obtained.
  • all the touch electrodes whose signals have changed are detected to obtain the touched electrodes. For example, the signals of the electrodes 1, the electrodes 2 and the electrodes 3 in FIG.
  • the electrode 1, the electrode 2 and the electrode 3 are touched electrodes; finally, the touch position is determined according to the positional relationship between the plurality of touched electrodes and the amount of signal change of each touched electrode, for example, the electrode in FIG. 2B can be determined.
  • the area 1 of 1 is touched, the area n of the electrode 2 is touched, and the area n of the electrode 3 is touched, thus determining the touch position (see the position of the dot in Fig. 2B).
  • the embodiment of the present disclosure provides a touch structure, a touch device, and a touch display method
  • the touch control structure includes a first touch unit and a first trace;
  • the first touch unit includes
  • the first touch electrode and the second touch electrode are both self-capacitance electrodes and both have opposite ends and a thick end;
  • the first touch The electrode and the second touch electrode are connected to different first traces.
  • the touch structure can realize multi-touch, for example, implementing a flexible three-sided borderless multi-point touch screen.
  • a comparison can be achieved.
  • the high-sensitivity touch structure for example, realizes a flexible three-sided borderless multi-point touch screen that supports an active pen.
  • the touch structure and the manufacturing method thereof, the touch device and the touch positioning method provided by the embodiment of the present disclosure can be mutually referenced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

一种触控结构及其制作方法、触控装置和触摸定位方法,触控结构包括第一触控单元(1)和第一走线(13);第一触控单元(1)包括相邻且彼此绝缘的第一触控电极(11)和第二触控电极(12),第一触控电极(11)和第二触控电极(12)均为自电容电极并且都包括相对设置的细端(11A,12A)和粗端(11B,12B);所述第一走线(13)包括第一子走线(131)和第二子走线(132),所述第一子走线(131)与所述第一触控电极(11)连接,所述第二子走线(132)与所述第二触控电极(12)连接,该触控结构可以实现多点触控。

Description

触控结构及其制作方法、触控装置和触摸定位方法
本申请要求于2018年3月13日递交的中国专利申请第201810204720.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种触控结构及其制作方法、触控装置和触摸定位方法。
背景技术
触控技术包括单点触控技术和多点触控技术。在每次触摸中,单点触控只能用于识别一个触摸点,多点触控技术能用于同时识别至少两个触摸点。
电容式触控技术因具有高灵敏度、长寿命、高透光率等优点而被广泛地应用。电容式触控技术可分为利用互电容原理的触控技术和利用自电容原理的触控技术。与利用互电容原理的触控技术相比,利用自电容原理的触控技术的触控感应的准确度和信噪比都更高。
目前,利用自电容原理的多点触控技术逐渐成为新的研究热点。
发明内容
本公开的实施例提供一种触控结构、所述触控结构的制作方法、包括所述触控结构的触控装置和用于所述触控结构的触摸定位方法,该触控结构可以利用自电容原理实现多点触控。
本公开至少一个实施例提供一种触控结构,所述触控结构包括第一触控单元,所述第一触控单元包括相邻且彼此绝缘的第一触控电极和第二触控电极,所述第一触控电极和所述第二触控电极均为自电容电极并且都包括相对设置的细端和粗端;所述触控结构还包括第一走线,所述第一走线包括第一子走线和第二子走线,所述第一子走线与所述第一触控电极连接,所述第二子走线与所述第二触控电极连接。
例如,在本公开至少一实施例提供的触控结构中,所述第一触控电极 和所述第二触控电极的平面形状的轮廓为楔形,并且所述第一触控电极和所述第二触控电极的主体呈网格状。
例如,在本公开至少一实施例提供的触控结构中,所述第一触控电极和所述第二触控电极的平面形状相同并且相互靠近的边缘彼此大致平行。
例如,在本公开至少一实施例提供的触控结构中,所述第一触控电极和所述第二触控电极之间的空隙的宽度小于或等于30微米。
例如,在本公开至少一实施例提供的触控结构中,所述第一触控电极和所述第二触控电极的材料包括金属。
例如,在本公开至少一实施例提供的触控结构中,所述第一走线的主体呈网格状。
例如,在本公开至少一实施例提供的触控结构中,多条所述第一走线与所述第一触控单元位于同一层中。
例如,在本公开至少一实施例提供的触控结构中,所述第一触控电极和所述第二触控电极的从所述细端到所述粗端的延伸长度和所述粗端的宽度之比均为[n,n+1),并且n为正整数。
例如,在本公开至少一实施例提供的触控结构中,所述触控结构包括多个第一触控单元,所述多个第一触控单元呈阵列设置。
例如,在本公开至少一实施例提供的触控结构中,位于同一行的多个所述第一触控电极的细端的朝向相同,位于同一行的多个所述第二触控电极的细端的朝向相同。
例如,在本公开至少一实施例提供的触控结构中,在位于同一行的相邻的所述第一触控单元中,一个所述第一触控单元的所述第二触控电极与另一个所述第一触控单元的所述第一触控电极的相邻的边缘彼此大致平行。
例如,在本公开至少一实施例提供的触控结构中,所述第一触控电极的细端靠近所述第二触控电极的粗端;所述第一触控电极的粗端靠近所述第二触控电极的细端。
例如,在本公开至少一实施例提供的触控结构中,所述第一触控单元的平面形状大致为平行四边形。
例如,本公开至少一实施例提供的触控结构还包括分别与多个所述第一走线电连接的多个电极脚,所述多个电极脚位于所述多个第一触控单元 所在的触控区域的同一侧,并且多个所述第一走线在所述触控区域内延伸至所述触控区域的设置有所述电极脚的一侧后引出。
例如,本公开至少一实施例提供的触控结构还包括第二触控单元,所述第二触控单元包括相邻且彼此绝缘的第三触控电极和第四触控电极,所述第三触控电极和所述第四触控电极均为自电容电极并且都包括相对设置的细端和粗端;所述触控结构还包括多个第二走线,多个所述第二走线包括第三子走线和第四子走线,所述第三子走线与所述第三触控电极连接,所述第四子走线与所述第四触控电极连接;所述第二触控单元与所述第一触控单元位于不同的层中并且所述第二触控单元对应于在行方向上相邻的所述第一触控单元之间的空隙。
本公开至少一个实施例还提供一种触控装置,包括上述任一所述的触控结构。
本公开至少一个实施例还提供一种触控结构的制作方法,该制作方法包括形成第一触控电极层,该第一触控电极层包括第一触控单元和第一走线,所述第一触控单元包括相邻且彼此绝缘的第一触控电极和第二触控电极,所述第一触控电极和所述第二触控电极均为自电容电极并且都包括相对设置的细端和粗端,所述第一走线包括第一子走线和第二子走线,所述第一子走线与所述第一触控电极连接,所述第二子走线与所述第二触控电极连接。
例如,本公开至少一实施例提供的制作方法还包括形成第二触控电极层,所述第二触控电极层包括第二触控单元和第二走线,所述第二触控单元包括相邻且彼此绝缘的第三触控电极和第四触控电极,所述第三触控电极和所述第四触控电极均为自电容电极并且都包括相对设置的细端和粗端,所述第二走线包括第三子走线和第四子走线,所述第三子走线与所述第三触控电极连接,所述第四子走线与所述第四触控电极连接;所述第二触控单元与所述第一触控单元位于不同的层中并且所述第二触控单元对应于在行方向上相邻的所述第一触控单元之间的空隙。
本公开的至少一个实施例还提供一种用于以上仅包括第一触控单元的实施例的所述触控结构的触摸定位方法,其包括:根据所述第一触控单元包括的所述第一触控电极和所述第二触控电极的自电容的变化量确定被触摸电极;以及根据所述被触摸电极的各个区域自电容的变化量确定触摸 位置。
本公开的至少一个实施例还提供一种用于以上包括第一触控单元和第二触控单元的实施例的所述触控结构的触摸定位方法,其包括:根据所述第一触控单元包括的所述第一触控电极和所述第二触控电极,和所述第二触控单元包括的所述第三触控电极和所述第四触控电极的自电容的变化量确定被触摸电极;以及根据所述被触摸电极的各个区域自电容的变化量确定触摸位置。
综上所述,本公开的实施例提供一种触控结构及其制作方法、触控装置和触摸定位方法,该触控结构包括第一触控单元,第一触控单元包括相邻且彼此绝缘的第一触控电极和第二触控电极,第一触控电极和第二触控电极均为自电容电极并且都包括相对设置的细端和粗端;触控结构还包括第一走线,第一走线包括第一子走线和第二子走线,第一子走线与第一触控电极连接,第二子走线与第二触控电极连。该触控结构可以实现多点触控,例如,可以形成柔性三边无边框多点式触控屏。在本公开的至少一个实施例中,通过设置与第一触控单元不同层的第二触控单元,并且使第二触控单元位于在行方向上相邻的第一触控单元之间,可以实现一种具有较高灵敏度的触控结构,例如,可以形成一种支持主动笔的柔性三边无边框多点式触控屏。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1A为本公开至少一个实施例提供的触控结构的俯视示意图一;
图1B为本公开至少一个实施例提供的触控结构的俯视示意图二;
图1C为本公开至少一个实施例提供的第一触控电极或者第二触控电极的俯视示意图;
图1D为本公开至少一个实施例提供的如图1A所示触控结构的截面结构示意图;
图2A为本公开至少一个实施例提供的触控结构中第一触控电极和第二触控电极的区域分布示意图;
图2B为本公开至少一个实施例提供的触控结构被触摸的示意图;
图3A为本公开至少一个实施例提供的触控结构的俯视示意图三;
图3B为本公开至少一个实施例提供的如图3A所示触控结构中多个第一触控单元的俯视示意图;
图3C为本公开至少一个实施例提供的如图3A所示触控结构中多个第二触控单元的俯视示意图;
图3D为本公开至少一个实施例提供的如图3A所示触控结构的截面结构示意图;
图4为本公开至少一个实施例提供的触摸定位方法的流程图;以及
图5为本公开至少一个实施例提供的另一种触摸定位方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开的实施例提供一种触控结构、该触控结构的制作方法、包括该触控结构的触控装置和用于该触控结构的触摸定位方法。该触控结构包括一个或多个周期性排列的第一触控单元以及多个第一走线,第一触控单元包括彼此相邻、彼此绝缘且为自电容电极的第一触控电极和第二触控电极,第一走线包括第一子走线和第二子走线,分别通过第一子走线对第一触控 电极和通过第二子走线对第二触控电极施加触控驱动信号,并且检测相应的感应信号,可以利用自电容原理实现多点触控。
在本公开的实施例中,在一个第一触控单元中,第一触控电极和第二触控电极相邻是指第一触控电极和第二触控电极之间未设置其它触控电极。
在本公开的实施例中,第一触控电极和第二触控电极可以分别为第一楔形触控电极和第二楔形触控电极,楔形包括粗端和细端,且从楔形的细端到粗端其宽度逐渐增大。楔形触控电极是指触控电极的平面形状的轮廓为楔形,也就是第一触控电极和第二触控电极在其所在的承载基板上的正投影的形状均为楔形,在这种情况下,第一触控电极和第二触控电极均包括相对设置的细端和粗端,并且第一触控电极和第二触控电极的宽度从细端到粗端均逐渐增大。
例如,上述的楔形可以为三角形、或者为梯形或者为任意其他类似三角形或者类似梯形的形状,只要该楔形的宽度从细端到粗端逐渐增大即可。例如,该楔形可以为直角三角形、等腰三角形、等边三角形、非等腰直角三角形、直角梯形、等腰梯形、斜边为锯齿状的直角三角形、扇形或者非等腰直角梯形。
下面结合附图对本公开的实施例进行详细说明。
本公开至少一个实施例提供一种触控结构,如图1A所示,该触控结构包括一个或多个第一触控单元1(例如,该多个第一触控单元1排列成多行和多列),第一触控单元1包括相邻且彼此绝缘的第一触控电极11和第二触控电极12,第一触控电极11和第二触控电极12均为自电容电极并且都包括相对设置的细端(参见11A和12A)和粗端(参见11B和12B)。该触控结构还包括第一走线13,第一走线13包括第一子走线131和第二子走线132,第一触控电极11和第二触控电极12分别与第一子走线131和第二子走线132连接,从而通过第一子走线131和第二子走线132与触控检测电路(图中未示出)电连接。
例如,如图1A所示,触控结构还包括分别与多个第一走线13电连接的多个电极脚(Bonding lead)16,其用于将相应的第一走线13与触控检测电路电连接。
例如,图1D为图1A所示触控结构的截面结构示意图,该剖面线为图 1A中所示的a-a’线,如图1A和图1D所示,触控结构还包括黑边框15,电极脚16位于黑边框15所在区域中,以避免被用户观看到,影响美观。
需要说明的是,图1D中三个相邻的第一触控电极层10之间有间隔,是因为该第一触控电极层10是金属形成的网格状结构。
例如,如图1A所示,第一触控电极11和第二触控电极12位于同一层(参见第一触控电极层10)中(例如二者并排位于承载基板01(参见图1D)上),并且第一触控电极11和第二触控电极12的材料相同。这样,第一触控电极11和第二触控电极12可以通过对同一薄膜进行图案化工艺形成,以简化触控结构的制作工艺。例如,该图案化工艺为包括曝光、显影和刻蚀步骤的光刻工艺。
例如,如图1A所示,第一触控电极11和第二触控电极12的平面形状大致相同并且相互靠近的边缘大致平行。在这种情况下,第一触控电极11和第二触控电极12的平面形状的轮廓以及平面形状的尺寸都大致相同,均大致为直角三角形,从而第一触控电极11和第二触控电极12的面积大致相等。由于第一触控电极11和第二触控电极12的相互靠近的边缘(即二者的相邻的边缘)大致平行,使得二者的平面形状互补,这样便于利用第一触控电极11和第二触控电极12确定触摸位置,有利于提高触控灵敏度并且避免误判。
例如,如图1A所示,在触控结构包括排列成多行和多列的多个第一触控单元1的情况下,位于同一行的多个第一触控电极11的细端11A的朝向相同,均朝向背离黑边框15的一侧;位于同一行的多个第二触控电极12的细端12A的朝向相同,均朝向黑边框15的一侧;并且,在位于同一行的相邻的第一触控单元1中,位于左侧的第一触控单元1的第二触控电极12与位于右侧的第一触控单元1的第一触控电极11的相邻的边缘彼此大致平行。这样的设置方式可以使得多个第一触控单元1整齐的排列,简化了制备过程,且更容易确定相邻的第一触控单元之间的间隙,提高了触摸精度。
例如,如图1A所示,第一触控电极11的细端靠近第二触控电极12的粗端,并且第一触控电极11的粗端靠近第二触控电极12的细端。这样的设置方式有利于实现第一触控电极11和第二触控电极12的平面形状互补。例如,如图1A所示,第一触控电极11和第二触控电极12互补得到 的第一触控单元1的平面形状大致为矩形,在同一个第一触控单元1中,第一触控电极11和第二触控电极12的两个直角边均朝向外侧,且斜边相互平行。
图1A所示的第一触控电极11和第二触控电极12的互补方式和多个第一触控单元11的排列方式仅用于举例说明,本公开的实施例包括但不限于此。
例如,图1A所示的触控结构包括两行和三列第一触控单元1,沿着行方向,相邻的第一触控单元1之间都具有空隙,该空隙的宽度相同或者不相同,与第一行最左侧的第一触控单元1中的第一触控电极11和第二触控电极12分别连接的第一子走线131和第二子走线132,和与第一行中间的第一触控单元1中的第一触控电极11连接的第一子走线131位于第一空隙中,该第一空隙为第二行最左侧的第一触控单元1和第二行中间的第一触控单元1之间的空隙;与第一行最右侧的第一触控单元1中的第一触控电极11和第二触控电极12分别连接的第一子走线131和第二子走线132,和与第一行中间的第一触控单元1中的第二触控电极11连接的第二子走线132位于第二空隙中,该第二空隙为第二行最右侧的第一触控单元1和第二行中间的第一触控单元1之间的空隙。该设计可以使得第一走线13位于第一触控单元1之间,而不是设置在所有第一触控单元形成的整体的外围,这样可以实现窄边框设计,而且,在所有第一触控单元形成的整体的外围除了最下端形成有黑边框15之外,其他的三边均没有设计边框,从而可以实现三边无边框多点式触摸。
例如,图1B为本公开至少一个实施例提供的触控结构的俯视示意图二。如图1B所示,第一触控电极11和第二触控电极12的平面形状大致相同且均大致为直角三角形,并且第一触控电极11和第二触控电极12的较长的直角边相互靠近且大致平行。在这种情况下,第一触控电极11和第二触控电极12的平面形状的轮廓以及平面形状的尺寸都大致相同,从而第一触控电极11和第二触控电极12的面积大致相等。由于第一触控电极11和第二触控电极12的相互靠近的边缘(即二者的相邻的边缘)大致平行,使得二者的平面形状互补,这样便于利用第一触控电极11和第二触控电极12确定触摸位置,有利于提高触控灵敏度并且避免误判。
例如,如图1B所示,在触控结构包括排列成多行和多列的多个第一 触控单元1的情况下,位于同一行的多个第一触控电极11的细端11A的朝向相同,均朝向背离黑边框15的一侧;位于同一行的多个第二触控电极12的细端12A的朝向相同,均朝向黑边框15的一侧;并且,在位于同一行的相邻的第一触控单元1中,位于左侧的第一触控单元1的第二触控电极12与位于右侧的第一触控单元1的第一触控电极11的相邻的边缘彼此大致平行。这样的设置方式可以使得多个第一触控单元1整齐的排列,简化了制备过程,且更容易确定相邻的第一触控单元之间的间隙,提高了触摸精度。
例如,如图1B所示,第一触控电极11的细端靠近第二触控电极12的粗端,并且第一触控电极11的粗端靠近第二触控电极12的细端。这样的设置方式有利于实现第一触控电极11和第二触控电极12的平面形状互相匹配。例如,如图1B所示,第一触控电极11和第二触控电极12互补得到的第一触控单元1的平面形状为平行四边形,在同一个第一触控单元1中,第一触控电极11和第二触控电极12的两个直角边均朝向内侧,较长的直角边相互平行,斜边均朝向外侧。
需要说明的是,本公开的实施例中第一触控单元的排列方式和个数不限于上述中的相关描述。
例如,图1C为本公开至少一个实施例提供的第一触控电极或者第二触控电极的俯视示意图。如图1C所示,第一触控电极和第二触控电极的俯视形状轮廓可以分别呈梯形(包括等腰梯形(1)和直角梯形(2))、三角形(3)、扇形(4)。其中,可以理解的是,各个形状的边可以包括凹凸结构,如图1C(3)中的三角形的斜边呈锯齿状;扇形所对的圆心角小于等于60度。
下面结合图2A和图2B对本公开的实施例提供的触控结构实现触摸定位的原理进行说明。在下文中,为了便于描述,将每个触控电极的从细端到粗端的最短距离所在的方向称为延伸长度方向,将与该延伸长度方向相垂直的方向称为该触控电极的宽度方向。
例如,如图2A所示,以第一触控电极和第二触控电极的俯视形状轮廓呈三角形为例,在每个触控电极的延伸长度方向(参见图2A中的竖直方向)上,触控电极被划分成面积依次变化的n个区域(区域1、区域2……区域n),并且这n个区域沿上述延伸长度方向上的尺寸大致相等。例如, 可以按照触控电极的粗端宽度(参见图2A中的W0)对触控电极的延伸长度进行分割。在这种情况下,划分的n个区域沿上述延伸长度方向上的尺寸大致等于W0,并且第一触控电极11和第二触控电极12的延伸长度L和粗端宽度W0之比均大于或等于n并且小于n+1,即均为[n,n+1),其中n为正整数。例如,n大于或等于2。可以理解的是,当第一触控电极和第二触控电极的俯视形状轮廓为三角形时,粗端宽度W0即为三角形的最短边边长,延伸长度L为三角形最短边所对的高;当第一触控电极和第二触控电极的俯视形状轮廓为梯形时,粗端宽度W0即为梯形的下底边,延伸长度L为梯形的高;当第一触控电极和第二触控电极的俯视形状轮廓为扇形时,粗端宽度W0即为扇形所对弦的长度,延伸长度L为扇形所在圆的半径。
在如图2A所示示例中,区域1至区域n的面积依次增大,由于区域1至区域n的面积大小不同,不同的区域因被触摸而引起的信号变化量(即自电容变化量)也不同,因此,区域1至区域n为对应n个范围依次增大的信号变化量的区间。当触摸物(例如用户的手指)触摸第一触控单元上的任意一点时,距离触摸物最近的第一触控电极11和第二触控电极12的信号发生变化,并且根据第一触控电极11和第二触控电极12的信号变化量所处的信号变化量区间可以计算得到被触摸的位置。
在触控结构包括多个第一触控单元的情况下,一次触摸可能同时引起第一触控电极11和第二触控电极12中的3个或3个以上的信号发生变化。由于被触摸的第一触控电极11和第二触控电极12具有粗端和细端,例如为楔形,每个第一触控电极11和每个第二触控电极12的不同区域被触摸时其自电容变化量不同,因此可以根据自电容变化量确定被触摸的第一触控电极11和/或第二触控电极12,该被触摸的第一触控电极11和/或第二触控电极12的哪个区域被触摸以得到准确的触摸位置。
例如,如图2B所示,一次触摸同时引起电极1、电极2和电极3的信号发生变化,通过对电极1、电极2和电极3的信号变化量进行分析可知电极1的区域1被触摸、电极2的区域n被触摸并且电极3的区域n被触摸,从而可以确定出触摸位置。
需要说明的是,也可以是触摸到电极1、电极2和电极3中的任意一个或者任意两个。
例如,触摸定位的原理包括:在未发生触摸的情况下,先给触控结构中每个第一触控单元中的第一触控电极和第二触控电极输入驱动信号,再扫描每个第一触控电极和第二触控电极的感应信号,以得到基础信号;将每个第一触控电极和第二触控电极沿其延伸长度方向划分成n个区域(如图2A所示),并且确定这n个区域分别对应的信号变化量区间,即得到n个区间;之后,检测出所有的信号发生变化的第一触控电极和第二触控电极以得到被触摸电极,例如,图2B中的电极1、电极2和电极3的信号发生变化而其他电极的信号未发生变化,从而电极1、电极2和电极3为被触摸电极;最后,根据多个被触摸电极之间的位置关系以及每个被触摸电极的信号变化量确定触摸位置,例如,可以确定出图2B中的电极1的区域1被触摸、电极2的区域n被触摸、电极3的区域n被触摸,因此确定出触摸位置(参见图2B中的圆点的位置)。
在本公开的实施例中,如上所述,一次触摸可以引起多个第一触控电极和/或第二触控电极的信号发生变化,通过对该多个第一触控电极和/或第二触控电极的信号变化情况进行分析可以确定出触摸位置。在触控结构的多个位置被同时触摸的情况下,这些不同的位置对应的信号发生变化的第一触控电极和/或第二触控电极也不相同,从而可以准确地确定出这些位置,即可以实现多点触控。
例如,在其它实施例中,在一次触摸只引起一个第一触控电极或一个第二触控电极的信号发生变化的情况下,由于该触控电极被划分成的n个区域对应不同的信号变化量区间,因此仍然可以通过分析该触控电极的信号变化量所处的信号变化量区间来确定触摸位置。
例如,在其它实施例中,在第一触控电极或第二触控电极只有一个区域(即n=1)的情况下,可以通过使一次触摸引起多个第一触控电极和/或第二触控电极的信号发生变化的方式来实现触摸定位。
用户的手指触摸触控结构时与触控结构的接触面积约为5mm*5mm(毫米),因此,为了使触控结构适用于识别手指的触摸,例如,可以将触控电极的粗端宽度W0设置为大于或等于4mm且小于或等于8mm。在这种情况下,每个第一触控单元1沿行方向的尺寸大致为4mm至8mm。
为了实现一次触摸时多个第一触控电极和/或第二触控电极的信号发生变化,相邻的第一触控电极和第二触控电极之间的距离不宜过大。例如, 如图1A所示,第一触控电极11和第二触控电极12之间设置有空隙14(例如空隙中填充有绝缘材料),并且空隙14的宽度(参见图1A中的w)小于或等于30μm(微米)。在第一触控电极11和第二触控电极12采用光刻工艺制作的情况下,受限于光刻工艺本身的精度,空隙14的宽度例如大于或等于5μm。
例如,如图1A所示,第一触控电极11和第二触控电极12的平面形状的轮廓的内部为网格状。采用整体呈网格状的楔形触控电极,有利于提高触控结构的透过率。
在第一触控电极11和第二触控电极12均为网格状的情况下,第一触控电极11和第二触控电极12的材料均为金属。由于金属的延展性好,采用金属材料制作网格状的第一触控电极11和第二触控电极12使得触控结构适用于柔性触控装置(例如柔性触控显示装置)中。
例如,承载基板01为透明柔性基板,以适用于柔性触控装置。
例如,可以采用铝、铝合金、铜、铜合金、铁、锆或钛等金属中的一种或几种制作第一触控电极11和第二触控电极12。
例如,如图1A所示,第一触控电极11和第二触控电极12均包括多个相互交叉的导线以形成具有多个封闭的镂空部的网格状。例如,构成网格状图案的导线相对于行方向和列方向倾斜。
例如,每个第一走线13的平面形状为网格状,该网格状中的镂空区域使第一走线13不容易被用户观看到。
例如,第一走线13采用金属材料制作。例如,可以采用铝、铝合金、铜、铜合金、铁、锆或钛等金属中的一种或几种制作第一走线13。
例如,第一走线13、第一触控电极11和第二触控电极12位于同一层10中并且形成的材料相同,从而第一走线13、第一触控电极11和第二触控电极12可以采用同一薄膜通过同一构图工艺形成,以简化制作工艺且降低生产成本。
例如,为了实现窄边框或三边无边框,多个电极脚16位于多个第一触控单元1围成的触控区域的同一侧(参见图1A中的设置有黑边框15的一侧),并且多个第一走线13在触控区域内延伸至触控区域的设置有电极脚16的一侧,之后从该侧引出,以与电极脚16电连接。也就是说,每个第一走线13包括与相应的第一触控电极或第一触控电极电连接的第一端、 与电极脚16电连接的第二端、以及位于第一端和第二端之间的延伸部,延伸部在触控区域内延伸并且从触控区域的设置有黑边框15的一侧(该侧为黑边框15的长度方向侧)引出后与电极脚16连接。通过这样的走线排布设计,例如,可以实现三边无边框(例如实现柔性三边无边框的多点式触控屏),参见图1A。
例如,电极脚16采用金属材料制作。例如,电极脚16、第一走线13、第一触控电极11和第二触控电极12都采用同一金属层通过同一构图工艺形成,以简化制作工艺且降低生产成本。
在研究中,本申请的发明人注意到,若想使触控结构能够识别主动笔的触摸,则需要将触控单元的尺寸降低到4mm左右,以获得较高的触控灵敏度,然而,这将导致形成的边框较大。
本公开的至少一实施例还提供另一种触控结构,其包括两个触控电极层,以实现较高的灵敏度。例如,通过提高灵敏度,使得该触控结构可以支持主动笔。例如,通过对两个触控电极层中的走线进行设置,可以在获得较高灵敏度的同时实现窄边框或三边无边框。下面结合图3A至图3D进行说明。
例如,如图3A至图3C所示,本公开的至少一个实施例提供的触控结构在包括第一触控单元1的基础上还包括第二触控单元2,第二触控单元2包括相邻且彼此绝缘的第三触控电极23和第四触控电极24,第三触控电极23和第四触控电极24均为自电容电极并且均包括相对设置的细端和粗端。
如图3A和图3C所示,触控结构还包括多个第二走线23和分别连接第二走线23的多个电极脚26,多个第二走线23包括第三子走线231和第四子走线232,第三触控电极23和第四触控电极24分别与第三子走线231和第四子走线232连接,从而通过不同的第二走线23和不同的电极脚26电连接触控检测电路。
在如图3A至图3D所示实施例中,第二触控单元2和第一触控单元1位于不同的层中,即通过形成在不同层的薄膜形成。例如,如图3A至图3C所示,第一触控单元1中的第一触控电极11和第二触控电极12位于第一触控电极层10中,第二触控单元2中的第三触控电极23和第四触控电极24位于第二触控电极层20中;并且,如图3D所示,第一触控电极层 10被绝缘层(例如透明绝缘层)02覆盖,第二触控电极层20位于绝缘层02的远离第一触控电极层10的一侧。
如图3A所示,第二触控单元2对应于行方向上相邻的第一触控单元1之间的空隙中,即第二触控单元2在承载基板01上的正投影位于行方向上相邻的第一触控单元1在承载基板01上的正投影之间。
例如,第一触控单元1和第二触控单元2的沿行方向和列方向的尺寸都为4mm-5mm,例如4mm-4.5mm。在这种情况下,相邻的两个第一触控单元1之间的距离也为4mm-5mm。通过使第一触控单元1和第二触控单元2的沿行方向和列方向的尺寸都为4mm-5mm,可以使触控结构具有较高的灵敏度,在这种情况下,该触控结构可以支持主动笔。
一方面,采用如图3A至图3D所示的设计,在触摸位置位于相邻的第一触控单元1之间的情况下,由于第一触控单元1和第二触控单元2互补,可以通过位于该相邻的第一触控单元1之间的第二触控单元2确定触摸位置,因此这种设计可以有效提升触控灵敏度,使得触摸物触摸触控区域内的任意点时均能被触控单元识别出。利用电极层I和电极层II互补,使整个屏幕功能区都能有效识别触控时的信号变化。
另一方面,与第一触控单元1和第二触控单元2位于同一层的方式相比,采用第一触控单元1和第二触控单元2位于不同的触控电极层中的方式可以使每个第一触控单元1和每个第二触控单元2的尺寸都可以设计得较小,从而可以支持主动笔。
再一方面,与第一触控单元1和第二触控单元2位于同一层的方式相比,第一触控单元1和第二触控单元2位于不同的触控电极层中的方式可以使相邻的第一触控单元之间的距离较大(例如4mm-5mm),相邻的第二触控单元之间的距离(例如4mm-5mm)也较大,从而第一走线13和对应的第二走线23可以不用在同一层上依次排开,而是分错在不同的层中,这样相应的第一走线13和第二走线23的宽度可以更大,可以有效降低阻抗。
第三触控电极23和第四触控电极24的平面形状、形成材料和尺寸可以参照第一触控电极11和第二触控电极12的设置,重复之处不再赘述。
第二走线23的平面形状(例如第二走线23为网格状)、位置(例如在触控区域内延伸至触控区域的设置有黑边框15的一侧)等可参照第一走线13的设置,重复之处不再赘述。
例如,第一触控电极11至第四触控电极24的材料都为金属,并且第一走线13和第二走线23都在触控区域内延伸至触控区域的靠近电极脚16、26的一侧,之后从该侧引出以电连接触控检测电路。这样可以实现支持主动笔的柔性三边无边框的多点式触控屏。
本公开的至少一个实施例还提供一种触控装置,其包括以上任一实施例提供的触控结构。
例如,该触控装置可以为外挂式(add-on)触控显示装置、覆盖表面式(on-cell)触控显示装置或者内嵌式(in-cell)触控显示装置。
例如,本公开的实施例提供的触控装置可以为液晶触控面板、电子纸、OLED(Organic Light-Emitting Diode)触控面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有触控功能的产品或部件。
本公开的至少一个实施例还提供一种触控结构的制作方法,以图1A-图2B和图3A至图3D所示的触控结构为例,如图4所示,该制作方法包括:形成第一触控电极层10,其包括第一触控单元1和多个第一走线13,第一触控单元1包括相邻且彼此绝缘的第一触控电极11和第二触控电极12,第一触控电极11和第二触控电极12均为自电容电极并且都包括相对设置的细端(参见11A和12A)和粗端(参见11B和12B),并且第一触控电极11和第二触控电极12分别与第一子走线131和第二子走线132连接。
例如,对于如图1A和图1D所示的触控结构,本公开的至少一个实施例提供的制作方法包括以下步骤S11至步骤S12。
步骤S11:在承载基板01上制作黑边框15,如图1D所示。
例如,承载基板01为透明柔性基板。
步骤S12:在承载基板01上形成金属层,并且利用光罩对金属层进行图案化工艺(例如光刻工艺),以形成如图1A和图1D所示的第一触控电极层10。
例如,在该步骤中,第一触控电极层10包括主体呈网格状的第一触控电极11和第二触控电极12、第一走线13以及电极脚16。
例如,本公开的至少一个实施例提供的制作方法可以用于一次同时制作多个触控结构,在这种情况下,该制作方法还包括步骤S13:将完成步 骤S12后得到的母板切割成多个子板,每个子板包括一个触控结构。
例如,本公开的至少一个实施例提供的制作方法还包括,在完成上述步骤S13之后,将与触控检测电路(例如集成电路)电连接的柔性印刷电路板(FPC)与承载基板01上的电极脚16电连接。
按照上述制作方法,可以实现一种窄边框或者三边无边框的单层(即,只有一层触控电极层)多点式触控屏。
例如,对于如图3A-图3D所示的触控结构,本公开的至少一个实施例提供的制作方法还包括:形成第二触控电极层20,其包括第二触控单元2和多个第二走线23,第二触控单元2包括相邻且彼此绝缘的第三触控电极23和第四触控电极24,第三触控电极23和第四触控电极24均为自电容电极并且都包括相对设置的细端(参见23A和24A)和粗端(参见23B和24B),第三触控电极23和第四触控电极24分别与第三子走线231和第四子走线232连接;第二触控单元2对应于相邻的第一触控单元1之间的空隙。
例如,对于如图3A至图3D所示的触控结构,本公开的至少一个实施例提供的制作方法包括以下步骤S21至步骤S24。
步骤S21:在承载基板01上制作黑边框15,如图3D所示。
例如,承载基板01为透明柔性基板。
步骤S22:在承载基板01上形成第一金属层,并且利用第一光罩对第一金属层进行图案化工艺(例如光刻工艺),以形成如图3A和图3B所示的第一触控电极层10。
例如,在该步骤中,第一触控电极层10包括主体呈网格状的第一触控电极11和第二触控电极12、第一走线13以及电极脚16。
步骤S23:利用第二光罩制作覆盖第一触控电极层10的绝缘层02,其未覆盖黑边框15所在区域(即bonding区)。
例如,绝缘层02为透明绝缘层。例如,绝缘层02覆盖整个触控区域。
步骤S24:在绝缘层02上形成第二金属层,并且利用第三光罩对第二金属层进行图案化工艺(例如光刻工艺),以形成如图3A和图3C所示的第二触控电极层20。
例如,在该步骤中,第二触控电极层20包括整体呈网格状的第三触控电极23和第四触控电极24、第二走线23以及电极脚26。
例如,本公开的至少一个实施例提供的制作方法可以用于一次同时制作多个触控结构,在这种情况下,该制作方法还包括步骤S25:将完成步骤S24后得到的母板切割成多个子板,每个子板包括一个触控结构。
例如,本公开的至少一个实施例提供的制作方法还包括,在完成上述步骤S25之后,将与触控检测电路(例如集成电路)电连接的柔性印刷电路板(FPC)与承载基板01上的电极脚16和26电连接。
按照上述制作方法,可以实现一种窄边框或者三边无边框的双层多点式触控屏。
本公开的至少一个实施例提供一种用于以上仅包括第一触控单元的实施例中的触控结构的触摸定位方法,例如,图4为本公开至少一个实施例提供的一种触摸定位方法的流程图,如图4所示,该触摸定位方法包括步骤S41和步骤S42。
步骤S41:根据第一触控单元包括的第一触控电极和第二触控电极的自电容的变化量确定被触摸电极。
在该步骤中,在第一触控电极和第二触控电极未被触摸的情况下,可以通过第一走线检测到基础信号;在第一触控电极和第二触控电极中的至少之一被触摸的情况下,通过将第一触控电极和/或第二触控电极的检测信号与基础信号进行比较,可以判断出第一触控电极和第二触控电极的自电容是否发生变化,从而确定出被触摸电极。
例如,在未发生触摸的情况下,先给触控结构中的所有第一触控电极和所有第二触控电极输入驱动信号,再扫描每个第一触控电极和每个第二触控电极的感应信号,以得到基础信号。
步骤S42:根据被触摸电极的各个区域自电容的变化量确定触摸位置。
在该步骤中,由于被触摸电极存在粗端和细端,例如为楔形,该被触摸电极的不同区域被触摸时其自电容的变化量不同,因此可以根据各个区域自电容的变化量确定被触摸电极的哪个区域被触摸以得到触摸位置。
本公开的至少一个实施例提供一种用于以上包括第一触控单元和第二触控单元的实施例中的触控结构的触摸定位方法,例如,图5为本公开至少一个实施例提供的另一种触摸定位方法的流程图,如图5所示,该触摸定位方法包括步骤S51和步骤S52。
步骤S51:根据第一触控单元包括的第一触控电极和第二触控电极, 和第二触控单元包括的第三触控电极和第四触控电极的自电容的变化量确定被触摸电极。
在该步骤中,在第一触控电极、第二触控电极第三触控电极和第四触控电极未被触摸的情况下,可以通过第一走线和第二走线检测到基础信号;在第一触控电极、第二触控电极第三触控电极和第四触控电极中的至少之一被触摸的情况下,通过将第一触控电极、第二触控电极第三触控电极和第四触控电极的检测信号与基础信号进行比较,可以判断出第一触控电极、第二触控电极第三触控电极和第四触控电极的自电容是否发生变化,从而确定出被触摸电极。
例如,在未发生触摸的情况下,先给触控结构中的所有第一触控电极、所有第二触控电极、所有第三触控电极和所有第四触控电极输入驱动信号,再扫描每个第一触控电极、每个第二触控电极、每个第三触控电极和每个第四触控电极的感应信号,以得到基础信号。
步骤S52:根据被触摸电极的各个区域自电容的变化量确定触摸位置。
在该步骤中,由于被触摸电极存在粗端和细端,例如为楔形,该被触摸电极的不同区域被触摸时其自电容的变化量不同,因此可以根据被触摸电极各个区域的自电容的变化量确定来被触摸电极的哪个区域被触摸以得到触摸位置。
以图2B为例,本公开的至少一个实施例提供的触摸定位方法包括:在未发生触摸的情况下,先给触控结构中的所有触控电极输入驱动信号,再扫描每个触控电极的感应信号,以得到基础信号;将每个触控电极沿其延伸长度方向划分成n个区域(如图2A所示),并且确定这n个区域分别对应的信号变化量区间,即得到n个区间;之后,检测出所有的信号发生变化的触控电极以得到被触摸电极,例如,图2B中的电极1、电极2和电极3的信号发生变化而其他电极的信号未发生变化,从而电极1、电极2和电极3为被触摸电极;最后,根据多个被触摸电极之间的位置关系以及每个被触摸电极的信号变化量确定触摸位置,例如,可以确定出图2B中的电极1的区域1被触摸、电极2的区域n被触摸、电极3的区域n被触摸,因此确定出触摸位置(参见图2B中的圆点的位置)。
综上所述,本公开实施例提供一种触控结构及其制作方法、触控装置和触摸定位方法,该触控结构包括第一触控单元和第一走线;第一触控单 元包括相邻且彼此绝缘的第一触控电极和第二触控电极,第一触控电极和第二触控电极均为自电容电极并且都包括相对设置的细端和粗端;第一触控电极和第二触控电极与不同的第一走线连接。该触控结构可以实现多点触控,例如实现柔性三边无边框多点式触控屏。在至少另一实施例中,通过设置与第一触控单元不同层的第二触控单元,并且使第二触控单元位于相邻的第一触控单元之间,可以实现一种具有较高灵敏度的触控结构,例如实现一种支持主动笔的柔性三边无边框多点式触控屏。
本公开实施例提供的触控结构及其制作方法、触控装置和触摸定位方法中相同的部件的设置方式可以互相参照。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种触控结构,包括:
    第一触控单元,包括相邻且彼此绝缘的第一触控电极和第二触控电极,所述第一触控电极和所述第二触控电极均为自电容电极并且都包括相对设置的细端和粗端;以及
    第一走线,包括第一子走线和第二子走线,所述第一子走线与所述第一触控电极连接,所述第二子走线与所述第二触控电极连接。
  2. 根据权利要求1所述的触控结构,其中,所述第一触控电极和所述第二触控电极的平面形状的轮廓为楔形,并且所述第一触控电极和所述第二触控电极的主体呈网格状。
  3. 根据权利要求2所述的触控结构,其中,所述第一触控电极和所述第二触控电极的平面形状相同并且相互靠近的边缘彼此大致平行。
  4. 根据权利要求2或3所述的触控结构,其中,所述第一触控电极和所述第二触控电极之间的空隙的宽度小于或等于30微米。
  5. 根据权利要求4所述的触控结构,其中,所述第一触控电极和所述第二触控电极的材料包括金属。
  6. 根据权利要求1-5中任一项所述的触控结构,其中,所述第一走线的主体呈网格状。
  7. 根据权利要求1-5中任一项所述的触控结构,其中,多条所述第一走线与所述第一触控单元位于同一层中。
  8. 根据权利要求1-5中任一项所述的触控结构,其中,所述第一触控电极和所述第二触控电极的从所述细端到所述粗端的延伸长度和所述粗端的宽度之比均为[n,n+1),并且n为正整数。
  9. 根据权利要求1-5中任一项所述的触控结构,其中,所述触控结构包括多个第一触控单元,所述多个第一触控单元呈阵列设置。
  10. 根据权利要求9所述的触控结构,其中,位于同一行的多个所述第一触控电极的细端的朝向相同,位于同一行的多个所述第二触控电极的细端的朝向相同。
  11. 根据权利要求10所述的触控结构,其中,在位于同一行的相邻的所述第一触控单元中,一个所述第一触控单元的所述第二触控电极与另一个 所述第一触控单元的所述第一触控电极的相邻的边缘彼此大致平行。
  12. 根据权利要求10所述的触控结构,其中,所述第一触控电极的细端靠近所述第二触控电极的粗端;所述第一触控电极的粗端靠近所述第二触控电极的细端。
  13. 根据权利要求12所述的触控结构,其中,所述第一触控单元的平面形状大致为平行四边形。
  14. 根据权利要求9-13中任一项所述的触控结构,还包括分别与多条所述第一走线电连接的多个电极脚,其中,所述多个电极脚位于所述多个第一触控单元所在的触控区域的一侧,并且多条所述第一走线在所述触控区域内延伸至所述触控区域的设置有所述多个电极脚的一侧后引出。
  15. 根据权利要求9-14中任一项所述的触控结构,还包括:
    第二触控单元,包括相邻且彼此绝缘的第三触控电极和第四触控电极,所述第三触控电极和所述第四触控电极均为自电容电极并且都包括相对设置的细端和粗端;以及
    第二走线,包括第三子走线和第四子走线,所述第三子走线与所述第三触控电极连接,所述第四子走线与所述第四触控电极连接,
    其中,所述第二触控单元与所述第一触控单元位于不同的层中并且所述第二触控单元对应于在行方向上相邻的所述第一触控单元之间的空隙。
  16. 一种触控装置,包括根据权利要求1-15中任一项所述的触控结构。
  17. 一种触控结构的制作方法,包括:
    形成第一触控电极层,其中,所述第一触控电极层包括第一触控单元和第一走线,所述第一触控单元包括相邻且彼此绝缘的第一触控电极和第二触控电极,所述第一触控电极和所述第二触控电极均为自电容电极并且都包括相对设置的细端和粗端,所述第一走线包括第一子走线和第二子走线,所述第一子走线与所述第一触控电极连接,所述第二子走线与所述第二触控电极连接。
  18. 根据权利要求17所述的方法,还包括:
    形成第二触控电极层,其中,所述第二触控电极层包括第二触控单元和第二走线,所述第二触控单元包括相邻且彼此绝缘的第三触控电极和第四触控电极,所述第三触控电极和所述第四触控电极均为自电容电极并且都包括相对设置的细端和粗端,所述第二走线包括第三子走线和第四子走线,所述 第三子走线与所述第三触控电极连接,所述第四子走线与所述第四触控电极连接;所述第二触控单元与所述第一触控单元位于不同的层中并且所述第二触控单元对应于在行方向上相邻的所述第一触控单元之间的空隙。
  19. 一种用于权利要求1-14中任一项所述触控结构的触摸定位方法,包括:
    根据所述第一触控单元包括的所述第一触控电极和所述第二触控电极的自电容的变化量确定被触摸电极;以及
    根据所述被触摸电极的各个区域自电容的变化量确定触摸位置。
  20. 一种用于权利要求15所述触控结构的触摸定位方法,包括:
    根据所述第一触控单元包括的所述第一触控电极和所述第二触控电极,和所述第二触控单元包括的所述第三触控电极和所述第四触控电极的自电容的变化量确定被触摸电极;以及
    根据所述被触摸电极的各个区域自电容的变化量确定触摸位置。
PCT/CN2018/116225 2018-03-13 2018-11-19 触控结构及其制作方法、触控装置和触摸定位方法 WO2019174295A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/477,588 US11543925B2 (en) 2018-03-13 2018-11-19 Touch structure, method for manufacturing same, touch device, and method for determining touch position
EP18897867.0A EP3767446B1 (en) 2018-03-13 2018-11-19 Touch structure and manufacturing method therefor, touch device, and touch positioning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810204720.8A CN110275647B (zh) 2018-03-13 2018-03-13 触控结构及其制作方法、触控装置和触摸定位方法
CN201810204720.8 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019174295A1 true WO2019174295A1 (zh) 2019-09-19

Family

ID=67907297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116225 WO2019174295A1 (zh) 2018-03-13 2018-11-19 触控结构及其制作方法、触控装置和触摸定位方法

Country Status (4)

Country Link
US (1) US11543925B2 (zh)
EP (1) EP3767446B1 (zh)
CN (1) CN110275647B (zh)
WO (1) WO2019174295A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427475B (zh) * 2020-03-26 2022-09-02 京东方科技集团股份有限公司 触控模组、触控显示屏及触控显示屏的制造方法
US11449183B1 (en) * 2021-06-17 2022-09-20 Sharp Display Technology Corporation Touch panel sensor with optimal electrode separation for improved performance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203224862U (zh) * 2013-05-02 2013-10-02 京东方科技集团股份有限公司 触控电极结构、电容式触控装置和触摸显示装置
CN104503653A (zh) * 2015-01-26 2015-04-08 京东方科技集团股份有限公司 一种自电容触摸屏和显示装置
US20150261358A1 (en) * 2014-03-14 2015-09-17 Mstar Semiconductor, Inc. Correction apparatus and correction method for self-capacitive touch panel
CN205353969U (zh) * 2015-07-10 2016-06-29 宸鸿科技(厦门)有限公司 一种具有压力侦测的触控总成
CN206312114U (zh) * 2016-10-31 2017-07-07 南昌欧菲光科技有限公司 触摸屏及其悬浮触控组件
US20170206394A1 (en) * 2016-01-15 2017-07-20 Raydium Semiconductor Corporation Capacitive fingerprint sensing apparatus
CN206388155U (zh) * 2016-11-28 2017-08-08 北京集创北方科技股份有限公司 触摸感应装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297811B1 (en) * 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
US20130154996A1 (en) * 2011-12-16 2013-06-20 Matthew Trend Touch Sensor Including Mutual Capacitance Electrodes and Self-Capacitance Electrodes
US8829926B2 (en) * 2012-11-19 2014-09-09 Zrro Technologies (2009) Ltd. Transparent proximity sensor
CN103268179B (zh) 2013-05-02 2016-05-25 京东方科技集团股份有限公司 触控电极及制作方法、电容式触控装置和触摸显示装置
CN203643988U (zh) * 2013-09-13 2014-06-11 敦泰科技有限公司 电容式触摸显示装置
JP2015106240A (ja) * 2013-11-29 2015-06-08 富士フイルム株式会社 導電性フイルム及びタッチパネル
CN105278748A (zh) * 2015-10-19 2016-01-27 京东方科技集团股份有限公司 一种oled基板、显示装置、可穿戴设备、驱动方法以及补偿电路
CN106502466B (zh) * 2016-10-28 2020-04-14 上海天马有机发光显示技术有限公司 一种触控装置、电子设备以及制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203224862U (zh) * 2013-05-02 2013-10-02 京东方科技集团股份有限公司 触控电极结构、电容式触控装置和触摸显示装置
US20150261358A1 (en) * 2014-03-14 2015-09-17 Mstar Semiconductor, Inc. Correction apparatus and correction method for self-capacitive touch panel
CN104503653A (zh) * 2015-01-26 2015-04-08 京东方科技集团股份有限公司 一种自电容触摸屏和显示装置
CN205353969U (zh) * 2015-07-10 2016-06-29 宸鸿科技(厦门)有限公司 一种具有压力侦测的触控总成
US20170206394A1 (en) * 2016-01-15 2017-07-20 Raydium Semiconductor Corporation Capacitive fingerprint sensing apparatus
CN206312114U (zh) * 2016-10-31 2017-07-07 南昌欧菲光科技有限公司 触摸屏及其悬浮触控组件
CN206388155U (zh) * 2016-11-28 2017-08-08 北京集创北方科技股份有限公司 触摸感应装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767446A4

Also Published As

Publication number Publication date
EP3767446A1 (en) 2021-01-20
CN110275647A (zh) 2019-09-24
US11543925B2 (en) 2023-01-03
US20210405812A1 (en) 2021-12-30
EP3767446B1 (en) 2024-02-21
EP3767446A4 (en) 2021-12-08
CN110275647B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US8659575B2 (en) Touch panel device of digital capacitive coupling type with high sensitivity
US20100283757A1 (en) Capacitive touch panel structure with high optical uniformity
US20170307924A1 (en) Touch control electrode structure, touch screen and display apparatus
US20190294846A1 (en) Touch panel, manufacturing method thereof and display device
US20120299868A1 (en) High Noise Immunity and High Spatial Resolution Mutual Capacitive Touch Panel
JP5636768B2 (ja) 情報入力装置
US20140347319A1 (en) Touch panel
US20100156811A1 (en) New pattern design for a capacitive touch screen
JP2009009249A (ja) 静電容量式タッチパネル及びこれを用いた2方式併用タッチパネル
US9753595B2 (en) Touch screen panel
WO2019041985A1 (zh) 金属网格、触控显示装置以及改善触控显示装置摩尔纹的方法
JP2010020749A (ja) タッチスクリーンパネル及びその製造方法
US20140035865A1 (en) Multi-touch on single layer touch sensor
US9383781B2 (en) Touch sensor
WO2019029226A1 (zh) 触控面板及其制作方法、触控显示装置
WO2019024564A1 (zh) 触控基板及其制作方法、触控显示装置
WO2020001098A1 (zh) 触控面板和触控显示装置
KR20160008889A (ko) 커브된 터치 패널 및 이를 포함하는 표시 장치
KR20120080390A (ko) 터치 스크린 패널
WO2021026770A1 (zh) 触控面板及其制作方法、电子装置
WO2019174295A1 (zh) 触控结构及其制作方法、触控装置和触摸定位方法
US11775125B2 (en) Touch electrode structure, touch screen and touch display device
WO2018099069A1 (zh) 触摸显示屏、显示装置和触摸面板
JP6787912B2 (ja) タッチ基板、タッチパネル及びタッチパネルを有するタッチ装置、並びにタッチパネルの製造方法
EP3640776A1 (en) Touch display screen and method for manufacturing the same, touch display device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897867

Country of ref document: EP

Effective date: 20201013